WO2012034375A1 - 一种电源控制电路、方法及电源控制终端设备 - Google Patents

一种电源控制电路、方法及电源控制终端设备 Download PDF

Info

Publication number
WO2012034375A1
WO2012034375A1 PCT/CN2011/071042 CN2011071042W WO2012034375A1 WO 2012034375 A1 WO2012034375 A1 WO 2012034375A1 CN 2011071042 W CN2011071042 W CN 2011071042W WO 2012034375 A1 WO2012034375 A1 WO 2012034375A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
control
voltage
branch
power
Prior art date
Application number
PCT/CN2011/071042
Other languages
English (en)
French (fr)
Inventor
段顶柱
宿美春
刘团辉
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012034375A1 publication Critical patent/WO2012034375A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads

Definitions

  • the present invention relates to the field of integrated circuits, and in particular, to a power control circuit, method, and power control terminal device. Background technique
  • wireless access terminal products are mostly powered by a power adapter, many system platforms are not available on wireless access terminal products. If the power adapter and the battery are used to supply power to the wireless access terminal, the battery life is shortened, and the power consumption of the wireless access terminal is improved. Summary of the invention
  • an embodiment of the present invention provides a power control circuit, a method, and a power control device, which control a power supply to control a conduction state of a MOS transistor, and select a power supply branch of the power supply for the system power supply branch, so that the terminal uses only the power supply.
  • the adapter When the adapter is powered, you can launch the system platform for your phone.
  • the embodiment of the present invention provides a power control circuit, including: a battery power supply branch, a power adapter power supply branch, a system power supply branch, and a voltage control branch, and further includes: a power control MOS transistor and a line control transistor;
  • a source of the power control MOS transistor is connected to an output end of the battery power supply branch, a drain of the power control MOS transistor is connected to an input end of the system power supply branch, and a gate connection of the power control MOS transistor The line controls the emitter or collector of the transistor;
  • a base of the line control transistor is connected to an output end of the voltage control branch, a collector of the line control transistor is connected to an output end of the power adapter branch of the power adapter, and an emitter of the line control transistor is grounded;
  • the power adapter output branch output end is connected to the system power supply branch input end.
  • the embodiment of the present invention provides a power control method, which is applied to the power control circuit provided by the embodiment of the present invention, and includes:
  • control voltage controls the voltage outputted from the output of the branch.
  • the power supply source of the voltage includes: a voltage outputted by the output end of the battery power supply branch and a voltage outputted by the output end of the power supply adapter branch.
  • the voltage output by the control voltage control branch output terminal includes:
  • the terminal controls the output of the voltage control branch to output a low level.
  • the voltage output by the control voltage control branch output terminal includes:
  • the terminal controls the voltage control branch after detecting that there is a voltage at the output end of the power adapter power supply branch The output of the circuit outputs a low level.
  • the voltage output by the control voltage control branch output terminal includes:
  • the terminal controls the voltage control branch after detecting that there is a voltage between the battery power supply branch output end and the power adapter power supply branch output end.
  • the output outputs a high level.
  • the voltage output by the control voltage control branch output terminal includes:
  • the terminal controls the output of the voltage control branch to output a high level.
  • the voltage output by the control voltage control branch output terminal includes:
  • the terminal controls the output of the voltage control branch to output a high level after detecting that there is a voltage at the output end of the power adapter power supply branch.
  • the voltage output by the control voltage control branch output terminal includes:
  • the terminal controls the voltage control branch after detecting that there is a voltage between the battery power supply branch output end and the power adapter power supply branch output end.
  • the output outputs a low level.
  • the embodiment of the present invention further provides a power control terminal device, including: a power control circuit and a terminal processor of the power control method; wherein the power control circuit includes: a battery power supply branch output end, and a power adapter power supply branch output end , system power supply branch input end, voltage control branch output end, power switching MOS tube, line control triode; said power control MOS tube a source is connected to the battery power supply branch output end, a drain of the power control MOS transistor is connected to the system power supply branch input end, and a gate of the power control MOS transistor is connected to an emitter of the line control transistor Or a collector; the base of the line control transistor is connected to the output of the voltage control branch, the collector of the line control transistor is connected to the output end of the power adapter branch, and the emitter of the line control transistor is grounded
  • the power adapter output branch output end is connected to the system power supply branch input end;
  • the terminal processor is configured to determine a power supply source of the voltage when the terminal device detects a voltage; and according to the determination result, the control voltage controls a voltage outputted by the branch output terminal.
  • the power control circuit, the method, and the power control terminal device include a battery power supply branch, a power adapter power supply branch, a system power supply branch, a voltage control branch, a power control MOS tube, and a line control transistor; a source of the power control MOS transistor is connected to an output end of the battery power supply branch, a drain of the power control MOS transistor is connected to an input end of the system power supply branch, and a gate connection of the power control MOS transistor is connected
  • the line controls the emitter or collector of the transistor; the base of the line control transistor is connected to the output end of the voltage control branch, and the collector of the line control transistor is connected to the output end of the power adapter branch of the power adapter
  • the emitter of the line control transistor is grounded; the power adapter output end of the power adapter is connected to the input end of the system power supply branch.
  • FIG. 1 is a schematic structural diagram of a power supply control circuit according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a power supply control circuit according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a power control method according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a power control terminal device according to an embodiment of the present invention. detailed description
  • the basic idea of the invention is: battery power supply branch, power adapter power supply branch, system power supply branch, voltage control branch, power switching MOS tube, line control transistor; source control MOS tube source connected battery power supply branch output
  • the drain of the power control MOS transistor is connected to the input end of the power supply branch of the system, and the gate of the power control MOS transistor controls the emitter or collector of the transistor;
  • the base of the line control transistor controls the output of the branch,
  • the collector of the line control transistor is connected to the output end of the power adapter branch of the power adapter, and the emitter of the line control transistor is grounded;
  • the power adapter branch of the power adapter is connected to the power supply branch of the system.
  • FIG. 1 is a schematic structural diagram of a power supply control circuit according to an embodiment of the present invention. As shown in FIG. 1 , the circuit includes: a battery power supply branch output terminal 101, and a power adapter power supply branch output.
  • the output terminal 101, the drain of the power control MOS transistor 105 is connected to the system power supply branch input terminal 103, the gate of the power supply control MOS transistor 105 is connected to the emitter or collector of the transistor 106; the base connection voltage of the line control transistor 106 Control branch output 104, the collector of line control transistor 106 is connected to power adapter output branch output 102, the emitter of line control transistor 106 is grounded; power adapter supply branch output 102 is connected to the system supply branch input 103.
  • the base of the line control transistor 106 is connected to the voltage control branch output terminal 104 via a first voltage-control resistor R1 for reducing the voltage of the base of the line control transistor 106.
  • the base of the line control transistor 106 is grounded through the first voltage-control resistor R1 and the second voltage-control resistor R2, wherein the second voltage-control resistor R2 is directly grounded.
  • Current collection of line control transistor 106 The pole is connected to the power adapter supply branch output 102 via a third voltage regulating resistor R3.
  • the gate of the power supply control MOS transistor 105 is grounded through the fourth voltage-control resistor R4.
  • the power adapter supply branch output 102 is coupled to the system power supply branch input 103 via a diode D1.
  • the filter capacitor C1, the capacitor C2 and the capacitor C3 are respectively connected in parallel between the battery power supply branch output terminal 101 and the system power supply branch input terminal.
  • the gate of the power supply control MOS transistor 105 is connected to the emitter of the transistor 106.
  • the power supply control circuit provided by the embodiment of the present invention can solve the problems existing in the prior art. The specific process is as follows:
  • Case 1 When only the battery-powered branch output terminal 101 supplies power to the system power supply branch input terminal 103, that is, only the battery supplies power to the terminal, and after the terminal processor detects the voltage, the voltage control branch output terminal 104 in the control terminal provides Low level, since the base of the line control transistor 106 is connected to the voltage control branch output terminal 104 through the first voltage-control resistor R1, the base of the line control transistor 106 is extremely low, so that the line control transistor 106 is cut off.
  • the state is further grounded through the second voltage-control resistor R2, further ensuring that the base of the line control transistor 106 is extremely low; meanwhile, the gate of the power control MOS transistor 105 is grounded by the fourth voltage dividing resistor R4, thereby being low-powered
  • the level is such that the power control MOS transistor 105 is in an on state.
  • the battery power supply branch output terminal 101 supplies power to the system power supply branch input terminal 103, and causes the battery power supply branch output terminal 101 and the system power supply branch input terminal 103 to simultaneously have a voltage.
  • the terminal processor detects that there is voltage at both the battery supply branch output 101 and the system power supply branch input 103, the hardware system platform is started.
  • the terminal processor detects the voltage Thereafter, the control voltage control branch output terminal 104 provides a low level, and the base of the line control transistor 106 receives the low level through the first voltage control resistor R1, so that the line control transistor 106 is in an off state, and passes the second control
  • the voltage of the resistor R2 is grounded to further ensure that the base of the line control transistor 106 is at a low level; the gate of the power control MOS transistor 105 is grounded by the fourth voltage dividing resistor R4, so that the power supply control MOS tube 105 is at a low level.
  • the battery power supply branch output terminal 101 is turned on, so that the output end of the battery power supply branch output terminal 101 and the system power supply branch input terminal 103 have voltage at the same time.
  • the processor detects that there is voltage in both the battery supply branch output 101 and the system power supply branch input 103, the hardware system platform is started.
  • Case 3 When the battery power supply branch output terminal 101 and the power adapter power supply branch output terminal 102 simultaneously supply power to the system power supply branch input terminal 103, the battery and the power adapter are used to simultaneously supply power to the terminal, and after the terminal system is initialized, the terminal processor When the voltage is detected, the control voltage control branch 104 provides a high level, and the base of the line control transistor 106 receives the high level through the first voltage-control resistor R1, so that the line control transistor 106 is in a conducting state, and the power control is performed at this time.
  • the gate of the MOS transistor 105 is connected to the power adapter output branch output terminal 102 through the third voltage dividing resistor R3, and the voltage is at a high level, so that the power control MOS transistor 105 is in an off state, so that only the power adapter power supply branch output terminal 102 is
  • the system power supply branch 103 supplies power, and due to the presence of the battery, the battery power supply branch output terminal 101 has a voltage, so that the battery power supply branch output terminal 101 and the system power supply branch input terminal 103 simultaneously have a voltage. After the terminal processor detects that there is voltage in both the battery-powered branch output 101 and the system power supply branch input 103, the hardware system platform is started.
  • the power control MOS transistor 105 in each of the above cases can use a PMOS transistor, and the line control transistor 106 can use a triode with a built-in resistor.
  • the power supply control circuit controls the voltage level of the output of the branch control terminal by controlling the voltage, thereby controlling the conduction state of the power control MOS transistor, and selecting the power supply for the system power supply branch 103.
  • Power supply branch so that the terminal is only using electricity
  • the system platform for the phone can be activated and the source of the power supply can be selected when the power adapter and battery are used simultaneously.
  • some other auxiliary devices need to be added to implement the corresponding functions, and the added devices are well known to those skilled in the art, and are not described herein again.
  • FIG. 2 is a schematic structural diagram of a power supply control circuit according to an embodiment of the present invention. As shown in FIG. 2, the gate of the power control MOS transistor 105 is connected to the collector of the line control transistor 106, and the power control circuit provided by the embodiment of the present invention is used.
  • the specific process is as follows:
  • Case 1 When only the battery-powered branch output terminal 101 supplies power to the system power supply branch input terminal 103, that is, only the battery supplies power to the terminal, and after the terminal processor detects the voltage, the control voltage control branch output terminal 104 provides a high level.
  • the base of the line control transistor 106 receives the high level through the first voltage control resistor R1, so that the line control transistor 106 is in an on state; at this time, the gate of the power control MOS tube 105 is grounded, so it is low. Leveling, the power control MOS transistor 105 is in an on state.
  • the battery power supply branch output terminal 101 supplies power to the system power supply branch 103, and the battery power supply branch output terminal 101 and system are provided.
  • the power supply branch input terminal 103 has a voltage at the same time. After the terminal processor detects that there is a voltage at the input terminals of the battery-powered branch output 101 and the system power supply branch 103, the hardware system platform is started.
  • Case 2 Only when the power adapter power supply branch output terminal 102 supplies power to the system power supply branch input terminal 103, that is, only the power adapter supplies power to the terminal, and the power adapter power supply branch output terminal 102 supplies the system power supply branch through the diode D1. 103 power supply.
  • the control voltage control branch output terminal 104 After the terminal processor detects the voltage, the control voltage control branch output terminal 104 provides a high level, and the base of the line control transistor 106 receives the high level through the first voltage-control resistor R1, so that the line control transistor 106 is in the lead.
  • the state of the power supply control MOS transistor 105 is grounded, so it is low level, making electricity
  • the source control MOS transistor 105 is in an on state.
  • the battery power supply branch output terminal 101 is turned on, so that the battery power supply branch output terminal 101 and the system power supply branch input terminal 103 exist simultaneously.
  • the terminal processor detects that there is voltage in both the battery-powered branch output terminal 101 and the system power supply branch input terminal 103, the hardware system platform is started.
  • Case 3 When the battery power supply branch output terminal 101 and the power adapter power supply branch output terminal 102 simultaneously supply power to the system power supply branch input terminal 103, the battery and the power adapter are used to simultaneously supply power to the terminal, and after the terminal system is initialized, the terminal processor
  • the control voltage control branch 104 When the voltage is detected, the control voltage control branch 104 provides a low level; the base of the line control transistor 106 receives the low level through the first voltage-control resistor R1, and the base of the line control transistor 106 is at a low level, so that the line control The transistor 106 is in an off state; at this time, the gate of the power control MOS transistor 105 is connected to the power adapter supply branch output terminal 102 through the third voltage dividing resistor R3, and the voltage is at a high level, so that the power control MOS transistor 105 is in an off state.
  • the power adapter power supply branch output terminal 102 supplies power to the system power supply branch 103, and due to the presence of the battery, the battery power supply branch output terminal 101 has a voltage, thereby causing the battery power supply branch output terminal 101 and the system power supply branch input terminal. 103 There is voltage at the same time. After the terminal processor detects that there is voltage on both the battery-powered branch output 101 and the system power-supply input 103, the hardware system platform is started.
  • the power control MOS transistor 105 in each of the above cases can use a PMOS transistor, and the line control transistor 106 can use a triode with a built-in resistor.
  • the power supply control circuit controls the voltage level of the output of the branch control terminal by controlling the voltage, thereby controlling the conduction state of the power control MOS transistor, and selecting the power supply for the system power supply branch 103.
  • the power supply branch allows the terminal to boot the system platform for the mobile phone when only the power adapter is used, and the source of the power supply can be selected when the power adapter and battery are used simultaneously.
  • some other auxiliary devices need to be added to implement the corresponding functions, and the added devices are well known to those skilled in the art, and are not described herein again.
  • FIG. 3 is a schematic flowchart of a power supply control method according to an embodiment of the present invention. As shown in FIG. 3, the method includes the following steps. step:
  • Step 301 When the terminal device detects the voltage, determine a power supply source of the voltage;
  • the voltage controlled by the voltage output of the branch control terminal includes: a voltage output by the battery power supply branch output terminal 101 and a voltage output by the power adapter power supply branch output terminal 102. ;
  • the terminal detects that there is a voltage at the battery-powered branch output terminal 101, and the control voltage control branch output terminal 104 outputs a low level.
