WO2012132784A1 - Drawless press aluminium alloy fin material for heat exchanger, and manufacturing method for same - Google Patents

Drawless press aluminium alloy fin material for heat exchanger, and manufacturing method for same Download PDF

Info

Publication number
WO2012132784A1
WO2012132784A1 PCT/JP2012/055659 JP2012055659W WO2012132784A1 WO 2012132784 A1 WO2012132784 A1 WO 2012132784A1 JP 2012055659 W JP2012055659 W JP 2012055659W WO 2012132784 A1 WO2012132784 A1 WO 2012132784A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin material
aluminum alloy
less
mass
heat exchanger
Prior art date
Application number
PCT/JP2012/055659
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 金田
梅田 秀俊
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011080853A external-priority patent/JP5843462B2/en
Priority claimed from JP2011080855A external-priority patent/JP5828657B2/en
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to AU2012235012A priority Critical patent/AU2012235012B2/en
Priority to CN201280015567.5A priority patent/CN103459629B/en
Priority to EP12764109.0A priority patent/EP2692881A4/en
Publication of WO2012132784A1 publication Critical patent/WO2012132784A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins

Definitions

  • the present invention relates to an aluminum alloy fin material for a heat exchanger for a drawless press used for a heat exchanger and a method for producing the same.
  • fin materials aluminum alloy fin materials for heat exchangers used in heat exchangers such as air conditioners (hereinafter referred to as fin materials as appropriate) have also been switched to new refrigerants in line with chlorofluorocarbon regulations, and the air conditioners themselves have become more compact and lightweight.
  • the thickness has been further reduced, and the thickness has been reduced to 0.15 mm or less, and recently to about 0.09 mm.
  • the draw method consists of an overhanging process, a drawing process, a punching (piercing) and hole expanding process (burring), and a flaring process.
  • the drawless system consists of a punching and hole expanding process, an ironing (ironing) process, and a flaring process. Is mainly composed of an overhanging process, a drawing process, a punching and hole expanding process, an ironing process, and a flaring process.
  • the piercing & burring molding and the flaring molding for molding the tube hole collar in the copper pipe are indispensable molding processes for the fin material.
  • these moldings are severe molding for the fin material whose thickness is reduced to 0.15 mm or less. Therefore, fin materials with improved workability have been developed in response to such thinning.
  • the plate thickness is 0.15 mm or less, and the grain size of the intermetallic compound, the maximum length of the large tilt grain, the average grain size of the subcrystal grains in the large tilt grain, and the like are predetermined.
  • a defined aluminum alloy fin material having excellent formability is disclosed.
  • Patent Document 2 discloses that the plate thickness is less than 0.11 mm, contains a predetermined amount of Fe and Ti, regulates Si and Cu to be equal to or less than a predetermined amount, and prescribes a predetermined elongation rate.
  • An aluminum alloy fin material for heat exchangers having excellent stackability (characteristic that contact with adjacent fins due to non-uniform deformation at the time of pipe expansion) is disclosed.
  • Patent Document 3 discloses an aluminum alloy fin material for a heat exchanger that has a plate thickness of less than 0.11 mm and that has a predetermined element content and is excellent in anti-Abek resistance.
  • Patent Document 4 discloses a high-strength aluminum alloy thin plate for drawless fins having a plate thickness after cold rolling of 0.115 mm and a predetermined element being specified, and a method for manufacturing the same.
  • JP 2006-104488 A Japanese Patent No. 4275560 JP 2005-126799 A JP-A-64-8240
  • the conventional fin material has the following problems. Although the above-described conventional techniques have improved the workability, in recent years, in addition to further miniaturization, weight reduction, and high performance of heat exchangers, fin materials that are easier to process have been supplied. Since it is expected, further improvement in workability is required.
  • cracks often referred to as color cracks may occur during molding. That is, a fine crack is generated on the processed end face during the piercing and burring process, and this causes a color crack during the final reflare molding.
  • a color crack occurs, when the copper tube is expanded through the color hole of the fin-molded molded product, the so-called Abek phenomenon that the interval between the laminated fins becomes extremely narrow is caused. It tends to occur.
  • the ventilation resistance of a heat exchanger increases by this Abeck phenomenon. That is, the color crack not only impairs the appearance of the fins, but also causes problems such as a decrease in performance as a heat exchanger, thereby reducing the value as a product.
  • the fin material described in Patent Document 1 aims to improve color cracking resistance.
  • Mn is positively added, depending on the Mn content and production conditions, there is a problem that it becomes easy to work and harden by a coarse intermetallic compound or solid solution Mn. Therefore, there is room for improvement in resistance to color cracking.
  • the present invention has been made in view of the above-mentioned problems, and is intended for a drawless press fin material.
  • a drawless press excellent in color cracking resistance that can suppress the occurrence of color cracking during molding. It is an object to provide an aluminum alloy fin material for a heat exchanger.
  • the aluminum alloy fin material for a heat exchanger for a drawless press contains Fe: 0.010 to 0.4% by mass, the balance is made of Al and inevitable impurities, and the Al purity is 99.30% by mass.
  • % Aluminum alloy fin material for heat exchanger for drawless press wherein the thickness of the aluminum alloy fin material for heat exchanger for drawless press is less than 0.115 mm, and the average grain size of sub-crystal grains is It is characterized by being 2.5 ⁇ m or less and a proof stress of 130 N / mm 2 or more. Further, the number of intermetallic compounds having a maximum length exceeding 3 ⁇ m is 2000 pieces / mm 2 or less.
  • an Al—Fe-based intermetallic compound is formed, or it dissolves in the aluminum matrix and the sub-crystal grains are refined during press molding.
  • the increase in an intermetallic compound is suppressed by prescribing Al purity.
  • the elongation in the fin material of thickness less than 0.115 mm increases by making the average particle diameter of a subcrystal grain into 2.5 micrometers or less.
  • the proof stress is 130 N / mm 2 or more, the strength becomes appropriate as a fin material for a drawless press.
  • the number of intermetallic compounds having a maximum length exceeding 3 ⁇ m is 2000 pieces / mm 2 or less, the occurrence of color cracks due to the starting point of coarse intermetallic compounds is prevented.
  • the aluminum alloy fin material for a heat exchanger for a drawless press according to the present invention further contains Cu: 0.005 to 0.05% by mass, Si: 0.15% by mass or less, regarding the chemical components of the aluminum alloy. It is characterized by suppressing to Mn: less than 0.015 mass% and Cr: 0.015 mass% or less.
  • the aluminum alloy fin material for a heat exchanger for a drawless press according to the present invention is characterized by further containing Ti: 0.01 to 0.05% by mass with respect to the chemical component of the aluminum alloy. According to such a configuration, the ingot structure is refined by adding a predetermined amount of Ti.
  • the aluminum alloy fin material for a heat exchanger for a drawless press according to the present invention may be provided with a surface treatment film on the surface of the fin material.
