WO2012032839A1 - 表面被覆切削工具 - Google Patents

表面被覆切削工具 Download PDF

Info

Publication number
WO2012032839A1
WO2012032839A1 PCT/JP2011/065339 JP2011065339W WO2012032839A1 WO 2012032839 A1 WO2012032839 A1 WO 2012032839A1 JP 2011065339 W JP2011065339 W JP 2011065339W WO 2012032839 A1 WO2012032839 A1 WO 2012032839A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
titanium carbonitride
hardness
coating film
carbonitride layer
Prior art date
Application number
PCT/JP2011/065339
Other languages
English (en)
French (fr)
Inventor
アノンサック パサート
伊藤 実
岡田 吉生
秀明 金岡
鈴木 智恵
Original Assignee
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to EP11823318.8A priority Critical patent/EP2614905A4/en
Priority to US13/820,392 priority patent/US9044811B2/en
Priority to CN201180042912.XA priority patent/CN103108716B/zh
Priority to KR1020137006123A priority patent/KR20130041325A/ko
Priority to JP2012532889A priority patent/JP5729777B2/ja
Publication of WO2012032839A1 publication Critical patent/WO2012032839A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Definitions

  • the present invention relates to a surface-coated cutting tool including a base material and a coating film formed thereon.
  • Recent cutting tool trends include the need for dry machining without cutting fluids from the viewpoint of global environmental conservation, the diversification of work materials, and higher cutting speeds to further improve machining efficiency. For example, the cutting edge temperature of a tool tends to become higher and higher. Moreover, in recent cutting operations, cutting with a deep cutting depth and cutting with a large feed amount are frequently performed, so that the characteristics required for the tool material are becoming stricter.
  • the surface of cutting tools and wear resistant tools made of hard base materials such as WC-based cemented carbide, cermet and high speed steel is coated.
  • Such coating is mainly performed by a chemical vapor deposition (CVD) method.
  • CVD chemical vapor deposition
  • the HT (high temperature) -CVD method is widely used.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-087150
  • Patent Document 1 a source gas containing CH 3 CN and a chain hydrocarbon having 2 to 20 carbon atoms are introduced as an excess carbon source, and the TiCN layer is coated by MT-CVD.
  • the TiCN layer thus formed has a columnar crystal structure and a large amount of carbon.
  • the surface of the TiCN layer is covered with an aluminum oxide layer having excellent oxidation resistance.
  • Patent Document 2 JP-A-63-195268
  • Patent Document 2 CH 4 , N 2 , and TiCl 4 are introduced as main raw materials, and the surface of the base material is coated with a Ti carbonitride oxide layer using the HT-CVD method.
  • the HT-CVD method of Patent Document 2 is not preferable from the viewpoint of manufacturing efficiency because the film formation rate is slower than that of the MT-CVD method.
  • the HT-CVD method has a problem that the composition and crystal structure of the TiCN layer change greatly if the film forming conditions change even slightly.
  • a portion with low hardness is dispersed in the TiCN layer, such as when cutting a hard work material such as cast iron, or when cutting a work material with microscopic irregularities Under the cutting conditions, the surface-coated cutting tool was likely to be chipped or chipped.
  • the present invention has been made in view of the current situation as described above, and an object of the present invention is to provide a surface-coated cutting tool that is highly compatible with wear resistance and fracture resistance.
  • the present inventors have studied a method of forming a coating film by chemical vapor deposition. As a result, a titanium carbonitride layer is formed on one layer of the coating film, and the crystal orientation of the titanium carbonitride layer is controlled. Further, by eliminating the variation in hardness of the titanium carbonitride layer, it was found that both the wear resistance and the fracture resistance were excellent, and the present invention was finally completed by further study based on this knowledge. It was.
  • the surface-coated cutting tool of the present invention includes a base material and a coating film formed on the base material, and the coating film includes at least one titanium carbonitride layer,
  • the titanium layer has the largest orientation index TC (220) of the texture coefficient TC (hkl), the indentation hardness of the hardness reference piece is Hs, and the indentation hardness of the titanium carbonitride layer is Ht.
  • the average value of the relative hardness Ht / Hs in the measurement is 3 or more, and the maximum value Ht max / Hs and the minimum value Ht min / Hs of the relative hardness of the titanium carbonitride layer with respect to the average value of the relative hardness Ht / Hs
  • the difference is 0.5 or less.
  • the difference between the maximum value Ht max / Hs and the minimum value Ht min / Hs of the relative hardness of the titanium carbonitride layer with respect to the average value of the relative hardness Ht / Hs is preferably 0.3 or less.
  • the above-mentioned titanium carbonitride layer preferably has an atomic ratio of carbon of 0.7 or more with respect to the total of carbon and nitrogen.
  • the coating film includes at least one alumina layer, and the alumina layer is preferably made of ⁇ -type aluminum oxide and has an average layer thickness of 2 ⁇ m or more and 15 ⁇ m or less.
  • the surface-coated cutting tool of the present invention has a configuration as described above, so that it is possible to achieve both high wear resistance and fracture resistance.
  • the layer thickness or film thickness is measured by a scanning electron microscope (SEM), and the composition of each layer constituting the coating film is an energy dispersive X-ray analyzer (EDS: Energy Dispersive x). -ray Spectroscopy).
  • the surface-coated cutting tool of the present invention comprises a substrate and a coating film formed thereon.
  • the surface-coated cutting tool of the present invention having such a basic configuration includes, for example, a drill, an end mill, a milling or turning edge cutting type cutting tip, a metal saw, a cutting tool, a reamer, a tap, or a crankshaft pin. It can be used very effectively as a chip for milling.
  • a conventionally known material known as such a cutting tool base material can be used without particular limitation.
  • cemented carbide for example, WC base cemented carbide, including WC, including Co, or further including carbonitride such as Ti, Ta, Nb, etc.
  • cermet TiC, TiN, TiCN, etc.
  • High-speed steel, ceramics titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, and mixtures thereof), cubic boron nitride sintered body, diamond sintered body Etc. can be mentioned as examples of such a substrate.
  • a cemented carbide is used as such a base material, the effect of the present invention is exhibited even if such a cemented carbide contains an abnormal phase called free carbon or ⁇ phase in the structure.
  • these base materials may have a modified surface.
  • a de- ⁇ layer may be formed on the surface, and in the case of cermet, a surface hardened layer may be formed, and even if the surface is modified in this way, The effect is shown.
  • the coating film of the present invention comprises a single layer or a plurality of layers including at least one titanium carbonitride layer.
  • a titanium carbonitride layer has a specific crystal orientation and is therefore excellent in wear resistance and has a uniform hardness, so that the coating film is not easily damaged.
  • Such a coating film of the present invention includes an aspect in which the entire surface of the substrate is coated, and also includes an aspect in which the coating film is not partially formed.
  • stacking aspect of a part differs is also included.
  • the coating film of this invention is 5 micrometers or more and 25 micrometers or less in the whole film thickness. If it is less than 5 ⁇ m, the abrasion resistance may be inferior, and if it exceeds 25 ⁇ m, the adhesion to the substrate and the fracture resistance may be reduced.
  • a particularly preferable film thickness of such a coating film is 10 ⁇ m or more and 20 ⁇ m or less.
  • the coating film of the present invention includes at least one titanium carbonitride layer.
  • a titanium carbonitride layer is preferably a layer mainly composed of TiCN, and is characterized in that the orientation index TC (220) of the (220) plane, which is the primary sliding surface of TiCN, is maximum.
  • the orientation index TC (hkl) is defined by the following formula (I).
  • I (hkl) represents the peak intensity (diffraction intensity) of the measured (hkl) plane
  • I 0 (hkl) represents a JCPDS file (Joint Committee on Powder Diffraction Standards).
  • File; 32-1383 (TiC), 38-1420 (TiN)) is the average value of the powder diffraction intensities of TiC and TiN constituting the (hkl) plane, and (hkl) is (111), (200), ( 220, (311), (331), (420), (422), and (511).
  • the orientation index TC (220) of the texture coefficient TC (hkl) is the maximum, the slipping property of the coating film is improved and it is difficult to wear, so that the wear resistance can be improved. This shows good wear resistance especially in turning of cast iron or carbon steel.
  • the titanium carbonitride layer is characterized in that an average value in a plurality of measurements of the relative hardness Ht / Hs is 3 or more. Further, the upper limit of the average value of the relative hardness Ht / Hs is not particularly limited, and the higher the value, the better the wear resistance.
  • the relative hardness Ht / Hs means the ratio of the indentation hardness Ht of the titanium carbonitride layer to the indentation hardness Hs of the hardness reference piece, and is calculated as follows.
  • the indentation hardness Ht of the titanium carbonitride layer is measured using the same ultrafine indentation hardness tester as described above. Specifically, the sample is cut along a plane including the normal line to the surface of the coating film of the surface-coated cutting tool, the cut surface is mechanically polished, and the titanium carbonitride layer is perpendicular to the cross section from the vertical direction. The indentation hardness Ht of the titanium carbonitride layer is measured by indenting the indenter.
