WO2012029594A1 - Heat exchanger aluminum alloy fin material and method for producing same - Google Patents

Heat exchanger aluminum alloy fin material and method for producing same Download PDF

Info

Publication number
WO2012029594A1
WO2012029594A1 PCT/JP2011/068973 JP2011068973W WO2012029594A1 WO 2012029594 A1 WO2012029594 A1 WO 2012029594A1 JP 2011068973 W JP2011068973 W JP 2011068973W WO 2012029594 A1 WO2012029594 A1 WO 2012029594A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin material
less
aluminum alloy
mass
heat exchanger
Prior art date
Application number
PCT/JP2011/068973
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 金田
梅田 秀俊
太田 陽介
星野 晃三
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to EP11821611.8A priority Critical patent/EP2612938B1/en
Priority to CN201180039956.7A priority patent/CN103080348B/en
Priority to AU2011297250A priority patent/AU2011297250B2/en
Publication of WO2012029594A1 publication Critical patent/WO2012029594A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys

Definitions

  • the present invention relates to an aluminum alloy fin material for a heat exchanger used for a heat exchanger, and a method of manufacturing the same.
  • fin materials for heat exchangers used in heat exchangers such as air conditioners
  • the thickness is further reduced by the conversion or the performance, and the thickness is reduced to 0.15 mm or less, and more recently to about 0.09 mm.
  • a fin material forming method there are a draw method, a drawless method, and a draw / drawless composite method (combination method).
  • the draw method consists of an overhanging process, drawing process, punching (piercing) and hole expanding process (burring), and reflare process.
  • the drawless system consists of punching and hole expanding process, ironing (airing) process, and reflare process.
  • Mainly consists of an overhanging process, a drawing process, a punching and a hole expanding process, an ironing process and a reflare process.
  • piercing and burring forming and reflare forming for forming a tube hole collar in a copper tube are essential forming steps for the fin material.
  • these moldings are severe moldings for fin materials whose plate thickness is reduced to 0.15 mm or less. Therefore, a fin material having improved processability has been developed in response to such thinning.
  • Patent Document 1 has a plate thickness of 0.12 mm or less, contains a predetermined amount of Si and Fe at a predetermined ratio, and has a maximum crystal grain diameter of 30 ⁇ m or less.
  • An excellent aluminum alloy finstock is disclosed.
  • Patent Document 2 has a thickness of less than 0.11 mm, contains a predetermined amount of Fe and Ti, regulates Si and Cu to a predetermined amount or less, and defines an elongation percentage in a predetermined amount
  • An aluminum alloy fin material for a heat exchanger which has excellent stackability, is disclosed.
  • the conventional fin material has the following problems. Although the above-described conventional techniques are intended to improve the processability, in recent years, in addition to the further downsizing, weight reduction, and high performance of the heat exchanger, the supply of fin material that is easier to process is more efficient. From the expectation, further improvement of the processability is required.
  • This invention is made in view of the said problem, and it is an object of this invention to provide the aluminum alloy fin material for heat exchangers excellent in the color
  • the aluminum alloy fin material for a heat exchanger according to the present invention contains 0.20 to 1.0% by mass of Fe, 0.02 to 0.1% by mass of Cu, and 0.15% by mass or less of Si Mn: 0.015% by mass or less, Cr: 0.015% by mass or less, aluminum alloy fin material for heat exchangers, the balance being Al and unavoidable impurities, the aluminum alloy fin material for the heat exchangers And the subgrains have an average particle diameter of 2.5 ⁇ m or less and a volume fraction of ⁇ -Fiber of 80% or more.
  • the strength is improved by solid solution strengthening by adding a predetermined amount of Fe and Cu. Furthermore, subgrains are refined, elongation is improved, and ⁇ -fiber is sufficiently generated. Further, by suppressing Si, Mn, and Cr to a predetermined amount or less, the coarsening of the crystallized product (that is, the intermetallic compound) is suppressed. And, by setting the average grain size of sub-grains to 2.5 ⁇ m or less and the volume fraction of ⁇ -Fiber to 80% or more, the color crack resistance of the fin material is improved.
  • the aluminum alloy fin material for a heat exchanger according to the present invention is further characterized by containing Ti: 0.01 to 0.08 mass%. According to such a configuration, the ingot structure is refined by adding a predetermined amount of Ti.
  • the aluminum alloy fin material for a heat exchanger according to the present invention may be provided with a surface treatment film on the surface of the fin material.
  • the surface treatment film may, for example, be a corrosion-resistant film, a hydrophilic film or a lubricating film. According to such a configuration, it is possible to improve the corrosion resistance, the hydrophilicity, the formability, and the like according to the use environment, the use, and the like.
  • the method for producing an aluminum alloy fin material for a heat exchanger according to the present invention is a method for producing an aluminum alloy fin material for a heat exchanger (having no surface treatment film) described above, wherein the aluminum alloy has the above-mentioned chemical components.
  • a tempering annealing process for applying quality annealing is a method for producing an aluminum alloy fin material for a heat exchanger (having no surface treatment film) described above, wherein the aluminum alloy has the above
  • the structure of the ingot is homogenized by the heat treatment step, and rolled by the hot rolling step without becoming a recrystallized structure with the hot-rolled sheet.
  • the subgrains are not coarsened after the temper annealing and the generation of the ⁇ -Fiber does not occur, and the thickness is 0.1 mm or less, and the texture is sufficiently made by the temper annealing process. Recover.
  • the average grain size of subgrains is 2.5 ⁇ m or less, and the volume fraction of ⁇ -fiber is 80% or more.
  • the aluminum alloy fin material for a heat exchanger according to the present invention can suppress color cracking when formed and processed. Therefore, it is possible to prevent defects such as deterioration in the appearance of the fins and deterioration in performance as a heat exchanger.
  • the manufacturing method of the aluminum alloy fin material for heat exchangers which concerns on this invention can manufacture the aluminum alloy fin material for heat exchangers excellent in color
  • the fin material according to the present invention contains a predetermined amount of Fe and Cu, suppresses Si, Mn and Cr to a predetermined amount or less, and the balance consists of Al and unavoidable impurities.
  • the thickness of the fin material is 0.1 mm or less, the average grain diameter of subcrystal grains is 2.5 ⁇ m or less, and the volume fraction of ⁇ -fiber is 80% or more.
  • a predetermined amount of Ti may be further contained.
  • Fe 0.20 to 1.0% by mass
  • Fe is an element added for the improvement of strength by solid solution strengthening, the improvement of corrosion resistance, and the improvement of elongation by refinement of subgrains. If the Fe content is less than 0.20% by mass, these effects can not be obtained. On the other hand, if it exceeds 1.0% by mass, the corrosion resistance is lowered, and in addition, the crystallized product (intermetallic compound) is coarsened, and this becomes a stress concentration point at the time of forming processing and becomes a starting point of cracking. Therefore, the Fe content is set to 0.20 to 1.0% by mass.
  • Cu 0.02 to 0.1% by mass
  • Cu is an element which is added in a trace amount in order to sufficiently improve the strength by solid solution strengthening, the improvement of elongation by the refinement of subgrains, and the formation of ⁇ -Fiber. If the Cu content is less than 0.02 mass%, these effects can not be obtained. On the other hand, if it exceeds 0.1% by mass, work hardening is caused to lower the abec resistance and also the color crack resistance and the corrosion resistance. Therefore, the Cu content is set to 0.02 to 0.1% by mass. The amount is more preferably 0.031 to 0.06% by mass, still more preferably 0.04 to 0.06% by mass.
  • Si 0.15% by mass or less (including 0% by mass)
  • Si is an element to be mixed as an unavoidable impurity, but when the Si content exceeds 0.15 mass%, the crystallized product (intermetallic compound) becomes coarse, and this becomes a stress concentration point at the time of forming and processing, and cracking It becomes the starting point of Therefore, the Si content is 0.15 mass% or less. In addition, you may suppress to 0 mass%.
  • Mn 0.015% by mass or less (including 0% by mass)
  • Mn is an element to be mixed as an unavoidable impurity, but when the Mn content exceeds 0.015 mass%, the crystallized product (intermetallic compound) becomes coarse and this becomes a stress concentration point at the time of forming and processing, and cracking It becomes the starting point of Therefore, the Mn content is suppressed to 0.015% by mass or less. In addition, you may suppress to 0 mass%.
  • Cr 0.015% by mass or less (including 0% by mass)
  • Cr is an element to be mixed as an unavoidable impurity, but when the Cr content exceeds 0.015 mass%, the crystallized product (intermetallic compound) becomes coarse and this becomes a stress concentration point at the time of forming and processing, and cracking It becomes the starting point of Therefore, the Cr content is suppressed to 0.015% by mass or less. In addition, you may suppress to 0 mass%.
  • Ti 0.01 to 0.08 mass%
  • the crystallized product (intermetallic compound) is coarsened, and this becomes a stress concentration point at the time of forming and processing, and becomes a starting point of cracking. Therefore, when adding Ti, the Ti content is 0.01 to 0.08 mass%.
  • the remainder of the fin material is made of Al and unavoidable impurities.
  • Si, Mn and Cr as unavoidable impurities for example, Mg, Zn, Ga, V, Ni and the like within the generally known range contained in the base metal and intermediate alloys are, for example, Each content of up to 0.015% by mass is acceptable.
  • the present invention is directed to a fin material having a thickness of 0.1 mm or less from the viewpoint of reducing the thickness of the fin material due to the recent demand for compactness, light weight, high performance and the like of the heat exchanger. Therefore, the thickness of the fin material is 0.1 mm or less.
  • the average grain size of subgrains is set to 2.5 ⁇ m or less.
  • the lower limit value is not particularly defined, it may be 0 ⁇ m (that is, sub-grains may not be included). By setting it in such a range, it is possible to suppress the occurrence of color cracking even in the case of work hardening due to solid solution Mn, solid solution Cu or the like.
  • ⁇ -Fiber volume fraction 80% or more
  • ⁇ -Fiber is a rolling texture of face-centered cubic metal, and refers to the sum of Cu orientation, S orientation, and Brass orientation.
  • the volume fraction of ⁇ -Fiber in the alloy it is necessary to set the volume fraction of ⁇ -Fiber in the alloy to 80% or more.
  • the upper limit value is not particularly defined, but may be 100%.
  • EBSP Electronic Back Scattered Diffraction Pattern
  • a sample is irradiated with an electron beam, and the crystal orientation is identified using reflection electron Kikuchi ray diffraction generated at that time.
  • OIM Orientation Imaging Microscopy (registered trademark) manufactured by TSL Corporation) can be used.
  • the volume fraction of ⁇ -Fiber is calculated by this crystal orientation analysis.
  • the average grain size of subgrains was calculated by calculating the number of crystal grains from the SEM / EBSP measurement data, dividing the total area of the fin material by the number of crystal grains, and approximating the area of each crystal grain with a circle.
  • the diameter of the case is defined as the average grain size of the subgrains.
  • the average grain size of subgrains and the volume fraction of ⁇ -Fiber can be controlled by the component composition and the production conditions described later. Specifically, the average grain size of the subgrains, the content of each component, homogenization heat treatment conditions (temperature and time), the finish temperature of the hot finish rolling, the cold working ratio, the temper annealing conditions (temperature and time Control by). In addition, the volume fraction of ⁇ -Fiber is controlled by the content of each component, homogenization heat treatment conditions (temperature and time), hot finish rolling end temperature, cold working ratio, and temper annealing conditions (temperature and time) Do.
  • the fin material according to the present invention may be provided with a surface treatment film on the surface of the fin material.
  • the fin material surface means one side or both sides of the fin material.
  • surface treatment film As a surface treatment film, a chemical conversion film, a resin film, and an inorganic film are mentioned according to a use environment or a use, and you may combine these (a resin film and an inorganic film are provided on a chemical conversion film).
  • a resin film and an inorganic film a corrosion-resistant resin film, a hydrophilic resin film, a hydrophilic inorganic film, a lubricating resin film, etc. are mentioned, You may combine these suitably.
  • a phosphate chromate is mentioned, for example.
  • the corrosion resistant resin film include epoxy resin, urethane resin, acrylic resin, polyester resin and the like, and the film thickness thereof is preferably 0.5 to 5 ⁇ m.
  • the hydrophilic film include water glass inorganic substances, resins containing polyacrylic acid or polyacrylate, and resins containing a sulfonic acid group or a sulfonic acid group derivative. And preferably 0.05 to 10 ⁇ m.
  • the lubricating resin film may, for example, be a resin containing a polyether polyol, and the film thickness thereof is preferably 0.1 to 10 ⁇ m.
  • the hydrophilic resin film is provided on the surface side of the corrosion resistant resin film, and the hydrophilic resin film and the hydrophilic resin film are hydrophilic.
  • a lubricating resin film is provided on the surface side of the inorganic inorganic film.
  • a method of manufacturing a fin material according to the present invention is the method of manufacturing a fin material described above, and performs a heat treatment process, a hot rolling process, a cold working process, and a heat treatment annealing process. Furthermore, if necessary, an ingot preparation step or a surface treatment step may be included. Each step will be described below.
  • the ingot producing step is a step of melting and casting an aluminum alloy to produce an aluminum alloy ingot.
  • an ingot of a predetermined shape is produced from the molten metal in which the aluminum alloy having the composition described above is melted.
  • the method of melting and casting the aluminum alloy is not particularly limited, and a conventionally known method may be used. For example, it can be melted using a vacuum induction furnace and cast using a continuous casting method or a semi-continuous casting method.
  • the heat treatment step is a step of subjecting the aluminum alloy ingot having the above-mentioned chemical components to a heat treatment (homogenization heat treatment) at a temperature of 450 to 510 ° C. for one hour or more.
  • a heat treatment homogenization heat treatment
  • the heat treatment temperature is less than 450 ° C.
  • homogenization of the structure of the ingot becomes insufficient.
  • the hot workability is reduced.
  • the average grain size of the subgrains increases, and the volume fraction of ⁇ -Fiber decreases.
  • the temperature exceeds 510 ° C. the fine intermetallic compound which is refined during heating is coarsened, and the subgrains are coarsened to reduce the elongation.
  • the heat treatment temperature is set to 450 to 510.degree.
  • the heat treatment time is preferably 1 to 10 hours or less economically because the effect is saturated when it exceeds 10 hours.
  • the hot rolling step is a step of performing hot rolling under the condition that the finish temperature of the hot finish rolling is 250 ° C. or more and less than 300 ° C. after the heat treatment.
  • the finish temperature of the hot finish rolling is less than 250 ° C.
  • the rollability of the material is lowered, and the rolling itself becomes difficult, or the thickness control becomes difficult, and the productivity is lowered.
  • 300 ° C. or more in order to form a recrystallized structure with a hot-rolled sheet, a fibrous same crystal orientation group is generated after temper annealing, and a necking occurs in the piercing and burring process. Also, the volume fraction of ⁇ -Fiber decreases. Therefore, the finish temperature of the hot finish rolling is set to 250 ° C. or more and less than 300 ° C. More preferably, it is 260 to 290 ° C.
  • the cold working step is a step of performing cold working (cold rolling) with a cold working ratio of 96% or more after the hot rolling. After completion of the hot rolling, cold working is performed once or a plurality of times to make the fin material a desired final thickness. However, if the cold working rate is less than 96%, the subgrains become coarse after the temper annealing, and the formation of ⁇ -fiber becomes insufficient. Therefore, the cold working rate in cold working is 96% or more.
  • the cold working ratio is the working ratio from the intermediate annealing to the final plate thickness.
  • the temper annealing step is a step of performing temper annealing (finish annealing) which is maintained at a temperature of 160 to 250 ° C. for 1 to 6 hours after the cold working. If the temperature of temper annealing is less than 160 ° C., sufficient structural recovery effect can not be obtained. On the other hand, if the temperature exceeds 250 ° C., recrystallized grains are generated after annealing, and a crack is generated from this. In addition, refinement of subgrains is not promoted, and furthermore, the formation of ⁇ -fiber becomes insufficient. Therefore, the temperature of temper annealing is set to 160 to 250.degree.
  • the temperature of temper annealing when using a fin material for drawless shaping
  • the temperature of temper annealing when the temperature of temper annealing exceeds 210 ° C., the formability tends to slightly decrease compared to the case of combination forming, but if it is 210 ° C. or less, it exceeds 210 ° C. This is because the formability is more improved than that. Therefore, in the case of drawless molding, the temperature is preferably 160 to 210 ° C.
  • the tempering annealing is usually performed for 1 hour or more, and the effect is saturated when the annealing time is more than 6 hours. Therefore, the holding time is preferably 1 to 6 hours economically.
  • the surface treatment step is a step of subjecting the fin material after the temper annealing to a surface treatment.
  • a chemical conversion film when forming a chemical conversion film, it can be carried out by chemical conversion treatment using a conventional coating type or reaction type chemical.
  • a resin film such as a corrosion resistant resin film, a hydrophilic resin film, or a lubricating resin film, it can be performed by coating using a roll coater and drying.
  • steps may be included between or before or after each step, as long as the steps are not adversely affected.
  • it is a machining process that appropriately performs machining necessary as a fin material after a foreign matter removal process for removing foreign matter such as dust, a facing process for facing the ingot, a tempering annealing process and a surface treatment process.
  • a process etc. may be included.
  • the fin material manufactured in this way is shape
  • the fin material of this invention is suitable for drawless molding or combination molding especially.
  • punching and hole-opening processing (piercing and burring molding) in the first step, ironing processing in the second and third steps, and reflare processing in the fourth step are performed.
  • combination molding is carried out in a first step, drawn in a second step, punched and bored in a third step (piercing and burring), ironing in a fourth step, and reflare in a fifth step. It is a thing.
  • the fin material of the present invention is excellent in color crack resistance, it can control generating of a color crack at the time of these fabrication processing.
  • Example material preparation (Examples Nos. 1 to 11, Comparative Examples No. 12 to 20)
  • the aluminum alloy having the composition shown in Table 1 was melted and cast to form an ingot, and the ingot was chamfered and then subjected to a homogenizing heat treatment at 480 ° C. for 4 hours.
  • the homogenized ingot was subjected to hot rolling while controlling the finish temperature of the hot finish rolling to be 270 ° C. to obtain a hot rolled sheet having a thickness of 3.0 mm.
  • temper annealing of the temperature and holding time shown in Table 1 is performed. It was a fin material.
  • Examples Nos. 21 to 26, Comparative Examples No. 27 to 33 The aluminum alloys shown in Table 2 (Alloys A, B, and D corresponding to Table 1) are melted and cast into ingots, and the ingots are chamfered, then subjected to homogenization heat treatment and hot rolling. A hot-rolled sheet with a thickness of 3.0 mm. Furthermore, no. Except for 33, cold rolling was performed at a cold working ratio of about 97.0% or 97.3% to make the plate thickness 90 ⁇ m and 80 ⁇ m, respectively, followed by temper annealing to obtain a fin material. No. The sample No.
  • No. 1 Surface treatment under the same conditions as in Comparative Example 1 of JP-A-2010-223520 (provided with a chemical conversion film, a hydrophilic film and a lubricating film in this order)
  • No. 2 Surface treatment under the same conditions as in Example 1 of Japanese Patent No. 3383914 (provided with a chemical conversion film, a hydrophilic film and a lubricating resin film in this order)
  • No. 3 Surface treatment under the same conditions as in Example 1 of JP 2008-224204 A (conversion film, corrosion resistant resin film, hydrophilic film are provided in this order)
  • No. 4 Surface treatment under the same conditions as in Comparative Example 21 of JP 2010-223514 A (provided with a chemical conversion film and a corrosion resistant resin film in this order)
  • the average grain size of subgrains and the volume fraction of ⁇ -fiber were measured by the following method as the morphology of the fin material. Furthermore, strength and elongation were measured by the following methods.
  • the average grain size of subgrains is based on data obtained by analyzing the structure of a scanning electron microscope (SEM) obtained by photographing the sample surface at an observation magnification of 1,000 times by EBSP at a measurement interval of 0.10 ⁇ m. It was calculated by automatically calculating on OIM (Orientation Imaging Microscopy (registered trademark) registered trademark) software. That is, the total area of the fin material was divided by the number of crystal grains counted by the SEM / EBSP measurement data, and the diameter when the area of each crystal grain was approximated as a circle was defined as the average grain size of subgrains. The number of crystal grains was counted as one crystal grain surrounded by crystal grain boundaries having a difference in orientation between adjacent crystal grains within 2 °.
  • SEM scanning electron microscope
  • volume fraction of ⁇ -Fiber is based on data obtained by analyzing the scanning electron microscope (SEM) tissue obtained by imaging the sample surface at an observation magnification of 1,000 times by EBSP at a measurement interval of 0.10 ⁇ m. It was calculated by automatically calculating on OIM (Orientation Imaging Microscopy (registered trademark) registered trademark) software. That is, the total field of the sample surface photographed: the sum of the volume fractions of the Brass orientation, the S orientation, and the Cu orientation occupying an area of 2 mm ⁇ 2 mm or more was defined as the volume fraction of ⁇ -Fiber. Each azimuth was analyzed as the same azimuth component within 15 ° from the ideal azimuth.
  • SEM scanning electron microscope
  • the formed fin material was press-formed by drawless molding and combination molding, and the color crack resistance was evaluated.
  • the color crack resistance evaluation was performed by visually counting the cracks generated in the color part with respect to the press-formed product 400 holes.
  • the incidence is "number of cracks / 400 ⁇ 100 (%)", the incidence is less than 5% ((), 5% or more and less than 10% ( ⁇ ), 10% or more and less than 20% ( ⁇ ), 20 % Or more is (x).
  • 90 micrometers and 80 micrometers of drawless molding and all of 90 micrometers and 80 micrometers of combination molding, those which were either (O), ( ⁇ ), ( ⁇ ) were taken as pass.
  • No. 1 which is a comparative example. Since 12 to 20 do not satisfy the scope of the present invention, the following results were obtained. No. In No. 12, since the Si content exceeded the upper limit value, coarse intermetallic compounds increased, and the color crack resistance was inferior.
  • No. 1 which is a comparative example. Since 27 to 33 do not satisfy the scope of the present invention, the following results were obtained. No. In No. 27, since the temperature of the homogenization heat treatment was less than the lower limit, the average grain size of the subgrains exceeded the upper limit, and the volume fraction of ⁇ -Fiber was less than the lower limit, and the color crack resistance was inferior. . No. In No. 28, since the temperature of the homogenization heat treatment exceeded the upper limit value, the average grain size of the subgrains exceeded the upper limit value, and the color crack resistance was inferior.
  • the 19, 20, and 32 fin materials are assumed to be the conventional aluminum alloy fin materials described in Patent Document 2, Patent Document 1, and Patent Document 1, respectively. As shown in this example, these conventional aluminum alloy fin materials do not satisfy a certain level in the above evaluation. Therefore, according to this example, it was objectively clarified that the aluminum alloy fin material for a heat exchanger according to the present invention is superior to the conventional aluminum alloy fin material.
  • the aluminum alloy fin material for a heat exchanger according to the present invention does not have a color crack when it is formed and processed, and the appearance of the fin is also good, and a high-performance heat exchanger can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geometry (AREA)
  • Metal Rolling (AREA)
  • Powder Metallurgy (AREA)

