WO2012035698A1 - リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ - Google Patents

リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ Download PDF

Info

Publication number
WO2012035698A1
WO2012035698A1 PCT/JP2011/004342 JP2011004342W WO2012035698A1 WO 2012035698 A1 WO2012035698 A1 WO 2012035698A1 JP 2011004342 W JP2011004342 W JP 2011004342W WO 2012035698 A1 WO2012035698 A1 WO 2012035698A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
ion secondary
powder
lithium ion
Prior art date
Application number
PCT/JP2011/004342
Other languages
English (en)
French (fr)
Inventor
英明 菅野
隆二 坂野
Original Assignee
株式会社大阪チタニウムテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大阪チタニウムテクノロジーズ filed Critical 株式会社大阪チタニウムテクノロジーズ
Priority to KR1020137007921A priority Critical patent/KR20130055668A/ko
Priority to CN2011800441422A priority patent/CN103119760A/zh
Priority to JP2012533836A priority patent/JP5584302B2/ja
Publication of WO2012035698A1 publication Critical patent/WO2012035698A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/42Powders or particles, e.g. composition thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a powder for a negative electrode material that can be used for a lithium ion secondary battery, has a large discharge capacity, has good cycle characteristics, and can obtain a lithium ion secondary battery that can withstand use at a practical level.
  • the present invention also relates to a lithium ion secondary battery negative electrode and capacitor negative electrode, and a lithium ion secondary battery and capacitor using the negative electrode material powder.
  • high energy density secondary batteries include nickel cadmium batteries, nickel metal hydride batteries, lithium ion secondary batteries, and polymer batteries.
  • lithium ion secondary batteries have a much longer lifespan and higher capacity than nickel cadmium batteries and nickel metal hydride batteries, and thus the demand thereof has shown high growth in the power supply market.
  • FIG. 1 is a diagram showing a configuration example of a coin-shaped lithium ion secondary battery.
  • the lithium ion secondary battery maintains the electrical insulation between the positive electrode 1, the negative electrode 2, the separator 3 impregnated with the electrolyte, and the positive electrode 1 and the negative electrode 2 and seals the battery contents. It consists of a gasket 4.
  • lithium ions reciprocate between the positive electrode 1 and the negative electrode 2 through the electrolytic solution of the separator 3.
  • the positive electrode 1 includes a counter electrode case 1a, a counter electrode current collector 1b, and a counter electrode 1c.
  • Lithium cobaltate (LiCoO 2 ) and manganese spinel (LiMn 2 O 4 ) are mainly used for the counter electrode 1c.
  • the negative electrode 2 is composed of a working electrode case 2a, a working electrode current collector 2b, and a working electrode 2c.
  • the negative electrode material used for the working electrode 2c is generally an active material capable of occluding and releasing lithium ions (negative electrode active material). ), A conductive aid and a binder.
  • a negative electrode active material of a lithium ion secondary battery carbon, a composite oxide of lithium and boron, a composite oxide of lithium and a transition metal (V, Fe, Cr, Mo, Ni, etc.), Si, Ge or A compound containing Sn, N and O, Si particles whose surface is coated with a carbon layer by chemical vapor deposition, and the like have been proposed.
  • a powder of lower silicon oxide represented by a general formula SiO x (0.5 ⁇ x ⁇ 1.5) such as SiO is expected as the negative electrode active material.
  • Silicon oxide has a low electrode potential with respect to lithium (base), and does not occlude lithium ions during charging / discharging, and does not degrade the crystal structure due to release or generation of irreversible substances, and reversibly occludes lithium ions. And since it can discharge
  • Patent Document 1 proposes a non-aqueous electrolyte secondary battery using lower silicon oxide powder as a negative electrode active material.
  • the lower silicon oxide contains lithium in its crystal structure or amorphous structure so that lithium ions can be occluded and released by an electrochemical reaction in a non-aqueous electrolyte.
  • a composite oxide of lithium and silicon is formed.
  • the present invention has been made in view of these problems, and is used as a negative electrode active material in a lithium ion secondary battery that has a large discharge capacity, good cycle characteristics, and can withstand use at a practical level.
  • An object is to provide a negative electrode material powder and a lithium ion secondary battery using the negative electrode material powder.
  • FIG. 2 is a schematic diagram for explaining the chemical reaction of the electrolyte component on the surface of the lower silicon oxide.
  • LiF film A component containing Li and F in the liquid (for example, lithium phosphorus hexafluoride (LiPF 6 )) is decomposed, and a film 21 (hereinafter referred to as “LiF film”) made of a LiF compound on the surface of the lower silicon oxide powder 20. It is formed. Since the lower silicon oxide powder used as the negative electrode active material is greatly expanded and contracted during charging and discharging of the lithium ion secondary battery, the formed LiF film 21 is easily peeled off due to charging and discharging and is not stable. Then, in the silicon oxide phase exposed by peeling off the LiF film 21, the decomposition reaction of the electrolyte component and the formation reaction of the LiF film 21 proceed again.
  • LiPF 6 lithium phosphorus hexafluoride
  • Lithium ions are substances that charge and discharge between the positive electrode and the negative electrode, and if this decreases due to repeated charge and discharge, the charge / discharge capacity of the lithium ion secondary battery decreases and the cycle characteristics are inferior. Become.
  • the present inventors examined a method for suppressing the formation of a LiF film at the time of charge and discharge that affects the cycle characteristics, and found that the method of adding Cl to the surface of the lower silicon oxide powder is effective. I found out.
  • FIG. 3 is a schematic view of a lower silicon oxide powder with Cl added on the surface, and shows a state in which a part of the added Cl is replaced with F.
  • the present invention has been made on the basis of this finding, and the gist of the present invention is that the following (1) to (3) a powder for a lithium ion secondary battery negative electrode material, the following (4) a lithium ion secondary battery negative electrode and It exists in the capacitor negative electrode of the following (5), the lithium ion secondary battery of the following (6), and the capacitor of the following (7).
  • a powder for a lithium ion secondary battery negative electrode material having a silicon-rich layer on the surface of a lower silicon oxide powder, and chlorine added to the surface of the silicon-rich layer, the surface chlorine concentration being 0.1 mol% or more The powder for lithium ion secondary battery negative electrode materials characterized by these.
  • the “lower silicon oxide powder” is a powder of silicon oxide (SiO x ) satisfying the value x of the molar ratio of oxygen to silicon as a whole satisfying 0.4 ⁇ x ⁇ 1.2.
  • the “silicon-rich layer” refers to a region in the vicinity of the surface of the lower silicon oxide powder and a region in which the value x of the molar ratio of oxygen to silicon is smaller than the value x of the entire lower silicon oxide powder. .
  • the silicon rich layer also includes a silicon coating.
  • the “surface chlorine concentration” on the surface of the lower silicon oxide powder or silicon-rich layer is a value calculated by dividing the number of Cl atoms on these surfaces by the total number of Si, O, C and Cl atoms as mol%. It is. A method for measuring x and a method for measuring the surface chlorine concentration of the lower silicon oxide powder will be described later.
  • Si / C molar ratio value Si / C is It is 0.02 or less, that is, a state in which most of the surface of the negative electrode powder for lithium ion secondary battery is covered with C and Si and Cl are hardly exposed.
  • the lithium ion secondary battery has a large discharge capacity, good cycle characteristics, and can be used at a practical level.
  • a secondary battery or capacitor can be obtained.
  • the lithium ion secondary battery and capacitor of the present invention have a large discharge capacity and good cycle characteristics.
  • FIG. 1 is a diagram illustrating a configuration example of a coin-shaped lithium ion secondary battery.
  • FIG. 2 is a schematic view for explaining the chemical reaction of the electrolyte component on the surface of the lower silicon oxide.
  • FIG. 3 is a schematic view of a lower silicon oxide powder with Cl added to the surface.
  • FIG. 4 is a diagram illustrating a configuration example of a silicon oxide manufacturing apparatus.
  • FIG. 5 is a diagram showing a configuration example of a SiCl X disproportionation reaction apparatus.
  • the powder for negative electrode material of lithium ion secondary battery of the present invention is a powder for negative electrode material of lithium ion secondary battery in which chlorine is added to the surface of lower silicon oxide powder, or lower oxidation
  • the surface chlorine concentration being 0.1 mol% or more
  • the lower silicon oxide powder is a silicon oxide (SiO x ) powder in which the total oxygen to silicon molar ratio (O / Si) value x satisfies 0.4 ⁇ x ⁇ 1.2. .
