WO2012036280A1 - Rice transplanter - Google Patents

Rice transplanter Download PDF

Info

Publication number
WO2012036280A1
WO2012036280A1 PCT/JP2011/071247 JP2011071247W WO2012036280A1 WO 2012036280 A1 WO2012036280 A1 WO 2012036280A1 JP 2011071247 W JP2011071247 W JP 2011071247W WO 2012036280 A1 WO2012036280 A1 WO 2012036280A1
Authority
WO
WIPO (PCT)
Prior art keywords
shift
engine
speed
actuator
rotation angle
Prior art date
Application number
PCT/JP2011/071247
Other languages
French (fr)
Japanese (ja)
Inventor
疋田 康貴
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010210205A external-priority patent/JP5779328B2/en
Priority claimed from JP2010231017A external-priority patent/JP5682886B2/en
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to CN201180044391.1A priority Critical patent/CN103109060B/en
Priority to KR1020137005076A priority patent/KR20130069753A/en
Publication of WO2012036280A1 publication Critical patent/WO2012036280A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0215Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
    • F02D41/0225Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission in relation with the gear ratio or shift lever position
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B67/00Devices for controlling the tractor motor by resistance of tools
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C11/00Transplanting machines
    • A01C11/003Transplanting machines for aquatic plants; for planting underwater, e.g. rice
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C11/00Transplanting machines
    • A01C11/02Transplanting machines for seedlings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/0205Circuit arrangements for generating control signals using an auxiliary engine speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • F02D41/083Introducing corrections for particular operating conditions for idling taking into account engine load variation, e.g. air-conditionning

Definitions

  • the present invention relates to rice transplanter technology.
  • Patent Document 1 a technique for changing the engine speed using a lever, a pedal, or the like has been publicly known (for example, Patent Document 1).
  • a rice transplanter that performs a continuously variable transmission by operating a shift pedal, when the shift pedal is not depressed, it is in a running stop state (idling state), and the engine speed is rotating at an idling speed.
  • the idling rotational speed at the time of work is set to a rotational speed at which the rice transplanter can start smoothly when the shift pedal is depressed to start the rice transplanter.
  • Patent Document 2 a technique for accelerating and decelerating by operating a shift operation tool (shift pedal) is known (for example, Patent Document 2).
  • General rice transplanters have an actuator for changing the vehicle speed (acceleration / deceleration control).
  • the rice transplanter calculates the target drive amount of the actuator based on the depression amount of the shift pedal when the shift pedal is depressed, and drives the actuator so that the drive amount of the actuator becomes the target drive amount. Then, acceleration / deceleration is performed by changing the vehicle speed to a size corresponding to the target drive amount of the actuator.
  • the general rice transplanter always increases or decreases the drive amount of the actuator to a constant value when the shift pedal is depressed. That is, the general rice transplanter is configured such that the ratio of the change in the target drive amount of the actuator to the change in the depression amount of the shift pedal is always a constant value (the same value). As a result, when the operator accelerates or decelerates the rice transplanter by depressing the shift pedal, fine acceleration / deceleration control cannot be performed, which is disadvantageous in that the shift feeling is lowered.
  • the rice transplanter according to claim 1 is: Engine, A transmission for shifting the power of the engine and transmitting it to the wheels;
  • the transmission is connected to the transmission and can be operated to a plurality of transmission positions including a seeding position.
  • the transmission speed of the transmission is changed to correspond to the operated transmission position.
  • a main shift lever to An actuator for changing the rotational speed of the engine A shift operation tool for operating the actuator; With Driving the actuator so that the engine rotates at a first idling speed when the main speed change lever is not in the seeding position and the speed change tool is not operated; When the main transmission lever is in the seeding position, the actuator is driven so that the engine rotates at a second idling speed that is lower than the first idling speed.
  • the first idling rotational speed is a rotational speed that can be immediately applied when starting the rice transplanter
  • the second idling rotational speed is a rotational speed at which the engine does not stop.
  • the rice transplanter is an operation tool for starting the engine, and includes a starter that outputs a start signal when a start operation for starting the engine is performed, When the output of the start signal by the starter is started when the main shift lever is in the seeding position and the shift operation tool is not operated, the engine rotates the first idling.
  • Drive the actuator to rotate by a number In the state where the main transmission lever is in the seedling joint position, the start device starts outputting the start signal, and then the main transmission lever is operated to the shift position different from the seedling position, and then When the main transmission lever is operated to the seeding position, the actuator is driven so that the engine rotates at the second idling speed.
  • a target drive amount of the actuator is calculated based on an operation amount of the speed change operation tool, the actuator is driven so as to become the target drive amount, and a vehicle speed is set to a magnitude corresponding to the target drive amount of the actuator.
  • change Dividing the operating range of the shift operating tool into a plurality of shift areas; For each of the plurality of shift regions, a ratio of a change in the target drive amount of the actuator to a change in the operation amount of the shift operation tool is set.
  • Engine An actuator for changing the rotational speed of the engine; A shift operation tool for operating the actuator; With A target drive amount of the actuator is calculated based on an operation amount of the speed change operation tool, the actuator is driven so as to become the target drive amount, and a vehicle speed is set to a magnitude corresponding to the target drive amount of the actuator.
  • change Dividing the operating range of the shift operating tool into a plurality of shift areas; For each of the plurality of shift regions, a ratio of a change in the target drive amount of the actuator to a change in the operation amount of the shift operation tool is set.
  • the rice transplanter can start smoothly. Further, at the second idling speed, it is possible to suppress the fuel consumption of the engine.
  • the engine can be started smoothly, and the engine startability can be improved. Is advantageous.
  • acceleration / deceleration can be performed with gradual acceleration corresponding to the depressing amount of the shift pedal, which can contribute to improvement of the shift feeling.
  • the rice transplanter can accelerate smoothly.
  • acceleration / deceleration can be performed with gradual acceleration corresponding to the depressing amount of the shift pedal, which can contribute to improvement of the shift feeling.
  • the rice transplanter can accelerate smoothly.
  • FIG. 1 Schematic when the rice transplanter shown in FIG. 1 is viewed from above.
  • the figure which shows the dashboard periphery of the rice transplanter shown in FIG. The block diagram which shows the control apparatus of the rice transplanter shown in FIG.
  • the rotation angle of the shift pedal, the rotation angle of the detection shaft of the pedal potentiometer, the rotation angle of the motor potentiometer, the rotation speed of the engine when the main transmission lever is operated to the planting position The figure which shows the relationship with the vehicle speed of a rice transplanter.
  • the rotation angle of the shift pedal, the rotation angle of the detection shaft of the pedal potentiometer, the rotation angle of the motor potentiometer, and the rotation of the engine when the main transmission lever is operated to the neutral position or the seeding position The figure which shows the relationship between a number and the vehicle speed of a rice transplanter.
  • the figure which shows the relationship between a key switch, a seedling joining position detection switch, and the rotation angle (motor position) of the potentiometer for motors (A) The figure which shows a map, (b) The figure which shows the movement range at the time of a motor following in the said map.
  • the rice transplanter 1 is an eight-row planter, but this is not particularly limited, and a six-plant or ten-row planter may be used.
  • the rice transplanter 1 has a traveling unit 10 and a planting unit 40, so that the planting unit 40 can plant seedlings in the field while traveling by the traveling unit 10. Configured.
  • the planting part 40 is arrange
  • the engine 14 is provided at the front portion of the vehicle body frame 11 and is covered with a bonnet 15.
  • the transmission case 20 is supported by the front portion of the vehicle body frame 11 and is disposed behind the engine 14.
  • a hydraulic-mechanical continuously variable transmission (HMT) 21 As shown in FIG. 3, in the transmission case 20, a hydraulic-mechanical continuously variable transmission (HMT) 21, a main transmission mechanism 22, a clutch 21c, and a braking device 21d are mounted.
  • HMT hydraulic-mechanical continuously variable transmission
  • the HMT 21 is a hydraulic continuously variable transmission (HST) 21a capable of steplessly changing the power from the engine 14, and a planetary gear mechanism capable of combining the power from the engine 14 and the power from the HST 21a. 21b.
  • HST hydraulic continuously variable transmission
  • the main transmission mechanism 22 can change the power from the HMT 21 in a plurality of stages by changing the combination of gears to mesh with each other.
  • the clutch 21c switches whether power can be transmitted from the HMT 21 to the main transmission mechanism 22 by being disconnected or connected.
  • the braking device 21d can brake the rotation of the output shaft of the main transmission mechanism 22.
  • the front axle case 6 is supported on the front portion of the vehicle body frame 11, and the front wheels 12 are attached to the left and right sides of the front axle case 6.
  • the rear axle case 7 is supported on the rear portion of the vehicle body frame 11, and the rear wheels 13 are attached to both the left and right sides of the rear axle case 7.
  • the power of the engine 14 is transmitted to the mission case 20, and is transmitted to the left and right front wheels 12 and the left and right rear wheels 13 via the HMT 21 and the main transmission mechanism 22 inside the mission case 20, respectively. 12 and the rear wheel 13 are configured to rotate. Thereby, the traveling unit 10 can travel forward or backward.
  • a driving operation unit 60 is provided in the middle of the vehicle body 11 before and after.
  • a dashboard 61 is disposed in front of the driving operation unit 60.
  • a steering handle 64 is disposed at the center of the left and right of the dashboard 61, and a main transmission lever 65, a key switch 66 (see FIG. 5), and the like are further disposed on the dashboard 61.
  • a driver's seat 62 is arranged behind the steering handle 64 at the rear of the driving operation unit 60.
  • a shift pedal 67 there are a shift pedal 67, a brake pedal 68 (see FIG. 5), a vehicle body cover 63 having a part for getting on and off, and other levers and switches around the steering handle 64 and the driver seat 62 of the driving operation unit 60. Etc. are arranged. With these operating tools, it is possible to perform appropriate operations on the traveling unit 10 and the planting unit 40. The detailed configuration of the operation tool will be described later.
  • the spare seedling stage 17 is attached to each mounting frame 16 erected from both the left and right sides of the front portion of the vehicle body frame 11, and is arranged on both the left and right sides of the bonnet 15. And a reserve seedling is mounted in the reserve seedling mounting stand 17, and the seedling supply to the planting part 40 is attained.
  • the planting mission case 50 is supported near the center of the lower part of the planting frame 49, and the transmission shaft 51 is connected to the planting mission case 50. It extends on both the left and right sides.
  • the four planting transmission cases 46 are respectively extended rearward from the transmission shaft 51 and arranged at appropriate intervals in the left-right direction.
  • a rotary case 44 is rotatably supported on the left and right sides of the rear end of each planting transmission case 46.
  • the number of the rotary cases 44 is the same as the number of planting strips, that is, eight in this embodiment. Then, the two planting claws 45 are attached to both sides of the rotary case 44 in the longitudinal direction so as to sandwich the rotation fulcrum of the rotary case 44.
  • a seedling stand 41 is disposed above the planting transmission case 46 in a front and rear inclined state, and is attached to the rear portion of the planting frame 49 so as to be reciprocally movable in the left and right directions via upper and lower guide rails (not shown). It is done.
  • the seedling table 41 can be reciprocated horizontally by the lateral feed mechanism 52.
  • the seedling mounting bases 41 having a plurality of (eight) seedling mat mounting parts are arranged in the left-right direction so that the respective lower ends face one rotary case 44. Then, the seedling mat is placed on each seedling stage 41, and one seedling can be cut from the seedling mat on the seedling stage 41 by the planting claws 45 when the rotary case 44 rotates.
  • a seedling vertical feed belt 47 corresponding to the number of strips is provided on the seedling mount 41.
  • the seedling vertical feed belt 47 can be operated so that the seedling mat on the seedling stage 41 is vertically fed by the vertical feeding mechanism 53 every time the seedling stage 41 reaches the stroke end of the left and right reciprocating horizontal feed. It is said.
  • the motive power of the engine 14 is transmitted to each rotary case 44 via the transmission case 20, the inter-company transmission case 54, the planting transmission case 50, etc., and the rotary case 44 is configured to rotate.
  • the two planting claws 45 can alternately take out the seedlings from the seedling mat on the seedling mount 41 and plant them in the field.
  • the power of the engine 14 is transmitted to the lateral feed mechanism 52 and the vertical feed mechanism 53 via the transmission case 20, the inter-strain shifting case 54, the planting mission case 50, etc. It is configured such that it is reciprocated horizontally and the seedling mat on the seedling table 41 is vertically fed downward by the vertical feed mechanism 53 via the seedling vertical feed belt 47 in accordance with the left and right reciprocating horizontal feed of the seedling table 41. Is done. Thereby, the seedling mat on the seedling placing table 41 is moved to an appropriate position with respect to the planting claws 45.
  • the drawing marker 48 is supported rotatably on the left and right sides of the planting frame 49.
  • Each of the left and right line drawing markers 48 is stored by being rotated upward with the base end side as a rotation fulcrum, and the tip side is left or left by being rotated downward from this stored state. It is configured so that it can be drawn to the field by protruding rightward.
  • the above-described lifting mechanism 30 is provided between the traveling unit 10 and the planting unit 40.
  • the top link 31 and the lower link 32 are installed between the traveling unit 10 and the planting unit 40, and the lifting cylinder is connected between the lower link 32 and the traveling unit 10.
  • the planting part 40 can be rotated to the up-down direction with respect to the traveling part 10, that is, can be raised or lowered, by the expansion and contraction operation of the lifting cylinder.
  • the power transmission mechanism for transmitting power from the engine 14 to the rotary case 44, the lateral feed mechanism 52, and the vertical feed mechanism 53 includes the planting clutch 55 shown in FIG. Accordingly, the power of the engine 14 is transmitted to the seedling vertical feed belt 47 and the rotary case 44 or is not transmitted.
  • the shift pedal 67 shown in FIGS. 2, 5, and 6 is an operating tool for changing the vehicle speed (traveling speed) of the rice transplanter 1, and more specifically, the rotational speed of the engine 14 and the gear ratio of the HMT 21. It is an operation tool for changing.
  • the transmission pedal 67 is disposed on the lower right side of the dashboard 61.
  • a pedal potentiometer (pedal operation amount detection device) 67a shown in FIG. 6 is for detecting the depression amount (rotation angle) of the shift pedal 67.
  • the pedal potentiometer 67a is connected to the shift pedal 67 via a link mechanism, and can detect the amount of depression of the shift pedal 67. More specifically, the detection shaft of the pedal potentiometer 67a is rotated according to the depression amount (rotation angle) of the shift pedal 67, and the rotation angle can be detected as the depression amount of the transmission pedal 67.
  • the pedal potentiometer 67a When the shift pedal 67 is depressed, the pedal potentiometer 67a outputs a pedal signal indicating the depression amount of the shift pedal 67.
  • the maximum speed setting dial 69 shown in FIGS. 5 and 6 is an operation tool for changing the maximum speed of the rice transplanter 1.
  • the maximum speed setting dial 69 is disposed at a substantially central portion of the dashboard 61 (in front of the steering handle 64).
  • the main transmission lever 65 shown in FIGS. 2, 5, and 6 is an operating tool for changing the gear position (speed ratio) of the main transmission mechanism 22.
  • the main transmission lever 65 is disposed at the left end portion of the dashboard 61 (to the left of the steering handle 64).
  • the main transmission lever 65 is connected to the main transmission mechanism 22 in the mission case 20 via a link mechanism.
  • the main speed change lever 65 can be changed to a road running position, a planting position, a seeding position, a reverse position or a neutral position.
  • the gear position of the main transmission mechanism 22 is changed to high speed. In this case, the rice transplanter 1 can travel at high speed.
  • the gear position of the main transmission mechanism 22 is changed to a low speed. In this case, the rice transplanter 1 can travel at a lower speed than when the gear stage of the main transmission mechanism 22 is at a high speed.
  • the gear position of the main transmission mechanism 22 is changed to neutral. In this case, the rice transplanter 1 cannot travel. Further, in this case, it is detected that the main transmission lever 65 has been switched to the seeding position by a seeding position detection switch 65a described later, and predetermined control such as changing the number of revolutions of the engine 14 by a control device 100 described later is performed. It can be carried out.
  • the seedling joining position detection switch 65a shown in FIG. 6 is for detecting that the main transmission lever 65 is in the seedling joining position.
  • a micro switch is used as the seedling joining position detection switch 65a.
  • the seedling joining position detection switch 65 a is disposed in the vicinity of the seedling joining position of the main transmission lever 65.
  • the seedling joining position detection switch 65a can detect that the main transmission lever 65 is in the seedling joining position by contacting the main transmission lever 65 that has been changed to the seedling joining position.
  • the joining position detection switch 65a outputs a joining position signal indicating that the main transmission lever 65 is at the joining position.
  • the key switch 66 shown in FIGS. 2, 5, and 6 is an operation tool for starting or stopping the engine 14.
  • the key switch 66 is disposed at the right rear end of the dashboard 61 (right rear of the steering handle 64).
  • the key switch 66 When the key switch 66 is started (when switched from OFF to ON), the engine 14 is started. At this time, the key switch 66 outputs a start signal indicating that the start operation has been performed.
  • the key switch 66 is in the ON state, the engine 14 continues to drive.
  • the key switch 66 is stopped (when switched from ON to OFF)
  • the engine 14 stops. At this time, the key switch 66 outputs a stop signal indicating that the stop operation has been performed.
  • the key switch 66 When the key switch 66 is OFF, the engine 14 continues to stop.
  • the speed fixing lever 70 shown in FIGS. 5 and 6 is an operation tool for fixing the vehicle speed of the rice transplanter 1 (maintaining the set vehicle speed) or releasing the fixed speed.
  • the speed fixing lever 70 is attached to the shaft of the steering handle 64 and extends toward the right.
  • the speed fixing lever 70 can be rotated to a speed fixing position, a speed fixing release position, or a neutral position.
  • the speed fixing position is a position when the speed fixing lever 70 is rotated backward.
  • the speed fixing release position is a position when the speed fixing lever 70 is rotated forward.
  • the neutral position is a position approximately between the speed fixing position and the speed fixing release position. Even when the speed fixing lever 70 is operated to either the speed fixing position or the speed fixing release position, the speed fixing lever 70 is always urged so as to return to the neutral position again.
  • the speed fixing switch 70a shown in FIG. 6 is for detecting that the speed fixing lever 70 has been operated to the speed fixing position.
  • a micro switch is used as the speed fixing switch 70a.
  • the speed fixing switch 70a can detect that the speed fixing lever 70 is operated to the speed fixing position by contacting the speed fixing lever 70 operated to the speed fixing position.
  • the speed fixing release switch 70b is for detecting that the speed fixing lever 70 has been operated to the speed fixing release position.
  • a micro switch is used as the speed fixing release switch 70b.
  • the speed fixing release switch 70b can detect that the speed fixing lever 70 is operated to the speed fixing release position by contacting the speed fixing lever 70 operated to the speed fixing release position.
  • the brake pedal 68 shown in FIGS. 3 and 6 is an operation tool for braking the rice transplanter 1.
  • the brake pedal 68 is disposed on the lower right side of the dashboard 61 and on the left side of the speed change pedal 67.
  • the brake pedal 68 is connected to the braking device 21d through a link mechanism. When the brake pedal 68 is depressed, the braking device 21d is activated, and the rotation of the front wheels 12 and the rear wheels 13 of the rice transplanter 1 is braked.
  • the brake operation detection switch 68a shown in FIG. 6 is for detecting that the brake pedal 68 has been operated.
  • a micro switch is used as the brake operation detection switch 68a.
  • the brake operation detection switch 68a can detect that the brake pedal 68 has been depressed by contacting the brake pedal 68 that has been depressed.
  • the seedling end detection switch 49a shown in FIG. 6 detects that the seedling stage 41 has reached a predetermined position (the end position in the left-right direction).
  • a micro switch is used as the seedling end detection switch 49a.
  • the seedling end detection switch 49a is arranged on the planting frame 49 and can detect that the seedling mounting base 41 has reached a predetermined position by contacting a pressing portion provided on the seedling mounting base 41. it can.
  • a motor (actuator) 71 shown in FIG. 6 is an actuator for changing the rotational speed of the engine 14, changing the gear ratio of the HMT 21, switching the connection / disconnection of the clutch 21c, and switching the operation of the braking device 21d.
  • the motor 71 is connected to the engine 14, the HMT 21 (specifically, the HST 21a), the clutch 21c, and the braking device 21d through a link mechanism.
  • the output shaft of the motor 71 is connected to the speed governor 14a of the engine 14 via a link mechanism.
  • the speed control device 14a is driven by the motor 71, and the rotation speed of the engine 14 can be changed.
  • the output shaft of the motor 71 is connected to the movable swash plate of the HST 21a through a link mechanism.
  • the inclination angle of the movable swash plate is changed by the motor 71, and the gear ratio of the HST 21a can be changed.
  • the output shaft of the motor 71 is connected to the clutch 21c through a link mechanism.
  • the clutch 71c is disconnected or connected by the motor 71.
  • the output shaft of the motor 71 is connected to the braking device 21d through a link mechanism. When the braking device 21d is operated by the motor 71, the power output to the front wheel 12 and the rear wheel 13 can be braked.
  • the motor potentiometer 71a is for detecting the drive amount (rotation angle) of the output shaft of the motor 71.
  • the motor potentiometer 71a is connected to the motor 71 via a link mechanism, and can detect the rotation angle of the output shaft of the motor 71. More specifically, the detection shaft of the potentiometer 71a for the motor is rotated according to the drive amount (rotation angle) of the output shaft of the motor 71, and the rotation angle is detected as the drive amount of the output shaft of the motor 71. Can do.
  • the cell motor 72 is an actuator for starting the engine 14.
  • the meter panel 73 shown in FIG. 2, FIG. 5, and FIG. 6 is for displaying various information related to the operation of the rice transplanter 1, the engine, the abnormality alarm, and the like.
  • the meter panel 73 is disposed at the approximate center of the left and right of the dashboard 61 and in front of the steering handle 64.
  • the control device 100 inputs a detection signal, and transmits a control signal to the motor 71, the cell motor 72, the meter panel 73, and the like based on the input detection signal and program.
  • the control device 100 may be configured such that a CPU, ROM, RAM, HDD, and the like are connected by a bus, or may be configured by a one-chip LSI or the like.
  • the control device 100 is connected to the pedal potentiometer 67a, and can obtain a detection signal (pedal signal) indicating the amount of depression of the shift pedal 67 by the pedal potentiometer 67a.
  • the control device 100 is connected to the maximum speed setting dial 69 and can acquire a detection signal related to the operation position of the maximum speed setting dial 69.
  • the control device 100 is connected to the seedling position detection switch 65a, and can acquire a detection signal (the above-mentioned seedling position detection signal) indicating that the main transmission lever 65 is at the seedling position from the seedling position detection switch 65a.
  • the control device 100 is connected to the key switch 66, and obtains a detection signal (start signal) indicating that the start operation has been performed by the key switch 66 and a detection signal (stop signal) indicating that the stop operation has been performed. it can.
  • the control device 100 is connected to the speed fixing switch 70a, and can acquire a detection signal indicating that the speed fixing lever 70 by the speed fixing switch 70a has been operated to the speed fixing position.
  • the control device 100 is connected to the speed fixing release switch 70b, and can acquire a detection signal indicating that the speed fixing lever 70 by the speed fixing release switch 70b has been operated to the speed fixing release position.
  • the control device 100 is connected to the brake operation detection switch 68a, and can acquire a detection signal indicating that the brake pedal 68 has been depressed by the brake operation detection switch 68a.
  • the control device 100 is connected to the seedling end detection switch 49a, and can acquire a detection signal indicating that the seedling placement base 41 has reached a predetermined position by the seedling end detection switch 49a.
  • the control device 100 is connected to the motor 71 and can transmit a control signal to the motor 71 to drive the motor 71.
  • the control device 100 is connected to a motor potentiometer 71a, and can acquire a detection signal of the rotation angle of the motor 71 by the motor potentiometer 71a.
  • the control device 100 can drive the motor 71 to a desired rotation angle by transmitting a control signal to the motor 71 until the detection signal from the motor potentiometer 71a reaches a desired rotation angle (target drive amount). it can.
  • the control device 100 is connected to the cell motor 72 and can transmit a control signal to the cell motor 72 to drive the cell motor 72.
  • the control device 100 is connected to the meter panel 73, and can display the information when an operation state or abnormality of the engine or the work machine is detected.
  • the control device 100 when the control device 100 acquires a detection signal (start signal) indicating that the key switch 66 has been started, the cell motor 72 is driven to start the engine 14. In addition, when the control device 100 acquires a detection signal (stop signal) indicating that the key switch 66 has been stopped, the control device 100 drives the motor 71 to cut off the fuel supply by the speed governor 14a (in this embodiment). In the case of a diesel engine or a gasoline engine, the ignition device is stopped), and the engine 14 is stopped.
  • control device 100 acquires the pedal signal indicating the depression amount of the shift pedal 67
  • the control device 100 calculates a target drive amount of the motor 71 based on the acquired pedal signal. Then, the control device 100 drives the motor 71 by the calculated target drive amount to change the rotation speed of the engine 14, change the speed ratio of the HMT 21, change the connection / disconnection of the clutch 21c, and change the operation of the braking device 21d. I do.
  • the control device 100 has a relationship between the depression amount of the speed change pedal 67 and the driving amount of the motor 71 (more specifically, the rotation angle of the detection shaft of the pedal potentiometer 67a and the rotation angle of the detection shaft of the motor potentiometer 71a).
  • a map indicating the relationship between the two is stored.
  • the control device 100 acquires the pedal signal indicating the depression amount of the shift pedal 67
  • the controller 100 drives the motor 71 corresponding to the acquired pedal signal (the rotation angle of the detection shaft of the pedal potentiometer 67a) in the map.
  • the amount (the rotation angle of the detection shaft of the motor potentiometer 71a) is calculated as the target drive amount.
  • the control device 100 drives the motor 71 so that the rotation angle of the detection shaft of the motor potentiometer 71a becomes the target drive amount.
  • this will be specifically described with reference to FIG.
  • the rotation angle ⁇ of the shift pedal 67 when the shift pedal 67 is not depressed is ⁇ 1 (degrees).
  • the rotation angle ⁇ of the detection shaft of the pedal potentiometer 67a is ⁇ 1 (degrees).
  • the control device 100 calculates the rotation angle ⁇ 1 (degree) of the detection shaft of the motor potentiometer 71a corresponding to the rotation angle ⁇ 1 of the pedal potentiometer 67a as a target drive amount in FIG. Then, the control device 100 drives the motor 71 so that the rotation angle ⁇ of the motor potentiometer 71a becomes ⁇ 1.
  • the rotational speed N of the engine 14 is set to N1 (rpm) via the link mechanism.
  • the inclination angle of the movable swash plate of the HST 21a is set to be maximum via the link mechanism.
  • the control device 100 does not drive the motor 71 in order to maintain the rotation angle ⁇ of the motor potentiometer 71a as ⁇ 1 regardless of the value of the rotation angle ⁇ of the pedal potentiometer 67a.
  • the rice transplanter 1 can increase (accelerate) the vehicle speed V of the rice transplanter 1 by depressing the shift pedal 67. Contrary to the above description, the vehicle speed V of the rice transplanter 1 can be reduced (decelerated) by returning the stepped-on shift pedal 67 to the original position.
  • the control device 100 detects from the seeding position detection switch 65a that the main transmission lever 65 is in the seeding position (seeding position detection signal). To get.
  • the control device 100 drives the motor 71 so that the rotation angle ⁇ of the motor potentiometer 71a decreases from ⁇ 1 to ⁇ min.
  • the speed governor 14a of the engine 14 is driven via the link mechanism, and the rotational speed N of the engine 14 is the first idling rotation. It decreases from the number N1 to the second idling speed Nmin.
  • the first idling rotation speed N1 is a rotation speed that can be immediately applied when the rice transplanter 1 (traveling unit 10) is started by depressing the shift pedal 67 (for example, about 1800 rotations). Therefore, the rice transplanter 1 can start smoothly at the first idling speed N1.
  • the second idling rotational speed Nmin is set to a rotational speed lower than the first idling rotational speed N1 (for example, about 1000 revolutions). Further, the second idling rotational speed Nmin is a rotational speed at which the engine is not stalled (the engine 14 is not stopped), and is the lowest rotational speed at which the engine 14 can be maintained in the activated state. Therefore, the fuel consumption of the engine 14 can be suppressed at the second idling speed Nmin.
  • the rice transplanter 1 does not accept a transmission operation by depressing the transmission pedal 67. That is, when the control device 100 acquires the seedling position detection signal, the rotation angle ⁇ of the motor potentiometer 71a is constant regardless of the value of the acquired pedal signal (regardless of the depression amount of the shift pedal 67). The motor 71 is driven so as to have a magnitude ⁇ min. As a result, when the main transmission lever 65 is operated to the seeding position, the operation of the transmission pedal 67 becomes invalid, and even when the transmission pedal 67 is depressed, the engine speed N is the first regardless of the depression amount. The second idling speed Nmin is maintained. Therefore, it is possible to prevent erroneous operation of the shift pedal 67.
  • the state of the rice transplanter 1 when the engine 14 is rotating at the second idling speed Nmin is referred to as a seedling ecological state.
  • the rotational speed N of the engine 14 decreases to the second idling rotational speed Nmin. Therefore, the energy saving effect can be enhanced by operating the main transmission lever 65 to the seeding position when the rice transplanter is stopped for a while, for example, when the worker performs the seeding work. It is possible to suppress wasteful fuel consumption by the engine 14. In addition, noise can be suppressed.
  • the engine 14 when the key switch 66 is started in a state where the main transmission lever 65 is operated to the seeding position, the engine 14 does not rotate at the second idling speed Nmin, and the seeding process is performed. It is good also as a structure which does not transfer to an eco state. In this case, the engine 14 rotates at a rotational speed N corresponding to the amount of depression of the shift pedal 67 as shown in (2-1) to (2-5) above.
  • the key switch 66 when the key switch 66 is started in the state where the main transmission lever 65 is operated to the seeding position, when the transmission pedal 67 is not depressed (the rotation angle ⁇ of the transmission pedal 67 is ⁇ 1). ), The engine 14 rotates at the first idling speed N1 (see (2-1) above). In the same case, when the rotation angle ⁇ of the shift pedal 67 is greater than ⁇ 1 and less than ⁇ 2, the engine 14 rotates at the first idling speed N1 (see (2-2) above). In the same case, when the rotation angle ⁇ of the shift pedal 67 is ⁇ 2, the engine 14 rotates at the rotation speed N2 (see (2-3) above).
  • the key switch 66 is changed from OFF to ON in the state where the main transmission lever 65 is operated to the seeding position (the seeding position detection switch is ON).
  • the motor 71 is driven so that the rotation angle ⁇ (motor position) of the motor potentiometer 71a becomes ⁇ 1.
  • the engine 14 rotates at the first idling speed N1 and does not shift to the seedling ecological state. It is assumed that the speed change pedal 67 is not depressed.
  • the control device 100 acquires the start signal and the seedling joining position detection signal and acquires the pedal signal ⁇ 1 from the pedal potentiometer 67a, the rotation angle ⁇ of the motor potentiometer 71a becomes ⁇ 1.
  • the motor 71 is driven so that Thereby, the control device 100 rotates the engine 14 at the first idling rotational speed N1. Therefore, since the engine 14 rotates at the first idling rotation speed N1 when starting, the engine 14 can be started smoothly.
  • the key switch 66 is started from OFF to ON while the main transmission lever 65 is operated to the neutral position (the seedling position detection switch is OFF).
  • the motor 71 is driven so that the rotation angle ⁇ of the motor potentiometer 71a becomes ⁇ 1.
  • the engine 14 rotates at the first idling speed N1. It is assumed that the speed change pedal 67 is not depressed.
  • the main transmission lever 65 is operated to the seeding position (the seeding position detection switch is ON) (key When the switch 66 is started from OFF to ON), that is, when the transition to the above-described seedling ecological state is not performed, from this state, the main transmission lever 65 is in the neutral position (the state where the seedling joint position detection switch is OFF).
  • the motor 71 may be driven so that the rotation angle ⁇ of the motor potentiometer 71a becomes ⁇ min when operated in the order of the seedling joining position (the state where the seedling joining position detection switch is ON).
  • the control device 100 acquires the start signal from the key switch 66 and also acquires the seedling joining position detection signal from the seedling joining position detection switch 65a, and then acquires the seedling joining position detection signal again. Based on the joint position detection signal, the motor 71 is driven so that the rotation angle ⁇ of the motor potentiometer 71a becomes ⁇ min. Thereby, the control device 100 rotates the engine 14 at the second idling rotational speed Nmin.
  • the blower of the fertilizer is In contrast to this, when the main transmission lever 65 is not operated to the seeding position, the blower may be driven.
  • the blower is stopped at the same time, so that it is possible to reduce power consumption and prevent the battery from going up. This is advantageous. Further, it is possible to suppress noise from the blower.
  • the planting clutch (PTO) 55 operation may not be accepted, and the planting clutch 55 may be always disconnected. Thereby, it is possible to prevent erroneous operation of the planting clutch 55.
  • the buzzer sound during automatic control of automatic planting may be eliminated.
  • smooth turn control there are many cases where smooth turn control is in progress, and it is annoying if the buzzer due to smooth turn control continues to ring, but it can be solved by configuring so that the buzzer sound is erased as described above. is there.
  • the rice transplanter 1 Engine 14 As described above, the rice transplanter 1 Engine 14; A main speed change mechanism 22 for shifting the power of the engine 14 and transmitting it to the wheels 12 and 13; A shift stage of the main transmission mechanism 22 is connected to the main transmission mechanism 22 and can be operated to a plurality of shift positions including a seeding position, and when operated to the shift position, the shift stage of the main transmission mechanism 22 corresponds to the operated shift position.
  • the rotational speed N of the engine 14 decreases to the second idling rotational speed Nmin. Accordingly, when the rice transplanter 1 is stopped for a while, for example, when an operator performs a seeding operation, the energy-saving effect can be enhanced by operating the main transmission lever 65 to the seeding position. It is possible to suppress wasteful fuel consumption by the engine 14. Further, noise from the engine 14 can be suppressed. This facilitates conversation with the operator.
  • Said 1st idling rotation speed is rotation speed which can respond immediately when starting rice transplanter 1
  • the second idling rotational speed is a rotational speed at which the engine 14 does not stop.
  • the rice transplanter 1 can start smoothly at the first idling speed N1. Further, at the second idling rotational speed Nmin, the fuel consumption of the engine 14 can be suppressed.
  • the engine 14 rotates the first idling.
  • Drive the motor 71 to rotate by a number When the main transmission lever 65 is in the seeding position, the key switch 66 starts outputting the start signal, and then the main transmission lever 65 is operated to the shifting position different from the seeding position.
  • the motor 71 is driven so that the engine 14 rotates at the second idling speed.
  • the following describes a rice transplanter that can accelerate and decelerate according to the amount of depressing of the shift pedal when accelerating or decelerating by depressing operation of the shift pedal, and can contribute to improving the shift feeling.
  • a general rice transplanter has an actuator for changing the vehicle speed (acceleration / deceleration control).
  • the rice transplanter calculates the target drive amount of the actuator based on the depression amount of the shift pedal when the shift pedal is depressed, and drives the actuator so that the drive amount of the actuator becomes the target drive amount. Then, acceleration / deceleration is performed by changing the vehicle speed to a size corresponding to the target drive amount of the actuator.
  • the drive amount of the actuator is always increased or decreased constantly. That is, the general rice transplanter is configured such that the ratio of the change in the target drive amount of the actuator to the change in the depression amount of the shift pedal is always a constant value (the same value).
  • the engine An actuator for changing the rotational speed of the engine; An actuator drive amount detection device for detecting the drive amount of the actuator; A speed change pedal for operating the actuator; A pedal operation amount detection device that detects a depression amount of the shift pedal and outputs a pedal signal indicating the depression amount; Calculate the target drive amount of the actuator based on the pedal signal output by the pedal operation amount detection device, drive the actuator so that the detection value of the actuator drive amount detection device becomes the target drive amount, Changing the vehicle speed to a size corresponding to the target drive amount of the actuator, A rice transplanter,
  • the operation range of the shift pedal is divided into a plurality of shift regions, For each of the plurality of shift regions, a ratio of a change in the target drive amount of the actuator to a change in the depression amount of the shift pedal is set.
  • acceleration / deceleration can be performed with gradual acceleration corresponding to the depressing amount of the shift pedal, which can contribute to improvement of the shift feeling.
  • a change in the target drive amount of the actuator with respect to a change in the step amount of the shift pedal Is set to a constant value.
  • the control device 100 includes a relationship between the depression amount of the speed change pedal 67 and the target drive amount of the motor 71 (more specifically, the rotation angle ⁇ of the detection shaft of the pedal potentiometer 67a and the detection shaft of the motor potentiometer 71a. A map showing the relationship with the rotation angle ⁇ of the image is stored.
  • FIG. 10 (a) and FIG. 10 (b) show the map. 10 (a) and 10 (b), the horizontal axis represents the rotation angle ⁇ of the detection shaft of the pedal potentiometer 67a, and the vertical axis represents the rotation angle ⁇ of the detection shaft of the motor potentiometer 71a. Yes.
  • the detection shaft of the pedal potentiometer 67a is configured to rotate within a range of rotation angles ⁇ 1 to ⁇ max.
  • the rotation angle ⁇ 1 is the rotation angle of the detection shaft of the pedal potentiometer 67a when the shift pedal 67 is not depressed.
  • the rotation angle ⁇ max is the rotation angle of the detection shaft of the pedal potentiometer 67a when the shift pedal 67 is depressed to the limit.
  • the region from ⁇ 1 to ⁇ max further includes a play region ( ⁇ 1 or more and less than ⁇ 2), a connection region ( ⁇ 2), a speed change region (greater than ⁇ 2 and less than ⁇ 3), and the highest speed. It is divided into holding regions ( ⁇ 3 or more and ⁇ max or less).
  • the rotation angle ⁇ of the motor potentiometer 71a is held at a constant value ( ⁇ 1).
  • the rotation angle ⁇ of the motor potentiometer 71a is held at a constant value ( ⁇ 2).
  • the rotation angle ⁇ of the motor potentiometer 71a increases from ⁇ 2 corresponding to the rotation angle ⁇ 2 as the rotation angle ⁇ of the pedal potentiometer 67a increases. , Increase to ⁇ max corresponding to the rotation angle ⁇ 3.
  • the rotation angle ⁇ of the motor potentiometer 71a is held at a constant value ( ⁇ max).
  • the region from ⁇ 2 to ⁇ 3 is further divided into a plurality of shift regions. That is, the shift region includes a first shift region (greater than ⁇ 2 and less than ⁇ 21), a second shift region ( ⁇ 21 and less than ⁇ 22), a third shift region ( ⁇ 22 and less than ⁇ 23), and a fourth shift region ( ⁇ 23 and more and ⁇ 3). Less).
  • the number of divisions is not limited.
  • the width to be divided is not limited.
  • the rotation angle ⁇ of the motor potentiometer 71a corresponds to the rotation angle ⁇ 2 in proportion to the increase in the rotation angle ⁇ of the pedal potentiometer 67a. Increases from ⁇ 2 to ⁇ 21 corresponding to the rotation angle ⁇ 21.
  • the ratio of the change in the target drive amount of the motor 71 with respect to the change in the depression amount of the shift pedal 67 (the ratio of the change in the rotation angle ⁇ with respect to the change in the rotation angle ⁇ ) (X1) is It becomes a constant value ( ⁇ 21 ⁇ 2) / ( ⁇ 21 ⁇ 2).
  • the rotation angle ⁇ of the motor potentiometer 71a corresponds to the rotation angle ⁇ 21 in proportion to the increase in the rotation angle ⁇ of the pedal potentiometer 67a. It increases from ⁇ 21 to ⁇ 22 corresponding to the rotation angle ⁇ 22.
  • the ratio (X2) of the change in the rotation angle ⁇ to the change in the rotation angle ⁇ is a constant value ( ⁇ 22 ⁇ 21) / ( ⁇ 22 ⁇ 21).
  • the rotation angle ⁇ of the motor potentiometer 71a corresponds to the rotation angle ⁇ 22 in proportion to the increase in the rotation angle ⁇ of the pedal potentiometer 67a. It increases from ⁇ 22 to ⁇ 23 corresponding to the rotation angle ⁇ 23.
  • the ratio (X3) of the change in the rotation angle ⁇ to the change in the rotation angle ⁇ is a constant value ( ⁇ 23 ⁇ 22) / ( ⁇ 23 ⁇ 22).
  • the rotation angle ⁇ of the motor potentiometer 71a corresponds to the rotation angle ⁇ 23 in proportion to the increase in the rotation angle ⁇ of the pedal potentiometer 67a. It increases from ⁇ 23 to ⁇ max corresponding to the rotation angle ⁇ 3.
  • the ratio (X4) of the change in the rotation angle ⁇ to the change in the rotation angle ⁇ is a constant value ( ⁇ max ⁇ 23) / ( ⁇ 3- ⁇ 23).
  • the above (X1) to (X4) are different. That is, in the map, the ratio of the change in the target drive amount of the motor 71 to the change in the depression amount of the shift pedal 67 for each shift region of the first shift region to the fourth shift region is (X1) to (X X4).
  • the present embodiment is configured such that (X2) ⁇ (X1) ⁇ (X3) ⁇ (X4).
  • the control device 100 when the control device 100 acquires a detection signal (start signal) indicating that the key switch 66 has been started, the cell motor 72 is driven to start the engine 14. In addition, when the control device 100 acquires a detection signal (stop signal) indicating that the key switch 66 has been stopped, the control device 100 drives the motor 71 to cut off the fuel supply by the speed governor 14a (in this embodiment). In the case of a diesel engine or a gasoline engine, the ignition device is stopped), and the engine 14 is stopped.
  • the control device 100 acquires the pedal signal indicating the depression amount of the shift pedal 67, the motor corresponding to the acquired pedal signal (the rotation angle ⁇ of the detection shaft of the pedal potentiometer 67a) in the map.
  • the target drive amount 71 (the rotation angle ⁇ of the detection shaft of the motor potentiometer 71a) is calculated.
  • the control device 100 drives the motor 71 so that the rotation angle of the detection shaft of the motor potentiometer 71a becomes the target drive amount.
  • the control device 100 drives the motor 71 to change the rotation speed of the engine 14, change the speed ratio of the HMT 21, change the connection / disconnection of the clutch 21c, and change the operation of the braking device 21d.
  • the vehicle speed of the rice transplanter 1 changes and acceleration / deceleration is performed.
  • the rotation angle ⁇ of the pedal potentiometer 67a increases at a stretch from the rotation angle ⁇ a in the third shift region to the rotation angle ⁇ b in the fourth shift region.
  • the target drive amount of the motor 71 (the rotation angle ⁇ of the motor potentiometer 71a) is proportional to the increase of the rotation angle ⁇
  • the target drive amount is ⁇ a corresponding to the rotation angle ⁇ b and ⁇ b corresponding to the rotation angle ⁇ b.
  • the region Z is configured as a movement range when the motor 71 follows.
  • the rotation angle ⁇ of the shift pedal 67 when the shift pedal 67 is not depressed is ⁇ 1 (degrees).
  • the rotation angle ⁇ of the detection shaft of the pedal potentiometer 67a is ⁇ 1 (degrees).
  • the control device 100 uses the rotation angle ⁇ 1 (degree) of the detection shaft of the motor potentiometer 71a corresponding to the rotation angle ⁇ 1 of the pedal potentiometer 67a as the target drive amount in the map shown in FIG. calculate. Then, the control device 100 drives the motor 71 so that the rotation angle ⁇ of the motor potentiometer 71a becomes ⁇ 1.
  • the rotational speed N of the engine 14 is set to N1 (rpm) via the link mechanism (see FIG. 7).
  • the inclination angle of the movable swash plate of the HST 21a is set to be maximum via the link mechanism.
  • the control device 100 determines that the ratio of the change in the rotation angle ⁇ to the change in the rotation angle ⁇ is a constant value ( ⁇ max ⁇ 2) / ( ⁇ 3 ⁇ The motor 71 is driven so that ⁇ 2). That is, at this time, the control device 100 sets the ratio of the change in the target drive amount of the motor 71 to the change in the depression amount of the shift pedal 67 to a constant value ( ⁇ max ⁇ 2) / ( ⁇ 3- ⁇ 2).
  • the control device 100 determines that the ratio of the change in the rotation angle ⁇ to the change in the rotation angle ⁇ is a constant value ( ⁇ max ⁇ 2) / ( ⁇ 3- ⁇ 2).
  • the motor 71 is driven so that. Thereby, the rice transplanter 1 can be smoothly accelerated.
  • the rice transplanter 1 can increase (accelerate) the vehicle speed V of the rice transplanter 1 by depressing the shift pedal 67. Contrary to the above description, the vehicle speed V of the rice transplanter 1 can be reduced (decelerated) by returning the stepped-on shift pedal 67 to the original position.
  • the ratio of the change in the target drive amount of the motor 71 to the change in the depression amount of the shift pedal 67 (X1) to (X X4) is different.
  • the acceleration of the rice transplanter 1 differs for every shift area.
  • the magnitude relationship of (X1) to (X4) is configured such that (X2) ⁇ (X1) ⁇ (X3) ⁇ (X4).
  • the acceleration of the rice transplanter 1 is greatest when the shift pedal 67 is depressed within the fourth shift region ( ⁇ 23 or more and less than ⁇ 3) (see (iv) above), and the shift pedal 67 is shifted to the third shift.
  • the time when the pedal is depressed in the region ( ⁇ 22 or more and less than ⁇ 23) is the second largest (see (iv) above), and the shift pedal 67 is depressed in the first gear region (greater than ⁇ 2 and less than ⁇ 21).
  • the rate of change (the ratio of the change in the target drive amount of the motor 71 with respect to the change in the depressing amount of the shift pedal 67) in the low speed range.
  • the rate of change is configured to be larger in the high speed range than in the low speed range.
  • the rice transplanter 1 when the rice transplanter 1 accelerates or decelerates by depressing operation of the shift pedal 67, it can perform acceleration / deceleration with gradual acceleration corresponding to the depressing amount of the shift pedal 67 in a low speed range or a high speed range. It is possible to contribute to improvement. Further, the rice transplanter 1 divides the shift area into a plurality of shift areas, and sets a change rate for each of the divided shift areas. Thus, when changing the change rate according to the planting condition, the field condition, the operator's preference, etc., it is not necessary to change the change rate as a whole, and the change rate in the corresponding shift region is set to a desired value. Change to Thereby, the change rate can be easily changed. Further, since the change ratios are constant (X1) to (X4) in each shift region, the traveling speed can be easily brought close to a desired speed when the speed is fixed by the speed fixing lever 70. It becomes easy to fix the speed at the running speed.
  • the rice transplanter 1 Engine 14 A motor 71 for changing the rotational speed of the engine 14, A shift pedal 67 for operating the motor 71;
  • the target drive amount of the motor 71 is calculated based on the operation amount of the shift pedal 67, the motor 71 is driven so as to become the target drive amount, and the vehicle speed is changed to a magnitude corresponding to the target drive amount of the motor 71.
  • the operation range of the shift pedal 67 is divided into a first shift region to a fourth shift region,
  • the ratios (X1) to (X4) of the change in the target drive amount of the motor 71 with respect to the change in the depression amount of the shift pedal 67 are set for each of the first to fourth shift regions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Transplanting Machines (AREA)