Abstract

This heat exchanger aluminum alloy fin material: has an Fe concentration of 0.20-1.0 mass% and a Cu concentration of 0.02-0.1 mass%; suppresses Si concentration to 0.15 mass% or less, Mn concentration to 0.015 mass% or less, and Cr concentration to 0.015 mass% or less; and has the remainder comprise Al and inevitable impurities. Therein, the thickness of the heat exchanger aluminum alloy fin material is 0.1mm or less, the average particle diameter of the subgrains is 2.5 μm or less, and the volume fraction of β-Fiber is 80% or more. This fin material makes it possible to suppress the occurrence of collar cracking during forming.

Description

熱交換器用アルミニウム合金フィン材およびその製造方法Aluminum alloy fin material for heat exchanger and method of manufacturing the same
 本発明は、熱交換器に用いられる熱交換器用アルミニウム合金フィン材およびその製造方法に関する。 The present invention relates to an aluminum alloy fin material for a heat exchanger used for a heat exchanger, and a method of manufacturing the same.
 近年、空調器等の熱交換器に用いる熱交換器用アルミニウム合金フィン材(以下、適宜、フィン材という)においても、フロン規制に沿った新冷媒への切り替えや、空調器自身のコンパクト化や軽量化あるいは高性能化等により、益々薄肉化が図られ、板厚が0.15mm以下、最近では0.09mm程度にまで薄肉化されている。 In recent years, also in aluminum alloy fin materials for heat exchangers used in heat exchangers such as air conditioners (hereinafter referred to as “fin materials” as appropriate), switching to new refrigerants in line with the CFC regulations, compactness and lightness of air conditioners themselves The thickness is further reduced by the conversion or the performance, and the thickness is reduced to 0.15 mm or less, and more recently to about 0.09 mm.
 ここで、フィン材の成形法には、ドロー方式、ドローレス方式およびドロー・ドローレス複合方式(コンビネーション方式)がある。ドロー方式は、張出し工程、絞り工程、打ち抜き(ピアス)および穴広げ工程(バーリング)、リフレア工程からなり、ドローレス方式は、打ち抜きおよび穴広げ工程、しごき(アイアニング)工程、リフレア工程からなり、コンビネーション方式は、主に、張出し工程、絞り工程、打ち抜きおよび穴広げ工程、しごき工程、リフレア工程からなる。 Here, as a fin material forming method, there are a draw method, a drawless method, and a draw / drawless composite method (combination method). The draw method consists of an overhanging process, drawing process, punching (piercing) and hole expanding process (burring), and reflare process. The drawless system consists of punching and hole expanding process, ironing (airing) process, and reflare process. Mainly consists of an overhanging process, a drawing process, a punching and a hole expanding process, an ironing process and a reflare process.
 これら何れの成形法においても、銅管における管用穴カラーを成形するためのピアス&バーリング成形とリフレア成形は、フィン材にとって必要不可欠な成形工程である。ただし、これらの成形は、板厚が0.15mm以下にまで薄肉化されたフィン材にとって、過酷な成形となる。そのため、このような薄肉化に対応して、加工性を向上させたフィン材が開発されている。 In any of these forming methods, piercing and burring forming and reflare forming for forming a tube hole collar in a copper tube are essential forming steps for the fin material. However, these moldings are severe moldings for fin materials whose plate thickness is reduced to 0.15 mm or less. Therefore, a fin material having improved processability has been developed in response to such thinning.
 例えば、特許文献1には、板厚が0.12mm以下であり、Si、Feを所定の比率で所定量含有するとともに、最大結晶粒径が30μm以下である、ドロー成形によるフィンの加工性に優れたアルミニウム合金フィン材が開示されている。また、特許文献2には、板厚が0.11mm未満であり、Fe、Tiを所定量含有し、Si、Cuを所定量以下に規制するとともに、伸び率を所定に規定した、耐アベック性、スタック性に優れた熱交換器用アルミニウム合金フィン材が開示されている。 For example, Patent Document 1 has a plate thickness of 0.12 mm or less, contains a predetermined amount of Si and Fe at a predetermined ratio, and has a maximum crystal grain diameter of 30 μm or less. An excellent aluminum alloy finstock is disclosed. Further, Patent Document 2 has a thickness of less than 0.11 mm, contains a predetermined amount of Fe and Ti, regulates Si and Cu to a predetermined amount or less, and defines an elongation percentage in a predetermined amount An aluminum alloy fin material for a heat exchanger, which has excellent stackability, is disclosed.
日本国特開平11-80869号公報Japanese Patent Application Laid-Open No. 11-80869 日本国特許第4275560号公報Japanese Patent No. 4275560
 しかしながら、従来のフィン材においては、以下のような問題がある。 
 前記した従来の技術では、加工性の向上が図られてはいるものの、近年においては、熱交換器のさらなるコンパクト化や軽量化、高性能化に加え、より加工のし易いフィン材の供給が期待されていることから、さらなる加工性の向上が求められている。 
However, the conventional fin material has the following problems.
Although the above-described conventional techniques are intended to improve the processability, in recent years, in addition to the further downsizing, weight reduction, and high performance of the heat exchanger, the supply of fin material that is easier to process is more efficient. From the expectation, further improvement of the processability is required.
 また、成形中には、しばしばカラー割れと言われる割れが生じることがある。すなわち、ピアス&バーリング工程時に加工端面に微細な亀裂が生じ、これによって最終リフレア成形時にカラー割れとなる。このようなカラー割れが生じた場合、フィン成形された成形品のカラー穴に銅管を通してその銅管を拡管する際に、積層したフィンの間隔が極端に狭くなってしまうという、所謂アベック現象が生じ易くなる。そして、このアベック現象により、熱交換器の通風抵抗が増大するという問題がある。すなわち、カラー割れは、フィンの外観を損ねるだけではなく、熱交換器としての性能低下等の不具合が生じ、製品としての価値を低下させてしまうという問題がある。したがって、このようなカラー割れの発生をより抑制することができるフィン材の開発が求められている。 In addition, during molding, cracking often called color cracking may occur. That is, a fine crack is generated on the processed end face at the time of the piercing and burring process, which causes a color break at the final reflare forming. When such a color crack occurs, when expanding the copper pipe through the copper pipe in the collar hole of the fin-formed molded product, the so-called abec phenomenon that the distance between the laminated fins becomes extremely narrow. It becomes easy to occur. And there exists a problem that the ventilation resistance of a heat exchanger increases by this abec phenomenon. That is, the color cracking not only impairs the appearance of the fins, but also causes problems such as performance degradation as a heat exchanger, resulting in a problem of reducing the value as a product. Therefore, there is a demand for development of a fin material that can further suppress the occurrence of such color cracks.
 本発明は、前記問題点に鑑みてなされたものであり、成形加工時におけるカラー割れの発生を抑制することができる耐カラー割れ性に優れた熱交換器用アルミニウム合金フィン材を提供することを課題とする。 This invention is made in view of the said problem, and it is an object of this invention to provide the aluminum alloy fin material for heat exchangers excellent in the color | collar crack resistance which can suppress generation | occurrence | production of the color | collar crack at the time of shaping processing. I assume.
 すなわち、本発明に係る熱交換器用アルミニウム合金フィン材は、Fe:0.20~1.0質量%、Cu:0.02~0.1質量%を含有し、Si:0.15質量%以下、Mn:0.015質量%以下、Cr:0.015質量%以下に抑制し、残部がAlおよび不可避的不純物からなる熱交換器用アルミニウム合金フィン材であって、前記熱交換器用アルミニウム合金フィン材の厚みが0.1mm以下であり、亜結晶粒の平均粒径が2.5μm以下およびβ-Fiberの体積分率が80%以上であることを特徴とする。 That is, the aluminum alloy fin material for a heat exchanger according to the present invention contains 0.20 to 1.0% by mass of Fe, 0.02 to 0.1% by mass of Cu, and 0.15% by mass or less of Si Mn: 0.015% by mass or less, Cr: 0.015% by mass or less, aluminum alloy fin material for heat exchangers, the balance being Al and unavoidable impurities, the aluminum alloy fin material for the heat exchangers And the subgrains have an average particle diameter of 2.5 μm or less and a volume fraction of β-Fiber of 80% or more.
 このような構成によれば、Fe、Cuを所定量添加することで、固溶強化により強度が向上する。さらに亜結晶粒が微細化され、伸びが向上し、またβ-Fiberが十分に生成する。また、Si、Mn、Crを所定量以下に抑制することで、晶出物(すなわち金属間化合物)の粗大化が抑制される。そして、亜結晶粒の平均粒径を2.5μm以下、βFiberの体積分率を80%以上とすることで、フィン材の耐カラー割れ性が向上する。 According to such a configuration, the strength is improved by solid solution strengthening by adding a predetermined amount of Fe and Cu. Furthermore, subgrains are refined, elongation is improved, and β-fiber is sufficiently generated. Further, by suppressing Si, Mn, and Cr to a predetermined amount or less, the coarsening of the crystallized product (that is, the intermetallic compound) is suppressed. And, by setting the average grain size of sub-grains to 2.5 μm or less and the volume fraction of β-Fiber to 80% or more, the color crack resistance of the fin material is improved.
 本発明に係る熱交換器用アルミニウム合金フィン材は、さらに、Ti:0.01~0.08質量%を含有することを特徴とする。
 このような構成によれば、Tiを所定量添加することで、鋳塊組織が微細化される。
The aluminum alloy fin material for a heat exchanger according to the present invention is further characterized by containing Ti: 0.01 to 0.08 mass%.
According to such a configuration, the ingot structure is refined by adding a predetermined amount of Ti.
 本発明に係る熱交換器用アルミニウム合金フィン材は、フィン材表面に表面処理皮膜を備えたものであってもよい。表面処理皮膜としては、耐食性皮膜や親水性皮膜、潤滑性皮膜等が挙げられる。
 このような構成によれば、耐食性や親水性、成形性等、使用環境や用途等に応じた特性を向上させることができる。
The aluminum alloy fin material for a heat exchanger according to the present invention may be provided with a surface treatment film on the surface of the fin material. The surface treatment film may, for example, be a corrosion-resistant film, a hydrophilic film or a lubricating film.
According to such a configuration, it is possible to improve the corrosion resistance, the hydrophilicity, the formability, and the like according to the use environment, the use, and the like.
 本発明に係る熱交換器用アルミニウム合金フィン材の製造方法は、前記記載の熱交換器用アルミニウム合金フィン材(表面処理皮膜を備えないもの)の製造方法であって、前記の化学成分を有するアルミニウム合金鋳塊に、450~510℃の温度で1時間以上の熱処理を施す熱処理工程と、前記熱処理後に、熱間仕上げ圧延の終了温度が250℃以上300℃未満となる条件で熱間圧延を施す熱間圧延工程と、前記熱間圧延後に、冷間加工率96%以上の冷間加工を施す冷間加工工程と、前記冷間加工後に、160~250℃の温度で1~6時間保持する調質焼鈍を施す調質焼鈍工程と、を行うことを特徴とする。 The method for producing an aluminum alloy fin material for a heat exchanger according to the present invention is a method for producing an aluminum alloy fin material for a heat exchanger (having no surface treatment film) described above, wherein the aluminum alloy has the above-mentioned chemical components. A heat treatment step of subjecting the ingot to a heat treatment at a temperature of 450 to 510 ° C. for 1 hour or more, and a heat treatment to apply hot rolling under the condition that the finish temperature of hot finishing rolling is 250 ° C. or more and less than 300 ° C. after the heat treatment Cold-rolling step, a cold-working step of performing cold-working at a cold-working rate of 96% or more after the hot rolling, and a control of maintaining the temperature at 160 to 250 ° C. for 1 to 6 hours after the cold working And a tempering annealing process for applying quality annealing.
 このような製造方法によれば、熱処理工程により鋳塊の組織が均質化され、熱間圧延工程により、熱延板で再結晶組織となることなく圧延される。そして、冷間加工工程により、調質焼鈍後に亜結晶粒の粗大化や、β-Fiberの生成不足を生じさせることなく、0.1mm以下の厚みとされ、調質焼鈍工程により充分に組織が回復する。これらにより、亜結晶粒の平均粒径が2.5μm以下、β-Fiberの体積分率が80%以上となる。 According to such a manufacturing method, the structure of the ingot is homogenized by the heat treatment step, and rolled by the hot rolling step without becoming a recrystallized structure with the hot-rolled sheet. And, by the cold working process, the subgrains are not coarsened after the temper annealing and the generation of the β-Fiber does not occur, and the thickness is 0.1 mm or less, and the texture is sufficiently made by the temper annealing process. Recover. As a result, the average grain size of subgrains is 2.5 μm or less, and the volume fraction of β-fiber is 80% or more.