  • the reason why x is in this range is that when the value of x is less than 0.4, the lithium ion secondary battery using the negative electrode material powder of the present invention and the capacitor are severely deteriorated with the charge / discharge cycle, This is because the capacities of the lithium ion secondary battery and the capacitor are reduced when the value exceeds.
  • x preferably satisfies 0.8 ⁇ x ⁇ 1.05.
  • the lithium ion secondary battery negative electrode powder of the present invention has chlorine added to the surface of the lower silicon oxide powder or the surface of the silicon rich layer formed on the surface of the lower silicon oxide powder, and the surface chlorine concentration is 0. .1 mol% or more.
  • the LiF compound is formed in the lithium ion secondary battery, and the reduction of the discharge capacity due to the reduction of lithium ions is suppressed.
  • the lithium ion secondary battery can have excellent cycle characteristics. This effect of suppressing the reduction in discharge capacity can be obtained if the surface chlorine concentration is 0.1 mol% or more.
  • the upper limit of the surface chlorine concentration is preferably less than 2.0 mol% as the chemical reaction between the electrode (for example, copper foil) used for the negative electrode of the lithium ion secondary battery and chlorine does not have an adverse effect.
  • the silicon-rich layer formed on the surface of the lower silicon oxide powder is the surface of the powder for a lithium ion secondary battery negative electrode material and the vicinity thereof, and the value x of the molar ratio of oxygen to silicon described above is An area smaller than the value of x.
  • the silicon oxide powder when the surface oxygen to silicon molar ratio value x1 is smaller than the oxygen to silicon molar ratio x0 of the entire powder, that is, x1 ⁇ x0.
  • the reversible capacity and the irreversible capacity of a lithium ion secondary battery using this lower silicon oxide powder as a negative electrode material powder are increased as compared with the case of x1 ⁇ x0. I was able to.
  • the silicon-rich layer may be formed on the surface of the lower silicon oxide powder as a silicon film, and the silicon film may completely cover the whole powder or may cover a part of the powder.
  • the lithium ion secondary battery negative electrode powder of the present invention preferably has a conductive carbon film on the surface to which chlorine is added.
  • a conductive carbon film By forming a conductive carbon film on the surface, the conductivity of the negative electrode material powder for lithium ion secondary battery is improved, and the discharge capacity of the lithium ion secondary battery using this negative electrode material powder is reduced to the conductive carbon film. It is possible to make it larger than the case of using the one not formed.
  • the proportion of the conductive carbon film (hereinafter referred to as “carbon film ratio”) is preferably 0.2% by mass or more and 10% by mass or less. This is due to the following reason.
  • the carbon film also contributes to the charge / discharge capacity of the lithium ion secondary battery as in the case of lower silicon oxide, but its charge / discharge capacity per unit mass is smaller than that of lower silicon oxide. Therefore, the carbon film rate of the powder for a lithium ion secondary battery negative electrode material is preferably 10% by mass or less from the viewpoint of securing the charge / discharge capacity of the lithium ion secondary battery. On the other hand, if the carbon film ratio is less than 0.2% by mass, the effect of imparting conductivity by the conductive carbon film cannot be obtained, and the lithium ion secondary battery using the negative electrode material powder is difficult to function as a battery. .
  • the specific resistance of the negative electrode material for lithium ion secondary battery is preferably 40000 ⁇ cm or less. This is because when the specific resistance is larger than 40000 ⁇ cm, it is difficult to act as an electrode active material of a lithium ion secondary battery. The smaller the specific resistance, the better the electric conduction and the better the electrode active material of the lithium ion secondary battery, so there is no need to provide a lower limit.
  • the average particle size of the lithium ion secondary battery negative electrode powder is preferably 1 ⁇ m or more and 15 ⁇ m or less, and more preferably 3 ⁇ m or more and 12 ⁇ m or less. If the average particle size is too small, a uniform slurry cannot be obtained during electrode production, and the powder tends to fall off from the current collector. On the other hand, if the average particle diameter is too large, it is difficult to produce the electrode film constituting the working electrode 2c shown in FIG. 1, and the powder may be peeled off from the current collector.
  • the average particle diameter is a value measured as a weight average value D 50 (particle diameter or median diameter when the cumulative weight is 50% of the total weight) in the particle size distribution measurement by the laser light diffraction method.
  • SiO x is the molar ratio of O content and the Si content of the lithium-ion secondary battery negative electrode material for a powder (O / Si), the powder surface and powder
  • the total value of x can be measured and calculated by the following method.
  • the value of x on the surface of the silicon oxide powder can be measured by Auger electron spectroscopy.
  • the average of the numerical values measured once in each section, with a 0.5 mm square area divided into a total of 100 sections of 10 sections vertically and horizontally at equal intervals Is the value of x on the surface of the silicon oxide powder.
  • the beam diameter of the primary electron beam at the time of measurement is 0.5 ⁇ m or less, and Ar + ion etching is used in combination.
  • the measurement target is a numerical value converted by Ar + ion etching rate (52.6 nm / min), and is set to a region of 20 to 100 nm in the depth direction from the surface.
  • the value of x of the whole powder can be calculated by dividing, for example, the O content measured by the measurement methods shown in the following (a) and (b) by the Si content.
  • Si content rate in the negative electrode powder for lithium ion secondary batteries was determined by adding nitric acid and hydrofluoric acid to the sample to dissolve the sample, and then using the obtained solution as an ICP emission spectrometer ( It is calculated from the Si content in the sample under quantitative evaluation by analysis with Shimadzu Corporation. In this method, Si, SiO and SiO 2 are dissolved, and Si constituting them can be detected.
  • the surface chlorine concentration of the negative electrode material powder for lithium ion secondary batteries was measured by using XPS, measuring the number of atoms of Si, O, C and Cl under the conditions shown in Table 2, and the number of Cl atoms. Is divided by the total number of atoms of Si, O, C and Cl to calculate as mol%.
  • the measurement result of the surface is adopted as the surface chlorine concentration.
  • the powder for the negative electrode material for the lithium ion secondary battery has a predetermined depth by Ar in the depth direction from the surface toward the center.
  • Etching is performed with a pitch, and the operation of measuring the etched surface with XPS is repeated, and the number of atoms of Si, O, C, and Cl is measured for each depth.
  • the maximum value is adopted as the surface chlorine concentration.
  • the pitch for etching is 1 nm or less in terms of SiO 2 .
  • Carbon film ratio measurement method The carbon film ratio is determined based on the mass of the powder for the negative electrode material of the lithium ion secondary battery used as a sample and the oxygen concentration combustion-infrared absorption of the sample using a carbon concentration analyzer (Leco, CS400). It is calculated from the result of carbon amount quantitatively evaluated by analyzing CO 2 gas by the method.
  • the crucible is a ceramic crucible, the auxiliary combustor is copper, and the analysis time is 40 seconds.
  • the specific resistance ⁇ ( ⁇ cm) of the powder for a negative electrode material for a lithium ion secondary battery is calculated using the following equation (2).
  • R ⁇ A / L
  • R electrical resistance ( ⁇ ) of the sample
  • A bottom area (cm 2 ) of the sample
  • L thickness (cm) of the sample.
  • the electrical resistance of the sample can be measured, for example, by a two-terminal method using a digital multimeter (VOAC7513, manufactured by Iwatatsu Measurement Co., Ltd.).
  • the sample was filled with 0.20 g of the sample in a powder resistance measurement jig (jig part: stainless steel with an inner diameter of 20 mm, frame part: made of polytetrafluoroethylene), and pressurized at 20 kgf / cm 2 for 60 seconds.
  • the thickness of the molded sample is measured with a micrometer.
  • FIG. 4 is a diagram illustrating a configuration example of a silicon oxide production apparatus. This apparatus includes a vacuum chamber 5, a raw material chamber 6 disposed in the vacuum chamber 5, and a deposition chamber 7 disposed on the upper portion of the raw material chamber 6.
  • the raw material chamber 6 is formed of a cylindrical body, and a cylindrical raw material container 8 and a heating source 10 surrounding the raw material container 8 are disposed at the center thereof.
  • a heating source 10 for example, an electric heater can be used.
  • the deposition chamber 7 is composed of a cylindrical body arranged so that its axis coincides with the raw material container 8.
  • a deposition base 11 made of stainless steel is provided on the inner peripheral surface of the deposition chamber 7 for vapor deposition of gaseous silicon oxide generated by sublimation in the raw material chamber 6.
