WO2012036016A1 - 蛍光体および発光装置 - Google Patents

蛍光体および発光装置 Download PDF

Info

Publication number
WO2012036016A1
WO2012036016A1 PCT/JP2011/070206 JP2011070206W WO2012036016A1 WO 2012036016 A1 WO2012036016 A1 WO 2012036016A1 JP 2011070206 W JP2011070206 W JP 2011070206W WO 2012036016 A1 WO2012036016 A1 WO 2012036016A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light
general formula
light emitting
sialon
Prior art date
Application number
PCT/JP2011/070206
Other languages
English (en)
French (fr)
Inventor
大地 碓井
康博 白川
博文 竹村
Original Assignee
株式会社東芝
東芝マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝マテリアル株式会社 filed Critical 株式会社東芝
Priority to CN201180044441.6A priority Critical patent/CN103119126B/zh
Priority to KR1020137006644A priority patent/KR101476561B1/ko
Priority to JP2012533950A priority patent/JPWO2012036016A1/ja
Publication of WO2012036016A1 publication Critical patent/WO2012036016A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • Embodiments described herein relate generally to a phosphor and a light emitting device.
  • the phosphor powder is used, for example, in a light-emitting device such as a light-emitting diode (LED).
  • the light emitting device includes, for example, a semiconductor light emitting element that is arranged on a substrate and emits light of a predetermined color, and a phosphor that emits visible light when excited by light such as ultraviolet light and blue light emitted from the semiconductor light emitting element.
  • the semiconductor light emitting element of the light emitting device for example, GaN, InGaN, AlGaN, InGaAlP or the like is used.
  • the phosphor of the phosphor powder include a blue phosphor, a green phosphor, and a yellow phosphor that are excited by light emitted from the semiconductor light emitting element and emit blue light, green light, yellow light, and red light, respectively.
  • a phosphor, a red phosphor or the like is used.
  • the light emitting device can adjust the color of the emitted light by including various phosphor powders such as a red phosphor in the sealing resin. That is, by using a combination of a semiconductor light emitting element and a phosphor powder that absorbs light emitted from the semiconductor light emitting element and emits light in a predetermined wavelength region, the light emitted from the semiconductor light emitting element and the phosphor powder are used. It becomes possible to emit light in the visible light region and white light by the action of the light emitted from.
  • a phosphor having a europium activated sialon (Si—Al—O—N) structure containing strontium is known as the phosphor.
  • phosphors with a sialon (Si—Al—O—N) structure have a problem that when used in a high temperature region of about 100 ° C., the emission intensity is lower than when used in a normal temperature (25 ° C.) region. was there.
  • the fact that the emission intensity of the phosphor does not decrease or the degree of decrease when used in a high temperature region of about 100 ° C. compared to when used in a normal temperature region is referred to as good temperature characteristics.
  • the fact that the emission intensity of the phosphor is greatly reduced when used in a high temperature region of about 100 ° C. compared to the case where it is used in a normal temperature region is referred to as poor temperature characteristics.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a phosphor and a light-emitting device having good temperature characteristics.
  • the phosphor and the light emitting device of the embodiment have been completed by finding that the temperature characteristics are improved by adding a specific amount of carbon to a phosphor having a specific composition.
  • the phosphor of the embodiment solves the above-mentioned problems, and the following general formula (1)
  • the light-emitting device of the embodiment solves the above-described problems.
  • a substrate, a semiconductor light-emitting element that is arranged on the substrate and emits ultraviolet light to blue light, and a light-emitting surface of the semiconductor light-emitting element are provided.
  • a light emitting unit including a phosphor that emits visible light when excited by light emitted from the semiconductor light emitting element, and the phosphor includes the phosphor of the embodiment. .
  • An example of the emission spectrum of a light-emitting device. 6 shows another example of an emission spectrum of the light emitting device.
  • the phosphor and the light emitting device of the embodiment will be described.
  • the phosphor of the embodiment includes a green phosphor that emits green light when excited by ultraviolet light to blue light, and a red phosphor that emits red light when excited by ultraviolet light to blue light.
  • Green phosphor The green phosphor has the following general formula (1)
  • Sr sialon green phosphor Is a phosphor that emits green light when excited by ultraviolet to blue light.
  • the europium-activated sialon phosphor containing Sr is also referred to as “Sr sialon green phosphor”.
  • the crystal system of Sr sialon green phosphor is orthorhombic.
  • x is a number that satisfies 0 ⁇ x ⁇ 1, preferably 0.025 ⁇ x ⁇ 0.5, and more preferably 0.25 ⁇ x ⁇ 0.5.
  • the fired body obtained in the firing step is not a phosphor, and when x is 1, the luminous efficiency of the green phosphor powder is low.
  • x is preferably a number satisfying 0.025 ⁇ x ⁇ 0.5, and more preferably a number satisfying 0.25 ⁇ x ⁇ 0.5, even if 0 ⁇ x ⁇ 1.
  • the total subscript (1-x) ⁇ of Sr is a number satisfying 0 ⁇ (1-x) ⁇ ⁇ 4.
  • the total subscript x ⁇ of Eu is a number satisfying 0 ⁇ x ⁇ ⁇ 4. That is, in the general formula (1), the total subscripts of Sr and Eu are numbers exceeding 0 and less than 4, respectively.
  • ⁇ , ⁇ , ⁇ and ⁇ are numerical values converted when ⁇ is 3.
  • ⁇ , which is a subscript of Si is a number satisfying 9 ⁇ ⁇ 15 as a numerical value converted when ⁇ is 3.
  • ⁇ , which is a subscript of Al is a number satisfying 1 ⁇ ⁇ ⁇ 5 as a numerical value converted when ⁇ is 3.
  • ⁇ , which is a subscript of O is a number satisfying 0.5 ⁇ ⁇ ⁇ 3 when a value of ⁇ is 3.
  • ⁇ , which is a subscript of N is a number satisfying 10 ⁇ ⁇ ⁇ 25 when the numerical value converted when ⁇ is 3.
  • the composition of the phosphor obtained by firing is an orthorhombic system represented by the general formula (1).
  • the Sr sialon green phosphor may be different.
  • the Sr sialon green phosphor represented by the general formula (1) usually takes the form of a single crystal powder.
  • the Sr sialon green phosphor represented by the general formula (1) contains carbon in a proportion of 1 ppm to 5000 ppm, preferably 5 ppm to 1000 ppm, more preferably 50 ppm to 300 ppm.
  • the carbon content is the ratio of the mass of carbon to the total mass of the green phosphor including carbon.
  • the Sr sialon green phosphor usually takes the form of a single crystal powder, but a large amount of carbon exists in the vicinity of the surface of each particle constituting the phosphor powder.
  • the Sr sialon green phosphor is preferable because the luminance at room temperature (25 ° C.) is high and the decrease in luminance at a high temperature of about 150 ° C. is small. If the carbon content is less than 1 ppm, the Sr sialon green phosphor may have a significant decrease in luminance at high temperatures. If the carbon content exceeds 5000 ppm, the Sr sialon green phosphor may have low brightness at room temperature.
  • the Sr sialon green phosphor powder has an average particle size of preferably 1 ⁇ m to 100 ⁇ m, more preferably 5 ⁇ m to 20 ⁇ m, and even more preferably 10 ⁇ m to 20 ⁇ m.
  • the average particle diameter is a value measured by the Coulter counter method, it means the median D 50 of the cumulative volume distribution.
  • the Sr sialon green phosphor powder or other color phosphor powders are dispersed in the cured transparent resin, and the semiconductor light emission
  • a light-emitting device having a structure in which green light or other color light is emitted by irradiation of ultraviolet light to blue light from the element the light extraction efficiency from the light-emitting device may be reduced.
  • the Sr sialon green phosphor represented by the general formula (1) is excited when it receives ultraviolet light to blue light and emits green light.
  • ultraviolet light to blue light means light having a peak wavelength in the wavelength range of ultraviolet light to blue light.
  • the ultraviolet light to blue light is preferably light having a peak wavelength in the range of 370 nm to 470 nm.
  • Red phosphor [Red phosphor] The red phosphor has the following general formula (2)
  • Sr sialon red phosphor Is a phosphor that emits red light when excited by ultraviolet to blue light.
  • the europium activated sialon phosphor containing Sr is also referred to as “Sr sialon red phosphor”.
  • the crystal system of Sr sialon red phosphor is orthorhombic.
  • x is a number that satisfies 0 ⁇ x ⁇ 1, preferably 0.025 ⁇ x ⁇ 0.5, and more preferably 0.25 ⁇ x ⁇ 0.5.
  • the fired body obtained in the firing step is not a phosphor, and when x is 1, the luminous efficiency of the red phosphor powder is low.
  • x is preferably a number satisfying 0.025 ⁇ x ⁇ 0.5, and more preferably a number satisfying 0.25 ⁇ x ⁇ 0.5, even if 0 ⁇ x ⁇ 1.
  • the total subscript (1-x) ⁇ of Sr is a number satisfying 0 ⁇ (1-x) ⁇ ⁇ 3.
  • the overall subscript x ⁇ of Eu is a number satisfying 0 ⁇ x ⁇ ⁇ 3. That is, in the general formula (2), the total subscripts of Sr and Eu are numbers exceeding 0 and less than 3, respectively.
  • ⁇ , ⁇ , ⁇ , and ⁇ are numerical values converted when ⁇ is 3.
  • ⁇ , which is a subscript of Si is a number satisfying 5 ⁇ ⁇ ⁇ 9 when the numerical value converted when ⁇ is 3.
  • ⁇ , which is a subscript of Al is a number satisfying 1 ⁇ ⁇ ⁇ 5 when the numerical value converted when ⁇ is 3.
  • ⁇ , which is a subscript of O is a number satisfying 0.5 ⁇ ⁇ ⁇ 2 when the value ⁇ is 3.
  • ⁇ , which is a subscript of N is a number satisfying 5 ⁇ ⁇ ⁇ 15 as a numerical value converted when ⁇ is 3.
  • the composition of the phosphor obtained by firing is an orthorhombic system represented by the general formula (2).