  • the base of the line control transistor 106 is connected to the voltage control branch output terminal 104 through the first voltage-control resistor R1. Therefore, the base of the line control transistor 106 is at a low level, so that the line control transistor 106 is in an off state, and The grounding resistor R2 is grounded to further ensure that the base of the line control transistor 106 is extremely low. Meanwhile, the gate of the power control MOS transistor 105 is grounded by the fourth voltage dividing resistor R4, so it is low level, so that the power supply is controlled.
  • the MOS transistor 105 is in an on state. After the power control MOS transistor 105 is turned on, the battery power supply branch output terminal 101 supplies power to the system power supply branch input terminal 103, and causes the battery power supply branch output terminal 101 and the system power supply branch input terminal 103 to simultaneously have a voltage. After the terminal processor detects that there is voltage at both the battery supply branch output 101 and the system power supply branch input 103, the hardware system platform is started.
  • the terminal detects that there is a voltage at the power adapter output terminal 102, and the control voltage control branch output 104 outputs a low level.
  • the power adapter supply branch output 102 supplies power to the system power supply branch input 103 via diode D1.
  • the base of the line control transistor 106 receives the low level through the first voltage-control resistor R1, so that the line control transistor 106 is in an off state, and is grounded through the second voltage-control resistor R2, thereby further ensuring the line control transistor 106.
  • the base is extremely low; the gate of the power control MOS transistor 105 is grounded by the fourth voltage dividing resistor R4, so it is at a low level, so that the power control MOS transistor 105 is in an on state, and the power control MOS transistor 105 is turned on.
  • the battery power supply branch output terminal 101 is turned on, so that the output end of the battery power supply branch output terminal 101 and the system power supply branch input terminal 103 simultaneously have a voltage, and the terminal processor detects the battery power supply branch output terminal 101 and the system. After the voltage is present at the power supply branch input terminal 103, the hardware system platform is started.
  • the terminal detects that there is a voltage between the battery power supply branch output terminal 101 and the power adapter power supply branch output terminal 102, and the control voltage control branch
  • the path output 104 outputs a high level.
  • the base of the line control transistor 106 receives the high level through the first voltage-control resistor R1, so that the line control transistor 106 is in an on state, and at this time, the gate of the power control MOS tube 105 is connected to the power adapter through the third voltage dividing resistor R3.
  • the power supply branch output terminal 102 the voltage is at a high level, so that the power control MOS transistor 105 is in an off state, so that only the power adapter power supply branch output terminal 102 supplies power to the system power supply branch 103, and due to the presence of the battery, the battery power supply branch
  • the output terminal 101 has a voltage such that the battery supply branch output terminal 101 and the system power supply branch input terminal 103 simultaneously have a voltage.
  • the control voltage control branch output terminal 104 When the gate of the power control MOS transistor 105 is connected to the collector of the line control transistor 106, after the terminal detects that there is a voltage at the battery supply branch output terminal 101, the control voltage control branch output terminal 104 outputs a high level.
  • the base of the line control transistor 106 receives the high level through the first voltage-control resistor R1, so that the line control transistor 106 is in an on state; at this time, the gate of the power control MOS tube 105 is grounded, so it is low level.
  • the power control MOS transistor 105 is in an on state. After the power control MOS transistor 105 is turned on, the battery power supply branch output terminal 101 supplies power to the system power supply branch 103, and the battery power supply branch output terminal 101 and the system power supply are provided.
  • the branch input 103 has a voltage at the same time.
  • the terminal processor detects the battery-powered branch output After the voltage is present at the input of the terminal 101 and the system power supply branch 103, the hardware system platform is
  • the base of the line control transistor 106 receives the high level through the first voltage-control resistor R1, so that the line control transistor 106 is in an on state; the gate of the power control MOS tube 105 is grounded, so it is low level, so that the power source
  • the control MOS transistor 105 is in an on state, and after the power control MOS transistor 105 is turned on, the battery power supply branch output terminal 101 is turned on, so that the battery power supply branch output terminal 101 and the system power supply branch input terminal 103 simultaneously have a voltage.
  • the terminal processor detects that there is voltage in both the battery power supply branch output terminal 101 and the system power supply branch input terminal 103, the hardware system platform is started.
  • the terminal detects that there is a voltage between the battery supply branch output 101 and the power adapter output branch output 102, and the control voltage control branch
  • the path output 104 outputs a low level.
  • the base of the line control transistor 106 receives the low level through the first voltage-control resistor R1, and the base of the line control transistor 106 is at a low level, so that the line control transistor 106 is in an off state; at this time, the power supply controls the gate of the MOS tube 105.
  • the power supply adapter output terminal 102 is connected through the third voltage dividing resistor R3, the voltage is at a high level, so that the power control MOS transistor 105 is in an off state, so that only the power adapter power supply branch output terminal 102 is a system power supply branch.
  • the power is supplied to 103, and due to the presence of the battery, there is a voltage at the battery-powered branch output terminal 101, so that the battery-powered branch output terminal 101 and the system power-supply branch input terminal 103 simultaneously have a voltage.
  • the terminal processor detects that there is voltage in both the battery power supply branch output terminal 101 and the system power supply branch input terminal 103, the hardware system platform is started.
  • the power control MOS transistor 105 can use a PMOS transistor, and the line control transistor 106 can use a triode with a built-in resistor.
  • the voltage level of the output of the branch control terminal is controlled by the control voltage, thereby controlling the conduction state of the power control MOS transistor, and selecting the system power supply branch 103.
  • the power supply branch of the power supply enables the terminal to boot the system platform for the mobile phone when only the power adapter is used, and the source of the power supply can be selected when the power adapter and battery are used simultaneously.
  • some other auxiliary devices need to be added to implement the corresponding functions, and the added devices are well known to those skilled in the art, and are not described herein again.
  • FIG. 4 is a schematic structural diagram of a power control terminal device according to an embodiment of the present invention.
  • the device includes a power control circuit 401 and a terminal processor 402.
  • the power control circuit 401 includes: a battery power supply branch output terminal 101, a power adapter power supply branch output terminal 102, a system power supply branch input terminal 103, a voltage control branch output terminal 104, a power supply switching MOS transistor 105, and a line control transistor 106;
  • the source of the power control MOS transistor 105 is connected to the battery power supply branch output terminal 101, the drain of the power control MOS transistor 105 is connected to the system power supply branch input terminal 103, and the gate of the power control MOS transistor 105 is connected to the line control transistor 106.
  • the emitter or collector; the base of the line control transistor 106 is connected to the voltage control branch output 104, the collector of the line control transistor 106 is connected to the power adapter supply branch output 102, and the emitter of the line control transistor 106 is grounded;
  • the power supply branch output terminal 102 is connected to the system power supply branch input terminal 103;
  • the terminal processor 402 is configured to determine, when the terminal device detects the voltage, the power supply source of the voltage; and according to the determination result, the control voltage controls the voltage outputted by the branch output terminal.
  • the power control terminal device controls the voltage outputted by the output end of the branch by controlling the voltage, thereby controlling the conduction state of the power control MOS tube, and selecting the power supply branch of the power supply for the system power supply branch, so that the terminal is powered only by the power adapter. , you can start the system platform for your phone, and you can choose the source of the power when you use both the power adapter and the battery.
  • the embodiment of the present invention provides a power control circuit, a method, and a power control terminal device.
  • the source of the power control MOS transistor 105 is connected to the output end of the battery power supply branch output terminal 101.
  • the source of the power control MOS transistor is connected to the battery.
  • An output end of the power supply branch, a drain of the power control MOS transistor is connected to an input end of the system power supply branch, and a gate of the power control MOS transistor is connected to an emitter or a collector of the line control transistor;
  • the base of the line control transistor is connected to the output end of the voltage control branch, the collector of the line control transistor is connected to the output end of the power adapter supply branch, and the emitter of the line control transistor is grounded;
  • the power adapter power branch output is connected to the system power branch input.
  • the power source for supplying power to the system can be controlled, and the system can ensure that only the power adapter is powered when the power adapter is powered.
  • the voltage can be detected at the input of the system power supply branch and the output of the battery power supply branch to meet the startup conditions of the system hardware platform.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)