  • a vacuum device (not shown) for discharging the atmospheric gas is connected to the vacuum chamber 5 that accommodates the raw material chamber 6 and the deposition chamber 7, and the gas is discharged in the direction of arrow A.
  • a mixed granulated raw material 9 obtained by mixing silicon powder and silicon dioxide powder in a predetermined ratio as a raw material, and mixing, granulating and drying is used.
  • the mixed granulated raw material 9 is filled in the raw material container 8 and heated (heated by a heating source 10) in an inert gas atmosphere or vacuum to generate (sublimate) SiO.
  • Gaseous SiO generated by the sublimation rises from the raw material chamber 6 and enters the deposition chamber 7, is vapor-deposited on the surrounding deposition base 11, and is deposited as lower silicon oxide 12. Thereafter, the lower silicon oxide 12 deposited from the deposition base 11 is removed and pulverized using a ball mill or the like to obtain a lower silicon oxide powder.
  • FIG. 5 is a diagram illustrating a configuration example of a SiCl X disproportionation reaction apparatus.
  • the SiCl X disproportionation reactor includes a powder container 14 that contains the silicon oxide powder 13 and a heating source 15 that surrounds the powder container 14.
  • the heating source 15 for example, an electric heater can be used.
  • the inside of the powder container 14 is partitioned vertically by a porous plate 16, and the silicon oxide powder 13 is placed on the porous plate 16.
  • SiCl X gas is introduced into the powder container 14 from below the porous plate 16.
  • the SiCl X gas that has passed through the perforated plate 16 is discharged from above while in contact with the surface of the silicon oxide powder 13 heated by the heating source 15.
  • SiCl X Since the silicon oxide powder 13 and the surrounding atmosphere are heated by the heating source 15, when SiCl X is introduced into the powder container 14, the surface of the silicon oxide powder 13 has SiCl represented by the following chemical formula (1).
  • a disproportionation reaction of X (X ⁇ 4) occurs, and silicon is generated.
  • Silicon (Si) produced by the disproportionation reaction of SiCl X adheres to the surface of the silicon oxide powder 13 to form a silicon film, that is, a silicon rich layer.
  • the thickness and amount of the silicon film can be adjusted by adjusting the amount and time of introducing SiCl X.
  • Method of adding chlorine By adding chlorine to the surface of the lower silicon oxide powder or silicon-rich layer, the powder for the negative electrode material of the lithium ion secondary battery of the present invention is completed.
  • Various methods are conceivable as a method of adding chlorine to the surface of the lower silicon oxide powder or the silicon-rich layer.
  • the conductive carbon film is formed on the surface of the lithium ion secondary battery negative electrode powder by CVD or the like. Specifically, a rotary kiln is used as the apparatus, and a mixed gas of a hydrocarbon gas or an organic substance-containing gas that is a carbon source and an inert gas is used as a gas.
  • hydrocarbon gas consisting only of C and H is preferable as the carbon source.
  • the forming temperature of the conductive carbon film is 700 ° C. or higher and 750 ° C. or lower.
  • the treatment time is 20 minutes or more and 120 minutes or less, and is set according to the thickness of the conductive carbon film to be formed.
  • Configuration of Lithium Ion Secondary Battery A configuration example of a coin-shaped lithium ion secondary battery using the powder for a lithium ion secondary battery negative electrode material and the lithium ion secondary battery negative electrode of the present invention is described with reference to FIG. explain. The basic configuration of the lithium ion secondary battery shown in FIG.
  • the negative electrode material used for the negative electrode 2, that is, the working electrode 2c constituting the negative electrode of the lithium ion secondary battery of the present invention is configured using the powder for negative electrode material of the lithium ion secondary battery of the present invention. Specifically, it can be comprised with the powder for lithium ion secondary battery negative electrode materials of this invention which is an active material, another active material, a conductive support material, and a binder. Of the constituent materials in the negative electrode material, the ratio of the powder for the negative electrode material of the lithium ion secondary battery of the present invention to the total of the constituent materials excluding the binder is 20% by mass or more. It is not always necessary to add an active material other than the powder for a negative electrode material of the lithium ion secondary battery of the present invention.
  • the conductive additive for example, acetylene black or carbon black can be used
  • the binder for example, polyacrylic acid (PAA) or polyvinylidene fluoride can be used.
  • the lithium ion secondary battery of the present invention uses the above-described powder for a lithium ion secondary battery negative electrode material and a lithium ion secondary battery negative electrode of the present invention, the discharge capacity is large, the cycle characteristics are good, and the practical level. Can withstand use in
  • the powder for negative electrode material of the present invention and the negative electrode using the same can also be applied to capacitors.
  • Test conditions 1-1 Configuration of Lithium Ion Secondary Battery
  • the configuration of the lithium ion secondary battery was the coin shape shown in FIG.
  • This lower silicon oxide powder was subjected to a chlorine addition treatment on the surface by heating to 500 ° C. in a SiCl 4 —Ar mixed gas atmosphere.
  • the molar ratio of SiCl 4 / Ar in the SiCl 4 -Ar mixed gas was as shown in Table 3.
  • the average particle diameter (D 50 ) of the lower silicon oxide powder after the chlorine addition treatment was 5 to 10 ⁇ m.
  • Test Nos. 1 to 4 are examples of the present invention in which chlorine addition treatment is performed and the surface chlorine concentration satisfies the provisions of the present invention.
  • Test No. 5 is a comparative example in which no chlorine addition treatment was performed and the surface chlorine concentration was below the measurement limit. The surface chlorine concentration was calculated using the results measured using XPS.
  • a slurry is prepared by adding n-methylpyrrolidone to a mixture containing 65% by mass of the negative electrode powder for a lithium ion secondary battery, 10% by mass of acetylene black, and 25% by mass of PAA. This slurry was applied to a copper foil having a thickness of 20 ⁇ m, dried in an atmosphere at 120 ° C. for 30 minutes, and then punched out to a size with an area of 1 cm 2 on one side to obtain a negative electrode 2.
  • the counter electrode 1c was a lithium foil.
  • the electrolytic solution was a solution in which LiPF 6 was dissolved at a ratio of 1 mol / liter in a mixed solution of EC (ethylene carbonate) and DEC (diethyl carbonate) in a volume ratio of 1: 1.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • a polyethylene porous film having a thickness of 30 ⁇ m was used as the separator.
  • Test Results A charge / discharge test was performed on the lithium ion secondary battery manufactured under the above conditions, and evaluation was performed using the discharge capacity (initial discharge capacity) at the first cycle and the cycle capacity retention rate as indices. Moreover, the specific resistance of the powder for lithium ion secondary battery negative electrode materials was also measured. These values are shown in Table 3 together with the test conditions.
  • the cycle capacity retention ratio is a value obtained by dividing the discharge capacity at the 100th cycle by the initial discharge capacity, and the larger this value, the better the cycle characteristics.
  • the initial discharge capacity was 1437 mAh / g or more, and the cycle capacity maintenance rate was 80% or more, both excellent values. Further, the higher the surface chlorine concentration, the higher the cycle capacity maintenance rate. The reason why the cycle capacity retention rate was excellent is considered to be that the generation of LiF during charging and discharging was suppressed by adding chlorine to the surface of the lower silicon oxide powder.
  • test number 5 which is a comparative example, the initial discharge capacity was 1432 mAh / g, which was slightly inferior to that of the example of the present invention, but the cycle capacity retention rate was 76%, which was inferior to that of the example of the present invention. This is presumably because the lithium ions in the electrolyte decreased due to the generation of LiF during charging and discharging.
  • Lithium ion secondary battery negative electrode powder according to the present invention, and lithium ion secondary battery negative electrode or capacitor negative electrode are used to provide lithium having a large discharge capacity and good cycle characteristics, and can be used at a practical level. An ion secondary battery or a capacitor can be obtained. Moreover, the lithium ion secondary battery and capacitor of the present invention have a large discharge capacity and good cycle characteristics. Therefore, the present invention is a useful technique in the field of secondary batteries and capacitors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 低級酸化珪素粉末の表面に塩素が付加したリチウムイオン二次電池負極材用粉末、または低級酸化珪素粉末の表面に珪素リッチ層を有し、前記珪素リッチ層の表面に塩素が付加したリチウムイオン二次電池負極材用粉末であって、表面塩素濃度が0.1mol%以上であることを特徴とするリチウムイオン二次電池負極材用粉末。この負極材用粉末は、前記塩素が付加した表面に炭素皮膜を有することが好ましい。 これにより、放電容量が大きく、かつサイクル特性が良好であり、実用レベルでの使用に耐え得るリチウムイオン二次電池に用いられる負極材用粉末を提供することができる。