 本発明に係る熱交換器用アルミニウム合金フィン材は、成形加工したときのカラー割れを抑制することができる。そのため、フィンの外観を損ねることや、熱交換器としての性能低下等の不具合を防止することができる。 The aluminum alloy fin material for a heat exchanger according to the present invention can suppress color cracking when formed and processed. Therefore, it is possible to prevent defects such as deterioration in the appearance of the fins and deterioration in performance as a heat exchanger.
 また、本発明に係る熱交換器用アルミニウム合金フィン材の製造方法は、耐カラー割れ性に優れた熱交換器用アルミニウム合金フィン材を製造することができる。 Moreover, the manufacturing method of the aluminum alloy fin material for heat exchangers which concerns on this invention can manufacture the aluminum alloy fin material for heat exchangers excellent in color | collar crack resistance.
 以下、本発明に係る熱交換器用アルミニウム合金フィン材(以下、適宜、フィン材という)およびフィン材の製造方法を実現するための形態について説明する。 Hereinafter, an embodiment for realizing a method for manufacturing an aluminum alloy fin material for heat exchanger (hereinafter, appropriately referred to as a fin material) and a fin material according to the present invention will be described.
<フィン材>
 本発明に係るフィン材は、Fe、Cuを所定量含有し、Si、Mn、Crを所定量以下に抑制し、残部がAlおよび不可避的不純物からなるものである。そして、このフィン材の厚みが0.1mm以下であり、亜結晶粒の平均粒径を2.5μm以下およびβ-Fiberの体積分率を80%以上に規定したものである。また、必要に応じて、さらにTiを所定量含有してもよい。
 以下、各構成について、まず、化学成分について説明した後、その他の構成について説明する。
<Fin material>
The fin material according to the present invention contains a predetermined amount of Fe and Cu, suppresses Si, Mn and Cr to a predetermined amount or less, and the balance consists of Al and unavoidable impurities. The thickness of the fin material is 0.1 mm or less, the average grain diameter of subcrystal grains is 2.5 μm or less, and the volume fraction of β-fiber is 80% or more. In addition, as necessary, a predetermined amount of Ti may be further contained.
In the following, regarding each component, first, chemical components will be described, and then other components will be described.
(Fe:0.20~1.0質量%)
 Feは、固溶強化による強度向上や耐食性の向上、亜結晶粒の微細化による伸びの向上のために添加する元素である。Fe含有量が0.20質量%未満では、これらの効果が得られない。一方、1.0質量%を超えると、耐食性が低下する他、晶出物(金属間化合物)が粗大化し、これが成形加工時の応力集中点となり、割れの起点となる。したがって、Fe含有量は、0.20~1.0質量%とする。
(Fe: 0.20 to 1.0% by mass)
Fe is an element added for the improvement of strength by solid solution strengthening, the improvement of corrosion resistance, and the improvement of elongation by refinement of subgrains. If the Fe content is less than 0.20% by mass, these effects can not be obtained. On the other hand, if it exceeds 1.0% by mass, the corrosion resistance is lowered, and in addition, the crystallized product (intermetallic compound) is coarsened, and this becomes a stress concentration point at the time of forming processing and becomes a starting point of cracking. Therefore, the Fe content is set to 0.20 to 1.0% by mass.
(Cu:0.02~0.1質量%)
 Cuは、固溶強化による強度向上や、亜結晶粒の微細化による伸びの向上、β-Fiberの生成を十分にするために微量添加する元素である。Cu含有量が0.02質量%未満では、これらの効果が得られない。一方、0.1質量%を超えると、加工硬化を招き、耐アベック性を低下させる他、耐カラー割れ性および耐食性の低下を招く。したがって、Cu含有量は、0.02~0.1質量%とする。より好ましくは、0.031~0.06質量%、さらに好ましくは、0.04~0.06質量%である。
(Cu: 0.02 to 0.1% by mass)
Cu is an element which is added in a trace amount in order to sufficiently improve the strength by solid solution strengthening, the improvement of elongation by the refinement of subgrains, and the formation of β-Fiber. If the Cu content is less than 0.02 mass%, these effects can not be obtained. On the other hand, if it exceeds 0.1% by mass, work hardening is caused to lower the abec resistance and also the color crack resistance and the corrosion resistance. Therefore, the Cu content is set to 0.02 to 0.1% by mass. The amount is more preferably 0.031 to 0.06% by mass, still more preferably 0.04 to 0.06% by mass.
(Si:0.15質量%以下(0質量%を含む))
 Siは、不可避的不純物として混入する元素であるが、Si含有量が0.15質量%を超えると、晶出物(金属間化合物)が粗大化し、これが成形加工時の応力集中点となり、割れの起点となる。したがって、Si含有量は、0.15質量%以下とする。なお、0質量%まで抑制してもよい。
(Si: 0.15% by mass or less (including 0% by mass))
Si is an element to be mixed as an unavoidable impurity, but when the Si content exceeds 0.15 mass%, the crystallized product (intermetallic compound) becomes coarse, and this becomes a stress concentration point at the time of forming and processing, and cracking It becomes the starting point of Therefore, the Si content is 0.15 mass% or less. In addition, you may suppress to 0 mass%.
(Mn:0.015質量%以下(0質量%を含む))
 Mnは、不可避的不純物として混入する元素であるが、Mn含有量が0.015質量%を超えると、晶出物(金属間化合物)が粗大化し、これが成形加工時の応力集中点となり、割れの起点となる。したがって、Mn含有量は、0.015質量%以下に抑制する。なお、0質量%まで抑制してもよい。
(Mn: 0.015% by mass or less (including 0% by mass))
Mn is an element to be mixed as an unavoidable impurity, but when the Mn content exceeds 0.015 mass%, the crystallized product (intermetallic compound) becomes coarse and this becomes a stress concentration point at the time of forming and processing, and cracking It becomes the starting point of Therefore, the Mn content is suppressed to 0.015% by mass or less. In addition, you may suppress to 0 mass%.
(Cr:0.015質量%以下(0質量%を含む))
 Crは、不可避的不純物として混入する元素であるが、Cr含有量が0.015質量%を超えると、晶出物(金属間化合物)が粗大化し、これが成形加工時の応力集中点となり、割れの起点となる。したがって、Cr含有量は、0.015質量%以下に抑制する。なお、0質量%まで抑制してもよい。
(Cr: 0.015% by mass or less (including 0% by mass))
Cr is an element to be mixed as an unavoidable impurity, but when the Cr content exceeds 0.015 mass%, the crystallized product (intermetallic compound) becomes coarse and this becomes a stress concentration point at the time of forming and processing, and cracking It becomes the starting point of Therefore, the Cr content is suppressed to 0.015% by mass or less. In addition, you may suppress to 0 mass%.
(Ti:0.01~0.08質量%)
 Tiは、鋳塊組織の微細化のために、Al-Ti-B中間合金として添加しても良い。すなわち、Ti:B=5:1あるいは5:0.2の割合としたAl-Ti-B鋳塊微細化剤を、ワッフルあるいはロッドの形態で溶湯(スラブ凝固前における、溶解炉、介在物フィルター、脱ガス装置、溶湯流量制御装置へ投入された、いずれかの段階での溶湯)へ添加してもよく、Ti量で、0.08質量%までの含有は許容される。Ti含有量が0.01質量%未満では、鋳塊組織微細化の効果が得られない。一方、0.08質量%を超えると、晶出物(金属間化合物)が粗大化し、これが成形加工時の応力集中点となり、割れの起点となる。したがって、Tiを添加する場合には、Ti含有量は、0.01~0.08質量%とする。
(Ti: 0.01 to 0.08 mass%)
Ti may be added as an Al-Ti-B intermediate alloy to refine the ingot structure. That is, the Al—Ti—B ingot refining agent in a ratio of Ti: B = 5: 1 or 5: 0.2 is melt in the form of a waffle or rod (smelting furnace, inclusion filter before slab solidification) And may be added to the degassing apparatus or the molten metal introduced to the molten metal flow rate control apparatus at any stage), and the content of up to 0.08 mass% in the amount of Ti is acceptable. If the Ti content is less than 0.01% by mass, the effect of refining the ingot structure can not be obtained. On the other hand, when it exceeds 0.08 mass%, the crystallized product (intermetallic compound) is coarsened, and this becomes a stress concentration point at the time of forming and processing, and becomes a starting point of cracking. Therefore, when adding Ti, the Ti content is 0.01 to 0.08 mass%.
(残部:Alおよび不可避的不純物)
 フィン材の成分は前記の他、残部がAlおよび不可避的不純物からなるものである。なお、不可避的不純物として、前記したSi、Mn、Crの他、例えば、地金や中間合金に含まれている、通常知られている範囲内のMg、Zn、Ga、V、Ni等は、それぞれ0.015質量%までの含有は許容される。
(Remainder: Al and unavoidable impurities)
In addition to the components described above, the remainder of the fin material is made of Al and unavoidable impurities. In addition to the above-mentioned Si, Mn and Cr as unavoidable impurities, for example, Mg, Zn, Ga, V, Ni and the like within the generally known range contained in the base metal and intermediate alloys are, for example, Each content of up to 0.015% by mass is acceptable.
(厚み:0.1mm以下)
 本発明は、近年における熱交換器のコンパクト化や軽量化、高性能化等の要請により、フィン材の薄肉化を図る観点から、0.1mm以下の厚みのフィン材を対象とする。したがって、フィン材の厚みは、0.1mm以下とする。
(Thickness: 0.1 mm or less)
The present invention is directed to a fin material having a thickness of 0.1 mm or less from the viewpoint of reducing the thickness of the fin material due to the recent demand for compactness, light weight, high performance and the like of the heat exchanger. Therefore, the thickness of the fin material is 0.1 mm or less.
(亜結晶粒の平均粒径:2.5μm以下)
 0.1mm以下の厚みのフィン材での伸びの増加のためには、合金中の亜結晶粒の平均粒径を2.5μm以下とすることが必要である。亜結晶粒の平均粒径が2.5μmを超えると、フィン材の伸びが十分に得られない。したがって、亜結晶粒の平均粒径は、2.5μm以下とする。なお、下限値は特に規定しないが、0μmであってもよい(すなわち、亜結晶粒を含まなくてもよい)。この様な範囲にすることにより、固溶Mnや固溶Cu等により加工硬化するような場合であっても、カラー割れの発生を抑制することができる。
(Average grain size of subgrains: 2.5 μm or less)
In order to increase the elongation of the fin material having a thickness of 0.1 mm or less, it is necessary to set the average grain size of subgrains in the alloy to 2.5 μm or less. When the average grain size of the subgrains exceeds 2.5 μm, sufficient elongation of the fin material can not be obtained. Therefore, the average grain size of the subgrains is set to 2.5 μm or less. Although the lower limit value is not particularly defined, it may be 0 μm (that is, sub-grains may not be included). By setting it in such a range, it is possible to suppress the occurrence of color cracking even in the case of work hardening due to solid solution Mn, solid solution Cu or the like.
(β-Fiberの体積分率:80%以上)
 β-Fiberとは、面心立方金属の圧延集合組織であり、Cu方位,S方位,Brass方位の総和をいう。
 0.1mm以下の厚みのフィン材での伸びの増加のためには、合金中のβ-Fiberの体積分率を80%以上とすることが必要である。β-Fiberの体積分率が80%未満では、フィン材のランクフォード値の低下に伴い、カラー割れが発生する。なお、上限値は特に規定しないが、100%であってもよい。 
(Β-Fiber volume fraction: 80% or more)
β-Fiber is a rolling texture of face-centered cubic metal, and refers to the sum of Cu orientation, S orientation, and Brass orientation.
In order to increase the elongation of the fin material having a thickness of 0.1 mm or less, it is necessary to set the volume fraction of β-Fiber in the alloy to 80% or more. When the volume fraction of β-Fiber is less than 80%, color cracking occurs with a decrease in the Rankford value of the fin material. The upper limit value is not particularly defined, but may be 100%.
 次に、亜結晶粒の平均粒径およびβ-Fiberの体積分率の測定方法について説明する。
 まず、走査電子顕微鏡(SEM:Scanning Electron Microscopy-Electron)組織をEBSP(Electron Back Scattered Diffraction Pattern)法により方位解析する。EBSP法は、試料に電子線を照射し、その際に生じる反射電子菊池線回折を利用して結晶方位を特定するものである。また、結晶方位解析には、例えば、TSL社製OIM(Orientation Imaging Microscopy:登録商標名)を用いることができる。この結晶方位解析によりβ-Fiberの体積分率を算出する。
 また、亜結晶粒の平均粒径は、このSEM/EBSP測定データにより結晶粒の数を算出し、フィン材の全面積を結晶粒の数で除し、各結晶粒の面積を円と近似した場合の直径を亜結晶粒の平均粒径と定義する。
Next, methods of measuring the average grain size of subgrains and the volume fraction of β-Fiber will be described.
First, the direction of a scanning electron microscope (SEM) is analyzed by EBSP (Electron Back Scattered Diffraction Pattern) method. In the EBSP method, a sample is irradiated with an electron beam, and the crystal orientation is identified using reflection electron Kikuchi ray diffraction generated at that time. For crystal orientation analysis, for example, OIM (Orientation Imaging Microscopy (registered trademark) manufactured by TSL Corporation) can be used. The volume fraction of β-Fiber is calculated by this crystal orientation analysis.