  • the surface treatment film include a corrosion-resistant film, a hydrophilic film, and a lubricating film. According to such a structure, the characteristics according to use environment, a use, etc., such as corrosion resistance, hydrophilicity, and moldability, can be improved.
  • a method for producing an aluminum alloy fin material for a heat exchanger for a drawless press is a method for producing the aluminum alloy fin material for a heat exchanger for a drawless press (not provided with a surface treatment film).
  • a heat treatment step in which an aluminum alloy ingot having an alloy chemical component is subjected to a heat treatment at a temperature of 450 to 500 ° C. for 1 hour or more, and after the heat treatment, a finish temperature of hot finish rolling becomes 250 ° C. or more and less than 300 ° C.
  • a temper annealing step in which temper annealing is performed for 1 to 6 hours.
  • the structure of the ingot is homogenized by the heat treatment process, and the hot rolled sheet is rolled without being recrystallized by the hot rolling process. And by a cold working process, it is set as thickness less than 0.115 mm, without producing the coarsening of a subcrystal grain after temper annealing, and a cold work material is tempered by a temper annealing process.
  • the aluminum alloy fin material for a heat exchanger for a drawless press according to the present invention can suppress color cracking when it is formed. For this reason, it is possible to prevent the appearance of the fins from being damaged and the occurrence of problems such as deterioration in performance as a heat exchanger.
  • the method for producing an aluminum alloy fin material for a heat exchanger for a drawless press according to the present invention can produce an aluminum alloy fin material for a heat exchanger having excellent color cracking resistance.
  • the fin material according to the present invention is for a drawless press containing a predetermined amount of Fe, the balance being made of Al and inevitable impurities, and an aluminum alloy having an Al purity of 99.30% by mass or more.
  • the thickness of this fin material is less than 0.115 mm, the average grain size of subcrystal grains is specified to 2.5 ⁇ m or less, and the proof stress is specified to 130 N / mm 2 or more.
  • the number of intermetallic compounds exceeding 3 ⁇ m is defined as 2000 pieces / mm 2 or less.
  • the chemical component of an aluminum alloy it is preferable to contain a predetermined amount of Cu as necessary, and to suppress Si, Mn, Cr to a predetermined amount or less or less than a predetermined amount among unavoidable impurities contained in the aluminum alloy. . Furthermore, you may contain predetermined amount of Ti as needed.
  • Fe 0.010 to 0.4 mass%
  • Fe is an element that contributes to suppression of work hardening because it can form Al—Fe-based intermetallic compounds (or solid solution in an aluminum matrix) to make fine sub-crystal grains fine during press molding.
  • it has the effect which contributes to the magnitude
  • the Fe content is less than 0.010% by mass, the above effects cannot be obtained, and the color cracking property is inferior in press molding.
  • it exceeds 0.4 mass% a coarse intermetallic compound is formed and the color cracking resistance is inferior. Therefore, the Fe content is 0.010 to 0.4 mass%.
  • Cu 0.005 to 0.05 mass%
  • the Cu content is set to 0.005 to 0.05 mass%. More preferably, the content is 0.01 to 0.05% by mass.
  • Si 0.15 mass% or less (including 0 mass%)
  • Si is an element mixed as an unavoidable impurity.
  • the crystallized product intermetallic compound
  • Si content shall be 0.15 mass% or less. In addition, you may suppress to 0 mass%.
  • Mn is an element mixed as an unavoidable impurity.
  • the crystallized product intermetallic compound
  • the crystallized product becomes coarse, which becomes a stress concentration point at the time of forming, and cracks. Is the starting point. Therefore, when it contains Mn, Mn content is suppressed to less than 0.015 mass%. Furthermore, it is preferable to suppress to less than 0.005 mass%. In addition, you may suppress to 0 mass%.
  • Cr 0.015 mass% or less (including 0 mass%)
  • Cr is an element mixed as an unavoidable impurity.
  • the crystallized product intermetallic compound
  • the crystallized product becomes coarse, which becomes a stress concentration point at the time of forming and cracks. Is the starting point. Therefore, when it contains Cr, Cr content is suppressed to 0.015 mass% or less. In addition, you may suppress to 0 mass%.
  • Ti 0.01 to 0.05% by mass
  • the molten metal at any stage introduced into the degassing device and the molten metal flow rate control device may be added, and the Ti content is allowed to be 0.05 mass%. If the Ti content is less than 0.01% by mass, the effect of refining the ingot structure cannot be obtained.
  • the crystallized product (intermetallic compound) becomes coarse, and this becomes a stress concentration point at the time of molding and becomes a starting point of cracking. Therefore, when Ti is added, the Ti content is 0.01 to 0.05 mass%.
  • the fin material is composed of Al and inevitable impurities.
  • unavoidable impurities in addition to the above-described Si, Mn, Cr, for example, Mg, Zn, Zr, Ce, Ga, V, which are contained in a metal base or an intermediate alloy within a generally known range. Ni and the like are allowed to contain up to 0.05% by mass, as long as the Al purity is not less than 99.30% by mass.
  • Al purity 99.30% by mass or more
  • the present invention is directed to a fin material having a thickness of less than 0.115 mm from the viewpoint of reducing the thickness of the fin material in response to recent demands for downsizing, weight reduction, and high performance of heat exchangers. Therefore, the thickness of the fin material is less than 0.115 mm.
  • the average grain size of the sub-crystal grains in the alloy be 2.5 ⁇ m or less. If the average grain size of the sub-crystal grains exceeds 2.5 ⁇ m, sufficient elongation of the fin material cannot be obtained. Therefore, the average grain size of the sub-crystal grains is 2.5 ⁇ m or less.
  • a lower limit is not specified in particular, it may be 0 ⁇ m (that is, it does not have to include subcrystal grains). By setting it as such a range, generation
  • orientation analysis of a scanning electron microscope (SEM) structure is performed by an EBSD (Electron Back Scattered Diffraction Pattern) method.
  • SEM scanning electron microscope
  • EBSD Electro Back Scattered Diffraction Pattern
  • a sample is irradiated with an electron beam, and the crystal orientation is specified by utilizing reflected electron Kikuchi line diffraction generated at that time.
  • OIM Orientation Imaging Microscopy.TM manufactured by TSL can be used.
  • the average grain size of the sub-crystal grains is calculated from the SEM / EBSD measurement data, the number of crystal grains is calculated, the total area of the fin material is divided by the number of crystal grains, and the area of each crystal grain is approximated to a circle.
  • the diameter of the case is defined as the average grain size of the subgrains.
  • the average grain size of the sub-crystal grains and the number of intermetallic compounds can be controlled by the component composition and the production conditions described later.
  • the average grain size of subgrains is the content of each component, homogenization heat treatment conditions (temperature and time), hot finish rolling finish temperature, cold work rate, temper annealing conditions (temperature and time) ),
  • the number of intermetallic compounds is controlled by the content of each component, homogenization heat treatment conditions (temperature and time), and the like.