Description

リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
 本発明は、リチウムイオン二次電池に用いることにより放電容量が大きく、かつサイクル特性が良好であり、実用レベルでの使用に耐え得るリチウムイオン二次電池を得ることができる負極材用粉末に関する。また本発明は、この負極材用粉末を用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタに関する。
 近年、携帯型の電子機器、通信機器等の著しい発展に伴い、経済性と機器の小型化および軽量化の観点から、高エネルギー密度の二次電池の開発が強く要望されている。現在、高エネルギー密度の二次電池として、ニッケルカドミウム電池、ニッケル水素電池、リチウムイオン二次電池およびポリマー電池等がある。このうち、リチウムイオン二次電池は、ニッケルカドミウム電池やニッケル水素電池に比べて格段に高寿命かつ高容量であることから、その需要は電源市場において高い伸びを示している。
 図1は、コイン形状のリチウムイオン二次電池の構成例を示す図である。リチウムイオン二次電池は、同図に示すように、正極1、負極2、電解液を含浸させたセパレーター3、および正極1と負極2の電気的絶縁性を保つとともに電池内容物を封止するガスケット4から構成されている。充放電を行うと、リチウムイオンがセパレーター3の電解液を介して正極1と負極2の間を往復する。
 正極1は、対極ケース1aと対極集電体1bと対極1cとで構成され、対極1cにはコバルト酸リチウム(LiCoO)やマンガンスピネル(LiMn)が主に使用される。負極2は、作用極ケース2aと作用極集電体2bと作用極2cとで構成され、作用極2cに用いる負極材は、一般に、リチウムイオンの吸蔵、放出が可能な活物質(負極活物質)と導電助剤およびバインダーとで構成される。
 従来、リチウムイオン二次電池の負極活物質としては、カーボン、リチウムとホウ素の複合酸化物、リチウムと遷移金属(V、Fe、Cr、Mo、Ni等)との複合酸化物、Si、GeまたはSnとNおよびOを含む化合物、化学蒸着により表面を炭素層で被覆したSi粒子等が提案されている。
 しかし、これらの負極活物質はいずれも、充放電容量を向上させ、エネルギー密度を高めることができるものの、充放電の繰り返しにともなって電極上にデンドライトや不働体化合物が生成するため劣化が顕著であり、またはリチウムイオンの吸蔵、放出時の膨張や収縮が大きくなる。そのため、これらの負極活物質を用いたリチウムイオン二次電池は、充放電の繰り返しによる放電容量の維持性(以下、「サイクル特性」という)が不十分である。
 これに対し、負極活物質としてSiO等、一般式でSiO(0.5≦x≦1.5)と表される低級酸化珪素の粉末が期待されている。酸化珪素は、リチウムに対する電極電位が低く(卑であり)、充放電時のリチウムイオンの吸蔵、放出による結晶構造の崩壊や不可逆物質の生成等の劣化がなく、かつ可逆的にリチウムイオンを吸蔵および放出可能であることから、有効な充放電容量がより大きな負極活物質となり得る。そのため、酸化珪素を負極活物質として用いることにより、カーボンを用いた場合と比較して高容量であり、SiやSn合金といった高容量負極材を用いた場合と比較してサイクル特性が良好なリチウムイオン二次電池が得られている。
 例えば特許文献1では、低級酸化珪素粉末を負極活物質として用いた非水電解質二次電池が提案されている。この提案された二次電池において、低級酸化珪素は、その結晶構造中または非晶質構造内にリチウムを含有し、非水電解質中で電気化学反応によってリチウムイオンを吸蔵および放出可能となるようにリチウムと珪素との複合酸化物を構成する。
特許第2997741号公報
 上述のように、特許文献1で提案された二次電池では、低級酸化珪素粉末を負極活物質として用いることで高容量を得ることができるものの、本発明者らの検討によれば、サイクル特性が実用レベルに達していないという問題があった。
 本発明は、これらの問題に鑑みてなされたものであり、放電容量が大きく、かつサイクル特性が良好であり、実用レベルでの使用に耐え得るリチウムイオン二次電池に、負極活物質として用いられる負極材用粉末、およびこの負極材用粉末を用いたリチウムイオン二次電池を提供することを目的とする。
 図2は、低級珪素酸化物表面での電解液成分の化学反応を説明するための模式図である。本発明者らが、特許文献1で提案された二次電池のサイクル特性が低い原因について検討したところ、以下の結論に達した。すなわち、低級酸化珪素粉末を負極材に用いたリチウムイオン二次電池では、同図に示すように、充放電時に電解液が負極活物質を構成する低級酸化珪素粉末20の表面に接触すると、電解液中のLiおよびFを含有する成分(例えば六フッ化リンリチウム(LiPF))が分解され、低級酸化珪素粉末20の表面にLiF化合物からなる皮膜21(以下「LiF皮膜」という。)が形成される。負極活物質として用いられた低級酸化珪素粉末は、リチウムイオン二次電池の充放電時における膨張、収縮が大きいため、形成されたLiF皮膜21は充放電にともなって剥がれやすく安定しない。そして、LiF皮膜21が剥がれて露出した酸化珪素相では、再び電解液成分の分解反応およびLiF皮膜21の形成反応が進行する。このように、リチウムイオン二次電池の充放電を繰り返すと、LiF皮膜の形成反応および剥離が絶え間なく進行し、電解液中のリチウムイオンが減少する。リチウムイオンは正極と負極との間を行き来して充放電を担う物質であるため、これが充放電の繰り返しにより減少すると、リチウムイオン二次電池の充放電容量が低下し、サイクル特性が劣る原因となる。
 そこで、本発明者らが、このサイクル特性に影響を及ぼす充放電時のLiF皮膜の形成を抑制する方法について検討したところ、低級酸化珪素粉末の表面にClを付加する方法が有効であることを知見した。
 図3は、表面にClを付加した低級酸化珪素粉末の模式図であり、付加したClの一部がFに置換された様子を示す。低級酸化珪素粉末20の表面にClを付加することにより、リチウムイオン二次電池の充放電時に低級酸化珪素粉末の表面において、上述したLiF化合物が形成される反応よりも、ClからFへの置換反応を優先的に進行させることができる。この置換反応が進行すると、低級酸化珪素粉末20の表面はClに代えてFが付加された状態となる。Clから置換されたFは、酸化珪素が膨張、収縮しても脱落せず、付加した状態で存在する。Fが付加された表面では電解液の分解反応が抑制されるため、正極と負極との間を行き来するリチウムイオンがLiF化合物の形成により減少するのを抑制することができ、優れたサイクル特性を得ることができる。
 本発明は、この知見に基づいてなされたものであり、その要旨は、下記(1)~(3)のリチウムイオン二次電池負極材用粉末、下記(4)のリチウムイオン二次電池負極および下記(5)のキャパシタ負極、ならびに下記(6)のリチウムイオン二次電池および下記(7)のキャパシタにある。
(1)低級酸化珪素粉末の表面に塩素が付加したリチウムイオン二次電池負極材用粉末であって、表面塩素濃度が0.1mol%以上であることを特徴とするリチウムイオン二次電池負極材用粉末。