The average grain size of subgrains was calculated by calculating the number of crystal grains from the SEM / EBSP measurement data, dividing the total area of the fin material by the number of crystal grains, and approximating the area of each crystal grain with a circle. The diameter of the case is defined as the average grain size of the subgrains.
 なお、亜結晶粒の平均粒径およびβ-Fiberの体積分率は、成分組成と、後記する製造条件により制御することができる。具体的には、亜結晶粒の平均粒径は、各成分の含有量、均質化熱処理条件(温度と時間)、熱間仕上げ圧延終了温度、冷間加工率、調質焼鈍条件(温度と時間)により制御する。また、β-Fiberの体積分率は、各成分の含有量、均質化熱処理条件(温度と時間)、熱間仕上げ圧延終了温度、冷間加工率、調質焼鈍条件(温度と時間)により制御する。 The average grain size of subgrains and the volume fraction of β-Fiber can be controlled by the component composition and the production conditions described later. Specifically, the average grain size of the subgrains, the content of each component, homogenization heat treatment conditions (temperature and time), the finish temperature of the hot finish rolling, the cold working ratio, the temper annealing conditions (temperature and time Control by). In addition, the volume fraction of β-Fiber is controlled by the content of each component, homogenization heat treatment conditions (temperature and time), hot finish rolling end temperature, cold working ratio, and temper annealing conditions (temperature and time) Do.
 本発明に係るフィン材は、フィン材表面に表面処理皮膜を備えたものであってもよい。なお、フィン材表面とは、フィン材の片面もしくは両面を意味する。
(表面処理皮膜)
 表面処理皮膜としては、使用環境や用途に応じ、化成皮膜や樹脂皮膜、無機皮膜が挙げられ、これらを組み合わせ(化成皮膜上に樹脂皮膜、無機皮膜を設け)てもよい。また、樹脂皮膜、無機皮膜としては、耐食性樹脂皮膜、親水性樹脂皮膜、親水性無機皮膜、潤滑性樹脂皮膜等が挙げられ、これらを適宜組み合わせてもよい。
The fin material according to the present invention may be provided with a surface treatment film on the surface of the fin material. The fin material surface means one side or both sides of the fin material.
(Surface treatment film)
As a surface treatment film, a chemical conversion film, a resin film, and an inorganic film are mentioned according to a use environment or a use, and you may combine these (a resin film and an inorganic film are provided on a chemical conversion film). Moreover, as a resin film and an inorganic film, a corrosion-resistant resin film, a hydrophilic resin film, a hydrophilic inorganic film, a lubricating resin film, etc. are mentioned, You may combine these suitably.
 化成皮膜としては、例えばリン酸クロメートが挙げられる。耐食性樹脂皮膜としては、エポキシ系、ウレタン系、アクリル系、ポリエステル系等の樹脂が挙げられ、その膜厚は、0.5~5μmが好ましい。親水性皮膜としては、水ガラス系の無機物、ポリアクリル酸またはポリアクリル酸塩を含有するような樹脂、スルホン酸基またはスルホン酸基誘導体を含有するような樹脂等が挙げられ、その膜厚は、0.05~10μmが好ましい。潤滑性樹脂皮膜としてはポリエーテルポリオールを含有する樹脂などが挙げられ、その膜厚は、0.1~10μmが好ましい。 As a chemical conversion film, a phosphate chromate is mentioned, for example. Examples of the corrosion resistant resin film include epoxy resin, urethane resin, acrylic resin, polyester resin and the like, and the film thickness thereof is preferably 0.5 to 5 μm. Examples of the hydrophilic film include water glass inorganic substances, resins containing polyacrylic acid or polyacrylate, and resins containing a sulfonic acid group or a sulfonic acid group derivative. And preferably 0.05 to 10 μm. The lubricating resin film may, for example, be a resin containing a polyether polyol, and the film thickness thereof is preferably 0.1 to 10 μm.
 耐食性樹脂皮膜、親水性樹脂皮膜、親水性無機皮膜、潤滑性樹脂皮膜のうち2種以上を組み合わせる場合には、耐食性樹脂皮膜の表面側に親水性樹脂皮膜が設けられ、親水性樹脂皮膜、親水性無機皮膜の表面側に潤滑性樹脂皮膜が設けられることが好ましい。 When two or more of the corrosion resistant resin film, the hydrophilic resin film, the hydrophilic inorganic film, and the lubricious resin film are combined, the hydrophilic resin film is provided on the surface side of the corrosion resistant resin film, and the hydrophilic resin film and the hydrophilic resin film are hydrophilic. Preferably, a lubricating resin film is provided on the surface side of the inorganic inorganic film.
<フィン材の製造方法>
 本発明に係るフィン材の製造方法は、前記したフィン材の製造方法であって、熱処理工程と、熱間圧延工程と、冷間加工工程と、調質焼鈍工程と、を行うものである。さらに必要に応じて、鋳塊作製工程や表面処理工程を含んでもよい。
 以下、各工程について説明する。
<Method of manufacturing fin material>
A method of manufacturing a fin material according to the present invention is the method of manufacturing a fin material described above, and performs a heat treatment process, a hot rolling process, a cold working process, and a heat treatment annealing process. Furthermore, if necessary, an ingot preparation step or a surface treatment step may be included.
Each step will be described below.
(鋳塊作製工程)
 鋳塊作製工程は、アルミニウム合金を溶解、鋳造してアルミニウム合金鋳塊を作製する工程である。
 鋳塊作製工程では、前記した組成を有するアルミニウム合金を溶解した溶湯から、所定形状の鋳塊を作製する。アルミニウム合金を溶解、鋳造する方法は、特に限定されるものではなく、従来公知の方法を用いればよい。例えば、真空誘導炉を用いて溶解し、連続鋳造法や、半連続鋳造法を用いて鋳造することができる。
(Ingot production process)
The ingot producing step is a step of melting and casting an aluminum alloy to produce an aluminum alloy ingot.
In the ingot production step, an ingot of a predetermined shape is produced from the molten metal in which the aluminum alloy having the composition described above is melted. The method of melting and casting the aluminum alloy is not particularly limited, and a conventionally known method may be used. For example, it can be melted using a vacuum induction furnace and cast using a continuous casting method or a semi-continuous casting method.
(熱処理工程)
 熱処理工程は、前記の化学成分を有するアルミニウム合金鋳塊に、450~510℃の温度で1時間以上の熱処理(均質化熱処理)を施す工程である。
 熱処理温度が450℃未満では、鋳塊の組織の均質化が不十分となる。また、熱間加工性の低下を招く。さらに亜結晶粒の平均粒径が大きくなり、また、β-Fiberの体積分率が小さくなる。一方、510℃を超えると、加熱中で微細化する微細金属間化合物が粗大化し、亜結晶粒が粗大化して伸びが低下する。また、固溶量の増加を招く。したがって、熱処理温度は、450~510℃とする。また、熱処理は保持時間1時間以上であれば前記効果を得られるため、特に上限を規定する必要はない。一方で、10時間を超えると効果が飽和することから、経済的には、熱処理時間は1~10時間以内が好ましい。
(Heat treatment process)
The heat treatment step is a step of subjecting the aluminum alloy ingot having the above-mentioned chemical components to a heat treatment (homogenization heat treatment) at a temperature of 450 to 510 ° C. for one hour or more.
When the heat treatment temperature is less than 450 ° C., homogenization of the structure of the ingot becomes insufficient. In addition, the hot workability is reduced. Furthermore, the average grain size of the subgrains increases, and the volume fraction of β-Fiber decreases. On the other hand, when the temperature exceeds 510 ° C., the fine intermetallic compound which is refined during heating is coarsened, and the subgrains are coarsened to reduce the elongation. In addition, the amount of solid solution increases. Therefore, the heat treatment temperature is set to 450 to 510.degree. Moreover, since the said effect can be acquired if heat processing is holding time 1 hour or more, it is not necessary to prescribe | regulate an upper limit in particular. On the other hand, the heat treatment time is preferably 1 to 10 hours or less economically because the effect is saturated when it exceeds 10 hours.
(熱間圧延工程)
 熱間圧延工程は、前記熱処理後に、熱間仕上げ圧延の終了温度が250℃以上300℃未満となる条件で熱間圧延を施す工程である。
 熱間仕上げ圧延の終了温度が250℃未満では、材料の圧延性が低下し、圧延自体が困難となったり、板厚制御が難しくなったりして、生産性が低下する。一方、300℃以上では、熱延板で再結晶組織となるために、調質焼鈍後に繊維状の同一結晶方位群が生成し、ピアス&バーリング工程時にくびれを生じる。また、β-Fiberの体積分率が小さくなる。したがって、熱間仕上げ圧延の終了温度は、250℃以上300℃未満とする。より好ましくは、260~290℃である。
(Hot rolling process)
The hot rolling step is a step of performing hot rolling under the condition that the finish temperature of the hot finish rolling is 250 ° C. or more and less than 300 ° C. after the heat treatment.
When the finish temperature of the hot finish rolling is less than 250 ° C., the rollability of the material is lowered, and the rolling itself becomes difficult, or the thickness control becomes difficult, and the productivity is lowered. On the other hand, at 300 ° C. or more, in order to form a recrystallized structure with a hot-rolled sheet, a fibrous same crystal orientation group is generated after temper annealing, and a necking occurs in the piercing and burring process. Also, the volume fraction of β-Fiber decreases. Therefore, the finish temperature of the hot finish rolling is set to 250 ° C. or more and less than 300 ° C. More preferably, it is 260 to 290 ° C.
(冷間加工工程)
 冷間加工工程は、前記熱間圧延後に、冷間加工率96%以上の冷間加工(冷間圧延)を施す工程である。
 熱間圧延終了後、冷間加工を1回、あるいは複数回行なって、フィン材を所望の最終板厚とする。ただし、冷間加工率が96%未満では、調質焼鈍後に亜結晶粒が粗大化し、さらにβ-Fiberの生成が不十分となる。したがって、冷間加工における冷間加工率は、96%以上とする。ここで、冷間加工の途中で中間焼鈍を行なった場合、冷間加工率は中間焼鈍後から最終板厚までの加工率である。よって、中間焼鈍を行なうと、96%以上の冷間加工率とすることが困難となることから、中間焼鈍は行なわない。なお、冷間加工率は高いほど好ましいため、上限は特に設けない。
(Cold working process)
The cold working step is a step of performing cold working (cold rolling) with a cold working ratio of 96% or more after the hot rolling.
After completion of the hot rolling, cold working is performed once or a plurality of times to make the fin material a desired final thickness. However, if the cold working rate is less than 96%, the subgrains become coarse after the temper annealing, and the formation of β-fiber becomes insufficient. Therefore, the cold working rate in cold working is 96% or more. Here, when the intermediate annealing is performed in the middle of the cold working, the cold working ratio is the working ratio from the intermediate annealing to the final plate thickness. Therefore, when the intermediate annealing is performed, it is difficult to obtain a cold working rate of 96% or more, and the intermediate annealing is not performed. In addition, since a cold working rate is so preferable that it is high, the upper limit in particular is not provided.
(調質焼鈍工程)
 調質焼鈍工程は、前記冷間加工後に、160~250℃の温度で1~6時間保持する調質焼鈍(仕上げ焼鈍)を施す工程である。
 調質焼鈍の温度が160℃未満では、充分な組織の回復効果が得られない。一方、250℃を超えると、焼鈍後に再結晶粒を生じ、これを起点に割れが生じる。また、亜結晶粒の微細化が促進されず、さらにβ-Fiberの生成が不十分となる。したがって、調質焼鈍の温度は、160~250℃とする。
(Temperature annealing process)
The temper annealing step is a step of performing temper annealing (finish annealing) which is maintained at a temperature of 160 to 250 ° C. for 1 to 6 hours after the cold working.
If the temperature of temper annealing is less than 160 ° C., sufficient structural recovery effect can not be obtained. On the other hand, if the temperature exceeds 250 ° C., recrystallized grains are generated after annealing, and a crack is generated from this. In addition, refinement of subgrains is not promoted, and furthermore, the formation of β-fiber becomes insufficient. Therefore, the temperature of temper annealing is set to 160 to 250.degree.
 ここで、フィン材をドローレス成形に用いる場合には、調質焼鈍の温度の上限は、210℃とすることが好ましい。ドローレス成形の場合には、調質焼鈍の温度が210℃を超えると、コンビネーション成形の場合に比べ、成形性がやや低下する傾向にあるが、210℃以下であれば、210℃を超えた場合よりも成形性がより向上するためである。したがって、ドローレス成形用の場合には、160~210℃とすることが好ましい。
 なお、調質焼鈍は1時間以上行うことが通常であり、6時間を超えると効果が飽和することから、経済的には保持時間は1~6時間が好ましい。
