WO2012033019A1 - アクリル酸エステル誘導体、高分子化合物およびフォトレジスト組成物 - Google Patents

アクリル酸エステル誘導体、高分子化合物およびフォトレジスト組成物 Download PDF

Info

Publication number
WO2012033019A1
WO2012033019A1 PCT/JP2011/070034 JP2011070034W WO2012033019A1 WO 2012033019 A1 WO2012033019 A1 WO 2012033019A1 JP 2011070034 W JP2011070034 W JP 2011070034W WO 2012033019 A1 WO2012033019 A1 WO 2012033019A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
hydrogen atom
mol
polymer compound
Prior art date
Application number
PCT/JP2011/070034
Other languages
English (en)
French (fr)
Inventor
中山 修
学 矢田
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to KR1020137005869A priority Critical patent/KR20130138732A/ko
Priority to US13/820,855 priority patent/US9152042B2/en
Priority to JP2012532959A priority patent/JP5722904B2/ja
Publication of WO2012033019A1 publication Critical patent/WO2012033019A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/93Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems condensed with a ring other than six-membered
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • C08F220/365Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate containing further carboxylic moieties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D327/00Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D327/02Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms one oxygen atom and one sulfur atom
    • C07D327/04Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/08Bridged systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D497/00Heterocyclic compounds containing in the condensed system at least one hetero ring having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D497/12Heterocyclic compounds containing in the condensed system at least one hetero ring having oxygen and sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D497/18Bridged systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F20/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1811C10or C11-(Meth)acrylate, e.g. isodecyl (meth)acrylate, isobornyl (meth)acrylate or 2-naphthyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate

Definitions

  • an acrylic ester derivative, a polymer compound obtained by polymerizing a raw material containing the acrylic ester derivative, and a line width roughness (LWR) are improved to form a high-resolution resist pattern.
  • the present invention relates to a photoresist composition.
  • a resist film made of a resist material is formed on a substrate, and the resist film is selectively exposed to radiation such as light and electron beams through a mask on which a predetermined pattern is formed. Then, a development process is performed to form a resist pattern having a predetermined shape on the resist film.
  • a resist material in which the exposed portion changes to a property that dissolves in the developer is referred to as a positive resist material
  • a resist material that changes to a property in which the exposed portion does not dissolve in the developer is referred to as a negative resist material.
  • pattern miniaturization has been rapidly progressing due to advances in lithography technology.
  • the exposure light source is generally shortened in wavelength (increased energy).
  • ultraviolet rays typified by g-line and i-line have been used.
  • mass production of semiconductor elements using a KrF excimer laser or an ArF excimer laser has started.
  • lithography using an F 2 excimer laser, an electron beam, EUV (extreme ultraviolet), X-ray, or the like having a shorter wavelength (higher energy) than KrF excimer laser or ArF excimer laser is also being studied.
  • Resist materials are required to have lithography characteristics such as sensitivity to these exposure light sources and resolution capable of reproducing a pattern with fine dimensions.
  • a chemically amplified resist composition containing a base material component whose solubility in an alkaline developer is changed by the action of an acid and an acid generator component that generates an acid upon exposure is used. It has been.
  • a positive chemically amplified resist composition a resist composition containing a resin component (base resin) whose solubility in an alkaline developer is increased by the action of an acid and an acid generator component is generally used. It has been.
  • a resin having a structural unit derived from (meth) acrylic acid ester in the main chain so-called acrylic resin, because of excellent transparency near 193 nm
  • a resin is generally used as a polymer compound which is one component of a photoresist composition.
  • the polymer compounds it is known that a photoresist composition having high etching resistance and improved substrate adhesion can be obtained by using a polymer compound containing a structural unit having norbornane lactone ( Patent Document 1).
  • the present invention has been made in view of the above circumstances, and provides a novel acrylate derivative that can be a structural unit of a polymer compound contained in a photoresist composition, and a raw material containing the acrylate derivative And providing a photoresist composition containing the polymer compound and having an improved LWR and forming a high-resolution resist pattern. Let it be an issue.
  • a photoresist composition using a polymer compound obtained by polymerizing a raw material containing a specific acrylate derivative has improved LWR and higher resolution than before. It was found that a resist pattern was formed.
  • R 1 represents a hydrogen atom, a methyl group or a trifluoromethyl group.
  • R 2 , R 3 , R 5 , R 7 , R 8 and R 10 are each independently a hydrogen atom, Represents an alkyl group having 1 to 6, a cycloalkyl group having 3 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms, wherein R 4 and R 6 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms; A cycloalkyl group having 3 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms, or R 4 and R 6 are bonded to each other to form an alkylene group having 1 to 3 carbon atoms, —O—, or R 9 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or —CO
  • X represents —O— or> N—R 12
  • R 12 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • n represents an integer of 0 to 2.
  • the wavy line indicates that either R 8 or R 9 may be endo or exo.
  • the acrylic ester derivative is represented by the following general formula (1 ′) Wherein R 1 , R 2 , R 3 , R 5 , R 7 , R 8 , R 9 , R 10 , X, Y and the wavy line are as defined above.
  • Z is a methylene group, —O -Represents-or -S-), and the acrylate derivative according to the above [1].
  • [3] A polymer compound obtained by polymerizing a raw material containing the acrylate derivative according to [1] or [2].
  • a photoresist composition comprising the polymer compound according to the above [3], a photoacid generator and a solvent.
  • the photoresist composition using the polymer compound obtained by polymerizing the raw material containing the acrylate derivative of the present invention, LWR is improved and a high-resolution resist pattern is formed.
  • an acrylate derivative represented by the following general formula (1) (hereinafter referred to as acrylate derivative (1)) is useful.
  • the acrylic ester derivative (1) is characterized by having a carbamate bond linked to an ethylene group in addition to a specific cyclic structure at the molecular end. If it is a photoresist composition using the high molecular compound obtained by superposing
  • R 1 represents a hydrogen atom, a methyl group or a trifluoromethyl group. Among these, a hydrogen atom or a methyl group is preferable.
  • R 2 , R 3 , R 5 , R 7 , R 8 and R 10 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or 1 to Represents an alkoxy group of 6;
  • the alkyl group having 1 to 6 carbon atoms may be linear or branched.
  • an alkyl group having 1 to 3 carbon atoms is preferable.
  • the cycloalkyl group having 3 to 6 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
  • the alkoxy group having 1 to 6 carbon atoms may be linear or branched.
  • R 2 , R 3 , R 5 , R 7 , R 8 and R 10 are preferably each independently a hydrogen atom, an alkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms. More preferably, both are hydrogen atoms.
  • R 4 and R 6 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms, or R 4 and R 6 represents an alkylene group having 1 to 3 carbon atoms, —O—, or —S—, which are bonded to each other.
  • the alkyl group having 1 to 6 carbon atoms may be linear or branched.
  • an alkyl group having 1 to 3 carbon atoms is preferable.
  • the cycloalkyl group having 3 to 6 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
  • the alkoxy group having 1 to 6 carbon atoms may be linear or branched.
  • an alkoxy group having 1 to 3 carbon atoms is preferable.
  • Examples of the alkylene group having 1 to 3 carbon atoms formed by combining both R 4 and R 6 include a methylene group, an ethane-1,1-diyl group, an ethane-1,2-diyl group, a propane- Examples include 1,1-diyl group, propane-1,2-diyl group, propane-1,3-diyl group, and propane-2,2-diyl group. Among these, a methylene group and an ethane-1,2-diyl group are preferable, and a methylene group is more preferable.
  • R 4 and R 6 are preferably bonded to each other to form an alkylene group having 1 to 3 carbon atoms, —O—, or —S—, and methylene having 1 carbon atom. It is more preferably a group, —O—, or —S—, that is, an acrylate derivative represented by the following general formula (1 ′).
  • R 1 , R 2 , R 3 , R 5 , R 7 , R 8 , R 9 , R 10 , X, Y and the wavy line are as defined above or as defined later.
  • Z represents a methylene group. , -O-, or -S-.
  • R 9 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or —COOR 11 , and R 11 represents 1 to 3 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms may be linear or branched. For example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, n- Examples thereof include a pentyl group and an n-hexyl group.
  • an alkyl group having 1 to 3 carbon atoms is preferable.
  • the cycloalkyl group having 3 to 6 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
  • the alkoxy group having 1 to 6 carbon atoms may be linear or branched. For example, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, t-butoxy group, n -Pentyloxy group, n-hexyloxy group and the like.
  • an alkoxy group having 1 to 3 carbon atoms is preferable.
  • the alkyl group having 1 to 3 carbon atoms represented by R 11 include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
  • R 12 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • the alkyl group having 1 to 5 carbon atoms represented by R 12 may be linear or branched.
  • methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl Group, t-butyl group, n-pentyl group, and the like an alkyl group having 1 to 4 carbon atoms is preferable, a branched alkyl group having 3 or 4 carbon atoms is more preferable, and a t-butyl group is preferable.
  • R 12 is preferably a hydrogen atom or a t-butyl group.
  • Y represents> C ⁇ O or> S ( ⁇ O) n
  • n represents an integer of 0 to 2.
  • n is preferably 1 or 2, and more preferably 2.
  • the combination of X and Y is not particularly limited, and when X is —O—, Y may be> C ⁇ O or> S ( ⁇ O) n , and X is> N—R 12 .
  • the wavy line in General formula (1) and (1 ') represents that either of R ⁇ 8 > and R ⁇ 9 > may be an end or exo. In particular, R 9 is preferably an end.
  • acrylate derivative (1) Specific examples of the acrylate derivative (1) are shown below, but are not particularly limited thereto.
  • R 1 is a hydrogen atom or a methyl group from the viewpoint of obtaining a photoresist composition that improves LWR
  • R 2 , R 3 , R 5 , R 7 , R 8 and R 10 is a hydrogen atom
  • R 9 is a hydrogen atom or —COOR 11 (R 11 is a methyl group)
  • R 4 and R 6 are bonded to each other to represent a methylene group or —O— (ie, Z is a methylene group or —O—)
  • X is —O— or> N—R 12
  • R 12 is a hydrogen atom or a t-butyl group
  • Y is> C ⁇ O or> S ( ⁇ O) n
  • S ( ⁇ O) n is preferably 2.
  • an acrylate derivative represented by any of the following general formulas is preferred. (In the above formula, R 1 is as defined above, and the preferred ones
  • an isocyanate derivative (henceforth an isocyanate derivative (2)) and an alcohol derivative (henceforth, hereinafter).
  • the alcohol derivative (referred to as alcohol derivative (3)) can be produced by reacting in the presence of a catalyst, a polymerization inhibitor, a solvent and the like, if necessary.
  • this reaction is referred to as “reaction (a)”.
  • Examples of the isocyanate derivative (2) include 2-acryloyloxyethyl isocyanate, 2-methacryloyloxyethyl isocyanate, and 2- (2-trifluoromethylacryloyloxy) ethyl isocyanate. Among these, 2-acryloyloxyethyl isocyanate and 2-methacryloyloxyethyl isocyanate are preferable from the viewpoint of availability.
  • the amount of the isocyanate derivative (2) used is preferably 0.8 to 5 moles per mole of the alcohol derivative (3), and more preferably 1 to 3 from the viewpoint of economy and ease of post-treatment. Is a mole.
  • the target product is obtained by epoxidation via an intermediate as required.
  • the target product can be produced by treating the epoxy compound with, for example, a basic substance.
  • R 2 , R 3 , R 5 , R 7 , R 8 , R 9 and R 10 are hydrogen atoms, and R 4 and R 6 are bonded to form a methylene group.
  • 5-hydroxy-2,6-norbornane sultone in which X is —O— and Y is> S ( ⁇ O) 2 can be produced as follows. That is, cyclopentadiene and vinylsulfonyl chloride generated in the system are subjected to Diels-Alder reaction to obtain 5-norbornene-2-sulfonyl chloride, and then contacted with an aqueous sodium hydroxide solution, to thereby obtain 5-norbornene-2-sulfone.
  • the desired product can be produced by using an acid sodium salt and subjecting it to an epoxidation reaction with performic acid (see JP 2010-83873 A).
  • R 2 , R 3 , R 5 , R 7 , R 8 , R 9 and R 10 are hydrogen atoms, and R 4 and R 6 are bonded to form methylene.
  • a group in which X is> N—R 12 , R 12 is a t-butyl group, and Y is> C ⁇ O can be produced as follows. That is, by reacting cyclopentadiene and acryloyl chloride with Diels-Alder and reacting the resulting product with t-butylamine, Nt-butylbicyclo [2.2.1] hept-5-ene-2- Carboxamide is obtained.
  • Hepta-2-carboxamide is obtained.
  • the target product can be produced by reacting the epoxy compound with a basic substance such as potassium-t-butoxide.
  • R 2 , R 3 , R 5 , R 7 , R 8 , R 9 and R 10 are hydrogen atoms, and R 4 and R 6 are bonded to form a methylene group.
  • a compound in which X is —O— and Y is> C ⁇ O is disclosed in “J. Chem. Soc., HB Henbest et al., P. 221-226 (1959)”. It can be manufactured by the method.
  • Other alcohol derivatives (3) can also be produced by referring to the above methods, known methods, and the examples of the present specification.
  • Catalysts include mineral acids such as hydrochloric acid and sulfuric acid; Lewis acids such as boron trifluoride, aluminum trichloride and dibutyltin dilaurate; triethylamine, tributylamine, N, N-dimethylaniline, 1,4-diazabicyclo [2.2 .2] tertiary amines such as octane, 1,5-diazabicyclo [4.3.0] non-5-ene, 1,8-diazabicyclo [5.4.0] undec-7-ene; pyridine, 2 -Nitrogen-containing heterocyclic aromatic compounds such as methylpyridine and 4- (dimethylamino) pyridine.
  • Catalysts include mineral acids such as hydrochloric acid and sulfuric acid; Lewis acids such as boron trifluoride, aluminum trichloride and dibutyltin dilaurate; triethylamine, tributylamine, N
  • the reaction is preferably carried out in the presence of a catalyst.
  • a catalyst may be used individually by 1 type and may use 2 or more types together, unless an acid and a base are mixed.
  • the amount of the catalyst used is preferably 0.001 to 0.5 mol, more preferably 0.005 to 0.2 mol, per 1 mol of the alcohol derivative (3). .
  • Reaction (a) can be carried out in the presence or absence of a polymerization inhibitor.
  • the polymerization inhibitor is not particularly limited, and examples thereof include quinone compounds such as hydroquinone, methoxyphenol, benzoquinone, tolquinone, pt-butylcatechol; 2,6-di-tert-butylphenol, 2,4-di-tert-butylphenol Alkylphenol compounds such as 2-t-butyl-4,6-dimethylphenol; amine compounds such as phenothiazine; 2,2,6,6-tetramethylpiperidine-N-oxyl, 4-acetamido-2,2, Examples include 2,2,6,6-tetramethylpiperidine-N-oxyl compounds such as 6,6-tetramethylpiperidine-N-oxyl.
  • the amount used is preferably 0.001 to 5% by mass, more preferably 0.001 to 1% by mass, and more preferably 0.001 to 1% by mass, based on the total mass of the reaction mixture excluding the solvent described later.
  • the content is 0.005 to 0.5% by mass.
  • Reaction (a) can be carried out in the presence or absence of a solvent.
  • the solvent is not particularly limited as long as it does not inhibit the reaction.
  • saturated hydrocarbons such as hexane, heptane, octane and cyclohexane
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • Halogenated aromatic hydrocarbons such as chlorobenzene and fluorobenzene
  • Ethers such as diethyl ether, diisopropyl ether, tetrahydrofuran, 1,4-dioxane, cyclopentylmethyl ether, 1,2-dimethoxyethane
  • Acetic acid Esters such as methyl, ethyl acetate and propyl acetate
  • nitriles such as acetonitrile, propionitrile
  • the amount of the solvent used is preferably 0.5 to 100 parts by mass with respect to 1 part by mass of the alcohol derivative (3), more preferably from the viewpoint of ease of post-treatment. 5 to 20 parts by mass.
  • the reaction temperature varies depending on the isocyanate derivative (2), alcohol derivative (3) to be used, and the type of catalyst and solvent used as necessary, but is preferably about ⁇ 30 to 100 ° C., more preferably ⁇ 10 to 80 ° C.
  • the reaction pressure is not particularly limited, but it is preferable because it is carried out under normal pressure.
  • the reaction time varies depending on the isocyanate derivative (2), alcohol derivative (3) to be used, the type of catalyst and solvent used as necessary, but is preferably about 0.5 to 48 hours, more preferably 1 Hours to 24 hours.
  • Reaction (a) is preferably carried out in an inert gas atmosphere such as nitrogen or argon from the viewpoint of safety.
  • Separation and purification of the acrylate derivative (1) from the reaction mixture obtained by the above method can be carried out by methods generally used for separation and purification of organic compounds.
  • the acrylic ester derivative (1) can be separated by adding water to the reaction mixture, extracting with an organic solvent, and concentrating the obtained organic layer.
  • a highly purified acrylic acid ester derivative (1) can be obtained by refine
  • a chelating agent such as nitrilotriacetic acid or ethylenediaminetetraacetic acid
  • Zeta Plus registered trademark
  • Protego trade name, Nippon Integris
  • Polymer compound A polymer obtained by polymerizing the acrylic ester derivative (1) of the present invention alone or a copolymer obtained by copolymerizing the acrylic ester derivative (1) with another polymerizable compound is used for a photoresist composition. It is useful as a high molecular compound.
  • the polymer compound of the present invention contains more than 0 mol% and 100 mol% of the structural unit based on the acrylate derivative (1), and is preferably 10 to 80 mol%, more preferably from the viewpoint of LWR and resolution. Contains 20 to 70 mol%, more preferably 30 to 70 mol%.
  • Specific examples of other polymerizable compounds hereinafter referred to as copolymerization monomers that can be copolymerized with the acrylate derivative (1) include compounds represented by the following chemical formulas. However, it is not particularly limited to these.
  • R 13 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R 14 represents a polymerizable group
  • R 15 represents a hydrogen atom or —COOR 16
  • R 16 represents an alkyl group having 1 to 3 carbon atoms
  • R 17 represents an alkyl group having 1 to 4 carbon atoms.
  • the alkyl group having 1 to 3 carbon atoms independently represented by R 13 and R 16 includes a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
  • Examples of the alkyl group represented by R 17 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • Examples of the polymerizable group represented by R 14 include an acryloyl group, a methacryloyl group, a vinyl group, and a crotonoyl group.
  • the comonomer it is preferably represented by the above formulas (I), (II), (IV), (V), (VI), (VII), (XI), (XII). More preferably, it is a combined use of the comonomer represented by the formula (I) and the comonomer represented by the formula (II).
  • the polymer compound can be produced by radical polymerization according to a conventional method.
  • a method for synthesizing a polymer compound having a small molecular weight distribution includes living radical polymerization.
  • a general radical polymerization method includes one or more kinds of acrylic ester derivatives (1) and, if necessary, one or more kinds of the above copolymer monomers, a radical polymerization initiator and a solvent, and, if necessary, Accordingly, the polymerization is carried out in the presence of a chain transfer agent.
  • limiting in particular in the implementation method of radical polymerization The usual method used when manufacturing acrylic resin, such as solution polymerization method, emulsion polymerization method, suspension polymerization method, and block polymerization method, can be used.
  • radical polymerization initiator examples include hydroperoxide compounds such as t-butyl hydroperoxide and cumene hydroperoxide; di-t-butyl peroxide, t-butyl- ⁇ -cumyl peroxide, di- ⁇ -cumyl peroxide and the like.
  • examples thereof include dialkyl peroxide compounds; diacyl peroxide compounds such as benzoyl peroxide and diisobutyryl peroxide; azo compounds such as 2,2′-azobisisobutyronitrile and dimethyl-2,2′-azobisisobutyrate.
  • the amount of radical polymerization initiator used can be appropriately selected according to the polymerization conditions such as the acrylate derivative (1), copolymerization monomer, chain transfer agent, solvent used and the polymerization temperature used in the polymerization reaction. Is the total amount of all polymerizable compounds [acrylic ester derivative (1) and comonomer, and so on.
  • the amount is usually preferably 0.005 to 0.2 mol, more preferably 0.01 to 0.15 mol per 1 mol.
  • chain transfer agent examples include thiol compounds such as dodecanethiol, mercaptoethanol, mercaptopropanol, mercaptoacetic acid, and mercaptopropionic acid.
  • the amount used is usually preferably 0.005 to 0.2 mol, more preferably 0.01 to 0.15 mol, per 1 mol of all polymerizable compounds.
  • the solvent is not particularly limited as long as it does not inhibit the polymerization reaction.
  • propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether propionate, ethylene Glycol ethers such as glycol monobutyl ether, ethylene glycol monobutyl ether acetate, diethylene glycol dimethyl ether; esters such as ethyl lactate, methyl 3-methoxypropionate, methyl acetate, ethyl acetate, propyl acetate; acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone , Methyl amyl ketone, cyclopentanone, cyclohexa Ketones, such as emissions diethyl ether, diisopropyl ether, dibuty
  • the polymerization temperature is usually preferably 40 to 150 ° C., and more preferably 60 to 120 ° C. from the viewpoint of the stability of the polymer compound to be produced.
  • the polymerization reaction time varies depending on the polymerization conditions such as the acrylate derivative (1), the comonomer, the polymerization initiator, the type and amount of the solvent used, and the temperature of the polymerization reaction. 48 hours, more preferably 1 to 24 hours.
  • the polymerization reaction is preferably carried out in an inert gas atmosphere such as nitrogen or argon.
  • the polymer compound thus obtained can be isolated by ordinary operations such as reprecipitation.
  • the isolated polymer compound can be dried by vacuum drying or the like.
  • the solvent used in the reprecipitation operation include aliphatic hydrocarbons such as pentane and hexane; alicyclic hydrocarbons such as cyclohexane; aromatic hydrocarbons such as benzene and xylene; methylene chloride, chloroform, chlorobenzene, dichlorobenzene, and the like.
  • Nitrogenated hydrocarbons such as nitromethane; Nitriles such as acetonitrile and benzonitrile; Ethers such as diethyl ether, diisopropyl ether, tetrahydrofuran and 1,4-dioxane; Ketones such as acetone and methyl ethyl ketone; Carboxyls such as acetic acid Acid; Esters such as ethyl acetate and butyl acetate; Carbonates such as dimethyl carbonate, diethyl carbonate, and ethylene carbonate; Methanol, ethanol, propanol, isopropyl alcohol Include water; alcohols such as butanol.
  • the amount of solvent used in the reprecipitation operation varies depending on the type of polymer compound and the type of solvent, but it is usually preferably 0.5 to 100 parts by mass with respect to 1 part by mass of the polymer compound. From the viewpoint of properties, the amount is more preferably 1 to 50 parts by mass.
  • the weight average molecular weight (Mw) of the polymer compound is not particularly limited, but is preferably 500 to 50,000, more preferably 1,000 to 30,000, still more preferably 5,000 to 15,000.
  • the utility as a component of the photoresist composition mentioned later is high.
  • Mw is a value measured according to the method described in Examples.
  • the molecular weight distribution (Mw / Mn) of the polymer compound is preferably 3 or less, more preferably 2.5 or less, and further preferably 2 or less, from the viewpoint of LWR and resolution.
  • the photoresist composition of the present invention is prepared by blending the polymer compound, photoacid generator and solvent, and if necessary, a basic compound, a surfactant and other additives.
  • a basic compound e.g., a surfactant, a surfactant, a surfactant, and other additives.
  • Photoacid generator There is no restriction
  • the photoacid generator include onium salt photoacid generators such as iodonium salts and sulfonium salts; oxime sulfonate photoacid generators; bisalkyl or bisarylsulfonyldiazomethane photoacid generators; nitrobenzyl sulfonate photons. Examples include acid generators; iminosulfonate photoacid generators; disulfone photoacid generators. You may use these individually by 1 type or in mixture of 2 or more types.
  • an onium salt-based photoacid generator is preferable, and the following fluorine-containing onium salt containing a fluorine-containing alkylsulfonic acid ion as an anion is preferable from the viewpoint that the strength of the generated acid is strong.
  • fluorine-containing onium salt examples include, for example, diphenyliodonium trifluoromethanesulfonate or nonafluorobutanesulfonate; bis (4-tert-butylphenyl) iodonium trifluoromethanesulfonate or nonafluorobutanesulfonate; triphenylsulfonium trifluoromethane.
  • the blending amount of the photoacid generator is usually preferably 0.1 to 30 parts by mass, more preferably 100 parts by mass with respect to 100 parts by mass of the polymer compound from the viewpoint of ensuring the sensitivity and developability of the photoresist composition. 0.5 to 10 parts by mass.
  • Solvents to be blended in the photoresist composition include, for example, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether propionate, ethylene glycol monobutyl ether, ethylene glycol Glycol ethers such as monobutyl ether acetate and diethylene glycol dimethyl ether; esters such as ethyl lactate, methyl 3-methoxypropionate, methyl acetate, ethyl acetate, and propyl acetate; acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, methyl amyl ketone, cyclo Ketones such as pentanone and cyclohexanone Diethyl ether, diisopropyl ether, dibutyl ether, di
  • a basic compound is added to the photoresist composition in an amount that does not impair the characteristics of the photoresist composition as necessary. be able to.
  • Examples of such basic compounds include formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N- (1-adamantyl) acetamide, benzamide, N-acetyl.
  • the blending amount varies depending on the type of the basic compound used, but is usually preferably 0.01 to 10 moles, more preferably 0.05 to 1 mole of the photoacid generator. ⁇ 1 mole.
  • the photoresist composition may further contain a surfactant in an amount that does not impair the characteristics of the photoresist composition, if desired.
  • a surfactant examples include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene n-octylphenyl ether, and the like. These may be used individually by 1 type and may use 2 or more types together.
  • the surfactant is blended, the blending amount is usually preferably 2 parts by mass or less with respect to 100 parts by mass of the polymer compound.
  • a sensitizer As other additives, a sensitizer, an antihalation agent, a shape improver, a storage stabilizer, an antifoaming agent, etc. are added in an amount that does not impair the characteristics of the photoresist composition. Can be blended.
  • a photoresist composition is applied to a substrate, usually pre-baked at 70 to 160 ° C. for 1 to 10 minutes, irradiated with radiation through a predetermined mask (exposure), and preferably at 1 to 5 at 70 to 160 ° C.
  • a predetermined resist pattern can be formed by post-exposure baking for a minute to form a latent image pattern and then developing with a developer.
  • Exposure is preferably from 0.1 ⁇ 1000mJ / cm 2, and more preferably 1 ⁇ 500mJ / cm 2.
  • the developer examples include inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate and aqueous ammonia; alkylamines such as ethylamine, diethylamine and triethylamine; alcohol amines such as dimethylethanolamine and triethanolamine; tetramethylammonium hydroxy And an alkaline aqueous solution in which a quaternary ammonium salt such as tetraethylammonium hydroxide is dissolved.
  • a quaternary ammonium salt such as tetraethylammonium hydroxide or tetraethylammonium hydroxide is dissolved.
  • concentration of the developer is usually preferably from 0.1 to 20% by mass, and more preferably from 0.1 to 10% by mass.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) were measured by gel permeation chromatography (GPC) using a differential refractometer as a detector and tetrahydrofuran (THF) as an eluent under the following conditions. It calculated
  • GPC measurement As a column, two “TSK-gel SUPER HZM-H” (trade name: manufactured by Tosoh Corporation, 4.6 mm ⁇ 150 mm) and “TSK-gel SUPER HZ2000” (trade name: manufactured by Tosoh Corporation, 4 (6 mm ⁇ 150 mm) were used in which one was connected in series, and measurement was performed under the conditions of a column temperature of 40 ° C., a differential refractometer temperature of 40 ° C., and an eluent flow rate of 0.35 mL / min.
  • aqueous solution (A) This aqueous solution is referred to as “aqueous solution (A)”. All of the “aqueous solution (A)” was placed in a three-necked flask having an internal volume of 3 L equipped with a stirrer and a thermometer, and cooled to 10 ° C. After dropping 93.27 g (2.01 mol) of 99% formic acid at an internal temperature of 11 to 15 ° C. and heating to an internal temperature of 50 to 53 ° C., 162.50 g (1. 43 mol) was added dropwise over 3 hours. The internal temperature was maintained at around 50 ° C. even after the completion of the dropwise addition, and the reaction mixture was analyzed by HPLC 17 hours after the completion of the dropwise addition.
  • the organic layer was washed 5 times with 300 g of ion-exchanged water.
  • liquid separation was performed by allowing the internal temperature to stand at 45 ° C. 16 mg of p-methoxyphenol and 16 mg of phenothiazine were added to the organic layer and concentrated under reduced pressure to obtain 211.2 g of a concentrate. 246.3 g of ethyl acetate was added to the concentrate, and the temperature was raised to 55 ° C., followed by cooling to ⁇ 10 ° C., and the precipitated crystals were collected by filtration.
  • the internal temperature was stirred at around 50 ° C. for 10 hours. After cooling the reaction mixture to 15 ° C., 30.5 g of sodium sulfite was added within an internal temperature range of 15 to 20 ° C. After confirming that hydrogen peroxide was not detected by starch paper, 20% aqueous sodium hydroxide solution was added. The pH of the reaction mixture was adjusted to 7.5. Extraction was performed 3 times with 400 g of ethyl acetate, and the obtained organic layers were combined and concentrated under reduced pressure.
  • the reaction mixture was concentrated under reduced pressure, and the resulting concentrate was dissolved in 300 g of ethyl acetate, washed successively with 50 g of water, 50 g of a saturated aqueous sodium hydrogen carbonate solution and 50 g of saturated brine, and then concentrated under reduced pressure. 28.3 g of oil was obtained. To this oily substance was added 93.6 g (0.234 mol) of a 10% aqueous sodium hydroxide solution, and the mixture was stirred at room temperature for 24 hours, and then adjusted to pH 2.0 with concentrated hydrochloric acid. After extracting three times with 300 g of ethyl acetate, the obtained extracted layers were combined and concentrated under reduced pressure to obtain 21.5 g of a solid.
  • a 300 mL four-necked flask equipped with a stirrer, a dropping funnel and a thermometer is charged with 150 g (2.20 mol) of furan and 15.0 g of zinc iodide, and vinyl sulfonic acid is added from the dropping funnel at 25 to 27 ° C. Methyl 41.5 g (0.34 mol) was added. After stirring for 2 days at the same temperature, the reaction solution was transferred to a 1 L separatory funnel. After washing twice with 300 mL of water, unreacted furan was distilled off under reduced pressure to obtain 22.0 g of methyl 7-oxabicyclo [2.2.1] heptan-2-ene-5-sulfonate.
  • Example 4 Synthesis of 7-oxanorbornane-2,6-sulton-5-yl (2-methacryloyloxyethyl) carbamate 0.30 g (1.56 mmol) of 5-hydroxy-7-oxanorbornane-2,6-sultone obtained in Synthesis Example 4 and 4-acetamido-2,2,6,6-tetramethylpiperidine-N-oxyl 1.0 mg, 1.8 g of ethyl acetate, 12 mg (0.08 mmol) of 1,8-diazabicyclo [5.4.0] undec-7-ene were charged, and 2-methacryloyloxyethyl isocyanate was stirred at 24-26 ° C.
  • reaction intermediate solution (A) Into a 2 L three-necked flask equipped with a thermometer, a stirrer, a nitrogen introducing tube and a dropping funnel, 201.1 g (2.750 mol) of t-butylamine and 513 g of toluene were charged, and the internal temperature was cooled to 0 ° C. .
  • the reaction intermediate solution (A) obtained above was added dropwise to the mixture from the dropping funnel over 1 hour 30 minutes, and then the internal temperature was raised to 25 ° C.
  • 1800 ml of ethyl acetate and 300 ml of water were added, stirred for 30 minutes, and allowed to stand for liquid separation to obtain an organic layer.
  • the obtained organic layer was concentrated under reduced pressure to obtain a concentrate.
  • 750 ml of ethyl acetate and 250 ml of hexane were added to the concentrate and heated to 40 ° C. to dissolve the concentrate.
  • the precipitated crystals were collected by filtration.
  • the obtained crystals were dried under reduced pressure to obtain 124.3 g (0.643 mol; yield 26.8%) of Nt-butylbicyclo [2.2.1] hept-5-ene-2-carboxamide.
  • Nt-Butylbicyclo [2.2.1] hept-5-ene-2-carboxamide 50.0 g was added to a 2 L three-necked flask equipped with a thermometer, stirrer, nitrogen inlet tube and dropping funnel. (0.259 mol), 250 g of methylene chloride, 121.6 g (0.880 mol) of potassium carbonate and 550 g of water were charged, and the internal temperature was cooled to 0 ° C. To this mixture, 75.9 g (0.440 mol) of m-chloroperbenzoic acid and 1559 g of methylene chloride were added dropwise from a dropping funnel over 20 minutes. After stirring at 0-7 ° C.
  • Example 5 Synthesis of Nt-butyl-hexahydro-2-oxo-3,5-methano-4H-cyclopenta [2,3-b] pyrrol-6-yl (2-methacryloyloxyethyl) carbamate Thermometer The Nt-butyl-6-hydroxyhexahydro-2-oxo-3,5-methano-4H obtained in Synthesis Example 5 was added to a three-necked flask having an internal volume of 100 mL equipped with a stirrer and a nitrogen introduction tube.
  • Nt-butyl-6-hydroxyhexahydro-2-oxo-3,5-methano-4H-cyclopenta The conversion rate of 2,3-b] pyrrole was 97%.
  • 20.0 mL of ethyl acetate was added to the obtained reaction mixture, and when the pH was adjusted to 3 with a 0.5 wt% aqueous HCl solution, the organic layer and the aqueous layer were separated. The obtained organic layer was washed 5 times with 20 g of water and then concentrated under reduced pressure to obtain 11.3 g of a concentrate.
  • Example 7 Synthesis of polymer compound (a) In a three-necked flask having an internal volume of 50 ml equipped with a stirrer, a reflux condenser and a thermometer, 4.0 g (17.2 mmol) of 2-methacryloyloxy-2-methyladamantane. , 1.4 g (6.0 mmol) of 3-hydroxyadamantan-1-yl methacrylate, 6.8 g of 2,6-norbornanesulton-5-yl (2-methacryloyloxyethyl) carbamate obtained in Example 1 ( 19.8 mmol) and 36.4 g of methyl ethyl ketone were charged, and nitrogen bubbling was performed for 10 minutes.
  • Example 8 Synthesis of Polymer Compound (b) In a three-necked flask having an internal volume of 50 ml equipped with a stirrer, a reflux condenser and a thermometer, 4.0 g (17.2 mmol) of 2-methacryloyloxy-2-methyladamantane. , 1.4 g (6.0 mmol) of 3-hydroxyadamantan-1-yl methacrylate, 6.1 g of 2,6-norbornanecarbolactone-5-yl (2-methacryloyloxyethyl) carbamate obtained in Example 2 (19.8 mmol) and 36.4 g of methyl ethyl ketone were charged, and nitrogen bubbling was performed for 10 minutes.
  • 3-hydroxyadamantan-1-yl methacrylate 1.4 g (6.0 mmol), 2,6- (7-oxanorbornane) carbolactone-5-yl (2-methacryloyloxyethyl) obtained in Example 3 )
  • 6.2 g (19.8 mmol) of carbamate and 36.4 g of methyl ethyl ketone were charged, and nitrogen bubbling was performed for 10 minutes.
  • 0.36 g (2 mmol) of 2,2′-azobisisobutyronitrile was charged, and a polymerization reaction was performed at 80 ° C. for 4 hours.
  • the obtained reaction mixture was added dropwise to 220 g of methanol at room temperature while stirring, and the resulting precipitate was collected by filtration.
  • the precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 8 hours to obtain 7.2 g of a polymer compound (c) composed of the following repeating units (the numerical values represent molar ratios).
  • the weight average molecular weight (Mw) of the obtained polymer compound (c) was 9,400, and the molecular weight distribution was 1.9.
  • Example 10 Synthesis of Polymer Compound (d) In a three-necked flask having an internal volume of 50 ml equipped with a stirrer, a reflux condenser and a thermometer, 4.0 g (17.2 mmol) of 2-methacryloyloxy-2-methyladamantane. , 3-hydroxyadamantan-1-yl methacrylate 1.4 g (6.0 mmol), 7-oxanorbornane-2,6-sulton-5-yl (2-methacryloyloxyethyl) carbamate obtained in Example 4 6.9 g (19.8 mmol) and 36.4 g of methyl ethyl ketone were charged, and nitrogen bubbling was performed for 10 minutes.
  • 3-hydroxyadamantan-1-yl methacrylate 1.4 g (6.0 mmol), Nt-butyl-hexahydro-2-oxo-3,5-methano-4H-cyclopenta [ 2,3-b] pyrrol-6-yl (2-methacryloyloxyethyl) carbamate (7.2 g, 19.8 mmol) and methyl ethyl ketone (36.4 g) were charged, and nitrogen bubbling was performed for 10 minutes. Under a nitrogen atmosphere, 0.36 g (2 mmol) of 2,2′-azobisisobutyronitrile was charged, and a polymerization reaction was performed at 80 ° C. for 4 hours.
  • the obtained reaction mixture was added dropwise to 220 g of methanol at room temperature while stirring, and the resulting precipitate was collected by filtration.
  • the precipitate was dried under reduced pressure (26.7 Pa) at 50 ° C. for 8 hours to obtain 7.0 g of a polymer compound (e) composed of the following repeating units (the numerical value represents a molar ratio).
  • the obtained polymer compound (e) had a weight average molecular weight (Mw) of 10,100 and a molecular weight distribution of 1.8.
  • Example 12 Synthesis of Polymer Compound (f) In a three-necked flask having an internal volume of 50 ml equipped with a stirrer, a reflux condenser and a thermometer, 4.0 g (17.2 mmol) of 2-methacryloyloxy-2-methyladamantane.
  • 3-hydroxyadamantan-1-yl methacrylate 1.4 g (6.0 mmol), 3-methoxycarbonyl-2,6-norbornanecarbolactone-5-yl (2-methacryloyloxyethyl) obtained in Example 6 ) 7.3 g (19.8 mmol) of carbamate and 36.4 g of methyl ethyl ketone were charged, and nitrogen bubbling was performed for 10 minutes. Under a nitrogen atmosphere, 0.36 g (2 mmol) of 2,2′-azobisisobutyronitrile was charged, and a polymerization reaction was performed at 80 ° C. for 4 hours.
  • the obtained reaction mixture was added dropwise to 220 g of methanol at room temperature while stirring, and the resulting precipitate was collected by filtration.
  • the precipitate was dried under reduced pressure (26.7 Pa) at 50 ° C. for 8 hours to obtain 6.6 g of a polymer compound (f) composed of the following repeating units (the numerical values represent molar ratios).
  • the obtained polymer compound (f) had a weight average molecular weight (Mw) of 9,200 and a molecular weight distribution of 1.7.
  • photoresist compositions were filtered using a membrane filter having a pore size of 0.2 ⁇ m.
  • a cresol novolak resin ("PS-6937” manufactured by Gunei Chemical Industry Co., Ltd.) was applied with a 6% by mass propylene glycol monomethyl ether acetate solution by spin coating, and baked on a hot plate at 200 ° C for 90 seconds.
  • Each of the filtrates was applied by spin coating on a silicon wafer having a diameter of 10 cm on which an antireflection film (underlayer film) having a thickness of 100 nm was formed, and pre-baked on a hot plate at 130 ° C. for 90 seconds to have a thickness of 300 nm.
  • the resist film was formed.
  • This resist film was exposed by a two-beam interference method using an ArF excimer laser having a wavelength of 193 nm. Subsequently, post exposure baking was performed at 130 ° C. for 90 seconds, followed by development with a 2.38 mass% tetramethylammonium hydroxide aqueous solution for 60 seconds to form a 1: 1 line and space pattern.
  • the developed wafer was cleaved and observed with a scanning electron microscope (SEM), and the pattern shape observation and line width variation (LWR) of the exposure amount obtained by resolving the line-and-space with a line width of 100 nm at 1: 1. Measurements were made.
  • the line width is detected at a plurality of positions in the measurement monitor, and the dispersion (3 ⁇ ) of variations in the detected positions is used as an index.
  • the cross-sectional shape of the pattern was observed using a scanning electron microscope (SEM) and evaluated as “ ⁇ ” when the rectangularity was high and “X” when the rectangularity was low. The results are shown in Tables 1 and 2.
  • the resist composition using the polymer compounds (polymer compounds (a) to (f)) obtained by polymerizing the raw material containing the acrylate derivative (1) of the present invention is the composition of the present invention.
  • a resist pattern having a better shape can be formed.
  • the LWR has been improved, and it has been possible to achieve both the formation of a high-resolution resist pattern and the reduction of the LWR.
  • the acrylic ester derivative of the present invention is useful as a raw material for a polymer compound for a resist composition that improves LWR and forms a resist pattern having a good shape.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Materials For Photolithography (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Furan Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Indole Compounds (AREA)