  • the Sr sialon red phosphor may be different.
  • the Sr sialon red phosphor represented by the general formula (2) is usually in the form of a single crystal powder.
  • the Sr sialon red phosphor represented by the general formula (2) contains carbon in a proportion of 1 ppm to 5000 ppm, preferably 5 ppm to 1000 ppm, more preferably 50 ppm to 300 ppm.
  • the carbon content is the ratio of the mass of carbon to the total mass of the red phosphor including carbon.
  • the Sr sialon red phosphor usually takes the form of a single crystal powder, but a large amount of carbon exists in the vicinity of the surface of each particle constituting the phosphor powder.
  • the Sr sialon red phosphor is preferable because the luminance at room temperature (25 ° C.) is high and the decrease in luminance at a high temperature of about 150 ° C. is small. If the carbon content is less than 1 ppm, the Sr sialon red phosphor may have a significant decrease in luminance at high temperatures. If the carbon content exceeds 5000 ppm, the Sr sialon red phosphor may have low brightness at room temperature.
  • the Sr sialon red phosphor powder has an average particle size of preferably 1 ⁇ m to 100 ⁇ m, more preferably 5 ⁇ m to 20 ⁇ m, and even more preferably 10 ⁇ m to 20 ⁇ m.
  • the average particle diameter is a value measured by the Coulter counter method, it means the median D 50 of the cumulative volume distribution.
  • the Sr sialon red phosphor powder or other color phosphor powders are dispersed in the cured transparent resin, and the semiconductor light emission
  • a light-emitting device having a structure in which red light or other color light is emitted by irradiation of ultraviolet light to blue light from the element the light extraction efficiency from the light-emitting device may be reduced.
  • the Sr sialon red phosphor represented by the general formula (2) is excited when it receives ultraviolet light to blue light and emits red light.
  • ultraviolet light to blue light means light having a peak wavelength in the wavelength range of ultraviolet light to blue light.
  • the ultraviolet light to blue light is preferably light having a peak wavelength in the range of 370 nm to 470 nm.
  • the Sr sialon green phosphor represented by the general formula (1) and the Sr sialon red phosphor represented by the general formula (2) are, for example, strontium carbonate SrCO 3 , aluminum nitride AlN, silicon nitride Si 3 N 4 ,
  • Each phosphor raw material such as europium oxide Eu 2 O 3 and silicon carbide SiC can be dry-mixed to prepare a phosphor raw material mixture, and this phosphor raw material mixture can be produced by firing in a nitrogen atmosphere.
  • the Sr sialon green phosphor represented by the general formula (1) contains more nitrogen N than the Sr sialon red phosphor represented by the general formula (2).
  • the Sr sialon green phosphor represented by the general formula (1) and the Sr sialon red phosphor represented by the general formula (2) are SrCO 3 , AlN, Si 3 N in the phosphor raw material mixture. 4 , Eu 2 O 3 , SiC, and other raw materials can be mixed, or the amount of nitrogen gas in the furnace during firing can be changed.
  • the Sr sialon red phosphor represented by the general formula (2) when the pressure of nitrogen gas in the furnace during firing is lowered to about 1 atm, the Sr sialon red phosphor represented by the general formula (2) can be easily obtained, and when the pressure is increased to about 7 atm, the general formula ( The Sr sialon green phosphor represented by 1) is easily obtained.
  • the phosphor raw material mixture may further contain strontium chloride SrCl 2 as a reaction accelerator as a fluxing agent.
  • the phosphor raw material mixture is filled in a refractory crucible.
  • a boron nitride crucible, a carbon crucible or the like is used as the refractory crucible.
  • the phosphor raw material mixture filled in the refractory crucible is fired.
  • the baking apparatus an apparatus is used in which the composition and pressure of the internal baking atmosphere in which the refractory crucible is arranged, the baking temperature and the baking time are maintained under predetermined conditions.
  • an electric furnace is used as such a baking apparatus.
  • N 2 -containing gas is used as the firing atmosphere.
  • N 2 gas or a mixed gas of N 2 and H 2 is used.
  • N 2 in the firing atmosphere has a function of eliminating an appropriate amount of oxygen O from the phosphor raw material mixture when the phosphor powder is fired from the phosphor raw material mixture.
  • H 2 in the firing atmosphere acts as a reducing agent when the phosphor powder is fired from the phosphor raw material mixture, and more oxygen O is lost from the phosphor raw material mixture than N 2 .
  • the composition of the obtained phosphor powder is represented by the Sr sialon green phosphor represented by the general formula (1) or the general formula (2). This is different from the Sr sialon red phosphor, and for this reason, the emission intensity of the phosphor powder may be weakened.
  • N 2 containing gas if a mixed gas of N 2 gas or N 2 and H 2,, the molar ratio of N 2 and H 2 in N 2 containing gas is, N 2: H 2 is usually 10 : 0 to 1: 9, preferably 8: 2 to 2: 8, more preferably 6: 4 to 4: 6.
  • the molar ratio of N 2 and H 2 in N 2 containing gas is a N 2 and H 2 which is continuously fed into the chamber of the calciner, N 2 and the ratio of the flow rate the ratio of H 2
  • the above ratio that is, usually 10: 0 to 1: 9, can be obtained by continuously supplying the gas in the chamber and continuously discharging the mixed gas in the chamber.
  • the N 2 -containing gas as the firing atmosphere be circulated in a chamber of the firing apparatus so as to form an air flow because firing is performed uniformly.
  • the pressure of the N 2 -containing gas that is the firing atmosphere is usually 0.1 MPa (approximately 1 atm) to 1.0 MPa (approximately 10 atm).
  • the composition of the phosphor powder obtained after firing is represented by the general formula (1) as compared with the phosphor raw material mixture charged in the crucible before firing. This is likely to be different from the green phosphor or the Sr sialon red phosphor represented by the general formula (2), which may cause the emission intensity of the phosphor powder to be weak.
  • the firing conditions are not particularly changed even when the pressure is 1.0 MPa or less, which is not preferable because energy is wasted.
  • the pressure of the N 2 -containing gas that is the firing atmosphere is preferably 0.5 MPa to 0.8 MPa, more preferably 0.8 MPa. 6 MPa to 0.8 MPa.
  • the pressure of the N 2 -containing gas that is the firing atmosphere is preferably 0.1 MPa to 0.4 MPa, more preferably 0. 1 MPa to 0.2 MPa.
  • the firing temperature is usually 1400 ° C. to 2000 ° C., preferably 1700 ° C. to 1900 ° C. When the firing temperature is in the range of 1400 ° C. to 2000 ° C., a high-quality single crystal phosphor powder with few crystal structure defects can be obtained by firing in a short time.
  • the resulting phosphor powder may be excited by ultraviolet to blue light and the emitted light may not have a desired color. That is, when it is desired to manufacture the Sr sialon green phosphor represented by the general formula (1), the color of light emitted by being excited by ultraviolet to blue light becomes a color other than green, or the general formula (2) When it is desired to produce the Sr sialon red phosphor represented, the color of the light that is excited and emitted by ultraviolet to blue light may be other than red.
  • the composition of the phosphor powder obtained by increasing the degree of disappearance of N and O during firing is Sr sialon green phosphor represented by the general formula (1) or the general formula ( It is easy to differ from the Sr sialon red phosphor represented by 2), and for this reason, the emission intensity of the phosphor powder may be weakened.
  • the firing time is usually 0.5 hours to 20 hours, preferably 2 hours to 10 hours, more preferably 3 hours to 5 hours.
  • the composition of the obtained phosphor powder is represented by the Sr sialon green phosphor represented by the general formula (1) or the general formula (2). This is different from the Sr sialon red phosphor, and for this reason, the emission intensity of the phosphor powder may be weakened.
  • the firing time is preferably a short time within a range of 0.5 to 20 hours when the firing temperature is high, and a long time within a range of 0.5 to 20 hours when the firing temperature is low. It is preferable that
  • a fired body made of phosphor powder is generated.
  • the fired body is usually in the form of a weak and solid lump.
  • a phosphor powder is obtained.
  • the phosphor powder obtained by crushing becomes a powder of Sr sialon green phosphor represented by general formula (1) or Sr sialon red phosphor represented by general formula (2).
  • a phosphor having good temperature characteristics can be obtained.
  • the light emitting device is a light emitting device using the Sr sialon green phosphor represented by the general formula (1) or the Sr sialon red phosphor represented by the general formula (2). Specifically, the light-emitting device is formed on the substrate, the semiconductor light-emitting element disposed on the substrate and emitting ultraviolet light to blue light, and the light-emitting surface of the semiconductor light-emitting element.
  • a phosphor that emits visible light when excited by the emitted light, and the phosphor is a Sr sialon green phosphor represented by the general formula (1) or Sr represented by the general formula (2).
  • the light emitting device emits green light from the emission surface of the light emitting device if the phosphor contained in the light emitting portion is only Sr sialon green phosphor, and the phosphor contained in the light emitting portion is only Sr sialon red phosphor. If there is, red light is emitted from the emission surface of the light emitting device.
  • the light emitting unit includes a phosphor such as a blue phosphor and a red phosphor in addition to the Sr sialon green phosphor, or a blue phosphor and a green phosphor in addition to the Sr sialon red phosphor.