Here, when using a fin material for drawless shaping | molding, it is preferable to make the upper limit of the temperature of temper annealing into 210 degreeC. In the case of drawless forming, when the temperature of temper annealing exceeds 210 ° C., the formability tends to slightly decrease compared to the case of combination forming, but if it is 210 ° C. or less, it exceeds 210 ° C. This is because the formability is more improved than that. Therefore, in the case of drawless molding, the temperature is preferably 160 to 210 ° C.
The tempering annealing is usually performed for 1 hour or more, and the effect is saturated when the annealing time is more than 6 hours. Therefore, the holding time is preferably 1 to 6 hours economically.
(表面処理工程)
 表面処理工程は、調質焼鈍後のフィン材に表面処理を施す工程である。
 表面処理工程において、化成皮膜を形成する場合には、通常の塗布型または反応型の薬剤を用いた化成処理によって行うことができる。耐食性樹脂皮膜、親水性樹脂皮膜、潤滑性樹脂皮膜等の樹脂皮膜を形成する場合には、ロールコーターを用いた塗布、乾燥によって行うことができる。
(Surface treatment process)
The surface treatment step is a step of subjecting the fin material after the temper annealing to a surface treatment.
In the surface treatment step, when forming a chemical conversion film, it can be carried out by chemical conversion treatment using a conventional coating type or reaction type chemical. In the case of forming a resin film such as a corrosion resistant resin film, a hydrophilic resin film, or a lubricating resin film, it can be performed by coating using a roll coater and drying.
 なお、本発明を行うにあたり、前記各工程に悪影響を与えない範囲において、前記各工程の間あるいは前後に、他の工程を含めてもよい。例えば、ごみ等の異物を除去する異物除去工程や、鋳塊に面削を施す面削工程や、調質焼鈍工程や表面処理工程の後に、フィン材として必要な、機械加工を適宜施す機械加工工程等を含めてもよい。 In the practice of the present invention, other steps may be included between or before or after each step, as long as the steps are not adversely affected. For example, it is a machining process that appropriately performs machining necessary as a fin material after a foreign matter removal process for removing foreign matter such as dust, a facing process for facing the ingot, a tempering annealing process and a surface treatment process. A process etc. may be included.
 そして、このようにして製造されたフィン材は、各成形法に応じて成形加工されるが、本発明のフィン材は、特にドローレス成形またはコンビネーション成形に好適である。
 ドローレス成形は、第1工程で打ち抜きおよび穴広げ加工(ピアス&バーリング成形)、第2、第3工程でしごき加工、第4工程でリフレア加工を施すものである。また、コンビネーション成形は、第1工程で張出し、第2工程で絞り成形、第3工程で打ち抜きおよび穴広げ加工(ピアス&バーリング成形)、第4工程でしごき加工、第5工程でリフレア加工を施すものである。そして、本発明のフィン材は、耐カラー割れ性に優れるため、これら成形加工時のカラー割れの発生を抑制することができる。
And although the fin material manufactured in this way is shape | molded and processed according to each shaping | molding method, the fin material of this invention is suitable for drawless molding or combination molding especially.
In the drawless molding, punching and hole-opening processing (piercing and burring molding) in the first step, ironing processing in the second and third steps, and reflare processing in the fourth step are performed. In addition, combination molding is carried out in a first step, drawn in a second step, punched and bored in a third step (piercing and burring), ironing in a fourth step, and reflare in a fifth step. It is a thing. And since the fin material of the present invention is excellent in color crack resistance, it can control generating of a color crack at the time of these fabrication processing.
 以上、本発明を実施するための形態について述べてきたが、以下に、本発明の効果を確
認した実施例を、本発明の要件を満たさない比較例と対比して具体的に説明する。なお、本発明はこの実施例に限定されるものではない。
As mentioned above, although the form for implementing this invention has been described, the Example which confirmed the effect of this invention is concretely described contrasted with the comparative example which does not satisfy | fill the requirements of this invention. The present invention is not limited to this embodiment.
〔供試材作製〕
(実施例No.1~11、比較例No.12~20)
 表1に示す組成のアルミニウム合金を、溶解、鋳造して鋳塊とし、この鋳塊に面削を施した後に、480℃にて4時間の均質化熱処理を施した。この均質化した鋳塊に、熱間仕上げ圧延の終了温度を270℃となるように制御して熱間圧延を施し、板厚3.0mmの熱間圧延板とした。さらに、それぞれ97.0%または97.3%程度の冷間加工率で冷間圧延を施して板厚を90μmおよび80μmとした後、表1に示す温度および保持時間の調質焼鈍を施してフィン材とした。
[Sample material preparation]
(Examples Nos. 1 to 11, Comparative Examples No. 12 to 20)
The aluminum alloy having the composition shown in Table 1 was melted and cast to form an ingot, and the ingot was chamfered and then subjected to a homogenizing heat treatment at 480 ° C. for 4 hours. The homogenized ingot was subjected to hot rolling while controlling the finish temperature of the hot finish rolling to be 270 ° C. to obtain a hot rolled sheet having a thickness of 3.0 mm. Furthermore, after cold rolling at a cold working ratio of about 97.0% or 97.3% respectively to make the plate thickness 90 μm and 80 μm, temper annealing of the temperature and holding time shown in Table 1 is performed. It was a fin material.
(実施例No.21~26、比較例No.27~33)
 表2に示すアルミニウム合金(表1に対応する合金A,B,D)を、溶解、鋳造して鋳塊とし、この鋳塊に面削を施した後に、均質化熱処理、熱間圧延を施し、板厚3.0mmの熱間圧延板とした。さらに、No.33以外は、それぞれ97.0%または97.3%程度の冷間加工率で冷間圧延を施して板厚を90μmおよび80μmとした後、調質焼鈍を施してフィン材とした。No.33は、板厚3.0mmの熱間圧延板に50%の冷間加工率で冷間圧延を施した後、バッチ炉を用いて360℃×3hの中間焼鈍を実施した。その後さらに、それぞれ94.0%または94.7%程度の冷間加工率で冷間圧延を施して板厚を90μmおよび80μmとした後、調質焼鈍を施してフィン材とした。均質化熱処理、熱間仕上げ圧延の終了温度、調質焼鈍の条件は、表2に示すとおりである。なお、No.29はフィン材を製造できなかったものである。 
(Examples Nos. 21 to 26, Comparative Examples No. 27 to 33)
The aluminum alloys shown in Table 2 (Alloys A, B, and D corresponding to Table 1) are melted and cast into ingots, and the ingots are chamfered, then subjected to homogenization heat treatment and hot rolling. A hot-rolled sheet with a thickness of 3.0 mm. Furthermore, no. Except for 33, cold rolling was performed at a cold working ratio of about 97.0% or 97.3% to make the plate thickness 90 μm and 80 μm, respectively, followed by temper annealing to obtain a fin material. No. The sample No. 33 cold-rolled a hot-rolled sheet having a thickness of 3.0 mm at a cold working ratio of 50%, and then performed intermediate annealing at 360 ° C. × 3 h using a batch furnace. Thereafter, cold rolling was performed at a cold working ratio of about 94.0% or 94.7% to make the plate thickness 90 μm and 80 μm, respectively, and then temper annealing was performed to obtain a fin material. The conditions for the homogenization heat treatment, the finish temperature of hot finish rolling, and the temper annealing are as shown in Table 2. No. No. 29 can not produce a fin material.
(実施例No.34~37、比較例No.38~41) 
 表2のNo.21と同様のフィン材であるNo.34、35、表2のNo.22と同様のフィン材であるNo.36、37、表2のNo.27と同様のフィン材であるNo.38、39、表2のNo.32と同様のフィン材であるNo.40、41に対して以下の表面処理(No.1~4)を行った。
(Examples No. 34 to 37, Comparative Examples No. 38 to 41)
Table 2 No. No. 21 which is the same fin material as No. 21. 34, 35, No. 2 in Table 2 No. 2 which is the same fin material as No. 22. 36, 37, No. 2 in Table 2 No. 27 which is the same fin material as No. 27. 38, 39, No. 2 in Table 2 No. 2 which is the same fin material as No. 32. The following surface treatments (Nos. 1 to 4) were applied to 40 and 41.
 No.1:特開2010-223520号公報の比較例1と同じ条件の表面処理(化成皮膜、親水性皮膜、潤滑性皮膜をこの順に備える) 
 No.2:特許第3383914号公報の実施例1と同じ条件の表面処理(化成皮膜、親水性皮膜、潤滑性樹脂皮膜をこの順に備える) 
 No.3:特開2008-224204号公報の実施例1と同じ条件の表面処理(化成皮膜、耐食性樹脂皮膜、親水性皮膜をこの順に備える)
 No.4:特開2010-223514号公報の比較例21と同じ条件の表面処理(化成皮膜、耐食性樹脂皮膜をこの順に備える)
No. 1: Surface treatment under the same conditions as in Comparative Example 1 of JP-A-2010-223520 (provided with a chemical conversion film, a hydrophilic film and a lubricating film in this order)
No. 2: Surface treatment under the same conditions as in Example 1 of Japanese Patent No. 3383914 (provided with a chemical conversion film, a hydrophilic film and a lubricating resin film in this order)
No. 3: Surface treatment under the same conditions as in Example 1 of JP 2008-224204 A (conversion film, corrosion resistant resin film, hydrophilic film are provided in this order)
No. 4: Surface treatment under the same conditions as in Comparative Example 21 of JP 2010-223514 A (provided with a chemical conversion film and a corrosion resistant resin film in this order)
 成分組成を表1に、製造条件を表2、3に示す。なお、表中、本発明の範囲を満たさないものは、数値に下線を引いて示し、成分を含有しないものは、「-」で示す。なお、No.29はフィン材を製造できなかったものであるため、調質焼鈍の欄に「-」と記す。また、No.19(合金C)は、特許文献2の記載に基づくアルミニウム合金フィン材に基づくものであり、No.20(合金D)は、製造条件は異なるが特許文献1の記載に基づくアルミニウム合金フィンに基づくものである。また、No.32は、特許文献1の記載に基づくアルミニウム合金板である。  The component compositions are shown in Table 1, and the production conditions are shown in Tables 2 and 3. In the table, those which do not satisfy the scope of the present invention are indicated by underlining numerical values, and those which do not contain a component are indicated by "-". No. Since No. 29 could not produce a fin material, it is described as "-" in the column of heat treatment annealing. Also, no. No. 19 (alloy C) is based on the aluminum alloy fin material based on the description of patent document 2, and No. No. 20 (alloy D) is based on an aluminum alloy fin based on the description of Patent Document 1 although the manufacturing conditions are different. Also, no. 32 is an aluminum alloy plate based on the description of Patent Document 1.
 次に、フィン材の組織形態として、亜結晶粒の平均粒径およびβ-Fiberの体積分率を以下の方法により測定した。さらに、強度および伸びを以下の方法により測定した。 Next, the average grain size of subgrains and the volume fraction of β-fiber were measured by the following method as the morphology of the fin material. Furthermore, strength and elongation were measured by the following methods.
〔亜結晶粒の平均粒径〕
 亜結晶粒の平均粒径は、観察倍率1,000倍で試料表面を撮影した走査電子顕微鏡(SEM)組織を、測定間隔0.10μmにてEBSP法により方位解析したデータを基に、TSL社製OIM(Orientation Imaging Microscopy:登録商標名)ソフト上で自動計算することにより算出した。すなわち、フィン材の全面積をSEM/EBSP測定データによりカウントされた結晶粒の数で除し、各結晶粒の面積を円と近似した場合の直径を亜結晶粒の平均粒径と定義した。なお、結晶粒の数は、隣接結晶粒間の方位差が2°以内の結晶粒界に囲まれた結晶粒を一つの結晶粒としてカウントした。
[Average grain size of subgrains]
The average grain size of subgrains is based on data obtained by analyzing the structure of a scanning electron microscope (SEM) obtained by photographing the sample surface at an observation magnification of 1,000 times by EBSP at a measurement interval of 0.10 μm. It was calculated by automatically calculating on OIM (Orientation Imaging Microscopy (registered trademark) registered trademark) software. That is, the total area of the fin material was divided by the number of crystal grains counted by the SEM / EBSP measurement data, and the diameter when the area of each crystal grain was approximated as a circle was defined as the average grain size of subgrains. The number of crystal grains was counted as one crystal grain surrounded by crystal grain boundaries having a difference in orientation between adjacent crystal grains within 2 °.
〔β-Fiberの体積分率〕
 β-Fiberの体積分率は、観察倍率1,000倍で試料表面を撮影した走査電子顕微鏡(SEM)組織を、測定間隔0.10μmにてEBSP法により方位解析したデータを基に、TSL社製OIM(Orientation Imaging Microscopy:登録商標名)ソフト上で自動計算することにより算出した。すなわち、試料表面を撮影した総視野:2mm×2mm以上の面積に占める、Brass方位、S方位、Cu方位の体積分率を合計したものをβ-Fiberの体積分率と定義した。なお、各方位は、理想方位から15°以内を同一方位成分として解析した。
[Volume fraction of β-Fiber]