  • the yield strength is 130 N / mm 2 or more. If the proof stress is less than 130 N / mm 2 , the strength is insufficient, and color cracks occur during drawless press molding. Therefore, the proof stress is 130 N / mm 2 or more. In addition, Preferably it is more than 130 N / mm ⁇ 2 >. Further, if the strength is too high, color cracks are liable to occur during drawless press molding, so the upper limit is preferably 170 N / mm 2 .
  • the proof stress can be measured by, for example, cutting out a tensile test piece according to JIS No. 5 from a fin material so that the tensile direction is parallel to the rolling direction and performing a tensile test according to JISZ2241.
  • the average grain size, the yield strength, and the number of intermetallic compounds of the subcrystalline grains can be controlled by the component composition and the production conditions described later.
  • the average grain size of subgrains is the content of each component, homogenization heat treatment conditions (temperature and time), hot finish rolling finish temperature, cold work rate, temper annealing conditions (temperature and time) ) And the like are controlled by the content of each component, homogenization heat treatment conditions (temperature and time), temper annealing conditions (temperature and time), and the like.
  • the number of intermetallic compounds is controlled by the content of each component, homogenization heat treatment conditions (temperature and time), and the like.
  • the fin material according to the present invention may be provided with a surface treatment film on the surface of the fin material.
  • the fin material surface means one side or both sides of the fin material.
  • Examples of the surface treatment film include a chemical film, a resin film, and an inorganic film depending on the use environment and application, and these may be combined (a resin film and an inorganic film are provided on the chemical film).
  • examples of the resin film and the inorganic film include a corrosion-resistant resin film, a hydrophilic resin film, a hydrophilic inorganic film, and a lubricating resin film, and these may be appropriately combined.
  • Examples of the chemical conversion film include phosphoric acid chromate.
  • Examples of the corrosion-resistant resin film include epoxy-based, urethane-based, acrylic-based, and polyester-based resins, and the film thickness is preferably 0.5 to 5 ⁇ m.
  • Examples of the hydrophilic film include water glass-based inorganic substances, resins containing polyacrylic acid or polyacrylate, resins containing sulfonic acid groups or sulfonic acid group derivatives, and the like. 0.05 to 10 ⁇ m is preferable.
  • Examples of the lubricating resin film include a resin containing polyether polyol, and the film thickness is preferably 0.1 to 10 ⁇ m.
  • a hydrophilic resin film is provided on the surface side of the corrosion-resistant resin film. It is preferable that a lubricating resin film is provided on the surface side of the conductive inorganic film.
  • the manufacturing method of the fin material according to the present invention is a manufacturing method of the above-described fin material, and includes a heat treatment process, a hot rolling process, a cold working process, and a temper annealing process. Furthermore, you may include an ingot preparation process and a surface treatment process as needed. Hereinafter, each step will be described.
  • the ingot production step is a step of producing an aluminum alloy ingot by melting and casting an aluminum alloy.
  • an ingot having a predetermined shape is produced from a molten metal in which the aluminum alloy having the chemical components described above is melted.
  • the method for melting and casting the aluminum alloy is not particularly limited, and a conventionally known method may be used. For example, it can be melted using a vacuum induction furnace and cast using a continuous casting method or a semi-continuous casting method.
  • the heat treatment step is a step of subjecting the aluminum alloy ingot having the chemical composition of the aluminum alloy to a heat treatment (homogenization heat treatment) at a temperature of 450 to 500 ° C. for 1 hour or longer. If the heat treatment temperature is less than 450 ° C., the ingot structure is not sufficiently homogenized. In addition, the hot workability is reduced. Furthermore, the proof stress is less than the lower limit. On the other hand, if it exceeds 500 ° C., the fine intermetallic compound that is refined during heating becomes coarse, the sub-crystal grains become coarse, and the elongation decreases. In addition, the amount of solid solution increases. Therefore, the heat treatment temperature is 450 to 500 ° C. Moreover, since the said effect is acquired if heat processing is holding time 1 hour or more, it is not necessary to prescribe
  • the hot rolling step is a step of performing hot rolling after the heat treatment under the condition that the finish temperature of hot finish rolling is 250 ° C. or higher and lower than 300 ° C.
  • the finish temperature of hot finish rolling is less than 250 ° C.
  • the rollability of the material is lowered, and the rolling itself becomes difficult or the thickness control becomes difficult, and the productivity is lowered.
  • 300 ° C. or higher since a recrystallized structure is formed in the hot-rolled sheet, a fibrous group of identical crystal orientations is generated after temper annealing, and constriction occurs during the piercing and burring process. Further, the subcrystal grain size is increased, and the proof stress is less than the lower limit value. Therefore, the finish temperature of hot finish rolling is 250 ° C. or higher and lower than 300 ° C. More preferably, it is 260 to 290 ° C.
  • the cold working step is a step of performing cold working (cold rolling) with a cold working rate of 96% or more after the hot rolling. After the hot rolling is completed, the cold working is performed once or a plurality of times, so that the fin material has a desired final thickness. However, if the cold working rate is less than 96%, the sub-crystal grains become coarse after temper annealing. Moreover, the yield strength is lowered. Therefore, the cold working rate in cold working is 96% or more.
  • the cold working rate is a working rate from the intermediate annealing to the final plate thickness.
  • the temper annealing step is a step of performing temper annealing (finish annealing) that is maintained at a temperature of 230 ° C. or lower for 1 to 6 hours after the cold working.
  • finish annealing When the temperature of temper annealing exceeds 230 degreeC, work hardening will be accelerated
  • a lower limit is not specifically prescribed
  • the temper annealing is usually performed for 1 hour or longer, and the effect is saturated after 6 hours, so the holding time is 1 to 6 hours.
  • the surface treatment step is a step of subjecting the fin material after the temper annealing to a surface treatment.
  • a chemical conversion film when a chemical conversion film is formed, it can be performed by a chemical conversion treatment using a normal coating type or reactive type chemical.
  • a resin film such as a corrosion-resistant resin film, a hydrophilic resin film, or a lubricating resin film, it can be carried out by applying and drying using a roll coater.
  • a foreign material removing process for removing foreign substances such as dust
  • a chamfering process for chamfering an ingot a temper annealing process and a surface treatment process
  • machining that is appropriately performed as a fin material.
  • a process or the like may be included.
  • the fin material manufactured in this way is shape
  • punching and hole expansion processing (piercing and burring molding) are performed in the first step, ironing processing is performed in the second and third steps, and reflaring processing is performed in the fourth step.