Description

一种电源控制电路、 方法及电源控制终端设备 技术领域
本发明涉及集成电路领域, 尤其涉及一种电源控制电路、 方法及电源 控制终端设备。 背景技术
目前, 大多数终端***平台是针对手机的使用条件设计的, 然而手机 的使用条件与无线接入终端的使用条件之间存在的很大的差异性; 例如用 户使用手机时, 大多数情况仅使用电池为手机供电, 但用户使用无线接入 终端时, 大多数情况使用电源适配器为无线接入终端供电。 这样导致很多 终端平台在仅存在电源适配器供电的条件下, 不能正常使用。 具体的, 由 于所使用平台的特殊性限制, 只有在电源适配器供电支路为终端供电的同 时, 终端设备的处理器检测到电池供电支路上存在电压, 该终端平台内部 硬件***才认为存在电源, 整个硬件的供电***才启动。 由于无线接入终 端产品大多数情况使用电源适配器供电, 导致很多***平台在无线接入终 端产品上无法使用。 若使用电源适配器和电池同时为无线接入终端供电, 不但缩短了电池的寿命, 而且提高了无线接入终端的功耗。 发明内容
有鉴于此, 本发明实施例提供一种电源控制电路、 方法及电源控制设 备, 通过控制电源控制 MOS管的导通状态, 为***供电支路选择电源的供 电支路, 使终端在仅使用电源适配器供电时, 可以启动适用于手机的*** 平台。
为达到上述目的, 本发明的技术方案是这样实现的: 本发明实施例提供了一种电源控制电路, 包括: 电池供电支路、 电源 适配器供电支路、 ***供电支路、 电压控制支路, 还包括: 电源控制 MOS 管、 线路控制三极管; 其中,
所述电源控制 MOS管的源极连接所述电池供电支路的输出端,所述电 源控制 MOS管的漏极连接所述***供电支路的输入端,所述电源控制 MOS 管的栅极连接所述线路控制三极管的发射极或者集电极;
所述线路控制三极管的基极连接所述电压控制支路的输出端, 所述线 路控制三极管的集电极连接所述电源适配器供电支路的输出端, 所述线路 控制三极管的发射极接地;
所述电源适配器供电支路输出端连接所述***供电支路输入端。
本发明实施例提供了一种电源控制方法, 应用于本发明实施例提供的 电源控制电路, 包括:
终端设备检测到电压时, 判断所述电压的供电来源;
根据判断结果, 控制电压控制支路输出端输出的电压。
上述方法中, 所述电压的供电来源包括: 电池供电支路输出端输出的 电压和电源适配器供电支路输出端输出的电压。
上述方法中, 所述根据判断结果, 控制电压控制支路输出端输出的电 压包括:
当所述电源控制 MOS管的栅极连接所述线路控制三极管的发射极时, 终端检测到电池供电支路输出端存在电压后, 控制所述电压控制支路输出 端输出低电平。
上述方法中, 所述根据判断结果, 控制电压控制支路输出端输出的电 压包括:
当所述电源控制 MOS管的栅极连接所述线路控制三极管的发射极时, 终端检测到电源适配器供电支路输出端存在电压后, 控制所述电压控制支 路输出端输出低电平。
上述方法中, 所述根据判断结果, 控制电压控制支路输出端输出的电 压包括:
当所述电源控制 MOS管的栅极连接所述线路控制三极管的发射极时, 终端检测到电池供电支路输出端和电源适配器供电支路输出端都存在电压 后, 控制所述电压控制支路输出端输出高电平。
上述方法中, 所述根据判断结果, 控制电压控制支路输出端输出的电 压包括:
当所述电源控制 MOS管的栅极连接所述线路控制三极管的集电极时, 终端检测到电池供电支路输出端存在电压后, 控制所述电压控制支路输出 端输出高电平。
上述方法中, 所述根据判断结果, 控制电压控制支路输出端输出的电 压包括:
当所述电源控制 MOS管的栅极连接所述线路控制三极管的集电极时, 终端检测到电源适配器供电支路输出端存在电压后, 控制所述电压控制支 路输出端输出高电平。
上述方法中, 所述根据判断结果, 控制电压控制支路输出端输出的电 压包括:
当所述电源控制 MOS管的栅极连接所述线路控制三极管的集电极时, 终端检测到电池供电支路输出端和电源适配器供电支路输出端都存在电压 后, 控制所述电压控制支路输出端输出低电平。
本发明实施例还提供一种电源控制终端设备, 包括: 电源控制电路和 电源控制方法的终端处理器; 其中, 所述电源控制电路包括: 电池供电支 路输出端、 电源适配器供电支路输出端、 ***供电支路输入端、 电压控制 支路输出端, 电源切换 MOS管、 线路控制三极管; 所述电源控制 MOS管 的源极连接所述电池供电支路输出端,所述电源控制 MOS管的漏极连接所 述***供电支路输入端,所述电源控制 MOS管的栅极连接所述线路控制三 极管的发射极或者集电极; 所述线路控制三极管的基极连接所述电压控制 支路输出端, 所述线路控制三极管的集电极连接所述电源适配器供电支路 输出端, 所述线路控制三极管的发射极接地; 所述电源适配器供电支路输 出端连接所述***供电支路输入端;
所述终端处理器, 用于终端设备检测到电压时, 判断所述电压的供电 来源; 根据判断结果, 控制电压控制支路输出端输出的电压。
本发明实施例提供的电源控制电路、 方法及电源控制终端设备, 包括 电池供电支路、 电源适配器供电支路、 ***供电支路、 电压控制支路, 电 源控制 MOS管和线路控制三极管; 其中, 所述电源控制 MOS管的源极连 接所述电池供电支路的输出端,所述电源控制 MOS管的漏极连接所述*** 供电支路的输入端,所述电源控制 MOS管的栅极连接所述线路控制三极管 的发射极或者集电极; 所述线路控制三极管的基极连接所述电压控制支路 的输出端, 所述线路控制三极管的集电极连接所述电源适配器供电支路的 输出端, 所述线路控制三极管的发射极接地; 所述电源适配器供电支路输 出端连接所述***供电支路输入端。 通过使用本发明实施例提供电源控制 电路以及电源控制终端设备,以及通过控制电源控制 MOS管的导通或截止 为***供电支路选择电源的供电支路, 使终端在仅存在使用电源适配器供 电时, 可以启动适用于手机的***平台, 并且在同时使用电源适配器和电 池供电时, 可以选择供电的来源。 附图说明
图 1为本发明实施例中电源控制电路的结构示意图;
图 2为本发明实施例中电源控制电路的结构示意图;
图 3为本发明实施例中电源控制方法的流程示意图; 图 4为本发明实施例中电源控制终端设备的结构示意图。 具体实施方式