(2)低級酸化珪素粉末の表面に珪素リッチ層を有し、前記珪素リッチ層の表面に塩素が付加したリチウムイオン二次電池負極材用粉末であって、表面塩素濃度が0.1mol%以上であることを特徴とするリチウムイオン二次電池負極材用粉末。
(3)前記塩素が付加した表面に炭素皮膜を有することを特徴とする前記(1)または(2)のリチウムイオン二次電池負極材用粉末。
(4)前記(1)~(3)のいずれかのリチウムイオン二次電池負極材用粉末を用いたリチウムイオン二次電池用負極。
(5)前記(1)~(3)のいずれかのリチウムイオン二次電池負極材用粉末を用いたキャパシタ負極。
(6)前記(4)のリチウムイオン二次電池負極を用いたリチウムイオン二次電池。
(7)前記(5)のキャパシタ負極を用いたキャパシタ。
 本発明において、「低級酸化珪素粉末」とは、全体の酸素と珪素のmol比の値xが0.4≦x≦1.2を満たす酸化珪素(SiO)の粉末である。
 「珪素リッチ層」とは、低級酸化珪素粉末の表面およびその近傍の領域であって、上記酸素と珪素のmol比の値xが、低級酸化珪素粉末全体のxの値よりも小さい領域をいう。珪素リッチ層には、珪素被覆も含まれる。
 低級酸化珪素粉末または珪素リッチ層の表面における「表面塩素濃度」とは、これらの表面におけるClの原子数をSi、O、CおよびClの原子数の合計で除してmol%として算出した値である。xの測定方法、および低級酸化珪素粉末の表面塩素濃度の測定方法については後述する。
 「塩素が付加した表面に導電性炭素皮膜を有する」とは、後述するように、X線光電子分光分析装置を用いて表面分析を行った結果、SiとCのモル比の値Si/Cが0.02以下であること、すなわちリチウムイオン二次電池負極材用粉末の表面のほとんどがCに覆われており、SiおよびClがほとんど露出していない状態をいう。
 本発明のリチウムイオン二次電池負極材用粉末、およびリチウムイオン二次電池用負極を用いることにより、放電容量が大きく、かつサイクル特性が良好であり、実用レベルでの使用に耐え得るリチウムイオン二次電池またはキャパシタを得ることができる。また、本発明のリチウムイオン二次電池およびキャパシタは、放電容量が大きく、かつサイクル特性が良好である。
図1はコイン形状のリチウムイオン二次電池の構成例を示す図である。 図2は低級珪素酸化物表面での電解液成分の化学反応を説明するための模式図である。 図3は表面にClを付加した低級酸化珪素粉末の模式図である。 図4は酸化珪素の製造装置の構成例を示す図である。 図5はSiCl不均化反応装置の構成例を示す図である。
1.本発明のリチウムイオン二次電池負極材用粉末
 本発明のリチウムイオン二次電池負極材用粉末は、低級酸化珪素粉末の表面に塩素が付加したリチウムイオン二次電池負極材用粉末、または低級酸化珪素粉末の表面に珪素リッチ層を有し、前記珪素リッチ層の表面に塩素が付加したリチウムイオン二次電池負極材用粉末であって、表面塩素濃度が0.1mol%以上であることを特徴とする。
 低級酸化珪素粉末とは、上述のように、全体の酸素と珪素のmol比(O/Si)の値xが0.4≦x≦1.2を満たす酸化珪素(SiO)の粉末である。xをこの範囲とする理由は、xの値が0.4を下回ると、本発明の負極材用粉末を用いたリチウムイオン二次電池およびキャパシタの充放電サイクルに伴う劣化が激しく、1.2を超えるとリチウムイオン二次電池およびキャパシタの容量が小さくなるからである。また、xは、0.8≦x≦1.05を満たすことが好ましい。
 本発明のリチウムイオン二次電池負極材用粉末は、低級酸化珪素粉末の表面、または低級酸化珪素粉末の表面に形成された珪素リッチ層の表面に塩素が付加しており、表面塩素濃度が0.1mol%以上である。リチウムイオン二次電池負極材用粉末の表面に塩素を有することにより、上述のように、リチウムイオン二次電池においてLiF化合物が形成され、リチウムイオンが減少することによる放電容量の低下を抑制することができ、リチウムイオン二次電池をサイクル特性の優れたものとすることができる。この放電容量の低減抑制効果は、表面塩素濃度が0.1mol%以上であれば得ることができる。表面塩素濃度の上限は、リチウムイオン二次電池の負極に用いられる電極(例えば銅箔)と塩素との化学反応が悪影響を及ぼさない程度として、2.0mol%未満が好ましい。
 低級酸化珪素粉末の表面に形成された珪素リッチ層とは、リチウムイオン二次電池負極材用粉末の表面およびその近傍の領域であって、上述の酸素と珪素のmol比の値xが、全体のxの値よりも小さい領域をいう。本発明者らが検討したところ、酸化珪素の粉末において、表面の酸素と珪素のmol比の値x1が、粉末全体の酸素と珪素のmol比x0の値よりも小さい場合、すなわちx1<x0であり、珪素リッチ層を有する場合には、x1≧x0の場合と比較して、この低級酸化珪素粉末を負極材用粉末として使用したリチウムイオン二次電池の可逆容量を大きくかつ不可逆容量を小さくすることができた。珪素リッチ層は、珪素皮膜として低級酸化珪素粉末の表面に形成されていてもよく、珪素皮膜は粉末全体を完全に覆うものであっても、粉末の一部を覆うものであってもよい。
 本発明のリチウムイオン二次電池負極材用粉末は、塩素が付加した表面に導電性炭素皮膜を有することが好ましい。表面に導電性炭素皮膜を形成することで、リチウムイオン二次電池負極材用粉末の導電性が向上し、この負極材用粉末を用いたリチウムイオン二次電池の放電容量を、導電性炭素皮膜を形成していないものを用いた場合よりも大きくすることができる。
 本発明のリチウムイオン二次電池負極材用粉末において導電性炭素皮膜の占める割合(以下、「炭素皮膜率」という)は、0.2質量%以上10質量%以下であることが好ましい。これは、以下の理由による。
 炭素皮膜も、低級酸化珪素と同様にリチウムイオン二次電池の充放電容量に寄与するものの、その単位質量あたりの充放電容量は低級酸化珪素に比較して小さい。そのため、リチウムイオン二次電池負極材用粉末の炭素皮膜率は10質量%以下であることが、リチウムイオン二次電池の充放電容量を確保する観点から好ましい。一方、炭素皮膜率が0.2質量%よりも小さいと、導電性炭素皮膜による導電性付与の効果が得られず、この負極材用粉末を用いたリチウムイオン二次電池が電池として作用しにくい。
 リチウムイオン二次電池負極材用粉末の比抵抗は、40000Ωcm以下が好ましい。これは、比抵抗が40000Ωcmよりも大きいとリチウムイオン二次電池の電極活物質として作用しにくいからである。比抵抗は、小さければ小さいほど電気伝導が良好になり、リチウムイオン二次電池の電極活物質として好ましい状態となるため下限は特に設ける必要がない。
 リチウムイオン二次電池負極材用粉末の平均粒子径は、1μm以上15μm以下が好ましく、3μm以上12μm以下がより好ましい。平均粒子径が小さすぎると、電極作製時に均一なスラリーにすることができず、粉末が集電体から脱落しやすい。一方、平均粒子径が大きすぎると前記図1に示す作用極2cを構成する電極膜の作製が困難となり、粉末が集電体から剥離するおそれがある。平均粒子径は、レーザー光回折法による粒度分布測定における重量平均値D50(累積重量が全重量の50%となるときの粒子径またはメジアン径)として測定した値とする。
2.分析方法
2-1.SiOのxの値の測定、算出方法