The volume fraction of β-Fiber is based on data obtained by analyzing the scanning electron microscope (SEM) tissue obtained by imaging the sample surface at an observation magnification of 1,000 times by EBSP at a measurement interval of 0.10 μm. It was calculated by automatically calculating on OIM (Orientation Imaging Microscopy (registered trademark) registered trademark) software. That is, the total field of the sample surface photographed: the sum of the volume fractions of the Brass orientation, the S orientation, and the Cu orientation occupying an area of 2 mm × 2 mm or more was defined as the volume fraction of β-Fiber. Each azimuth was analyzed as the same azimuth component within 15 ° from the ideal azimuth.
〔強度および伸び〕
 フィン材から、引張方向が圧延方向と平行になるようにJIS5号による引張試験片を切り出した。この試験片で、JISZ2241による引張試験を実施し、引張強さ、および、伸びを測定した。なお、本実施例および比較例の評価における引張速度は5mm/minで行った。
[Strength and Elongation]
From the fin material, a tensile test piece according to JIS No. 5 was cut out so that the tensile direction was parallel to the rolling direction. With this test piece, a tensile test according to JIS Z 2241 was performed to measure the tensile strength and the elongation. In addition, the tensile speed in evaluation of a present Example and a comparative example was performed at 5 mm / min.
〔評価〕
 作製したフィン材にドローレス成形およびコンビネーション成形によりプレス成形を実施し、耐カラー割れ性を評価した。
 耐カラー割れ性評価は、プレス成形品400穴に対して、カラー部に生じた割れを目視にてカウントすることで評価した。
 「割れ数/400×100(%)」を発生率とし、発生率が5%未満を(◎)、5%以上10%未満を(○)、10%以上20%未満を(△)、20%以上を(×)とした。そして、ドローレス成形の90μmおよび80μm、コンビネーション成形の90μmおよび80μmのすべてにおいて(◎)、(○)、(△)のいずれかであったものを合格とした。
[Evaluation]
The formed fin material was press-formed by drawless molding and combination molding, and the color crack resistance was evaluated.
The color crack resistance evaluation was performed by visually counting the cracks generated in the color part with respect to the press-formed product 400 holes.
The incidence is "number of cracks / 400 × 100 (%)", the incidence is less than 5% ((), 5% or more and less than 10% (○), 10% or more and less than 20% (Δ), 20 % Or more is (x). And in 90 micrometers and 80 micrometers of drawless molding, and all of 90 micrometers and 80 micrometers of combination molding, those which were either (O), (○), (Δ) were taken as pass.
 測定結果および評価結果を表1~3に示す。なお、表中、本発明の範囲を満たさないものは、数値に下線を引いて示し、フィン材の製造ができないために、測定および評価ができなかったものは、「-」で示す。 The measurement results and the evaluation results are shown in Tables 1 to 3. In the table, those that do not satisfy the scope of the present invention are indicated by underlining numerical values, and those that could not be measured and evaluated because of the inability to manufacture fin materials are indicated by “-”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(成分による評価)
 表1に示すように、実施例であるNo.1~11は、本発明の範囲を満たすため、耐カラー割れ性に優れていた。 
(Evaluation by ingredients)
As shown in Table 1, No. 1 as an example. Nos. 1 to 11 were excellent in color crack resistance because they satisfied the range of the present invention.
 一方、比較例であるNo.12~20は、本発明の範囲を満たさないため、以下の結果となった。
 No.12は、Si含有量が上限値を超えるため、粗大な金属間化合物が増加し、耐カラー割れ性に劣った。
On the other hand, No. 1 which is a comparative example. Since 12 to 20 do not satisfy the scope of the present invention, the following results were obtained.
No. In No. 12, since the Si content exceeded the upper limit value, coarse intermetallic compounds increased, and the color crack resistance was inferior.
 No.13は、Fe含有量が下限値未満のため、亜結晶粒の平均粒径が上限値を超え、耐カラー割れ性に劣った。No.14は、Fe含有量が上限値を超えるため、粗大な金属間化合物が増加し、耐カラー割れ性に劣った。  No. In No. 13, since the Fe content is less than the lower limit value, the average grain size of the subgrains exceeds the upper limit value, and the color crack resistance is inferior. No. In No. 14, because the Fe content exceeded the upper limit value, coarse intermetallic compounds increased, and the color crack resistance was inferior.
 No.15は、Cu含有量が下限値未満のため、亜結晶粒の平均粒径が上限値を超え、また、β-Fiberの体積分率が下限値未満となり、耐カラー割れ性に劣った。No.16は、Cu含有量が上限値を超えるため、加工硬化し、耐カラー割れ性に劣った。  No. In No. 15, the average grain size of the subgrains exceeded the upper limit, and the volume fraction of β-Fiber was lower than the lower limit, because the Cu content was less than the lower limit, and the color cracking resistance was inferior. No. In No. 16, since the Cu content exceeded the upper limit value, work hardening occurred and the color crack resistance was inferior.
 No.17は、Mn含有量が上限値を超えるため、粗大な金属間化合物が増加し、耐カラー割れ性に劣った。No.18は、Cr含有量が上限値を超えるため、粗大な金属間化合物が増加し、耐カラー割れ性に劣った。  No. In No. 17, since the Mn content exceeded the upper limit value, coarse intermetallic compounds increased and the color crack resistance was inferior. No. In No. 18, since the Cr content exceeded the upper limit value, coarse intermetallic compounds increased and the color crack resistance was inferior.
 No.19は、Ti含有量が上限値を超えるため、金属間化合物が粗大化し、耐カラー割れ性に劣った。No.20は、Cuを含有しておらず、また、調質焼鈍温度が高かったことから、亜結晶粒の平均粒径が上限値を超え、また、β-Fiberの体積分率が下限値未満となり、耐カラー割れ性に劣った。 No. In No. 19, since the Ti content exceeded the upper limit value, the intermetallic compound was coarsened and the color crack resistance was inferior. No. Since No. 20 does not contain Cu and the refined annealing temperature is high, the average grain size of subgrains exceeds the upper limit value, and the volume fraction of β-Fiber falls below the lower limit value. , Poor in color crack resistance.
(製造方法による評価) 
 表2に示すように、実施例であるNo.21~26は、本発明の範囲を満たすため、耐カラー割れ性に優れていた。 
(Evaluation by manufacturing method)
As shown in Table 2, No. 1 as an example. 21 to 26 were excellent in color crack resistance because they satisfied the range of the present invention.
 一方、比較例であるNo.27~33は、本発明の範囲を満たさないため、以下の結果となった。
 No.27は、均質化熱処理の温度が下限値未満のため、亜結晶粒の平均粒径が上限値を超え、また、β-Fiberの体積分率が下限値未満となり、耐カラー割れ性に劣った。No.28は、均質化熱処理の温度が上限値を超えるため、亜結晶粒の平均粒径が上限値を超え、耐カラー割れ性に劣った。
On the other hand, No. 1 which is a comparative example. Since 27 to 33 do not satisfy the scope of the present invention, the following results were obtained.
No. In No. 27, since the temperature of the homogenization heat treatment was less than the lower limit, the average grain size of the subgrains exceeded the upper limit, and the volume fraction of β-Fiber was less than the lower limit, and the color crack resistance was inferior. . No. In No. 28, since the temperature of the homogenization heat treatment exceeded the upper limit value, the average grain size of the subgrains exceeded the upper limit value, and the color crack resistance was inferior.
 No.29は、熱間仕上げ圧延の終了温度が下限値未満のため、圧延自体が困難であり、フィン材の製造ができなかった。No.30は、熱間仕上げ圧延の終了温度が上限値を超えるため、β-Fiberの体積分率が下限値未満となり、耐カラー割れ性に劣った。No.31は、調質焼鈍の温度が上限値を超えるため、亜結晶粒の平均粒径が上限値を超え、また、β-Fiberの体積分率が下限値未満となり、耐カラー割れ性に劣った。 No. In No. 29, since the finish temperature of the hot finish rolling was less than the lower limit value, the rolling itself was difficult, and the fin material could not be manufactured. No. In No. 30, the end temperature of the hot finish rolling exceeded the upper limit value, so that the volume fraction of β-fiber became less than the lower limit value and the color crack resistance was inferior. No. In No. 31, the average grain size of the subgrains exceeded the upper limit, and the volume fraction of β-Fiber was less than the lower limit, and the color cracking resistance was inferior because the temperature of the temper annealing exceeded the upper limit. .
 No.32は、均質化熱処理の温度が上限値を超え、熱間仕上げ圧延の終了温度が下限値未満であり、調質焼鈍の温度が上限値を超えるため、亜結晶粒の平均粒径が上限値を超え、また、β-Fiberの体積分率が下限値未満となり、耐カラー割れ性に劣った。なお、圧延はかろうじて行なうことができた。No.33は、中間焼鈍を行なったため、冷間加工率が下限値未満となったものである。そのため、亜結晶粒の平均粒径が上限値を超え、また、β-Fiberの体積分率が下限値未満となり、耐カラー割れ性に劣った。 No. In No. 32, since the temperature of homogenization heat treatment exceeds the upper limit, the finish temperature of hot finish rolling is less than the lower limit, and the temperature of temper annealing exceeds the upper limit, the average grain size of subgrains is the upper limit In addition, the volume fraction of β-Fiber was less than the lower limit value, and the color crack resistance was inferior. The rolling could be carried out barely. No. In No. 33, since the intermediate annealing was performed, the cold working ratio was less than the lower limit value. Therefore, the average grain size of the subgrains exceeded the upper limit value, and the volume fraction of β-fiber became less than the lower limit value, and the color crack resistance was inferior.
(表面処理を施した場合の評価)
 No.34~41における表面処理を施したフィン材の耐カラー割れ性は、表面処理を実施していないフィン材と同様の結果となった。
(Evaluation when surface treatment is applied)
No. The color crack resistance of the surface-treated fin material of 34 to 41 was the same as that of the non-surface-treated fin material.
 なお、No.19、20、32のフィン材は、それぞれ特許文献2、特許文献1、特許文献1に記載された従来のアルミニウム合金フィン材を想定したものである。本実施例で示すように、これら従来のアルミニウム合金フィン材は、前記の評価において一定の水準を満たさないものである。従って、本実施例によって、本発明に係る熱交換器用アルミニウム合金フィン材が従来のアルミニウム合金フィン材と比較して、優れていることが客観的に明らかとなった。 No. The 19, 20, and 32 fin materials are assumed to be the conventional aluminum alloy fin materials described in Patent Document 2, Patent Document 1, and Patent Document 1, respectively. As shown in this example, these conventional aluminum alloy fin materials do not satisfy a certain level in the above evaluation. Therefore, according to this example, it was objectively clarified that the aluminum alloy fin material for a heat exchanger according to the present invention is superior to the conventional aluminum alloy fin material.
 以上、本発明に係る熱交換器用アルミニウム合金フィン材およびその製造方法について実施の形態および実施例を示して詳細に説明したが、本発明の趣旨は前記した内容に限定されるものではない。なお、本発明の内容は、前記した記載に基づいて広く改変・変更等することができることはいうまでもない。 As mentioned above, although the aluminum alloy fin material for heat exchangers concerning the present invention and its manufacturing method were explained in detail, showing an embodiment and an example, the meaning of the present invention is not limited to the contents mentioned above. It goes without saying that the contents of the present invention can be widely modified or changed based on the above description.
 本出願は、2010年9月3日出願の日本特許出願(特願2010-198326)、2011年3月31日出願の日本特許出願(特願2011-080856)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application filed on September 3, 2010 (Japanese Patent Application No. 2010-198326), Japanese Patent Application filed on March 31, 2011 (Japanese Patent Application No. 2011-080856), and the contents thereof are as follows. It is incorporated here as a reference.
 本発明の熱交換器用アルミニウム合金フィン材は、成形加工したときのカラー割れがなく、フィンの外観も良好で、高性能の熱交換器が得られる。 The aluminum alloy fin material for a heat exchanger according to the present invention does not have a color crack when it is formed and processed, and the appearance of the fin is also good, and a high-performance heat exchanger can be obtained.