  • White light emitting device that emits white light from the emitting surface of the light emitting device by mixing the light of each color such as red light, blue light, and green light emitted from the phosphors of each color. It can also be.
  • the light emitting device may contain other green phosphors in addition to Sr sialon green phosphors, or may contain other red phosphors in addition to Sr sialon red phosphors.
  • the light emitting device may include a Sr sialon green phosphor represented by the general formula (1) and a Sr sialon red phosphor represented by the general formula (2) as phosphors.
  • a Sr sialon green phosphor represented by the general formula (1) and a Sr sialon red phosphor represented by the general formula (2) as phosphors.
  • both the Sr sialon green phosphor and the Sr sialon red phosphor represented by the general formula (2) are included as the phosphor, a light emitting device with good temperature characteristics can be obtained.
  • substrate for example, ceramics such as alumina and aluminum nitride (AlN), glass epoxy resin, and the like are used. It is preferable that the substrate is an alumina plate or an aluminum nitride plate because the thermal conductivity is high and the temperature rise of the LED light source can be suppressed.
  • AlN aluminum nitride
  • the substrate is an alumina plate or an aluminum nitride plate because the thermal conductivity is high and the temperature rise of the LED light source can be suppressed.
  • the semiconductor light emitting element is disposed on the substrate.
  • a semiconductor light emitting element that emits ultraviolet light to blue light is used.
  • ultraviolet light to blue light means light having a peak wavelength in the wavelength range of ultraviolet light to blue light.
  • the ultraviolet light to blue light is preferably light having a peak wavelength in the range of 370 nm to 470 nm.
  • Examples of semiconductor light emitting devices that emit ultraviolet light to blue light include ultraviolet light emitting diodes, purple light emitting diodes, blue light emitting diodes, ultraviolet laser diodes, purple laser diodes, and blue laser diodes.
  • the semiconductor light emitting element is a laser diode
  • the peak wavelength means a peak oscillation wavelength.
  • the light emitting section includes a phosphor that is excited by ultraviolet light to blue light, which is emitted light from the semiconductor light emitting element, and emits visible light in the transparent resin cured product, and covers the light emitting surface of the semiconductor light emitting element. Formed as follows.
  • the phosphor used in the light emitting unit includes at least the above-described Sr sialon green phosphor or Sr sialon red phosphor.
  • the phosphor may include both Sr sialon green phosphor and Sr sialon red phosphor.
  • the phosphor used in the light emitting unit may include a Sr sialon green phosphor or a Sr sialon red phosphor and a phosphor other than the Sr sialon green phosphor or the Sr sialon red phosphor.
  • a phosphor other than the Sr sialon green phosphor or the Sr sialon red phosphor for example, a red phosphor, a blue phosphor, a green phosphor, a yellow phosphor, a purple phosphor, an orange phosphor and the like can be used.
  • the phosphor a powdery one is usually used.
  • the phosphor is contained in the cured transparent resin. Usually, the phosphor is dispersed in a cured transparent resin.
  • the transparent resin cured product used for the light emitting part is obtained by curing a transparent resin, that is, a highly transparent resin.
  • a transparent resin for example, a silicone resin or an epoxy resin is used. Silicone resins are preferred because they have higher UV resistance than epoxy resins. Among silicone resins, dimethyl silicone resin is more preferable because of its high UV resistance.
  • the light emitting part is preferably composed of 20 to 1000 parts by mass of the transparent resin cured product with respect to 100 parts by mass of the phosphor. When the ratio of the transparent resin cured product to the phosphor is within this range, the light emission intensity of the light emitting part is high.
  • the film thickness of the light emitting part is usually 80 ⁇ m or more and 800 ⁇ m or less, preferably 150 ⁇ m or more and 600 ⁇ m or less.
  • the film thickness of the light emitting portion is 80 ⁇ m or more and 800 ⁇ m or less, practical brightness can be ensured with a small amount of leakage of ultraviolet light to blue light emitted from the semiconductor light emitting element.
  • the film thickness of the light emitting part is 150 ⁇ m or more and 600 ⁇ m or less, light emitted from the light emitting part can be brightened.
  • the light emitting unit first mixes a transparent resin and a phosphor to prepare a phosphor slurry in which the phosphor is dispersed in the transparent resin, and then applies the phosphor slurry to the semiconductor light emitting device and the inner surface of the globe. It is obtained by curing.
  • the light emitting portion When the phosphor slurry is applied to the semiconductor light emitting element, the light emitting portion is in contact with and covered with the semiconductor light emitting element. Further, when the phosphor slurry is applied to the inner surface of the globe, the light emitting portion is formed on the inner surface of the globe while being separated from the semiconductor light emitting element.
  • a light emitting device in which the light emitting portion is formed on the inner surface of the globe is referred to as a remote phosphor type LED light emitting device.
  • the phosphor slurry can be cured by heating to 100 ° C. to 160 ° C., for example.
  • FIG. 1 is an example of an emission spectrum of the light emitting device.
  • a violet LED that emits violet light having a peak wavelength of 400 nm is used as a semiconductor light emitting element, and Sr sialon represented by Sr 2.7 Eu 0.3 Si 13 Al 3 O 2 N 21 as a phosphor. It is an emission spectrum of a green light emitting device at 25 ° C. using only a green phosphor.
  • the purple LED has a forward voltage drop Vf of 3.195 V and a forward current If of 20 mA.
  • the green light emitting device using the Sr sialon green phosphor represented by the general formula (1) as the phosphor has a high emission intensity even when excitation light having a short wavelength such as violet light is used.
  • FIG. 2 is another example of an emission spectrum of the light emitting device.
  • a violet LED that emits violet light having a peak wavelength of 400 nm is used as a semiconductor light emitting device, and Sr sialon red fluorescence represented by Sr 1.6 Eu 0.4 Si 7 Al 3 ON 13 as a phosphor. It is an emission spectrum of a red light emitting device at 25 ° C. using only the body.
  • the purple LED has a forward voltage drop Vf of 3.190 V and a forward current If of 20 mA.
  • the red light emitting device using the Sr sialon red phosphor represented by the general formula (2) as the phosphor has a high emission intensity even when excitation light having a short wavelength such as violet light is used. .
  • a light emitting device with good temperature characteristics can be obtained.
  • Example 1 (Production of phosphor) First, 337 g of SrCO 3 , 104 g of AlN, 514 g of Si 3 N 4 , 45 g of Eu 2 O 3 , and 0.003 g of SiC are weighed, and an appropriate amount of a flux agent is added thereto, followed by dry mixing to obtain a phosphor raw material mixture Was prepared. Thereafter, the phosphor raw material mixture was filled in a boron nitride crucible. Table 1 shows the blending amounts of raw materials such as SrCO 3 . When a boron nitride crucible filled with the phosphor raw material mixture is baked in an electric furnace at 1800 ° C.
  • the calcined powder contained the amount of carbon shown in Table 2.
  • the carbon content is the ratio of the mass of carbon to the total mass of the calcined powder including carbon. A large amount of carbon was present in the vicinity of the surface of each particle constituting the phosphor powder (fired powder).
  • the obtained Sr sialon green light emitting phosphor was examined for average particle diameter, emission peak wavelength and luminance.
  • the average particle diameter is a value measured by the Coulter counter method, the value of the median D 50 of the cumulative volume distribution.
  • the luminance was measured at room temperature (25 ° C.) and 150 ° C.
  • the luminance at room temperature is shown as a relative value (%) (hereinafter referred to as relative luminance) where the luminance at room temperature of Example 1 is 100.
  • the luminance at room temperature is shown as a relative value (%) (relative luminance) where the luminance at room temperature in Example 1 is 100.
  • Example 2 Sr sialon green light emitting phosphor was examined in the same manner as in Example 1 for the average particle size, emission peak wavelength, and luminance.
  • the brightness of some examples (Examples 2 to 7) and comparative examples (Comparative Examples 1 to 3) were measured at room temperature (25 ° C.) and 150 ° C. as in Example 1.
  • the luminances of Examples 8 and 9 and Comparative Examples (Comparative Examples 4 to 6) were measured at room temperature (25 ° C.) and 100 ° C. The luminance measured at 100 ° C.
  • Example 10 (Production of phosphor)
  • Sr sialon red light emitting phosphors having the composition and carbon content shown in Table 5
  • the blending amounts of SrCO 3 , AlN, Si 3 N 4 , Eu 2 O 3 , and SiC in the phosphor raw material mixture are shown in Table 4.
  • a red powder was obtained in the same manner as in Example 1 except that the changes were made.
  • the red powder was analyzed, it was a single crystal Sr sialon red light emitting phosphor having the composition shown in Table 5.
  • the red powder contained carbon in the amount shown in Table 5. A large amount of carbon was present in the vicinity of the surface of each particle constituting the phosphor powder (red powder).
  • a phosphor and a light emitting device having good temperature characteristics can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