  • the same indentation hardness measurement is repeated 30 times by changing the position where the indenter is pushed in, and the stress-strain curve of the indentation hardness Ht is discontinuous or unnatural among these 30 measurements.
  • the average value of the relative hardness Ht / Hs of the titanium carbonitride layer is calculated by dividing the average value of the indentation hardness Ht thus obtained by the indentation hardness Hs of the hardness reference piece.
  • the indentation hardness distribution of the titanium carbonitride layer (that is, the uniformity of hardness within the layer) is evaluated using the measurement results of the indentation hardness of 30 times. That is, after removing an abnormal value from the 30 indentation hardness measurements, a maximum value Ht max and a minimum value Ht min of the indentation hardness are selected, and these are respectively divided by the indentation hardness Hs of the hardness reference piece. Thus, the maximum value Ht max / Hs of the relative hardness and the minimum value Ht min / Hs of the relative hardness are calculated.
  • the value obtained by dividing the difference between the maximum relative hardness value Ht max / Hs and the minimum relative hardness value Ht min / Hs by the average relative hardness Ht / Hs is the indentation of the titanium carbonitride layer. It becomes an index indicating the distribution of hardness.
  • the maximum relative hardness Ht of the titanium carbonitride layer The max / Hs is 3.9, the minimum value Ht min / Hs is 3.1, and the difference is 0.8.
  • the index indicating the indentation hardness distribution of the titanium carbonitride layer (that is, the maximum value Ht max / Hs and the minimum value Ht min / Hs of the relative hardness of the titanium carbonitride layer with respect to the average value of the relative hardness Ht / Hs) ) Is 0.3 or less, and preferably 0.1 or less.
  • the titanium carbonitride layer having such a hardness distribution is less likely to cause chipping or chipping during cutting.
  • Such a titanium carbonitride layer contains TiCN as a main component as described above, but the term “including TiCN as a main component” means that it contains 90% by mass or more of TiCN, and preferably contains inevitable impurities. Except that it is composed only of TiCN.
  • Ti carbonitride The atomic ratio between the elements contained in such TiCN (Ti carbonitride) includes all conventionally known atomic ratios, and the atomic ratio is not particularly limited.
  • Ti and CN The atomic ratio of Ti is preferably 0.8 to 1.4 when the total of CN is 1, and the atomic ratio of carbon to the total of carbon and nitrogen is preferably 0.7 or more. . When this is expressed by a formula, it is preferable to satisfy C / (C + N) ⁇ 0.7. Thereby, the orientation index of the (220) plane of the titanium carbonitride layer can be increased, and thus the wear resistance can be improved.
  • the average thickness of the titanium carbonitride layer is preferably 5 ⁇ m or more and 20 ⁇ m or less, more preferably the upper limit is 15 ⁇ m and the lower limit is 7 ⁇ m. By satisfying this, it is possible to maintain a good balance between wear resistance and chipping resistance. If the thickness of the titanium carbonitride layer exceeds 20 ⁇ m, the chipping resistance decreases, which may not be preferable. If the thickness is less than 5 ⁇ m, the coating film tends to wear during high-speed cutting, which is not preferable.
  • a coating film contains a lowermost layer, a titanium carbonitride layer, an adhesion layer, an alumina layer, and an outermost surface layer in this order from the base material side.
  • a coating film contains a lowermost layer, a titanium carbonitride layer, an adhesion layer, an alumina layer, and an outermost surface layer in this order from the base material side.
  • ⁇ Lower layer> In the coating film of the present invention, it is preferable to provide a lowermost layer (layer in contact with the substrate) made of Ti nitride between the substrate and the titanium carbonitride layer. Since this lowermost layer has high adhesiveness with the base material, it is possible to prevent the entire coating film from being peeled even when it corresponds to severe cutting conditions. By forming such a lowermost layer, sufficient adhesion that can withstand cutting can be obtained even when compressive residual stress is applied to at least one layer of the coating film.
  • the layer thickness of the lowermost layer is preferably 0.05 ⁇ m or more and 1 ⁇ m or less.
  • the coating film of the present invention has TiB x N y directly above the titanium carbonitride layer (wherein x and y each represent an atomic ratio, and 0.001 ⁇ x / (x + y) ⁇ 0.04) It is preferable that the contact
  • x and y are particularly preferably 0.003 ⁇ x / (x + y) ⁇ 0.02.
  • the atomic ratio between Ti and BN is preferably set so that Ti is 0.8 to 1.5 when the total of BN is 1.
  • Such an adhesion layer can contain an element contained in another layer constituting the coating film of the present invention (in particular, an element contained in a layer in contact with the adhesion layer).
  • Such an adhesion layer preferably has a thickness of 0.05 ⁇ m or more and 1 ⁇ m or less, and more preferably has an upper limit of 0.8 ⁇ m and a lower limit of 0.1 ⁇ m. If the thickness exceeds 1 ⁇ m, the wear resistance may decrease, which may be undesirable. If the thickness is less than 0.05 ⁇ m, sufficient adhesion to the alumina layer may not be exhibited.
  • the coating film preferably includes an alumina layer between the outermost surface layer and the titanium carbonitride layer. Since such an alumina layer is a layer mainly composed of Al 2 O 3 , it exhibits good performance against oxidative wear during high-speed cutting and contributes to improvement of wear resistance.
  • alumina layer is a layer mainly composed of Al 2 O 3 , it exhibits good performance against oxidative wear during high-speed cutting and contributes to improvement of wear resistance.
  • mainly composed of Al 2 O 3 is an Al 2 O 3 is meant to include more than 90 wt%, preferably means that it is composed of only Al 2 O 3 except for unavoidable impurities.
  • Such an alumina layer is mainly composed of Al 2 O 3 having an ⁇ -type crystal structure (hereinafter sometimes referred to as ⁇ -Al 2 O 3 ), or Al 2 O 3 having a ⁇ -type crystal structure. (Hereinafter sometimes referred to as ⁇ -Al 2 O 3 ).
  • ⁇ -Al 2 O 3 is advantageous in that it is generally excellent in wear resistance in high-speed cutting.
  • Such a crystal structure can be confirmed by X-ray diffraction.
  • Such an alumina layer preferably has a layer thickness of 2 ⁇ m or more and 15 ⁇ m or less, more preferably the upper limit is 10 ⁇ m and the lower limit is 4 ⁇ m.
  • the thickness exceeds 15 ⁇ m, peeling at the tip of the cutting edge or the boundary portion of the cutting edge tends to occur, and the chipping resistance may be lowered. If it is less than 2 ⁇ m, the crater wear resistance on the rake face is reduced. In addition, the corrosion resistance in repeated cutting such as thread cutting and grooving may be reduced.
  • the coating film of this invention contains an outermost surface layer with the said titanium carbonitride layer.
  • the outermost surface layer is a layer constituting the surface of the coating film mainly composed of any one of Ti carbide, nitride and carbonitride.
  • the phrase “consisting of any one of Ti carbide, nitride and carbonitride” means containing 90% by mass or more of Ti carbide, nitride and carbonitride, preferably inevitable It means that it is composed of only Ti carbide, nitride and carbonitride except for impurities.
  • the mass ratio of Ti and elements other than Ti that is, C, N, and CN is 50 mass% or more for Ti.
  • Ti nitride ie, a compound represented by TiN
  • TiN has the clearest color (exhibits gold color) among these compounds, there is an advantage that the corner of the cutting tip after cutting use can be easily identified.
  • the atomic ratio is not limited to a stoichiometric range unless it is particularly limited and includes any conventionally known atomic ratio.
  • the atomic ratio of “Ti”, “C”, and “N” is not limited to 50:25:25, and also when “TiN” is described, “Ti” and “N”
  • the atomic ratio is not limited to 50:50.
  • the outermost surface layer preferably has a thickness of 0.05 ⁇ m or more and 1 ⁇ m or less. Furthermore, the upper limit of the thickness is 0.8 ⁇ m, more preferably 0.6 ⁇ m, and the lower limit is 0.1 ⁇ m, more preferably 0.2 ⁇ m. If the thickness is less than 0.05 ⁇ m, the effect is not sufficient when compressive residual stress is applied, and there is not much effect in improving the fracture resistance, and if it exceeds 1 ⁇ m, the layer located inside the outermost surface layer Adhesion may be reduced.
  • the coating film of the present invention is preferably formed by a chemical vapor deposition method (CVD method).
  • CVD method chemical vapor deposition method
  • the film formation temperature when forming the titanium carbonitride layer is preferably higher than that of the conventional MT-CVD method and lower than that of the conventional HT-CVD method. Is preferably 900 ° C. or higher and 1000 ° C. or lower.
  • the film formation temperature when forming the titanium carbonitride layer is preferably higher than that of the conventional MT-CVD method and lower than that of the conventional HT-CVD method. Is preferably 900 ° C. or higher and 1000 ° C. or lower.
  • the MT-CVD method forms a film at a relatively low temperature of about 830 ° C. to 900 ° C.
  • the HT-CVD method forms a film at a relatively high temperature of about 1000 ° C. or more. is there.
  • a titanium carbonitride layer having a crystal orientation with the (220) plane having the maximum peak intensity can be formed, and the surface is smooth in terms of crystal structure. And excellent in wear resistance.
  • the difference in film formation temperature between the adhesion layer and the alumina layer formed after forming the titanium carbonitride layer is small, and there is an advantage that temperature change and thermal shock during film formation are suppressed to a minimum.