 SiOのxは、リチウムイオン二次電池負極材用粉末中のO含有率とSi含有率のモル比(O/Si)であり、粉末表面および粉末全体のxの値は以下の方法で測定、算出することができる。
2-1-1.粉末表面
 酸化珪素粉末表面のxの値は、オージェ電子分光分析によって測定することができる。オージェ電子分光装置の試料台上に密に載置した酸化珪素粉末について、0.5mm角の領域を等間隔に縦横10区画の合計100区画に区切り、各区画で1回ずつ測定した数値の平均を、その酸化珪素粉末表面のxの値とする。
 測定の際の1次電子線のビーム径は0.5μm以下とし、Arイオンエッチングを併用する。測定対象は、Arイオンエッチングレート(52.6nm/min)で換算した数値で、表面から深さ方向に20~100nmの領域とする。
2-1-2.粉末全体
 粉末全体のxの値は、例えば下記(a)及び(b)に示す測定方法で測定したO含有率をSi含有率で除して算出することができる。
(a)O含有率の測定方法
 リチウムイオン二次電池負極材用粉末中のO含有率は、酸素濃度分析装置(Leco社製、TC436)を用いて、試料10mgを不活性ガス融解・赤外線吸収法によって分析することで定量評価した試料中のO含有量から算出する。
(b)Si含有率の測定方法
 リチウムイオン二次電池負極材用粉末中のSi含有率は、試料に硝酸およびフッ酸を加えて試料を溶解させ、得られた溶液をICP発光分光分析装置(株式会社島津製作所製)で分析することによって定量評価下試料中のSi含有量から算出する。この方法では、Si、SiOおよびSiOが溶解され、これらを構成するSiを検出できる。
2-2.導電性炭素皮膜の形成状態の評価方法
 本発明のリチウムイオン二次電池負極材用粉末において、「表面に導電性炭素皮膜を有する」とは、AlKα線(1486.6eV)を用いたX線光電子分光分析装置(XPS)で、導電性炭素皮膜の形成処理を施したリチウムイオン二次電池負極材用粉末の表面分析を行った場合に、SiとCとのモル比の値Si/Cが0.02以下であることをいう。XPSの測定条件は表1に示す通りとする。「Si/Cが0.02以下」とは、リチウムイオン二次電池負極材用粉末の表面のほとんどがCに覆われており、Siがほとんど露出していない状態である。
Figure JPOXMLDOC01-appb-T000001
2-3.表面塩素濃度の測定方法
 リチウムイオン二次電池負極材用粉末の表面塩素濃度は、XPSを使用し、表2に示す条件でSi、O、CおよびClの原子数を測定し、Clの原子数をSi、O、CおよびClの原子数の合計で除してmol%として算出する。
Figure JPOXMLDOC01-appb-T000002
 リチウムイオン二次電池負極材用粉末の表面に導電性炭素皮膜が形成されていない場合には、表面について測定した結果を表面塩素濃度として採用する。
 リチウムイオン二次電池負極材用粉末の表面に導電性炭素皮膜が形成されている場合には、リチウムイオン二次電池負極材用粉末を表面から中心に向かって深さ方向に、Arによって所定のピッチでエッチングし、エッチングされた面をXPSで測定する操作を繰り返し行い、各深さについてSi、O、CおよびClの原子数を測定する。その結果を用いて各深さについて算出された塩素濃度のうち、最大の値を表面塩素濃度として採用する。エッチングを行うピッチはSiO換算で1nm以下とする。
2-4.炭素皮膜率の測定方法
 炭素皮膜率は、試料として用いるリチウムイオン二次電池負極材用粉末の質量と、その試料について炭素濃度分析装置(Leco社製、CS400)を用いて酸素気流燃焼-赤外線吸収法によってCOガスを分析することで定量評価した炭素量の結果から算出する。ルツボはセラミックルツボを、助燃剤は銅を用い、分析時間は40秒とする。
2-5.比抵抗の測定方法
 リチウムイオン二次電池負極材用粉末の比抵抗ρ(Ωcm)は、下記(2)式を用いて算出する。
   ρ=R×A/L …(2)
  ここで、R:試料の電気抵抗(Ω)、A:試料の底面積(cm)、L:試料の厚さ(cm)である。
 試料の電気抵抗は、例えば、デジタルマルチメーター(岩通計測株式会社製、VOAC7513)を用いた二端子法によって測定することができる。この場合、試料は、粉末抵抗測定用治具(治具部:内径20mmのステンレス製、枠部:ポリテトラフルオロエチレン製)に試料0.20gを充填し、20kgf/cmで60秒間加圧して成形し、成形した試料の厚さはマイクロメーターで測定する。
3.リチウムイオン二次電池負極材用粉末の製造方法
3-1.低級酸化珪素粉末の製造方法
 図4は、酸化珪素の製造装置の構成例を示す図である。この装置は、真空室5と、真空室5内に配置された原料室6と、原料室6の上部に配置された析出室7とを備える。
 原料室6は円筒体で構成され、その中心部には、円筒状の原料容器8と、原料容器8を囲繞する加熱源10が配置される。加熱源10としては、例えば電熱ヒーターを用いることができる。
 析出室7は、原料容器8と軸が一致するように配置された円筒体で構成される。析出室7の内周面には、原料室6で昇華して発生した気体状の酸化珪素を蒸着させるためのステンレス鋼からなる析出基体11が設けられる。
 原料室6と析出室7とを収容する真空室5には、雰囲気ガスを排出するための真空装置(図示せず)が接続されており、矢印A方向にガスが排出される。
 図4に示す製造装置を用いて低級酸化珪素を製造する場合、原料として珪素粉末と二酸化珪素粉末とを所定の割合で配合し、混合、造粒および乾燥した混合造粒原料9を用いる。この混合造粒原料9を原料容器8に充填し、不活性ガス雰囲気または真空中で加熱源10によって加熱してSiOを生成(昇華)させる。昇華により発生した気体状のSiOは、原料室6から上昇して析出室7に入り、周囲の析出基体11上に蒸着し、低級酸化珪素12として析出する。その後、析出基体11から析出した低級酸化珪素12を取り外し、ボールミル等を使用して粉砕することにより、低級酸化珪素粉末が得られる。
3-2.珪素皮膜の形成方法
 図5は、SiCl不均化反応装置の構成例を示す図である。SiCl不均化反応装置は、酸化珪素粉末13を収容する粉末容器14と、粉末容器14を囲繞する加熱源15とを備える。加熱源15としては、例えば電熱ヒーターを用いることができる。粉末容器14の内部は多孔板16により上下に仕切られており、酸化珪素粉末13は多孔板16の上に載置される。そして、多孔板16の下方から粉末容器14の内部にSiClガスが導入される。多孔板16を通過したSiClガスは、加熱源15で加熱された酸化珪素粉末13の表面に接しながら上方から排出される。
 酸化珪素粉末13およびその周辺の雰囲気は加熱源15で加熱されているため、粉末容器14内にSiClが導入されると、酸化珪素粉末13の表面では下記化学式(1)で表されるSiCl(X<4)の不均化反応が生じ、珪素が生成する。
  mSiCl→(m-n)Si+nSiCl …(1)
 SiClの不均化反応によって生成した珪素(Si)が酸化珪素粉末13の表面に付着し、珪素の皮膜、すなわち珪素リッチ層の形成がなされる。珪素皮膜の厚さや量は、SiClを導入する量や時間を調整することにより調整することができる。
3-3.塩素の付加方法