Abstract

A rice transplanter is provided with: an engine; a transmission for converting the power of the engine and transmitting said power to vehicle wheels; a main shift lever which is connected to the transmission, is capable of being operated in various shifting positions including a grafting position and, when operated at the aforementioned shifting position, changes the gear of the transmission so as to accommodate the shifting position in operation; an actuator for modifying the revolution of the engine; and a shift operating tool for controlling the actuator. When the main shift lever is not in the grafting position and when the shift operating tool is not being operated, the rice transplanter drives the actuator such that the engine rotates at a first idling revolution. Moreover, when the main shift lever is in the grafting position, the rice transplanter drives the actuator such that the engine rotates at a second idling revolution which has a lower revolution than the first idling revolution.

Description

田植機Rice transplanter
 本発明は、田植機の技術に関する。 The present invention relates to rice transplanter technology.
 従来、田植機に関して、レバーやペダル等を用いてエンジンの回転数を変更する技術は公知となっている(例えば、特許文献1)。 Conventionally, with respect to rice transplanters, a technique for changing the engine speed using a lever, a pedal, or the like has been publicly known (for example, Patent Document 1).
 変速ペダルの操作により無段変速を行う田植機においては、変速ペダルの踏み込み操作が行われていないときには走行停止状態(アイドリング状態)にあり、エンジンの回転数はアイドリング回転数で回転している。
 作業時におけるアイドリング回転数は、前記変速ペダルの踏み込み操作が行われて田植機が発進される際に、田植機がスムーズに発進できる回転数に設定されている。
In a rice transplanter that performs a continuously variable transmission by operating a shift pedal, when the shift pedal is not depressed, it is in a running stop state (idling state), and the engine speed is rotating at an idling speed.
The idling rotational speed at the time of work is set to a rotational speed at which the rice transplanter can start smoothly when the shift pedal is depressed to start the rice transplanter.
 また、田植機に関して、変速操作具(変速ペダル)を操作して加減速を行う技術は公知となっている(例えば、特許文献2)。 Also, with regard to rice transplanters, a technique for accelerating and decelerating by operating a shift operation tool (shift pedal) is known (for example, Patent Document 2).
 一般的な田植機は、車速の変更(増減速制御)を行うためのアクチュエータを有している。前記田植機は、変速ペダルが踏み込み操作されるとき、変速ペダルの踏み込み量に基づいて前記アクチュエータの目標駆動量を算出して、前記アクチュエータの駆動量が目標駆動量になるように前記アクチュエータを駆動して、車速を前記アクチュエータの目標駆動量に対応した大きさに変更して、加減速を行う。 General rice transplanters have an actuator for changing the vehicle speed (acceleration / deceleration control). The rice transplanter calculates the target drive amount of the actuator based on the depression amount of the shift pedal when the shift pedal is depressed, and drives the actuator so that the drive amount of the actuator becomes the target drive amount. Then, acceleration / deceleration is performed by changing the vehicle speed to a size corresponding to the target drive amount of the actuator.
特開2004-199447号公報JP 2004-199447 A 特開2000-236714号公報JP 2000-236714 A
 しかし、作業者が苗継ぎ作業を行う場合等では、田植機をしばらくの間、走行停止状態にしておくので、エンジンの回転数は、田植機を即座に発進させるような回転数まで高める必要がなく、エンジンが停止しない程度の低い回転数でよいため、無駄な燃料消費が増大する点で不利である。
 また、上記一般的な田植機は、前記変速ペダルが踏み込み操作されるとき、前記アクチュエータの駆動量を常に一定に増減する。すなわち一般的な田植機においては、変速ペダルの踏み込み量の変化に対する前記アクチュエータの目標駆動量の変化の割合が常に一定値(同じ値)になるように構成されている。これにより、作業者が変速ペダルの踏み込み操作により田植機を加減速する際に、きめ細かい増減速制御が行えず、変速フィーリングが低下する点で不利である。
However, when the worker performs seedling work, etc., the rice transplanter is stopped for a while, so the engine speed needs to be increased to a speed at which the rice transplanter can start immediately. In addition, the engine speed may be low enough not to stop the engine, which is disadvantageous in that wasteful fuel consumption increases.
The general rice transplanter always increases or decreases the drive amount of the actuator to a constant value when the shift pedal is depressed. That is, the general rice transplanter is configured such that the ratio of the change in the target drive amount of the actuator to the change in the depression amount of the shift pedal is always a constant value (the same value). As a result, when the operator accelerates or decelerates the rice transplanter by depressing the shift pedal, fine acceleration / deceleration control cannot be performed, which is disadvantageous in that the shift feeling is lowered.
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。 The problems to be solved by the present invention are as described above. Next, means for solving the problems will be described.
 即ち、請求項1に記載の田植機は、
 エンジンと、
 前記エンジンの動力を変速して車輪に伝達する変速機と、
 前記変速機に接続され、苗継ぎ位置を含む複数の変速位置に操作可能であり、前記変速位置に操作されるときに、操作された変速位置に対応するように前記変速機の変速段を変更する主変速レバーと、
 前記エンジンの回転数の変更を行うためのアクチュエータと、
 前記アクチュエータを操作するための変速操作具と、
 を備え、
 前記主変速レバーが前記苗継ぎ位置にない場合で、前記変速操作具が操作されていないときに、前記エンジンが第一アイドリング回転数で回転するように前記アクチュエータを駆動し、
 前記主変速レバーが前記苗継ぎ位置にある場合に、前記エンジンが前記第一アイドリング回転数よりも低い回転数である第二アイドリング回転数で回転するように前記アクチュエータを駆動する。
That is, the rice transplanter according to claim 1 is:
Engine,
A transmission for shifting the power of the engine and transmitting it to the wheels;
The transmission is connected to the transmission and can be operated to a plurality of transmission positions including a seeding position. When the transmission is operated to the transmission position, the transmission speed of the transmission is changed to correspond to the operated transmission position. A main shift lever to
An actuator for changing the rotational speed of the engine;
A shift operation tool for operating the actuator;
With
Driving the actuator so that the engine rotates at a first idling speed when the main speed change lever is not in the seeding position and the speed change tool is not operated;
When the main transmission lever is in the seeding position, the actuator is driven so that the engine rotates at a second idling speed that is lower than the first idling speed.
 請求項2に記載の田植機においては、
 前記第一アイドリング回転数は、前記田植機を発進させる際に即応可能な回転数であり、
 前記第二アイドリング回転数は、前記エンジンが停止しない回転数である。
In the rice transplanter according to claim 2,
The first idling rotational speed is a rotational speed that can be immediately applied when starting the rice transplanter,
The second idling rotational speed is a rotational speed at which the engine does not stop.
 請求項3に記載の田植機においては、
 前記田植機は、前記エンジンを始動させるための操作具であり、前記エンジンを始動させるための始動操作が行われるときに始動信号を出力する始動装置を備え、
 前記主変速レバーが前記苗継ぎ位置にあり、かつ、前記変速操作具が操作されていない状態で、前記始動装置による前記始動信号の出力が開始されたときに、前記エンジンが前記第一アイドリング回転数で回転するように前記アクチュエータを駆動し、
 前記主変速レバーが前記苗継ぎ位置にある状態で、前記始動装置による前記始動信号の出力が開始され、その後、前記主変速レバーが前記苗継ぎ位置とは異なる前記変速位置に操作されて、その後、前記主変速レバーが前記苗継ぎ位置に操作されたときに、前記エンジンが前記第二アイドリング回転数で回転するように前記アクチュエータを駆動する。
In the rice transplanter according to claim 3,
The rice transplanter is an operation tool for starting the engine, and includes a starter that outputs a start signal when a start operation for starting the engine is performed,
When the output of the start signal by the starter is started when the main shift lever is in the seeding position and the shift operation tool is not operated, the engine rotates the first idling. Drive the actuator to rotate by a number,
In the state where the main transmission lever is in the seedling joint position, the start device starts outputting the start signal, and then the main transmission lever is operated to the shift position different from the seedling position, and then When the main transmission lever is operated to the seeding position, the actuator is driven so that the engine rotates at the second idling speed.
 請求項4に記載の田植機においては、
 前記変速操作具の操作量に基づいて前記アクチュエータの目標駆動量を算出して、前記目標駆動量になるように前記アクチュエータを駆動して、車速を前記アクチュエータの目標駆動量に対応した大きさに変更し、
 前記変速操作具の操作範囲を複数の変速領域に分割して、
 前記複数の変速領域毎に、前記変速操作具の操作量の変化に対する前記アクチュエータの目標駆動量の変化の割合を設定する。
In the rice transplanter according to claim 4,
A target drive amount of the actuator is calculated based on an operation amount of the speed change operation tool, the actuator is driven so as to become the target drive amount, and a vehicle speed is set to a magnitude corresponding to the target drive amount of the actuator. change,
Dividing the operating range of the shift operating tool into a plurality of shift areas;
For each of the plurality of shift regions, a ratio of a change in the target drive amount of the actuator to a change in the operation amount of the shift operation tool is set.
 請求項5に記載の田植機においては、
 前記変速操作具が、前記複数の変速領域のうちの、一の変速領域から他の変速領域に一気に踏み込み操作されるときには、前記変速操作具の操作量の変化に対する前記アクチュエータの目標駆動量の変化の割合を一定値に設定する。
In the rice transplanter according to claim 5,
When the shift operation tool is stepped on from one shift area to another shift area among the plurality of shift areas, a change in the target drive amount of the actuator with respect to a change in the operation amount of the shift operation tool Is set to a constant value.
 請求項6に記載の田植機においては、
 エンジンと、
 前記エンジンの回転数の変更を行うためのアクチュエータと、
 前記アクチュエータを操作するための変速操作具と、
 を備え、
 前記変速操作具の操作量に基づいて前記アクチュエータの目標駆動量を算出して、前記目標駆動量になるように前記アクチュエータを駆動して、車速を前記アクチュエータの目標駆動量に対応した大きさに変更し、
 前記変速操作具の操作範囲を複数の変速領域に分割して、
 前記複数の変速領域毎に、前記変速操作具の操作量の変化に対する前記アクチュエータの目標駆動量の変化の割合を設定する。
In the rice transplanter according to claim 6,
Engine,
An actuator for changing the rotational speed of the engine;
A shift operation tool for operating the actuator;
With
A target drive amount of the actuator is calculated based on an operation amount of the speed change operation tool, the actuator is driven so as to become the target drive amount, and a vehicle speed is set to a magnitude corresponding to the target drive amount of the actuator. change,
Dividing the operating range of the shift operating tool into a plurality of shift areas;
For each of the plurality of shift regions, a ratio of a change in the target drive amount of the actuator to a change in the operation amount of the shift operation tool is set.
 請求項7に記載の田植機においては、
 前記変速操作具が、前記複数の変速領域のうちの、一の変速領域から他の変速領域に一気に踏み込み操作されるときには、前記変速操作具の操作量の変化に対する前記アクチュエータの目標駆動量の変化の割合を一定値に設定する。
In the rice transplanter according to claim 7,
When the shift operation tool is stepped on from one shift area to another shift area among the plurality of shift areas, a change in the target drive amount of the actuator with respect to a change in the operation amount of the shift operation tool Is set to a constant value.
 本発明の効果として、以下に示すような効果を奏する。 As the effects of the present invention, the following effects are obtained.
 請求項1においては、苗継ぎ作業を行う場合等にエンジンを第二アイドリング回転数で回転させておくことで、省エネ効果を高めることができ、エンジンによる無駄な燃料消費を抑えることが可能である。 In claim 1, when the seedling operation is performed, the engine is rotated at the second idling rotational speed, so that the energy saving effect can be enhanced and wasteful fuel consumption by the engine can be suppressed. .
 請求項2においては、第一アイドリング回転数では、田植機がスムーズに発進することが可能となる。また、第二アイドリング回転数では、エンジンの燃料消費を抑えることが可能となる。 In claim 2, at the first idling speed, the rice transplanter can start smoothly. Further, at the second idling speed, it is possible to suppress the fuel consumption of the engine.
 請求項3においては、主変速レバーが苗継ぎ位置に操作されている状態で始動装置によりエンジンが始動された場合でも、エンジンの始動をスムーズに行うことが可能であり、エンジンの始動性の点で有利である。 According to the third aspect of the present invention, even when the engine is started by the starting device in a state where the main transmission lever is operated to the seeding position, the engine can be started smoothly, and the engine startability can be improved. Is advantageous.
 請求項4においては、変速ペダルの踏み込み操作により田植機を加減速する際に、変速ペダルの踏み込み量に対応して緩急をつけた加減速が可能となり、変速フィーリングの向上に貢献可能である。 In claim 4, when accelerating / decelerating the rice transplanter by depressing operation of the shift pedal, acceleration / deceleration can be performed with gradual acceleration corresponding to the depressing amount of the shift pedal, which can contribute to improvement of the shift feeling. .
 請求項5においては、田植機は、スムーズに加速することが可能である。 In claim 5, the rice transplanter can accelerate smoothly.
 請求項6においては、変速ペダルの踏み込み操作により田植機を加減速する際に、変速ペダルの踏み込み量に対応して緩急をつけた加減速が可能となり、変速フィーリングの向上に貢献可能である。 In claim 6, when accelerating / decelerating the rice transplanter by depressing operation of the shift pedal, acceleration / deceleration can be performed with gradual acceleration corresponding to the depressing amount of the shift pedal, which can contribute to improvement of the shift feeling. .
 請求項7においては、田植機は、スムーズに加速することが可能である。 In claim 7, the rice transplanter can accelerate smoothly.
本発明の一実施形態に係る田植機の全体側面図。The whole side view of the rice transplanter which concerns on one Embodiment of this invention. 図1に示す田植機を上方から見たときの概略図。Schematic when the rice transplanter shown in FIG. 1 is viewed from above. 図1に示す田植機において、前車輪および後車輪への動力伝達構造を示す図。The figure which shows the power transmission structure to a front wheel and a rear wheel in the rice transplanter shown in FIG. 図1に示す田植機において、植付部への動力伝達構造を示す図。The figure which shows the power transmission structure to a planting part in the rice transplanter shown in FIG. 図1に示す田植機のダッシュボード周辺を示す図。The figure which shows the dashboard periphery of the rice transplanter shown in FIG. 図1に示す田植機の制御装置を示すブロック図。The block diagram which shows the control apparatus of the rice transplanter shown in FIG. 主変速レバーが植付位置に操作されているときの、変速ペダルの回動角と、ペダル用ポテンショメータの検出軸の回動角と、モータ用ポテンショメータの回動角と、エンジンの回転数と、田植機の車速と、の関係を示す図。The rotation angle of the shift pedal, the rotation angle of the detection shaft of the pedal potentiometer, the rotation angle of the motor potentiometer, the rotation speed of the engine when the main transmission lever is operated to the planting position, The figure which shows the relationship with the vehicle speed of a rice transplanter. 主変速レバーが中立位置または苗継ぎ位置に操作されているときの、変速ペダルの回動角と、ペダル用ポテンショメータの検出軸の回動角と、モータ用ポテンショメータの回動角と、エンジンの回転数と、田植機の車速と、の関係を示す図。The rotation angle of the shift pedal, the rotation angle of the detection shaft of the pedal potentiometer, the rotation angle of the motor potentiometer, and the rotation of the engine when the main transmission lever is operated to the neutral position or the seeding position The figure which shows the relationship between a number and the vehicle speed of a rice transplanter. キースイッチと、苗継ぎ位置検出スイッチと、モータ用ポテンショメータの回動角(モータの位置)と、の関係を示す図。The figure which shows the relationship between a key switch, a seedling joining position detection switch, and the rotation angle (motor position) of the potentiometer for motors. (a)マップを示す図、(b)前記マップにおいてモータ追従時の移動範囲を示す図。(A) The figure which shows a map, (b) The figure which shows the movement range at the time of a motor following in the said map.
 1   田植機
 14  エンジン
 21  HMT
 21a HST
 21b 遊星歯車機構
 65  主変速レバー
 65a 苗継ぎ位置検出スイッチ
 66  キースイッチ
 67  変速ペダル
 67a ペダル用ポテンショメータ
 71  モータ
 100 制御装置
1 Rice transplanter 14 Engine 21 HMT
21a HST
21b Planetary gear mechanism 65 Main speed change lever 65a Seedling position detection switch 66 Key switch 67 Speed change pedal 67a Pedal potentiometer 71 Motor 100 Control device
 まず、本発明の一実施形態に係る田植機1の全体構成について説明する。なお、本実施形態においては、田植機は八条植えの田植機とするが、これは特に限定するものではなく、例えば六条植えや十条植えの田植機であってもよい。 First, the overall configuration of the rice transplanter 1 according to an embodiment of the present invention will be described. In the present embodiment, the rice transplanter is an eight-row planter, but this is not particularly limited, and a six-plant or ten-row planter may be used.
 図1および図2に示すように、田植機1は、走行部10と植付部40とを有し、走行部10により走行しながら、植付部40により苗を圃場に植え付けることができるように構成される。植付部40は、走行部10の後方に配置されて、この走行部10の後部に昇降機構30を介して昇降可能に連結される。 As shown in FIG. 1 and FIG. 2, the rice transplanter 1 has a traveling unit 10 and a planting unit 40, so that the planting unit 40 can plant seedlings in the field while traveling by the traveling unit 10. Configured. The planting part 40 is arrange | positioned behind the traveling part 10, and is connected with the rear part of this traveling part 10 via the raising / lowering mechanism 30 so that raising / lowering is possible.
 走行部10においては、エンジン14が車体フレーム11の前部に設けられて、ボンネット15により被覆される。ミッションケース20が車体フレーム11の前部に支持されて、エンジン14の後方に配置される。図3に示すように、ミッションケース20の内部には、油圧-機械式無段変速機(HMT:HydroMechanicalTransmission)21、主変速機構22、クラッチ21c、および制動装置21dが搭載される。 In the traveling unit 10, the engine 14 is provided at the front portion of the vehicle body frame 11 and is covered with a bonnet 15. The transmission case 20 is supported by the front portion of the vehicle body frame 11 and is disposed behind the engine 14. As shown in FIG. 3, in the transmission case 20, a hydraulic-mechanical continuously variable transmission (HMT) 21, a main transmission mechanism 22, a clutch 21c, and a braking device 21d are mounted.
 HMT21は、エンジン14からの動力を無段階に変速可能な油圧式無段変速機(HST:HydroStaticTransmission)21aと、エンジン14からの動力とHST21aからの動力とを合成することが可能な遊星歯車機構21bと、を組み合わせたものである。 The HMT 21 is a hydraulic continuously variable transmission (HST) 21a capable of steplessly changing the power from the engine 14, and a planetary gear mechanism capable of combining the power from the engine 14 and the power from the HST 21a. 21b.
 主変速機構22は、歯合するギアの組み合わせを変更することにより、HMT21からの動力を複数段に変速可能なものである。 The main transmission mechanism 22 can change the power from the HMT 21 in a plurality of stages by changing the combination of gears to mesh with each other.
 クラッチ21cは、切断または接続されることにより、HMT21から主変速機構22への動力の伝達の可否を切り換えるものである。
 また、制動装置21dは、主変速機構22の出力軸の回動を制動することができるものである。
The clutch 21c switches whether power can be transmitted from the HMT 21 to the main transmission mechanism 22 by being disconnected or connected.
The braking device 21d can brake the rotation of the output shaft of the main transmission mechanism 22.
 図1および図3に示すように、フロントアクスルケース6が車体フレーム11の前部に支持され、前車輪12が当該フロントアクスルケース6の左右両側に取り付けられる。リアアクスルケース7が車体フレーム11の後部に支持され、後車輪13が当該リアアクスルケース7の左右両側に取り付けられる。 1 and 3, the front axle case 6 is supported on the front portion of the vehicle body frame 11, and the front wheels 12 are attached to the left and right sides of the front axle case 6. The rear axle case 7 is supported on the rear portion of the vehicle body frame 11, and the rear wheels 13 are attached to both the left and right sides of the rear axle case 7.
 そして、エンジン14の動力がミッションケース20に伝達され、ミッションケース20の内部にあるHMT21および主変速機構22を介して左右の前車輪12と左右の後車輪13とにそれぞれ伝達されて、前車輪12および後車輪13が回転作動するように構成される。これにより、走行部10が前進または後進走行可能とされる。 The power of the engine 14 is transmitted to the mission case 20, and is transmitted to the left and right front wheels 12 and the left and right rear wheels 13 via the HMT 21 and the main transmission mechanism 22 inside the mission case 20, respectively. 12 and the rear wheel 13 are configured to rotate. Thereby, the traveling unit 10 can travel forward or backward.
 図1および図2に示すように、走行部10において、車体フレーム11の前後中途部に運転操作部60が設けられる。運転操作部60の前部には、ダッシュボード61が配置される。ダッシュボード61の左右中央部には操向ハンドル64が配置され、さらにダッシュボード61には主変速レバー65、キースイッチ66(図5参照)などが配置される。運転操作部60の後部には、運転席62が操向ハンドル64の後方に位置するように配置される。 As shown in FIG. 1 and FIG. 2, in the traveling unit 10, a driving operation unit 60 is provided in the middle of the vehicle body 11 before and after. A dashboard 61 is disposed in front of the driving operation unit 60. A steering handle 64 is disposed at the center of the left and right of the dashboard 61, and a main transmission lever 65, a key switch 66 (see FIG. 5), and the like are further disposed on the dashboard 61. A driver's seat 62 is arranged behind the steering handle 64 at the rear of the driving operation unit 60.
 また、運転操作部60の操向ハンドル64や運転席62の周りには、変速ペダル67、ブレーキペダル68(図5参照)、一部を乗降用ステップとする車体カバー63、その他のレバーやスイッチ等の操作具が配置される。これらの操作具によって、走行部10および植付部40に対して適宜の操作を行うことが可能とされる。なお、操作具の詳細な構成については後述する。 Further, there are a shift pedal 67, a brake pedal 68 (see FIG. 5), a vehicle body cover 63 having a part for getting on and off, and other levers and switches around the steering handle 64 and the driver seat 62 of the driving operation unit 60. Etc. are arranged. With these operating tools, it is possible to perform appropriate operations on the traveling unit 10 and the planting unit 40. The detailed configuration of the operation tool will be described later.
 走行部10において、予備苗載台17が車体フレーム11の前部の左右両側から立設された各取付フレーム16に取り付けられて、ボンネット15の左右両側方に配置される。そして、予備苗が予備苗載台17に載置されて、植付部40への苗補給が可能とされる。 In the traveling unit 10, the spare seedling stage 17 is attached to each mounting frame 16 erected from both the left and right sides of the front portion of the vehicle body frame 11, and is arranged on both the left and right sides of the bonnet 15. And a reserve seedling is mounted in the reserve seedling mounting stand 17, and the seedling supply to the planting part 40 is attained.
 図1、図2、および図4に示すように、植付部40においては、植付ミッションケース50が植付フレーム49の下部中央付近に支持され、伝動軸51が当該植付ミッションケース50から左右両側方に延設される。四つの植付伝動ケース46がそれぞれ伝動軸51から後方に延設されて、左右方向に適宜の間隔をとって配置される。 As shown in FIGS. 1, 2, and 4, in the planting unit 40, the planting mission case 50 is supported near the center of the lower part of the planting frame 49, and the transmission shaft 51 is connected to the planting mission case 50. It extends on both the left and right sides. The four planting transmission cases 46 are respectively extended rearward from the transmission shaft 51 and arranged at appropriate intervals in the left-right direction.
 ロータリケース44が各植付伝動ケース46の後端部左右両側に回動自在に支持される。ロータリケース44は植付条数と同数、即ち本実施形態では八つ備えられる。そして、二つの植付爪45が、ロータリケース44の回転支点を挟むように、このロータリケース44の長手方向両側にそれぞれ取り付けられる。 A rotary case 44 is rotatably supported on the left and right sides of the rear end of each planting transmission case 46. The number of the rotary cases 44 is the same as the number of planting strips, that is, eight in this embodiment. Then, the two planting claws 45 are attached to both sides of the rotary case 44 in the longitudinal direction so as to sandwich the rotation fulcrum of the rotary case 44.
 苗載台41が植付伝動ケース46の上方に前高後低の傾斜状態で配置されて、植付フレーム49の後部に上下の図示せぬガイドレールを介して左右方向に往復動可能に取り付けられる。苗載台41は、横送り機構52により左右往復横送り可能とされる。 A seedling stand 41 is disposed above the planting transmission case 46 in a front and rear inclined state, and is attached to the rear portion of the planting frame 49 so as to be reciprocally movable in the left and right directions via upper and lower guide rails (not shown). It is done. The seedling table 41 can be reciprocated horizontally by the lateral feed mechanism 52.
 複数条(8条)の苗マット載置部を備える苗載台41は、それぞれの下端側が一つのロータリケース44と対向するように、左右方向に並べられる。そして、苗マットが各苗載台41に載置されて、ロータリケース44の回転時に植付爪45により1株の苗が当該苗載台41上の苗マットから切り取り可能とされる。 The seedling mounting bases 41 having a plurality of (eight) seedling mat mounting parts are arranged in the left-right direction so that the respective lower ends face one rotary case 44. Then, the seedling mat is placed on each seedling stage 41, and one seedling can be cut from the seedling mat on the seedling stage 41 by the planting claws 45 when the rotary case 44 rotates.
 条数に合わせた苗縦送りベルト47が苗載台41に設けられる。苗縦送りベルト47は、苗載台41が左右往復横送りのストローク端に到達するごとに、縦送り機構53により苗載台41上の苗マットを下方へ向かって縦送りするように作動可能とされる。 A seedling vertical feed belt 47 corresponding to the number of strips is provided on the seedling mount 41. The seedling vertical feed belt 47 can be operated so that the seedling mat on the seedling stage 41 is vertically fed by the vertical feeding mechanism 53 every time the seedling stage 41 reaches the stroke end of the left and right reciprocating horizontal feed. It is said.
 そして、エンジン14の動力がミッションケース20、株間変速ケース54、植付ミッションケース50などを介して各ロータリケース44に伝達されて、このロータリケース44が回転作動するように構成される。これにより、ロータリケース44の回転作動にともなって、二つの植付爪45が交互に苗を苗載台41上の苗マットから取り出して圃場に植付可能とされる。 Then, the motive power of the engine 14 is transmitted to each rotary case 44 via the transmission case 20, the inter-company transmission case 54, the planting transmission case 50, etc., and the rotary case 44 is configured to rotate. Thereby, with the rotation operation of the rotary case 44, the two planting claws 45 can alternately take out the seedlings from the seedling mat on the seedling mount 41 and plant them in the field.