  • the film formation temperature is less than 900 ° C.
  • the crystal structure of the titanium carbonitride layer is oriented in the columnar crystal (422) plane, so that sufficient slipperiness cannot be obtained.
  • Decarburization in the hard alloy substrate or cermet substrate becomes severe, and a hard and brittle layer is formed at the interface between the substrate and the coating film. This brittle layer reduces the adhesion between the substrate and the coating film.
  • the titanium carbonitride layer of the present invention is formed at a temperature about 100 ° C. lower than that of the conventional HT-CVD method.
  • the carbon source constituting the titanium carbonitride layer the number of carbons having higher activity than CH 4 gas. It is preferable to use a saturated hydrocarbon of 2 (C 2 H 2 gas, C 2 H 4 gas, and C 2 H 6 gas). Thereby, there is no inferiority to the conventional HT-CVD method, the film can be formed at a sufficient speed, and the production efficiency is not lowered.
  • the titanium carbonitride layer constituting the coating film of the present invention is formed under a film formation condition lower than the conventional film formation pressure, that is, a film formation pressure of 40 kPa or more and 80 kPa or less.
  • a film formation pressure of 40 kPa or more and 80 kPa or less.
  • the mean free process between the reaction gases is shortened, so that the film formation speed is increased and the aspect ratio of the crystal structure constituting the titanium carbonitride layer can be increased.
  • the titanium carbonitride layer can be made into a good quality columnar crystal having the maximum peak intensity on the (220) plane, and the hardness of the titanium carbonitride layer can be made uniform.
  • the film When the film is formed under a high vacuum condition of less than 40 kPa, the evaporation of the bonding layer in the substrate is promoted, and the bonding force between the WC particles or the TiCN particles in the substrate is reduced. Thereby, the interface between the coating film and the base material is easily peeled off, and the tool is easily damaged.
  • the film when the film is formed under a low vacuum condition exceeding 80 kPa, the crystal structure of the titanium carbonitride layer cannot be uniformly formed into a columnar crystal, and depending on the condition, a granular mixed structure is formed, resulting in a difference in structure. The hardness of the titanium carbonitride layer is difficult to be uniform.
  • the titanium carbonitride layer is made uniform by forming the titanium carbonitride layer at a film forming temperature of 900 ° C. or higher and 1000 ° C. or lower and a film forming pressure of 40 kPa or higher and 80 kPa or lower. Therefore, chipping and chipping are less likely to occur during cutting.
  • the raw material gas introduced when forming the titanium carbonitride layer preferably includes at least a Ti source, a C source, and an N source, and also includes H 2 or argon.
  • TiCl 4 gas or the like is preferably used as the Ti source
  • N 2 gas, NH 3 gas, CH 3 CN gas or the like is preferably used as the N source.
  • the C source it is preferable to use a saturated hydrocarbon gas or an unsaturated hydrocarbon gas having 1 to 3 carbon atoms.
  • the saturated hydrocarbon gas having 1 to 3 carbon atoms include CH 4 gas, C 2 H 6 gas, and C 3 H 8 gas.
  • the unsaturated hydrocarbon gas having 1 to 3 carbon atoms include C 2 H 2 gas, C 2 H 4 gas, C 3 H 4 gas, and C 3 H 6 gas.
  • CH 3 CN gas used as the N source may be used as the C source.
  • the molar ratio of the C source to the Ti source (that is, the molar ratio of the C source / the molar ratio of the Ti source) is preferably 4 or more and 10 or less.
  • the composition ratio of carbon contained in the titanium carbonitride layer can be increased as compared with the case where the film is formed by the conventional MT-CVD method, and thus the hardness at high temperature is excellent. It becomes a titanium carbonitride layer. And since the friction coefficient of a titanium carbonitride layer becomes low, slipperiness improves and abrasion resistance can be improved.
  • the film formation rate of the titanium carbonitride layer is slow, which is not suitable for mass productivity.
  • the crystal structure constituting the titanium carbonitride layer is coarsened, and the hardness of the coating film becomes difficult to be uniform, and a large amount of chloride is generated as an unreacted substance in the manufacturing process. Therefore, it is not preferable from an environmental viewpoint.
  • the blast treatment can be performed by colliding a metal powder such as a steel ball or a ceramic powder such as alumina mixed directly or with a solvent such as water with the surface of the coating film.
  • Specific conditions such as the collision can be appropriately adjusted depending on the configuration of the coating film and the magnitude of the compressive residual stress to be applied. However, if the collision is too weak, the compressive residual stress will not be applied. It is preferable to make it collide with strength.
  • a cemented carbide cutting tip (shape: CNMA120408 manufactured by Sumitomo Electric Hardmetal Co., Ltd.) having a composition (including inevitable impurities) composed of WC-5% Co was used as a base material.
  • the cutting edge of the base material was chamfered with a nylon brush containing SiC abrasive grains and subjected to round honing. Thereafter, the substrate surface was washed. The nose radius of this substrate was 0.8 mm.
  • Example 1 After forming a 0.6 ⁇ m bottom layer (TiN layer) and a 7.5 ⁇ m titanium carbonitride layer (TiCN layer) in order from the base material, a 0.8 ⁇ m adhesion layer (TiBN layer), A 2.8 ⁇ m alumina layer ( ⁇ -Al 2 O 3 layer) and a 0.5 ⁇ m outermost layer (TiN layer) were formed. In this way, the surface-coated cutting tool of Example 1 was produced. By the same method as this, the surface-coated cutting tool of each Example and each comparative example was produced.
  • Layer thickness of each layer in Table 1 indicates the layer thickness of each layer constituting the coating film
  • total film thickness indicates the film thickness of the coating film.
  • C / (C + N) in Table 1 represents the atomic ratio of carbon to the sum of the atomic ratios of carbon and nitrogen constituting the titanium carbonitride layer.
  • atomic ratio a value obtained by analyzing the titanium carbonitride layer by EPMA (Electron Probe Micro Analysis) was adopted.
  • Crystal plane of peak intensity indicates the crystal plane of the highest peak intensity when the titanium carbonitride layer is X-ray diffracted by an X-ray diffractometer (product name: RINT 2400 (manufactured by Rigaku Corporation)). .
  • “Relative hardness” in Table 1 describes the average value of the relative hardness Ht / Hs of the indentation hardness Ht of the titanium carbonitride layer with respect to the indentation hardness Hs of the hardness reference piece.
  • a method for calculating the average value of the relative hardness Ht / Hs first, a nano-indentation method using an ultra-fine indentation hardness tester (device name: ENT-1100a (manufactured by Elionix Co., Ltd.)) The indentation hardness Hs of the hardness reference piece (product name: UMV905 (manufactured by Yamamoto Scientific Tool Research Co., Ltd.)) was measured.
  • the sample was cut along a plane including the normal to the surface of the coating film of the surface-coated cutting tool, and the cut surface was mechanically polished.
  • the indentation of the titanium carbonitride layer was performed by pushing the indenter into the titanium carbonitride layer from the direction perpendicular to the cross section.
  • Hardness Ht was measured.
  • the indentation hardness of the titanium carbonitride layer was measured 30 times by changing the position where the indenter was pushed. Of these 30 measurements, if the stress-strain curve of indentation hardness Ht is discontinuous or unnatural, it is judged as an abnormal value, and the other indentation hardness measurements are averaged.
  • the average value of the indentation hardness Ht was calculated.
  • the average value of the relative hardness Ht / Hs of the titanium carbonitride layer was calculated by dividing the average value of the indentation hardness Ht by the indentation hardness Hs of the hardness reference piece.
  • the maximum value Ht max and the minimum value Ht min of the indentation hardness after removing the abnormal value from the 30 indentation hardness measurements are divided by the indentation hardness Hs of the hardness reference piece to obtain the relative hardness.
  • the maximum value Ht max / Hs and the minimum value Ht min / Hs were calculated.
  • each layer constituting the coating film other than the titanium carbonitride layer was formed under the conditions shown in Table 2 below, and the titanium carbonitride layer was formed under the conditions in Table 3 below. That is, for example, in the film formation of the titanium carbonitride layer in Example 1, reaction gas comprising TiCl 4 : 1.9% by volume, CH 4 : 8.8% by volume, N 2 : 3% by volume, and H 2 : the balance. was introduced so that the total flow rate was 56.8 L / min, the pressure in the chamber was 80 kPa, and the temperature was 990 ° C.
  • crater wear resistance was evaluated and shown in the column of “crater wear” in Table 4. Further, the damage form of the surface-coated cutting tool after the end of the cutting test is shown in the “damage form” column of Table 4.
  • the surface-coated cutting tool of each example has a smaller flank wear amount and a narrower longitudinal width of crater wear than that of each comparative example. From this result, it can be said that the surface-coated cutting tool of each example is excellent in wear resistance and crater wear resistance as compared with that in each comparative example.
  • the reason why the wear resistance and crater wear resistance were improved in this way is considered to be due to the fact that the crystal plane of the peak strength of the titanium carbonitride layer is (220).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drilling Tools (AREA)