  • the fin material of this invention is excellent in color cracking resistance, generation
  • Example preparation (Example No. 1 to 10, Comparative Example No. 11 to 21) An aluminum alloy having the composition shown in Table 1 was melted and cast into an ingot, and the ingot was subjected to chamfering and then subjected to homogenization heat treatment at 480 ° C. for 4 hours. This homogenized ingot was hot-rolled by controlling the finish temperature of hot finish rolling to be 270 ° C. to obtain a hot-rolled sheet having a thickness of 3.0 mm. Further, after cold rolling at a cold working rate of about 97.0% or 97.3%, respectively, the sheet thickness was set to 90 ⁇ m and 80 ⁇ m, and then subjected to temper annealing at the temperature and holding time shown in Table 1. Fin material was used.
  • Example No. 22 to 27, Comparative Example No. 28 to 34 Aluminum alloys shown in Table 2 (Alloys A, B, and C corresponding to Table 1) were melted and cast to form ingots, and after the surfaces were subjected to face grinding, homogenization heat treatment and hot rolling were performed. A hot rolled plate having a thickness of 3.0 mm was used. Furthermore, no. Except for 34, the steel sheet was cold-rolled at a cold working rate of about 97.0% or 97.3% to make the plate thickness 90 ⁇ m and 80 ⁇ m, and then subjected to temper annealing to obtain a fin material. No. In No.
  • a hot rolled plate having a thickness of 3.0 mm was subjected to cold rolling at a cold working rate of 50%, and then subjected to intermediate annealing at 360 ° C. for 3 hours using a batch furnace. Thereafter, cold rolling was performed at a cold working rate of about 94.0% or 94.7%, respectively, so that the plate thickness was 90 ⁇ m and 80 ⁇ m, and then temper annealing was performed to obtain a fin material.
  • Table 2 shows the conditions for the homogenization heat treatment, the finish temperature of the hot finish rolling, and the temper annealing. In addition, No. 30 is a thing which could not manufacture a fin material.
  • Example No. 35 to 38 Comparative Example No. 39 to 42
  • No. in Table 2 No. 22 which is the same fin material as that of No. 22. 35, 36, No. 2 in Table 2.
  • No. 27, which is the same fin material as No. 27. 37, 38, No. 2 in Table 2.
  • No. 29, which is the same fin material as No. 29. 39, 40, No. 2 in Table 2.
  • No. 32 which is the same fin material as No. 32.
  • the following surface treatments were performed on 41 and 42.
  • No. 1 Surface treatment under the same conditions as Comparative Example 1 of JP 2010-223520 A (comprising a chemical conversion film, a hydrophilic film, and a lubricating film in this order)
  • No. 2 Surface treatment under the same conditions as Example 1 of Japanese Patent No. 3383914 (comprising a chemical conversion film, a hydrophilic film, and a lubricating resin film in this order)
  • No. 3 Surface treatment under the same conditions as in Example 1 of JP 2008-224204 (comprising a chemical conversion film, a corrosion-resistant resin film, and a hydrophilic film in this order)
  • No. 4 Surface treatment under the same conditions as Comparative Example 21 of JP 2010-223514 A (comprising a chemical conversion film and a corrosion-resistant resin film in this order)
  • Component composition is shown in Table 1, and production conditions are shown in Tables 2 and 3. In the table, those not satisfying the scope of the present invention are indicated by underlining the numerical values, and those not containing a component are indicated by “ ⁇ ”. In addition, No. Since “30” was not able to produce the fin material, “-” is written in the temper annealing column.
  • No. 16 is based on an aluminum alloy fin material based on the description in Patent Document 1 (Invention Example 1 in Table 2 (however, the hot rolling end temperature, the plate thickness after hot rolling (3.5 mm), and temper annealing)
  • No. 13 is based on the aluminum alloy fin material based on the description in Patent Document 2 (Invention Example 4 in Table 1 (however, the processing method (drawing) is different)). No.
  • the average grain size of subcrystal grains and the number of intermetallic compounds of 3 ⁇ m or more were measured by the following method. Furthermore, strength and elongation were measured by the following methods.
  • the average grain size of the sub-crystal grains is based on the data obtained by analyzing the orientation of the scanning electron microscope (SEM) structure obtained by photographing the sample surface at an observation magnification of 1,000 times by the EBSD method at a measurement interval of 0.10 ⁇ m. Calculation was performed by automatic calculation on OIM (Orientation Imaging Microscopy.TM) software. That is, the total area of the fin material was divided by the number of crystal grains counted by SEM / EBSD measurement data, and the diameter when the area of each crystal grain was approximated to a circle was defined as the average grain size of the subcrystal grains.
  • SEM scanning electron microscope
  • the number of crystal grains a crystal grain surrounded by a crystal grain boundary whose orientation difference between adjacent crystal grains is within 2 ° was counted as one crystal grain.
  • Number of intermetallic compounds exceeding 3 ⁇ m The number of compounds having a size exceeding 3 ⁇ m was calculated by image analysis of a scanning electron microscope (SEM) structure obtained by photographing a sample surface with an observation magnification of 500 times and an area of 1.0 mm 2 .
  • the size of a compound means the maximum length of each compound.
  • a tensile test piece according to JIS No. 5 was cut out from the fin material so that the tensile direction was parallel to the rolling direction.
  • a tensile test according to JISZ2241 was performed on this test piece, and tensile strength, 0.2% yield strength, and elongation were measured.
  • the tensile speed in evaluation of a present Example and a comparative example was performed at 5 mm / min.
  • the produced fin material was press-molded by drawless molding, and the color cracking resistance was evaluated.
  • the color cracking resistance evaluation was evaluated by visually counting the cracks generated in the collar portion with respect to 400 holes of the press-formed product.
  • “Number of cracks / 400 ⁇ 100 (%)” was defined as an occurrence rate, and the occurrence rate was defined as ( ⁇ ) when less than 3%, ( ⁇ ) when 3% or more and less than 5%, and ( ⁇ ) when 5% or more. And what was either ((double-circle)) or ((circle)) in all 90 micrometers and 80 micrometers was set as the pass.
  • No. No. 15 was inferior in color cracking resistance due to work hardening because the Cu content exceeded the upper limit.
  • No. 16 since the Mn content exceeded the upper limit, coarse intermetallic compounds increased and the color cracking resistance was poor.
  • No. 33 the temperature of the homogenization heat treatment exceeded the upper limit, so the subcrystal grain size was large and the color cracking resistance was poor.
  • No. No. 34 is an intermediate annealing, so that the cold work rate is less than the lower limit. Therefore, the average grain size of the subcrystalline grains exceeded the upper limit value, and the proof stress became less than the lower limit value, resulting in poor color cracking resistance.