 同時に、エンジン14の動力がミッションケース20、株間変速ケース54、植付ミッションケース50などを介して横送り機構52および縦送り機構53に伝達されて、苗載台41が横送り機構52により左右往復横送りされ、苗載台41上の苗マットが苗載台41の左右往復横送りに応じて縦送り機構53により苗縦送りベルト47を介して下方へ向けて縦送りされるように構成される。これにより、苗載台41上の苗マットが植付爪45に対して適切な位置に移動される。 At the same time, the power of the engine 14 is transmitted to the lateral feed mechanism 52 and the vertical feed mechanism 53 via the transmission case 20, the inter-strain shifting case 54, the planting mission case 50, etc. It is configured such that it is reciprocated horizontally and the seedling mat on the seedling table 41 is vertically fed downward by the vertical feed mechanism 53 via the seedling vertical feed belt 47 in accordance with the left and right reciprocating horizontal feed of the seedling table 41. Is done. Thereby, the seedling mat on the seedling placing table 41 is moved to an appropriate position with respect to the planting claws 45.
 図1および図2に示すように、植付部40においては、また、線引きマーカ48が植付フレーム49の左右両側に回動可能に支持される。左右の各線引きマーカ48は、その基端側を回動支点として、上方へ向かって回動されることにより収納され、この収納状態から下方へ向かって回動されることにより先端側を左または右側方へ突出させて、圃場に線引きを行うことができるように構成される。 As shown in FIG. 1 and FIG. 2, in the planting part 40, the drawing marker 48 is supported rotatably on the left and right sides of the planting frame 49. Each of the left and right line drawing markers 48 is stored by being rotated upward with the base end side as a rotation fulcrum, and the tip side is left or left by being rotated downward from this stored state. It is configured so that it can be drawn to the field by protruding rightward.
 また、前述の昇降機構30が走行部10と植付部40との間に設けられる。具体的には、トップリンク31とロワリンク32とが走行部10と植付部40との間に架設され、昇降用シリンダがロワリンク32と走行部10との間に連結される。そして、この昇降用シリンダの伸縮動作によって、植付部40が走行部10に対して上下方向に回動可能、即ち昇降可能とされる。 Also, the above-described lifting mechanism 30 is provided between the traveling unit 10 and the planting unit 40. Specifically, the top link 31 and the lower link 32 are installed between the traveling unit 10 and the planting unit 40, and the lifting cylinder is connected between the lower link 32 and the traveling unit 10. And the planting part 40 can be rotated to the up-down direction with respect to the traveling part 10, that is, can be raised or lowered, by the expansion and contraction operation of the lifting cylinder.
 ここで、エンジン14からロータリケース44、横送り機構52および縦送り機構53に動力を伝達するための動力伝達機構は、図4に示す植付クラッチ55を含み、植付クラッチ55の断接に応じて、エンジン14の動力が苗縦送りベルト47とロータリケース44とに伝達され、または、伝達されないように構成される。 Here, the power transmission mechanism for transmitting power from the engine 14 to the rotary case 44, the lateral feed mechanism 52, and the vertical feed mechanism 53 includes the planting clutch 55 shown in FIG. Accordingly, the power of the engine 14 is transmitted to the seedling vertical feed belt 47 and the rotary case 44 or is not transmitted.
 次に、本実施形態に係る田植機1の制御に関する構成について説明する。 Next, the configuration related to the control of the rice transplanter 1 according to this embodiment will be described.
 図2、図5、および図6に示す変速ペダル67は田植機1の車速(走行速度)を変更するための操作具であり、より詳細には、エンジン14の回転数、およびHMT21の変速比を変更するための操作具である。変速ペダル67はダッシュボード61の右下方に配置される。 The shift pedal 67 shown in FIGS. 2, 5, and 6 is an operating tool for changing the vehicle speed (traveling speed) of the rice transplanter 1, and more specifically, the rotational speed of the engine 14 and the gear ratio of the HMT 21. It is an operation tool for changing. The transmission pedal 67 is disposed on the lower right side of the dashboard 61.
 図6に示すペダル用ポテンショメータ(ペダル操作量検出装置)67aは変速ペダル67の踏み込み量(回動角)を検出するためのものである。ペダル用ポテンショメータ67aはリンク機構を介して変速ペダル67に連結され、当該変速ペダル67の踏み込み量を検出することができる。より詳細には、変速ペダル67の踏み込み量(回動角)に応じてペダル用ポテンショメータ67aの検出軸が回動され、当該回動角を変速ペダル67の踏み込み量として検出することができる。
 変速ペダル67が踏み込み操作されたとき、ペダル用ポテンショメータ67aが変速ペダル67の踏み込み量を示すペダル信号を出力する。
A pedal potentiometer (pedal operation amount detection device) 67a shown in FIG. 6 is for detecting the depression amount (rotation angle) of the shift pedal 67. The pedal potentiometer 67a is connected to the shift pedal 67 via a link mechanism, and can detect the amount of depression of the shift pedal 67. More specifically, the detection shaft of the pedal potentiometer 67a is rotated according to the depression amount (rotation angle) of the shift pedal 67, and the rotation angle can be detected as the depression amount of the transmission pedal 67.
When the shift pedal 67 is depressed, the pedal potentiometer 67a outputs a pedal signal indicating the depression amount of the shift pedal 67.
 図5および図6に示す最高速設定ダイヤル69は田植機1の最高速度を変更するための操作具である。最高速設定ダイヤル69はダッシュボード61の略中央部(操向ハンドル64の前方)に配置される。 The maximum speed setting dial 69 shown in FIGS. 5 and 6 is an operation tool for changing the maximum speed of the rice transplanter 1. The maximum speed setting dial 69 is disposed at a substantially central portion of the dashboard 61 (in front of the steering handle 64).
 図2、図5、および図6に示す主変速レバー65は主変速機構22の変速段(変速比)を変更するための操作具である。主変速レバー65はダッシュボード61の左端部(操向ハンドル64の左方)に配置される。主変速レバー65はリンク機構を介してミッションケース20内の主変速機構22に連結される。
 主変速レバー65は、路上走行位置、植付位置、苗継ぎ位置、後進位置または中立位置に変更可能である。
 主変速レバー65が路上走行位置に切り換えられた場合、主変速機構22の変速段が高速に変更される。この場合、田植機1は高速で走行することができる。
 主変速レバー65が植付位置に切り換えられた場合、主変速機構22の変速段が低速に変更される。この場合、田植機1は、主変速機構22の変速段が高速である場合に比べて低速で走行することができる。
 主変速レバー65が苗継ぎ位置に切り換えられた場合、主変速機構22の変速段が中立に変更される。この場合、田植機1は走行することができない。またこの場合、後述する苗継ぎ位置検出スイッチ65aにより主変速レバー65が苗継ぎ位置に切り換えられたことを検出し、後述する制御装置100によりエンジン14の回転数を変更する等の所定の制御を行うことができる。
 主変速レバー65が後進位置に切り換えられた場合、主変速機構22の変速段が逆転に変更される。この場合、田植機1は後進することができる。
 主変速レバー65が中立位置に切り換えられた場合、主変速機構22の変速段が中立に変更される。この場合、田植機1は走行することができない。
The main transmission lever 65 shown in FIGS. 2, 5, and 6 is an operating tool for changing the gear position (speed ratio) of the main transmission mechanism 22. The main transmission lever 65 is disposed at the left end portion of the dashboard 61 (to the left of the steering handle 64). The main transmission lever 65 is connected to the main transmission mechanism 22 in the mission case 20 via a link mechanism.
The main speed change lever 65 can be changed to a road running position, a planting position, a seeding position, a reverse position or a neutral position.
When the main transmission lever 65 is switched to the road traveling position, the gear position of the main transmission mechanism 22 is changed to high speed. In this case, the rice transplanter 1 can travel at high speed.
When the main transmission lever 65 is switched to the planting position, the gear position of the main transmission mechanism 22 is changed to a low speed. In this case, the rice transplanter 1 can travel at a lower speed than when the gear stage of the main transmission mechanism 22 is at a high speed.
When the main transmission lever 65 is switched to the seeding position, the gear position of the main transmission mechanism 22 is changed to neutral. In this case, the rice transplanter 1 cannot travel. Further, in this case, it is detected that the main transmission lever 65 has been switched to the seeding position by a seeding position detection switch 65a described later, and predetermined control such as changing the number of revolutions of the engine 14 by a control device 100 described later is performed. It can be carried out.
When the main transmission lever 65 is switched to the reverse position, the gear position of the main transmission mechanism 22 is changed to reverse rotation. In this case, the rice transplanter 1 can move backward.
When the main transmission lever 65 is switched to the neutral position, the gear position of the main transmission mechanism 22 is changed to neutral. In this case, the rice transplanter 1 cannot travel.
 図6に示す苗継ぎ位置検出スイッチ65aは主変速レバー65が苗継ぎ位置にあることを検出するためのものである。苗継ぎ位置検出スイッチ65aとしてはマイクロスイッチが用いられる。苗継ぎ位置検出スイッチ65aは主変速レバー65の苗継ぎ位置近傍に配置される。苗継ぎ位置検出スイッチ65aは苗継ぎ位置に変更された主変速レバー65と接触することで、当該主変速レバー65が苗継ぎ位置にあることを検出することができる。
 主変速レバー65が苗継ぎ位置に操作されたとき、苗継ぎ位置検出スイッチ65aは、当該主変速レバー65が苗継ぎ位置にあることを示す苗継ぎ位置信号を出力する。
The seedling joining position detection switch 65a shown in FIG. 6 is for detecting that the main transmission lever 65 is in the seedling joining position. A micro switch is used as the seedling joining position detection switch 65a. The seedling joining position detection switch 65 a is disposed in the vicinity of the seedling joining position of the main transmission lever 65. The seedling joining position detection switch 65a can detect that the main transmission lever 65 is in the seedling joining position by contacting the main transmission lever 65 that has been changed to the seedling joining position.
When the main transmission lever 65 is operated to the joining position, the joining position detection switch 65a outputs a joining position signal indicating that the main transmission lever 65 is at the joining position.
 図2、図5、および図6に示すキースイッチ66はエンジン14を始動または停止させるための操作具である。キースイッチ66はダッシュボード61の右後端部(操向ハンドル64の右後方)に配置される。
 キースイッチ66が始動操作されるとき(OFFからONに切り換えられるとき)、エンジン14が始動する。また、このときキースイッチ66は、始動操作が行われたことを示す始動信号を出力する。
 キースイッチ66がONの状態のとき、エンジン14が駆動し続ける。
 キースイッチ66が停止操作されるとき(ONからOFFに切り換えられるとき)、エンジン14が停止する。また、このときキースイッチ66は、停止操作が行われたことを示す停止信号を出力する。
 キースイッチ66がOFFの状態のとき、エンジン14は停止し続ける。
The key switch 66 shown in FIGS. 2, 5, and 6 is an operation tool for starting or stopping the engine 14. The key switch 66 is disposed at the right rear end of the dashboard 61 (right rear of the steering handle 64).
When the key switch 66 is started (when switched from OFF to ON), the engine 14 is started. At this time, the key switch 66 outputs a start signal indicating that the start operation has been performed.
When the key switch 66 is in the ON state, the engine 14 continues to drive.
When the key switch 66 is stopped (when switched from ON to OFF), the engine 14 stops. At this time, the key switch 66 outputs a stop signal indicating that the stop operation has been performed.
When the key switch 66 is OFF, the engine 14 continues to stop.
 図5および図6に示す速度固定レバー70は田植機1の車速を固定(設定した車速を維持)し、または当該速度の固定を解除するための操作具である。速度固定レバー70は操向ハンドル64の軸に取り付けられ、右方に向けて延設される。
 速度固定レバー70は、速度固定位置、速度固定解除位置または中立位置に回動可能である。速度固定位置は、速度固定レバー70を後方に回動させた際の位置である。速度固定解除位置は、速度固定レバー70を前方に回動させた際の位置である。中立位置は、速度固定位置と速度固定解除位置の略中間の位置である。速度固定レバー70は、速度固定位置または速度固定解除位置のいずれかに操作された場合であっても、再び中立位置に復帰するように常時付勢されている。
The speed fixing lever 70 shown in FIGS. 5 and 6 is an operation tool for fixing the vehicle speed of the rice transplanter 1 (maintaining the set vehicle speed) or releasing the fixed speed. The speed fixing lever 70 is attached to the shaft of the steering handle 64 and extends toward the right.
The speed fixing lever 70 can be rotated to a speed fixing position, a speed fixing release position, or a neutral position. The speed fixing position is a position when the speed fixing lever 70 is rotated backward. The speed fixing release position is a position when the speed fixing lever 70 is rotated forward. The neutral position is a position approximately between the speed fixing position and the speed fixing release position. Even when the speed fixing lever 70 is operated to either the speed fixing position or the speed fixing release position, the speed fixing lever 70 is always urged so as to return to the neutral position again.
 図6に示す速度固定スイッチ70aは速度固定レバー70が速度固定位置に操作されたことを検出するためのものである。速度固定スイッチ70aとしてはマイクロスイッチが用いられる。速度固定スイッチ70aは速度固定位置に操作された速度固定レバー70と接触することで、当該速度固定レバー70が速度固定位置に操作されたことを検出することができる。 The speed fixing switch 70a shown in FIG. 6 is for detecting that the speed fixing lever 70 has been operated to the speed fixing position. A micro switch is used as the speed fixing switch 70a. The speed fixing switch 70a can detect that the speed fixing lever 70 is operated to the speed fixing position by contacting the speed fixing lever 70 operated to the speed fixing position.
 速度固定解除スイッチ70bは速度固定レバー70が速度固定解除位置に操作されたことを検出するためのものである。速度固定解除スイッチ70bとしてはマイクロスイッチが用いられる。速度固定解除スイッチ70bは速度固定解除位置に操作された速度固定レバー70と接触することで、当該速度固定レバー70が速度固定解除位置に操作されたことを検出することができる。 The speed fixing release switch 70b is for detecting that the speed fixing lever 70 has been operated to the speed fixing release position. A micro switch is used as the speed fixing release switch 70b. The speed fixing release switch 70b can detect that the speed fixing lever 70 is operated to the speed fixing release position by contacting the speed fixing lever 70 operated to the speed fixing release position.
 図3および図6に示すブレーキペダル68は田植機1を制動するための操作具である。ブレーキペダル68はダッシュボード61の右下方であって、変速ペダル67の左方に配置される。ブレーキペダル68はリンク機構を介して制動装置21dに連結される。ブレーキペダル68が踏み込み操作された場合、制動装置21dが作動し、田植機1の前車輪12および後車輪13の回動が制動される。 The brake pedal 68 shown in FIGS. 3 and 6 is an operation tool for braking the rice transplanter 1. The brake pedal 68 is disposed on the lower right side of the dashboard 61 and on the left side of the speed change pedal 67. The brake pedal 68 is connected to the braking device 21d through a link mechanism. When the brake pedal 68 is depressed, the braking device 21d is activated, and the rotation of the front wheels 12 and the rear wheels 13 of the rice transplanter 1 is braked.
 図6に示すブレーキ操作検出スイッチ68aはブレーキペダル68が操作されたことを検出するためのものである。ブレーキ操作検出スイッチ68aとしてはマイクロスイッチが用いられる。ブレーキ操作検出スイッチ68aは踏み込み操作されたブレーキペダル68と接触することで、当該ブレーキペダル68が踏み込み操作されたことを検出することができる。 The brake operation detection switch 68a shown in FIG. 6 is for detecting that the brake pedal 68 has been operated. A micro switch is used as the brake operation detection switch 68a. The brake operation detection switch 68a can detect that the brake pedal 68 has been depressed by contacting the brake pedal 68 that has been depressed.
 図6に示す苗台端検出スイッチ49aは苗載台41が所定の位置(左右方向の終端位置)に到達したことを検出するものである。苗台端検出スイッチ49aとしてはマイクロスイッチが用いられる。苗台端検出スイッチ49aは、植付フレーム49に配置されて、苗載台41に設けられた押圧部と接触することで、当該苗載台41が所定の位置に到達したことを検出することができる。 The seedling end detection switch 49a shown in FIG. 6 detects that the seedling stage 41 has reached a predetermined position (the end position in the left-right direction). A micro switch is used as the seedling end detection switch 49a. The seedling end detection switch 49a is arranged on the planting frame 49 and can detect that the seedling mounting base 41 has reached a predetermined position by contacting a pressing portion provided on the seedling mounting base 41. it can.
 図6に示すモータ(アクチュエータ)71はエンジン14の回転数の変更、HMT21の変速比の変更、クラッチ21cの断接の切り換え、および制動装置21dの動作の切り換えを行うためのアクチュエータである。モータ71はリンク機構を介してエンジン14、HMT21(詳細にはHST21a)、クラッチ21c、および制動装置21dに連結される。 A motor (actuator) 71 shown in FIG. 6 is an actuator for changing the rotational speed of the engine 14, changing the gear ratio of the HMT 21, switching the connection / disconnection of the clutch 21c, and switching the operation of the braking device 21d. The motor 71 is connected to the engine 14, the HMT 21 (specifically, the HST 21a), the clutch 21c, and the braking device 21d through a link mechanism.
 より詳細には、モータ71の出力軸はリンク機構を介してエンジン14の調速装置14aに連結される。モータ71により調速装置14aが駆動され、エンジン14の回転数を変更することができる。
 モータ71の出力軸はリンク機構を介してHST21aの可動斜板に連結される。モータ71により当該可動斜板の傾斜角度が変更され、HST21aの変速比を変更することができる。
 モータ71の出力軸はリンク機構を介してクラッチ21cに連結される。モータ71によりクラッチ21cが切断または接続される。
 モータ71の出力軸はリンク機構を介して制動装置21dに連結される。モータ71により制動装置21dが作動されると、前車輪12および後車輪13へと出力される動力を制動することができる。
More specifically, the output shaft of the motor 71 is connected to the speed governor 14a of the engine 14 via a link mechanism. The speed control device 14a is driven by the motor 71, and the rotation speed of the engine 14 can be changed.
The output shaft of the motor 71 is connected to the movable swash plate of the HST 21a through a link mechanism. The inclination angle of the movable swash plate is changed by the motor 71, and the gear ratio of the HST 21a can be changed.
The output shaft of the motor 71 is connected to the clutch 21c through a link mechanism. The clutch 71c is disconnected or connected by the motor 71.
The output shaft of the motor 71 is connected to the braking device 21d through a link mechanism. When the braking device 21d is operated by the motor 71, the power output to the front wheel 12 and the rear wheel 13 can be braked.
 モータ用ポテンショメータ71aはモータ71の出力軸の駆動量(回動角)を検出するためのものである。モータ用ポテンショメータ71aはリンク機構を介してモータ71に連結され、当該モータ71の出力軸の回動角を検出することができる。より詳細には、モータ71の出力軸の駆動量(回動角)に応じてモータ用ポテンショメータ71aの検出軸が回動され、当該回動角をモータ71の出力軸の駆動量として検出することができる。 The motor potentiometer 71a is for detecting the drive amount (rotation angle) of the output shaft of the motor 71. The motor potentiometer 71a is connected to the motor 71 via a link mechanism, and can detect the rotation angle of the output shaft of the motor 71. More specifically, the detection shaft of the potentiometer 71a for the motor is rotated according to the drive amount (rotation angle) of the output shaft of the motor 71, and the rotation angle is detected as the drive amount of the output shaft of the motor 71. Can do.
 セルモータ72はエンジン14を始動させるためのアクチュエータである。 The cell motor 72 is an actuator for starting the engine 14.
 図2、図5、および図6に示すメータパネル73は田植機1の作動やエンジンや異常警報等に関する種々の情報を表示するためのものである。メータパネル73はダッシュボード61の左右略中央であって、操向ハンドル64の前方に配置される。 The meter panel 73 shown in FIG. 2, FIG. 5, and FIG. 6 is for displaying various information related to the operation of the rice transplanter 1, the engine, the abnormality alarm, and the like. The meter panel 73 is disposed at the approximate center of the left and right of the dashboard 61 and in front of the steering handle 64.
 制御装置100は検知信号を入力し、入力した検出信号およびプログラムに基づいて、モータ71、セルモータ72、およびメータパネル73等に制御信号を送信するものである。制御装置100は具体的にはCPU、ROM、RAM、HDD等がバスで接続される構成であってもよく、あるいはワンチップのLSI等からなる構成であってもよい。 The control device 100 inputs a detection signal, and transmits a control signal to the motor 71, the cell motor 72, the meter panel 73, and the like based on the input detection signal and program. Specifically, the control device 100 may be configured such that a CPU, ROM, RAM, HDD, and the like are connected by a bus, or may be configured by a one-chip LSI or the like.
 制御装置100はペダル用ポテンショメータ67aに接続され、ペダル用ポテンショメータ67aによる変速ペダル67の踏み込み量を示す検出信号(ペダル信号)を取得することができる。
 制御装置100は最高速設定ダイヤル69に接続され、最高速設定ダイヤル69の操作位置に関する検出信号を取得することができる。
 制御装置100は苗継ぎ位置検出スイッチ65aに接続され、苗継ぎ位置検出スイッチ65aから主変速レバー65が苗継ぎ位置にある旨の検出信号(上記苗継ぎ位置検出信号)を取得することができる。
 制御装置100はキースイッチ66に接続され、キースイッチ66により始動操作が行われた旨の検出信号(始動信号)、および停止操作が行われた旨の検出信号(停止信号)を取得することができる。
 制御装置100は速度固定スイッチ70aに接続され、速度固定スイッチ70aによる速度固定レバー70が速度固定位置に操作された旨の検出信号を取得することができる。
 制御装置100は速度固定解除スイッチ70bに接続され、速度固定解除スイッチ70bによる速度固定レバー70が速度固定解除位置に操作された旨の検出信号を取得することができる。
 制御装置100はブレーキ操作検出スイッチ68aに接続され、ブレーキ操作検出スイッチ68aによるブレーキペダル68が踏み込み操作された旨の検出信号を取得することができる。
 制御装置100は苗台端検出スイッチ49aに接続され、苗台端検出スイッチ49aによる苗載台41が所定の位置に到達した旨の検出信号を取得することができる。
The control device 100 is connected to the pedal potentiometer 67a, and can obtain a detection signal (pedal signal) indicating the amount of depression of the shift pedal 67 by the pedal potentiometer 67a.
The control device 100 is connected to the maximum speed setting dial 69 and can acquire a detection signal related to the operation position of the maximum speed setting dial 69.
The control device 100 is connected to the seedling position detection switch 65a, and can acquire a detection signal (the above-mentioned seedling position detection signal) indicating that the main transmission lever 65 is at the seedling position from the seedling position detection switch 65a.
The control device 100 is connected to the key switch 66, and obtains a detection signal (start signal) indicating that the start operation has been performed by the key switch 66 and a detection signal (stop signal) indicating that the stop operation has been performed. it can.
The control device 100 is connected to the speed fixing switch 70a, and can acquire a detection signal indicating that the speed fixing lever 70 by the speed fixing switch 70a has been operated to the speed fixing position.
The control device 100 is connected to the speed fixing release switch 70b, and can acquire a detection signal indicating that the speed fixing lever 70 by the speed fixing release switch 70b has been operated to the speed fixing release position.
The control device 100 is connected to the brake operation detection switch 68a, and can acquire a detection signal indicating that the brake pedal 68 has been depressed by the brake operation detection switch 68a.
The control device 100 is connected to the seedling end detection switch 49a, and can acquire a detection signal indicating that the seedling placement base 41 has reached a predetermined position by the seedling end detection switch 49a.
 制御装置100はモータ71に接続され、モータ71に制御信号を送信し、当該モータ71を駆動することができる。
 制御装置100はモータ用ポテンショメータ71aに接続され、モータ用ポテンショメータ71aによるモータ71の回動角の検出信号を取得することができる。
 制御装置100はモータ用ポテンショメータ71aによる検出信号が所望の回動角(目標駆動量)になるまでモータ71に制御信号を送信することにより、当該モータ71を所望の回動角まで駆動することができる。
The control device 100 is connected to the motor 71 and can transmit a control signal to the motor 71 to drive the motor 71.
The control device 100 is connected to a motor potentiometer 71a, and can acquire a detection signal of the rotation angle of the motor 71 by the motor potentiometer 71a.
The control device 100 can drive the motor 71 to a desired rotation angle by transmitting a control signal to the motor 71 until the detection signal from the motor potentiometer 71a reaches a desired rotation angle (target drive amount). it can.
 制御装置100はセルモータ72に接続され、セルモータ72に制御信号を送信し、当該セルモータ72を駆動することができる。
 制御装置100はメータパネル73に接続され、エンジンや作業機の動作状況や異常等を検知したときにその情報を表示することができる。
The control device 100 is connected to the cell motor 72 and can transmit a control signal to the cell motor 72 to drive the cell motor 72.
The control device 100 is connected to the meter panel 73, and can display the information when an operation state or abnormality of the engine or the work machine is detected.
 上述の如く構成された田植機1において、制御装置100はキースイッチ66が始動操作された旨の検出信号(始動信号)を取得した場合、セルモータ72を駆動して、エンジン14を始動させる。また、制御装置100はキースイッチ66が停止操作された旨の検出信号(停止信号)を取得した場合、モータ71を駆動して、調速装置14aによる燃料の供給を遮断し(本実施形態ではディーゼルエンジン、ガソリンエンジンの場合は点火装置を停止させる)、エンジン14を停止させる。 In the rice transplanter 1 configured as described above, when the control device 100 acquires a detection signal (start signal) indicating that the key switch 66 has been started, the cell motor 72 is driven to start the engine 14. In addition, when the control device 100 acquires a detection signal (stop signal) indicating that the key switch 66 has been stopped, the control device 100 drives the motor 71 to cut off the fuel supply by the speed governor 14a (in this embodiment). In the case of a diesel engine or a gasoline engine, the ignition device is stopped), and the engine 14 is stopped.
 また、制御装置100は変速ペダル67の踏み込み量を示す上記ペダル信号を取得した場合、取得した上記ペダル信号に基づいてモータ71の目標駆動量を算出する。そして、制御装置100は算出した目標駆動量だけモータ71を駆動して、エンジン14の回転数の変更、HMT21の変速比の変更、クラッチ21cの断接の切り換え、および制動装置21dの動作の切り換えを行う。 Further, when the control device 100 acquires the pedal signal indicating the depression amount of the shift pedal 67, the control device 100 calculates a target drive amount of the motor 71 based on the acquired pedal signal. Then, the control device 100 drives the motor 71 by the calculated target drive amount to change the rotation speed of the engine 14, change the speed ratio of the HMT 21, change the connection / disconnection of the clutch 21c, and change the operation of the braking device 21d. I do.
 以下では、変速ペダル67を踏み込み操作した場合における田植機1の基本的な動作について説明する。
 なお、説明の便宜上、主変速レバー65は植付位置に操作されていることとする。
 また、田植機1の変速ペダル67が、以下の(1-1)~(1-5)の順序で踏み込み操作されることとする。
Hereinafter, a basic operation of the rice transplanter 1 when the shift pedal 67 is depressed will be described.
For convenience of explanation, it is assumed that the main transmission lever 65 is operated to the planting position.
Further, it is assumed that the shift pedal 67 of the rice transplanter 1 is depressed in the following order (1-1) to (1-5).