Abstract

 耐摩耗性および耐欠損性を高度に両立した表面被覆切削工具を提供する。本発明の表面被覆切削工具は、基材と、該基材上に形成された被覆膜とを備え、該被覆膜は、少なくとも1層の炭窒化チタン層を含み、該炭窒化チタン層は、組織係数TC(hkl)のうちの配向性指数TC(220)が最大であり、硬度基準片の押し込み硬度をHsとし、炭窒化チタン層の押し込み硬度をHtとすると、複数回の測定における相対硬度Ht/Hsの平均値は、3以上であり、相対硬度Ht/Hsに対する、炭窒化チタン層の相対硬度の最大値Htmax/Hsと最小値Htmin/Hsとの差は、0.5以下であることを特徴とする。

Description

表面被覆切削工具
 本発明は、基材とその上に形成された被覆膜とを備える表面被覆切削工具に関する。
 最近の切削工具の動向として、地球環境保全の観点から切削油剤を用いないドライ加工が求められていること、被削材が多様化していること、加工能率を一層向上させるため切削速度がより高速になってきていることなどの理由から、工具の刃先温度はますます高温になる傾向にある。しかも、近年の切削加工では、切込み深さの深い切削、および送り量の多い切削も頻繁に行なわれるため、工具材料に要求される特性は厳しくなる一方である。
 このため、工具材料の要求特性として、基材上に形成される被覆膜の高温での安定性(耐酸化特性や被覆膜の密着性)はもちろんのこと、切削工具の寿命に関係する耐摩耗性の向上や耐欠損性の向上が一段と重要になっている。
 耐摩耗性および表面保護機能改善のため、WC基超硬合金、サーメット、高速度鋼等の硬質基材からなる切削工具や耐摩耗工具等の表面には、コーティングが施される。かかるコーティングは、化学気相蒸着(CVD:Chemical Vapor Deposition)法によって行なわれるのが主流であり、特に、比較的中温~低温でコーティングするMT(moderate temperature)-CVD法、または1000℃以上の高温でコーティングするHT(high temperature)-CVD法が広く用いられている。
 MT-CVD法を用いた先行技術としては、特開2008-087150号公報(特許文献1)が挙げられる。特許文献1では、CH3CNを含んだ原料ガスと、炭素数2~20の鎖状炭化水素とを過剰炭素源として導入し、MT-CVD法によりTiCN層を被覆している。このようにして形成されるTiCN層は、柱状晶の結晶構造であって、炭素量が多いものとなる。そして、このTiCN層の表面に耐酸化性の優れた酸化アルミニウム層を被覆している。
 一方、HT-CVD法を用いた先行技術としては、特開昭63-195268号公報(特許文献2)が挙げられる。特許文献2では、CH4、N2、およびTiCl4を主原料として導入し、HT-CVD法を用いて、基材の表面にTiの炭窒酸化物層を被覆している。
特開2008-087150号公報 特開昭63-195268号公報
 しかしながら、特許文献1のMT-CVD法で成膜されたTiCN層は(422)に配向しやすいため、硬度が十分とは言えず、特に硬度の高い被削材等を断続切削する際に十分な耐摩耗性を得ることができなかった。
 また、特許文献2のHT-CVD法は、その成膜速度がMT-CVD法と比べて遅いため、製造効率の観点から好ましいとは言えない。しかも、HT-CVD法では、成膜条件が僅かでも変わってしまうと、TiCN層の組成および結晶組織が大きく変わってしまうという問題がある。
 このため、TiCN層中に硬度の低い部分が分散されることになり、鋳鉄等の硬い被削材を切削するとき、または微視的な凹凸がある被削材を断続切削するときのような切削条件では、表面被覆切削工具に欠損やチッピングが生じやすかった。
 本発明は、上記のような現状に鑑みなされたものであって、その目的とするところは、耐摩耗性および耐欠損性を高度に両立した表面被覆切削工具を提供することである。
 本発明者らは、化学蒸着法により被覆膜を形成する手法を検討したところ、被覆膜の1層に炭窒化チタン層を形成し、該炭窒化チタン層の結晶配向性を制御するとともに、該炭窒化チタン層の硬度のばらつきをなくせば、耐摩耗性および耐欠損性の両特性に優れるという知見を得、この知見に基づいてさらに検討を重ねることによりついに本発明を完成させるに至った。
 すなわち、本発明の表面被覆切削工具は、基材と、該基材上に形成された被覆膜とを備え、該被覆膜は、少なくとも1層の炭窒化チタン層を含み、該炭窒化チタン層は、組織係数TC(hkl)のうちの配向性指数TC(220)が最大であり、硬度基準片の押し込み硬度をHsとし、炭窒化チタン層の押し込み硬度をHtとすると、複数回の測定における相対硬度Ht/Hsの平均値は、3以上であり、該相対硬度Ht/Hsの平均値に対する、炭窒化チタン層の相対硬度の最大値Htmax/Hsと最小値Htmin/Hsとの差は、0.5以下であることを特徴とする。上記の相対硬度Ht/Hsの平均値に対する、炭窒化チタン層の相対硬度の最大値Htmax/Hsと最小値Htmin/Hsとの差は、0.3以下であることが好ましい。
 上記の炭窒化チタン層は、炭素と窒素との合計に対する炭素の原子比が0.7以上であることが好ましい。上記の被覆膜は、少なくとも1層のアルミナ層を含み、該アルミナ層は、α型酸化アルミニウムからなり、かつその平均層厚が2μm以上15μm以下であることが好ましい。
 本発明の表面被覆切削工具は、上記のような構成を有することにより、耐摩耗性および耐欠損性を高度に両立することを可能としたものである。
 以下、本発明について、詳細に説明する。なお、本発明において、層厚または膜厚は走査型電子顕微鏡(SEM:Scanning Electron Microscope)により測定し、被覆膜を構成する各層の組成はエネルギー分散型X線分析装置(EDS:Energy Dispersive x-ray Spectroscopy)により測定するものとする。
 <表面被覆切削工具>
 本発明の表面被覆切削工具は、基材とその上に形成された被覆膜とを備えたものである。このような基本的構成を有する本発明の表面被覆切削工具は、たとえばドリル、エンドミル、フライス加工用または旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップ、またはクランクシャフトのピンミーリング加工用チップ等として極めて有用に用いることができる。
 <基材>
 本発明の表面被覆切削工具の基材としては、このような切削工具の基材として知られる従来公知のものを特に限定なく使用することができる。たとえば、超硬合金(たとえばWC基超硬合金、WCの他、Coを含み、あるいはさらにTi、Ta、Nb等の炭窒化物等を添加したものも含む)、サーメット(TiC、TiN、TiCN等を主成分とするもの)、高速度鋼、セラミックス(炭化チタン、炭化硅素、窒化硅素、窒化アルミニウム、酸化アルミニウム、およびこれらの混合体など)、立方晶型窒化硼素焼結体、ダイヤモンド焼結体等をこのような基材の例として挙げることができる。このような基材として超硬合金を使用する場合、そのような超硬合金は、組織中に遊離炭素やη相と呼ばれる異常相を含んでいても本発明の効果は示される。
 なお、これらの基材は、その表面が改質されたものであっても差し支えない。たとえば、超硬合金の場合はその表面に脱β層が形成されていたり、サーメットの場合には表面硬化層が形成されていてもよく、このように表面が改質されていても本発明の効果は示される。
 <被覆膜>
 本発明の被覆膜は、少なくとも1層の炭窒化チタン層を含む単一または複数の層からなることを特徴とする。かかる炭窒化チタン層は、特定の結晶配向性を有するため、耐摩耗性に優れており、しかも均一な硬度を有するため、被覆膜に欠損が生じにくいものである。
 このような本発明の被覆膜は、基材上の全面を被覆する態様を含むとともに、部分的に被覆膜が形成されていない態様をも含み、さらにまた部分的に被覆膜の一部の積層態様が異なっているような態様をも含む。また、本発明の被覆膜は、その全体の膜厚が5μm以上25μm以下であることが好ましい。5μm未満であると耐摩耗性に劣る場合があり、25μmを超えると基材との密着性および耐欠損性が低下する場合がある。このような被覆膜の特に好ましい膜厚は10μm以上20μm以下である。以下、このような被覆膜を構成する各層をさらに詳細に説明する。