Claims (4)

  1.  Fe:0.20~1.0質量%、Cu:0.02~0.1質量%を含有し、Si:0.15質量%以下、Mn:0.015質量%以下、Cr:0.015質量%以下に抑制し、残部がAlおよび不可避的不純物からなる熱交換器用アルミニウム合金フィン材であって、
     前記熱交換器用アルミニウム合金フィン材の厚みが0.1mm以下であり、
     亜結晶粒の平均粒径が2.5μm以下およびβ-Fiberの体積分率が80%以上であることを特徴とする熱交換器用アルミニウム合金フィン材。
    Fe: 0.20 to 1.0 mass%, Cu: 0.02 to 0.1 mass%, Si: 0.15 mass% or less, Mn: 0.015 mass% or less, Cr: 0.015 An aluminum alloy fin material for a heat exchanger, the mass fraction of which is to be suppressed and the balance being Al and unavoidable impurities,
    The thickness of the aluminum alloy fin material for the heat exchanger is 0.1 mm or less,
    An aluminum alloy fin material for a heat exchanger characterized in that subgrains have an average particle size of 2.5 μm or less and a volume fraction of β-fiber of 80% or more.
  2.  さらに、Ti:0.01~0.08質量%を含有することを特徴とする請求項1に記載の熱交換器用アルミニウム合金フィン材。 Furthermore, the aluminum alloy fin material for a heat exchanger according to claim 1, characterized in that it contains 0.01 to 0.08 mass% of Ti.
  3.  フィン材表面に表面処理皮膜を備えることを特徴とする請求項1または請求項2に記載の熱交換器用アルミニウム合金フィン材。 The aluminum alloy fin material for a heat exchanger according to claim 1 or 2, wherein a surface treatment film is provided on the surface of the fin material.
  4.  請求項1または請求項2に記載の熱交換器用アルミニウム合金フィン材の製造方法であって、
     前記の化学成分を有するアルミニウム合金鋳塊に、450~510℃の温度で1時間以上の熱処理を施す熱処理工程と、 
     前記熱処理後に、熱間仕上げ圧延の終了温度が250℃以上300℃未満となる条件で熱間圧延を施す熱間圧延工程と、 
     前記熱間圧延後に、冷間加工率96%以上の冷間加工を行い、板厚を0.1mm以下にする冷間加工工程と、
     前記冷間加工後に、160~250℃の温度で1~6時間保持する調質焼鈍を施す調質焼鈍工程と、を行うことを特徴とする熱交換器用アルミニウム合金フィン材の製造方法。
    A method of manufacturing an aluminum alloy fin material for a heat exchanger according to claim 1 or 2,
    A heat treatment step of subjecting the aluminum alloy ingot having the above-mentioned chemical component to a heat treatment at a temperature of 450 to 510 ° C. for 1 hour or more;
    A hot rolling step of performing hot rolling under the condition that the finish temperature of the hot finish rolling is 250 ° C. or more and less than 300 ° C. after the heat treatment;
    After the hot rolling, a cold working step of performing cold working at a cold working ratio of 96% or more to make the plate thickness 0.1 mm or less;
    A method for producing an aluminum alloy fin material for a heat exchanger, comprising the step of performing a temper annealing step of temper annealing which is maintained at a temperature of 160 to 250 ° C. for 1 to 6 hours after the cold working.
PCT/JP2011/068973 2010-09-03 2011-08-23 Heat exchanger aluminum alloy fin material and method for producing same WO2012029594A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11821611.8A EP2612938B1 (en) 2010-09-03 2011-08-23 Heat exchanger aluminum alloy fin material and method for producing same
CN201180039956.7A CN103080348B (en) 2010-09-03 2011-08-23 Heat exchanger aluminum alloy fin material and manufacture method thereof
AU2011297250A AU2011297250B2 (en) 2010-09-03 2011-08-23 Heat exchanger aluminum alloy fin material and method for producing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010198326 2010-09-03
JP2010-198326 2010-09-03
JP2011080856A JP5060632B2 (en) 2010-09-03 2011-03-31 Aluminum alloy fin material for heat exchanger and manufacturing method thereof
JP2011-080856 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012029594A1 true WO2012029594A1 (en) 2012-03-08