Abstract

 フォトレジスト組成物に含有させる高分子化合物の構成単位となり得る新規なアクリル酸エステル誘導体、該アクリル酸エステル誘導体を含有する原料を重合することにより得られる高分子化合物、および該高分子化合物を含有する、従来よりもLWRが改善されて高解像度のレジストパターンが形成されたフォトレジスト組成物を提供する。具体的には、下記一般式(1)(式中、R1は、水素原子、メチル基またはトリフルオロメチル基を表す。R2、R3、R5、R7、R8およびR10は、それぞれ独立して、水素原子、アルキル基、シクロアルキル基またはアルコキシ基を表す。R4およびR6は、それぞれ独立して、水素原子、アルキル基、シクロアルキル基若しくはアルコキシ基を表すか、またはR4およびR6は両者が結合してアルキレン基、-O-、若しくは-S-を表す。R9は、水素原子、アルキル基、シクロアルキル基、アルコキシ基または-COOR11を表し、R11はアルキル基を表す。 Xは、-O-または>N-R12を表し、R12は、水素原子またはアルキル基を表す。Yは、>C=O、または>S(=O)nを表し、nは、0~2の整数を表す。 波線は、R8とR9のいずれがエンドまたはエキソであってもよいことを表す。)で示されるアクリル酸エステル誘導体等を提供する。