  • the fin materials of 16, 13, 17, and 33 are assumed to be the conventional aluminum alloy fin materials described in Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4, respectively. As shown in this example, these conventional aluminum alloy fin materials do not satisfy a certain level in the above evaluation. Therefore, this example objectively revealed that the aluminum alloy fin material for a heat exchanger for a drawless press according to the present invention is superior to the conventional aluminum alloy fin material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

Aluminium alloy fin material, which is drawless press fin material, is for a heat exchanger, and exhibits excellent collar-cracking resistance which can suppress the occurrence of collar cracking during a molding process, is formed from aluminium alloy material which contains 0.010-0.4 mass% of Fe, the remainder of which is formed from Al and unavoidable impurities, and in which the Al purity is at least 99.30 mass%. The drawless press aluminium alloy fin material for a heat exchanger is characterised by having a thickness of less than 0.115mm, having a subgrain average particle diameter of 2.5μm or less and proof stress of at least 130N/mm2. The material is further characterised in that intermetallic compounds having a maximum length which exceeds 3μm are not more than 2000/mm2.

Description

ドローレスプレス用熱交換器用アルミニウム合金フィン材およびその製造方法Aluminum alloy fin material for heat exchanger for drawless press and manufacturing method thereof
 本発明は、熱交換器に用いられるドローレスプレス用熱交換器用アルミニウム合金フィン材およびその製造方法に関する。 The present invention relates to an aluminum alloy fin material for a heat exchanger for a drawless press used for a heat exchanger and a method for producing the same.
 近年、空調器等の熱交換器に用いる熱交換器用アルミニウム合金フィン材(以下、適宜、フィン材という)においても、フロン規制に沿った新冷媒への切り替えや、空調器自身のコンパクト化や軽量化あるいは高性能化等により、益々薄肉化が図られ、板厚が0.15mm以下、最近では0.09mm程度にまで薄肉化されている。 In recent years, aluminum alloy fin materials for heat exchangers used in heat exchangers such as air conditioners (hereinafter referred to as fin materials as appropriate) have also been switched to new refrigerants in line with chlorofluorocarbon regulations, and the air conditioners themselves have become more compact and lightweight. As a result of the increase in performance and performance, the thickness has been further reduced, and the thickness has been reduced to 0.15 mm or less, and recently to about 0.09 mm.
 ここで、フィン材の成形法には、ドロー方式、ドローレス方式およびドロー・ドローレス複合方式(コンビネーション方式)がある。ドロー方式は、張出し工程、絞り工程、打ち抜き(ピアス)および穴広げ工程(バーリング)、リフレア工程からなり、ドローレス方式は、打ち抜きおよび穴広げ工程、しごき(アイアニング)工程、リフレア工程からなり、コンビネーション方式は、主に、張出し工程、絞り工程、打ち抜きおよび穴広げ工程、しごき工程、リフレア工程からなる。 Here, there are a draw method, a drawless method, and a draw / drawless combined method (combination method) as the forming method of the fin material. The draw method consists of an overhanging process, a drawing process, a punching (piercing) and hole expanding process (burring), and a flaring process. The drawless system consists of a punching and hole expanding process, an ironing (ironing) process, and a flaring process. Is mainly composed of an overhanging process, a drawing process, a punching and hole expanding process, an ironing process, and a flaring process.
 これら何れの成形法においても、銅管における管用穴カラーを成形するためのピアス&バーリング成形とリフレア成形は、フィン材にとって必要不可欠な成形工程である。ただし、これらの成形は、板厚が0.15mm以下にまで薄肉化されたフィン材にとって、過酷な成形となる。そのため、このような薄肉化に対応して、加工性を向上させたフィン材が開発されている。 In any of these molding methods, the piercing & burring molding and the flaring molding for molding the tube hole collar in the copper pipe are indispensable molding processes for the fin material. However, these moldings are severe molding for the fin material whose thickness is reduced to 0.15 mm or less. Therefore, fin materials with improved workability have been developed in response to such thinning.
 例えば、特許文献1には、板厚が0.15mm以下であり、金属間化合物の粒径、大傾角粒の最大の長さ、大傾角粒内の亜結晶粒の平均粒径等を所定に規定した、成形加工性に優れたアルミニウム合金フィン材が開示されている。また、特許文献2には、板厚が0.11mm未満であり、Fe、Tiを所定量含有し、Si、Cuを所定量以下に規制するとともに、伸び率を所定に規定した、耐アベック性(拡管時の不均一な変形による隣接フィンとの接触が発生し難い特性)、スタック性に優れた熱交換器用アルミニウム合金フィン材が開示されている。特許文献3には、板厚が0.11mm未満であり、所定元素の含有量を所定に規定した、耐アベック性に優れた熱交換器用アルミニウム合金フィン材が開示されている。また、特許文献4には、冷間圧延後の板厚が0.115mmであり、所定元素を所定に規定した、ドローレスフィン用高強度アルミニウム合金薄板とその製造方法が開示されている。 For example, in Patent Document 1, the plate thickness is 0.15 mm or less, and the grain size of the intermetallic compound, the maximum length of the large tilt grain, the average grain size of the subcrystal grains in the large tilt grain, and the like are predetermined. A defined aluminum alloy fin material having excellent formability is disclosed. Patent Document 2 discloses that the plate thickness is less than 0.11 mm, contains a predetermined amount of Fe and Ti, regulates Si and Cu to be equal to or less than a predetermined amount, and prescribes a predetermined elongation rate. An aluminum alloy fin material for heat exchangers having excellent stackability (characteristic that contact with adjacent fins due to non-uniform deformation at the time of pipe expansion) is disclosed. Patent Document 3 discloses an aluminum alloy fin material for a heat exchanger that has a plate thickness of less than 0.11 mm and that has a predetermined element content and is excellent in anti-Abek resistance. Patent Document 4 discloses a high-strength aluminum alloy thin plate for drawless fins having a plate thickness after cold rolling of 0.115 mm and a predetermined element being specified, and a method for manufacturing the same.
特開2006-104488号公報JP 2006-104488 A 特許第4275560号公報Japanese Patent No. 4275560 特開2005-126799号公報JP 2005-126799 A 特開昭64-8240号公報JP-A-64-8240
 しかしながら、従来のフィン材においては、以下のような問題がある。
 前記した従来の技術では、加工性の向上が図られてはいるものの、近年においては、熱交換器のさらなるコンパクト化や軽量化、高性能化に加え、より加工のし易いフィン材の供給が期待されていることから、さらなる加工性の向上が求められている。
However, the conventional fin material has the following problems.
Although the above-described conventional techniques have improved the workability, in recent years, in addition to further miniaturization, weight reduction, and high performance of heat exchangers, fin materials that are easier to process have been supplied. Since it is expected, further improvement in workability is required.