下記一般式(1) 一般式:(Sr1-x,EuxαSiβAlγδω (1) (式中、xは0<x<1、αは0<α≦4であり、β、γ、δおよびωはαが3のときに換算した数値が、9<β≦15、1≦γ≦5、0.5≦δ≦3、10≦ω≦25を満足する数である) で表されるユーロピウム付活サイアロン結晶体からなり、紫外光~青色光で励起されることにより緑色発光する蛍光体であり、炭素を1ppm以上5000ppm以下の割合で含む蛍光体。

Description

蛍光体および発光装置
 本発明の実施形態は、蛍光体および発光装置に関する。
 蛍光体粉末は、たとえば、発光ダイオード(LED:Light Emitting Diode)等の発光装置に用いられる。発光装置は、たとえば、基板上に配置され所定の色の光を出射する半導体発光素子と、この半導体発光素子から出射される紫外光、青色光等の光により励起されて可視光を発する蛍光体粉末を封止樹脂である透明樹脂硬化物中に含む発光部とを備える。
 発光装置の半導体発光素子としては、たとえば、GaN、InGaN、AlGaN、InGaAlP等が用いられる。また、蛍光体粉末の蛍光体としては、たとえば、半導体発光素子からの出射光により励起されてそれぞれ青色光、緑色光、黄色光、赤色光の光を出射する青色蛍光体、緑色蛍光体、黄色蛍光体、赤色蛍光体等が用いられる。
 発光装置は、封止樹脂中に赤色蛍光体等の各種の蛍光体粉末を含有させることにより、放射光の色を調整することができる。すなわち、半導体発光素子と、半導体発光素子から放射された光を吸収して所定波長域の光を発光する蛍光体粉末とを組み合わせて用いることにより、半導体発光素子から放射された光と蛍光体粉末から放射された光との作用で、可視光領域の光や白色光を発光させることが可能になる。
 従来、蛍光体としては、ストロンチウムを含むユーロピウム付活サイアロン(Si-Al-O-N)構造の蛍光体が知られている。
国際公開第2007/105631号
 しかし、サイアロン(Si-Al-O-N)構造の蛍光体には、100℃程度の高温領域で使用する場合、常温(25℃)領域で使用する場合に比べて発光強度が低下するという問題があった。以下、蛍光体の発光強度が、常温領域で使用する場合に比べて100℃程度の高温領域で使用する場合に低下しないことまたは低下の度合いが小さいことを、温度特性が良いと称する。また、蛍光体の発光強度が、常温領域で使用する場合に比べて100℃程度の高温領域で使用する場合に低下の度合いが大きいことを、温度特性が悪いと称する。
 本発明は、上記事情に鑑みてなされたものであり、温度特性が良い蛍光体および発光装置を提供することを目的とする。
 実施形態の蛍光体および発光装置は、特定組成の蛍光体に炭素を特定量含有させることにより、温度特性が良くなることを見出して完成されたものである。
 実施形態の蛍光体は、上記問題点を解決するものであり、下記一般式(1)
[化1]
一般式:(Sr1-x,EuxαSiβAlγδω     (1)
(式中、xは0<x<1、αは0<α≦4であり、β、γ、δおよびωはαが3のときに換算した数値が、9<β≦15、1≦γ≦5、0.5≦δ≦3、10≦ω≦25を満足する数である)
で表されるユーロピウム付活サイアロン結晶体からなり、紫外光~青色光で励起されることにより緑色発光する蛍光体であり、炭素を1ppm以上5000ppm以下の割合で含むことを特徴とする。
 また、実施形態の蛍光体は、上記問題点を解決するものであり、下記一般式(2)
[化2]
一般式:(Sr1-x,EuxαSiβAlγδω     (2)
(式中、xは0<x<1、αは0<α≦3であり、β、γ、δおよびωはαが3のときに換算した数値が、5≦β≦9、1≦γ≦5、0.5≦δ≦2、5≦ω≦15を満足する数である)
で表されるユーロピウム付活サイアロン結晶体からなり、紫外光~青色光で励起されることにより赤色発光する蛍光体であり、炭素を1ppm以上5000ppm以下の割合で含むことを特徴とする。
 さらに、実施形態の発光装置は、上記問題点を解決するものであり、基板と、この基板上に配置され、紫外光~青色光を出射する半導体発光素子と、この半導体発光素子の発光面を覆うように形成され、前記半導体発光素子からの出射光により励起されて可視光を発する蛍光体を含む発光部とを備え、前記蛍光体は、前記実施形態の蛍光体を含むことを特徴とする。
発光装置の発光スペクトルの一例。 発光装置の発光スペクトルの他の一例。
 実施形態の蛍光体および発光装置について説明する。実施形態の蛍光体には、紫外光~青色光で励起されることにより緑色発光する緑色蛍光体と、紫外光~青色光で励起されることにより赤色発光する赤色蛍光体とがある。
[緑色蛍光体]
 緑色蛍光体は、下記一般式(1)
[化3]
一般式:(Sr1-x,EuxαSiβAlγδω     (1)
(式中、xは0<x<1、αは0<α≦4であり、β、γ、δおよびωはαが3のときに換算した数値が、9<β≦15、1≦γ≦5、0.5≦δ≦3、10≦ω≦25を満足する数である)
で表されるユーロピウム付活サイアロン結晶体からなり、紫外光~青色光で励起されることにより緑色発光する蛍光体である。このSrを含むユーロピウム付活サイアロン蛍光体を、以下、「Srサイアロン緑色蛍光体」ともいう。Srサイアロン緑色蛍光体の結晶系は斜方晶である。
 一般式(1)において、xは、0<x<1、好ましくは0.025≦x≦0.5、さらに好ましくは0.25≦x≦0.5を満足する数である。
 xが0であると焼成工程で得られる焼成体が蛍光体にならず、xが1であると緑色蛍光体粉末の発光効率が低くなる。
 また、xは0<x<1の範囲内で小さい数になるほど緑色蛍光体の発光効率が低下しやすくなる。さらに、xは0<x<1の範囲内で大きい数になるほどEu濃度の過剰のために濃度消光を起こしやすくなる。
 このため、xは0<x<1のうちでも、0.025≦x≦0.5を満足する数が好ましく、0.25≦x≦0.5を満足する数がさらに好ましい。
 一般式(1)において、Srの総合的な添え字(1-x)αは0<(1-x)α<4を満足する数である。また、Euの総合的な添え字xαは0<xα<4を満足する数である。すなわち、一般式(1)において、SrおよびEuの総合的な添え字は、それぞれ0を超え4未満を満足する数である。
 一般式(1)において、β、γ、δおよびωは、αが3のときに換算した数値である。
 一般式(1)において、Siの添え字であるβは、αが3のときに換算した数値が9<β≦15を満足する数である。
 一般式(1)において、Alの添え字であるγは、αが3のときに換算した数値が1≦γ≦5を満足する数である。
 一般式(1)において、Oの添え字であるδは、αが3のときに換算した数値が0.5≦δ≦3を満足する数である。
 一般式(1)において、Nの添え字であるωは、αが3のときに換算した数値が10≦ω≦25を満足する数である。
 一般式(1)において、添え字β、γ、δおよびωが、それぞれ上記範囲外の数になると、焼成で得られる蛍光体の組成が、一般式(1)で表される斜方晶系のSrサイアロン緑色蛍光体と異なるものになるおそれがある。
 一般式(1)で表されるSrサイアロン緑色蛍光体は、通常、単結晶の粉末の形態をとる。
 一般式(1)で表されるSrサイアロン緑色蛍光体は、炭素を1ppm以上5000ppm以下、好ましくは5ppm以上1000ppm以下、さらに好ましくは50ppm以上300ppm以下の割合で含む。
 ここで、炭素の含有量は、炭素を含めた緑色蛍光体全質量に対する炭素の質量の割合である。なお、Srサイアロン緑色蛍光体は、通常、単結晶の粉末の形態をとるが、炭素は、蛍光体粉末を構成する各粒子の表面近傍の内部に多く存在する。
 炭素の含有量が上記範囲内にあると、Srサイアロン緑色蛍光体は、室温(25℃)での輝度が高いとともに150℃程度の高温時の輝度の低下が小さいため好ましい。
 炭素の含有量が1ppm未満であると、Srサイアロン緑色蛍光体は、高温時の輝度の低下が大きくなるおそれがある。
 炭素の含有量が5000ppmを超えると、Srサイアロン緑色蛍光体は、室温での輝度が低くなるおそれがある。
 Srサイアロン緑色蛍光体の粉末は、平均粒径が、好ましくは1μm以上100μm以下、さらに好ましくは5μm以上20μm以下、より好ましくは10μm以上20μm以下である。ここで、平均粒径とは、コールターカウンター法による測定値であり、体積累積分布の中央値D50を意味する。