Description

アクリル酸エステル誘導体、高分子化合物およびフォトレジスト組成物
 本発明は、アクリル酸エステル誘導体、該アクリル酸エステル誘導体を含有する原料を重合することにより得られる高分子化合物、およびラインウィドゥスラフネス(LWR)が改善されて高解像度のレジストパターンが形成されるフォトレジスト組成物に関する。
 リソグラフィー技術は、例えば基板上にレジスト材料からなるレジスト膜を形成し、該レジスト膜に対し、所定のパターンが形成されたマスクを介して、光、電子線等の放射線にて選択的露光を行い、現像処理を施すことにより、前記レジスト膜に所定形状のレジストパターンを形成する工程を有する。なお、露光した部分が現像液に溶解する特性に変化するレジスト材料をポジ型レジスト材料、露光した部分が現像液に溶解しない特性に変化するレジスト材料をネガ型レジスト材料という。
 近年、半導体素子や液晶表示素子の製造においては、リソグラフィー技術の進歩により急速にパターンの微細化が進んでいる。微細化の手法としては、一般に、露光光源の短波長化(高エネルギー化)が行われている。従来は、g線、i線に代表される紫外線が用いられていたが、現在では、KrFエキシマレーザーやArFエキシマレーザーを用いた半導体素子の量産が開始されている。また、KrFエキシマレーザーやArFエキシマレーザーより短波長(高エネルギー)のF2エキシマレーザー、電子線、EUV(極紫外線)やX線などを用いたリソグラフィーについても検討されている。
 レジスト材料には、これらの露光光源に対する感度、微細な寸法のパターンを再現できる解像性等のリソグラフィー特性が求められる。このような要求を満たすレジスト材料として、酸の作用によりアルカリ現像液に対する溶解性が変化する基材成分と、露光により酸を発生する酸発生剤成分とを含有する化学増幅型レジスト組成物が用いられている。
 例えばポジ型の化学増幅型レジスト組成物としては、酸の作用によりアルカリ現像液に対する溶解性が増大する樹脂成分(ベース樹脂)と、酸発生剤成分とを含有するレジスト組成物が一般的に用いられている。該レジスト組成物を用いて形成されるレジスト膜は、レジストパターン形成時に選択的露光を行うと、露光部において、酸発生剤成分から酸が発生し、該酸の作用により樹脂成分のアルカリ現像液に対する溶解性が増大して、露光部がアルカリ現像液に対して可溶となる。
 現在、ArFエキシマレーザーリソグラフィー等において使用されるレジストのベース樹脂としては、193nm付近における透明性に優れることから、(メタ)アクリル酸エステルから誘導される構成単位を主鎖に有する樹脂、いわゆるアクリル系樹脂が、フォトレジスト組成物の1成分である高分子化合物として一般的に用いられている。該高分子化合物の中でも、ノルボルナンラクトンを有する構成単位を含有する高分子化合物を用いることにより、エッチング耐性が高く、且つ基盤密着性の向上したフォトレジスト組成物が得られることが知られている(特許文献1参照)。また、フォトレジスト組成物用の高分子化合物としては、アクリロイルオキシ基から連結基を介してノルボルナンラクトン骨格やノルボルナンスルトン骨格を有する構成単位を含む高分子化合物なども提案されている(特許文献2および3参照)。
特開2000-26446号公報 特開2001-188346号公報 国際公開第2010/001913号パンフレット
 前述のとおり、近年、半導体素子や液晶表示素子の製造においては、リソグラフィー技術の進歩により急速にパターンの微細化が進んでおり、解像性、ラインウィドゥスラフネス(LWR)等の種々のリソグラフィー特性およびパターン形状がこれまで以上に改善されるようなレジスト材料の開発が切望されている。そのため、フォトレジスト組成物に含有させる高分子化合物の構成単位となり得る新規なアクリル酸エステル誘導体の開発そのものが重要となっている。
 本発明は、上記事情に鑑みてなされたものであり、フォトレジスト組成物に含有させる高分子化合物の構成単位となり得る新規なアクリル酸エステル誘導体を提供すること、該アクリル酸エステル誘導体を含有する原料を重合することにより得られる高分子化合物を提供すること、および該高分子化合物を含有する、従来よりもLWRが改善されて高解像度のレジストパターンが形成されたフォトレジスト組成物を提供することを課題とする。
 本発明者らは鋭意検討した結果、特定のアクリル酸エステル誘導体を含有する原料を重合して得られる高分子化合物を用いたフォトレジスト組成物であれば、従来よりもLWRが改善されて高解像度のレジストパターンが形成されることを見出した。
 即ち、本発明は、下記[1]~[5]を提供するものである。
[1]下記一般式(1)
Figure JPOXMLDOC01-appb-C000004
(式中、R1は、水素原子、メチル基またはトリフルオロメチル基を表す。R2、R3、R5、R7、R8およびR10は、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基または炭素数1~6のアルコキシ基を表す。R4およびR6は、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基若しくは炭素数1~6のアルコキシ基を表すか、またはR4およびR6は両者が結合して炭素数1~3のアルキレン基、-O-、若しくは-S-を表す。R9は、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数1~6のアルコキシ基または-COOR11を表し、R11は炭素数1~3のアルキル基を表す。
 Xは、-O-または>N-R12を表し、R12は、水素原子または炭素数1~5のアルキル基を表す。Yは、>C=O、または>S(=O)nを表し、nは、0~2の整数を表す。
 波線は、R8とR9のいずれがエンドまたはエキソであってもよいことを表す。)
で示されるアクリル酸エステル誘導体。
[2]前記アクリル酸エステル誘導体が、下記一般式(1’)
Figure JPOXMLDOC01-appb-C000005
(式中、R1、R2、R3、R5、R7、R8、R9、R10、X、Yおよび波線は、前記定義の通りである。Zは、メチレン基、-O-、または-S-を表す。)で示される、上記[1]に記載のアクリル酸エステル誘導体。
[3]上記[1]または[2]に記載のアクリル酸エステル誘導体を含有する原料を重合して得られる高分子化合物。
[4]上記[3]に記載の高分子化合物、光酸発生剤および溶剤を含有するフォトレジスト組成物。
[5]下記一般式(2)で示されるイソシアナート誘導体と下記一般式(3)で示されるアルコール誘導体とを、-30~100℃で反応させることによる、上記[1]または[2]に記載のアクリル酸エステル誘導体の製造方法。
Figure JPOXMLDOC01-appb-C000006
(式中、R1~R10、X、Yおよび波線は、前記定義の通りである。)
 本発明のアクリル酸エステル誘導体を含有する原料を重合して得られる高分子化合物を用いたフォトレジスト組成物によれば、LWRが改善され、高解像度のレジストパターンが形成される。
[アクリル酸エステル誘導体(1)]
 LWRを改善するフォトレジスト組成物を得るためには、下記一般式(1)で示されるアクリル酸エステル誘導体(以下、アクリル酸エステル誘導体(1)と称する。)が有用である。
 アクリル酸エステル誘導体(1)は、分子末端の特定の環状構造に加え、エチレン基と繋がったカルバメート結合を有することに特徴がある。該アクリル酸エステル誘導体を含有する原料を重合して得られる高分子化合物を用いたフォトレジスト組成物であれば、従来よりもLWRが改善されて高解像度のレジストパターンが形成される。本発明の効果の原因は明らかではないが、本発明のアクリル酸エステル誘導体(1)におけるノルボルナン環に環状に結合した極性基と、該ノルボルナン環と重合性基を連結する極性のカルバメート結合との両方が、光酸発生剤から発生した酸と相互作用することで酸の拡散長が適度に短くなっているためではないかと推定される。
Figure JPOXMLDOC01-appb-C000007
 R1は、水素原子、メチル基またはトリフルオロメチル基を表す。これらの中でも、水素原子またはメチル基が好ましい。
 R2、R3、R5、R7、R8およびR10は、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基または炭素数1~6のアルコキシ基を表す。
 炭素数1~6のアルキル基としては、直鎖状でも分岐状でもよく、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、n-ペンチル基、n-ヘキシル基などが挙げられる。これらの中でも、炭素数1~3のアルキル基が好ましい。
 炭素数3~6のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基が挙げられる。
 炭素数1~6のアルコキシ基としては、直鎖状でも分岐状でもよく、例えばメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基などが挙げられる。これらの中でも、炭素数1~3のアルコキシ基が好ましい。
 以上の中でも、R2、R3、R5、R7、R8およびR10としては、好ましくはそれぞれ独立して水素原子、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基であり、より好ましくはいずれも水素原子である。
 R4およびR6は、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基若しくは炭素数1~6のアルコキシ基を表すか、またはR4およびR6は両者が結合して炭素数1~3のアルキレン基、-O-、若しくは-S-を表す。
 炭素数1~6のアルキル基としては、直鎖状でも分岐状でもよく、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、n-ペンチル基、n-ヘキシル基などが挙げられる。これらの中でも、炭素数1~3のアルキル基が好ましい。
 炭素数3~6のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基が挙げられる。
 炭素数1~6のアルコキシ基としては、直鎖状でも分岐状でもよく、例えばメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基などが挙げられる。これらの中でも、炭素数1~3のアルコキシ基が好ましい。
 また、R4とR6の両者が結合して形成される炭素数1~3のアルキレン基としては、メチレン基、エタン-1,1-ジイル基、エタン-1,2-ジイル基、プロパン-1,1-ジイル基、プロパン-1,2-ジイル基、プロパン-1,3-ジイル基、プロパン-2,2-ジイル基が挙げられる。これらの中でも、メチレン基、エタン-1,2-ジイル基が好ましく、メチレン基がより好ましい。
 これらの中でも、LWRおよび解像度の観点から、R4およびR6は両者が結合して炭素数1~3のアルキレン基、-O-、または-S-であることが好ましく、炭素数1のメチレン基、-O-、または-S-であること、すなわち下記一般式(1’)で示されるアクリル酸エステル誘導体がより好ましい。
Figure JPOXMLDOC01-appb-C000008
(式中、R1、R2、R3、R5、R7、R8、R9、R10、X、Yおよび波線は、前記定義または後記定義の通りである。Zは、メチレン基、-O-、または-S-を表す。)
 R9は、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数1~6のアルコキシ基または-COOR11を表し、R11は、炭素数1~3のアルキル基を表す。
 炭素数1~6のアルキル基としては、直鎖状でも分岐状でもよく、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、n-ペンチル基、n-ヘキシル基などが挙げられる。これらの中でも、炭素数1~3のアルキル基が好ましい。
 炭素数3~6のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基が挙げられる。
 炭素数1~6のアルコキシ基としては、直鎖状でも分岐状でもよく、例えばメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基などが挙げられる。これらの中でも、炭素数1~3のアルコキシ基が好ましい。
 また、R11が表す炭素数1~3のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基が挙げられる。
 Xは、-O-または>N-R12を表し、R12は、水素原子または炭素数1~5のアルキル基を表す。R12が表す炭素数1~5のアルキル基としては、直鎖状でも分岐状でもよく、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基などが挙げられ、これらの中でも、炭素数1~4のアルキル基が好ましく、分岐状の炭素数3または4のアルキル基がより好ましく、t-ブチル基がさらに好ましい。また、R12としては、水素原子またはt-ブチル基が好ましい。
 Yは、>C=O、または>S(=O)nを表し、nは0~2の整数を表す。nは、1または2が好ましく、2がより好ましい。
 XとYの組み合わせに特に制限はなく、Xが-O-であるとき、Yは>C=O、または>S(=O)nのいずれでもよいし、Xが>N-R12であるとき、Yは>C=O、または>S(=O)nのいずれでもよい。
 なお、一般式(1)および(1’)中の波線は、R8とR9のいずれがエンドまたはエキソであってもよいことを表す。特に、R9がエンドであることが好ましい。
 アクリル酸エステル誘導体(1)の具体例を以下に示すが、特にこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 アクリル酸エステル誘導体(1)としては、LWRを改善するフォトレジスト組成物を得る観点から、R1が水素原子またはメチル基であり、R2、R3、R5、R7、R8およびR10がいずれも水素原子であり、R9が水素原子または-COOR11(R11はメチル基)であり、R4およびR6は両者が結合してメチレン基または-O-を表し(すなわち、Zがメチレン基または-O-であり)、Xが-O-または>N-R12であり、Xが>N-R12の場合にはR12が水素原子またはt-ブチル基であり、Yが>C=Oまたは>S(=O)nであり、>S(=O)nの場合にはnが2であるものが好ましい。
 さらには、下記一般式のいずれかで表されるアクリル酸エステル誘導体が好ましい。
Figure JPOXMLDOC01-appb-C000014
(上記式中、R1は前記定義のとおりであり、好ましいものも同じである。)
(アクリル酸エステル誘導体(1)の製造方法)
 本発明のアクリル酸エステル誘導体(1)の製造方法に特に制限はないが、例えば、以下に示すように、イソシアナート誘導体(以下、イソシアナート誘導体(2)と称する。)とアルコール誘導体(以下、アルコール誘導体(3)と称する。)とを、必要に応じて、触媒、重合禁止剤、溶媒などの存在下に反応させることにより製造することができる。以下、この反応を「反応(a)」と称する。
Figure JPOXMLDOC01-appb-C000015
(式中、R1~R10、X、Yおよび波線は、前記定義の通りである。)
 以下、反応(a)について詳細に説明する。
 イソシアナート誘導体(2)としては、2-アクリロイルオキシエチルイソシアナート、2-メタクリロイルオキシエチルイソシアナート、2-(2-トリフルオロメチルアクリロイルオキシ)エチルイソシアナートが挙げられる。これらの中でも、入手容易性の観点から、2-アクリロイルオキシエチルイソシアナート、2-メタクリロイルオキシエチルイソシアナートが好ましい。
 イソシアナート誘導体(2)の使用量としては、アルコール誘導体(3)1モルに対して、好ましくは0.8~5モル、経済性および後処理の容易さの観点から、より好ましくは1~3モルである。
 アルコール誘導体(3)の入手方法に特に制限はない。工業的に入手できるものもあるし、また対応するジエンとジエノファイルとをディールス-アルダー反応させた付加体をもとに、必要に応じた中間体を経由して、エポキシ化反応によって目的物を製造することもできるし、あるいは、エポキシ化反応によってエポキシ化合物を一度形成した後、該エポキシ化合物を例えば塩基性物質などで処理することなどにより、目的物を製造することもできる。
 例えば、アルコール誘導体(3)の構造式において、R2、R3、R5、R7、R8、R9およびR10が水素原子で、且つR4とR6が結合してメチレン基になっており、さらにXが-O-、Yが>S(=O)2である5-ヒドロキシ-2,6-ノルボルナンスルトンについては、次のようにして製造することができる。つまり、シクロペンタジエンと系内で発生させたビニルスルホニルクロリドとをディールス-アルダー反応させて5-ノルボルネン-2-スルホニルクロリドを得、次いで水酸化ナトリウム水溶液を接触させることにより5-ノルボルネン-2-スルホン酸ナトリウム塩とし、さらに過ギ酸によるエポキシ化反応に供することにより、目的物を製造することができる(特開2010-83873号公報参照)。
 その他にも、アルコール誘導体(3)の構造式において、R2、R3、R5、R7、R8、R9およびR10が水素原子で、且つR4とR6が結合してメチレン基になっており、Xが>N-R12、該R12がt-ブチル基であり、Yが>C=Oであるものについては、次のようにして製造することができる。つまり、シクロペンタジエンと塩化アクリロイルをディールス-アルダー反応させ、得られた生成物にt-ブチルアミンを反応させることにより、N-t-ブチルビシクロ[2.2.1]ヘプタ-5-エン-2-カルボキサミドを得る。これを、炭酸カリウム等の塩基性化合物の存在下にm-クロロ過安息香酸と接触させてエポキシ化反応を行うことにより、N-t-ブチル-5,6-エポキシビシクロ[2.2.1]ヘプタ-2-カルボキサミドを得る。該エポキシ化合物を、カリウム-t-ブトキシドなどの塩基性物質と反応させることにより、目的物を製造することができる。
 さらに、アルコール誘導体(3)の構造式において、R2、R3、R5、R7、R8、R9およびR10が水素原子で、且つR4とR6が結合してメチレン基になっており、Xが-O-、Yが>C=Oであるものについては、「J.Chem.Soc., H.B.Henbestら、p.221-226(1959年)」に開示された方法により製造することができる。
 以上の方法や公知の方法、さらには本明細書の実施例等を参照することにより、そのほかのアルコール誘導体(3)も製造することができる。
 反応(a)は、触媒の存在下または非存在下に実施できる。触媒としては、塩酸、硫酸などの鉱酸;三フッ化ホウ素、三塩化アルミニウム、ジブチル錫ジラウレートなどのルイス酸;トリエチルアミン、トリブチルアミン、N,N-ジメチルアニリン、1,4-ジアザビシクロ[2.2.2]オクタン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エンなどの第三級アミン;ピリジン、2-メチルピリジン、4-(ジメチルアミノ)ピリジンなどの含窒素複素環式芳香族化合物などが挙げられる。
 反応速度の観点からは、触媒の存在下に実施することが好ましい。また、触媒は、1種を単独で使用してもよいし、酸と塩基を混合しないかぎりにおいて、2種以上を併用してもよい。
 触媒の存在下に実施する場合、触媒の使用量は、アルコール誘導体(3)1モルに対して、好ましくは0.001~0.5モル、より好ましくは0.005~0.2モルである。
 反応(a)は、重合禁止剤の存在下または非存在下に実施できる。重合禁止剤に特に制限はなく、例えばヒドロキノン、メトキシフェノール、ベンゾキノン、トルキノン、p-t-ブチルカテコールなどのキノン系化合物;2,6-ジ-t-ブチルフェノール、2,4-ジ-t-ブチルフェノール、2-t-ブチル-4,6-ジメチルフェノールなどのアルキルフェノール系化合物;フェノチアジンなどのアミン系化合物;2,2,6,6-テトラメチルピペリジン-N-オキシル、4-アセトアミド-2,2,6,6-テトラメチルピペリジン-N-オキシルなどの2,2,6,6-テトラメチルピペリジン-N-オキシル化合物などが挙げられる。これらは1種を単独で用いてもよいし、2種以上を併用してもよい。
 重合禁止剤を使用する場合、その使用量は、後述する溶媒を除いた反応混合物全体の質量に対して、好ましくは0.001~5質量%、より好ましくは0.001~1質量%、さらに好ましくは0.005~0.5質量%である。
 反応(a)は、溶媒の存在下または非存在下に実施することができる。溶媒としては、反応を阻害しない限り特に制限はないが、例えばヘキサン、ヘプタン、オクタン、シクロヘキサンなどの飽和炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;塩化メチレン、1,2-ジクロロエタン、クロロホルムなどの塩素化炭化水素;クロロベンゼン、フルオロベンゼンなどのハロゲン化芳香族炭化水素;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、1,4-ジオキサン、シクロペンチルメチルエーテル、1,2-ジメトキシエタンなどのエーテル;酢酸メチル、酢酸エチル、酢酸プロピルなどのエステル;アセトニトリル、プロピオニトリル、ベンズニトリルなどのニトリル;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドンなどのアミドなどが挙げられる。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。
 溶媒の存在下に実施する場合、溶媒の使用量は、アルコール誘導体(3)1質量部に対して好ましくは0.5~100質量部、後処理の容易さの観点から、より好ましくは0.5~20質量部である。
 反応温度は、使用するイソシアナート誘導体(2)、アルコール誘導体(3)、必要に応じて用いる触媒や溶媒の種類などによっても異なるが、好ましくは概ね-30~100℃、より好ましくは-10~80℃である。
 また、反応圧力に特に制限は無いが、常圧下で実施することが簡便で好ましい。
 反応時間は、使用するイソシアナート誘導体(2)、アルコール誘導体(3)、必要に応じて用いる触媒や溶媒の種類などによっても異なるが、好ましくは概ね0.5時間~48時間、より好ましくは1時間~24時間である。
 反応(a)は、安全性の観点から、窒素やアルゴンなどの不活性ガス雰囲気下に実施することが好ましい。
 反応(a)の操作方法に特に制限はない。また、各試薬の投入方法および順序にも特に制限はなく、任意の方法および順序で添加することができる。
 反応(a)の操作方法としては、回分式反応器にアルコール誘導体(3)、並びに必要に応じて触媒および溶媒を仕込み、この混合溶液に所望の反応温度および所望の反応圧力下でイソシアナート誘導体(2)を添加する方法が好ましい。
 上記の方法で得られた反応混合物からのアクリル酸エステル誘導体(1)の分離および精製は、有機化合物の分離および精製に一般的に用いられる方法により行うことができる。
 例えば、反応終了後、反応混合物に水を添加した後、有機溶媒で抽出し、得られた有機層を濃縮することによりアクリル酸エステル誘導体(1)を分離することができる。さらに、必要に応じて、再結晶、蒸留、シリカゲルクロマトグラフィーなどで精製することにより、純度の高いアクリル酸エステル誘導体(1)を得ることができる。
 また、必要に応じて、ニトリロ三酢酸、エチレンジアミン四酢酸などのキレート剤の添加後にろ過、または「ゼータプラス(登録商標)」(商品名、住友スリーエム株式会社製)やプロテゴ(商品名、日本インテグリス株式会社製)やイオンクリーン(商品名、日本ポール株式会社製)などの金属除去フィルター処理することにより、得られたアクリル酸エステル誘導体(1)中の金属含量を低減することも可能である。
[高分子化合物]
 本発明のアクリル酸エステル誘導体(1)を単独で重合してなる重合体またはアクリル酸エステル誘導体(1)と他の重合性化合物とを共重合してなる共重合体は、フォトレジスト組成物用の高分子化合物として有用である。
 本発明の高分子化合物は、アクリル酸エステル誘導体(1)に基づく構成単位を、0モル%を超え100モル%含有し、LWRおよび解像度の観点からは、好ましくは10~80モル%、より好ましくは20~70モル%、さらに好ましくは30~70モル%含有する。
 アクリル酸エステル誘導体(1)と共重合させることができる他の重合性化合物(以下、共重合単量体と称する。)の具体例としては、例えば下記の化学式で示される化合物などが挙げられるが、特にこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000016
 上記式(I)~(XII)中、R13は、水素原子または炭素数1~3のアルキル基を表し、R14は、重合性基を表す。R15は、水素原子または-COOR16を表し、R16は、炭素数1~3のアルキル基を表す。また、R17は、炭素数1~4のアルキル基を表す。
 共重合単量体において、R13およびR16がそれぞれ独立して表す炭素数1~3のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基が挙げられる。R17が表すアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基などが挙げられる。また、R14が表す重合性基としては、例えばアクリロイル基、メタアクリロイル基、ビニル基、クロトノイル基などが挙げられる。
 以上の中でも、共重合単量体としては、好ましくは、上記式(I)、(II)、(IV)、(V)、(VI)、(VII)、(XI)、(XII)で表される共重合単量体であり、より好ましくは、式(I)で表される共重合単量体と式(II)で表される共重合単量体との併用である。
(高分子化合物の製造方法)
 高分子化合物は、常法に従って、ラジカル重合により製造することができる。特に、分子量分布が小さい高分子化合物を合成する方法としては、リビングラジカル重合などを挙げることができる。
 一般的なラジカル重合方法は、必要に応じて1種以上のアクリル酸エステル誘導体(1)および必要に応じて1種以上の上記共重合単量体を、ラジカル重合開始剤および溶媒、並びに必要に応じて連鎖移動剤の存在下に重合させる。
 ラジカル重合の実施方法には特に制限はなく、溶液重合法、乳化重合法、懸濁重合法、塊状重合法など、アクリル系樹脂を製造する際に用いる慣用の方法を使用できる。
 前記ラジカル重合開始剤としては、例えばt-ブチルヒドロペルオキシド、クメンヒドロペルオキシドなどのヒドロペルオキシド化合物;ジ-t-ブチルペルオキシド、t-ブチル-α-クミルペルオキシド、ジ-α-クミルペルオキシドなどのジアルキルペルオキシド化合物;ベンゾイルペルオキシド、ジイソブチリルペルオキシドなどのジアシルペルオキシド化合物;2,2’-アゾビスイソブチロニトリル、ジメチル-2,2’-アゾビスイソブチレートなどのアゾ化合物などが挙げられる。