 また、成形中には、しばしばカラー割れと言われる割れが生じることがある。すなわち、ピアス&バーリング工程時に加工端面に微細な亀裂が生じ、これによって最終リフレア成形時にカラー割れとなる。このようなカラー割れが生じた場合、フィン成形された成形品のカラー穴に銅管を通してその銅管を拡管する際に、積層したフィンの間隔が極端に狭くなってしまうという、所謂アベック現象が生じ易くなる。そして、このアベック現象により、熱交換器の通風抵抗が増大するという問題がある。すなわち、カラー割れは、フィンの外観を損ねるだけではなく、熱交換器としての性能低下等の不具合が生じ、製品としての価値を低下させてしまうという問題がある。したがって、このようなカラー割れの発生をより抑制することができるフィン材の開発が求められている。
 ここで、特許文献1に記載のフィン材は、耐カラー割れ性の改善を図っている。しかし、Mnを積極添加しているため、Mnの含有量および製造条件によっては、粗大な金属間化合物、あるいは、固溶Mnにより加工硬化しやすくなるという問題がある。そのため、耐カラー割れの改善には余地がある。
Further, cracks often referred to as color cracks may occur during molding. That is, a fine crack is generated on the processed end face during the piercing and burring process, and this causes a color crack during the final reflare molding. When such a color crack occurs, when the copper tube is expanded through the color hole of the fin-molded molded product, the so-called Abek phenomenon that the interval between the laminated fins becomes extremely narrow is caused. It tends to occur. And there exists a problem that the ventilation resistance of a heat exchanger increases by this Abeck phenomenon. That is, the color crack not only impairs the appearance of the fins, but also causes problems such as a decrease in performance as a heat exchanger, thereby reducing the value as a product. Therefore, development of a fin material that can further suppress the occurrence of such color cracks is required.
Here, the fin material described in Patent Document 1 aims to improve color cracking resistance. However, since Mn is positively added, depending on the Mn content and production conditions, there is a problem that it becomes easy to work and harden by a coarse intermetallic compound or solid solution Mn. Therefore, there is room for improvement in resistance to color cracking.
 本発明は、前記問題点に鑑みてなされたものであり、ドローレスプレス用のフィン材を対象として、成形加工時におけるカラー割れの発生を抑制することができる耐カラー割れ性に優れたドローレスプレス用熱交換器用アルミニウム合金フィン材を提供することを課題とする。 The present invention has been made in view of the above-mentioned problems, and is intended for a drawless press fin material. For a drawless press excellent in color cracking resistance that can suppress the occurrence of color cracking during molding. It is an object to provide an aluminum alloy fin material for a heat exchanger.
 すなわち、本発明に係るドローレスプレス用熱交換器用アルミニウム合金フィン材は、Fe:0.010~0.4質量%を含有し、残部がAlおよび不可避的不純物からなり、Al純度が99.30質量%以上のアルミニウム合金からなるドローレスプレス用熱交換器用アルミニウム合金フィン材であって、前記ドローレスプレス用熱交換器用アルミニウム合金フィン材の厚みが0.115mm未満であり、亜結晶粒の平均粒径が2.5μm以下および耐力が130N/mm以上であることを特徴とする。また最大長さが3μmを超える金属間化合物が2000個/mm以下であることを特徴とする。 That is, the aluminum alloy fin material for a heat exchanger for a drawless press according to the present invention contains Fe: 0.010 to 0.4% by mass, the balance is made of Al and inevitable impurities, and the Al purity is 99.30% by mass. % Aluminum alloy fin material for heat exchanger for drawless press, wherein the thickness of the aluminum alloy fin material for heat exchanger for drawless press is less than 0.115 mm, and the average grain size of sub-crystal grains is It is characterized by being 2.5 μm or less and a proof stress of 130 N / mm 2 or more. Further, the number of intermetallic compounds having a maximum length exceeding 3 μm is 2000 pieces / mm 2 or less.
 このような構成によれば、Feを所定量添加することで、Al-Fe系金属間化合物が形成され、あるいは、アルミニウムマトリクス中に固溶して、プレス成形時における亜結晶粒が微細化されて加工硬化が抑制される。またAl純度を規定することで、金属間化合物の増加が抑制される。そして、亜結晶粒の平均粒径を2.5μm以下とすることで、0.115mm未満の厚みのフィン材での伸びが増加する。また、耐力を130N/mm以上とすることで、ドローレスプレス用のフィン材として強度が適正なものとなる。また、最大長さが3μmを超える金属間化合物を2000個/mm以下とすることで、粗大な金属間化合物が起点となることによるカラー割れの発生が防止される。 According to such a configuration, by adding a predetermined amount of Fe, an Al—Fe-based intermetallic compound is formed, or it dissolves in the aluminum matrix and the sub-crystal grains are refined during press molding. This suppresses work hardening. Moreover, the increase in an intermetallic compound is suppressed by prescribing Al purity. And the elongation in the fin material of thickness less than 0.115 mm increases by making the average particle diameter of a subcrystal grain into 2.5 micrometers or less. Further, when the proof stress is 130 N / mm 2 or more, the strength becomes appropriate as a fin material for a drawless press. In addition, when the number of intermetallic compounds having a maximum length exceeding 3 μm is 2000 pieces / mm 2 or less, the occurrence of color cracks due to the starting point of coarse intermetallic compounds is prevented.
 本発明に係るドローレスプレス用熱交換器用アルミニウム合金フィン材は、前記アルミニウム合金の化学成分について、さらに、Cu:0.005~0.05質量%を含有し、Si:0.15質量%以下、Mn:0.015質量%未満、Cr:0.015質量%以下に抑制することを特徴とする。 The aluminum alloy fin material for a heat exchanger for a drawless press according to the present invention further contains Cu: 0.005 to 0.05% by mass, Si: 0.15% by mass or less, regarding the chemical components of the aluminum alloy. It is characterized by suppressing to Mn: less than 0.015 mass% and Cr: 0.015 mass% or less.
 このような構成によれば、Cuを所定量添加することで、薄肉化した時の剛性が確保され、また、Si、Mn、Crを所定量以下または所定量未満に抑制することで、晶出物(すなわち金属間化合物)の粗大化が抑制される。 According to such a configuration, by adding a predetermined amount of Cu, rigidity when thinned is ensured, and by suppressing Si, Mn, Cr to a predetermined amount or less or less than a predetermined amount, crystallization is achieved. The coarsening of the product (that is, the intermetallic compound) is suppressed.
 本発明に係るドローレスプレス用熱交換器用アルミニウム合金フィン材は、前記アルミニウム合金の化学成分について、さらに、Ti:0.01~0.05質量%を含有することを特徴とする。
 このような構成によれば、Tiを所定量添加することで、鋳塊組織が微細化される。
The aluminum alloy fin material for a heat exchanger for a drawless press according to the present invention is characterized by further containing Ti: 0.01 to 0.05% by mass with respect to the chemical component of the aluminum alloy.
According to such a configuration, the ingot structure is refined by adding a predetermined amount of Ti.