 低級酸化珪素粉末または珪素リッチ層の表面に塩素を付加することにより、本発明のリチウムイオン二次電池負極材用粉末が完成する。低級酸化珪素粉末または珪素リッチ層の表面への塩素の付加方法としては、さまざまな方法が考えられる。一例として、非酸化性雰囲気または減圧雰囲気下でSiClガスと接触させながら熱処理する方法が挙げられる。この場合、SiClガスの流量を調整することにより、付加される塩素量を調整することができる。
3-4.導電性炭素皮膜の形成方法
 リチウムイオン二次電池負極材用粉末の表面への導電性炭素皮膜の形成は、CVD等により行う。具体的には、装置としてロータリーキルンを用い、ガスとして炭素源である炭化水素ガスまたは有機物含有ガスと、不活性ガスとの混合ガスを用いて行う。
 ただし、炭素源として炭化水素以外の有機物を用いると、OやNといったCおよびH以外の成分が酸化珪素と反応し、SiOやSiNを生成するため、リチウムイオンの収容、放出に寄与し得るSi量が減少し、リチウムイオン二次電池の容量が小さくなる。そのため、炭素源としてはCおよびHのみからなる炭化水素ガスが好ましい。
 導電性炭素皮膜の形成処理温度は700℃以上750℃以下とする。また、処理時間は20分以上120分以下とし、形成する導電性炭素皮膜の厚さに応じて設定する。
4.リチウムイオン二次電池の構成
 本発明のリチウムイオン二次電池負極材用粉末およびリチウムイオン二次電池負極を用いた、コイン形状のリチウムイオン二次電池の構成例を、前記図1を参照して説明する。同図に示すリチウムイオン二次電池の基本的構成は、上述の通りである。
 負極2、すなわち本発明のリチウムイオン二次電池負極を構成する作用極2cに用いる負極材は、本発明のリチウムイオン二次電池負極材用粉末を用いて構成する。具体的には、活物質である本発明のリチウムイオン二次電池負極材用粉末とその他の活物質と導電助材とバインダーとで構成することができる。負極材中の構成材料のうち、バインダーを除いた構成材料の合計に対する本発明のリチウムイオン二次電池負極材用粉末の割合は20質量%以上とする。本発明のリチウムイオン二次電池負極材用粉末以外の活物質は必ずしも添加しなくてもよい。導電助材としては、例えばアセチレンブラックやカーボンブラックを使用することができ、バインダーとしては例えばポリアクリル酸(PAA)やポリフッ化ビニリデンを使用することができる。
 本発明のリチウムイオン二次電池は、上述の本発明のリチウムイオン二次電池負極材用粉末およびリチウムイオン二次電池負極を用いたため、放電容量が大きく、かつサイクル特性が良好であり、実用レベルでの使用に耐え得る。
 また、本発明の負極材用粉末およびこれを用いた負極は、キャパシタにも適用することができる。
 本発明の効果を確認するため、リチウムイオン二次電池を用いた以下の試験を行い、その結果を評価した。
1.試験条件
1-1.リチウムイオン二次電池の構成
 リチウムイオン二次電池の構成は、前記図1に示すコイン形状とした。
 最初に負極2について説明する。珪素粉末と二酸化珪素粉末とを所定の割合で配合し、混合、造粒および乾燥した混合造粒原料を原料とし、前記図3に示す装置を用いて析出基板上に低級酸化珪素を析出させた。析出した低級酸化珪素は、アルミナ製ボールミルを使用して24時間粉砕した。この低級酸化珪素(SiO)の粉末は、x=1を満たしていた。
 この低級酸化珪素粉末は、SiCl-Ar混合ガス雰囲気下で500℃に加熱することにより、表面への塩素付加処理を施した。SiCl-Ar混合ガスの、SiCl/Arのmol比は表3に示す通りとした。塩素付加処理後の低級酸化珪素粉末の平均粒子径(D50)が5~10μmであった。
Figure JPOXMLDOC01-appb-T000003
 試験番号1~4は、塩素付加処理を施し、表面塩素濃度が本発明の規定を満足する本発明例である。試験番号5は、塩素付加処理を行わず、表面塩素濃度が測定限界以下であった比較例である。表面塩素濃度は、XPSを用いて測定した結果を用いて算出した。
 このリチウムイオン二次電池負極材用粉末を65質量%、アセチレンブラックを10質量%、PAAを25質量%とした混合物に、n-メチルピロリドンを加えてスラリーを作成する。このスラリーを厚さ20μmの銅箔に塗布し、120℃の雰囲気下で30分乾燥した後、片面の面積が1cmとなる大きさに打ち抜いて負極2とした。
 対極1cはリチウム箔とした。電解液は、EC(エチレンカーボネート)とDEC(ジエチルカーボネート)を1:1の体積比とした混合液に、LiPFを1モル/リットルの割合となるように溶解させた溶液とした。セパレーターには厚さ30μmのポリエチレン製多孔質フィルムを用いた。
1-2.充放電試験条件
 充放電試験には、二次電池充放電試験装置(株式会社ナガノ製)を用いた。充電は、リチウムイオン二次電池の両極間の電圧が0Vに達するまでは1mAの定電流で行い、電圧が0Vに達した後は、0Vを維持したまま充電を行った。その後、電流値が20μAを下回った時点で充電を終了した。放電は、リチウムイオン二次電池の両極間の電圧が1.5Vに達するまでは1mAの定電流で行った。以上の充放電試験を100サイクル行った。
2.試験結果
 上記条件で作製したリチウムイオン二次電池について充放電試験を行い、1サイクル目の放電容量(初回放電容量)およびサイクル容量維持率を指標として評価を行った。また、リチウムイオン二次電池負極材用粉末の比抵抗も測定した。これらの値を試験条件と併せて前記表3に示す。サイクル容量維持率とは、100サイクル目の放電容量を初回放電容量で除した値であり、この値が大きいほどサイクル特性が良好であることを示す。
 本発明例である試験番号1~4では、初回放電容量は1437mAh/g以上であり、サイクル容量維持率は80%以上といずれも優れた値であった。また、表面塩素濃度が高いほどサイクル容量維持率が高かった。サイクル容量維持率が優れていた理由は、低級酸化珪素粉末の表面に塩素を付加したことにより、充放電時のLiFの生成が抑制されたためと考えられる。
 比較例である試験番号5では、初回放電容量は1432mAh/gと、本発明例から若干劣る程度であったものの、サイクル容量維持率は76%と本発明例に比較して劣っていた。これは、充放電時のLiFの生成によって、電解液中のリチウムイオンが減少したためと考えられる。
 本発明のリチウムイオン二次電池負極材用粉末、ならびにリチウムイオン二次電池負極またはキャパシタ負極を用いることにより、放電容量が大きく、かつサイクル特性が良好であり、実用レベルでの使用に耐え得るリチウムイオン二次電池またはキャパシタを得ることができる。また、本発明のリチウムイオン二次電池およびキャパシタは、放電容量が大きく、かつサイクル特性が良好である。したがって、本発明は、二次電池およびキャパシタの分野において有用な技術である。
1:正極、 1a:対極ケース、 1b:対極集電体、 1c:対極、
2:負極、 2a:作用極ケース、 2b:作用極集電体、
2c:作用極、 3:セパレーター、 4:ガスケット、 5:真空室、
6:原料室、 7:析出室、 8:原料容器、 9:混合造粒原料、
10:加熱源、 11:析出基体、 12:低級酸化珪素、
13:酸化珪素粉末、 14:粉末容器、 15:加熱源、 
16:多孔板、 20:低級酸化珪素粉末、 21:LiF皮膜