 ラジカル重合開始剤の使用量は、重合反応に用いるアクリル酸エステル誘導体(1)、共重合単量体、連鎖移動剤、溶媒の種類および使用量、重合温度などの重合条件に応じて適宜選択できるが、全重合性化合物[アクリル酸エステル誘導体(1)と共重合単量体の合計量であり、以下同様である。]1モルに対して、通常、好ましくは0.005~0.2モル、より好ましくは0.01~0.15モルである。
 前記連鎖移動剤としては、例えばドデカンチオール、メルカプトエタノール、メルカプトプロパノール、メルカプト酢酸、メルカプトプロピオン酸などのチオール化合物が挙げられる。連鎖移動剤を使用する場合、その使用量は、全重合性化合物1モルに対して、通常、好ましくは0.005~0.2モル、より好ましくは0.01~0.15モルである。
 前記溶媒としては、重合反応を阻害しなければ特に制限はなく、例えばプロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノメチルエーテルプロピオネート、エチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールジメチルエーテルなどのグリコールエーテル;乳酸エチル、3-メトキシプロピオン酸メチル、酢酸メチル、酢酸エチル、酢酸プロピルなどのエステル;アセトン、メチルエチルケトン、メチルイソプロピルケトン、メチルイソブチルケトン、メチルアミルケトン、シクロペンタノン、シクロヘキサノンなどのケトン;ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテルなどが挙げられる。
 溶媒の使用量は、全重合性化合物1質量部に対して、通常、好ましくは0.5~20質量部、経済性の観点からは、より好ましくは1~10質量部である。
 重合温度は、通常、好ましくは40~150℃であり、生成する高分子化合物の安定性の観点から、より好ましくは60~120℃の範囲である。
 重合反応の時間は、アクリル酸エステル誘導体(1)、共重合単量体、重合開始剤、溶媒の種類および使用量、重合反応の温度などの重合条件により異なるが、通常、好ましくは30分~48時間、より好ましくは1時間~24時間である。
 重合反応は、窒素やアルゴンなどの不活性ガス雰囲気下に実施することが好ましい。
 こうして得られる高分子化合物は、再沈殿などの通常の操作により単離可能である。単離した高分子化合物は真空乾燥などで乾燥することもできる。
 再沈澱の操作で用いる溶媒としては、例えばペンタン、ヘキサンなどの脂肪族炭化水素;シクロヘキサンなどの脂環式炭化水素;ベンゼン、キシレンなどの芳香族炭化水素;塩化メチレン、クロロホルム、クロロベンゼン、ジクロロベンゼンなどのハロゲン化炭化水素;ニトロメタンなどのニトロ化炭化水素;アセトニトリル、ベンゾニトリルなどのニトリル;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテル;アセトン、メチルエチルケトンなどのケトン;酢酸などのカルボン酸;酢酸エチル、酢酸ブチルなどのエステル;ジメチルカーボネート、ジエチルカーボネート、エチレンカーボネートなどのカーボネート;メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノールなどのアルコール;水が挙げられる。これらは1種を単独でまたは2種以上を混合して使用してもよい。
 再沈澱の操作で用いる溶媒の使用量は、高分子化合物の種類、溶媒の種類により異なるが、通常、高分子化合物1質量部に対して0.5~100質量部であるのが好ましく、経済性の観点からは、1~50質量部であるのがより好ましい。
 高分子化合物の重量平均分子量(Mw)は特に制限は無いが、好ましくは500~50,000、より好ましくは1,000~30,000、さらに好ましくは5,000~15,000であると、後述するフォトレジスト組成物の成分としての有用性が高い。かかるMwは、実施例に記載の方法に従って測定した値である。
 また、高分子化合物の分子量分布(Mw/Mn)は、LWRおよび解像度の観点から、好ましくは3以下であり、より好ましくは2.5以下、さらに好ましくは2以下である。
[フォトレジスト組成物]
 前記高分子化合物、光酸発生剤および溶剤、並びに必要に応じて塩基性化合物、界面活性剤およびその他の添加物を配合することにより、本発明のフォトレジスト組成物を調製する。以下、各成分について説明する。
(光酸発生剤)
 光酸発生剤としては特に制限は無く、従来、化学増幅型レジストに通常用いられる公知の光酸発生剤を用いることができる。該光酸発生剤としては、例えばヨードニウム塩やスルホニウム塩などのオニウム塩系光酸発生剤;オキシムスルホネート系光酸発生剤;ビスアルキルまたはビスアリールスルホニルジアゾメタン系光酸発生剤;ニトロベンジルスルホネート系光酸発生剤;イミノスルホネート系光酸発生剤;ジスルホン系光酸発生剤などが挙げられる。これらは1種を単独でまたは2種以上を混合して使用してもよい。これらの中でも、オニウム塩系光酸発生剤が好ましく、さらに、発生する酸の強度が強いという観点から、フッ素含有アルキルスルホン酸イオンをアニオンとして含む下記の含フッ素オニウム塩が好ましい。
 上記含フッ素オニウム塩の具体例としては、例えばジフェニルヨードニウムのトリフルオロメタンスルホネートまたはノナフルオロブタンスルホネート;ビス(4-tert-ブチルフェニル)ヨードニウムのトリフルオロメタンスルホネートまたはノナフルオロブタンスルホネート;トリフェニルスルホニウムのトリフルオロメタンスルホネート、ヘプタフルオロプロパンスルホネートまたはノナフルオロブタンスルホネート;トリ(4-メチルフェニル)スルホニウムのトリフルオロメタンスルホネート、ヘプタフルオロプロパンスルホネートまたはノナフルオロブタンスルホネート;ジメチル(4-ヒドロキシナフチル)スルホニウムのトリフルオロメタンスルホネート、ヘプタフルオロプロパンスルホネートまたはノナフルオロブタンスルホネート;モノフェニルジメチルスルホニウムのトリフルオロメタンスルホネート、ヘプタフルオロプロパンスルホネートまたはノナフルオロブタンスルホネート;ジフェニルモノメチルスルホニウムのトリフルオロメタンスルホネート、ヘプタフルオロプロパンスルホネートまたはノナフルオロブタンスルホネート;(4-メチルフェニル)ジフェニルスルホニウムのトリフルオロメタンスルホネート、ヘプタフルオロプロパンスルホネートまたはノナフルオロブタンスルホネート;(4-メトキシフェニル)ジフェニルスルホニウムのトリフルオロメタンスルホネート、ヘプタフルオロプロパンスルホネートまたはノナフルオロブタンスルホネート;トリ(4-tert-ブチル)フェニルスルホニウムのトリフルオロメタンスルホネート、ヘプタフルオロプロパンスルホネートまたはノナフルオロブタンスルホネートなどが挙げられる。これらは1種を単独でまたは2種以上を混合して使用してもよい。
これらは1種を単独でまたは2種以上を混合して使用してもよい。
 光酸発生剤の配合量は、フォトレジスト組成物の感度および現像性を確保する観点から、前記高分子化合物100質量部に対して、通常、好ましくは0.1~30質量部、より好ましくは0.5~10質量部である。
(溶剤)
 フォトレジスト組成物に配合する溶剤としては、例えばプロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノメチルエーテルプロピオネート、エチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールジメチルエーテルなどのグリコールエーテル;乳酸エチル、3-メトキシプロピオン酸メチル、酢酸メチル、酢酸エチル、酢酸プロピルなどのエステル;アセトン、メチルエチルケトン、メチルイソプロピルケトン、メチルイソブチルケトン、メチルアミルケトン、シクロペンタノン、シクロヘキサノンなどのケトン;ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテルなどが挙げられる。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
 溶剤の配合量は、高分子化合物1質量部に対して、通常、1~50質量部であるのが好ましく、2~25質量部であるのが好ましい。
(塩基性化合物)
 フォトレジスト組成物には、フォトレジスト膜中における酸の拡散速度を抑制して解像度を向上するために、必要に応じて塩基性化合物をフォトレジスト組成物の特性が阻害されない範囲の量で配合することができる。かかる塩基性化合物としては、例えばホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-(1-アダマンチル)アセトアミド、ベンズアミド、N-アセチルエタノールアミン、1-アセチル-3-メチルピペリジン、ピロリドン、N-メチルピロリドン、ε-カプロラクタム、δ-バレロラクタム、2-ピロリジノン、アクリルアミド、メタクリルアミド、t-ブチルアクリルアミド、メチレンビスアクリルアミド、メチレンビスメタクリルアミド、N-メチロールアクリルアミド、N-メトキシアクリルアミド、ジアセトンアクリルアミドなどのアミド;ピリジン、2-メチルピリジン、4-メチルピリジン、ニコチン、キノリン、アクリジン、イミダゾール、4-メチルイミダゾール、ベンズイミダゾール、ピラジン、ピラゾール、ピロリジン、N-t-ブトキシカルボニルピロリジン、ピペリジン、テトラゾール、モルホリン、4-メチルモルホリン、ピペラジン、1,4-ジアザビシクロ[2.2.2]オクタン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリエタノールアミンなどのアミンを挙げることができる。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
 塩基性化合物を配合する場合、その配合量は使用する塩基性化合物の種類により異なるが、光酸発生剤1モルに対して、通常、好ましくは0.01~10モル、より好ましくは0.05~1モルである。
(界面活性剤)
 フォトレジスト組成物には、塗布性を向上させるため、所望により、さらに界面活性剤をフォトレジスト組成物の特性が阻害されない範囲の量で配合することができる。
 かかる界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンn-オクチルフェニルエーテルなどが挙げられる。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
 界面活性剤を配合する場合、その配合量は、高分子化合物100質量部に対して、通常、好ましくは2質量部以下である。
(その他の添加剤)
 さらに、フォトレジスト組成物には、その他の添加剤として、増感剤、ハレーション防止剤、形状改良剤、保存安定剤、消泡剤などを、フォトレジスト組成物の特性が阻害されない範囲の量で配合することができる。
(フォトレジストパターンの形成方法)
 フォトレジスト組成物を基板に塗布し、通常、好ましくは70~160℃で1~10分間プリベークし、所定のマスクを介して放射線を照射(露光)後、好ましくは70~160℃で1~5分間ポストエクスポージャーベークして潜像パターンを形成し、次いで現像液を用いて現像することにより、所定のレジストパターンを形成することができる。
 露光には、種々の波長の放射線、例えば、紫外線、X線などが利用でき、半導体レジスト用では、通常、g線、i線、XeCl、KrF、KrCl、ArF、ArClなどのエキシマレーザーが使用されるが、これらの中でも、微細加工の観点から、ArFエキシマレーザーを使用するのが好ましい。
 露光量は、0.1~1000mJ/cm2であるのが好ましく、1~500mJ/cm2であるのがより好ましい。
 現像液としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、アンモニア水などの無機塩基;エチルアミン、ジエチルアミン、トリエチルアミンなどのアルキルアミン;ジメチルエタノールアミン、トリエタノールアミンなどのアルコールアミン;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシドなどの第四級アンモニウム塩などを溶解したアルカリ性水溶液などが挙げられる。これらの中でも、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシドなどの第四級アンモニウム塩を溶解したアルカリ性水溶液を使用するのが好ましい。
 現像液の濃度は、通常、0.1~20質量%であるのが好ましく、0.1~10質量%であるのがより好ましい。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの例によって限定されるものではない。なお、MwおよびMnの測定並びに分子量分布の算出は、以下のとおりに行なった。
(MwおよびMnの測定並びに分子量分布の算出)
 重量平均分子量(Mw)および数平均分子量(Mn)は、検出器として示差屈折率計を用い、溶離液としてテトラヒドロフラン(THF)を用いたゲル浸透クロマトグラフィー(GPC)測定を下記条件にて行ない、標準ポリスチレンで作成した検量線による換算値として求めた。また、重量平均分子量(Mw)を数平均分子量(Mn)で除することにより、分子量分布(Mw/Mn)を求めた。
 GPC測定:カラムとして、「TSK-gel SUPER HZM-H」(商品名:東ソー株式会社製、4.6mm×150mm)2本および「TSK-gel SUPER HZ2000」(商品名:東ソー株式会社製、4.6mm×150mm)1本を直列に連結したものを使用し、カラム温度40℃、示差屈折率計温度40℃、溶離液の流速0.35mL/分の条件で測定した。
<合成例1>5-ヒドロキシ-2,6-ノルボルナンスルトンの合成
 攪拌装置、温度計を取り付けた内容積1Lの四つ口フラスコに、フェノチアジン0.40g、テトラヒドロフラン1154.0g、シクロペンタジエン87.0g(1.32mol)を仕込み、攪拌しながら5℃以下に冷却した。次いで、別々の滴下漏斗に、2-クロロエタンスルホニルクロリド195.7g(1.20mol)、トリエチルアミン146.0g(1.45mol)をそれぞれ入れ、内温5~10℃で3時間かけて同時に滴下を行った。
 滴下終了後、反応混合物を5~10℃で3時間攪拌した後、析出している塩を減圧ろ過し、続いてろ別した塩にTHF600.0gを注いで、ろ液1632.8gを得た(該ろ液を「ろ液(A)」と称する)。該ろ液(A)をガスクロマトグラフィーで分析したところ、5-ノルボルネン-2-スルホニルクロリドを178.2g(0.925mol)含んでいた(2-クロロエタンスルホニルクロリドに対して収率77.1%)。
 攪拌装置、温度計を取り付けた内容積3Lの三つ口フラスコに、水920gを入れ、20℃以下に冷却した。攪拌しながら、水酸化ナトリウム80.30g(2.01mol)を内温が20℃以下になるように入れた。「ろ液(A)」1300g(5-ノルボルネン-2-スルホニルクロリドは、141.9g、0.737mol)を、内温20~25℃で、4時間かけて滴下した。
 滴下終了から1時間後に反応混合液をガスクロマトグラフィーで分析したところ、5-ノルボルネン-2-スルホニルクロリドは完全に消失していた。反応混合液を減圧下に濃縮し、THFを除去した後、2Lの分液漏斗に移してトルエン300gで3回洗浄し、5-ノルボルネン-2-スルホン酸ナトリウム塩を含む水溶液1065.3gを得た(該水溶液を「水溶液(A)」と称する)。
 攪拌装置、温度計を取り付けた内容積3Lの三つ口フラスコに、「水溶液(A)」を全て入れ、10℃に冷却した。99%ギ酸93.27g(2.01mol)を内温11~15℃で滴下した後、加熱して内温を50~53℃としたところに、30%過酸化水素水162.50g(1.43mol)を3時間かけて滴下した。滴下終了後も内温を50℃前後に維持し、滴下終了から17時間後に反応混合液をHPLCで分析したところ、5-ノルボルネン-2-スルホン酸の変換率は98.7%であった。
 反応混合液を15℃まで冷却後、亜硫酸ナトリウム36.55g(0.29mol)を内温15~18℃でゆっくり加え、デンプン紙により過酸化水素が検出されないことを確認し、炭酸水素ナトリウム140.95g(1.68mol)を内温15~17℃でゆっくり加え、反応混合液のpHを7.3とした。酢酸エチル900gで2回抽出を行い、得られた有機層を合わせて減圧下に濃縮し、黄白色の固体69.15gを得た。この固体を酢酸エチル140gに50℃で溶解させた後、10℃までゆっくり冷却し、析出した結晶をろ過した。ろ別した結晶を5℃の酢酸エチル30gで洗浄し、40℃で2時間減圧下に乾燥することで、5-ヒドロキシ-2,6-ノルボルナンスルトン53.9g(純度99.1%、0.28mol)を得た(5-ノルボルネン-2-スルホニルクロリドに対して収率38.1%)。
Figure JPOXMLDOC01-appb-C000017
<実施例1>2,6-ノルボルナンスルトン-5-イル(2-メタクリロイルオキシエチル)カルバメートの合成
 温度計、攪拌装置、窒素導入管および滴下漏斗を取り付けた内容積1Lの四つ口フラスコに、合成例1で得られた5-ヒドロキシ-2,6-ノルボルナンスルトン100.0g(525.7mmol)、4-アセトアミド-2,2,6,6-テトラメチルピペリジン-N-オキシル50mg、酢酸エチル600gおよび1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン4.00g(26.3mmol)を仕込み、そこへ、2-メタクリロイルオキシエチルイソシアナート89.7g(578.4mmol)を内温24~27℃で約2時間かけて滴下した。滴下終了後、25℃にて1時間攪拌した後、得られた反応混合液についてRI検出器を備えた高速液体クロマトグラフィー(HPLC)にて分析したところ、5-ヒドロキシ-2,6-ノルボルナンスルトンは完全に消失していた。
 得られた反応混合液に、0.5質量%塩酸水155.4gを内温25~30℃で滴下し、滴下終了後、40℃に加温して30分静置した。分液した水層(下層)を抜き取った後、有機層(上層)をイオン交換水300gで5回洗浄した。この洗浄操作では内温が45℃にて静置することにより分液させた。該有機層にp-メトキシフェノール16mg、フェノチアジン16mgを添加し、減圧下に濃縮し、濃縮物211.2gを得た。該濃縮物に酢酸エチル246.3gを添加し、55℃まで昇温し、続いて-10℃まで冷却した後、析出している結晶をろ取した。該湿結晶を減圧下乾燥し、2,6-ノルボルナンスルトン-5-イル(2-メタクリロイルオキシエチル)カルバメート128.1g(白色固体、371.3mmol、収率70.6%)を得た。
Figure JPOXMLDOC01-appb-C000018
 1H-NMR(400MHz、CDCl3、TMS、ppm)δ:6.12(1H,s)、5.61(1H,m)、4.99(1H,br)、4.71(1H,d,J=4.4Hz)、4.67(1H,s)、4.24(2H,t,J=5.2Hz)、3.4-3.6(4H,m)、2.59(1H,br)、2.12-2.16(2H,m)、2.05(1H,d,J=12.0Hz)、1.95(3H,s)、1.75(1H,d,J=12.0Hz)
<合成例2>5-ヒドロキシ-2,6-ノルボルナンカルボラクトンの合成
 攪拌装置、温度計および滴下漏斗を取り付けた内容積1Lの四つ口フラスコに、p-メトキシフェノール0.40g、アクリル酸108.1g(1.50mol)およびトルエン300mLを仕込み、滴下漏斗からシクロペンタジエン109.1g(1.65mol)を攪拌下、40℃以下で2時間かけて滴下した。滴下後室温で10時間攪拌を続け、その後減圧下に濃縮することにより、5-ノルボルネン-2-カルボン酸167.3g(1.21mol)を得た。
 攪拌装置、温度計および滴下漏斗を取り付けた内容積1Lの四つ口フラスコに、上記で得られた5-ノルボルネン-2-カルボン酸全量と88%ギ酸94.6g(1.81mol)を20~30℃で混合した後、加熱して内温を48~50℃としたところに、30%過酸化水素水162.5g(1.43mol)を6時間かけて滴下した。滴下終了後も内温を50℃前後で10時間攪拌した。反応混合液を15℃まで冷却後、亜硫酸ナトリウム30.5gを内温15~20℃の範囲で添加し、デンプン紙により過酸化水素が検出されなくなることを確認した後、20%水酸化ナトリウム水溶液で反応混合液のpHを7.5とした。酢酸エチル400gで3回抽出を行い、得られた有機層を合わせて減圧下に濃縮した。得られた固体に、酢酸エチル150gおよびトルエン750gを添加し、加温して固体が完全に溶解してから0℃までゆっくりと冷却し、析出した結晶をろ過した。ろ別した結晶を5℃のトルエン200gで洗浄し、40℃で2時間減圧下に乾燥することで、5-ヒドロキシ-2,6-ノルボルナンカルボラクトン117.9g(純度99.3%、0.76mol)を得た。
Figure JPOXMLDOC01-appb-C000019
<実施例2>2,6-ノルボルナンカルボラクトン-5-イル(2-メタクリロイルオキシエチル)カルバメートの合成
 温度計、攪拌装置および窒素導入管を取り付けた内容積100mLの3つ口フラスコに、合成例2で得られた5-ヒドロキシ-2,6-ノルボルナンカルボラクトン5.00g(32.4mmol)、4-アセトアミド-2,2,6,6-テトラメチルピペリジン-N-オキシル15mg、酢酸エチル30g、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン226mg(1.48mmol)を仕込み、2-メタクリロイルオキシエチルイソシアナート5.51g(35.5mmol)を内温24~31℃で約0.5時間かけて滴下した。滴下終了後、25℃にて3.2時間攪拌した後、得られた反応混合液についてUV検出器を備えたHPLCにて分析したところ、5-ヒドロキシ-2,6-ノルボルナンカルボラクトンの変換率は86.7%であった。
 得られた反応混合液に、水20.0gおよび1.0質量%塩酸水1.4gを内温25~30℃で順次滴下し、滴下終了後60分静置した。分液した水層(下層)を抜き取った後、有機層(上層)をイオン交換水20gで4回洗浄し、該有機層を減圧下に濃縮し、濃縮物10.8gを得た。該濃縮物をシリカゲルカラムクロマトグラフィー(展開液;酢酸エチル/メタノール=3/1(体積比))で分離精製することにより、2,6-ノルボルナンカルボラクトン-5-イル(2-メタクリロイルオキシエチル)カルバメート7.78g(淡黄色液体、25.2mmol、収率77.6%)を得た。
Figure JPOXMLDOC01-appb-C000020
 1H-NMR(400MHz、CDCl3、TMS、ppm)δ:6.12(1H,m)、5.61(1H,m)、4.96(1H,br)、4.53(2H,m)、4.25(2H,t,J=5.2Hz)、3.50(2H,dt,J=5.2,5.2Hz)、3.17(1H,br)、2.50-2.60(2H,m)、1.95-1.99(4H,m)、1.75(1H,d,J=13.6Hz)、1.59-1.62(2H,m)
<合成例3>5-ヒドロキシ-2,6-(7-オキサノルボルナン)カルボラクトンの合成
 攪拌装置および温度計を取り付けた内容積100mLの四つ口フラスコに、フラン48.0g(0.705mol)およびアクリル酸メチル20.0g(0.232mol)を入れ、-20℃に冷却した。そこへ、三フッ化ホウ素ジエチルエーテル錯体3.0mLを、内温-15~-18℃を保持しながら滴下した。滴下終了後、内温0~5℃で14時間攪拌を継続した。反応混合液を減圧下に濃縮し、得られた濃縮物を酢酸エチル300gに溶解し、水50g、飽和炭酸水素ナトリウム水溶液50g、飽和食塩水50gで順次洗浄した後、減圧下に濃縮することにより油状物28.3gを得た。
 該油状物に10%水酸化ナトリウム水溶液93.6g(0.234mol)を加え、室温にて24時間攪拌した後、濃塩酸でpHを2.0とした。酢酸エチル300gで3回抽出した後、得られた抽出層を合わせて減圧下にて濃縮することにより固体21.5gを得た。
 攪拌装置、温度計および滴下漏斗を取り付けた内容積200mLの四つ口フラスコに、上記で得られた固体全量と88%ギ酸12.0g(0.232mol)を20~30℃で混合した後、加熱して内温を45~46℃としたところに、30%過酸化水素水26.1g(0.232mol)を6時間かけて滴下した。滴下終了後も内温を45℃前後で20時間攪拌した。反応混合液を15℃まで冷却後、亜硫酸ナトリウム9.7gを内温15~20℃の範囲で添加し、デンプン紙により過酸化水素が検出されなくなることを確認した後、20%水酸化ナトリウム水溶液で反応混合液のpHを7.8とした。酢酸エチル400gで3回抽出を行い、得られた有機層を合わせて減圧下に濃縮した。得られた固体にエタノール30gを添加し、加温して固体が完全に溶解してから0℃までゆっくりと冷却し、析出した結晶をろ過した。ろ別した結晶を0℃のエタノール10gで洗浄し、40℃で2時間減圧下に乾燥することで、5-ヒドロキシ-2,6-(7-オキサノルボルナン)カルボラクトン10.8g(純度98.9%、0.068mol)を得た。
Figure JPOXMLDOC01-appb-C000021
<実施例3>2,6-(7-オキサノルボルナン)カルボラクトン-5-イル(2-メタクリロイルオキシエチル)カルバメートの合成
 温度計、攪拌装置および窒素導入管を取り付けた内容積50mLの3つ口フラスコに、合成例3で得られた5-ヒドロキシ-2,6-(7-オキサノルボルナン)カルボラクトン1.00g(6.34mmol)、4-アセトアミド-2,2,6,6-テトラメチルピペリジン-N-オキシル2.4mg、テトラヒドロフラン10.0g、2-メタクリロイルオキシエチルイソシアナート1.00g(6.34mmol)およびジブチル錫ジラウレート0.10gを仕込み、室温にて24時間攪拌した。得られた反応混合液についてUV検出器を備えたHPLCにて分析したところ、5-ヒドロキシ-2,6-(7-オキサノルボルナン)カルボラクトンの変換率は93.7%であった。得られた反応混合液を減圧下に濃縮し、4.22gの濃縮物を-20℃で一夜冷却した。
 析出した固体をろ別し、得られた固体をヘキサン19.3gに懸濁して再度ろ別することで2,6-(7-オキサノルボルナン)カルボラクトン-5-イル(2-メタクリロイルオキシエチル)カルバメート(白色固体、1.52g、4.88mmol、収率77.0%)を得た。
Figure JPOXMLDOC01-appb-C000022
 1H-NMR(400MHz、CDCl3、TMS、ppm)δ:6.12(1H,m)、5.61(1H,m)、5.33(1H,dd,J=4.8,4.8Hz)、5.08(1H,br)、4.73(1H,d,J=5.2Hz)、4.70(1H,s)、4.64(1H,d、J=4.8Hz)、4.24(2H,t,J=5.2Hz)、2.74(1H,ddd,J=11.2,4.8,1.2Hz)、3.51(2H,dt,J=6.0,5.2Hz)、2.25(1H,ddd,J=13.6,11.2,5.6Hz)、2.07(1H,dd、J=13.6,2.0Hz)、1.95(3H,s)
<合成例4>5-ヒドロキシ-7-オキサノルボルナン-2,6-スルトンの合成