本发明的基本思想是: 电池供电支路、 电源适配器供电支路、 ***供 电支路、 电压控制支路, 电源切换 MOS 管、 线路控制三极管; 电源控制 MOS管的源极连接电池供电支路输出端, 电源控制 MOS管的漏极连接系 统供电支路输入端, 电源控制 MOS管的栅极连接线路控制三极管的发射极 或者集电极; 线路控制三极管的基极连接电压控制支路的输出端, 线路控 制三极管的集电极连接电源适配器供电支路的输出端, 线路控制三极管的 发射极接地; 电源适配器供电支路连接***供电支路。
下面结合各个附图对本发明实施例技术方案的主要实现原理、 具体实 施方式及其对应能够达到的有益效果进行详细地阐述。
本发明实施例提供一种电源控制电路, 图 1 为本发明实施例中电源控 制电路的结构示意图,如图 1所示,该电路包括: 电池供电支路输出端 101、 电源适配器供电支路输出端 102、 ***供电支路输入端 103、 电压控制支路 输出端 104, 该电路还包括: 电源控制 MOS管 105、 线路控制三极管 106; 其中, 电源控制 MOS管 105的源极连接电池供电支路输出端 101 , 电 源控制 MOS管 105的漏极连接***供电支路输入端 103 , 电源控制 MOS 管 105的栅极连接线路控制三极管 106的发射极或者集电极; 线路控制三 极管 106的基极连接电压控制支路输出端 104,线路控制三极管 106的集电 极连接电源适配器供电支路输出端 102,线路控制三极管 106的发射极接地; 电源适配器供电支路输出端 102连接所述***供电支路输入端 103。
较佳的,线路控制三极管 106的基极通过第一控压电阻 R1连接电压控 制支路输出端 104, 该第一控压电阻 R1用于降低线路控制三极管 106的基 极的电压。线路控制三极管 106的基极通过第一控压电阻 R1和第二控压电 阻 R2接地, 其中第二控压电阻 R2直接接地。 线路控制三极管 106的集电 极通过第三控压电阻 R3 连接电源适配器供电支路输出端 102。 电源控制 MOS管 105的栅极通过第四控压电阻 R4接地。 电源适配器供电支路输出 端 102通过二极管 D1与***供电支路输入端 103连接。 而且, 电池供电支 路输出端 101和***供电支路输入端处分别并联滤波电容 C 1、 电容 C2和 电容 C3。
如图 1所示, 电源控制 MOS管 105的栅极连接线路控制三极管 106的 发射极, 使用本发明实施例提供的该电源控制电路, 能够解决现有技术存 在的问题时, 具体过程如下:
下面根据为***供电支路输入端 103提供电量的来源情况分别进行说 明:
情况一: 仅电池供电支路输出端 101为***供电支路输入端 103供电 时, 即只有电池为终端供电, 终端处理器检测到该电压后, 控制终端中的 电压控制支路输出端 104提供低电平, 由于线路控制三极管 106的基极通 过第一控压电阻 R1与电压控制支路输出端 104相连, 因此, 线路控制三极 管 106的基极为低电平, 使得该线路控制三极管 106处于截止状态, 而且 通过第二控压电阻 R2接地,进一步确保了线路控制三极管 106的基极为低 电平; 同时, 电源控制 MOS管 105的栅极由于通过第四分压电阻 R4接地, 因此为低电平,使得电源控制 MOS管 105处于导通状态。该电源控制 MOS 管 105导通后, 电池供电支路输出端 101为***供电支路输入端 103供电, 而且使得电池供电支路输出端 101和***供电支路输入端 103 同时存在电 压。终端处理器检测到电池供电支路输出端 101和***供电支路输入端 103 都存在电压后, 启动硬件***平台。
情况二:仅电源适配器供电支路输出端 102为***供电支路输入端 103 供电时, 即只有电源适配器为终端供电, 该电源适配器供电支路输出端 102 通过二极管 D1为***供电支路输入端 103供电。终端处理器检测到该电压 后, 控制电压控制支路输出端 104提供低电平, 线路控制三极管 106的基 极通过第一控压电阻 R1接收该低电平,使得该线路控制三极管 106处于截 止状态, 而且通过第二控压电阻 R2接地, 进一步确保了线路控制三极管 106的基极为低电平; 电源控制 MOS管 105的栅极由于通过第四分压电阻 R4接地, 因此为低电平, 使得电源控制 MOS管 105处于导通状态, 该电 源控制 MOS管 105导通后, 使得电池供电支路输出端 101接通电压, 这样 电池供电支路输出端 101的输出端和***供电支路输入端 103 同时存在电 压,终端处理器检测到电池供电支路输出端 101和***供电支路输入端 103 都存在电压后, 启动硬件***平台。
情况三: 电池供电支路输出端 101 和电源适配器供电支路输出端 102 同时为***供电支路输入端 103供电时, 即使用电池和电源适配器同时为 终端供电, 终端***初始化后, 终端处理器检测到该电压, 控制电压控制 支路 104提供高电平,线路控制三极管 106的基极通过第一控压电阻 R1接 收该高电平, 使得线路控制三极管 106处于导通状态, 此时电源控制 MOS 管 105的栅极通过第三分压电阻 R3连接电源适配器供电支路输出端 102, 电压为高电平, 使得电源控制 MOS管 105处于截止状态, 这样只有电源适 配器供电支路输出端 102为***供电支路 103供电, 且由于存在电池, 电 池供电支路输出端 101存在电压, 从而使电池供电支路输出端 101和*** 供电支路输入端 103 同时存在电压。 终端处理器检测到电池供电支路输出 端 101和***供电支路输入端 103都存在电压后, 启动硬件***平台。
上述各情况中的电源控制 MOS管 105可以使用 PMOS管,线路控制三 极管 106可以使用内置电阻的三极管。
通过上述描述可以看出, 使用本发明实施例提供的电源控制电路, 通 过控制电压控制支路输出端输出的电压高低,进而控制电源控制 MOS管的 导通状态, 为***供电支路 103选择电源的供电支路, 使终端在仅使用电 源适配器供电时, 可以启动适用于手机的***平台, 并且在同时使用电源 适配器和电池供电时, 可以选择供电的来源。 当然在实际使用中, 还需要 添加一些其它的辅助器件以实现相应的功能, 所添加的器件为本领域技术 人员所公知, 在此不再赘述。
图 2为本发明实施例中电源控制电路的结构示意图, 如图 2所示, 电 源控制 MOS管 105的栅极连接所述线路控制三极管 106的集电极,使用本 发明实施例提供的电源控制电路解决现有技术存在的问题时, 具体过程如 下:
下面根据为***供电支路输入端 103提供电量的来源情况分别进行说 明:
情况一: 仅电池供电支路输出端 101为***供电支路输入端 103供电 时, 即只有电池为终端供电, 终端处理器检测到该电压后, 控制电压控制 支路输出端 104提供高电平, 线路控制三极管 106的基极通过第一控压电 阻 R1接收该高电平, 使得该线路控制三极管 106处于导通状态; 此时, 电 源控制 MOS管 105的栅极由于接地, 因此为低电平, 使得电源控制 MOS 管 105处于导通状态, 该电源控制 MOS管 105导通后, 该电池供电支路输 出端 101为***供电支路 103供电, 而且使电池供电支路输出端 101和系 统供电支路输入端 103 同时存在电压。 终端处理器检测到电池供电支路输 出端 101和***供电支路 103的输入端都存在电压后, 启动硬件***平台。
情况二: 仅所述电源适配器供电支路输出端 102 为***供电支路输入 端 103供电时, 即只有电源适配器为终端供电, 该电源适配器供电支路输 出端 102通过二极管 D1为***供电支路 103供电。终端处理器检测到该电 压后, 控制电压控制支路输出端 104提供高电平, 线路控制三极管 106的 基极通过第一控压电阻 R1接收该高电平,使得该线路控制三极管 106处于 导通状态; 电源控制 MOS管 105的栅极由于接地, 因此为低电平, 使得电 源控制 MOS管 105处于导通状态, 该电源控制 MOS管 105导通后, 使得 电池供电支路输出端 101接通电压, 这样电池供电支路输出端 101和*** 供电支路输入端 103 同时存在电压, 终端处理器检测到电池供电支路输出 端 101和***供电支路输入端 103都存在电压后, 启动硬件***平台。
情况三: 电池供电支路输出端 101 和电源适配器供电支路输出端 102 同时为***供电支路输入端 103供电时, 即使用电池和电源适配器同时为 终端供电, 终端***初始化后, 终端处理器检测到该电压, 控制电压控制 支路 104提供低电平; 线路控制三极管 106的基极通过第一控压电阻 R1接 收该低电平, 线路控制三极管 106 的基极为低电平, 使得线路控制三极管 106处于截止状态; 此时, 电源控制 MOS管 105的栅极由于通过第三分压 电阻 R3连接电源适配器供电支路输出端 102, 电压为高电平, 使得电源控 制 MOS管 105处于截止状态,这样只有电源适配器供电支路输出端 102为 ***供电支路 103供电, 且由于存在电池, 电池供电支路输出端 101存在 电压, 从而使电池供电支路输出端 101和***供电支路输入端 103 同时存 在电压。 终端处理器检测到电池供电支路输出端 101 和***供电支路输入 端 103都存在电压后, 启动硬件***平台。
上述各情况中的电源控制 MOS管 105可以使用 PMOS管,线路控制三 极管 106可以使用内置电阻的三极管。
通过上述描述可以看出, 使用本发明实施例提供的电源控制电路, 通 过控制电压控制支路输出端输出的电压高低,进而控制电源控制 MOS管的 导通状态, 为***供电支路 103选择电源的供电支路, 使终端在仅使用电 源适配器供电时, 可以启动适用于手机的***平台, 并且在同时使用电源 适配器和电池供电时, 可以选择供电的来源。 当然在实际使用中, 还需要 添加一些其它的辅助器件以实现相应的功能, 所添加的器件为本领域技术 人员所公知, 在此不再赘述。 另外, 本发明实施例还提供一种电源控制方法, 应用于上述实施例提 供的电源控制电路, 图 3 为本发明实施例中电源控制方法的流程示意图, 如图 3所示, 该方法包括以下步骤:
步骤 301 , 终端设备检测到电压时, 判断电压的供电来源;
步骤 302, 根据判断结果, 控制电压控制支路输出端输出的电压; 具体的, 该电压的供电来源包括: 电池供电支路输出端 101 输出的电 压和电源适配器供电支路输出端 102输出的电压;
( 1 ) 当电源控制 MOS管 105的栅极连接线路控制三极管 106的发射 极时, 终端检测到电池供电支路输出端 101 存在电压后, 控制电压控制支 路输出端 104输出低电平。 线路控制三极管 106的基极通过第一控压电阻 R1与电压控制支路输出端 104相连, 因此, 线路控制三极管 106的基极为 低电平, 使得该线路控制三极管 106处于截止状态, 而且通过第二控压电 阻 R2接地, 进一步确保了线路控制三极管 106的基极为低电平; 同时, 电 源控制 MOS管 105的栅极由于通过第四分压电阻 R4接地,因此为低电平, 使得电源控制 MOS管 105处于导通状态。该电源控制 MOS管 105导通后, 电池供电支路输出端 101为***供电支路输入端 103供电, 而且使得电池 供电支路输出端 101和***供电支路输入端 103 同时存在电压。 终端处理 器检测到电池供电支路输出端 101和***供电支路输入端 103都存在电压 后, 启动硬件***平台。
( 2 ) 当电源控制 MOS管 105的栅极连接线路控制三极管 106的发射 极时, 终端检测到电源适配器供电支路输出端 102存在电压后, 控制电压 控制支路输出端 104输出低电平。 该电源适配器供电支路输出端 102通过 二极管 D1为***供电支路输入端 103供电。线路控制三极管 106的基极通 过第一控压电阻 R1接收该低电平,使得该线路控制三极管 106处于截止状 态, 而且通过第二控压电阻 R2接地, 进一步确保了线路控制三极管 106的 基极为低电平; 电源控制 MOS管 105的栅极由于通过第四分压电阻 R4接 地, 因此为低电平, 使得电源控制 MOS管 105处于导通状态, 该电源控制 MOS管 105导通后, 使得电池供电支路输出端 101接通电压, 这样电池供 电支路输出端 101的输出端和***供电支路输入端 103 同时存在电压, 终 端处理器检测到电池供电支路输出端 101和***供电支路输入端 103都存 在电压后, 启动硬件***平台。
( 3 ) 当电源控制 MOS管 105的栅极连接线路控制三极管 106的发射 极时, 终端检测到电池供电支路输出端 101 和电源适配器供电支路输出端 102都存在电压后,控制电压控制支路输出端 104输出高电平。 线路控制三 极管 106的基极通过第一控压电阻 R1接收该高电平,使得线路控制三极管 106处于导通状态,此时电源控制 MOS管 105的栅极通过第三分压电阻 R3 连接电源适配器供电支路输出端 102 , 电压为高电平, 使得电源控制 MOS 管 105处于截止状态, 这样只有电源适配器供电支路输出端 102为***供 电支路 103供电, 且由于存在电池, 电池供电支路输出端 101存在电压, 从而使电池供电支路输出端 101和***供电支路输入端 103同时存在电压。 终端处理器检测到电池供电支路输出端 101和***供电支路输入端 103都 存在电压后, 启动硬件***平台。