 本発明に係るドローレスプレス用熱交換器用アルミニウム合金フィン材は、フィン材表面に表面処理皮膜を備えたものであってもよい。表面処理皮膜としては、耐食性皮膜や親水性皮膜、潤滑性皮膜等が挙げられる。
 このような構成によれば、耐食性や親水性、成形性等、使用環境や用途等に応じた特性を向上させることができる。
The aluminum alloy fin material for a heat exchanger for a drawless press according to the present invention may be provided with a surface treatment film on the surface of the fin material. Examples of the surface treatment film include a corrosion-resistant film, a hydrophilic film, and a lubricating film.
According to such a structure, the characteristics according to use environment, a use, etc., such as corrosion resistance, hydrophilicity, and moldability, can be improved.
 本発明に係るドローレスプレス用熱交換器用アルミニウム合金フィン材の製造方法は、前記記載のドローレスプレス用熱交換器用アルミニウム合金フィン材(表面処理皮膜を備えないもの)の製造方法であって、前記アルミニウム合金の化学成分を有するアルミニウム合金鋳塊に、450~500℃の温度で1時間以上の熱処理を施す熱処理工程と、前記熱処理後に、熱間仕上げ圧延の終了温度が250℃以上300℃未満となる条件で熱間圧延を施す熱間圧延工程と、前記熱間圧延後に、冷間加工率96%以上の冷間加工を施す冷間加工工程と、前記冷間加工後に、230℃以下の温度で1~6時間保持する調質焼鈍を施す調質焼鈍工程と、を行うことを特徴とする。 A method for producing an aluminum alloy fin material for a heat exchanger for a drawless press according to the present invention is a method for producing the aluminum alloy fin material for a heat exchanger for a drawless press (not provided with a surface treatment film). A heat treatment step in which an aluminum alloy ingot having an alloy chemical component is subjected to a heat treatment at a temperature of 450 to 500 ° C. for 1 hour or more, and after the heat treatment, a finish temperature of hot finish rolling becomes 250 ° C. or more and less than 300 ° C. A hot rolling process for performing hot rolling under conditions, a cold working process for performing cold working with a cold working rate of 96% or more after the hot rolling, and a temperature of 230 ° C. or less after the cold working. And a temper annealing step in which temper annealing is performed for 1 to 6 hours.
 このような製造方法によれば、熱処理工程により鋳塊の組織が均質化され、熱間圧延工程により、熱延板で再結晶組織となることなく圧延される。そして、冷間加工工程により、調質焼鈍後に亜結晶粒の粗大化を生じさせることなく、0.115mm未満の厚みとされ、調質焼鈍工程により冷間加工材が調質される。 According to such a manufacturing method, the structure of the ingot is homogenized by the heat treatment process, and the hot rolled sheet is rolled without being recrystallized by the hot rolling process. And by a cold working process, it is set as thickness less than 0.115 mm, without producing the coarsening of a subcrystal grain after temper annealing, and a cold work material is tempered by a temper annealing process.
 本発明に係るドローレスプレス用熱交換器用アルミニウム合金フィン材は、成形加工したときのカラー割れを抑制することができる。そのため、フィンの外観を損ねることや、熱交換器としての性能低下等の不具合が発生することを防止できる。 The aluminum alloy fin material for a heat exchanger for a drawless press according to the present invention can suppress color cracking when it is formed. For this reason, it is possible to prevent the appearance of the fins from being damaged and the occurrence of problems such as deterioration in performance as a heat exchanger.
 また、本発明に係るドローレスプレス用熱交換器用アルミニウム合金フィン材の製造方法は、耐カラー割れ性に優れた熱交換器用アルミニウム合金フィン材を製造することができる。 Further, the method for producing an aluminum alloy fin material for a heat exchanger for a drawless press according to the present invention can produce an aluminum alloy fin material for a heat exchanger having excellent color cracking resistance.
 以下、本発明に係るドローレスプレス用熱交換器用アルミニウム合金フィン材(以下、適宜、フィン材という)およびフィン材の製造方法を実現するための形態について説明する。 Hereinafter, an embodiment for realizing an aluminum alloy fin material for a heat exchanger for a drawless press according to the present invention (hereinafter, appropriately referred to as a fin material) and a method for producing the fin material will be described.
<フィン材>
 本発明に係るフィン材は、Feを所定量含有し、残部がAlおよび不可避的不純物からなり、Al純度が99.30質量%以上のアルミニウム合金からなるドローレスプレス用としてのものである。そして、このフィン材の厚みが0.115mm未満であり、亜結晶粒の平均粒径を2.5μm以下および耐力を130N/mm以上に規定したものである。また、3μmを超える金属間化合物を2000個/mm以下に規定したものである。また、アルミニウム合金の化学成分について、必要に応じてCuを所定量含有し、アルミニウム合金に含まれる不可避的不純物のうち、Si、Mn、Crを所定量以下または所定量未満に抑制することが好ましい。さらに、必要に応じてTiを所定量含有してもよい。
 以下、各構成について、まず、化学成分について説明した後、その他の構成について説明する。
<Fin material>
The fin material according to the present invention is for a drawless press containing a predetermined amount of Fe, the balance being made of Al and inevitable impurities, and an aluminum alloy having an Al purity of 99.30% by mass or more. And the thickness of this fin material is less than 0.115 mm, the average grain size of subcrystal grains is specified to 2.5 μm or less, and the proof stress is specified to 130 N / mm 2 or more. In addition, the number of intermetallic compounds exceeding 3 μm is defined as 2000 pieces / mm 2 or less. Moreover, about the chemical component of an aluminum alloy, it is preferable to contain a predetermined amount of Cu as necessary, and to suppress Si, Mn, Cr to a predetermined amount or less or less than a predetermined amount among unavoidable impurities contained in the aluminum alloy. . Furthermore, you may contain predetermined amount of Ti as needed.
Hereinafter, for each configuration, first, the chemical components will be described, and then other configurations will be described.
(Fe:0.010~0.4質量%)
 Feは、Al-Fe系金属間化合物を形成(あるいは、アルミニウムマトリクス中に固溶)して、プレス成形時における亜結晶粒を微細にすることができるために、加工硬化抑制に寄与する元素であり、カラー割れ不良を減少させる効果がある。また、アルミニウム合金板の亜結晶粒の大きさに寄与する効果や、強度を向上させる効果も有する。Fe含有量が0.010質量%未満では、前記の効果が得られずに、プレス成形でカラー割れ性に劣る。一方、0.4質量%を超えると、粗大な金属間化合物が形成され、耐カラー割れ性が劣る。従って、Fe含有量は、0.010~0.4質量%とする。
(Fe: 0.010 to 0.4 mass%)
Fe is an element that contributes to suppression of work hardening because it can form Al—Fe-based intermetallic compounds (or solid solution in an aluminum matrix) to make fine sub-crystal grains fine during press molding. There is an effect of reducing defective color cracking. Moreover, it has the effect which contributes to the magnitude | size of the subcrystal grain of an aluminum alloy plate, and the effect which improves intensity | strength. If the Fe content is less than 0.010% by mass, the above effects cannot be obtained, and the color cracking property is inferior in press molding. On the other hand, when it exceeds 0.4 mass%, a coarse intermetallic compound is formed and the color cracking resistance is inferior. Therefore, the Fe content is 0.010 to 0.4 mass%.