 Srサイアロン緑色蛍光体の粉末の平均粒径が1μm未満であったり100μmを超えたりすると、透明樹脂硬化物中にSrサイアロン緑色蛍光体の粉末や他の色の蛍光体粉末を分散させ、半導体発光素子からの紫外光~青色光の照射により緑色光や他の色の光を出射させる構造の発光装置を作製した場合に、発光装置からの光の取り出し効率が低下するおそれがある。
 一般式(1)で表されるSrサイアロン緑色蛍光体は、紫外光~青色光を受光すると励起され、緑色光を出射する。
 ここで、紫外光~青色光とは、紫外光~青色光の波長域内にピーク波長を有する光を意味する。紫外光~青色光は、370nm以上470nm以下の範囲内にピーク波長を有する光であることが好ましい。
 紫外光~青色光の受光により励起された一般式(1)で表されるSrサイアロン緑色蛍光体は、発光ピーク波長が500nm以上540nm以下の範囲内の緑色光を発光する。
[赤色蛍光体]
 赤色蛍光体は、下記一般式(2)
[化4]
一般式:(Sr1-x,EuxαSiβAlγδω     (2)
(式中、xは0<x<1、αは0<α≦3であり、β、γ、δおよびωはαが3のときに換算した数値が、5≦β≦9、1≦γ≦5、0.5≦δ≦2、5≦ω≦15を満足する数である)
で表されるユーロピウム付活サイアロン結晶体からなり、紫外光~青色光で励起されることにより赤色発光する蛍光体である。このSrを含むユーロピウム付活サイアロン蛍光体を、以下、「Srサイアロン赤色蛍光体」ともいう。Srサイアロン赤色蛍光体の結晶系は斜方晶である。
 一般式(2)において、xは、0<x<1、好ましくは0.025≦x≦0.5、さらに好ましくは0.25≦x≦0.5を満足する数である。
 xが0であると焼成工程で得られる焼成体が蛍光体にならず、xが1であると赤色蛍光体粉末の発光効率が低くなる。
 また、xは0<x<1の範囲内で小さい数になるほど赤色蛍光体の発光効率が低下しやすくなる。さらに、xは0<x<1の範囲内で大きい数になるほどEu濃度の過剰のために濃度消光を起こしやすくなる。
 このため、xは0<x<1のうちでも、0.025≦x≦0.5を満足する数が好ましく、0.25≦x≦0.5を満足する数がさらに好ましい。
 一般式(2)において、Srの総合的な添え字(1-x)αは0<(1-x)α<3を満足する数である。また、Euの総合的な添え字xαは0<xα<3を満足する数である。すなわち、一般式(2)において、SrおよびEuの総合的な添え字は、それぞれ0を超え3未満を満足する数である。
 一般式(2)において、β、γ、δおよびωは、αが3のときに換算した数値である。
 一般式(2)において、Siの添え字であるβは、αが3のときに換算した数値が5≦β≦9を満足する数である。
 一般式(2)において、Alの添え字であるγは、αが3のときに換算した数値が1≦γ≦5を満足する数である。
 一般式(2)において、Oの添え字であるδは、αが3のときに換算した数値が0.5≦δ≦2を満足する数である。
 一般式(2)において、Nの添え字であるωは、αが3のときに換算した数値が5≦ω≦15を満足する数である。
 一般式(2)において、添え字β、γ、δおよびωが、それぞれ上記範囲外の数になると、焼成で得られる蛍光体の組成が、一般式(2)で表される斜方晶系のSrサイアロン赤色蛍光体と異なるものになるおそれがある。
 一般式(2)で表されるSrサイアロン赤色蛍光体は、通常、単結晶の粉末の形態をとる。
 一般式(2)で表されるSrサイアロン赤色蛍光体は、炭素を1ppm以上5000ppm以下、好ましくは5ppm以上1000ppm以下、さらに好ましくは50ppm以上300ppm以下の割合で含む。
 ここで、炭素の含有量は、炭素を含めた赤色蛍光体全質量に対する炭素の質量の割合である。なお、Srサイアロン赤色蛍光体は、通常、単結晶の粉末の形態をとるが、炭素は、蛍光体粉末を構成する各粒子の表面近傍の内部に多く存在する。
 炭素の含有量が上記範囲内にあると、Srサイアロン赤色蛍光体は、室温(25℃)での輝度が高いとともに150℃程度の高温時の輝度の低下が小さいため好ましい。
 炭素の含有量が1ppm未満であると、Srサイアロン赤色蛍光体は、高温時の輝度の低下が大きくなるおそれがある。
 炭素の含有量が5000ppmを超えると、Srサイアロン赤色蛍光体は、室温での輝度が低くなるおそれがある。
 Srサイアロン赤色蛍光体の粉末は、平均粒径が、好ましくは1μm以上100μm以下、さらに好ましくは5μm以上20μm以下、より好ましくは10μm以上20μm以下である。ここで、平均粒径とは、コールターカウンター法による測定値であり、体積累積分布の中央値D50を意味する。
 Srサイアロン赤色蛍光体の粉末の平均粒径が1μm未満であったり100μmを超えたりすると、透明樹脂硬化物中にSrサイアロン赤色蛍光体の粉末や他の色の蛍光体粉末を分散させ、半導体発光素子からの紫外光~青色光の照射により赤色光や他の色の光を出射させる構造の発光装置を作製した場合に、発光装置からの光の取り出し効率が低下するおそれがある。
 一般式(2)で表されるSrサイアロン赤色蛍光体は、紫外光~青色光を受光すると励起され、赤色光を出射する。
 ここで、紫外光~青色光とは、紫外光~青色光の波長域内にピーク波長を有する光を意味する。紫外光~青色光は、370nm以上470nm以下の範囲内にピーク波長を有する光であることが好ましい。
 紫外光~青色光の受光により励起された一般式(2)で表されるSrサイアロン赤色蛍光体は、発光ピーク波長が550nm以上650nm以下の範囲内の赤色光を発光する。
[緑色蛍光体および赤色蛍光体の製造方法]
 一般式(1)で表されるSrサイアロン緑色蛍光体、および一般式(2)で表されるSrサイアロン赤色蛍光体は、たとえば、炭酸ストロンチウムSrCO、窒化アルミニウムAlN、窒化珪素Si、酸化ユーロピウムEu、および炭化珪素SiC等の各原料を乾式混合して蛍光体原料混合物を調製し、この蛍光体原料混合物を窒素雰囲気中で焼成することにより作製することができる。
 なお、一般式(1)で表されるSrサイアロン緑色蛍光体は、一般式(2)で表されるSrサイアロン赤色蛍光体に比べて、窒素Nを多く含んでいる。このため、一般式(1)で表されるSrサイアロン緑色蛍光体と、一般式(2)で表されるSrサイアロン赤色蛍光体とは、蛍光体原料混合物中のSrCO、AlN、Si、Eu、およびSiC等の各原料の配合比率を変えたり、焼成の際の炉内の窒素ガス量を変えたりすることにより作り分けることができる。たとえば、焼成の際の炉内の窒素ガスの圧力を1気圧程度の低めにすると一般式(2)で表されるSrサイアロン赤色蛍光体が得られやすく、7気圧程度の高めにすると一般式(1)で表されるSrサイアロン緑色蛍光体が得られやすい。
 蛍光体原料混合物は、さらにフラックス剤として、反応促進剤である塩化ストロンチウムSrCl等を含んでいてもよい。
 蛍光体原料混合物は、耐火るつぼに充填される。耐火るつぼとしては、たとえば、窒化ホウ素るつぼ、カーボンるつぼ等が用いられる。
 耐火るつぼに充填された蛍光体原料混合物は焼成される。焼成装置は、耐火るつぼが配置される内部の焼成雰囲気の組成および圧力、ならびに焼成温度および焼成時間が所定条件に保たれる装置が用いられる。このような焼成装置としては、たとえば、電気炉が用いられる。
 焼成雰囲気としては、N含有ガスが用いられる。N含有ガスとしては、たとえば、Nガスや、NとHとの混合ガス等が用いられる。
 一般的に、蛍光体原料混合物から蛍光体粉末を焼成するときは、蛍光体粉末に対して酸素Oを過剰に含む蛍光体原料混合物から適量の酸素Oが消失することにより、所定の組成の蛍光体粉末を得る。
 焼成雰囲気中のNは、蛍光体原料混合物から蛍光体粉末を焼成する際に、蛍光体原料混合物から適量の酸素Oを消失させる作用を有する。
 また、焼成雰囲気中のHは、蛍光体原料混合物から蛍光体粉末を焼成する際に、還元剤として作用し、Nに比べて蛍光体原料混合物からより多くの酸素Oを消失させる。
 このため、N含有ガス中にHが含まれる場合は、N含有ガス中にHが含まれない場合に比べて、焼成時間を短くすることができる。ただし、N含有ガス中のHの含有量が多すぎると、得られる蛍光体粉末の組成が、一般式(1)で表されるSrサイアロン緑色蛍光体または一般式(2)で表されるSrサイアロン赤色蛍光体と異なりやすく、このために蛍光体粉末の発光強度が弱くなるおそれがある。
 N含有ガスが、Nガス、またはNとHとの混合ガスである場合、N含有ガス中のNとHとのモル比率は、N:Hが、通常10:0~1:9、好ましくは8:2~2:8、さらに好ましくは6:4~4:6である。