原料となるビニルスルホン酸メチルは、Angew.Chem.,77(7),291-302(1965)に記載された合成例に準じて合成した。まず、攪拌機、温度計、滴下漏斗、三方コックを取り付けた内容積2Lの四つ口フラスコに、窒素雰囲気下、2-クロロエタンスルホニルクロリド326.0g(2.00mol)を入れ、氷浴にて冷却し、次いで25wt%ナトリウムメトキシド(メタノール溶液)を滴下漏斗から内温が2~5℃の範囲になるように滴下した。滴下終了後、氷浴を外して室温にて1時間攪拌した。反応液をろ過し、ろ液を減圧濃縮して、濃縮物を単蒸発操作することにより、ビニルスルホン酸メチル197.2g(純度97.3%、1.571mol)を得た(2-クロロエタンスルホニルクロリドに対して収率78.5%)。
 次に、5-ヒドロキシ-7-オキサノルボルナン-2,6-スルトンは、特開2007-31355に記載された実施例2に準じて合成した。
 攪拌装置、滴下漏斗および温度計を取り付けた内容積300mLの四つ口フラスコに、フラン150g(2.20mol)、ヨウ化亜鉛15.0gを入れ、25~27℃にて滴下漏斗からビニルスルホン酸メチル41.5g(0.34mol)を加えた。そのままの温度で2日間攪拌を継続した後、反応液を1Lの分液漏斗に移した。水300mLで2回洗浄した後、減圧下に未反応のフランを留去して7-オキサビシクロ[2.2.1]ヘプタン-2-エン-5-スルホン酸メチル22.0gを得た。
 攪拌装置、滴下漏斗および温度計を取り付けた内容積1000mLの四つ口フラスコに、7-オキサビシクロ[2.2.1]ヘプタン-2-エン-5-スルホン酸メチル22.0gと塩化メチレン450gを順次入れ、4℃まで冷却し、撹拌下にm-クロロ過安息香酸22.9g(0.17mol)を10℃以下になるようにゆっくりと投入した。5~7℃にて4時間攪拌した後、飽和亜硫酸ナトリウム水溶液100gを添加し、30分間攪拌した。静置して分液した後、飽和炭酸水素ナトリウム水溶液100gで3回洗浄した。得られた有機層を減圧下に濃縮して2,3-エポキシ-7-オキサビシクロ[2.2.1]ヘプタン-2-エン-5-スルホン酸メチル20.2gを得た。
 攪拌装置、滴下漏斗および温度計を取り付けた内容積300mLの四つ口フラスコに、5.0(mol/L)の水酸化ナトリウム水溶液を仕込み、滴下漏斗から2,3-エポキシ-7-オキサビシクロ[2.2.1]ヘプタン-2-エン-5-スルホン酸メチル29.5gを内温が20~23℃の範囲で滴下した。滴下終了から4時間撹拌した後、氷水で冷却しながら濃塩酸を滴下してpHを7.3とした後に、酢酸エチル300mLで4回抽出した後、得られた有機層を合わせて濃縮後、濃縮物をシリカゲルカラムクロマトグラフィーで分離精製することにより、5-ヒドロキシ-7-オキサノルボルナン-2,6-スルトン4.75g(純度98.8%、0.024mol)を得た。
Figure JPOXMLDOC01-appb-C000023
<実施例4>7-オキサノルボルナン-2,6-スルトン-5-イル(2-メタクリロイルオキシエチル)カルバメートの合成
 温度計、攪拌装置および窒素導入管を取り付けた内容積50mLの3つ口フラスコに、合成例4で得られた5-ヒドロキシ-7-オキサノルボルナン-2,6-スルトン0.30g(1.56mmol)、4-アセトアミド-2,2,6,6-テトラメチルピペリジン-N-オキシル1.0mg、酢酸エチル1.8g、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン12mg(0.08mmol)を仕込み、24~26℃で撹拌下に2-メタクリロイルオキシエチルイソシアナート0.27g(1.74mmol)を加え、室温にて24時間攪拌した。得られた反応混合液についてUV検出器を備えたHPLCにて分析したところ、5-ヒドロキシ-7-オキサノルボルナン-2,6-スルトンの変換率は100%であった。得られた反応混合液に酢酸エチル5.0gを追加し、0.5wt%HCl水溶液にてpHを3~4としたところで、有機層と水層を分離した。得られた有機層を水2gで3回洗浄した後、減圧下に濃縮して、0.54gの濃縮物を得た。得られた濃縮物を酢酸エチルとヘキサンの混合溶液(重量比 酢酸エチル:ヘキサン=2:1)2.0gに溶解させて冷却したところ白色固体が析出した。該白色固体をろ別することで、7-オキサノルボルナン-2,6-スルトン-5-イル(2-メタクリロイルオキシエチル)カルバメート(白色固体、0.22g、0.63mmol、収率40.6%)を得た。
Figure JPOXMLDOC01-appb-C000024
 1H-NMR(400MHz、CDCl3、TMS、ppm)δ:6.12(1H,m)、5.61(1H,m)、5.52(1H,dd,J=4.8,4.8Hz)、5.12(1H,br)、4.84(1H,s)、4.82(1H,d,J=4.8Hz)、4.77(1H,d,J=4.8Hz)、4.25(2H,t,J=5.2Hz)、3.67(1H,ddd、J=10.0,4.8,3.6Hz)、3.51(2H,dt,J=5.6,5.2Hz)、2.30-2.44(2H,m)、1.95(3H,s)
<合成例5>N-t-ブチル-6-ヒドロキシヘキサヒドロ-2-オキソ-3,5-メタノ-4H-シクロペンタ[2,3-b]ピロールの合成
 温度計、攪拌装置、窒素導入管および滴下漏斗を取り付けた内容積2Lの三つ口フラスコに、塩化アクリロイル217.2g(2.400mol)およびトルエン520gを仕込み、内温を0℃に冷却した。この混合液へ、滴下漏斗からシクロペンタジエン190.4g(2.880mol)を1時間かけて滴下した。滴下終了後、0℃にて1時間攪拌し、反応中間体溶液(A)を調製した。
 温度計、攪拌装置、窒素導入管および滴下漏斗を取り付けた内容積2Lの三つ口フラスコに、t-ブチルアミン201.1g(2.750mol)およびトルエン513gを仕込み、内温を0℃に冷却した。この混合液へ、滴下漏斗から、上記で得られた反応中間体溶液(A)を1時間30分かけて滴下した後、内温を25℃に昇温した。得られた反応混合物に酢酸エチル1800mlおよび水300mlを添加し、30分攪拌した後、静置して分液した後、有機層を得た。得られた有機層を減圧下に濃縮して濃縮物を得た。
 該濃縮物に酢酸エチル750mlおよびヘキサン250mlを添加し、40℃に加熱して濃縮物を溶解した。攪拌しながら2℃まで冷却した後、析出した結晶をろ取した。得られた結晶を減圧乾燥し、N-t-ブチルビシクロ[2.2.1]ヘプタ-5-エン-2-カルボキサミド124.3g(0.643mol;収率26.8%)を得た。
 温度計、攪拌装置、窒素導入管および滴下漏斗を取り付けた内容積2Lの三つ口フラスコに、N-t-ブチルビシクロ[2.2.1]ヘプタ-5-エン-2-カルボキサミド50.0g(0.259mol)、塩化メチレン250g、炭酸カリウム121.6g(0.880mol)および水550gを仕込み、内温を0℃に冷却した。この混合液へ、滴下漏斗からm-クロロ過安息香酸75.9g(0.440mol)および塩化メチレン1559gを20分間かけて滴下した。0~7℃にて4時間攪拌した後、飽和亜硫酸ナトリウム水溶液22gを添加し、30分間攪拌した。静置して分液した後、有機層を水400mlで2回洗浄した。得られた有機層を減圧下に濃縮して濃縮物を得た。
 該濃縮物にジイソプロピルエーテル554gおよびヘキサン222gを添加し、内温を50℃に昇温して濃縮物を溶解した後、2℃まで冷却し、析出した結晶をろ取した。得られた結晶を減圧下乾燥し、N-t-ブチル-5,6-エポキシビシクロ[2.2.1]ヘプタ-2-カルボキサミド26.4g(0.126mol;収率48.6%)を得た。
 温度計、攪拌装置および窒素導入管を取り付けた内容積2Lの三つ口フラスコに、カリウム-t-ブトキシド61.0g(0.544mol)およびt-ブタノール1045gを仕込み、50℃に昇温した。この混合液へ、N-t-ブチル-5,6-エポキシビシクロ[2.2.1]ヘプタ-2-カルボキサミド56.9g(0.272mol)を1時間かけて添加した。続いて内温を25℃に冷却した後、3.9質量%塩酸620gおよび酢酸エチル1900mlを添加し、30分間攪拌した。静置して分液した後、有機層を水400mlで2回洗浄した。得られた有機層を減圧下濃縮して濃縮物を得た。
 得られた濃縮物にメタノール30gおよびジイソプロピルエーテル820gを添加し、内温を50℃に昇温して濃縮物を溶解した。続いて0℃まで冷却した後、析出した粗結晶をろ取した。得られた粗結晶に酢酸エチル200gおよびジイソプロピルエーテル200gを添加し、内温を50℃に昇温して粗結晶を溶解した。続いて0℃まで冷却した後、析出した結晶をろ取した。得られた結晶を減圧乾燥し、下記特性を有するN-t-ブチル-6-ヒドロキシヘキサヒドロ-2-オキソ-3,5-メタノ-4H-シクロペンタ[2,3-b]ピロール24.9g(0.119mol;収率43.8%)を得た。
Figure JPOXMLDOC01-appb-C000025
<実施例5>N-t-ブチル-ヘキサヒドロ-2-オキソ-3,5-メタノ-4H-シクロペンタ[2,3-b]ピロール-6-イル(2-メタクリロイルオキシエチル)カルバメートの合成
 温度計、攪拌装置および窒素導入管を取り付けた内容積100mLの3つ口フラスコに、合成例5で得られたN-t-ブチル-6-ヒドロキシヘキサヒドロ-2-オキソ-3,5-メタノ-4H-シクロペンタ[2,3-b]ピロール5.00g(23.9mmol)、4-アセトアミド-2,2,6,6-テトラメチルピペリジン-N-オキシル15mg、酢酸エチル30.0g、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン0.18g(1.18mmol)を仕込み、24~26℃で撹拌下に2-メタクリロイルオキシエチルイソシアナート4.13g(26.6mmol)を2.4時間かけて滴下した。滴下終了から1時間後、反応混合液をUV検出器を備えたHPLCにて分析したところ、N-t-ブチル-6-ヒドロキシヘキサヒドロ-2-オキソ-3,5-メタノ-4H-シクロペンタ[2,3-b]ピロールの変換率は97%であった。得られた反応混合液に酢酸エチル20.0mLを追加し、0.5wt%HCl水溶液にてpHを3としたところで、有機層と水層を分離した。得られた有機層を水20gで5回洗浄した後、減圧下に濃縮して、11.3gの濃縮物を得た。該濃縮物をシリカゲルカラムクロマトグラフィー(展開液;酢酸エチル/ヘキサン=3/1(体積比))で分離精製することにより、N-t-ブチル-ヘキサヒドロ-2-オキソ-3,5-メタノ-4H-シクロペンタ[2,3-b]ピロール-6-イル(2-メタクリロイルオキシエチル)カルバメート6.52g(17.9mmol、収率74.9%)を得た。
Figure JPOXMLDOC01-appb-C000026
 1H-NMR(400MHz、CDCl3、TMS、ppm)δ:6.12(1H,s)、5.60(1H,m)、4.94(1H,br)、4.52(1H,s)、4.24(2H,t,J=5.2Hz)、3.63(1H,d,J=4.4Hz)、3.51(2H,dt,J=5.2,5.2Hz)、2.87(1H,br)、2.49(1H,br)、2.28(1H,dd,J=10.4,4.0Hz)、1.95(3H,m),1.88(1H,ddd,J=13.6,10.8,4.4Hz)、1.79(1H,d,J=10.8Hz)、1.60(1H,d,J=13.6Hz)、1.36-1.45(10H,m)
<合成例6>5-ヒドロキシ-3-メトキシカルボニル-2,6-ノルボルナンカルボラクトンの合成
 温度計、攪拌装置、および窒素導入管を取り付けた内容積200mLの三つ口フラスコに、ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボン酸無水物16.7g(0.102mol)、メタノール100.0gを順次仕込み、メタノールが還流した状態で20時間加熱攪拌した後、減圧下にメタノールを留去して濃縮物を得た。
 攪拌装置、温度計および滴下漏斗を取り付けた内容積200mLの四つ口フラスコに、上記で得られた濃縮物全量と88%ギ酸12.0g(0.232mol)を順次仕込み混合した後、加熱して内温を45~46℃としたところに、30%過酸化水素水26.1g(0.232mol)を6時間かけて滴下した。滴下終了後も内温を45℃前後で20時間攪拌した。反応混合液を15℃まで冷却後、亜硫酸ナトリウムをデンプン紙により過酸化水素が検出されなくなるまで内温15~20℃の範囲で添加した後、20%水酸化ナトリウム水溶液で反応混合液のpHを7.8とした。酢酸エチル200gで3回抽出を行い、得られた有機層を合わせて減圧下に濃縮した。得られた固体に酢酸エチル50gを加え、60℃まで加温した後、ジイソプロピルエーテルをゆっくりと加え、溶液に濁りが生じたところでジイソプロピルエーテルの添加を止めて、0℃までゆっくりと冷却し、析出した結晶をろ過した。ろ別した結晶を0℃のジイソプロピルエーテル30gで洗浄し、40℃で2時間減圧下に乾燥することで、5-ヒドロキシ-3-メトキシカルボニル-2,6-ノルボルナンカルボラクトン10.0g(純度99.0%、0.047mol)を得た。
Figure JPOXMLDOC01-appb-C000027
<実施例6>3-メトキシカルボニル-2,6-ノルボルナンカルボラクトン-5-イル(2-メタクリロイルオキシエチル)カルバメートの合成
 温度計、攪拌装置および窒素導入管を取り付けた内容積50mLの3つ口フラスコに、合成例6で得られた5-ヒドロキシ-3-メトキシカルボニル-2,6-ノルボルナンカルボラクトン5.00g(23.6mmol)、4-アセトアミド-2,2,6,6-テトラメチルピペリジン-N-オキシル15mg、酢酸エチル30.0g、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン0.18g(1.18mmol)を仕込み、24~26℃で撹拌下に2-メタクリロイルオキシエチルイソシアナート4.2g(27.1mmol)を0.5時間かけて滴下した。滴下終了から1時間後、反応混合液をUV検出器を備えたHPLCにて分析したところ、5-ヒドロキシ-3-メトキシカルボニル-2,6-ノルボルナンカルボラクトンの変換率は69%であった。この反応混合液に、水20.0gを添加し、1.0wt%塩酸水溶液でpHを1とした後、有機層と水層を分離した。得られた有機層を水20gで6回洗浄した後、減圧下に溶媒を留去して9.13gの濃縮物を得た。該濃縮物をシリカゲルカラムクロマトグラフィー(展開液;酢酸エチル/ヘキサン=2/1(体積比))で分離精製することにより、3-メトキシカルボニル-2,6-ノルボルナンカルボラクトン-5-イル(2-メタクリロイルオキシエチル)カルバメート2.45g(6.68mmol、収率28.4%)を得た。
Figure JPOXMLDOC01-appb-C000028
 1H-NMR(400MHz、CDCl3、TMS、ppm)δ:6.12(1H,m)、5.60(1H,m)、5.13(2H,br)、4.61(1H,d,J=4.8Hz)、4.23(2H,t,J=5.2Hz)、3.72(3H,s)、3.46-3.53(2H,m)、3.30(1H,br)、3.09(1H,dd,J=10.8,3.2Hz)、2.77-2.85(2H,m)、2.06(1H,d,J=11.6Hz)、1.95(3H,m)、1.65(1H,d,J=11.6Hz)
<実施例7>高分子化合物(a)の合成
 攪拌装置、還流冷却器および温度計を備えた内容積50mlの三口フラスコに、2-メタクリロイルオキシ-2-メチルアダマンタン4.0g(17.2mmol)、3-ヒドロキシアダマンタン-1-イル=メタクリラート1.4g(6.0mmol)、実施例1で得られた2,6-ノルボルナンスルトン-5-イル(2-メタクリロイルオキシエチル)カルバメート6.8g(19.8mmol)およびメチルエチルケトン36.4gを仕込み、窒素バブリングを10分間行なった。窒素雰囲気下で2,2'-アゾビスイソブチロニトリル0.36g(2mmol)を仕込み、80℃にて4時間重合反応を行なった。得られた反応混合液を、室温下、メタノール220gに撹拌しながら滴下し、生成した沈殿物をろ取した。該沈殿物を、減圧(26.7Pa)下、50℃で8時間乾燥して、以下の繰り返し単位(数値はモル比を表す。)からなる高分子化合物(a)を7.6g得た。得られた高分子化合物(a)の重量平均分子量(Mw)は9,200、分子量分布は1.9であった。
Figure JPOXMLDOC01-appb-C000029
<実施例8>高分子化合物(b)の合成
 攪拌装置、還流冷却器および温度計を備えた内容積50mlの三口フラスコに、2-メタクリロイルオキシ-2-メチルアダマンタン4.0g(17.2mmol)、3-ヒドロキシアダマンタン-1-イル=メタクリラート1.4g(6.0mmol)、実施例2で得られた2,6-ノルボルナンカルボラクトン-5-イル(2-メタクリロイルオキシエチル)カルバメート6.1g(19.8mmol)およびメチルエチルケトン36.4gを仕込み、窒素バブリングを10分間行なった。窒素雰囲気下で2,2'-アゾビスイソブチロニトリル0.36g(2mmol)を仕込み、80℃にて4時間重合反応を行なった。得られた反応混合液を、室温下、メタノール220gに撹拌しながら滴下し、生成した沈殿物をろ取した。該沈殿物を、減圧(26.7Pa)下、50℃で8時間乾燥して、以下の繰り返し単位(数値はモル比を表す。)からなる高分子化合物(b)を7.8g得た。得られた高分子化合物(b)の重量平均分子量(Mw)は8,900、分子量分布は1.8であった。
Figure JPOXMLDOC01-appb-C000030
<実施例9>高分子化合物(c)の合成
 攪拌装置、還流冷却器および温度計を備えた内容積50mlの三口フラスコに、2-メタクリロイルオキシ-2-メチルアダマンタン4.0g(17.2mmol)、3-ヒドロキシアダマンタン-1-イル=メタクリラート1.4g(6.0mmol)、実施例3で得られた2,6-(7-オキサノルボルナン)カルボラクトン-5-イル(2-メタクリロイルオキシエチル)カルバメート6.2g(19.8mmol)およびメチルエチルケトン36.4gを仕込み、窒素バブリングを10分間行なった。窒素雰囲気下で2,2'-アゾビスイソブチロニトリル0.36g(2mmol)を仕込み、80℃にて4時間重合反応を行なった。得られた反応混合液を、室温下、メタノール220gに撹拌しながら滴下し、生成した沈殿物をろ取した。該沈殿物を、減圧(26.7Pa)下、50℃で8時間乾燥して、以下の繰り返し単位(数値はモル比を表す。)からなる高分子化合物(c)を7.2g得た。得られた高分子化合物(c)の重量平均分子量(Mw)は9,400、分子量分布は1.9であった。
Figure JPOXMLDOC01-appb-C000031
<実施例10>高分子化合物(d)の合成
 攪拌装置、還流冷却器および温度計を備えた内容積50mlの三口フラスコに、2-メタクリロイルオキシ-2-メチルアダマンタン4.0g(17.2mmol)、3-ヒドロキシアダマンタン-1-イル=メタクリラート1.4g(6.0mmol)、実施例4で得られた7-オキサノルボルナン-2,6-スルトン-5-イル(2-メタクリロイルオキシエチル)カルバメート6.9g(19.8mmol)およびメチルエチルケトン36.4gを仕込み、窒素バブリングを10分間行なった。窒素雰囲気下で2,2'-アゾビスイソブチロニトリル0.36g(2mmol)を仕込み、80℃にて4時間重合反応を行なった。得られた反応混合液を、室温下、メタノール220gに撹拌しながら滴下し、生成した沈殿物をろ取した。該沈殿物を、減圧(26.7Pa)下、50℃で8時間乾燥して、以下の繰り返し単位(数値はモル比を表す。)からなる高分子化合物(d)を6.9g得た。得られた高分子化合物(d)の重量平均分子量(Mw)は8,800、分子量分布は1.8であった。
Figure JPOXMLDOC01-appb-C000032
<実施例11>高分子化合物(e)の合成
 攪拌装置、還流冷却器および温度計を備えた内容積50mlの三口フラスコに、2-メタクリロイルオキシ-2-メチルアダマンタン4.0g(17.2mmol)、3-ヒドロキシアダマンタン-1-イル=メタクリラート1.4g(6.0mmol)、実施例5で得られたN-t-ブチル-ヘキサヒドロ-2-オキソ-3,5-メタノ-4H-シクロペンタ[2,3-b]ピロール-6-イル(2-メタクリロイルオキシエチル)カルバメート7.2g(19.8mmol)およびメチルエチルケトン36.4gを仕込み、窒素バブリングを10分間行なった。窒素雰囲気下で2,2'-アゾビスイソブチロニトリル0.36g(2mmol)を仕込み、80℃にて4時間重合反応を行なった。得られた反応混合液を、室温下、メタノール220gに撹拌しながら滴下し、生成した沈殿物をろ取した。該沈殿物を、減圧(26.7Pa)下、50℃で8時間乾燥して、以下の繰り返し単位(数値はモル比を表す。)からなる高分子化合物(e)を7.0g得た。得られた高分子化合物(e)の重量平均分子量(Mw)は10,100、分子量分布は1.8であった。
Figure JPOXMLDOC01-appb-C000033
<実施例12>高分子化合物(f)の合成
 攪拌装置、還流冷却器および温度計を備えた内容積50mlの三口フラスコに、2-メタクリロイルオキシ-2-メチルアダマンタン4.0g(17.2mmol)、3-ヒドロキシアダマンタン-1-イル=メタクリラート1.4g(6.0mmol)、実施例6で得られた3-メトキシカルボニル-2,6-ノルボルナンカルボラクトン-5-イル(2-メタクリロイルオキシエチル)カルバメート7.3g(19.8mmol)およびメチルエチルケトン36.4gを仕込み、窒素バブリングを10分間行なった。窒素雰囲気下で2,2'-アゾビスイソブチロニトリル0.36g(2mmol)を仕込み、80℃にて4時間重合反応を行なった。得られた反応混合液を、室温下、メタノール220gに撹拌しながら滴下し、生成した沈殿物をろ取した。該沈殿物を、減圧(26.7Pa)下、50℃で8時間乾燥して、以下の繰り返し単位(数値はモル比を表す。)からなる高分子化合物(f)を6.6g得た。得られた高分子化合物(f)の重量平均分子量(Mw)は9,200、分子量分布は1.7であった。
Figure JPOXMLDOC01-appb-C000034
<比較合成例1>高分子化合物(g)の合成
 攪拌装置、還流冷却器および温度計を備えた内容積50mlの三口フラスコに、2-メタクリロイルオキシ-2-メチルアダマンタン4.0g(17.2mmol)、3-ヒドロキシアダマンタン-1-イル=メタクリラート1.4g(6.0mmol)、5-(メタクリロイルオキシアセトキシ)-2,6-ノルボルナンサルトン6.3g(19.8mmol)およびメチルエチルケトン36.4gを仕込み、窒素バブリングを10分間行なった。窒素雰囲気下で2,2'-アゾビスイソブチロニトリル0.36g(2mmol)を仕込み、80℃にて4時間重合反応を行なった。得られた反応混合液を、室温下、メタノール220gに撹拌しながら滴下し、生成した沈殿物をろ取した。該沈殿物を、減圧(26.7Pa)下、50℃で8時間乾燥して、以下の繰り返し単位(数値はモル比を表す。)からなる高分子化合物(g)を7.3g得た。得られた高分子化合物(g)の重量平均分子量(Mw)は9,400、分子量分布は1.9であった。
Figure JPOXMLDOC01-appb-C000035
<比較合成例2>高分子化合物(h)の合成
 攪拌装置、還流冷却器および温度計を備えた内容積50mlの三口フラスコに、2-メタクリロイルオキシ-2-メチルアダマンタン4.0g(17.2mmol)、3-ヒドロキシアダマンタン-1-イル=メタクリラート1.4g(6.0mmol)、5-(メタクリロイルオキシアセトキシ)-2,6-ノルボルナンカルボラクトン5.5g(19.8mmol)およびメチルエチルケトン36.4gを仕込み、窒素バブリングを10分間行なった。窒素雰囲気下で2,2'-アゾビスイソブチロニトリル0.36g(2mmol)を仕込み、80℃にて4時間重合反応を行なった。得られた反応混合液を、室温下、メタノール220gに撹拌しながら滴下し、生成した沈殿物をろ取した。該沈殿物を、減圧(26.7Pa)下、50℃で8時間乾燥して、以下の繰り返し単位(数値はモル比を表す。)からなる高分子化合物(h)を7.0g得た。得られた高分子化合物(h)の重量平均分子量(Mw)は8,900、分子量分布は1.8であった。
Figure JPOXMLDOC01-appb-C000036
<実施例13~18および比較例1~2>
 実施例7~12または比較合成例1~2で得られた高分子化合物(a)、(b)、(c)、(d)、(e)、(f)、(g)または(h)を100質量部、光酸発生剤として「TPS-109」(製品名、成分;ノナフルオロ-n-ブタンスルホン酸トリフェニルスルホニウム、みどり化学株式会社製)4.5質量部、溶剤としてプロピレングリコールモノメチルエーテルアセテート/シクロヘキサノン混合溶剤(質量比=1:1)1896質量部を混合し、フォトレジスト組成物5種類を調製した。
 これらのフォトレジスト組成物を孔径0.2μmのメンブランフィルターを用いてろ過した。クレゾールノボラック樹脂(群栄化学工業株式会社製「PS-6937」)6質量%濃度のプロピレングリコールモノメチルエーテルアセテート溶液をスピンコーティング法により塗布して、ホットプレート上で200℃、90秒間焼成することにより膜厚100nmの反射防止膜(下地膜)を形成させた直径10cmのシリコンウェハー上に、該ろ液をそれぞれスピンコーティング法により塗布し、ホットプレート上で130℃、90秒間プリベークして膜厚300nmのレジスト膜を形成させた。このレジスト膜に波長193nmのArFエキシマレーザーを用いて二光束干渉法露光した。引き続き、130℃、90秒間ポストエクスポージャーベークした後、2.38質量%テトラメチルアンモニウムヒドロキシド水溶液にて60秒間現像処理することにより、1:1のラインアンドスペースパターンを形成させた。現像済みウェハーを割断したものを走査型電子顕微鏡(SEM)で観察し、線幅100nmのラインアンドスペースを1:1で解像した露光量におけるパターンの形状観察と線幅の変動(LWR)の測定を行った。
 LWRは、測定モニタ内において、線幅を複数の位置で検出し、その検出位置のバラツキの分散(3σ)を指標とした。また、パターンの断面形状は、走査型電子顕微鏡(SEM)を用いて観察し、矩形性が高いものを「○」、矩形性が低いものを「×」として評価した。結果を表1および表2に示す。
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
 以上より、本発明のアクリル酸エステル誘導体(1)を含有する原料を重合して得られた高分子化合物(高分子化合物(a)~(f))を利用したレジスト組成物は、本発明のアクリル酸エステル誘導体(1)を用いずに重合して得られた高分子化合物(高分子化合物(g)および(h))を利用したレジスト組成物に比べ、良好な形状のレジストパターンを形成できることに加え、LWRが改善されており、高解像度のレジストパターンの形成とLWRの低減とを両立させることができた。
 本発明のアクリル酸エステル誘導体は、LWRを改善し、良好な形状のレジストパターンを形成するレジスト組成物用の高分子化合物の原料として有用である。