 制御装置100には、変速ペダル67の踏み込み量とモータ71の駆動量との関係(より詳細には、ペダル用ポテンショメータ67aの検出軸の回動角とモータ用ポテンショメータ71aの検出軸の回動角との関係)を示すマップが記憶される。制御装置100は、変速ペダル67の踏み込み量を示す上記ペダル信号を取得した場合、前記マップにおいて、取得した上記ペダル信号(ペダル用ポテンショメータ67aの検出軸の回動角)と対応するモータ71の駆動量(モータ用ポテンショメータ71aの検出軸の回動角)を、目標駆動量として算出する。そして、制御装置100は、モータ用ポテンショメータ71aの検出軸の回動角が前記目標駆動量になるようにモータ71を駆動する。以下、図7を用いて具体的に説明する。 The control device 100 has a relationship between the depression amount of the speed change pedal 67 and the driving amount of the motor 71 (more specifically, the rotation angle of the detection shaft of the pedal potentiometer 67a and the rotation angle of the detection shaft of the motor potentiometer 71a). A map indicating the relationship between the two is stored. When the control device 100 acquires the pedal signal indicating the depression amount of the shift pedal 67, the controller 100 drives the motor 71 corresponding to the acquired pedal signal (the rotation angle of the detection shaft of the pedal potentiometer 67a) in the map. The amount (the rotation angle of the detection shaft of the motor potentiometer 71a) is calculated as the target drive amount. Then, the control device 100 drives the motor 71 so that the rotation angle of the detection shaft of the motor potentiometer 71a becomes the target drive amount. Hereinafter, this will be specifically described with reference to FIG.
 (1-1)図7に示すように、変速ペダル67が踏み込み操作されていない場合の当該変速ペダル67の回動角αをα1(度)とする。この場合のペダル用ポテンショメータ67aの検出軸の回動角βをβ1(度)とする。この場合、制御装置100は、図7において、ペダル用ポテンショメータ67aの回動角β1と対応するモータ用ポテンショメータ71aの検出軸の回動角γ1(度)を目標駆動量として算出する。そして、制御装置100は、モータ用ポテンショメータ71aの回動角γがγ1になるようにモータ71を駆動する。 (1-1) As shown in FIG. 7, the rotation angle α of the shift pedal 67 when the shift pedal 67 is not depressed is α1 (degrees). In this case, the rotation angle β of the detection shaft of the pedal potentiometer 67a is β1 (degrees). In this case, the control device 100 calculates the rotation angle γ1 (degree) of the detection shaft of the motor potentiometer 71a corresponding to the rotation angle β1 of the pedal potentiometer 67a as a target drive amount in FIG. Then, the control device 100 drives the motor 71 so that the rotation angle γ of the motor potentiometer 71a becomes γ1.
 モータ用ポテンショメータ71aの回動角γがγ1になるようにモータ71が駆動された場合、リンク機構を介してクラッチ21cが切断される。これによって、エンジン14の動力が前車輪12および後車輪13に伝達されることがなく、田植機1の車速Vは0(m/秒)となる。
 また、この場合、リンク機構を介して制動装置21dが作動する。これによって、前車輪12および後車輪13が制動され、田植機1が不意に前進または後進するのを防止することができる。
When the motor 71 is driven so that the rotation angle γ of the motor potentiometer 71a becomes γ1, the clutch 21c is disconnected through the link mechanism. As a result, the power of the engine 14 is not transmitted to the front wheels 12 and the rear wheels 13, and the vehicle speed V of the rice transplanter 1 becomes 0 (m / sec).
In this case, the braking device 21d is operated via the link mechanism. Thereby, the front wheel 12 and the rear wheel 13 are braked, and the rice transplanter 1 can be prevented from moving forward or backward unexpectedly.
 モータ用ポテンショメータ71aの回動角γがγ1になるようにモータ71が駆動された場合、リンク機構を介してエンジン14の回転数NはN1(rpm)に設定される。
 また、この場合、リンク機構を介してHST21aの可動斜板の傾斜角度が最大となるように設定される。これによって、エンジン14からの動力とHST21aからの動力が遊星歯車機構21bによって互いに打ち消すように合成され、主変速機構22へ動力が伝達されることがない。
When the motor 71 is driven so that the rotation angle γ of the motor potentiometer 71a becomes γ1, the rotational speed N of the engine 14 is set to N1 (rpm) via the link mechanism.
In this case, the inclination angle of the movable swash plate of the HST 21a is set to be maximum via the link mechanism. Thus, the power from the engine 14 and the power from the HST 21a are combined so as to cancel each other out by the planetary gear mechanism 21b, and the power is not transmitted to the main transmission mechanism 22.
 (1-2)変速ペダル67が踏み込み操作されて、回動角αが徐々に増加すると、当該回動角αの増加に伴ってペダル用ポテンショメータ67aの検出軸の回動角βも増加する。 (1-2) When the shift pedal 67 is depressed and the rotation angle α gradually increases, the rotation angle β of the detection shaft of the pedal potentiometer 67a also increases with the increase of the rotation angle α.
 変速ペダル67の回動角αがα1からα2(α2未満)まで増加すると、ペダル用ポテンショメータ67aの回動角βはβ1からβ2(β2未満)まで増加する。この間、制御装置100は、ペダル用ポテンショメータ67aの回動角βの値にかかわらずモータ用ポテンショメータ71aの回動角γをγ1のまま保持するために、モータ71を駆動しない。 When the rotation angle α of the shift pedal 67 increases from α1 to α2 (less than α2), the rotation angle β of the pedal potentiometer 67a increases from β1 to β2 (less than β2). During this time, the control device 100 does not drive the motor 71 in order to maintain the rotation angle γ of the motor potentiometer 71a as γ1 regardless of the value of the rotation angle β of the pedal potentiometer 67a.
 モータ用ポテンショメータ71aの回動角γがγ1に保持されている場合、クラッチ21cは切断された状態に維持される。
 同様に、モータ用ポテンショメータ71aの回動角γがγ1に保持されている場合、制動装置21dが作動した状態に維持される。
When the rotation angle γ of the motor potentiometer 71a is held at γ1, the clutch 21c is maintained in a disconnected state.
Similarly, when the rotation angle γ of the motor potentiometer 71a is held at γ1, the braking device 21d is maintained in an activated state.
 モータ用ポテンショメータ71aの回動角γがγ1に保持されている場合、エンジン14の回転数NはN1のまま維持される。
 同様に、モータ用ポテンショメータ71aの回動角γがγ1に保持されている場合、HST21aの可動斜板の傾斜角度が最大のまま維持される。
When the rotation angle γ of the motor potentiometer 71a is held at γ1, the rotational speed N of the engine 14 is maintained at N1.
Similarly, when the rotation angle γ of the motor potentiometer 71a is held at γ1, the inclination angle of the movable swash plate of the HST 21a is maintained at the maximum.
 したがって、変速ペダル67が踏み込み操作されてペダル用ポテンショメータ67aの回動角βがβ1からβ2(β2未満)に増加した場合であっても、エンジン14の回転数NはN1のまま一定であり、かつ田植機1の車速Vは0のまま維持される。このようにして、変速ペダル67の踏み込み操作に対して田植機1が走行しない領域(いわゆる「遊び」)が設けられる。 Therefore, even when the shift pedal 67 is depressed and the rotation angle β of the pedal potentiometer 67a increases from β1 to β2 (less than β2), the rotational speed N of the engine 14 remains constant at N1, The vehicle speed V of the rice transplanter 1 is maintained at 0. In this manner, an area (so-called “play”) in which the rice transplanter 1 does not travel with respect to the depression operation of the shift pedal 67 is provided.
 (1-3)変速ペダル67が踏み込み操作されて、変速ペダル67の回動角αがα2になるとき、すなわちペダル用ポテンショメータ67aの回動角βがβ2になるとき、制御装置100は、モータ用ポテンショメータ71aの回動角γが、回動角γ1から、ペダル用ポテンショメータ67aの回動角β2に対応する回動角γ2まで増加するように、モータ71を駆動する。 (1-3) When the shift pedal 67 is depressed and the rotation angle α of the shift pedal 67 becomes α2, that is, when the rotation angle β of the pedal potentiometer 67a becomes β2, the control apparatus 100 The motor 71 is driven so that the rotation angle γ of the potentiometer 71a increases from the rotation angle γ1 to the rotation angle γ2 corresponding to the rotation angle β2 of the pedal potentiometer 67a.
 モータ用ポテンショメータ71aの回動角γがγ1からγ2まで増加するようにモータ71が駆動すると、リンク機構を介してエンジン14の調速装置14aが駆動され、当該エンジン14の回転数NがN1からN2まで増加する。 When the motor 71 is driven so that the rotation angle γ of the motor potentiometer 71a increases from γ1 to γ2, the speed governor 14a of the engine 14 is driven via the link mechanism, and the rotational speed N of the engine 14 is increased from N1. Increase to N2.
 モータ用ポテンショメータ71aの回動角γがγ2になると(γ2を超えると)、クラッチ21cは接続される。これによって、エンジン14の動力が前車輪12および後車輪13に伝達可能となる。
 同様に、モータ用ポテンショメータ71aの回動角γがγ2になると、制動装置21dが解除される。これによって、前車輪12および後車輪13の制動が解除され、田植機1が前進または後進可能となる。
When the rotation angle γ of the motor potentiometer 71a becomes γ2 (exceeds γ2), the clutch 21c is connected. As a result, the power of the engine 14 can be transmitted to the front wheels 12 and the rear wheels 13.
Similarly, when the rotation angle γ of the motor potentiometer 71a becomes γ2, the braking device 21d is released. Thereby, braking of the front wheel 12 and the rear wheel 13 is released, and the rice transplanter 1 can move forward or backward.
 (1-4)変速ペダル67が踏み込み操作されて、変速ペダル67の回動角αがα2からα3まで増加すると、ペダル用ポテンショメータ67aの回動角βはβ2からβ3まで増加する。制御装置100は、モータ用ポテンショメータ71aの回動角γが、ペダル用ポテンショメータ67aの回動角β2に対応する回動角γ2からペダル用ポテンショメータ67aの回動角β3に対応する回動角γmaxまで増加するように、モータ71を駆動する。 (1-4) When the shift pedal 67 is depressed and the rotation angle α of the shift pedal 67 increases from α2 to α3, the rotation angle β of the pedal potentiometer 67a increases from β2 to β3. In the control device 100, the rotation angle γ of the motor potentiometer 71a is from the rotation angle γ2 corresponding to the rotation angle β2 of the pedal potentiometer 67a to the rotation angle γmax corresponding to the rotation angle β3 of the pedal potentiometer 67a. The motor 71 is driven so as to increase.
 モータ用ポテンショメータ71aの回動角γがγ2からγmaxまで増加するようにモータ71が駆動すると、リンク機構を介してエンジン14の調速装置14aが駆動され、当該エンジン14の回転数NがN1からNmaxまで増加する。
 同様に、モータ用ポテンショメータ71aの回動角γがγ2からγmaxまで増加するようにモータ71が駆動すると、リンク機構を介してHST21aの可動斜板の傾斜角度が減少するように駆動される。これによってエンジン14の動力はHMT21を介して前車輪12および後車輪13に伝達されて、田植機1の車速Vは0からVmaxまで増加する。
When the motor 71 is driven so that the rotation angle γ of the motor potentiometer 71a increases from γ2 to γmax, the speed governor 14a of the engine 14 is driven via the link mechanism, and the rotational speed N of the engine 14 is increased from N1. Increase to Nmax.
Similarly, when the motor 71 is driven so that the rotation angle γ of the motor potentiometer 71a increases from γ2 to γmax, the tilting angle of the movable swash plate of the HST 21a is driven to decrease via the link mechanism. As a result, the power of the engine 14 is transmitted to the front wheels 12 and the rear wheels 13 via the HMT 21, and the vehicle speed V of the rice transplanter 1 increases from 0 to Vmax.
 (1-5)変速ペダル67が踏み込み操作されて、変速ペダル67の回動角αがα3からαmaxまで増加すると、ペダル用ポテンショメータ67aの回動角βはβ3からβmaxまで増加する。この間、制御装置100は、ペダル用ポテンショメータ67aの回動角βの値にかかわらずモータ用ポテンショメータ71aの回動角γをγmaxのまま保持するために、モータ71を駆動しない。
 したがって、エンジン14の回転数NはNmaxのまま、田植機1の車速VはVmaxのまま、それぞれ維持される。このようにして、変速ペダル67の踏み込み操作に対して田植機1の車速Vが増加しない領域(いわゆる「余裕代」)が設けられる。
(1-5) When the shift pedal 67 is depressed to increase the rotation angle α of the shift pedal 67 from α3 to αmax, the rotation angle β of the pedal potentiometer 67a increases from β3 to βmax. During this time, the control device 100 does not drive the motor 71 in order to maintain the rotation angle γ of the motor potentiometer 71a at γmax regardless of the value of the rotation angle β of the pedal potentiometer 67a.
Therefore, the rotational speed N of the engine 14 is maintained at Nmax, and the vehicle speed V of the rice transplanter 1 is maintained at Vmax. In this way, an area (so-called “margin”) in which the vehicle speed V of the rice transplanter 1 does not increase with respect to the depression operation of the shift pedal 67 is provided.
 上述の如く、本実施形態に係る田植機1は、変速ペダル67を踏み込み操作することで、田植機1の車速Vを増加(加速)させることができる。また、上述の説明とは逆に、踏み込み操作された変速ペダル67を元の位置に向かって戻すことで、田植機1の車速Vを減少(減速)させることができる。 As described above, the rice transplanter 1 according to the present embodiment can increase (accelerate) the vehicle speed V of the rice transplanter 1 by depressing the shift pedal 67. Contrary to the above description, the vehicle speed V of the rice transplanter 1 can be reduced (decelerated) by returning the stepped-on shift pedal 67 to the original position.
 以下では、主変速レバー65が中立位置に操作されているときの田植機1の状態について図8を用いて説明する。 Hereinafter, the state of the rice transplanter 1 when the main transmission lever 65 is operated to the neutral position will be described with reference to FIG.
 図8に示すように、主変速レバー65が中立位置に操作されているとき、上記したように主変速機構22の変速段が中立位置に変更される。これによりエンジン14の動力が前車輪12および後車輪13に伝達されない状態となり、田植機1は走行することができない状態になる。
 従って、主変速レバー65が中立位置に操作さているとき、変速ペダル67の踏み込み量に関わらず、すなわちペダル用ポテンショメータ67aの回動角βの値に関わらず、田植機1の走行停止した状態(V=0)が維持される。
As shown in FIG. 8, when the main transmission lever 65 is operated to the neutral position, the gear position of the main transmission mechanism 22 is changed to the neutral position as described above. As a result, the power of the engine 14 is not transmitted to the front wheels 12 and the rear wheels 13, and the rice transplanter 1 cannot travel.
Accordingly, when the main shift lever 65 is operated to the neutral position, the rice transplanter 1 is stopped traveling regardless of the amount of depression of the shift pedal 67, that is, regardless of the value of the rotation angle β of the pedal potentiometer 67a ( V = 0) is maintained.
 なお、主変速レバー65が中立位置に操作さている状態で、変速ペダル67が踏み込み操作されるとき、主変速レバー65が植付位置に操作されているときと同様に、変速ペダル67の踏み込み量に対応して、エンジン14の回転数が変化する。
 詳細には、以下に示す(2-1)~(2-5)のようにエンジン14の回転数が変化する。
When the speed change pedal 67 is depressed while the main speed change lever 65 is operated to the neutral position, the amount of depression of the speed change pedal 67 is the same as when the main speed change lever 65 is operated to the planting position. In response to this, the rotational speed of the engine 14 changes.
Specifically, the rotational speed of the engine 14 changes as shown in (2-1) to (2-5) below.
 (2-1)図8に示すように、主変速レバー65が中立位置に操作された状態で、変速ペダル67が踏み込み操作されておらず、変速ペダル67の回動角αがα1のとき、すなわちペダル信号がβ1のとき、モータ用ポテンショメータ71aの回動角γがγ1になる。これにより、エンジン14が回転数N1(第一アイドリング回転数)で回転する。 (2-1) As shown in FIG. 8, when the shift lever 67 is not depressed and the rotation angle α of the shift pedal 67 is α1, while the main shift lever 65 is operated to the neutral position, That is, when the pedal signal is β1, the rotation angle γ of the motor potentiometer 71a is γ1. As a result, the engine 14 rotates at the rotational speed N1 (first idling rotational speed).
 (2-2)上記(2-1)に示す状態から、変速ペダル67が踏み込み操作されて、変速ペダル67の回動角αがα1からα2(α2未満)まで増加するとき、すなわちペダル信号がβ1からβ2(β2未満)まで増加するとき、モータ用ポテンショメータ71aの回動角γをγ1のまま保持される。これにより、エンジン14の回転数Nが、第一アイドリング回転数N1のまま維持される。 (2-2) When the shift pedal 67 is depressed from the state shown in (2-1) above and the rotation angle α of the shift pedal 67 increases from α1 to α2 (less than α2), that is, the pedal signal is When increasing from β1 to β2 (less than β2), the rotation angle γ of the motor potentiometer 71a is held at γ1. Thereby, the rotation speed N of the engine 14 is maintained at the first idling rotation speed N1.
 (2-3)上記(2-2)に示す状態から、変速ペダル67が踏み込み操作されて、変速ペダル67の回動角αがα2になるとき、すなわちペダル信号がβ2になるとき、モータ用ポテンショメータ71aの回動角γがγ1からγ2まで増加する。これにより、エンジン14の回転数Nが、第一アイドリング回転数N1から第二アイドリング回転数N2まで増加する。 (2-3) From the state shown in (2-2) above, when the shift pedal 67 is depressed and the rotation angle α of the shift pedal 67 becomes α2, that is, when the pedal signal becomes β2, The rotation angle γ of the potentiometer 71a increases from γ1 to γ2. Thereby, the rotational speed N of the engine 14 increases from the first idling rotational speed N1 to the second idling rotational speed N2.
 (2-4)上記(2-3)に示す状態から、変速ペダル67が踏み込み操作されて、変速ペダル67の回動角αがα2からα3まで増加するとき、すなわちペダル信号がβ2からβ3まで増加するとき、モータ用ポテンショメータ71aの回動角γがγ2からγmaxまで増加する。これにより、エンジン14の回転数Nが、第二アイドリング回転数N2からNmaxまで増加する。 (2-4) From the state shown in (2-3) above, when the shift pedal 67 is depressed and the rotation angle α of the shift pedal 67 increases from α2 to α3, that is, the pedal signal changes from β2 to β3. When increasing, the rotation angle γ of the motor potentiometer 71a increases from γ2 to γmax. Thereby, the rotational speed N of the engine 14 increases from the second idling rotational speed N2 to Nmax.
 (2-5)上記(2-4)に示す状態から、変速ペダル67が踏み込み操作されて、変速ペダル67の回動角αがα3からαmaxまで増加するとき、すなわちペダル信号がβ3からβmaxまで増加するとき、モータ用ポテンショメータ71aの回動角γがγmaxのまま保持される。これにより、エンジン14の回転数NはNmaxのまま維持される。 (2-5) When the shift pedal 67 is depressed from the state shown in (2-4) above and the rotation angle α of the shift pedal 67 increases from α3 to αmax, that is, the pedal signal changes from β3 to βmax. When increasing, the rotation angle γ of the motor potentiometer 71a is held at γmax. Thereby, the rotation speed N of the engine 14 is maintained at Nmax.
 以下では、主変速レバー65が中立位置から苗継ぎ位置に操作されるときの田植機1の状態について図8を用いて説明する。
 なお、説明の便宜上、主変速レバー65が中立位置に操作されているとき、変速ペダル67が踏み込み操作されておらず、エンジン14が第一アイドリング回転数N1で回転していることとする。
Hereinafter, the state of the rice transplanter 1 when the main transmission lever 65 is operated from the neutral position to the seedling position will be described with reference to FIG.
For convenience of explanation, it is assumed that when the main transmission lever 65 is operated to the neutral position, the transmission pedal 67 is not depressed and the engine 14 is rotating at the first idling rotational speed N1.
 主変速レバー65が中立位置から苗継ぎ位置に操作されるとき、HMT21の遊星歯車機構21bの変速段が中立に維持される。これにより、主変速レバー65が中立位置に操作されているときと同様に、エンジン14の動力が前車輪12および後車輪13に伝達されない状態となり、田植機1は走行することができない(V=0)。 When the main transmission lever 65 is operated from the neutral position to the seeding position, the gear position of the planetary gear mechanism 21b of the HMT 21 is maintained neutral. As a result, as in the case where the main speed change lever 65 is operated to the neutral position, the power of the engine 14 is not transmitted to the front wheels 12 and the rear wheels 13, and the rice transplanter 1 cannot travel (V = 0).
 主変速レバー65が中立位置から苗継ぎ位置に操作されるとき、制御装置100は、苗継ぎ位置検出スイッチ65aから主変速レバー65が苗継ぎ位置にある旨の検出信号(苗継ぎ位置検出信号)を取得する。 When the main transmission lever 65 is operated from the neutral position to the seeding position, the control device 100 detects from the seeding position detection switch 65a that the main transmission lever 65 is in the seeding position (seeding position detection signal). To get.
 図8に示すように、制御装置100は、苗継ぎ位置検出信号を取得するとき、モータ用ポテンショメータ71aの回動角γがγ1からγminまで減少ようにモータ71を駆動する。
 モータ用ポテンショメータ71aの回動角γがγ1からγminまで減少ようにモータ71が駆動すると、リンク機構を介してエンジン14の調速装置14aが駆動され、エンジン14の回転数Nが第一アイドリング回転数N1から第二アイドリング回転数Nminまで減少する。
As shown in FIG. 8, when acquiring the seedling position detection signal, the control device 100 drives the motor 71 so that the rotation angle γ of the motor potentiometer 71a decreases from γ1 to γmin.
When the motor 71 is driven so that the rotation angle γ of the motor potentiometer 71a decreases from γ1 to γmin, the speed governor 14a of the engine 14 is driven via the link mechanism, and the rotational speed N of the engine 14 is the first idling rotation. It decreases from the number N1 to the second idling speed Nmin.
 前記第一アイドリング回転数N1は、変速ペダル67の踏み込み操作により田植機1(走行部10)を発進させる際に即応可能な回転数である(例えば、約1800回転)。
 従って、第一アイドリング回転数N1では、田植機1がスムーズに発進することが可能となる。
The first idling rotation speed N1 is a rotation speed that can be immediately applied when the rice transplanter 1 (traveling unit 10) is started by depressing the shift pedal 67 (for example, about 1800 rotations).
Therefore, the rice transplanter 1 can start smoothly at the first idling speed N1.
 前記第二アイドリング回転数Nminは、上記第一アイドリング回転数N1よりも低い回転数に設定されている(例えば、約1000回転)。
 また、第二アイドリング回転数Nminは、エンストしない(エンジン14が停止しない)回転数であり、エンジン14の起動状態を維持可能な最低回転数である。
 従って、第二アイドリング回転数Nminでは、エンジン14の燃料消費を抑えることが可能となる。
The second idling rotational speed Nmin is set to a rotational speed lower than the first idling rotational speed N1 (for example, about 1000 revolutions).
Further, the second idling rotational speed Nmin is a rotational speed at which the engine is not stalled (the engine 14 is not stopped), and is the lowest rotational speed at which the engine 14 can be maintained in the activated state.
Therefore, the fuel consumption of the engine 14 can be suppressed at the second idling speed Nmin.
 また、主変速レバー65が苗継ぎ位置に操作されている場合、田植機1は変速ペダル67の踏み込み操作による変速操作を受け付けない。
 すなわち、制御装置100は、苗継ぎ位置検出信号を取得するとき、取得するペダル信号の値に関係なく(変速ペダル67の踏み込み量に関わらず)、モータ用ポテンショメータ71aの回動角γが一定の大きさγminになるようにモータ71を駆動する。
 これにより、主変速レバー65が苗継ぎ位置に操作される場合、変速ペダル67の操作が無効となり、変速ペダル67が踏み込み操作されても、踏み込み量に関係なく、エンジン14の回転数Nが第二アイドリング回転数Nminに維持される。
 従って、変速ペダル67の誤操作を防止することが可能である。
In addition, when the main transmission lever 65 is operated to the seeding position, the rice transplanter 1 does not accept a transmission operation by depressing the transmission pedal 67.
That is, when the control device 100 acquires the seedling position detection signal, the rotation angle γ of the motor potentiometer 71a is constant regardless of the value of the acquired pedal signal (regardless of the depression amount of the shift pedal 67). The motor 71 is driven so as to have a magnitude γmin.
As a result, when the main transmission lever 65 is operated to the seeding position, the operation of the transmission pedal 67 becomes invalid, and even when the transmission pedal 67 is depressed, the engine speed N is the first regardless of the depression amount. The second idling speed Nmin is maintained.
Therefore, it is possible to prevent erroneous operation of the shift pedal 67.
 なお、エンジン14が第二アイドリング回転数Nminで回転しているときの田植機1の状態を苗継ぎエコ状態と称する。 In addition, the state of the rice transplanter 1 when the engine 14 is rotating at the second idling speed Nmin is referred to as a seedling ecological state.
 また、主変速レバー65が苗継ぎ位置に操作される場合、上記したようにモータ用ポテンショメータ71aの回動角γがγminとなるが、このとき、クラッチ21cは切断された状態に維持されるとともに、制動装置21dが作動した状態に維持される。 When the main transmission lever 65 is operated to the seeding position, the rotational angle γ of the motor potentiometer 71a becomes γmin as described above. At this time, the clutch 21c is maintained in a disconnected state. The braking device 21d is maintained in an activated state.
 以上のように構成することで、主変速レバー65が苗継ぎ位置に操作される場合にエンジン14の回転数Nが第二アイドリング回転数Nminまで減少する。従って、作業者が苗継ぎ作業を行う場合等の理由で田植機をしばらくの間停止させておくときに、主変速レバー65を苗継ぎ位置に操作しておくことで省エネ効果を高めることができ、エンジン14による無駄な燃料消費を抑えることが可能である。また、騒音を抑制することが可能である。 By configuring as described above, when the main transmission lever 65 is operated to the seeding position, the rotational speed N of the engine 14 decreases to the second idling rotational speed Nmin. Therefore, the energy saving effect can be enhanced by operating the main transmission lever 65 to the seeding position when the rice transplanter is stopped for a while, for example, when the worker performs the seeding work. It is possible to suppress wasteful fuel consumption by the engine 14. In addition, noise can be suppressed.
 また、田植機1においては、主変速レバー65が苗継ぎ位置に操作された状態で、キースイッチ66が始動操作された場合、エンジン14が第二アイドリング回転数Nminで回転せず、上記苗継ぎエコ状態に移行しない構成としてもよい。
 この場合、エンジン14は、上記(2-1)~(2-5)に示すように、変速ペダル67の踏み込み量に対応した回転数Nで回転する。
Further, in the rice transplanter 1, when the key switch 66 is started in a state where the main transmission lever 65 is operated to the seeding position, the engine 14 does not rotate at the second idling speed Nmin, and the seeding process is performed. It is good also as a structure which does not transfer to an eco state.
In this case, the engine 14 rotates at a rotational speed N corresponding to the amount of depression of the shift pedal 67 as shown in (2-1) to (2-5) above.
 従って、主変速レバー65が苗継ぎ位置に操作された状態で、キースイッチ66が始動操作された場合において、変速ペダル67が踏み込み操作されていないとき(変速ペダル67の回動角αがα1のとき)、エンジン14が第一アイドリング回転数N1で回転する(上記(2-1)参照)。
 また、同様の場合において、変速ペダル67の回動角αが、α1より大きくα2未満のとき、エンジン14が第一アイドリング回転数N1で回転する(上記(2-2)参照)。
 また、同様の場合において、変速ペダル67の回動角αが、α2のとき、エンジン14が回転数N2で回転する(上記(2-3)参照)。
 また、同様の場合において、変速ペダル67の回動角αが、α2以上α3未満のとき、エンジン14が回転数Nmaxで回転する(上記(2-4)参照)。
 また、同様の場合において、変速ペダル67の回動角αが、α3以上αmax未満のとき、エンジン14が回転数Nmaxで回転する(上記(2-5)参照)。
Accordingly, when the key switch 66 is started in the state where the main transmission lever 65 is operated to the seeding position, when the transmission pedal 67 is not depressed (the rotation angle α of the transmission pedal 67 is α1). ), The engine 14 rotates at the first idling speed N1 (see (2-1) above).
In the same case, when the rotation angle α of the shift pedal 67 is greater than α1 and less than α2, the engine 14 rotates at the first idling speed N1 (see (2-2) above).
In the same case, when the rotation angle α of the shift pedal 67 is α2, the engine 14 rotates at the rotation speed N2 (see (2-3) above).
In the same case, when the rotation angle α of the shift pedal 67 is not less than α2 and less than α3, the engine 14 rotates at the rotation speed Nmax (see (2-4) above).
In the same case, when the rotation angle α of the shift pedal 67 is not less than α3 and less than αmax, the engine 14 rotates at the rotation speed Nmax (see (2-5) above).
 これによると、図9の領域(i)に示すように、主変速レバー65が苗継ぎ位置に操作された状態(苗継ぎ位置検出スイッチがONの状態)で、キースイッチ66がOFFからONに始動操作された場合、モータ用ポテンショメータ71aの回動角γ(モータ位置)がγ1になるようにモータ71が駆動される。これにより、エンジン14が第一アイドリング回転数N1で回転して、上記苗継ぎエコ状態に移行しない。なお、変速ペダル67が踏み込み操作されていないこととする。
 すなわち、制御装置100は、始動信号を取得するとともに、苗継ぎ位置検出信号を取得する場合で、ペダル用ポテンショメータ67aからペダル信号β1を取得するとき、モータ用ポテンショメータ71aの回動角γがγ1になるようにモータ71を駆動する。これにより、制御装置100は、エンジン14を第一アイドリング回転数N1で回転させる。
 従って、エンジン14が始動時に第一アイドリング回転数N1で回転するので、エンジン14をスムーズに始動させることが可能となる。
According to this, as shown in the area (i) of FIG. 9, the key switch 66 is changed from OFF to ON in the state where the main transmission lever 65 is operated to the seeding position (the seeding position detection switch is ON). When the start operation is performed, the motor 71 is driven so that the rotation angle γ (motor position) of the motor potentiometer 71a becomes γ1. As a result, the engine 14 rotates at the first idling speed N1 and does not shift to the seedling ecological state. It is assumed that the speed change pedal 67 is not depressed.