 N含有ガス中のNとHとのモル比率が、上記範囲内、すなわち通常10:0~1:9であると、短時間の焼成で、結晶構造の欠陥の少ない高品質な単結晶の蛍光体粉末を得ることができる。
 N含有ガス中のNとHとのモル比率は、焼成装置のチャンバー内に連続的に供給されるNとHとを、NとHとの流量の比率が上記比率になるように供給するとともに、チャンバー内の混合ガスを連続的に排出することにより、上記比率、すなわち通常10:0~1:9にすることができる。
 焼成雰囲気であるN含有ガスは、焼成装置のチャンバー内で気流を形成させるように流通させると、焼成が均一に行われるため好ましい。
 焼成雰囲気であるN含有ガスの圧力は、通常0.1MPa(略1atm)~1.0MPa(略10atm)である。
 焼成雰囲気の圧力が0.1MPa未満であると、焼成前にるつぼに仕込んだ蛍光体原料混合物に比較して、焼成後に得られる蛍光体粉末の組成が一般式(1)で表されるSrサイアロン緑色蛍光体または一般式(2)で表されるSrサイアロン赤色蛍光体と異なりやすく、このために蛍光体粉末の発光強度が弱くなるおそれがある。
 焼成雰囲気の圧力が1.0MPaを超えると、圧力が1.0MPa以下の場合と比較しても焼成条件に特に変化がなく、エネルギーの無駄遣いになるため好ましくない。
 なお、一般式(1)で表されるSrサイアロン緑色蛍光体を製造する場合には、焼成雰囲気であるN含有ガスの圧力は、好ましくは0.5MPa~0.8MPa、さらに好ましくは0.6MPa~0.8MPaである。
 また、一般式(2)で表されるSrサイアロン赤色蛍光体を製造する場合には、焼成雰囲気であるN含有ガスの圧力は、好ましくは0.1MPa~0.4MPa、さらに好ましくは0.1MPa~0.2MPaである。
 焼成温度は、通常1400℃~2000℃、好ましくは1700℃~1900℃である。
 焼成温度が1400℃~2000℃の範囲内にあると、短時間の焼成で、結晶構造の欠陥の少ない高品質な単結晶の蛍光体粉末を得ることができる。
 焼成温度が1400℃未満であると、得られる蛍光体粉末が紫外~青色光により励起されて出射する光の色が、所望の色にならないおそれがある。すなわち、一般式(1)で表されるSrサイアロン緑色蛍光体を製造したい場合に、紫外~青色光により励起されて出射する光の色が緑色以外の色になったり、一般式(2)で表されるSrサイアロン赤色蛍光体を製造したい場合に、紫外~青色光により励起されて出射する光の色が赤色以外の色になったりするおそれがある。
 焼成温度が2000℃を超えると、焼成の際のNとOの消失度合いが大きくなることにより得られる蛍光体粉末の組成が一般式(1)で表されるSrサイアロン緑色蛍光体または一般式(2)で表されるSrサイアロン赤色蛍光体と異なりやすく、このために蛍光体粉末の発光強度が弱くなるおそれがある。
 焼成時間は、通常0.5時間~20時間、好ましくは2時間~10時間、さらに好ましくは3時間~5時間である。
 焼成時間が0.5時間未満である場合または20時間を超える場合は、得られる蛍光体粉末の組成が一般式(1)で表されるSrサイアロン緑色蛍光体または一般式(2)で表されるSrサイアロン赤色蛍光体と異なりやすく、このために蛍光体粉末の発光強度が弱くなるおそれがある。
 焼成時間は、焼成温度が高い場合は、0.5時間~20時間の範囲内で短い時間とすることが好ましく、焼成温度が低い場合は、0.5時間~20時間の範囲内で長い時間とすることが好ましい。
 焼成後の耐火るつぼ中には、蛍光体粉末からなる焼成体が生成される。焼成体は、通常、弱く固まった塊状になっている。焼成体を乳棒等を用いて軽く解砕すると、蛍光体粉末が得られる。解砕で得られた蛍光体粉末は、一般式(1)で表されるSrサイアロン緑色蛍光体または一般式(2)で表されるSrサイアロン赤色蛍光体の粉末になる。
 実施形態の緑色蛍光体および赤色蛍光体によれば、温度特性が良い蛍光体が得られる。
[発光装置]
 発光装置は、上記の一般式(1)で表されるSrサイアロン緑色蛍光体または一般式(2)で表されるSrサイアロン赤色蛍光体を用いる発光装置である。
 具体的には、発光装置は、基板と、この基板上に配置され、紫外光~青色光を出射する半導体発光素子と、この半導体発光素子の発光面を覆うように形成され、半導体発光素子からの出射光により励起されて可視光を発する蛍光体を含む発光部とを備え、蛍光体は、一般式(1)で表されるSrサイアロン緑色蛍光体または一般式(2)で表されるSrサイアロン赤色蛍光体を含む発光装置である。
 発光装置は、発光部中に含まれる蛍光体がSrサイアロン緑色蛍光体のみであれば発光装置の出射面から緑色光を出射し、発光部中に含まれる蛍光体がSrサイアロン赤色蛍光体のみであれば発光装置の出射面から赤色光を出射する。
 また、発光装置は、発光部中に、Srサイアロン緑色蛍光体に加え青色蛍光体および赤色蛍光体等の蛍光体を含むようにしたり、Srサイアロン赤色蛍光体に加え青色蛍光体および緑色蛍光体等の蛍光体を含むようにしたりすると、各色の蛍光体から出射される赤色光、青色光および緑色光等の各色の光の混色により、発光装置の出射面から白色光を出射する白色光発光装置とすることもできる。
 さらに、発光装置は、Srサイアロン緑色蛍光体に加え他の緑色蛍光体を含んでいたり、Srサイアロン赤色蛍光体に加え他の赤色蛍光体を含んでいたりしてもよい。
 なお、発光装置は、蛍光体として、一般式(1)で表されるSrサイアロン緑色蛍光体と一般式(2)で表されるSrサイアロン赤色蛍光体とを含んでいてもよい。蛍光体として、Srサイアロン緑色蛍光体と一般式(2)で表されるSrサイアロン赤色蛍光体との両方が含まれる場合は、温度特性の良い発光装置が得られる。
(基板)
 基板としては、たとえば、アルミナ、窒化アルミニウム(AlN)等のセラミックス、ガラスエポキシ樹脂等が用いられる。基板がアルミナ板や窒化アルミニウム板であると、熱伝導性が高く、LED光源の温度上昇を抑制することができるため好ましい。
(半導体発光素子)
 半導体発光素子は、基板上に配置される。
 半導体発光素子としては、紫外光~青色光を出射する半導体発光素子が用いられる。ここで、紫外光~青色光とは、紫外光~青色光の波長域内にピーク波長を有する光を意味する。紫外光~青色光は、370nm以上470nm以下の範囲内にピーク波長を有する光であることが好ましい。
 紫外光~青色光を出射する半導体発光素子としては、たとえば、紫外発光ダイオード、紫色発光ダイオード、青色発光ダイオード、紫外レーザダイオード、紫色レーザダイオードおよび青色レーザダイオード等が用いられる。なお、半導体発光素子がレーザダイオードの場合、上記ピーク波長とは、ピーク発振波長を意味する。
(発光部)
 発光部は、半導体発光素子からの出射光である紫外光~青色光により励起されて可視光を出射する蛍光体を透明樹脂硬化物中に含むものであり、半導体発光素子の発光面を被覆するように形成される。
 発光部に用いられる蛍光体は、少なくとも上記のSrサイアロン緑色蛍光体、またはSrサイアロン赤色蛍光体を含む。また、蛍光体は、Srサイアロン緑色蛍光体とSrサイアロン赤色蛍光体との両方を含んでいてもよい。
 また、発光部に用いられる蛍光体は、Srサイアロン緑色蛍光体またはSrサイアロン赤色蛍光体と、Srサイアロン緑色蛍光体またはSrサイアロン赤色蛍光体以外の蛍光体とを含むものであってもよい。Srサイアロン緑色蛍光体またはSrサイアロン赤色蛍光体以外の蛍光体としては、たとえば、赤色蛍光体、青色蛍光体、緑色蛍光体、黄色蛍光体、紫色蛍光体、橙色蛍光体等を用いることができる。蛍光体としては、通常、粉末状のものが用いられる。
 発光部において、蛍光体は透明樹脂硬化物中に含まれる。通常、蛍光体は透明樹脂硬化物中に分散される。
 発光部に用いられる透明樹脂硬化物は、透明樹脂、すなわち透明性の高い樹脂を硬化させたものである。透明樹脂としては、たとえば、シリコーン樹脂、エポキシ樹脂等が用いられる。シリコーン樹脂は、エポキシ樹脂よりもUV耐性が高いため好ましい。また、シリコーン樹脂のうちでは、ジメチルシリコーン樹脂が、UV耐性が高いためさらに好ましい。
 発光部は、蛍光体100質量部に対して透明樹脂硬化物20~1000質量部の割合で構成されていることが好ましい。蛍光体に対する透明樹脂硬化物の割合がこの範囲内にあると、発光部の発光強度が高い。