 <炭窒化チタン層>
 本発明の被覆膜は、炭窒化チタン層を少なくとも1層含むものである。かかる炭窒化チタン層は、TiCNを主体とする層とすることが好ましく、TiCNの1次すべり面である(220)面の配向性指数TC(220)が最大であることを特徴とする。ここで、配向性指数TC(hkl)とは、以下の式(I)で定義されるものである。
Figure JPOXMLDOC01-appb-M000001
 式(I)中、I(hkl)は測定された(hkl)面のピーク強度(回折強度)を示し、I0(hkl)はJCPDSファイル(Joint Committee on Powder Diffraction Standards(粉末X線回折標準)ファイル;32-1383(TiC)、38-1420(TiN))による(hkl)面を構成するTiCとTiNの粉末回折強度の平均値であり、(hkl)は(111)、(200)、(220)、(311)、(331)、(420)、(422)、(511)の8面を示す。
 組織係数TC(hkl)のうちの配向性指数TC(220)が最大であることにより、被覆膜の滑り性が向上して摩耗しにくくなり、もって耐摩耗性を向上させることができる。これにより特に、鋳鉄または炭素鋼の旋削加工において、良好な耐摩耗性を示す。
 本発明において、炭窒化チタン層は、その相対硬度Ht/Hsの複数回の測定における平均値が3以上であることを特徴とする。また、相対硬度Ht/Hsの平均値の上限は、特に限定されず、その値が高いほど良好な耐摩耗性を示す。ここで、相対硬度Ht/Hsとは、硬度基準片の押し込み硬度Hsに対する炭窒化チタン層の押し込み硬度Htの比を意味し、以下のようにして算出する。
 まず、超微小押し込み硬さ試験機(装置名:ENT-1100a(株式会社エリオニクス社製))を用いて、ナノインデンテーション法により硬度基準片(製品名:UMV905(株式会社山本科学工具研究社製))の押し込み硬度Hsを測定する。
 次に、上記と同一の超微小押し込み硬さ試験機を用いて、炭窒化チタン層の押し込み硬度Htを測定する。具体的には、表面被覆切削工具の被覆膜の表面に対する法線を含む平面に沿って試料を切断し、該切断面を機械研磨し、この断面に対する垂直方向から炭窒化チタン層に対して圧子を押し込むことにより、炭窒化チタン層の押し込み硬度Htを測定する。
 そして、圧子を押し込む位置を変えて、同様の押し込み硬度の測定を30回繰り返し、この30回の測定のうち押し込み硬度Htの応力-歪曲線が不連続であったり、不自然であったりした場合を異常値と判断して除き、それ以外の押し込み硬度の各測定値を平均する。このようにして得られた押し込み硬度Htの平均値を硬度基準片の押し込み硬度Hsで除することにより、炭窒化チタン層の相対硬度Ht/Hsの平均値を算出する。
 また、上記の30回の押し込み硬度の測定結果を利用して、炭窒化チタン層の押し込み硬度の分布(すなわち、層内の硬度の均一性)を評価する。すなわち、上記30回の押し込み硬度の測定のうちの異常値を除いた上で、押し込み硬度の最大値Htmaxおよび最小値Htminを選出し、これらをそれぞれ硬度基準片の押し込み硬度Hsで除することにより、相対硬度の最大値Htmax/Hsおよび相対硬度の最小値Htmin/Hsを算出する。かかる相対硬度の最大値Htmax/Hsと、相対硬度の最小値Htmin/Hsとの差を、相対硬度Ht/Hsの平均値で除して得られた値が、炭窒化チタン層の押し込み硬度の分布を示す指標となる。
 すなわちたとえば、30回の押し込み硬度の測定によって、炭窒化チタン層の相対硬度Ht/Hsが3.5±0.4の範囲内となる場合においては、炭窒化チタン層の相対硬度の最大値Htmax/Hsが3.9であり、最小値Htmin/Hsが3.1であり、その差は0.8である。これを炭窒化チタン層の平均値3.5で除することにより、相対硬度Ht/Hsの平均値に対する、炭窒化チタン層の相対硬度の最大値Htmax/Hsと最小値Htmin/Hsとの差が0.23と算出される。
 本発明において、上記炭窒化チタン層の押し込み硬度の分布を示す指標(すなわち相対硬度Ht/Hsの平均値に対する、炭窒化チタン層の相対硬度の最大値Htmax/Hsと最小値Htmin/Hsとの差)は、0.3以下であることを特徴とし、0.1以下であることが好ましい。このような硬度分布を有する炭窒化チタン層は、切削時にチッピングや欠損が生じにくくする。
 このような炭窒化チタン層は、前述したとおりTiCNを主体として含むものであるが、ここでの「TiCNを主体として含む」とは、TiCNを90質量%以上含むことを意味し、好ましくは不可避不純物を除きTiCNのみにより構成されることを意味する。
 このようなTiCN(Tiの炭窒化物)に含まれる各元素間の原子比は、従来公知のあらゆる原子比が含まれ、その原子比は特に限定されるものではないが、たとえばTiとCNとの原子比は、CNの合計を1とした場合にTiが0.8~1.4とすることが好ましく、炭素と窒素との合計に対する炭素の原子比が0.7以上であることが好ましい。これを式で示すと、C/(C+N)≧0.7を満たすことが好ましい。これにより炭窒化チタン層の(220)面の配向性指数を高めることができ、もって耐摩耗性を向上させることができる。
 上記の炭窒化チタン層は、その平均層厚が5μm以上20μm以下であることが好ましく、より好ましくは上限が15μmであり下限が7μmである。これを満たすことにより、耐摩耗性と耐欠損性とのバランスを良好に保つことができる。炭窒化チタン層の厚みが20μmを超えると耐欠損性が低下するため好ましくない場合があり、5μm未満では高速切削時に被覆膜の摩耗が進みやすくなるため好ましくない。
 <被覆膜を構成する各層>
 本発明において、被覆膜は、基材側から順に、最下層、炭窒化チタン層、密着層、アルミナ層、および最表面層をこの順に含むことが好ましい。以下においては、基材側から順に被覆膜を構成する各層を説明する。
 <最下層>
 本発明の被覆膜は、基材と炭窒化チタン層との間にTiの窒化物からなる最下層(基材と接する層)を設けることが好ましい。かかる最下層は、基材との密着性が高いため、苛酷な切削条件に対応する場合でも被覆膜全体が剥離することを防止することができる。このような最下層を形成することにより、被覆膜の少なくとも1層に圧縮残留応力が付与された場合であっても切削に耐え得る十分な密着性を得ることができる。このような最下層の層厚は、0.05μm以上1μm以下であることが好ましい。
 <密着層>
 本発明の被覆膜は、上記炭窒化チタン層の直上にTiBxy(式中、xおよびyはそれぞれ原子比を示し、0.001≦x/(x+y)≦0.04である)で構成される密着層を含むことが好ましい。このような密着層は、その表面が非常に細かな針状組織となるため、その直上に形成されるアルミナ層と優れた密着性を示す。
 炭窒化チタン層上に直接アルミナ層を設けると、炭窒化チタン層からアルミナ層が剥離したり脱落する問題があるが、密着層をアルミナ層の直下に形成することによりこのような問題を解消することができる。これによりアルミナ層との間で特に良好な密着力が得られる。
 上記式中、xおよびyは、特に好ましくは0.003≦x/(x+y)≦0.02である。これによりアルミナ層との間で特に良好な密着力が得られる。また、TiとBNとの原子比は、BNの合計を1とした場合にTiが0.8~1.5とすることが好ましい。
 このような密着層は、本発明の被覆膜を構成する他の層に含まれる元素(特に密着層と接する層に含まれる元素)を含むことができる。このような密着層は、0.05μm以上1μm以下の厚みを有することが好ましく、さらに好ましくは上限が0.8μmであり下限が0.1μmである。その厚みが1μmを超えると耐摩耗性が低下するため好ましくない場合があり、0.05μm未満ではアルミナ層との間で十分な密着性が示されない場合がある。
 <アルミナ層>
 本発明において、被覆膜は、上記最表面層と上記炭窒化チタン層との間にアルミナ層を含むことが好ましい。このようなアルミナ層は、Al23を主体とする層であるため、高速切削時の酸化摩耗に対して良好な性能が示され、耐摩耗性の向上に資するものとなる。ここで、Al23を主体とするとは、Al23を90質量%以上含むことを意味し、好ましくは不可避不純物を除きAl23のみにより構成されることを意味する。