That is, when the control device 100 acquires the start signal and the seedling joining position detection signal and acquires the pedal signal β1 from the pedal potentiometer 67a, the rotation angle γ of the motor potentiometer 71a becomes γ1. The motor 71 is driven so that Thereby, the control device 100 rotates the engine 14 at the first idling rotational speed N1.
Therefore, since the engine 14 rotates at the first idling rotation speed N1 when starting, the engine 14 can be started smoothly.
 なお、図9の領域(ii)に示すように、主変速レバー65が中立位置に操作された状態(苗継ぎ位置検出スイッチがOFFの状態)で、キースイッチ66がOFFからONに始動操作された場合、モータ用ポテンショメータ71aの回動角γがγ1になるようにモータ71が駆動される。これにより、エンジン14が第一アイドリング回転数N1で回転する。なお、変速ペダル67が踏み込み操作されていないこととする。 As shown in the area (ii) of FIG. 9, the key switch 66 is started from OFF to ON while the main transmission lever 65 is operated to the neutral position (the seedling position detection switch is OFF). In this case, the motor 71 is driven so that the rotation angle γ of the motor potentiometer 71a becomes γ1. As a result, the engine 14 rotates at the first idling speed N1. It is assumed that the speed change pedal 67 is not depressed.
 また、図9の領域(iii)に示すように、主変速レバー65が苗継ぎ位置に操作されている状態(苗継ぎ位置検出スイッチがONの状態)で、エンジン14が始動された場合(キースイッチ66がOFFからONに始動操作された場合)において、すなわち上記した苗継ぎエコ状態に移行しない場合において、この状態から、主変速レバー65が中立位置(苗継ぎ位置検出スイッチがOFFの状態)→苗継ぎ位置(苗継ぎ位置検出スイッチがONの状態)、の順に操作されたとき、モータ用ポテンショメータ71aの回動角γがγminになるようにモータ71が駆動される構成としてもよい。これにより、エンジン14が第二アイドリング回転数Nminで回転して、上記苗継ぎエコ状態に移行する。
 すなわち制御装置100は、キースイッチ66から始動信号を取得するとともに、苗継ぎ位置検出スイッチ65aから苗継ぎ位置検出信号を取得した後に、再び苗継ぎ位置検出信号を取得する場合に、再び取得した苗継ぎ位置検出信号に基づいて、モータ用ポテンショメータ71aの回動角γがγminになるようにモータ71を駆動する。これにより、制御装置100は、エンジン14を第二アイドリング回転数Nminで回転させる。
Further, as shown in the area (iii) of FIG. 9, when the engine 14 is started in a state in which the main transmission lever 65 is operated to the seeding position (the seeding position detection switch is ON) (key When the switch 66 is started from OFF to ON), that is, when the transition to the above-described seedling ecological state is not performed, from this state, the main transmission lever 65 is in the neutral position (the state where the seedling joint position detection switch is OFF). The motor 71 may be driven so that the rotation angle γ of the motor potentiometer 71a becomes γmin when operated in the order of the seedling joining position (the state where the seedling joining position detection switch is ON). As a result, the engine 14 rotates at the second idling rotational speed Nmin and shifts to the seedling ecological state.
In other words, the control device 100 acquires the start signal from the key switch 66 and also acquires the seedling joining position detection signal from the seedling joining position detection switch 65a, and then acquires the seedling joining position detection signal again. Based on the joint position detection signal, the motor 71 is driven so that the rotation angle γ of the motor potentiometer 71a becomes γmin. Thereby, the control device 100 rotates the engine 14 at the second idling rotational speed Nmin.
 なお、田植機1が施肥仕様の場合、すなわち田植機1が圃場に施肥を行う施肥装置を備えた仕様の場合、主変速レバー65が苗継ぎ位置に操作されるときには、上記施肥装置のブロワが停止されるが、これに対し、主変速レバー65が苗継ぎ位置に操作されないときには、上記ブロワが駆動される構成としてもよい。
 これにより、主変速レバー65が苗継ぎ位置に操作されて田植機1が苗継ぎエコ状態となるとき、同時に上記ブロワが停止されるので、消費電力を軽減することが可能であり、バッテリ上がり防止の点で有利である。また、上記ブロワからの騒音を抑制することが可能である。
When the rice transplanter 1 is fertilized, that is, when the rice transplanter 1 is equipped with a fertilizer for fertilizing the field, when the main transmission lever 65 is operated to the seeding position, the blower of the fertilizer is In contrast to this, when the main transmission lever 65 is not operated to the seeding position, the blower may be driven.
Thus, when the main transmission lever 65 is operated to the seeding position and the rice transplanter 1 enters the seeding ecology state, the blower is stopped at the same time, so that it is possible to reduce power consumption and prevent the battery from going up. This is advantageous. Further, it is possible to suppress noise from the blower.
 また、主変速レバー65が苗継ぎ位置に操作されている場合、植付クラッチ(PTO)55操作が受け付けられず、植付クラッチ55が常に切られた状態になるように構成してもよい。これにより、植付クラッチ55の誤操作を防止することが可能である。 Further, when the main transmission lever 65 is operated to the seeding position, the planting clutch (PTO) 55 operation may not be accepted, and the planting clutch 55 may be always disconnected. Thereby, it is possible to prevent erroneous operation of the planting clutch 55.
 また、主変速レバー65が苗継ぎ位置に操作されている場合、自動植付け(すこやかターン)の自動制御中のブザー音が消去される構成としてもよい。苗継ぎ中は、すこやかターン制御中の場合も多々あり、すこやかターン制御によるブザーが鳴り続けていると耳障りであるが、前述のようにブザー音が消去されるように構成することで解消可能である。 Further, when the main transmission lever 65 is operated to the seedling joining position, the buzzer sound during automatic control of automatic planting (smooth turn) may be eliminated. During seedling, there are many cases where smooth turn control is in progress, and it is annoying if the buzzer due to smooth turn control continues to ring, but it can be solved by configuring so that the buzzer sound is erased as described above. is there.
 以上のように、田植機1は、
 エンジン14と、
 エンジン14の動力を変速して車輪12・13に伝達する主変速機構22と、
 主変速機構22に接続され、苗継ぎ位置を含む複数の変速位置に操作可能であり、前記変速位置に操作されるときに、操作された変速位置に対応するように主変速機構22の変速段を変更する主変速レバー65と、
 エンジン14の回転数の変更を行うためのモータ71と、
 モータ71を操作するための変速ペダル67と、
 を備え、
 主変速レバー65が前記苗継ぎ位置にない場合で、変速ペダル67が踏み込み操作されていないときに、エンジン14が第一アイドリング回転数で回転するようにモータ71を駆動し、
 主変速レバー65が前記苗継ぎ位置にある場合に、エンジン14が前記第一アイドリング回転数よりも低い回転数である第二アイドリング回転数で回転するようにモータ71を駆動する。
As described above, the rice transplanter 1
Engine 14;
A main speed change mechanism 22 for shifting the power of the engine 14 and transmitting it to the wheels 12 and 13;
A shift stage of the main transmission mechanism 22 is connected to the main transmission mechanism 22 and can be operated to a plurality of shift positions including a seeding position, and when operated to the shift position, the shift stage of the main transmission mechanism 22 corresponds to the operated shift position. A main transmission lever 65 for changing
A motor 71 for changing the rotational speed of the engine 14,
A shift pedal 67 for operating the motor 71;
With
When the main speed change lever 65 is not in the seeding position and the speed change pedal 67 is not depressed, the motor 71 is driven so that the engine 14 rotates at the first idling speed,
When the main transmission lever 65 is in the seeding position, the motor 71 is driven so that the engine 14 rotates at a second idling rotational speed that is lower than the first idling rotational speed.
 これにより、主変速レバー65が苗継ぎ位置に操作される場合にエンジン14の回転数Nが第二アイドリング回転数Nminまで減少する。従って、作業者が苗継ぎ作業を行う場合等の理由で田植機1をしばらくの間停止させておくときに、主変速レバー65を苗継ぎ位置に操作しておくことで省エネ効果を高めることができ、エンジン14による無駄な燃料消費を抑えることが可能である。
 また、エンジン14からの騒音を抑制することが可能である。これによりオペレータとの会話が容易になる。
As a result, when the main transmission lever 65 is operated to the seeding position, the rotational speed N of the engine 14 decreases to the second idling rotational speed Nmin. Accordingly, when the rice transplanter 1 is stopped for a while, for example, when an operator performs a seeding operation, the energy-saving effect can be enhanced by operating the main transmission lever 65 to the seeding position. It is possible to suppress wasteful fuel consumption by the engine 14.
Further, noise from the engine 14 can be suppressed. This facilitates conversation with the operator.
 また、田植機1においては、
 前記第一アイドリング回転数は、田植機1を発進させる際に即応可能な回転数であり、
 前記第二アイドリング回転数は、エンジン14が停止しない回転数である。
In the rice transplanter 1,
Said 1st idling rotation speed is rotation speed which can respond immediately when starting rice transplanter 1,
The second idling rotational speed is a rotational speed at which the engine 14 does not stop.
 これにより、第一アイドリング回転数N1では、田植機1がスムーズに発進することが可能となる。
 また、第二アイドリング回転数Nminでは、エンジン14の燃料消費を抑えることが可能となる。
As a result, the rice transplanter 1 can start smoothly at the first idling speed N1.
Further, at the second idling rotational speed Nmin, the fuel consumption of the engine 14 can be suppressed.
 また、田植機1においては、
 エンジン14を始動させるための操作具であり、エンジン14を始動させるための始動操作が行われるときに始動信号を出力するキースイッチ66を備え、
 主変速レバー65が前記苗継ぎ位置にあり、かつ、変速ペダル67が踏み込み操作されていない状態で、キースイッチ66による前記始動信号の出力が開始されたときに、エンジン14が前記第一アイドリング回転数で回転するようにモータ71を駆動し、
 主変速レバー65が前記苗継ぎ位置にある状態で、キースイッチ66による前記始動信号の出力が開始され、その後、主変速レバー65が前記苗継ぎ位置とは異なる前記変速位置に操作されて、その後、主変速レバー65が前記苗継ぎ位置に操作されたときに、エンジン14が前記第二アイドリング回転数で回転するようにモータ71を駆動する。
In the rice transplanter 1,
An operation tool for starting the engine 14, including a key switch 66 that outputs a start signal when a start operation for starting the engine 14 is performed;
When the output of the start signal by the key switch 66 is started in a state where the main transmission lever 65 is in the seeding position and the transmission pedal 67 is not depressed, the engine 14 rotates the first idling. Drive the motor 71 to rotate by a number,
When the main transmission lever 65 is in the seeding position, the key switch 66 starts outputting the start signal, and then the main transmission lever 65 is operated to the shifting position different from the seeding position. When the main transmission lever 65 is operated to the seeding position, the motor 71 is driven so that the engine 14 rotates at the second idling speed.
 これにより、主変速レバー65が苗継ぎ位置に操作されている状態でキースイッチ66によりエンジン14が始動された場合でも、エンジン14の始動をスムーズに行うことが可能であり、エンジン14の始動性の点で有利である。 Thereby, even when the engine 14 is started by the key switch 66 in a state where the main transmission lever 65 is operated to the seeding position, the engine 14 can be started smoothly, and the startability of the engine 14 can be improved. This is advantageous.
 以下では、変速ペダルの踏み込み操作により加減速する際に、変速ペダルの踏み込み量に対応して緩急をつけた加減速が可能となり、変速フィーリングの向上に貢献可能な田植機について説明する。 The following describes a rice transplanter that can accelerate and decelerate according to the amount of depressing of the shift pedal when accelerating or decelerating by depressing operation of the shift pedal, and can contribute to improving the shift feeling.
 従来、田植機に関して、変速操作具(変速ペダル)を操作して加減速を行う技術は公知となっている。 Conventionally, with respect to rice transplanters, a technique for accelerating and decelerating by operating a shift operating tool (shift pedal) is known.
 一般的な田植機は、車速の変更(増減速制御)を行うためのアクチュエータを有している。前記田植機は、変速ペダルが踏み込み操作されるとき、変速ペダルの踏み込み量に基づいて前記アクチュエータの目標駆動量を算出して、前記アクチュエータの駆動量が目標駆動量になるように前記アクチュエータを駆動して、車速を前記アクチュエータの目標駆動量に対応した大きさに変更して、加減速を行う。
 しかし、一般的な田植機は、前記変速ペダルが踏み込み操作されるとき、前記アクチュエータの駆動量を常に一定に増減する。すなわち一般的な田植機においては、変速ペダルの踏み込み量の変化に対する前記アクチュエータの目標駆動量の変化の割合が常に一定値(同じ値)になるように構成されている。これにより、作業者が変速ペダルの踏み込み操作により田植機を加減速する際に、きめ細かい増減速制御が行えず、変速フィーリングが低下する点で不利である。
A general rice transplanter has an actuator for changing the vehicle speed (acceleration / deceleration control). The rice transplanter calculates the target drive amount of the actuator based on the depression amount of the shift pedal when the shift pedal is depressed, and drives the actuator so that the drive amount of the actuator becomes the target drive amount. Then, acceleration / deceleration is performed by changing the vehicle speed to a size corresponding to the target drive amount of the actuator.
However, in general rice transplanters, when the shift pedal is depressed, the drive amount of the actuator is always increased or decreased constantly. That is, the general rice transplanter is configured such that the ratio of the change in the target drive amount of the actuator to the change in the depression amount of the shift pedal is always a constant value (the same value). As a result, when the operator accelerates or decelerates the rice transplanter by depressing the shift pedal, fine acceleration / deceleration control cannot be performed, which is disadvantageous in that the shift feeling is lowered.
 そこで、移動・作業・トラックから積み降ろし・納屋入れ等の、シーンに応じた変速ペダルの微量な調整が不要となり、シーンに応じた所望の車速で走行することが容易に実現可能な田植機を提供する。 Therefore, there is no need to make minute adjustments of the shift pedal according to the scene, such as movement, work, loading / unloading from the truck, and barn entry, and a rice transplanter that can easily be driven at the desired vehicle speed according to the scene. provide.
 即ち、エンジンと、
 前記エンジンの回転数の変更を行うためのアクチュエータと、
 前記アクチュエータの駆動量を検出するアクチュエータ駆動量検出装置と、
 前記アクチュエータを操作するための変速ペダルと、
 前記変速ペダルの踏み込み量を検出して、前記踏み込み量を示すペダル信号を出力するペダル操作量検出装置と、を備え、
 前記ペダル操作量検出装置が出力するペダル信号に基づいて前記アクチュエータの目標駆動量を算出して、前記アクチュエータ駆動量検出装置の検出値が前記目標駆動量になるように前記アクチュエータを駆動して、車速を前記アクチュエータの目標駆動量に対応した大きさに変更する、
 田植機であって、
 前記変速ペダルの操作範囲を複数の変速領域に分割して、
 前記複数の変速領域毎に、前記変速ペダルの踏み込み量の変化に対する前記アクチュエータの目標駆動量の変化の割合を設定する。
The engine,
An actuator for changing the rotational speed of the engine;
An actuator drive amount detection device for detecting the drive amount of the actuator;
A speed change pedal for operating the actuator;
A pedal operation amount detection device that detects a depression amount of the shift pedal and outputs a pedal signal indicating the depression amount;
Calculate the target drive amount of the actuator based on the pedal signal output by the pedal operation amount detection device, drive the actuator so that the detection value of the actuator drive amount detection device becomes the target drive amount, Changing the vehicle speed to a size corresponding to the target drive amount of the actuator,
A rice transplanter,
The operation range of the shift pedal is divided into a plurality of shift regions,
For each of the plurality of shift regions, a ratio of a change in the target drive amount of the actuator to a change in the depression amount of the shift pedal is set.
 これにより、変速ペダルの踏み込み操作により田植機を加減速する際に、変速ペダルの踏み込み量に対応して緩急をつけた加減速が可能となり、変速フィーリングの向上に貢献可能である。 Therefore, when accelerating or decelerating the rice transplanter by depressing the shift pedal, acceleration / deceleration can be performed with gradual acceleration corresponding to the depressing amount of the shift pedal, which can contribute to improvement of the shift feeling.
 また、前記変速ペダルが、前記複数の変速領域のうちの、一の変速領域から他の変速領域に一気に踏み込み操作されるときには、前記変速ペダルの踏み込み量の変化に対する前記アクチュエータの目標駆動量の変化の割合を一定値に設定する。 Further, when the shift pedal is stepped on from one shift region to another shift region among the plurality of shift regions, a change in the target drive amount of the actuator with respect to a change in the step amount of the shift pedal Is set to a constant value.
 これにより、田植機は、スムーズに加速することが可能である。 This enables the rice transplanter to accelerate smoothly.
 次に、田植機1について説明し、詳細には、変速ペダル67の踏み込み量と、モータ71の目標駆動量との関係を示すマップについて説明する。 Next, the rice transplanter 1 will be described, and in detail, a map showing the relationship between the depression amount of the shift pedal 67 and the target drive amount of the motor 71 will be described.
 制御装置100には、変速ペダル67の踏み込み量と、モータ71の目標駆動量との関係(より詳細には、ペダル用ポテンショメータ67aの検出軸の回動角βと、モータ用ポテンショメータ71aの検出軸の回動角γとの関係)を示すマップが記憶される。 The control device 100 includes a relationship between the depression amount of the speed change pedal 67 and the target drive amount of the motor 71 (more specifically, the rotation angle β of the detection shaft of the pedal potentiometer 67a and the detection shaft of the motor potentiometer 71a. A map showing the relationship with the rotation angle γ of the image is stored.
 図10(a)および図10(b)は、前記マップを示している。図10(a)および図10(b)中の横軸はペダル用ポテンショメータ67aの検出軸の回動角βを、縦軸はモータ用ポテンショメータ71aの検出軸の回動角γを、それぞれ示している。 FIG. 10 (a) and FIG. 10 (b) show the map. 10 (a) and 10 (b), the horizontal axis represents the rotation angle β of the detection shaft of the pedal potentiometer 67a, and the vertical axis represents the rotation angle γ of the detection shaft of the motor potentiometer 71a. Yes.
 なお、ペダル用ポテンショメータ67aの検出軸は、回動角β1~βmaxの範囲で回動するように構成されていることとする。
 回動角β1は、変速ペダル67が踏み込み操作されていないときの、ペダル用ポテンショメータ67aの検出軸の回動角である。
 回動角βmaxは、変速ペダル67が限界まで踏み込まれたときの、ペダル用ポテンショメータ67aの検出軸の回動角である。
Note that the detection shaft of the pedal potentiometer 67a is configured to rotate within a range of rotation angles β1 to βmax.
The rotation angle β1 is the rotation angle of the detection shaft of the pedal potentiometer 67a when the shift pedal 67 is not depressed.
The rotation angle βmax is the rotation angle of the detection shaft of the pedal potentiometer 67a when the shift pedal 67 is depressed to the limit.
 前記マップの横軸の回動角βにおいては、β1からβmaxまでの領域は、さらに遊び領域(β1以上β2未満)、接続領域(β2)、変速領域(β2より大きくβ3未満)、および最高速保持領域(β3以上βmax以下)に分割される。 In the rotation angle β on the horizontal axis of the map, the region from β1 to βmax further includes a play region (β1 or more and less than β2), a connection region (β2), a speed change region (greater than β2 and less than β3), and the highest speed. It is divided into holding regions (β3 or more and βmax or less).
 前記マップの遊び領域(β1以上β2未満)においては、モータ用ポテンショメータ71aの回動角γは一定値(γ1)に保持される。
 前記マップの接続領域(β2)においては、モータ用ポテンショメータ71aの回動角γは一定値(γ2)に保持される。
 前記マップの変速領域(β2より大きくβ3未満)においては、モータ用ポテンショメータ71aの回動角γは、ペダル用ポテンショメータ67aの回動角βの増加に伴って、回動角β2に対応するγ2から、回動角β3に対応するγmaxまで増加する。
 前記マップの最高速保持領域(β3以上βmax以下)においては、モータ用ポテンショメータ71aの回動角γは一定値(γmax)に保持される。
In the play area of the map (between β1 and less than β2), the rotation angle γ of the motor potentiometer 71a is held at a constant value (γ1).
In the map connection region (β2), the rotation angle γ of the motor potentiometer 71a is held at a constant value (γ2).
In the shift region of the map (greater than β2 and less than β3), the rotation angle γ of the motor potentiometer 71a increases from γ2 corresponding to the rotation angle β2 as the rotation angle β of the pedal potentiometer 67a increases. , Increase to γmax corresponding to the rotation angle β3.
In the highest speed holding area (β3 to βmax) of the map, the rotation angle γ of the motor potentiometer 71a is held at a constant value (γmax).
 前記マップの変速領域(β2より大きくβ3未満)において、β2からβ3までの領域は、さらに複数の変速領域に分割される。すなわち、前記変速領域は、第一変速領域(β2より大きくβ21未満)、第二変速領域(β21以上β22未満)、第三変速領域(β22以上β23未満)、および第四変速領域(β23以上β3未満)に分割される。ただし、本実施形態では四つの変速領域に分割しているが、その分割数は限定するものではない。また、分割する幅(境界角度と境界角度の間の角度の大きさ)も限定するものではない。 In the shift region (greater than β2 and less than β3) of the map, the region from β2 to β3 is further divided into a plurality of shift regions. That is, the shift region includes a first shift region (greater than β2 and less than β21), a second shift region (β21 and less than β22), a third shift region (β22 and less than β23), and a fourth shift region (β23 and more and β3). Less). However, in this embodiment, although divided into four shift regions, the number of divisions is not limited. Further, the width to be divided (the size of the angle between the boundary angle) is not limited.
 前記マップの第一変速領域(β2より大きくβ21未満)においては、モータ用ポテンショメータ71aの回動角γは、ペダル用ポテンショメータ67aの回動角βの増加に比例して、回動角β2に対応するγ2から、回動角β21に対応するγ21まで増加する。
 なお、上記第一変速領域に関して、変速ペダル67の踏み込み量の変化に対するモータ71の目標駆動量の変化の割合(回動角βの変化に対する回動角γの変化の割合)(X1)は、一定値(γ21-γ2)/(β21-β2)、となる。
In the first speed change region (greater than β2 and less than β21) of the map, the rotation angle γ of the motor potentiometer 71a corresponds to the rotation angle β2 in proportion to the increase in the rotation angle β of the pedal potentiometer 67a. Increases from γ2 to γ21 corresponding to the rotation angle β21.
Regarding the first shift region, the ratio of the change in the target drive amount of the motor 71 with respect to the change in the depression amount of the shift pedal 67 (the ratio of the change in the rotation angle γ with respect to the change in the rotation angle β) (X1) is It becomes a constant value (γ21−γ2) / (β21−β2).
 前記マップの第二変速領域(β21以上β22未満)においては、モータ用ポテンショメータ71aの回動角γは、ペダル用ポテンショメータ67aの回動角βの増加に比例して、回動角β21に対応するγ21から、回動角β22に対応するγ22まで増加する。
 なお、上記第二変速領域に関して、回動角βの変化に対する回動角γの変化の割合(X2)は、一定値(γ22-γ21)/(β22-β21)、となる。
In the second speed change region (between β21 and β22) of the map, the rotation angle γ of the motor potentiometer 71a corresponds to the rotation angle β21 in proportion to the increase in the rotation angle β of the pedal potentiometer 67a. It increases from γ21 to γ22 corresponding to the rotation angle β22.
Regarding the second speed change region, the ratio (X2) of the change in the rotation angle γ to the change in the rotation angle β is a constant value (γ22−γ21) / (β22−β21).
 前記マップの第三変速領域(β22以上β23未満)においては、モータ用ポテンショメータ71aの回動角γは、ペダル用ポテンショメータ67aの回動角βの増加に比例して、回動角β22に対応するγ22から、回動角β23に対応するγ23まで増加する。
 なお、上記第三変速領域に関して、回動角βの変化に対する回動角γの変化の割合(X3)は、一定値(γ23-γ22)/(β23-β22)、となる。
In the third speed change region (β22 or more and less than β23) of the map, the rotation angle γ of the motor potentiometer 71a corresponds to the rotation angle β22 in proportion to the increase in the rotation angle β of the pedal potentiometer 67a. It increases from γ22 to γ23 corresponding to the rotation angle β23.
Regarding the third speed change region, the ratio (X3) of the change in the rotation angle γ to the change in the rotation angle β is a constant value (γ23−γ22) / (β23−β22).
 前記マップの第四変速領域(β23以上β3未満)においては、モータ用ポテンショメータ71aの回動角γは、ペダル用ポテンショメータ67aの回動角βの増加に比例して、回動角β23に対応するγ23から、回動角β3に対応するγmaxまで増加する。
 なお、上記第四変速領域に関して、回動角βの変化に対する回動角γの変化の割合(X4)は、一定値(γmax-γ23)/(β3-β23)、となる。
In the fourth shift region (β23 or more and less than β3) of the map, the rotation angle γ of the motor potentiometer 71a corresponds to the rotation angle β23 in proportion to the increase in the rotation angle β of the pedal potentiometer 67a. It increases from γ23 to γmax corresponding to the rotation angle β3.
Regarding the fourth speed change region, the ratio (X4) of the change in the rotation angle γ to the change in the rotation angle β is a constant value (γmax−γ23) / (β3-β23).
 上記第一変速領域~第四変速領域に関して、上記(X1)~(X4)は、それぞれ異なっている。すなわち、前記マップにおいては、上記第一変速領域~第四変速領域の変速領域毎に、変速ペダル67の踏み込み量の変化に対するモータ71の目標駆動量の変化の割合が、それぞれ(X1)~(X4)に設定されている。
 上記(X1)~(X4)の大小関係について、本実施形態では、(X2)<(X1)<(X3)<(X4)、となるように構成されている。
With respect to the first to fourth shift regions, the above (X1) to (X4) are different. That is, in the map, the ratio of the change in the target drive amount of the motor 71 to the change in the depression amount of the shift pedal 67 for each shift region of the first shift region to the fourth shift region is (X1) to (X X4).
With regard to the magnitude relationship of the above (X1) to (X4), the present embodiment is configured such that (X2) <(X1) <(X3) <(X4).
 上述の如く構成された田植機1において、制御装置100はキースイッチ66が始動操作された旨の検出信号(始動信号)を取得した場合、セルモータ72を駆動して、エンジン14を始動させる。また、制御装置100はキースイッチ66が停止操作された旨の検出信号(停止信号)を取得した場合、モータ71を駆動して、調速装置14aによる燃料の供給を遮断し(本実施形態ではディーゼルエンジン、ガソリンエンジンの場合は点火装置を停止させる)、エンジン14を停止させる。 In the rice transplanter 1 configured as described above, when the control device 100 acquires a detection signal (start signal) indicating that the key switch 66 has been started, the cell motor 72 is driven to start the engine 14. In addition, when the control device 100 acquires a detection signal (stop signal) indicating that the key switch 66 has been stopped, the control device 100 drives the motor 71 to cut off the fuel supply by the speed governor 14a (in this embodiment). In the case of a diesel engine or a gasoline engine, the ignition device is stopped), and the engine 14 is stopped.
 また、制御装置100は、変速ペダル67の踏み込み量を示す上記ペダル信号を取得した場合、前記マップにおいて、取得した上記ペダル信号(ペダル用ポテンショメータ67aの検出軸の回動角β)と対応するモータ71の目標駆動量(モータ用ポテンショメータ71aの検出軸の回動角γ)を算出する。
 そして、制御装置100は、モータ用ポテンショメータ71aの検出軸の回動角が前記目標駆動量になるようにモータ71を駆動する。
 制御装置100は、モータ71を駆動することにより、エンジン14の回転数の変更、HMT21の変速比の変更、クラッチ21cの断接の切り換え、および制動装置21dの動作の切り換えを行う。
 エンジン14の回転数の変更、HMT21の変速比の変更等が行われることにより、田植機1の車速が変化して加減速が行われる。
Further, when the control device 100 acquires the pedal signal indicating the depression amount of the shift pedal 67, the motor corresponding to the acquired pedal signal (the rotation angle β of the detection shaft of the pedal potentiometer 67a) in the map. The target drive amount 71 (the rotation angle γ of the detection shaft of the motor potentiometer 71a) is calculated.
Then, the control device 100 drives the motor 71 so that the rotation angle of the detection shaft of the motor potentiometer 71a becomes the target drive amount.