( 4 ) 当电源控制 MOS管 105的栅极连接线路控制三极管 106的集电 极时, 终端检测到电池供电支路输出端 101 存在电压后, 控制电压控制支 路输出端 104输出高电平。 线路控制三极管 106的基极通过第一控压电阻 R1接收该高电平, 使得该线路控制三极管 106处于导通状态; 此时, 电源 控制 MOS管 105的栅极由于接地, 因此为低电平, 使得电源控制 MOS管 105处于导通状态, 该电源控制 MOS管 105导通后, 该电池供电支路输出 端 101为***供电支路 103供电, 而且使电池供电支路输出端 101和*** 供电支路输入端 103 同时存在电压。 终端处理器检测到电池供电支路输出 端 101和***供电支路 103的输入端都存在电压后 , 启动硬件***平台。
( 5 ) 当电源控制 MOS管 105的栅极连接线路控制三极管 106的集电 极时, 终端检测到电源适配器供电支路输出端 102存在电压后, 控制电压 控制支路 104输出端输出高电平。 该电源适配器供电支路输出端 102通过 二极管 D1为***供电支路 103供电。线路控制三极管 106的基极通过第一 控压电阻 R1接收该高电平, 使得该线路控制三极管 106处于导通状态; 电 源控制 MOS管 105的栅极由于接地, 因此为低电平, 使得电源控制 MOS 管 105处于导通状态, 该电源控制 MOS管 105导通后, 使得电池供电支路 输出端 101接通电压, 这样电池供电支路输出端 101和***供电支路输入 端 103 同时存在电压, 终端处理器检测到电池供电支路输出端 101和*** 供电支路输入端 103都存在电压后, 启动硬件***平台。
( 6 ) 当电源控制 MOS管 105的栅极连接线路控制三极管 106的集电 极时, 终端检测到电池供电支路输出端 101 和电源适配器供电支路输出端 102都存在电压后,控制电压控制支路输出端 104输出低电平。 线路控制三 极管 106的基极通过第一控压电阻 R1接收该低电平, 线路控制三极管 106 的基极为低电平, 使得线路控制三极管 106处于截止状态; 此时, 电源控 制 MOS管 105的栅极由于通过第三分压电阻 R3连接电源适配器供电支路 输出端 102, 电压为高电平, 使得电源控制 MOS管 105处于截止状态, 这 样只有电源适配器供电支路输出端 102为***供电支路 103供电, 且由于 存在电池, 电池供电支路输出端 101 存在电压, 从而使电池供电支路输出 端 101和***供电支路输入端 103 同时存在电压。 终端处理器检测到电池 供电支路输出端 101和***供电支路输入端 103都存在电压后, 启动硬件 ***平台。
上述各情况中的电源控制 MOS管 105可以使用 PMOS管,线路控制三 极管 106可以使用内置电阻的三极管。 通过上述描述, 可以看出, 使用本发明实施例提供的电源控制方法, 通过控制电压控制支路输出端输出的电压高低,进而控制电源控制 MOS管 的导通状态, 为***供电支路 103选择电源的供电支路, 使终端在仅使用 电源适配器供电时, 可以启动适用于手机的***平台, 并且在同时使用电 源适配器和电池供电时, 可以选择供电的来源。 当然在实际使用中, 还需 要添加一些其它的辅助器件以实现相应的功能, 所添加的器件为本领域技 术人员所公知, 在此不再赘述。
另外, 本发明实施例还提供一种电源控制终端设备, 图 4为本发明实 施例中电源控制终端设备的结构示意图, 如图 4所示, 该设备包括电源控 制电路 401和终端处理器 402;
电源控制电路 401包括: 电池供电支路输出端 101、 电源适配器供电支 路输出端 102、 ***供电支路输入端 103、 电压控制支路输出端 104, 电源 切换 MOS管 105、 线路控制三极管 106; 其中, 电源控制 MOS管 105的源 极连接电池供电支路输出端 101 , 电源控制 MOS管 105的漏极连接***供 电支路输入端 103 , 电源控制 MOS管 105的栅极连接线路控制三极管 106 的发射极或者集电极; 线路控制三极管 106 的基极连接电压控制支路输出 端 104,线路控制三极管 106的集电极连接电源适配器供电支路输出端 102, 线路控制三极管 106的发射极接地; 电源适配器供电支路输出端 102连接 ***供电支路输入端 103;
终端处理器 402, 用于终端设备检测到电压时, 判断所述电压的供电来 源; 根据判断结果, 控制电压控制支路输出端输出的电压。
该电源控制终端设备通过控制电压控制支路输出端输出的电压高低, 进而控制电源控制 MOS管的导通状态,为***供电支路选择电源的供电支 路, 使终端在仅使用电源适配器供电时, 可以启动适用于手机的***平台, 并且在同时使用电源适配器和电池供电时, 可以选择供电的来源。 本发明实施例提供一种电源控制电路、 方法及电源控制终端设备, 使 用电源控制 MOS管 105的源极连接电池供电支路输出端 101的输出端, 电 源控制 MOS管的源极连接所述电池供电支路的输出端,所述电源控制 MOS 管的漏极连接所述***供电支路的输入端,所述电源控制 MOS管的栅极连 接所述线路控制三极管的发射极或者集电极; 所述线路控制三极管的基极 连接所述电压控制支路的输出端, 所述线路控制三极管的集电极连接所述 电源适配器供电支路的输出端, 所述线路控制三极管的发射极接地; 所述 电源适配器供电支路输出端连接所述***供电支路输入端。 通过使用本发 明实施例提供电源控制电路以及电源控制终端设备, 以及通过控制电源控 制 MOS管的导通或截止, 可以控制为***供电的电量来源, 并确保***可 以在仅存在电源适配器供电时, 在***供电支路输入端和电池供电支路输 出端都可以检测到电压, 满足***硬件平台的启动条件。 本发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权 利要求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在 内。