Claims (5)

  1.  下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は、水素原子、メチル基またはトリフルオロメチル基を表す。R2、R3、R5、R7、R8およびR10は、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基または炭素数1~6のアルコキシ基を表す。R4およびR6は、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基若しくは炭素数1~6のアルコキシ基を表すか、またはR4およびR6は両者が結合して炭素数1~3のアルキレン基、-O-、若しくは-S-を表す。R9は、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数1~6のアルコキシ基または-COOR11を表し、R11は炭素数1~3のアルキル基を表す。
     Xは、-O-または>N-R12を表し、R12は、水素原子または炭素数1~5のアルキル基を表す。Yは、>C=O、または>S(=O)nを表し、nは、0~2の整数を表す。
     波線は、R8とR9のいずれがエンドまたはエキソであってもよいことを表す。)
    で示されるアクリル酸エステル誘導体。
  2.  前記アクリル酸エステル誘導体が、下記一般式(1’)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R1、R2、R3、R5、R7、R8、R9、R10、X、Yおよび波線は、前記定義の通りである。Zは、メチレン基、-O-、または-S-を表す。)で示される、請求項1に記載のアクリル酸誘導体。
  3.  請求項1または請求項2に記載のアクリル酸エステル誘導体を含有する原料を重合して得られる高分子化合物。
  4.  請求項3に記載の高分子化合物、光酸発生剤および溶剤を含有するフォトレジスト組成物。
  5.  下記一般式(2)で示されるイソシアナート誘導体と下記一般式(3)で示されるアルコール誘導体とを、-30~100℃で反応させることによる、請求項1または2に記載のアクリル酸エステル誘導体の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R1~R10、X、Yおよび波線は、前記定義の通りである。)
PCT/JP2011/070034 2010-09-08 2011-09-02 アクリル酸エステル誘導体、高分子化合物およびフォトレジスト組成物 WO2012033019A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137005869A KR20130138732A (ko) 2010-09-08 2011-09-02 아크릴산에스테르 유도체, 고분자 화합물 및 포토 레지스트 조성물
US13/820,855 US9152042B2 (en) 2010-09-08 2011-09-02 Acrylic ester derivative, high-molecular compound and photoresist composition
JP2012532959A JP5722904B2 (ja) 2010-09-08 2011-09-02 アクリル酸エステル誘導体、高分子化合物およびフォトレジスト組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-201033 2010-09-08
JP2010201033 2010-09-08