 発光部の膜厚は、通常、80μm以上800μm以下、好ましくは150μm以上600μm以下である。発光部の膜厚が80μm以上800μm以下であると、半導体発光素子から出射される紫外光~青色光の漏出量が少ない状態で実用的な明るさを確保することができる。発光部の膜厚を150μm以上600μm以下とすると、発光部からの発光をより明るくすることができる。
 発光部は、たとえば、はじめに透明樹脂と蛍光体とを混合して、蛍光体が透明樹脂中に分散した蛍光体スラリーを調製し、次に、蛍光体スラリーを半導体発光素子やグローブ内面に塗布し硬化させることにより得られる。
 蛍光体スラリーを半導体発光素子に塗布した場合には、発光部は半導体発光素子に接触して被覆する形態となる。また、蛍光体スラリーをグローブ内面に塗布した場合には、発光部は半導体発光素子と離間してグローブ内面に形成される形態となる。この発光部がグローブ内面に形成される形態の発光装置は、リモートフォスファー型LED発光装置と称される。
 蛍光体スラリーは、たとえば、100℃~160℃に加熱することにより硬化させることができる。
 図1は、発光装置の発光スペクトルの一例である。
 具体的には、半導体発光素子としてピーク波長が400nmの紫色光を出射する紫色LEDを用いるとともに、蛍光体としてSr2.7Eu0.3Si13Al21で表されるSrサイアロン緑色蛍光体のみを用いた、25℃での緑色発光装置の発光スペクトルである。
 なお、紫色LEDは、順方向降下電圧Vfが3.195V、順方向電流Ifが20mAである。
 図1に示すように、蛍光体として一般式(1)で表されるSrサイアロン緑色蛍光体を用いた緑色発光装置は、紫色光等の短波長の励起光を用いた場合でも発光強度が高い。
 図2は、発光装置の発光スペクトルの他の一例である。
 具体的には、半導体発光素子としてピーク波長が400nmの紫色光を出射する紫色LEDを用いるとともに、蛍光体としてSr1.6Eu0.4SiAlON13で表されるSrサイアロン赤色蛍光体のみを用いた、25℃での赤色発光装置の発光スペクトルである。
 なお、紫色LEDは、順方向降下電圧Vfが3.190V、順方向電流Ifが20mAである。
 図2に示すように、蛍光体として一般式(2)で表されるSrサイアロン赤色蛍光体を用いた赤色発光装置は、紫色光等の短波長の励起光を用いた場合でも発光強度が高い。
 実施形態の発光装置によれば、温度特性が良い発光装置が得られる。
 以下に実施例を示すが、本発明はこれらに限定されて解釈されるものではない。
[実施例1]
(蛍光体の作製)
 はじめに、SrCOを337g、AlNを104g、Siを514g、Euを45g、およびSiCを0.003g秤量し、これらにフラックス剤を適量加え、乾式混合して蛍光体原料混合物を調製した。その後、この蛍光体原料混合物を窒化ホウ素るつぼに充填した。SrCO等の原料の配合量を表1に示す。
 蛍光体原料混合物が充填された窒化ホウ素るつぼを、電気炉内で、0.7MPa(略7気圧)の窒素雰囲気中、1800℃で4時間焼成したところ、るつぼ中に焼成粉末の塊が得られた。
 この塊を解砕した後、焼成粉末に焼成粉末の質量の10倍量の純水を加えて10分間攪拌し、ろ過して焼成粉末を得た。この焼成粉末の洗浄操作をさらに2回繰り返し、合計3回洗浄した。洗浄後の焼成粉末をろ過し、乾燥した後、目開き75ミクロンのナイロンメッシュで篩ったところ、焼成粉末が得られた。
 焼成粉末を分析したところ、表2に示す組成からなる単結晶のSrサイアロン緑色発光蛍光体であった。また、焼成粉末には、表2に示す量の炭素が含まれていた。炭素の含有量は、炭素を含めた焼成粉末全質量に対する炭素の質量の割合である。炭素は、蛍光体粉末(焼成粉末)を構成する各粒子の表面近傍の内部に多く存在していた。
(蛍光体の分析)
 得られたSrサイアロン緑色発光蛍光体について平均粒径、発光ピーク波長および輝度を調べた。
 平均粒径は、コールターカウンター法による測定値であり、体積累積分布の中央値D50の値である。
 また、輝度は、室温(25℃)と150℃で測定した。室温での輝度を、この実施例1の室温での輝度を100とする相対値(%)(以下、相対輝度という)として示す。
 なお、以下に示す実施例および比較例においても、室温での輝度を、この実施例1の室温での輝度を100とする相対値(%)(相対輝度)として示す。
 また、150℃で測定した輝度は150℃での相対輝度に換算した後、(室温での相対輝度-150℃での相対輝度)/(室温での相対輝度)の式から、室温の輝度に対する150℃での輝度の低下率(%)を算出した。表には、150℃での輝度の低下率(%)を示す。
 測定結果を表2および表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
[実施例2~9、比較例1~6]
(蛍光体の作製)
 表2に示す組成、炭素含有量のSrサイアロン緑色発光蛍光体を得るために、蛍光体原料混合物中のSrCO、AlN、Si、Eu、およびSiCの配合量を表1に示すように変えた以外は、実施例1と同様にして、焼成粉末を得た(実施例2~9、比較例1~6)。
 それぞれの焼成粉末を分析したところ、表2に示す組成からなる単結晶のSrサイアロン緑色発光蛍光体であった。また、焼成粉末には、表2に示す量の炭素が含まれていた。蛍光体粉末が炭素を含む場合、炭素は、蛍光体粉末(焼成粉末)を構成する各粒子の表面近傍の内部に多く存在していた。
(蛍光体の分析)
 得られたSrサイアロン緑色発光蛍光体について、実施例1と同様にして平均粒径、発光ピーク波長および輝度を調べた。
 なお、一部の実施例(実施例2~7)および比較例(比較例1~3)の輝度は実施例1と同様に室温(25℃)と150℃で測定したが、他の実施例(実施例8、9)および比較例(比較例4~6)の輝度は室温(25℃)と100℃で測定した。
 100℃で測定した輝度は100℃での相対輝度に換算した後、(室温での相対輝度-100℃での相対輝度)/(室温での相対輝度)の式から、室温の輝度に対する100℃での輝度の低下率(%)を算出した。表には、100℃での輝度の低下率(%)を示す。
 測定結果を表2および表3に示す。
[実施例10]
(蛍光体の作製)
 表5に示す組成、炭素含有量のSrサイアロン赤色発光蛍光体を得るために、蛍光体原料混合物中のSrCO、AlN、Si、Eu、およびSiCの配合量を表4に示すように変えた以外は、実施例1と同様にして、赤色粉末を得た。
 赤色粉末を分析したところ、表5に示す組成からなる単結晶のSrサイアロン赤色発光蛍光体であった。また、赤色粉末には、表5に示す量の炭素が含まれていた。炭素は、蛍光体粉末(赤色粉末)を構成する各粒子の表面近傍の内部に多く存在していた。
(蛍光体の分析)
 得られたSrサイアロン赤色発光蛍光体について、実施例1と同様にして平均粒径、発光ピーク波長および輝度を調べた。
 測定結果を表5および表6に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
[実施例11~18、比較例7~10]
(蛍光体の作製)
 表5に示す組成、炭素含有量のSrサイアロン赤色発光蛍光体を得るために、蛍光体原料混合物中のSrCO、AlN、Si、Eu、およびSiCの配合量を表4に示すように変えた以外は、実施例1と同様にして、赤色粉末を得た(実施例11~16、比較例7~10)。
 赤色粉末を分析したところ、表5に示す組成からなる単結晶のSrサイアロン赤色発光蛍光体であった。また、赤色粉末には、表5に示す量の炭素が含まれていた。蛍光体粉末が炭素を含む場合、炭素は、蛍光体粉末(赤色粉末)を構成する各粒子の表面近傍の内部に多く存在していた。
(蛍光体の分析)
 得られたSrサイアロン赤色発光蛍光体について、実施例1と同様にして平均粒径、発光ピーク波長および輝度を調べた。
 なお、一部の実施例(実施例11~16)および比較例(比較例7)の輝度は実施例1と同様に室温(25℃)と150℃で測定したが、他の実施例(実施例17、18)および比較例(比較例8~10)の輝度は、比較例1と同様にして、室温(25℃)と100℃で測定した。
 測定結果を表5および表6に示す。
 表1~表6より、炭素含有量が0ppmの場合は高温時の輝度の低下が大きく、炭素含有量が5000ppm以上の場合は室温での輝度が低いことが分かる。
 なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施し得るものであり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 以上説明した実施例によれば、温度特性が良い蛍光体および発光装置が得られる。