 このようなアルミナ層は、α型の結晶構造を有するAl23(以下α-Al23と記すこともある)を主体とするか、またはκ型の結晶構造を有するAl23(以下κ-Al23と記すこともある)であることが望ましい。中でも、α-Al23は、一般に高速切削において耐摩耗性に優れる点で有利である。なお、このような結晶構造は、X線回折により確認することができる。
 このようなアルミナ層は、2μm以上15μm以下の層厚を有することが好ましく、より好ましくは上限が10μmであり下限が4μmである。その厚みが15μmを超えると、切刃の先端部や切刃の境界部での剥離が生じやすくなり、耐欠損性が低下する場合があり、2μm未満であると、すくい面における耐クレータ摩耗性に優れるとともに、ねじ切り、溝きり等の繰り返し切削における耐食いつき性が低下する場合がある。
 <最表面層>
 本発明の被覆膜は、上記炭窒化チタン層とともに最表面層を含むことが好ましい。ここで、最表面層は、Tiの炭化物、窒化物および炭窒化物のいずれかを主成分とする被覆膜の表面を構成する層である。「Tiの炭化物、窒化物および炭窒化物のいずれかを主成分とする」とは、Tiの炭化物、窒化物および炭窒化物のいずれかを90質量%以上含むことを意味し、好ましくは不可避不純物を除きTiの炭化物、窒化物および炭窒化物のいずれかのみにより構成されることを意味する。また、Tiの炭化物、窒化物および炭窒化物のそれぞれにおいて、TiとTi以外の元素(すなわちC、N、およびCN)との質量比は、Tiが50質量%以上とすることが好ましい。
 そして、Tiの炭化物、窒化物および炭窒化物のいずれかのうち、特に好ましくはTiの窒化物(すなわちTiNで表される化合物)である。TiNはこれらの化合物のうちで色彩が最も明瞭(金色を呈する)であるため、切削使用後の切削チップのコーナー識別が容易であるという利点がある。
 なお、本発明において化合物をTiN等の化学式で表す場合、原子比を特に限定しない場合は従来公知のあらゆる原子比を含むものとし、必ずしも化学量論的範囲のもののみに限定されるものではない。たとえば単に「TiCN」と記す場合、「Ti」と「C」と「N」の原子比は50:25:25の場合のみに限られず、また「TiN」と記す場合も「Ti」と「N」の原子比は50:50の場合のみに限られない。これらの原子比としては従来公知のあらゆる原子比が含まれるものとする。
 本発明において、最表面層は、0.05μm以上1μm以下の厚みを有することが好ましい。さらにその厚みの上限は0.8μm、より好ましくは0.6μmであり、その下限は0.1μm、より好ましくは0.2μmである。その厚みが0.05μm未満の場合、圧縮残留応力が付与される場合その効果が十分ではなく、耐欠損性向上にあまり効果がなく、1μmを越えると最表面層の内側に位置する層との密着性が低下する場合がある。
 <製造方法>
 本発明の被覆膜は、化学蒸着法(CVD法)により形成されたものであることが好ましい。これにより、後述のブラスト処理を施すまでは被覆膜の各層は引張り残留応力を有したものとなり、基材との密着性が非常に高いものとなる。
 本発明において、炭窒化チタン層を成膜するときの成膜温度は、従来のMT-CVD法よりも高温であり、かつ従来のHT-CVD法よりも低温であることが好ましく、具体的には900℃以上1000℃以下であることが好ましい。このように従来のMT-CVD法とHT-CVD法との中間の成膜温度で成膜することにより、炭窒化チタン層を構成する隣接するTiCN柱状結晶同士の界面拡散を促進することができ、もって炭窒化チタン層を構成する結晶の結合力を向上させることができる。これにより切削時の擦り摩耗に起因して生じるTiCN粒子の脱落を抑制することができ、もって良好な耐欠損性と耐摩耗性とを有する被覆膜を形成することができる。ちなみに、MT-CVD法とは、約830℃~900℃という比較的低温で成膜を行なうものであり、HT-CVD法とは、約1000℃以上の比較的高温で成膜を行なうものである。
 しかも、上記数値範囲の成膜温度で成膜することにより、(220)面が最大ピーク強度となる結晶配向性を有する炭窒化チタン層を成膜することができ、結晶構造的に表面が平滑であり、かつ耐摩耗性に優れたものとなる。その上、炭窒化チタン層を形成した後に形成する密着層およびアルミナ層の成膜温度の差も小さく、成膜中の温度変化および熱衝撃が最低限に抑制されるというメリットもある。
 成膜温度が900℃未満であると、炭窒化チタン層の結晶構造が柱状晶(422)面に配向するため、十分な滑り性を得ることができず、一方、1000℃を超えると、超硬合金基材またはサーメット基材中の脱炭が激しくなり、基材と被覆膜との界面に硬くて脆い層が生成し、この脆い層が基材と被覆膜との密着性の低下の原因となる。
 本発明の炭窒化チタン層の成膜は、従来のHT-CVD法よりも100℃程度低温で行なわれるが、炭窒化チタン層を構成する炭素源として、CH4ガスよりも活性が高い炭素数が2の飽和炭化水素(C22ガス、C24ガス、およびC26ガス)を用いることが好ましい。これにより従来のHT-CVD法となんら遜色がなく、十分な速度で成膜することができ、製造効率が低下することもない。
 本発明の被覆膜を構成する炭窒化チタン層は、従来の成膜圧力よりも低真空の成膜条件、すなわち40kPa以上80kPa以下の成膜圧力で成膜される。このような低圧力の条件で成膜することにより、たとえば超硬合金からなる基材を用いる場合、結合層を構成するCoの蒸発を最小限に抑えることができ、もってWC粒子同士の結合力の低下を抑制することができる。また、サーメットからなる基材を用いる場合、結合層を構成するNiの蒸発を最小限に抑えることができ、もってTiCN粒子同士の結合力の低下を抑制することができる。
 しかも、上記低圧の成膜条件では、反応ガス同士の平均自由工程が短縮されるため、成膜速度が早くなり、炭窒化チタン層を構成する結晶組織のアスペクト比を大きくすることができる。これにより炭窒化チタン層が(220)面に最大ピーク強度を有する良質な柱状晶とすることができ、もって炭窒化チタン層の硬度を均一にすることができる。
 40kPa未満の高真空の条件で成膜すると、基材中の結合層の蒸発が促進され、基材中のWC粒子同士またはTiCN粒子同士の結合力が低下する。これにより被覆膜と基材との界面が剥離しやすく、工具に欠損が生じやすくなる。また、80kPaを超える低真空の条件で成膜すると、炭窒化チタン層の結晶組織を均一に柱状晶に成膜することができず、条件によっては粒状の混在組織が形成されて組織違いが生じ、炭窒化チタン層の硬度が均一とはなりにくい。
 本発明において、上述のように900℃以上1000℃以下の成膜温度として、40kPa以上80kPa以下の成膜圧力で炭窒化チタン層を成膜することにより、炭窒化チタン層の硬度を均一にすることができ、もって切削加工時にチッピングや欠損を生じにくくすることができる。
 本発明において、炭窒化チタン層を形成するときに導入する原料ガスは、Ti源とC源とN源とを少なくとも含み、かつH2またはアルゴンを含むことが好ましい。ここで、Ti源としてはTiCl4ガス等を用いることが好ましく、N源としてはN2ガス、NH3ガス、CH3CNガス等を用いることが好ましい。
 C源としては炭素数が1以上3以下の飽和炭化水素ガスまたは不飽和炭化水素ガスを用いることが好ましい。炭素数が1以上3以下の飽和炭化水素ガスとしては、CH4ガス、C26ガス、およびC38ガスが挙げられる。炭素数が1以上3以下の不飽和炭化水素ガスとしては、C22ガス、C24ガス、C34ガス、C36ガス等が挙げられる。これらの他、たとえばN源として用いるCH3CNガスをC源として用いてもよい。
 ここで、導入する原料ガスにおいて、Ti源に対するC源のモル比(すなわちC源のモル比/Ti源のモル比)は4以上10以下にすることが好ましい。このようなモル比で原料ガスを導入することにより、従来のMT-CVD法で成膜するよりも炭窒化チタン層に含まれる炭素の組成比を高めることができ、もって高温での硬度に優れた炭窒化チタン層となる。しかも、炭窒化チタン層の摩擦係数が低くなるため、滑り性が向上し、耐摩耗性を向上させることができる。