Publications (1)

Publication Number Publication Date
WO2012033019A1 true WO2012033019A1 (ja) 2012-03-15

Family

ID=45810620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070034 WO2012033019A1 (ja) 2010-09-08 2011-09-02 アクリル酸エステル誘導体、高分子化合物およびフォトレジスト組成物

Country Status (4)

Country Link
US (1) US9152042B2 (ja)
JP (1) JP5722904B2 (ja)
KR (1) KR20130138732A (ja)
WO (1) WO2012033019A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012068543A (ja) * 2010-09-24 2012-04-05 Fujifilm Corp 感活性光線性又は感放射線性樹脂組成物並びに該組成物を用いたレジスト膜及びパターン形成方法
JP2012117048A (ja) * 2010-11-09 2012-06-21 Sumitomo Chemical Co Ltd 樹脂、レジスト組成物及びレジストパターン製造方法
JP2012190012A (ja) * 2011-02-25 2012-10-04 Sumitomo Chemical Co Ltd レジスト組成物及びレジストパターンの製造方法
JP2012226340A (ja) * 2011-04-07 2012-11-15 Sumitomo Chemical Co Ltd レジスト組成物及びレジストパターンの製造方法
JP2012226344A (ja) * 2011-04-07 2012-11-15 Sumitomo Chemical Co Ltd レジスト組成物及びレジストパターンの製造方法
JP2012226338A (ja) * 2011-04-07 2012-11-15 Sumitomo Chemical Co Ltd レジスト組成物及びレジストパターンの製造方法
JP2013041271A (ja) * 2011-07-19 2013-02-28 Sumitomo Chemical Co Ltd レジスト組成物及びレジストパターンの製造方法
JP2013060373A (ja) * 2011-09-12 2013-04-04 Idemitsu Kosan Co Ltd アダマンタン誘導体
WO2013129342A1 (ja) * 2012-02-27 2013-09-06 株式会社クラレ アクリル酸エステル誘導体およびその製造方法、中間体およびその製造方法、高分子化合物、フォトレジスト組成物
JP2014029518A (ja) * 2012-07-03 2014-02-13 Sumitomo Chemical Co Ltd レジスト組成物及びレジストパターンの製造方法
JP2014085472A (ja) * 2012-10-23 2014-05-12 Tokyo Ohka Kogyo Co Ltd レジスト組成物、レジストパターン形成方法及び高分子化合物
JP2014115629A (ja) * 2012-11-15 2014-06-26 Sumitomo Chemical Co Ltd レジスト組成物及びレジストパターンの製造方法
CN114085138A (zh) * 2021-11-16 2022-02-25 徐州博康信息化学品有限公司 一种光刻胶树脂单体及其中间体的制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9091917B2 (en) * 2011-02-03 2015-07-28 Kuraray Co., Ltd. Acrylic acid ester derivative, polymer compound and photoresist composition
JP6060012B2 (ja) * 2013-03-15 2017-01-11 富士フイルム株式会社 パターン形成方法、及び、電子デバイスの製造方法
CN107207457A (zh) * 2015-03-11 2017-09-26 株式会社大赛璐 脂环式环氧化合物及其制造方法、以及2‑羟基‑4‑氧杂‑5‑硫杂三环[4.2.1.03,7]壬烷衍生物的制造方法
CN108456213B (zh) * 2017-02-22 2021-01-15 浙江九洲药业股份有限公司 一种3-氟-4-羟基环己烷羧酸酯的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11109628A (ja) * 1997-09-30 1999-04-23 Fuji Photo Film Co Ltd ポジ型感光性組成物
JP2000047386A (ja) * 1998-07-27 2000-02-18 Fuji Photo Film Co Ltd ポジ型感光性組成物
WO2010001913A1 (ja) * 2008-06-30 2010-01-07 株式会社クラレ アクリル酸エステル誘導体、ハロエステル誘導体、高分子化合物およびフォトレジスト組成物

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10221852A (ja) * 1997-02-06 1998-08-21 Fuji Photo Film Co Ltd ポジ型感光性組成物
JP3765440B2 (ja) * 1997-02-18 2006-04-12 富士写真フイルム株式会社 ポジ型感光性組成物
JP3042618B2 (ja) 1998-07-03 2000-05-15 日本電気株式会社 ラクトン構造を有する(メタ)アクリレート誘導体、重合体、フォトレジスト組成物、及びパターン形成方法
JP4253996B2 (ja) 1999-10-18 2009-04-15 Jsr株式会社 感放射線性樹脂組成物
EP1179750B1 (en) * 2000-08-08 2012-07-25 FUJIFILM Corporation Positive photosensitive composition and method for producing a precision integrated circuit element using the same
JP4212576B2 (ja) 2005-07-27 2009-01-21 ダイセル化学工業株式会社 3−オキサ−2−チアトリシクロ[4.2.1.04,8]ノナン誘導体
JP5270189B2 (ja) 2008-02-22 2013-08-21 株式会社クラレ 新規なアルコールおよびその誘導体
JP5270188B2 (ja) 2008-02-22 2013-08-21 株式会社クラレ 新規なアクリル酸エステル誘導体、高分子化合物
JP5270187B2 (ja) 2008-02-22 2013-08-21 株式会社クラレ 新規な(メタ)アクリル酸エステル誘導体、ハロエステル誘導体および高分子化合物
JP5460074B2 (ja) * 2008-03-10 2014-04-02 東京応化工業株式会社 レジスト組成物およびレジストパターン形成方法
JP5202398B2 (ja) * 2008-03-26 2013-06-05 富士フイルム株式会社 重合性化合物及び該重合性化合物を重合させた高分子化合物
JP2010091638A (ja) * 2008-10-03 2010-04-22 Fujifilm Corp レジストパターンの表面処理方法及び該表面処理方法を用いたレジストパターンの形成方法
JP5337576B2 (ja) * 2008-10-07 2013-11-06 東京応化工業株式会社 ポジ型レジスト組成物およびレジストパターン形成方法
JP5783687B2 (ja) * 2009-06-23 2015-09-24 住友化学株式会社 樹脂及びレジスト組成物
JP2011215414A (ja) * 2010-03-31 2011-10-27 Fujifilm Corp 感活性光線性又は感放射線性樹脂組成物、及びそれを用いたパターン形成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11109628A (ja) * 1997-09-30 1999-04-23 Fuji Photo Film Co Ltd ポジ型感光性組成物
JP2000047386A (ja) * 1998-07-27 2000-02-18 Fuji Photo Film Co Ltd ポジ型感光性組成物
WO2010001913A1 (ja) * 2008-06-30 2010-01-07 株式会社クラレ アクリル酸エステル誘導体、ハロエステル誘導体、高分子化合物およびフォトレジスト組成物

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012068543A (ja) * 2010-09-24 2012-04-05 Fujifilm Corp 感活性光線性又は感放射線性樹脂組成物並びに該組成物を用いたレジスト膜及びパターン形成方法
JP2012117048A (ja) * 2010-11-09 2012-06-21 Sumitomo Chemical Co Ltd 樹脂、レジスト組成物及びレジストパターン製造方法
JP2012190012A (ja) * 2011-02-25 2012-10-04 Sumitomo Chemical Co Ltd レジスト組成物及びレジストパターンの製造方法
JP2012226340A (ja) * 2011-04-07 2012-11-15 Sumitomo Chemical Co Ltd レジスト組成物及びレジストパターンの製造方法
JP2012226344A (ja) * 2011-04-07 2012-11-15 Sumitomo Chemical Co Ltd レジスト組成物及びレジストパターンの製造方法
JP2012226338A (ja) * 2011-04-07 2012-11-15 Sumitomo Chemical Co Ltd レジスト組成物及びレジストパターンの製造方法
JP2013041271A (ja) * 2011-07-19 2013-02-28 Sumitomo Chemical Co Ltd レジスト組成物及びレジストパターンの製造方法
JP2013060373A (ja) * 2011-09-12 2013-04-04 Idemitsu Kosan Co Ltd アダマンタン誘導体
WO2013129342A1 (ja) * 2012-02-27 2013-09-06 株式会社クラレ アクリル酸エステル誘導体およびその製造方法、中間体およびその製造方法、高分子化合物、フォトレジスト組成物
US9395625B2 (en) 2012-02-27 2016-07-19 Kuraray Co., Ltd. Acrylic acid ester derivative and method for producing same, intermediate and method for producing same, high-molecular-weight compound, and photoresist composition
JP2014029518A (ja) * 2012-07-03 2014-02-13 Sumitomo Chemical Co Ltd レジスト組成物及びレジストパターンの製造方法
JP2014085472A (ja) * 2012-10-23 2014-05-12 Tokyo Ohka Kogyo Co Ltd レジスト組成物、レジストパターン形成方法及び高分子化合物
JP2014115629A (ja) * 2012-11-15 2014-06-26 Sumitomo Chemical Co Ltd レジスト組成物及びレジストパターンの製造方法
CN114085138A (zh) * 2021-11-16 2022-02-25 徐州博康信息化学品有限公司 一种光刻胶树脂单体及其中间体的制备方法
CN114085138B (zh) * 2021-11-16 2023-12-29 徐州博康信息化学品有限公司 一种光刻胶树脂单体及其中间体的制备方法

Also Published As

Publication number Publication date
US9152042B2 (en) 2015-10-06
JPWO2012033019A1 (ja) 2014-01-20
US20130164675A1 (en) 2013-06-27
JP5722904B2 (ja) 2015-05-27
KR20130138732A (ko) 2013-12-19

Similar Documents

Publication Publication Date Title
JP5722904B2 (ja) アクリル酸エステル誘導体、高分子化合物およびフォトレジスト組成物
KR101620647B1 (ko) 아크릴산에스테르 유도체, 할로 에스테르 유도체, 고분자 화합물 및 포토레지스트 조성물
KR101732205B1 (ko) N-아실-β-락탐 유도체, 고분자 화합물 및 포토레지스트 조성물
JP6018504B2 (ja) アクリルアミド誘導体、高分子化合物およびフォトレジスト組成物
JP6078526B2 (ja) アクリル酸エステル誘導体およびその製造方法、中間体およびその製造方法、高分子化合物、フォトレジスト組成物
KR101595583B1 (ko) (메트)아크릴산에스테르 유도체 및 그 중간체 그리고 고분자 화합물
WO2013042694A1 (ja) (メタ)アクリル酸エステル誘導体、高分子化合物およびフォトレジスト組成物
JP5840146B2 (ja) ビニルスルホン酸エステル誘導体、高分子化合物およびフォトレジスト組成物
JP5460534B2 (ja) カルバモイルオキシアダマンタン誘導体、高分子化合物およびフォトレジスト組成物
US9823563B2 (en) Alcohol compound and method for producing same, method for producing lactone compound, (meth)acrylate ester and method for producing same, polymer and method for producing same, and resist composition and method for producing substrate using same
WO2013146379A1 (ja) アクリル酸エステル系誘導体
JP5657443B2 (ja) アクリル酸エステル誘導体、高分子化合物およびフォトレジスト組成物
WO2013146356A1 (ja) アクリル酸エステル系誘導体の製造方法並びに中間体およびその製造方法
JP2015160836A (ja) 新規なアルコール誘導体、アクリル酸エステル誘導体、ハロエステル誘導体、高分子化合物およびフォトレジスト組成物
JP5860820B2 (ja) アクリル酸エステル誘導体、高分子化合物およびフォトレジスト組成物
JP2010191221A (ja) 極端紫外線露光用化学増幅型フォトレジスト組成物
JP2013144652A (ja) アクリル酸エステル誘導体及びその製造方法
WO2012035666A1 (ja) アクリル酸エステル誘導体およびアルコール誘導体並びにそれらの製造方法
JP2015168735A (ja) 新規なアルコール誘導体、アクリル酸エステル誘導体、ハロエステル誘導体、高分子化合物およびフォトレジスト組成物
JP2018012674A (ja) アルコール誘導体、アクリル酸エステル誘導体、混合物、高分子化合物およびフォトレジスト組成物
JP2016141737A (ja) アクリル酸エステル誘導体、混合物、高分子化合物およびフォトレジスト組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823494

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012532959

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13820855

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137005869

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11823494

Country of ref document: EP

Kind code of ref document: A1