Claims (7)

  1. 下記一般式(1)
    [化1]
    一般式:(Sr1-x,EuxαSiβAlγδω     (1)
    (式中、xは0<x<1、αは0<α≦4であり、β、γ、δおよびωはαが3のときに換算した数値が、9<β≦15、1≦γ≦5、0.5≦δ≦3、10≦ω≦25を満足する数である)
    で表されるユーロピウム付活サイアロン結晶体からなり、紫外光~青色光で励起されることにより緑色発光する蛍光体であり、
     炭素を1ppm以上5000ppm以下の割合で含むことを特徴とする蛍光体。
  2. 下記一般式(2)
    [化2]
    一般式:(Sr1-x,EuxαSiβAlγδω     (2)
    (式中、xは0<x<1、αは0<α≦3であり、β、γ、δおよびωはαが3のときに換算した数値が、5≦β≦9、1≦γ≦5、0.5≦δ≦2、5≦ω≦15を満足する数である)
    で表されるユーロピウム付活サイアロン結晶体からなり、紫外光~青色光で励起されることにより赤色発光する蛍光体であり、
     炭素を1ppm以上5000ppm以下の割合で含むことを特徴とする蛍光体。
  3. 平均粒径が1μm以上100μm以下であることを特徴とする請求項1または2に記載の蛍光体。
  4. 370nm以上470nm以下の範囲内にピーク波長を有する紫外光~青色光で励起されることにより、発光ピーク波長が500nm以上540nm以下の緑色光を発光することを特徴とする請求項1に記載の蛍光体。
  5. 370nm以上470nm以下の範囲内にピーク波長を有する紫外光~青色光で励起されることにより、発光ピーク波長が550nm以上650nm以下の赤色光を発光することを特徴とする請求項2に記載の蛍光体。
  6. 基板と、
     この基板上に配置され、紫外光~青色光を出射する半導体発光素子と、
     この半導体発光素子の発光面を覆うように形成され、前記半導体発光素子からの出射光により励起されて可視光を発する蛍光体を含む発光部とを備え、
     前記蛍光体は、請求項1~5のいずれかに記載の蛍光体を含むことを特徴とする発光装置。
  7. 前記半導体発光素子は370nm以上470nm以下の範囲内にピーク波長を有する光を出射する発光ダイオードまたはレーザダイオードであることを特徴とする請求項6に記載の発光装置。
PCT/JP2011/070206 2010-09-17 2011-09-06 蛍光体および発光装置 WO2012036016A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180044441.6A CN103119126B (zh) 2010-09-17 2011-09-06 荧光体以及发光装置
KR1020137006644A KR101476561B1 (ko) 2010-09-17 2011-09-06 형광체 및 발광 장치
JP2012533950A JPWO2012036016A1 (ja) 2010-09-17 2011-09-06 蛍光体および発光装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-209640 2010-09-17
JP2010209640 2010-09-17

Publications (1)

Publication Number Publication Date
WO2012036016A1 true WO2012036016A1 (ja) 2012-03-22

Family

ID=45831483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070206 WO2012036016A1 (ja) 2010-09-17 2011-09-06 蛍光体および発光装置

Country Status (4)

Country Link
JP (1) JPWO2012036016A1 (ja)
KR (1) KR101476561B1 (ja)
CN (1) CN103119126B (ja)
WO (1) WO2012036016A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013137434A1 (ja) * 2012-03-16 2013-09-19 株式会社東芝 蛍光体、蛍光体の製造方法および発光装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150045650A (ko) * 2013-10-21 2015-04-29 엘지전자 주식회사 녹색 발광 형광체, 그 제조 방법 및 이를 이용한 발광 소자 패키지
KR102171446B1 (ko) 2013-10-21 2020-10-29 엘지전자 주식회사 적색 발광 형광체, 그 제조 방법 및 이를 이용한 발광 소자 패키지
CN105441078B (zh) * 2014-09-30 2017-07-14 中国科学院上海硅酸盐研究所 稀土离子Eu2+掺杂的Y5Si3O12N荧光粉及其制备方法
CN105462579A (zh) * 2015-12-04 2016-04-06 许昌学院 一种长余辉红色荧光材料及其制备方法
CN110513605B (zh) * 2019-08-20 2020-12-29 西安鸿钧睿泽新材料科技有限公司 一种具有自发光功能的园林景观灯及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105631A1 (ja) * 2006-03-10 2007-09-20 Kabushiki Kaisha Toshiba 蛍光体および発光装置
JP2010031201A (ja) * 2008-07-31 2010-02-12 Toshiba Corp 蛍光体およびそれを用いた発光装置
JP2010106127A (ja) * 2008-10-29 2010-05-13 Toshiba Corp 赤色蛍光体およびそれを用いた発光装置
WO2010098141A1 (ja) * 2009-02-26 2010-09-02 日亜化学工業株式会社 蛍光体及びその製造方法並びにこれを用いた発光装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5016187B2 (ja) * 2004-07-14 2012-09-05 Dowaエレクトロニクス株式会社 窒化物蛍光体、窒化物蛍光体の製造方法、並びに上記窒化物蛍光体を用いた光源及びled
JP5322053B2 (ja) * 2007-01-12 2013-10-23 独立行政法人物質・材料研究機構 蛍光体、その製造方法および発光器具

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105631A1 (ja) * 2006-03-10 2007-09-20 Kabushiki Kaisha Toshiba 蛍光体および発光装置
JP2010031201A (ja) * 2008-07-31 2010-02-12 Toshiba Corp 蛍光体およびそれを用いた発光装置
JP2010106127A (ja) * 2008-10-29 2010-05-13 Toshiba Corp 赤色蛍光体およびそれを用いた発光装置
WO2010098141A1 (ja) * 2009-02-26 2010-09-02 日亜化学工業株式会社 蛍光体及びその製造方法並びにこれを用いた発光装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013137434A1 (ja) * 2012-03-16 2013-09-19 株式会社東芝 蛍光体、蛍光体の製造方法および発光装置
US20150014726A1 (en) * 2012-03-16 2015-01-15 Kabushiki Kaisha Toshiba Phosphor, method for producing phosphor and light emitting device
US9512359B2 (en) 2012-03-16 2016-12-06 Kabushiki Kaisha Toshiba Phosphor, method for producing phosphor and light emitting device

Also Published As

Publication number Publication date
KR101476561B1 (ko) 2014-12-24
CN103119126B (zh) 2015-07-08
KR20130088853A (ko) 2013-08-08
JPWO2012036016A1 (ja) 2014-02-03
CN103119126A (zh) 2013-05-22

Similar Documents

Publication Publication Date Title
JP5367218B2 (ja) 蛍光体の製造方法および発光装置の製造方法
TWI351426B (en) Phosphor, method for production thereof, and light
KR101419626B1 (ko) β형 사이알론, β형 사이알론의 제조 방법 및 발광 장치
JP2010043242A (ja) β−サイアロン蛍光体の製造方法。
KR101042583B1 (ko) 백색 형광체 및 백색 발광 소자 내지 장치
WO2012036016A1 (ja) 蛍光体および発光装置
WO2008057225A2 (en) High cri led lamps utilizing single phosphor
US8440104B2 (en) Kimzeyite garnet phosphors
KR20130106394A (ko) 청색 발광 형광체 및 그 청색 발광 형광체를 사용한 발광 장치
WO2013137436A1 (ja) 蛍光体、蛍光体の製造方法および発光装置
JP6869057B2 (ja) 赤色蛍光体および発光装置
JPWO2016076380A1 (ja) 蛍光体、発光装置、照明装置及び画像表示装置
JP2007137946A (ja) 蛍光体、並びにそれを用いた発光装置、画像表示装置及び照明装置
JP5702568B2 (ja) 蛍光体の製造方法および発光装置
JP5718580B2 (ja) 赤色蛍光体およびその製造方法、ならびに発光装置
JP5955835B2 (ja) 蛍光体および発光装置
JP5730084B2 (ja) ユーロピウム付活ストロンチウムサイアロン蛍光体およびその製造方法、ならびに発光装置
JP2018150433A (ja) 橙色蛍光体および発光装置
WO2013137434A1 (ja) 蛍光体、蛍光体の製造方法および発光装置
WO2013137435A1 (ja) 蛍光体、蛍光体の製造方法および発光装置
JP5702569B2 (ja) 蛍光体の製造方法および発光装置
JP2017186459A (ja) 窒化物蛍光体粉末およびその製造方法
JP6187342B2 (ja) 酸窒化物蛍光体粉末およびその製造方法
JP7282757B2 (ja) 赤色蛍光体及び発光装置
JP2012077208A (ja) 炭窒化物系蛍光体、およびこれを用いた発光装置、並びに炭窒化物系蛍光体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180044441.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825022

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012533950

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20137006644

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11825022

Country of ref document: EP

Kind code of ref document: A1