 Ti源に対するC源のモル比が4未満であると、炭窒化チタン層の成膜速度が遅くなり、量産性に適さなくなる。一方、10を超えると、炭窒化チタン層を構成する結晶構造が粗粒化し、被覆膜の硬度が均一になりにくくなるばかりか、製造工程中で塩化物が未反応物として大量に発生するため、環境上好ましくない。
 また、被覆膜の表面に対し、ブラスト処理を行なうことにより、被覆膜の残留応力の除去するとともに、圧縮応力を付与することができる。ここで、ブラスト処理としては、鋼球などの金属粉末やアルミナなどのセラミックス粉末を直接または水などの溶媒と混合したものを被覆膜の表面に衝突させることにより実施することができる。その衝突等の具体的条件は、被覆膜の構成や付与する圧縮残留応力の大きさ等により適宜調節することができるが、衝突が弱すぎると圧縮残留応力が付与されないこととなるので適度な強さで衝突させることが好ましい。
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
 まず、WC-5%Coからなる組成(ただし不可避不純物を含む)の超硬合金製切削チップ(形状:住友電工ハードメタル(株)製CNMA120408)を基材として用いた。かかる基材の切れ刃に対し、SiC砥粒を含んだナイロン性ブラシによって面取り加工を行ない、丸ホーニングを施した。その後、基材表面を洗浄した。この基材のノーズ半径は、0.8mmであった。
 次に、基材を抵抗過熱型CVD炉にセットし、公知の熱CVD法を用いて、基材上に表1に記載した被覆膜の各層を形成した(表1中の左欄側から順に基材上に形成した)。たとえば実施例1では、基材上から順に0.6μmの最下層(TiN層)、7.5μmの炭窒化チタン層(TiCN層)を形成した後、0.8μmの密着層(TiBN層)、2.8μmのアルミナ層(κ-Al23層)、および0.5μmの最表面層(TiN層)を形成した。このようにして実施例1の表面被覆切削工具を作製した。これと同様の方法により、各実施例および各比較例の表面被覆切削工具を作製した。
Figure JPOXMLDOC01-appb-T000002
 表1中の各層の「層厚」は、被覆膜を構成する各層の層厚を示し、「合計膜厚」は、被覆膜の膜厚を示した。これらの層厚および膜厚は、表面被覆切削工具の表面に対する法線を含む平面で切断し、該切断面をSEMで観察して得られた値を採用した。
 表1中の「C/(C+N)」は、炭窒化チタン層を構成する炭素および窒素の原子比の和に対する炭素の原子比を示した。かかる原子比は、炭窒化チタン層をEPMA(Electron Probe Micro Analysis)により分析して得られた値を採用した。
 表1中の「ピーク強度の結晶面」は、X線回折装置(製品名:RINT2400(理学電気社製))によって炭窒化チタン層をX線回折したときの最高ピーク強度の結晶面を示した。
 表1中の「相対硬度」は、硬度基準片の押し込み硬度Hsに対する炭窒化チタン層の押し込み硬度Htの相対硬度Ht/Hsの平均値を記載した。ここで、相対硬度Ht/Hsの平均値の算出方法としては、まず、超微小押し込み硬さ試験機(装置名:ENT-1100a(株式会社エリオニクス社製))を用いて、ナノインデンテーション法により硬度基準片(製品名:UMV905(株式会社山本科学工具研究社製))の押し込み硬度Hsを測定した。
 次に、表面被覆切削工具の被覆膜の表面に対する法線を含む平面に沿って試料を切断し、該切断面を機械研磨した。そして、上記の硬度基準片を測定した超微小押し込み硬さ試験機と同一のものを用い、該断面に対する垂直方向から炭窒化チタン層に対して圧子を押し込むことにより、炭窒化チタン層の押し込み硬度Htを測定した。圧子を押し込む位置を変えて、炭窒化チタン層の押し込み硬度を30回測定した。この30回の測定のうち、押し込み硬度Htの応力-歪曲線が不連続であったり、不自然であったりした場合を異常値と判断して除き、それ以外の押し込み硬度の各測定値を平均することにより、押し込み硬度Htの平均値を算出した。この押し込み硬度Htの平均値を硬度基準片の押し込み硬度Hsで除することにより、炭窒化チタン層の相対硬度Ht/Hsの平均値を算出した。
 そして、上記30回の押し込み硬度の測定のうちの異常値を除いた上での押し込み硬度の最大値Htmaxおよび最小値Htminを、硬度基準片の押し込み硬度Hsで除することにより相対硬度の最大値Htmax/Hsおよび最小値Htmin/Hsを算出した。
 そして、相対硬度の最大値Htmax/Hsと、相対硬度の最小値Htmin/Hsとの差を求め、その差を炭窒化チタン層の相対硬度の平均値で除した値を、表1の「(Htmax/Hs-Htmin/Hs)/(Ht/Hs)」の欄に示した。この値が小さいほど、炭窒化チタン層の硬度にバラつきが少なく、炭窒化チタン層が均一な硬度であることを示す。
 なお、表1の最表面層の層厚の欄が「-」となっている実施例があるが、これは、被覆膜を形成した後に、ブラスト処理によって最表面層のみを取り除いたことを意味する。このような処理を施すことにより、引張残留応力の開放、または圧縮残留応力の付与をすることができる。
 また、炭窒化チタン層以外の被覆膜を構成する各層は、以下の表2に示される条件で成膜し、炭窒化チタン層は、以下の表3の条件で形成した。すなわちたとえば、実施例1における炭窒化チタン層の成膜においては、TiCl4:1.9体積%、CH4:8.8体積%、N2:3体積%、H2:残部からなる反応ガスを全流量が56.8L/minとなるように導入し、そのチャンバ内の圧力を80kPaとし、温度990℃とした。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 <切削試験>
 実施例1~12および比較例1~6の表面被覆切削工具を用いて、以下の条件で切削加工試験を5分間行なった。
 被削材:FCD700(内径φ=250mm、長さl=1000mm)
切削速度:200m/min
送り速度:0.3mm/rev
切り込み:2.0mm
 切削油:水溶性
 切削試験前後の表面被覆切削工具をノギスで測定することにより、逃げ面の摩耗減少幅を算出し、表4の「逃げ面摩耗量」の欄に示した。なお、逃げ面摩耗量が少ないものほど、表面被覆切削工具の耐摩耗性が優れることを示している。
 また、切削試験終了後の表面被覆切削工具のすくい面を目視で観察し、そこに発生するクレータ摩耗の長手方向の幅を測定した。そして、以下の評価基準に基づいて、耐クレータ摩耗性を評価し、表4の「クレータ摩耗」の欄に示した。また、切削試験終了後の表面被覆切削工具の損傷形態を、表4の「損傷形態」の欄に示した。
Figure JPOXMLDOC01-appb-T000005
 表4に示される結果から、各実施例の表面被覆切削工具は、各比較例のそれに比して、逃げ面摩耗量が少なく、かつクレータ摩耗の長手方向の幅が狭いことが明らかである。この結果から、各実施例の表面被覆切削工具は、各比較例のそれに比し、耐摩耗性および耐クレータ摩耗性に優れたものであると言える。このように耐摩耗性および耐クレータ摩耗性が向上したのは、炭窒化チタン層のピーク強度の結晶面が(220)であることによるものと考えられる。
 また、上記切削試験が終了した後の各実施例および各比較例の表面被覆切削工具の損傷形態において、各実施例では、被覆膜が正常摩耗しているのに対し、各比較例では、被覆膜にチッピングや欠損が生じている。各実施例の表面被覆切削工具には欠損が生じなかったにも関わらず、各比較例のそれにチッピングや欠損が生じたのは、各実施例の表面被覆切削工具が、各比較例のそれに比して、被覆膜の硬度が均一であることによるものと考えられる。
 以上の結果から、実施例の表面被覆切削工具は、比較例の表面被覆切削工具に比して、耐摩耗性および耐欠損性に優れたものであることが示された。
 以上のように本発明の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせることも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。