The control device 100 drives the motor 71 to change the rotation speed of the engine 14, change the speed ratio of the HMT 21, change the connection / disconnection of the clutch 21c, and change the operation of the braking device 21d.
By changing the rotational speed of the engine 14, changing the speed ratio of the HMT 21, etc., the vehicle speed of the rice transplanter 1 changes and acceleration / deceleration is performed.
 以下では、変速ペダル67の踏み込み量とモータ71の目標駆動量との関係(i)~(v)について説明する。 Hereinafter, relationships (i) to (v) between the depression amount of the shift pedal 67 and the target drive amount of the motor 71 will be described.
 (i)図10(a)に示すように、変速ペダル67が第一変速領域(β2より大きくβ21未満)内で踏み込み操作され、変速ペダル67の踏み込み量(ペダル用ポテンショメータ67aの回動角β)がβ2からβ21まで増加するとき、モータ71の目標駆動量(モータ用ポテンショメータ71aの回動角γ)が、回動角βの増加に比例して、回動角β2に対応するγ2から、回動角β21に対応するγ21まで増加する。 (I) As shown in FIG. 10A, the shift pedal 67 is depressed within the first shift range (greater than β2 and less than β21), and the depression amount of the shift pedal 67 (the rotation angle β of the pedal potentiometer 67a). ) Increases from β2 to β21, the target drive amount of the motor 71 (the rotation angle γ of the motor potentiometer 71a) is proportional to the increase in the rotation angle β from γ2 corresponding to the rotation angle β2. It increases to γ21 corresponding to the rotation angle β21.
 (ii)図10(a)に示すように、変速ペダル67が第二変速領域(β21以上β22未満)内で踏み込み操作され、ペダル用ポテンショメータ67aの回動角βがβ21からβ22まで増加するとき、モータ71の目標駆動量(モータ用ポテンショメータ71aの回動角γ)が、回動角βの増加に比例して、回動角β21に対応するγ21から、回動角β22に対応するγ22まで増加する。 (Ii) When the speed change pedal 67 is depressed within the second speed change region (between β21 and less than β22) and the rotation angle β of the pedal potentiometer 67a increases from β21 to β22 as shown in FIG. The target drive amount of the motor 71 (the rotation angle γ of the motor potentiometer 71a) is proportional to the increase in the rotation angle β, from γ21 corresponding to the rotation angle β21 to γ22 corresponding to the rotation angle β22. To increase.
 (iii)図10(a)に示すように、変速ペダル67が第三変速領域(β22以上β23未満)内で踏み込み操作され、ペダル用ポテンショメータ67aの回動角βがβ22からβ23まで増加するとき、モータ71の目標駆動量(モータ用ポテンショメータ71aの回動角γ)が、回動角βの増加に比例して、回動角β22に対応するγ22から、回動角β23に対応するγ23まで増加する。 (Iii) As shown in FIG. 10A, when the speed change pedal 67 is depressed within the third speed change region (between β22 and less than β23) and the rotation angle β of the pedal potentiometer 67a increases from β22 to β23. The target drive amount of the motor 71 (the rotation angle γ of the motor potentiometer 71a) is proportional to the increase in the rotation angle β from γ22 corresponding to the rotation angle β22 to γ23 corresponding to the rotation angle β23. To increase.
 (iv)図10(a)に示すように、変速ペダル67が第四変速領域(β23以上β3未満)内で踏み込み操作され、ペダル用ポテンショメータ67aの回動角βがβ23からβ3まで増加するとき、モータ71の目標駆動量(モータ用ポテンショメータ71aの回動角γ)が、回動角βの増加に比例して、回動角β23に対応するγ23から、回動角β3に対応するγmaxまで増加する。 (Iv) As shown in FIG. 10A, when the speed change pedal 67 is depressed within the fourth speed change region (between β23 and less than β3), and the rotation angle β of the pedal potentiometer 67a increases from β23 to β3. The target drive amount of the motor 71 (the rotation angle γ of the motor potentiometer 71a) is proportional to the increase in the rotation angle β from γ23 corresponding to the rotation angle β23 to γmax corresponding to the rotation angle β3. To increase.
 (v)また、変速ペダル67が、第一変速領域~第四変速領域のうちの、一の変速領域から他の変速領域に一気に踏み込み操作されるとき、モータ71の目標駆動量(モータ用ポテンショメータ71aの回動角γ)が、回動角βの増加に比例して増加する。すなわち、変速ペダル67が、第一変速領域~第四変速領域のうちの、一の変速領域から他の変速領域に一気に踏み込み操作されるとき、制御装置100は、変速ペダル67の踏み込み量の変化に対するモータ71の目標駆動量の変化の割合を一定値に設定する。
 例えば、図10(b)の矢印Aに示すように、ペダル用ポテンショメータ67aの回動角βが第三変速領域内の回動角βaから第四変速領域内の回動角βbまで一気に増加するとき、モータ71の目標駆動量(モータ用ポテンショメータ71aの回動角γ)が、回動角βの増加に比例して、回動角βaに対応するγaから、回動角βbに対応するγbまで増加する。
 したがって、図10(b)に示すように、前記マップの変速領域(β2より大きくβ3未満)においては、領域Zがモータ71追従時の移動範囲に構成される。
(V) When the shift pedal 67 is stepped on from one shift region to another shift region in the first to fourth shift regions, the target drive amount of the motor 71 (motor potentiometer) The rotation angle γ of 71a increases in proportion to the increase of the rotation angle β. That is, when the shift pedal 67 is stepped on from one shift region to another shift region in the first shift region to the fourth shift region, the control device 100 changes the amount of depression of the shift pedal 67. The rate of change in the target drive amount of the motor 71 with respect to is set to a constant value.
For example, as indicated by an arrow A in FIG. 10B, the rotation angle β of the pedal potentiometer 67a increases at a stretch from the rotation angle βa in the third shift region to the rotation angle βb in the fourth shift region. When the target drive amount of the motor 71 (the rotation angle γ of the motor potentiometer 71a) is proportional to the increase of the rotation angle β, the target drive amount is γa corresponding to the rotation angle βb and γb corresponding to the rotation angle βb. Increase to.
Accordingly, as shown in FIG. 10B, in the shift region (greater than β2 and less than β3) of the map, the region Z is configured as a movement range when the motor 71 follows.
 以下では、変速ペダル67が踏み込み操作された場合における田植機1の基本的な動作について、図7および図10(b)を用いて説明する。
 なお、説明の便宜上、主変速レバー65は植付位置に操作されていることとする。
 また、田植機1の変速ペダル67が、以下の(1)~(5)の順序で踏み込み操作されることとする。
 また、図10(b)の矢印Bに示すように、変速ペダル67に関しては、第一変速領域から第四変速領域に一気に踏み込み操作され、ペダル用ポテンショメータ67aの回動角βがβ2からβ3まで一気に増加するように操作されることとする(上記(v)参照)。
Hereinafter, basic operations of the rice transplanter 1 when the shift pedal 67 is depressed will be described with reference to FIGS. 7 and 10B.
For convenience of explanation, it is assumed that the main transmission lever 65 is operated to the planting position.
Further, it is assumed that the shift pedal 67 of the rice transplanter 1 is depressed in the following order (1) to (5).
Further, as indicated by an arrow B in FIG. 10B, the speed change pedal 67 is operated at a stroke from the first speed change area to the fourth speed change area, and the rotation angle β of the pedal potentiometer 67a is changed from β2 to β3. The operation is performed so as to increase at a stretch (see (v) above).
 (1)図7に示すように、変速ペダル67が踏み込み操作されていない場合の当該変速ペダル67の回動角αをα1(度)とする。この場合のペダル用ポテンショメータ67aの検出軸の回動角βをβ1(度)とする。この場合、制御装置100は、図10(b)に示すマップにおいて、ペダル用ポテンショメータ67aの回動角β1と対応するモータ用ポテンショメータ71aの検出軸の回動角γ1(度)を目標駆動量として算出する。そして、制御装置100は、モータ用ポテンショメータ71aの回動角γがγ1になるようにモータ71を駆動する。 (1) As shown in FIG. 7, the rotation angle α of the shift pedal 67 when the shift pedal 67 is not depressed is α1 (degrees). In this case, the rotation angle β of the detection shaft of the pedal potentiometer 67a is β1 (degrees). In this case, the control device 100 uses the rotation angle γ1 (degree) of the detection shaft of the motor potentiometer 71a corresponding to the rotation angle β1 of the pedal potentiometer 67a as the target drive amount in the map shown in FIG. calculate. Then, the control device 100 drives the motor 71 so that the rotation angle γ of the motor potentiometer 71a becomes γ1.
 モータ用ポテンショメータ71aの回動角γがγ1になるようにモータ71が駆動された場合、リンク機構を介してクラッチ21cが切断される。これによって、エンジン14の動力が前車輪12および後車輪13に伝達されることがなく、田植機1の車速Vは0(m/秒)となる。
 また、この場合、リンク機構を介して制動装置21dが作動する。これによって、前車輪12および後車輪13が制動され、田植機1が不意に前進または後進するのを防止することができる。
When the motor 71 is driven so that the rotation angle γ of the motor potentiometer 71a becomes γ1, the clutch 21c is disconnected through the link mechanism. As a result, the power of the engine 14 is not transmitted to the front wheels 12 and the rear wheels 13, and the vehicle speed V of the rice transplanter 1 becomes 0 (m / sec).
In this case, the braking device 21d is operated via the link mechanism. Thereby, the front wheel 12 and the rear wheel 13 are braked, and the rice transplanter 1 can be prevented from moving forward or backward unexpectedly.
 モータ用ポテンショメータ71aの回動角γがγ1になるようにモータ71が駆動された場合、リンク機構を介してエンジン14の回転数NはN1(rpm)に設定される(図7参照)。
 また、この場合、リンク機構を介してHST21aの可動斜板の傾斜角度が最大となるように設定される。これによって、エンジン14からの動力とHST21aからの動力が遊星歯車機構21bによって互いに打ち消すように合成され、主変速機構22へ動力が伝達されることがない。
When the motor 71 is driven so that the rotation angle γ of the motor potentiometer 71a becomes γ1, the rotational speed N of the engine 14 is set to N1 (rpm) via the link mechanism (see FIG. 7).
In this case, the inclination angle of the movable swash plate of the HST 21a is set to be maximum via the link mechanism. Thus, the power from the engine 14 and the power from the HST 21a are combined so as to cancel each other out by the planetary gear mechanism 21b, and the power is not transmitted to the main transmission mechanism 22.
 (2)変速ペダル67が踏み込み操作されて、回動角αが徐々に増加すると、当該回動角αの増加に伴ってペダル用ポテンショメータ67aの検出軸の回動角βも増加する。 (2) When the shift pedal 67 is depressed and the rotation angle α gradually increases, the rotation angle β of the detection shaft of the pedal potentiometer 67a also increases with the increase of the rotation angle α.
 変速ペダル67の回動角αがα1からα2(α2未満)まで増加すると、ペダル用ポテンショメータ67aの回動角βはβ1からβ2(β2未満)まで増加する。この間、制御装置100は、ペダル用ポテンショメータ67aの回動角βの値にかかわらずモータ用ポテンショメータ71aの回動角γをγ1のまま保持するために、モータ71を駆動しない(図10(b)参照)。 When the rotation angle α of the shift pedal 67 increases from α1 to α2 (less than α2), the rotation angle β of the pedal potentiometer 67a increases from β1 to β2 (less than β2). During this time, the control device 100 does not drive the motor 71 in order to keep the rotation angle γ of the motor potentiometer 71a at γ1 regardless of the value of the rotation angle β of the pedal potentiometer 67a (FIG. 10B). reference).
 モータ用ポテンショメータ71aの回動角γがγ1に保持されている場合、クラッチ21cは切断された状態に維持される。
 同様に、モータ用ポテンショメータ71aの回動角γがγ1に保持されている場合、制動装置21dが作動した状態に維持される。
When the rotation angle γ of the motor potentiometer 71a is held at γ1, the clutch 21c is maintained in a disconnected state.
Similarly, when the rotation angle γ of the motor potentiometer 71a is held at γ1, the braking device 21d is maintained in an activated state.
 モータ用ポテンショメータ71aの回動角γがγ1に保持されている場合、エンジン14の回転数NはN1のまま維持される(図7参照)。
 同様に、モータ用ポテンショメータ71aの回動角γがγ1に保持されている場合、HST21aの可動斜板の傾斜角度が最大のまま維持される。
When the rotation angle γ of the motor potentiometer 71a is held at γ1, the rotational speed N of the engine 14 is maintained at N1 (see FIG. 7).
Similarly, when the rotation angle γ of the motor potentiometer 71a is held at γ1, the inclination angle of the movable swash plate of the HST 21a is maintained at the maximum.
 したがって、変速ペダル67が踏み込み操作されてペダル用ポテンショメータ67aの回動角βがβ1からβ2(β2未満)に増加した場合であっても、エンジン14の回転数NはN1のまま一定であり、かつ田植機1の車速Vは0のまま維持される。このようにして、変速ペダル67の踏み込み操作に対して田植機1が走行しない領域(いわゆる「遊び」)が設けられる。 Therefore, even when the shift pedal 67 is depressed and the rotation angle β of the pedal potentiometer 67a increases from β1 to β2 (less than β2), the rotational speed N of the engine 14 remains constant at N1, The vehicle speed V of the rice transplanter 1 is maintained at 0. In this manner, an area (so-called “play”) in which the rice transplanter 1 does not travel with respect to the depression operation of the shift pedal 67 is provided.
 (3)変速ペダル67が踏み込み操作されて、変速ペダル67の回動角αがα2になるとき、すなわちペダル用ポテンショメータ67aの回動角βがβ2になるとき、制御装置100は、モータ用ポテンショメータ71aの回動角γが、回動角γ1から、ペダル用ポテンショメータ67aの回動角β2に対応する回動角γ2まで増加するように、モータ71を駆動する(図10(b)参照)。 (3) When the speed change pedal 67 is depressed and the rotation angle α of the speed change pedal 67 becomes α2, that is, when the rotation angle β of the pedal potentiometer 67a becomes β2, the control device 100 controls the motor potentiometer. The motor 71 is driven so that the rotation angle γ of 71a increases from the rotation angle γ1 to the rotation angle γ2 corresponding to the rotation angle β2 of the pedal potentiometer 67a (see FIG. 10B).
 モータ用ポテンショメータ71aの回動角γがγ1からγ2まで増加するようにモータ71が駆動すると、リンク機構を介してエンジン14の調速装置14aが駆動され、当該エンジン14の回転数NがN1からN2まで増加する(図7参照)。 When the motor 71 is driven so that the rotation angle γ of the motor potentiometer 71a increases from γ1 to γ2, the speed governor 14a of the engine 14 is driven via the link mechanism, and the rotational speed N of the engine 14 is increased from N1. It increases to N2 (see FIG. 7).
 モータ用ポテンショメータ71aの回動角γがγ2になると(γ2を超えると)、クラッチ21cは接続される。これによって、エンジン14の動力が前車輪12および後車輪13に伝達可能となる。
 同様に、モータ用ポテンショメータ71aの回動角γがγ2になると、制動装置21dが解除される。これによって、前車輪12および後車輪13の制動が解除され、田植機1が前進または後進可能となる。
When the rotation angle γ of the motor potentiometer 71a becomes γ2 (exceeds γ2), the clutch 21c is connected. As a result, the power of the engine 14 can be transmitted to the front wheels 12 and the rear wheels 13.
Similarly, when the rotation angle γ of the motor potentiometer 71a becomes γ2, the braking device 21d is released. Thereby, braking of the front wheel 12 and the rear wheel 13 is released, and the rice transplanter 1 can move forward or backward.
 (4)図10(b)の矢印Bに示すように、変速ペダル67が踏み込み操作されて、変速ペダル67の回動角αがα2からα3まで一気に増加すると、ペダル用ポテンショメータ67aの回動角βはβ2からβ3まで一気に増加する。制御装置100は、モータ用ポテンショメータ71aの回動角γが、ペダル用ポテンショメータ67aの回動角β2に対応する回動角γ2からペダル用ポテンショメータ67aの回動角β3に対応する回動角γmaxまで増加するように、モータ71を駆動する。また、このとき、図10(b)の矢印Bに示すように、制御装置100は、回動角βの変化に対する回動角γの変化の割合が一定値(γmax-γ2)/(β3-β2)、になるように、モータ71を駆動する。すなわち、このとき、制御装置100は、変速ペダル67の踏み込み量の変化に対するモータ71の目標駆動量の変化の割合を一定値(γmax-γ2)/(β3-β2)、に設定する。 (4) As indicated by arrow B in FIG. 10B, when the shift pedal 67 is depressed and the rotation angle α of the shift pedal 67 increases from α2 to α3 at once, the rotation angle of the pedal potentiometer 67a. β increases from β2 to β3 all at once. In the control device 100, the rotation angle γ of the motor potentiometer 71a is from the rotation angle γ2 corresponding to the rotation angle β2 of the pedal potentiometer 67a to the rotation angle γmax corresponding to the rotation angle β3 of the pedal potentiometer 67a. The motor 71 is driven so as to increase. At this time, as indicated by an arrow B in FIG. 10B, the control device 100 determines that the ratio of the change in the rotation angle γ to the change in the rotation angle β is a constant value (γmax−γ2) / (β3− The motor 71 is driven so that β2). That is, at this time, the control device 100 sets the ratio of the change in the target drive amount of the motor 71 to the change in the depression amount of the shift pedal 67 to a constant value (γmax−γ2) / (β3-β2).
 モータ用ポテンショメータ71aの回動角γがγ2からγmaxまで増加するようにモータ71が駆動すると、リンク機構を介してエンジン14の調速装置14aが駆動され、当該エンジン14の回転数NがN1からNmaxまで増加する(図7参照)。 When the motor 71 is driven so that the rotation angle γ of the motor potentiometer 71a increases from γ2 to γmax, the speed governor 14a of the engine 14 is driven via the link mechanism, and the rotational speed N of the engine 14 is increased from N1. It increases to Nmax (see FIG. 7).
 同様に、モータ用ポテンショメータ71aの回動角γがγ2からγmaxまで増加するようにモータ71が駆動すると、リンク機構を介してHST21aの可動斜板の傾斜角度が減少するように駆動される。これによってエンジン14の動力はHMT21を介して前車輪12および後車輪13に伝達され、田植機1が走行開始する。
 そして、田植機1は加速して、その車速Vが、モータ用ポテンショメータ71aの回動角γ2に対応する0から、回動角γmaxに対応するVmaxまで増加する。このとき、図10(b)の矢印Bに示すように、制御装置100は、回動角βの変化に対する回動角γの変化の割合が一定値(γmax-γ2)/(β3-β2)、になるようにモータ71を駆動する。これにより、田植機1はスムーズに加速することが可能となる。
Similarly, when the motor 71 is driven so that the rotation angle γ of the motor potentiometer 71a increases from γ2 to γmax, the tilting angle of the movable swash plate of the HST 21a is driven to decrease via the link mechanism. As a result, the power of the engine 14 is transmitted to the front wheels 12 and the rear wheels 13 via the HMT 21, and the rice transplanter 1 starts to travel.
Then, the rice transplanter 1 is accelerated, and the vehicle speed V increases from 0 corresponding to the rotation angle γ2 of the motor potentiometer 71a to Vmax corresponding to the rotation angle γmax. At this time, as indicated by an arrow B in FIG. 10B, the control device 100 determines that the ratio of the change in the rotation angle γ to the change in the rotation angle β is a constant value (γmax−γ2) / (β3-β2). The motor 71 is driven so that. Thereby, the rice transplanter 1 can be smoothly accelerated.
 (5)変速ペダル67が踏み込み操作されて、変速ペダル67の回動角αがα3からαmaxまで増加すると、ペダル用ポテンショメータ67aの回動角βはβ3からβmaxまで増加する。この間、制御装置100は、ペダル用ポテンショメータ67aの回動角βの値にかかわらずモータ用ポテンショメータ71aの回動角γをγmaxのまま保持するために、モータ71を駆動しない(図10(b)参照)。
 したがって、エンジン14の回転数NはNmaxのまま、田植機1の車速VはVmaxのまま、それぞれ維持される。このようにして、変速ペダル67の踏み込み操作に対して田植機1が加減速しない領域(いわゆる「余裕代」)が設けられる(図7参照)。
(5) When the shift pedal 67 is depressed to increase the rotation angle α of the shift pedal 67 from α3 to αmax, the rotation angle β of the pedal potentiometer 67a increases from β3 to βmax. During this time, the control device 100 does not drive the motor 71 in order to maintain the rotation angle γ of the motor potentiometer 71a at γmax regardless of the value of the rotation angle β of the pedal potentiometer 67a (FIG. 10B). reference).
Therefore, the rotational speed N of the engine 14 is maintained at Nmax, and the vehicle speed V of the rice transplanter 1 is maintained at Vmax. In this way, an area (so-called “margin”) in which the rice transplanter 1 does not accelerate or decelerate with respect to the depression operation of the shift pedal 67 is provided (see FIG. 7).
 上述の如く、本実施形態に係る田植機1は、変速ペダル67を踏み込み操作することで、田植機1の車速Vを増加(加速)させることができる。また、上述の説明とは逆に、踏み込み操作された変速ペダル67を元の位置に向かって戻すことで、田植機1の車速Vを減少(減速)させることができる。 As described above, the rice transplanter 1 according to the present embodiment can increase (accelerate) the vehicle speed V of the rice transplanter 1 by depressing the shift pedal 67. Contrary to the above description, the vehicle speed V of the rice transplanter 1 can be reduced (decelerated) by returning the stepped-on shift pedal 67 to the original position.
 以下では、変速ペダル67の操作に関して、第一変速領域内で踏み込み操作された場合、第二変速領域内で踏み込み操作された場合、第三変速領域内で踏み込み操作された場合、ならびに第四変速領域内で踏み込み操作された場合、の田植機1の加速度を比較する(図10(a)参照)。 Hereinafter, regarding the operation of the shift pedal 67, when the stepping operation is performed in the first shift region, when the stepping operation is performed within the second shifting region, when the stepping operation is performed within the third shifting region, When the stepping operation is performed in the area, the accelerations of the rice transplanter 1 are compared (see FIG. 10A).
 上記したように前記マップにおいては、上記第一変速領域~第四変速領域に関して、変速領域毎に、変速ペダル67の踏み込み量の変化に対するモータ71の目標駆動量の変化の割合(X1)~(X4)が異なっている。これにより、田植機1の加速度が、変速領域毎に異なる。 As described above, in the map, the ratio of the change in the target drive amount of the motor 71 to the change in the depression amount of the shift pedal 67 (X1) to (X X4) is different. Thereby, the acceleration of the rice transplanter 1 differs for every shift area.
 また、本実施形態では、上記したように(X1)~(X4)の大小関係について、(X2)<(X1)<(X3)<(X4)、となるように構成されている。
 これにより、田植機1の加速度に関して、変速ペダル67が第四変速領域(β23以上β3未満)内で踏み込み操作されるときが一番大きく(上記(iv)参照)、変速ペダル67が第三変速領域(β22以上β23未満)内で踏み込み操作されるときが二番目に大きく(上記(iv)参照)、変速ペダル67が第一変速領域(β2より大きくβ21未満)内で踏み込み操作されるときが三番目に大きく(上記(i)参照)、変速ペダル67が第二変速領域(β21以上β22未満)内で踏み込み操作されるときが四番目に大きい(上記(ii)参照)。
In the present embodiment, as described above, the magnitude relationship of (X1) to (X4) is configured such that (X2) <(X1) <(X3) <(X4).
As a result, the acceleration of the rice transplanter 1 is greatest when the shift pedal 67 is depressed within the fourth shift region (β23 or more and less than β3) (see (iv) above), and the shift pedal 67 is shifted to the third shift. The time when the pedal is depressed in the region (β22 or more and less than β23) is the second largest (see (iv) above), and the shift pedal 67 is depressed in the first gear region (greater than β2 and less than β21). The third largest (see (i) above), and the fourth largest time when the shift pedal 67 is depressed within the second speed change region (between β21 and less than β22) (see (ii) above).
 このように、田植機1は、変速ペダル67の踏み込み操作により加減速する際に、低速域においては変化割合(変速ペダル67の踏み込み量の変化に対するモータ71の目標駆動量の変化の割合)を小さく構成する。これにより、低速域においては例えば植え付け作業時における走行速度(車速)の微調整が容易に行える。また、高速域においては変化割合を低速域での場合よりも大きく構成する。これにより、高速域においては走行速度を速くする場合に田植機1が機敏に反応することになる。こうして、田植機1は、変速ペダル67の踏み込み操作により加減速する際に、低速域や高速域等で変速ペダル67の踏み込み量に対応して緩急をつけた加減速が可能となり、変速フィーリングの向上に貢献可能である。
 また、田植機1は、上記変速領域を複数の変速領域に分割して、分割した変速領域毎に変化割合を設定する。これにより、植付条件や圃場条件や作業者の好み等に応じて変化割合を変更する場合、上記変化割合を全体的に変更する必要がなく、該当する変速領域においての変化割合を所望の値に変更すればよい。これにより変化割合の変更を容易に行うことができる。また、各変速領域では変化割合がそれぞれ一定(X1)~(X4)であるため、速度固定レバー70により速度固定を行う場合に走行速度を所望の速さに近づけることが容易に行え、所望の走行速度での速度固定がし易くなる。
Thus, when the rice transplanter 1 accelerates / decelerates by depressing the shift pedal 67, the rate of change (the ratio of the change in the target drive amount of the motor 71 with respect to the change in the depressing amount of the shift pedal 67) in the low speed range. Make small. Thereby, in the low speed range, for example, fine adjustment of the traveling speed (vehicle speed) during planting work can be easily performed. Further, the rate of change is configured to be larger in the high speed range than in the low speed range. As a result, in the high speed range, the rice transplanter 1 reacts quickly when the traveling speed is increased. Thus, when the rice transplanter 1 accelerates or decelerates by depressing operation of the shift pedal 67, it can perform acceleration / deceleration with gradual acceleration corresponding to the depressing amount of the shift pedal 67 in a low speed range or a high speed range. It is possible to contribute to improvement.
Further, the rice transplanter 1 divides the shift area into a plurality of shift areas, and sets a change rate for each of the divided shift areas. Thus, when changing the change rate according to the planting condition, the field condition, the operator's preference, etc., it is not necessary to change the change rate as a whole, and the change rate in the corresponding shift region is set to a desired value. Change to Thereby, the change rate can be easily changed. Further, since the change ratios are constant (X1) to (X4) in each shift region, the traveling speed can be easily brought close to a desired speed when the speed is fixed by the speed fixing lever 70. It becomes easy to fix the speed at the running speed.
 以上のように、田植機1は、
 エンジン14と、
 エンジン14の回転数の変更を行うためのモータ71と、
 モータ71を操作するための変速ペダル67と、
 を備え、
 変速ペダル67の操作量に基づいてモータ71の目標駆動量を算出して、前記目標駆動量になるようにモータ71を駆動して、車速をモータ71の目標駆動量に対応した大きさに変更し、
 変速ペダル67の操作範囲を第一変速領域~第四変速領域に分割して、
 第一変速領域~第四変速領域毎に、変速ペダル67の踏み込み量の変化に対するモータ71の目標駆動量の変化の割合(X1)~(X4)を設定する。
As described above, the rice transplanter 1
Engine 14;
A motor 71 for changing the rotational speed of the engine 14,
A shift pedal 67 for operating the motor 71;
With
The target drive amount of the motor 71 is calculated based on the operation amount of the shift pedal 67, the motor 71 is driven so as to become the target drive amount, and the vehicle speed is changed to a magnitude corresponding to the target drive amount of the motor 71. And
The operation range of the shift pedal 67 is divided into a first shift region to a fourth shift region,
The ratios (X1) to (X4) of the change in the target drive amount of the motor 71 with respect to the change in the depression amount of the shift pedal 67 are set for each of the first to fourth shift regions.
 これにより、田植機1は、変速ペダル67の踏み込み操作により加減速する際に、低速域や高速域等で変速ペダル67の踏み込み量に対応して緩急をつけた加減速が可能となり、変速フィーリングの向上に貢献可能である。 Thereby, when the rice transplanter 1 accelerates / decelerates by depressing operation of the shift pedal 67, it becomes possible to perform acceleration / deceleration with gradual acceleration corresponding to the depressing amount of the shift pedal 67 in the low speed range and the high speed range. It can contribute to the improvement of the ring.
 また、田植機1においては、
 変速ペダル67が、第一変速領域~第四変速領域のうちの、一の変速領域から他の変速領域に一気に踏み込み操作されるときには、変速ペダル67の踏み込み量の変化に対するモータ71の目標駆動量の変化の割合を一定値に設定する。
In the rice transplanter 1,
When the shift pedal 67 is stepped on from one shift region to another shift region in the first shift region to the fourth shift region at once, the target drive amount of the motor 71 with respect to the change in the amount of depression of the shift pedal 67 Set the rate of change to a constant value.
 これにより、田植機1は、スムーズに加速することが可能となる。 This enables the rice transplanter 1 to accelerate smoothly.