Family

ID=45772689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068973 WO2012029594A1 (en) 2010-09-03 2011-08-23 Heat exchanger aluminum alloy fin material and method for producing same

Country Status (6)

Country Link
EP (1) EP2612938B1 (en)
JP (1) JP5060632B2 (en)
CN (1) CN103080348B (en)
AU (1) AU2011297250B2 (en)
MY (1) MY166827A (en)
WO (1) WO2012029594A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132784A1 (en) * 2011-03-31 2012-10-04 株式会社神戸製鋼所 Drawless press aluminium alloy fin material for heat exchanger, and manufacturing method for same
WO2012132785A1 (en) * 2011-03-31 2012-10-04 株式会社神戸製鋼所 Combination press aluminium alloy fin material for heat exchanger, and manufacturing method for same
JP2012214842A (en) * 2011-03-31 2012-11-08 Kobe Steel Ltd Drawless press aluminum alloy fin material for heat exchanger, and method for manufacturing the same
JP2012214843A (en) * 2011-03-31 2012-11-08 Kobe Steel Ltd Combination press aluminum alloy fin material for heat exchanger, and method for manufacturing the same
JP2012214844A (en) * 2011-03-31 2012-11-08 Kobe Steel Ltd Aluminum alloy fin material for heat exchanger, and method for manufacturing the same
CN103436747A (en) * 2013-08-07 2013-12-11 江阴新仁科技有限公司 High-plasticity aluminum alloy for heat exchange fin plate and processing technology of high-plasticity aluminum alloy
WO2014054486A1 (en) * 2012-10-03 2014-04-10 株式会社神戸製鋼所 Aluminum-alloy fin material for heat exchanger and method for producing same
WO2014054485A1 (en) * 2012-10-03 2014-04-10 株式会社神戸製鋼所 Combination-pressable aluminum-alloy fin material for heat exchanger and method for producing same
JP2014224323A (en) * 2014-07-01 2014-12-04 株式会社神戸製鋼所 Aluminum alloy fin material for heat exchanger and heat exchanger

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014231641A (en) * 2014-07-01 2014-12-11 株式会社神戸製鋼所 Aluminum alloy fin material for heat exchanger of combination press

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155340A (en) * 1981-03-20 1982-09-25 Mitsubishi Alum Co Ltd Al alloy for fin of heat exchanger excellent in workability
JPS58224156A (en) * 1982-06-21 1983-12-26 Sukai Alum Kk Manufacture of thin aluminum alloy plate for sag resistant fin
JPS59190346A (en) * 1983-04-13 1984-10-29 Furukawa Alum Co Ltd Thin aluminum fin material for heat exchanger
JPH01180869A (en) 1988-01-07 1989-07-18 Sumitomo Chem Co Ltd Cyclohexane derivative, its production, herbicide containing it, and method combating weeds using it
JPH032343A (en) * 1989-05-26 1991-01-08 Kobe Steel Ltd Aluminum alloy for heat-exchanger fin
JPH04371541A (en) * 1991-06-14 1992-12-24 Furukawa Alum Co Ltd Aluminum alloy for heat exchanger piping
JPH05230579A (en) * 1992-02-20 1993-09-07 Furukawa Alum Co Ltd High strength thin aluminum alloy sheet for fin of air conditioner and its production
JPH08313191A (en) * 1995-03-16 1996-11-29 Furukawa Electric Co Ltd:The Aluminum fin material for heat exchanger
JPH09137242A (en) * 1995-11-08 1997-05-27 Nippon Light Metal Co Ltd Aluminum alloy thin sheet for cross fin and its production
JPH09176805A (en) * 1995-12-27 1997-07-08 Kobe Steel Ltd Production of aluminum fin material
JPH1180869A (en) * 1997-09-11 1999-03-26 Kobe Steel Ltd Aluminum alloy fin material and production of aluminum alloy fin material
JP3383914B2 (en) 2000-01-21 2003-03-10 株式会社神戸製鋼所 Aluminum fin material for heat exchanger
JP2005264289A (en) * 2004-03-22 2005-09-29 Mitsubishi Alum Co Ltd Aluminum-alloy fin material for heat exchanger having excellent upset resistance of fin pitch and stackability
JP2006104488A (en) * 2004-09-08 2006-04-20 Kobe Steel Ltd Aluminum alloy fin material having excellent forming workability
JP2008224204A (en) 2007-02-16 2008-09-25 Kobe Steel Ltd Aluminum fin material for heat exchanger
JP2009250510A (en) * 2008-04-04 2009-10-29 Mitsubishi Electric Corp Heat exchanger and its manufacturing method
JP2010198326A (en) 2009-02-25 2010-09-09 Fujitsu Ltd Device connectable to network and method
JP2010223520A (en) 2009-03-24 2010-10-07 Kobe Steel Ltd Aluminum fin material for heat exchanger
JP2010223514A (en) 2009-03-24 2010-10-07 Kobe Steel Ltd Aluminum fin material for heat exchanger
JP2011080856A (en) 2009-10-07 2011-04-21 Yokogawa Electric Corp Device and method for detecting clogging of pressure guide pipe

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648240A (en) * 1987-06-29 1989-01-12 Furukawa Aluminium High-strength aluminum alloy sheet for drawless fin and its production

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155340A (en) * 1981-03-20 1982-09-25 Mitsubishi Alum Co Ltd Al alloy for fin of heat exchanger excellent in workability
JPS58224156A (en) * 1982-06-21 1983-12-26 Sukai Alum Kk Manufacture of thin aluminum alloy plate for sag resistant fin
JPS59190346A (en) * 1983-04-13 1984-10-29 Furukawa Alum Co Ltd Thin aluminum fin material for heat exchanger
JPH01180869A (en) 1988-01-07 1989-07-18 Sumitomo Chem Co Ltd Cyclohexane derivative, its production, herbicide containing it, and method combating weeds using it
JPH032343A (en) * 1989-05-26 1991-01-08 Kobe Steel Ltd Aluminum alloy for heat-exchanger fin
JPH04371541A (en) * 1991-06-14 1992-12-24 Furukawa Alum Co Ltd Aluminum alloy for heat exchanger piping
JPH05230579A (en) * 1992-02-20 1993-09-07 Furukawa Alum Co Ltd High strength thin aluminum alloy sheet for fin of air conditioner and its production
JPH08313191A (en) * 1995-03-16 1996-11-29 Furukawa Electric Co Ltd:The Aluminum fin material for heat exchanger
JPH09137242A (en) * 1995-11-08 1997-05-27 Nippon Light Metal Co Ltd Aluminum alloy thin sheet for cross fin and its production
JPH09176805A (en) * 1995-12-27 1997-07-08 Kobe Steel Ltd Production of aluminum fin material
JPH1180869A (en) * 1997-09-11 1999-03-26 Kobe Steel Ltd Aluminum alloy fin material and production of aluminum alloy fin material
JP3383914B2 (en) 2000-01-21 2003-03-10 株式会社神戸製鋼所 Aluminum fin material for heat exchanger
JP2005264289A (en) * 2004-03-22 2005-09-29 Mitsubishi Alum Co Ltd Aluminum-alloy fin material for heat exchanger having excellent upset resistance of fin pitch and stackability
JP4275560B2 (en) 2004-03-22 2009-06-10 三菱アルミニウム株式会社 Aluminum alloy fin material for heat exchangers with excellent Abeck resistance and stackability
JP2006104488A (en) * 2004-09-08 2006-04-20 Kobe Steel Ltd Aluminum alloy fin material having excellent forming workability
JP2008224204A (en) 2007-02-16 2008-09-25 Kobe Steel Ltd Aluminum fin material for heat exchanger
JP2009250510A (en) * 2008-04-04 2009-10-29 Mitsubishi Electric Corp Heat exchanger and its manufacturing method
JP2010198326A (en) 2009-02-25 2010-09-09 Fujitsu Ltd Device connectable to network and method
JP2010223520A (en) 2009-03-24 2010-10-07 Kobe Steel Ltd Aluminum fin material for heat exchanger
JP2010223514A (en) 2009-03-24 2010-10-07 Kobe Steel Ltd Aluminum fin material for heat exchanger
JP2011080856A (en) 2009-10-07 2011-04-21 Yokogawa Electric Corp Device and method for detecting clogging of pressure guide pipe

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132784A1 (en) * 2011-03-31 2012-10-04 株式会社神戸製鋼所 Drawless press aluminium alloy fin material for heat exchanger, and manufacturing method for same
WO2012132785A1 (en) * 2011-03-31 2012-10-04 株式会社神戸製鋼所 Combination press aluminium alloy fin material for heat exchanger, and manufacturing method for same
JP2012214842A (en) * 2011-03-31 2012-11-08 Kobe Steel Ltd Drawless press aluminum alloy fin material for heat exchanger, and method for manufacturing the same
JP2012214843A (en) * 2011-03-31 2012-11-08 Kobe Steel Ltd Combination press aluminum alloy fin material for heat exchanger, and method for manufacturing the same
JP2012214844A (en) * 2011-03-31 2012-11-08 Kobe Steel Ltd Aluminum alloy fin material for heat exchanger, and method for manufacturing the same
AU2012235013B2 (en) * 2011-03-31 2015-08-27 Kabushiki Kaisha Kobe Seiko Sho Combination-pressable heat-exchanging aluminium alloy fin material and manufacturing method for the same
WO2014054486A1 (en) * 2012-10-03 2014-04-10 株式会社神戸製鋼所 Aluminum-alloy fin material for heat exchanger and method for producing same
WO2014054485A1 (en) * 2012-10-03 2014-04-10 株式会社神戸製鋼所 Combination-pressable aluminum-alloy fin material for heat exchanger and method for producing same
JP2014074199A (en) * 2012-10-03 2014-04-24 Kobe Steel Ltd Aluminum alloy fin material for heat exchanger for combination press and manufacturing method thereof
JP2014074198A (en) * 2012-10-03 2014-04-24 Kobe Steel Ltd Aluminum alloy fin material for heat exchanger and manufacturing method thereof
CN103436747A (en) * 2013-08-07 2013-12-11 江阴新仁科技有限公司 High-plasticity aluminum alloy for heat exchange fin plate and processing technology of high-plasticity aluminum alloy
JP2014224323A (en) * 2014-07-01 2014-12-04 株式会社神戸製鋼所 Aluminum alloy fin material for heat exchanger and heat exchanger

Also Published As

Publication number Publication date
EP2612938A4 (en) 2017-11-15
MY166827A (en) 2018-07-23
EP2612938A1 (en) 2013-07-10
EP2612938B1 (en) 2019-11-06
AU2011297250A1 (en) 2013-04-04
JP2012072484A (en) 2012-04-12
AU2011297250B2 (en) 2015-03-19
CN103080348B (en) 2015-11-25
CN103080348A (en) 2013-05-01
JP5060632B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
JP5060632B2 (en) Aluminum alloy fin material for heat exchanger and manufacturing method thereof
CN107075620B (en) Aluminum alloy brazing sheet having high strength, high corrosion resistance, and high elongation of plateau material
JP5828657B2 (en) Aluminum alloy fin material for heat exchanger
JP5693333B2 (en) Aluminum alloy fin material for heat exchanger for combination press
WO2015155911A1 (en) High-strength aluminum alloy plate having exceptional bendability and shape fixability, and method for manufacturing same
JP4996909B2 (en) Aluminum alloy brazing sheet and method for producing the same
JP5830451B2 (en) Aluminum alloy fin material for heat exchanger for combination press
JP5843462B2 (en) Aluminum alloy fin material for heat exchanger for drawless press
JP5050577B2 (en) Aluminum alloy plate for forming process excellent in deep drawability and bake-proof softening property and method for producing the same
JP3810902B2 (en) Aluminum alloy fin material and method for producing aluminum alloy fin material
JP5828825B2 (en) Aluminum alloy fin material for heat exchanger and manufacturing method of heat exchanger
WO2012132784A1 (en) Drawless press aluminium alloy fin material for heat exchanger, and manufacturing method for same
WO2012132785A1 (en) Combination press aluminium alloy fin material for heat exchanger, and manufacturing method for same
JP3735700B2 (en) Aluminum alloy fin material for heat exchanger and method for producing the same
JP5923841B2 (en) Aluminum alloy fin material for heat exchanger for drawless press
WO2016056240A1 (en) Superplastic-forming aluminium alloy plate and production method therefor
JP5807079B2 (en) Aluminum alloy fin material for heat exchanger
JP5764240B2 (en) Aluminum alloy fin material for heat exchanger for combination press
JP2014224323A (en) Aluminum alloy fin material for heat exchanger and heat exchanger
JP2014231641A (en) Aluminum alloy fin material for heat exchanger of combination press
JP6328374B2 (en) Aluminum alloy fin material for heat exchanger and manufacturing method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180039956.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821611

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12013500280

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011821611

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011297250

Country of ref document: AU

Date of ref document: 20110823

Kind code of ref document: A