Claims (3)

  1.  基材と、該基材上に形成された被覆膜とを備え、
     前記被覆膜は、少なくとも1層の炭窒化チタン層を含み、
     前記炭窒化チタン層は、組織係数TC(hkl)のうちの配向性指数TC(220)が最大であり、
     硬度基準片の押し込み硬度をHsとし、前記炭窒化チタン層の押し込み硬度をHtとすると、複数回の測定における相対硬度Ht/Hsの平均値は、3以上であり、
     前記相対硬度Ht/Hsに対する、前記炭窒化チタン層の相対硬度の最大値Htmax/Hsと最小値Htmin/Hsとの差は、0.5以下である、表面被覆切削工具。
  2.  前記炭窒化チタン層は、炭素と窒素との合計に対する炭素の原子比が0.7以上である、請求項1に記載の表面被覆切削工具。
  3.  前記被覆膜は、少なくとも1層のアルミナ層を含み、
     前記アルミナ層は、α型酸化アルミニウムからなり、かつその平均層厚が2μm以上15μm以下である、請求項1または2に記載の表面被覆切削工具。
PCT/JP2011/065339 2010-09-07 2011-07-05 表面被覆切削工具 WO2012032839A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11823318.8A EP2614905A4 (en) 2010-09-07 2011-07-05 CUTTING TOOL WITH SURFACE COATING
US13/820,392 US9044811B2 (en) 2010-09-07 2011-07-05 Surface coated cutting tool
CN201180042912.XA CN103108716B (zh) 2010-09-07 2011-07-05 表面被覆切削工具
KR1020137006123A KR20130041325A (ko) 2010-09-07 2011-07-05 표면 피복 절삭 공구
JP2012532889A JP5729777B2 (ja) 2010-09-07 2011-07-05 表面被覆切削工具

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010199857 2010-09-07
JP2010-199857 2010-09-07

Publications (1)

Publication Number Publication Date
WO2012032839A1 true WO2012032839A1 (ja) 2012-03-15

Family

ID=45810444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065339 WO2012032839A1 (ja) 2010-09-07 2011-07-05 表面被覆切削工具

Country Status (6)

Country Link
US (1) US9044811B2 (ja)
EP (1) EP2614905A4 (ja)
JP (1) JP5729777B2 (ja)
KR (1) KR20130041325A (ja)
CN (1) CN103108716B (ja)
WO (1) WO2012032839A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2839907A4 (en) * 2012-04-19 2016-01-27 Sumitomo Elec Hardmetal Corp CUTTING TOOL WITH SURFACE COATING

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8801817B2 (en) * 2011-03-31 2014-08-12 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and manufacturing method thereof
JP5884138B2 (ja) * 2011-04-21 2016-03-15 住友電工ハードメタル株式会社 表面被覆切削工具およびその製造方法
WO2016158717A1 (ja) * 2015-03-27 2016-10-06 株式会社タンガロイ 被覆切削工具
JP6210348B1 (ja) * 2016-11-08 2017-10-11 株式会社タンガロイ 被覆切削工具
CN109279917A (zh) * 2017-07-20 2019-01-29 深圳市诺真空科技有限公司 一种陶瓷表面的镀膜方法
JP6992230B1 (ja) * 2020-06-04 2022-01-13 住友電工ハードメタル株式会社 切削工具

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263913A (ja) * 2001-03-13 2002-09-17 Toshiba Tungaloy Co Ltd 被覆硬質部材

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56156767A (en) * 1980-05-02 1981-12-03 Sumitomo Electric Ind Ltd Highly hard substance covering material
JP2535866B2 (ja) 1987-02-10 1996-09-18 三菱マテリアル株式会社 表面被覆硬質合金製切削工具
JP2876132B2 (ja) * 1989-06-19 1999-03-31 京セラ株式会社 被覆切削工具
JPH04189401A (ja) * 1990-11-20 1992-07-07 Mitsubishi Materials Corp 硬質層被覆炭化タングステン基超硬合金製切削工具
JP2828511B2 (ja) * 1990-12-27 1998-11-25 京セラ株式会社 表面被覆TiCN基サーメット
JP3353449B2 (ja) 1994-04-20 2002-12-03 住友電気工業株式会社 被覆切削工具
SE514737C2 (sv) 1994-03-22 2001-04-09 Sandvik Ab Belagt skärverktyg av hårdmetall
US5920760A (en) * 1994-05-31 1999-07-06 Mitsubishi Materials Corporation Coated hard alloy blade member
JP3478358B2 (ja) * 1995-04-28 2003-12-15 三菱マテリアル株式会社 複合硬質層表面被覆切削工具
JPH10237649A (ja) * 1997-02-20 1998-09-08 Mitsubishi Materials Corp 耐欠損性に優れた表面被覆切削工具
JP3372493B2 (ja) * 1998-12-09 2003-02-04 株式会社不二越 硬質炭素系被膜を有する工具部材
DE102005049393B4 (de) 2005-10-15 2019-08-08 Kennametal Widia Produktions Gmbh & Co. Kg Verfahren zur Herstellung eines beschichteten Substratkörpers, Substratkörper mit einer Beschichtung und Verwendung des beschichteten Substratkörpers
JP5217305B2 (ja) 2006-09-05 2013-06-19 株式会社タンガロイ 被覆切削工具およびその製造方法
EP1897970B2 (en) 2006-09-05 2016-06-15 Tungaloy Corporation Coated cutting tool and method for producing the same
CN101698362B (zh) 2009-10-30 2013-07-10 华南理工大学 一种自润滑硬质纳米复合多层涂层及其制备方法
US8741428B2 (en) * 2011-04-21 2014-06-03 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and manufacturing method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263913A (ja) * 2001-03-13 2002-09-17 Toshiba Tungaloy Co Ltd 被覆硬質部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S.J. BULL ET AL.: "Properties and performance of commercial TiCN coatings. Part 1: coating architecture and hardness modelling", SURFACE AND COATINGS TECHNOLOGY, vol. 163-164, January 2003 (2003-01-01), pages 499 - 506, XP055075760 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2839907A4 (en) * 2012-04-19 2016-01-27 Sumitomo Elec Hardmetal Corp CUTTING TOOL WITH SURFACE COATING
EP3064610A1 (en) * 2012-04-19 2016-09-07 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
US9457407B2 (en) 2012-04-19 2016-10-04 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool

Also Published As

Publication number Publication date
JP5729777B2 (ja) 2015-06-03
CN103108716B (zh) 2015-07-01
EP2614905A1 (en) 2013-07-17
JPWO2012032839A1 (ja) 2014-01-20
EP2614905A4 (en) 2016-06-01
US20130152481A1 (en) 2013-06-20
CN103108716A (zh) 2013-05-15
KR20130041325A (ko) 2013-04-24
US9044811B2 (en) 2015-06-02

Similar Documents

Publication Publication Date Title
JP5884138B2 (ja) 表面被覆切削工具およびその製造方法
JP5866650B2 (ja) 表面被覆切削工具
US8007929B2 (en) Surface coated cutting tool
US7923101B2 (en) Texture-hardened alpha-alumina coated tool
JP5729777B2 (ja) 表面被覆切削工具
JP4854359B2 (ja) 表面被覆切削工具
JP5768308B2 (ja) 表面被覆切削工具
JP6973026B2 (ja) 被覆切削工具
JP2009028894A (ja) 被覆切削工具
JPWO2011055813A1 (ja) 被覆工具
EP2708300B1 (en) Surface-coated cutting tool
EP2959994B1 (en) Surface-coated cutting tool and process for producing same
US10655230B2 (en) Coated cutting tool
JP4351521B2 (ja) 表面被覆切削工具
WO2021205646A1 (ja) 切削工具
JP2005264194A (ja) α型酸化アルミニウム被覆部材
JP6703311B2 (ja) 被覆切削工具
EP3530387B1 (en) Coated cutting tool
JP4936742B2 (ja) 表面被覆工具および切削工具
WO2020250626A1 (ja) 切削工具
WO2020250625A1 (ja) 切削工具
JP5822780B2 (ja) 切削工具
JP2005153099A (ja) 表面被覆切削工具

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180042912.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823318

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012532889

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13820392

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011823318

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137006123

Country of ref document: KR

Kind code of ref document: A