Claims (7)

  1.  低級酸化珪素粉末の表面に塩素が付加したリチウムイオン二次電池負極材用粉末であって、
     表面塩素濃度が0.1mol%以上であることを特徴とするリチウムイオン二次電池負極材用粉末。
  2.  低級酸化珪素粉末の表面に珪素リッチ層を有し、前記珪素リッチ層の表面に塩素が付加したリチウムイオン二次電池負極材用粉末であって、
     表面塩素濃度が0.1mol%以上であることを特徴とするリチウムイオン二次電池負極材用粉末。
  3.  前記塩素が付加した表面に炭素皮膜を有することを特徴とする請求項1または2に記載のリチウムイオン二次電池負極材用粉末。
  4.  請求項1~3のいずれかに記載のリチウムイオン二次電池負極材用粉末を用いたリチウムイオン二次電池用負極。
  5.  請求項1~3のいずれかに記載のリチウムイオン二次電池負極材用粉末を用いたキャパシタ負極。
  6.  請求項4に記載のリチウムイオン二次電池負極を用いたリチウムイオン二次電池。
  7.  請求項5に記載のキャパシタ負極を用いたキャパシタ。
     
PCT/JP2011/004342 2010-09-17 2011-07-29 リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ WO2012035698A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137007921A KR20130055668A (ko) 2010-09-17 2011-07-29 리튬 이온 이차 전지 음극재용 분말, 이를 이용한 리튬 이온 이차 전지 음극 및 커패시터 음극과, 리튬 이온 이차 전지 및 커패시터
CN2011800441422A CN103119760A (zh) 2010-09-17 2011-07-29 锂离子二次电池负极材料用粉末、使用其的锂离子二次电池负极和电容器负极、以及锂离子二次电池和电容器
JP2012533836A JP5584302B2 (ja) 2010-09-17 2011-07-29 リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010209838 2010-09-17
JP2010-209838 2010-09-17

Publications (1)

Publication Number Publication Date
WO2012035698A1 true WO2012035698A1 (ja) 2012-03-22

Family

ID=45831194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004342 WO2012035698A1 (ja) 2010-09-17 2011-07-29 リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ

Country Status (4)

Country Link
JP (1) JP5584302B2 (ja)
KR (1) KR20130055668A (ja)
CN (1) CN103119760A (ja)
WO (1) WO2012035698A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5554845B2 (ja) * 2011-01-07 2014-07-23 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびリチウムイオン二次電池
JP2017191771A (ja) * 2016-04-06 2017-10-19 信越化学工業株式会社 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
CN109524653A (zh) * 2018-11-21 2019-03-26 湖南中车特种电气装备有限公司 一种利用导电聚合物提升锂离子电容器比容量的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006004822A (ja) * 2004-06-18 2006-01-05 Japan Storage Battery Co Ltd 非水電解質電池
JP2008198610A (ja) * 2007-02-14 2008-08-28 Samsung Sdi Co Ltd 負極活物質、その製造方法及びそれを採用した負極とリチウム電池
JP2009104892A (ja) * 2007-10-23 2009-05-14 Panasonic Corp リチウム二次電池
JP2010272411A (ja) * 2009-05-22 2010-12-02 Shin-Etsu Chemical Co Ltd 非水電解質二次電池用負極材及びその製造方法、ならびにリチウムイオン二次電池及び電気化学キャパシタ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042809A (ja) * 2000-07-31 2002-02-08 Denki Kagaku Kogyo Kk 非水系二次電池
JP2002260651A (ja) * 2001-02-28 2002-09-13 Shin Etsu Chem Co Ltd 酸化珪素粉末及びその製造方法
JP3827707B2 (ja) * 2004-12-22 2006-09-27 芙蓉パーライト株式会社 油吸着カートリッジ、油水分離装置及び油水分離方法
KR101020909B1 (ko) * 2006-01-25 2011-03-09 파나소닉 주식회사 리튬 이차전지용 음극 및 그 제조 방법, 및 리튬이차전지용 음극을 구비한 리튬 이차전지
JP4197002B2 (ja) * 2006-04-07 2008-12-17 宇部興産株式会社 リチウムイオン非水電解質二次電池用正極活物質及びその製造方法
JP5245559B2 (ja) * 2008-06-16 2013-07-24 信越化学工業株式会社 非水電解質二次電池用負極材及びその製造方法、ならびにリチウムイオン二次電池及び電気化学キャパシタ
EP2579367A1 (en) * 2010-05-25 2013-04-10 OSAKA Titanium Technologies Co., Ltd. Powder for negative electrode material of lithium-ion rechargeable battery electrode, and method of producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006004822A (ja) * 2004-06-18 2006-01-05 Japan Storage Battery Co Ltd 非水電解質電池
JP2008198610A (ja) * 2007-02-14 2008-08-28 Samsung Sdi Co Ltd 負極活物質、その製造方法及びそれを採用した負極とリチウム電池
JP2009104892A (ja) * 2007-10-23 2009-05-14 Panasonic Corp リチウム二次電池
JP2010272411A (ja) * 2009-05-22 2010-12-02 Shin-Etsu Chemical Co Ltd 非水電解質二次電池用負極材及びその製造方法、ならびにリチウムイオン二次電池及び電気化学キャパシタ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5554845B2 (ja) * 2011-01-07 2014-07-23 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびリチウムイオン二次電池
JP2017191771A (ja) * 2016-04-06 2017-10-19 信越化学工業株式会社 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
CN109524653A (zh) * 2018-11-21 2019-03-26 湖南中车特种电气装备有限公司 一种利用导电聚合物提升锂离子电容器比容量的方法

Also Published As

Publication number Publication date
JP5584302B2 (ja) 2014-09-03
CN103119760A (zh) 2013-05-22
KR20130055668A (ko) 2013-05-28
JPWO2012035698A1 (ja) 2014-01-20

Similar Documents

Publication Publication Date Title
KR101513819B1 (ko) 리튬 이온 2차 전지 음극재용 분말, 이를 이용한 리튬 이온 2차 전지 음극 및 캐패시터 음극, 및 리튬 이온 2차 전지 및 캐패시터
KR101513820B1 (ko) 리튬 이온 이차 전지 음극재용 분말, 이것을 이용한 리튬 이온 이차 전지 음극 및 캐패시터 음극, 및 리튬 이온 이차 전지 및 캐패시터
US8748036B2 (en) Non-aqueous secondary battery
US8647776B2 (en) Carbon material for lithium ion secondary battery
KR101531451B1 (ko) 리튬 이온 이차 전지 음극재용 분말, 리튬 이온 이차 전지 음극 및 캐패시터 음극, 및, 리튬 이온 이차 전지 및 캐패시터
JP5497177B2 (ja) リチウムイオン二次電池負極材用粉末、リチウムイオン二次電池負極およびキャパシタ負極、ならびに、リチウムイオン二次電池およびキャパシタ
JP2010267540A (ja) 非水電解質二次電池
KR101440207B1 (ko) 리튬 이온 이차 전지 음극재용 분말 및 그 제조 방법
JP2002251992A (ja) 非水溶媒二次電池用電極材料、電極および二次電池
JP5662485B2 (ja) リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
JP5430761B2 (ja) リチウムイオン二次電池負極材用粉末、リチウムイオン二次電池負極およびキャパシタ負極、ならびに、リチウムイオン二次電池およびキャパシタ
JP5909552B2 (ja) リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
JP5584302B2 (ja) リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
US10497967B2 (en) Negative-electrode active material for non-aqueous secondary battery and non-aqueous secondary battery
JP7054871B2 (ja) 非水二次電池用負極活物質、及び、非水二次電池
JP2020194739A (ja) リチウムイオン二次電池及びリチウムイオン二次電池の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180044142.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11824718

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012533836

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137007921

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11824718

Country of ref document: EP

Kind code of ref document: A1