Claims

权利要求书
1、 一种电源控制电路, 其特征在于, 该电路包括: 电池供电支路输出 端、 电源适配器供电支路输出端、 ***供电支路输入端、 电压控制支路输 出端, 其特征在于, 还包括: 电源切换 MOS管、 线路控制三极管; 其中, 所述电源控制 MOS管的源极连接所述电池供电支路输出端,所述电源 控制 MOS管的漏极连接所述***供电支路输入端, 所述电源控制 MOS管 的栅极连接所述线路控制三极管的发射极或者集电极;
所述线路控制三极管的基极连接所述电压控制支路输出端, 所述线路 控制三极管的集电极连接所述电源适配器供电支路输出端, 所述线路控制 三极管的发射极接地;
所述电源适配器供电支路输出端连接所述***供电支路输入端。
2、 一种电源控制方法, 其特征在于, 应用于如权利要求 1所述的电源 控制电路, 该方法包括:
终端设备检测到电压时, 判断所述电压的供电来源;
根据判断结果, 控制电压控制支路输出端输出的电压。
3、 根据权利要求 2所述的电源控制方法, 其特征在于, 所述电压的供 电来源包括: 电池供电支路输出端输出的电压和电源适配器供电支路输出 端输出的电压。
4、 根据权利要求 3所述的电源控制方法, 其特征在于, 所述根据判断 结果, 控制电压控制支路输出端输出的电压包括:
当所述电源控制 MOS管的栅极连接所述线路控制三极管的发射极时, 终端检测到电池供电支路输出端存在电压后, 控制所述电压控制支路输出 端输出低电平。
5、 根据权利要求 3所述的电源控制方法, 其特征在于, 所述根据判断 结果, 控制电压控制支路输出端输出的电压包括: 当所述电源控制 MOS管的栅极连接所述线路控制三极管的发射极时, 终端检测到电源适配器供电支路输出端存在电压后, 控制所述电压控制支 路输出端输出低电平。
6、 根据权利要求 3所述的电源控制方法, 其特征在于, 所述根据判断 结果, 控制电压控制支路输出端输出的电压包括:
当所述电源控制 MOS管的栅极连接所述线路控制三极管的发射极时, 终端检测到电池供电支路输出端和电源适配器供电支路输出端都存在电压 后, 控制所述电压控制支路输出端输出高电平。
7、 根据权利要求 3所述的电源控制方法, 其特征在于, 所述根据判断 结果, 控制电压控制支路输出端输出的电压包括:
当所述电源控制 MOS管的栅极连接所述线路控制三极管的集电极时, 终端检测到电池供电支路输出端存在电压后, 控制所述电压控制支路输出 端输出高电平。
8、 根据权利要求 3所述的电源控制方法, 其特征在于, 所述根据判断 结果, 控制电压控制支路输出端输出的电压包括:
当所述电源控制 MOS管的栅极连接所述线路控制三极管的集电极时, 终端检测到电源适配器供电支路输出端存在电压后, 控制所述电压控制支 路输出端输出高电平。
9、 根据权利要求 3所述的电源控制方法, 其特征在于, 所述根据判断 结果, 控制电压控制支路输出端输出的电压包括:
当所述电源控制 MOS管的栅极连接所述线路控制三极管的集电极时, 终端检测到电池供电支路输出端和电源适配器供电支路输出端都存在电压 后, 控制所述电压控制支路输出端输出低电平。
10、 一种电源控制终端设备, 其特征在于, 该电源控制终端设备包括: 电源控制电路和电源控制方法的终端处理器; 其中, 所述电源控制电路包括: 电池供电支路输出端、 电源适配器供电支路 输出端、 ***供电支路输入端、 电压控制支路输出端, 电源切换 MOS管、 线路控制三极管;所述电源控制 MOS管的源极连接所述电池供电支路输出 端, 所述电源控制 MOS管的漏极连接所述***供电支路输入端, 所述电源 控制 MOS管的栅极连接所述线路控制三极管的发射极或者集电极; 所述线 路控制三极管的基极连接所述电压控制支路输出端, 所述线路控制三极管 的集电极连接所述电源适配器供电支路输出端, 所述线路控制三极管的发 射极接地; 所述电源适配器供电支路输出端连接所述***供电支路输入端; 所述终端处理器, 用于终端设备检测到电压时, 判断所述电压的供电 来源; 根据判断结果, 控制电压控制支路输出端输出的电压。
PCT/CN2011/071042 2010-09-19 2011-02-17 一种电源控制电路、方法及电源控制终端设备 WO2012034375A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010102889445A CN101958645A (zh) 2010-09-19 2010-09-19 一种电源控制***、方法及电源控制终端设备
CN201010288944.5 2010-09-19

Publications (1)

Publication Number Publication Date
WO2012034375A1 true WO2012034375A1 (zh) 2012-03-22

Family

ID=43485805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/071042 WO2012034375A1 (zh) 2010-09-19 2011-02-17 一种电源控制电路、方法及电源控制终端设备

Country Status (2)

Country Link
CN (1) CN101958645A (zh)
WO (1) WO2012034375A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101958645A (zh) * 2010-09-19 2011-01-26 中兴通讯股份有限公司 一种电源控制***、方法及电源控制终端设备
TWI488032B (zh) * 2012-10-25 2015-06-11 Acer Inc 電子裝置及其供電控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651360A (zh) * 2009-06-30 2010-02-17 深圳市科陆电子科技股份有限公司 带唤醒功能的双电源供电智能无缝切换方法
CN201523258U (zh) * 2009-10-27 2010-07-07 沈阳晨讯希姆通科技有限公司 电子设备的供电装置
CN101958645A (zh) * 2010-09-19 2011-01-26 中兴通讯股份有限公司 一种电源控制***、方法及电源控制终端设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004096892A (ja) * 2002-08-30 2004-03-25 Sanyo Electric Co Ltd 電源切換装置
US8704492B2 (en) * 2007-02-20 2014-04-22 Microsoft Corporation Automatic power switching in game peripheral

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651360A (zh) * 2009-06-30 2010-02-17 深圳市科陆电子科技股份有限公司 带唤醒功能的双电源供电智能无缝切换方法
CN201523258U (zh) * 2009-10-27 2010-07-07 沈阳晨讯希姆通科技有限公司 电子设备的供电装置
CN101958645A (zh) * 2010-09-19 2011-01-26 中兴通讯股份有限公司 一种电源控制***、方法及电源控制终端设备

Also Published As

Publication number Publication date
CN101958645A (zh) 2011-01-26

Similar Documents

Publication Publication Date Title
TWI351802B (en) Universal serial bus charger circuit and charging
US7444527B2 (en) Circuit for saving power of a battery within an electronic equipment while the electronic equipment is powered off
CN106532902B (zh) 一种移动终端的双电池控制装置及其方法
US8063625B2 (en) Momentarily enabled electronic device
JP2014524232A (ja) 電力供給の装置および方法ならびにユーザ装置
TWI468920B (zh) 具有耗電量偵測功能的電子裝置
WO2017161587A1 (zh) 一种负载供电电路和终端
CN103713724A (zh) 一种带电池设备的断电启动电路和控制方法
CN103592861A (zh) 一种多功能单键开关电源管理***
TWI461897B (zh) 電源控制裝置及電子裝置
US20120091812A1 (en) Power switching device
WO2014040421A1 (zh) 一种电平跳变复位ic设计电路
WO2012034375A1 (zh) 一种电源控制电路、方法及电源控制终端设备
CN210780130U (zh) 电源关断控制电路
TW201348945A (zh) 電源控制系統及方法
KR20190054708A (ko) 대기 전력을 줄이기 위한 방법 및 그 전자 장치
CN207184438U (zh) 开关控制电路、开关电路及电子设备
JP6170184B2 (ja) 電源スイッチング回路及び端末
CN104423519B (zh) 主板供电***
CN113054967B (zh) 开关机的控制电路及方法
CN104159359A (zh) 一种手电筒驱动电路及移动终端
TWI429159B (zh) 電源切換電路與其電源切換方法
US8947019B2 (en) Handheld device and power supply circuit thereof
CN107733025B (zh) 一种usb与dc兼容的双充电路及其运行方法
CN111273590A (zh) 一种按摩器的单按钮操作电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11824446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11824446

Country of ref document: EP

Kind code of ref document: A1