Claims (7)

  1.  エンジンと、
     前記エンジンの動力を変速して車輪に伝達する変速機と、
     前記変速機に接続され、苗継ぎ位置を含む複数の変速位置に操作可能であり、前記変速位置に操作されるときに、操作された変速位置に対応するように前記変速機の変速段を変更する主変速レバーと、
     前記エンジンの回転数の変更を行うためのアクチュエータと、
     前記アクチュエータを操作するための変速操作具と、
     を備え、
     前記主変速レバーが前記苗継ぎ位置にない場合で、前記変速操作具が操作されていないときに、前記エンジンが第一アイドリング回転数で回転するように前記アクチュエータを駆動し、
     前記主変速レバーが前記苗継ぎ位置にある場合に、前記エンジンが前記第一アイドリング回転数よりも低い回転数である第二アイドリング回転数で回転するように前記アクチュエータを駆動する、
     田植機。
    Engine,
    A transmission for shifting the power of the engine and transmitting it to the wheels;
    The transmission is connected to the transmission and can be operated to a plurality of transmission positions including a seeding position. When the transmission is operated to the transmission position, the transmission speed of the transmission is changed to correspond to the operated transmission position. A main shift lever to
    An actuator for changing the rotational speed of the engine;
    A shift operation tool for operating the actuator;
    With
    Driving the actuator so that the engine rotates at a first idling speed when the main speed change lever is not in the seeding position and the speed change tool is not operated;
    Driving the actuator so that the engine rotates at a second idling speed that is lower than the first idling speed when the main transmission lever is at the seedling position;
    Rice transplanter.
  2.  前記第一アイドリング回転数は、前記田植機を発進させる際に即応可能な回転数であり、
     前記第二アイドリング回転数は、前記エンジンが停止しない回転数である、
     請求項1に記載の田植機。
    The first idling rotational speed is a rotational speed that can be immediately applied when starting the rice transplanter,
    The second idling rotational speed is a rotational speed at which the engine does not stop.
    The rice transplanter according to claim 1.
  3.  前記田植機は、前記エンジンを始動させるための操作具であり、前記エンジンを始動させるための始動操作が行われるときに始動信号を出力する始動装置を備え、
     前記主変速レバーが前記苗継ぎ位置にあり、かつ、前記変速操作具が操作されていない状態で、前記始動装置による前記始動信号の出力が開始されたときに、前記エンジンが前記第一アイドリング回転数で回転するように前記アクチュエータを駆動し、
     前記主変速レバーが前記苗継ぎ位置にある状態で、前記始動装置による前記始動信号の出力が開始され、その後、前記主変速レバーが前記苗継ぎ位置とは異なる前記変速位置に操作されて、その後、前記主変速レバーが前記苗継ぎ位置に操作されたときに、前記エンジンが前記第二アイドリング回転数で回転するように前記アクチュエータを駆動する、
     請求項1または請求項2に記載の田植機。
    The rice transplanter is an operation tool for starting the engine, and includes a starter that outputs a start signal when a start operation for starting the engine is performed,
    When the output of the start signal by the starter is started when the main shift lever is in the seeding position and the shift operation tool is not operated, the engine rotates the first idling. Drive the actuator to rotate by a number,
    In the state where the main transmission lever is in the seedling joint position, the start device starts outputting the start signal, and then the main transmission lever is operated to the shift position different from the seedling position, and then Driving the actuator so that the engine rotates at the second idling speed when the main transmission lever is operated to the seeding position;
    The rice transplanter according to claim 1 or claim 2.
  4.  前記変速操作具の操作量に基づいて前記アクチュエータの目標駆動量を算出して、前記目標駆動量になるように前記アクチュエータを駆動して、車速を前記アクチュエータの目標駆動量に対応した大きさに変更し、
     前記変速操作具の操作範囲を複数の変速領域に分割して、
     前記複数の変速領域毎に、前記変速操作具の操作量の変化に対する前記アクチュエータの目標駆動量の変化の割合を設定する、
     請求項1~請求項3のいずれか一項に記載の田植機。
    A target drive amount of the actuator is calculated based on an operation amount of the speed change operation tool, the actuator is driven so as to become the target drive amount, and a vehicle speed is set to a magnitude corresponding to the target drive amount of the actuator. change,
    Dividing the operating range of the shift operating tool into a plurality of shift areas;
    For each of the plurality of shift regions, a ratio of a change in the target drive amount of the actuator to a change in the operation amount of the shift operation tool is set.
    The rice transplanter according to any one of claims 1 to 3.
  5.  前記変速操作具が、前記複数の変速領域のうちの、一の変速領域から他の変速領域に一気に踏み込み操作されるときには、前記変速操作具の操作量の変化に対する前記アクチュエータの目標駆動量の変化の割合を一定値に設定する、
     請求項4に記載の田植機。
    When the shift operation tool is stepped on from one shift area to another shift area among the plurality of shift areas, a change in the target drive amount of the actuator with respect to a change in the operation amount of the shift operation tool Set the percentage to a constant value,
    The rice transplanter according to claim 4.
  6.  エンジンと、
     前記エンジンの回転数の変更を行うためのアクチュエータと、
     前記アクチュエータを操作するための変速操作具と、
     を備え、
     前記変速操作具の操作量に基づいて前記アクチュエータの目標駆動量を算出して、前記目標駆動量になるように前記アクチュエータを駆動して、車速を前記アクチュエータの目標駆動量に対応した大きさに変更し、
     前記変速操作具の操作範囲を複数の変速領域に分割して、
     前記複数の変速領域毎に、前記変速操作具の操作量の変化に対する前記アクチュエータの目標駆動量の変化の割合を設定する、
     田植機。
    Engine,
    An actuator for changing the rotational speed of the engine;
    A shift operation tool for operating the actuator;
    With
    A target drive amount of the actuator is calculated based on an operation amount of the speed change operation tool, the actuator is driven so as to become the target drive amount, and a vehicle speed is set to a magnitude corresponding to the target drive amount of the actuator. change,
    Dividing the operating range of the shift operating tool into a plurality of shift areas;
    For each of the plurality of shift regions, a ratio of a change in the target drive amount of the actuator to a change in the operation amount of the shift operation tool is set.
    Rice transplanter.
  7.  前記変速操作具が、前記複数の変速領域のうちの、一の変速領域から他の変速領域に一気に踏み込み操作されるときには、前記変速操作具の操作量の変化に対する前記アクチュエータの目標駆動量の変化の割合を一定値に設定する、
     請求項6に記載の田植機。
    When the shift operation tool is stepped on from one shift area to another shift area among the plurality of shift areas, a change in the target drive amount of the actuator with respect to a change in the operation amount of the shift operation tool Set the percentage to a constant value,
    The rice transplanter according to claim 6.
PCT/JP2011/071247 2010-09-17 2011-09-16 Rice transplanter WO2012036280A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180044391.1A CN103109060B (en) 2010-09-17 2011-09-16 Rice transplanter
KR1020137005076A KR20130069753A (en) 2010-09-17 2011-09-16 Rice transplanter

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010210205A JP5779328B2 (en) 2010-09-17 2010-09-17 Rice transplanter
JP2010-210205 2010-09-17
JP2010231017A JP5682886B2 (en) 2010-10-13 2010-10-13 Rice transplanter
JP2010-231017 2010-10-13

Publications (1)

Publication Number Publication Date
WO2012036280A1 true WO2012036280A1 (en) 2012-03-22

Family

ID=45831733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071247 WO2012036280A1 (en) 2010-09-17 2011-09-16 Rice transplanter

Country Status (3)

Country Link
KR (1) KR20130069753A (en)
CN (1) CN103109060B (en)
WO (1) WO2012036280A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104025784A (en) * 2014-05-27 2014-09-10 栾连胜 Intermittent planting mechanism of rice transplanter
CN107344506A (en) * 2016-05-05 2017-11-14 东风农业装备(襄阳)有限公司 The power supply method of agricultural machinery dynamical system and agricultural machinery
CN106168177A (en) * 2016-08-30 2016-11-30 潍柴动力股份有限公司 A kind of diesel engine many idling modes control method and diesel engine controller
CN111465313B (en) * 2017-12-22 2023-02-17 株式会社久保田 Paddy field working machine
CN109654218A (en) * 2019-01-04 2019-04-19 丰疆智慧农业股份有限公司 Fluid drive rice transplanter and its application

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068833A (en) * 1992-06-26 1994-01-18 Yanmar Agricult Equip Co Ltd Power steering mechanism arrangement structure for agricultural working vehicle
JPH10159609A (en) * 1996-12-03 1998-06-16 Yanmar Agricult Equip Co Ltd Riding rice transplanter mounted with engine with electronic governor mechanism thereon
JPH10159601A (en) * 1996-12-03 1998-06-16 Yanmar Agricult Equip Co Ltd Rice transplanter for riding equipped with engine having electronic governor mechanism
JPH11315911A (en) * 1999-02-04 1999-11-16 Yanmar Agricult Equip Co Ltd Mobile farm machine
JPH11332328A (en) * 1998-05-28 1999-12-07 Yanmar Agricult Equip Co Ltd Rice transplanterr
WO2009110280A1 (en) * 2008-03-05 2009-09-11 ヤンマー株式会社 Riding - type rice transplanter
JP2010094134A (en) * 2009-12-28 2010-04-30 Kubota Corp Engine control structure of riding type rice transplanter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3028481B1 (en) * 1998-12-16 2000-04-04 ヤンマー農機株式会社 Moving agricultural machine
JP4095355B2 (en) * 2002-06-20 2008-06-04 ヤンマー農機株式会社 Rice transplanter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068833A (en) * 1992-06-26 1994-01-18 Yanmar Agricult Equip Co Ltd Power steering mechanism arrangement structure for agricultural working vehicle
JPH10159609A (en) * 1996-12-03 1998-06-16 Yanmar Agricult Equip Co Ltd Riding rice transplanter mounted with engine with electronic governor mechanism thereon
JPH10159601A (en) * 1996-12-03 1998-06-16 Yanmar Agricult Equip Co Ltd Rice transplanter for riding equipped with engine having electronic governor mechanism
JPH11332328A (en) * 1998-05-28 1999-12-07 Yanmar Agricult Equip Co Ltd Rice transplanterr
JPH11315911A (en) * 1999-02-04 1999-11-16 Yanmar Agricult Equip Co Ltd Mobile farm machine
WO2009110280A1 (en) * 2008-03-05 2009-09-11 ヤンマー株式会社 Riding - type rice transplanter
JP2010094134A (en) * 2009-12-28 2010-04-30 Kubota Corp Engine control structure of riding type rice transplanter

Also Published As

Publication number Publication date
CN103109060B (en) 2016-06-15
CN103109060A (en) 2013-05-15
KR20130069753A (en) 2013-06-26

Similar Documents

Publication Publication Date Title
KR101391102B1 (en) Speed change control system for vehicle
JP2008223815A (en) Automotive control device for mechanical throttle vehicle
WO2012036280A1 (en) Rice transplanter
EP2610408B1 (en) Work vehicle
JP5688803B2 (en) Rice transplanter
JP5779328B2 (en) Rice transplanter
JP4194190B2 (en) Travel speed control device
JP5346317B2 (en) Paddy field machine
JP5682886B2 (en) Rice transplanter
JP5808903B2 (en) Rice transplanter
WO2012057334A1 (en) Rice planting machine
JP4480196B2 (en) Rice transplanter
JP2004019893A (en) Working vehicle
JP7482766B2 (en) Work vehicle
JP2000236714A (en) Movable agricultural machine
JP4918107B2 (en) Mobile farm machine
JP6063493B2 (en) Mobile farm machine
JP5773548B2 (en) Rice transplanter
JP5773549B2 (en) Mobile farm machine
JP5723917B2 (en) Mobile farm machine
JP5325944B2 (en) Mobile farm machine
JP3710394B2 (en) Agricultural machine
JP2016003706A (en) Work vehicle
JP6228513B2 (en) Work vehicle
JP2003039962A (en) Work vehicle

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180044391.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825278

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137005076

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11825278

Country of ref document: EP

Kind code of ref document: A1