(Cu:0.005~0.05質量%)
 薄肉化した時の剛性を確保するためには、さらにCuを添加することが望ましい。その効果は、0.005質量%以上の添加により得られる。一方で、Cu含有量が0.05質量%を超えると、加工硬化を招き、耐アベック性を低下させる他、耐カラー割れ性および耐食性の低下を招く。したがって、剛性確保させるためにCuを添加する場合には、Cu含有量は、0.005~0.05質量%とする。さらに好ましくは、0.01~0.05質量%である。
(Cu: 0.005 to 0.05 mass%)
In order to ensure the rigidity when thinned, it is desirable to add Cu further. The effect is acquired by addition of 0.005 mass% or more. On the other hand, when Cu content exceeds 0.05 mass%, work hardening will be caused and the Abek resistance will be reduced, and also color cracking resistance and corrosion resistance will be reduced. Therefore, when Cu is added to ensure rigidity, the Cu content is set to 0.005 to 0.05 mass%. More preferably, the content is 0.01 to 0.05% by mass.
(Si:0.15質量%以下(0質量%を含む))
 Siは、不可避的不純物として混入する元素であるが、Si含有量が0.15質量%を超えると、晶出物(金属間化合物)が粗大化し、これが成形加工時の応力集中点となり、割れの起点となる。したがって、Siを含有する場合には、Si含有量は、0.15質量%以下とする。なお、0質量%まで抑制してもよい。
(Si: 0.15 mass% or less (including 0 mass%))
Si is an element mixed as an unavoidable impurity. However, if the Si content exceeds 0.15% by mass, the crystallized product (intermetallic compound) becomes coarse, which becomes a stress concentration point at the time of forming and cracks. Is the starting point. Therefore, when it contains Si, Si content shall be 0.15 mass% or less. In addition, you may suppress to 0 mass%.
(Mn:0.015質量%未満(0質量%を含む))
 Mnは、不可避的不純物として混入する元素であるが、Mn含有量が0.015質量%以上になると、晶出物(金属間化合物)が粗大化し、これが成形加工時の応力集中点となり、割れの起点となる。したがって、Mnを含有する場合には、Mn含有量は、0.015質量%未満に抑制する。さらには、0.005質量%未満に抑制することが好ましい。なお、0質量%まで抑制してもよい。
(Mn: less than 0.015% by mass (including 0% by mass))
Mn is an element mixed as an unavoidable impurity. However, when the Mn content is 0.015% by mass or more, the crystallized product (intermetallic compound) becomes coarse, which becomes a stress concentration point at the time of forming, and cracks. Is the starting point. Therefore, when it contains Mn, Mn content is suppressed to less than 0.015 mass%. Furthermore, it is preferable to suppress to less than 0.005 mass%. In addition, you may suppress to 0 mass%.
(Cr:0.015質量%以下(0質量%を含む))
 Crは、不可避的不純物として混入する元素であるが、Cr含有量が0.015質量%を超えると、晶出物(金属間化合物)が粗大化し、これが成形加工時の応力集中点となり、割れの起点となる。したがって、Crを含有する場合には、Cr含有量は、0.015質量%以下に抑制する。なお、0質量%まで抑制してもよい。
(Cr: 0.015 mass% or less (including 0 mass%))
Cr is an element mixed as an unavoidable impurity. However, if the Cr content exceeds 0.015% by mass, the crystallized product (intermetallic compound) becomes coarse, which becomes a stress concentration point at the time of forming and cracks. Is the starting point. Therefore, when it contains Cr, Cr content is suppressed to 0.015 mass% or less. In addition, you may suppress to 0 mass%.
(Ti:0.01~0.05質量%)
 Tiは、鋳塊組織の微細化のために、Al-Ti-B中間合金として添加しても良い。すなわち、Ti:B=5:1あるいは5:0.2の割合としたAl-Ti-B鋳塊微細化剤を、ワッフルあるいはロッドの形態で溶湯(スラブ凝固前における、溶解炉、介在物フィルター、脱ガス装置、溶湯流量制御装置へ投入された、いずれかの段階での溶湯)へ添加してもよく、Ti量で、0.05質量%までの含有は許容される。Ti含有量が0.01質量%未満では、鋳塊組織微細化の効果が得られない。一方、0.05質量%を超えると、晶出物(金属間化合物)が粗大化し、これが成形加工時の応力集中点となり、割れの起点となる。したがって、Tiを添加する場合には、Ti含有量は、0.01~0.05質量%とする。
(Ti: 0.01 to 0.05% by mass)
Ti may be added as an Al—Ti—B intermediate alloy in order to refine the ingot structure. That is, an Al—Ti—B ingot refining agent having a ratio of Ti: B = 5: 1 or 5: 0.2 is melted in the form of a waffle or a rod (melting furnace, inclusion filter before slab solidification). The molten metal at any stage introduced into the degassing device and the molten metal flow rate control device may be added, and the Ti content is allowed to be 0.05 mass%. If the Ti content is less than 0.01% by mass, the effect of refining the ingot structure cannot be obtained. On the other hand, if it exceeds 0.05% by mass, the crystallized product (intermetallic compound) becomes coarse, and this becomes a stress concentration point at the time of molding and becomes a starting point of cracking. Therefore, when Ti is added, the Ti content is 0.01 to 0.05 mass%.
(残部:Alおよび不可避的不純物)
 フィン材の成分は前記の他、残部がAlおよび不可避的不純物からなるものである。なお、不可避的不純物として、前記したSi、Mn、Crの他、例えば、地金や中間合金に含まれている、通常知られている範囲内のMg、Zn、Zr、Ce、Ga、V、Ni等は、Al純度が、99.30質量%未満とならない範囲で、それぞれ0.05質量%までの含有は許容される。
(Balance: Al and inevitable impurities)
In addition to the above components, the fin material is composed of Al and inevitable impurities. As unavoidable impurities, in addition to the above-described Si, Mn, Cr, for example, Mg, Zn, Zr, Ce, Ga, V, which are contained in a metal base or an intermediate alloy within a generally known range. Ni and the like are allowed to contain up to 0.05% by mass, as long as the Al purity is not less than 99.30% by mass.
(Al純度:99.30質量%以上)
 Al純度が、99.30質量%未満では、金属間化合物の増加に伴い,カラー割れが増加し、耐食性が低下する。したがって、Al純度は、99.30質量%以上とする。
(Al purity: 99.30% by mass or more)
When the Al purity is less than 99.30% by mass, the color cracking increases and the corrosion resistance decreases with the increase of intermetallic compounds. Therefore, Al purity shall be 99.30 mass% or more.
(厚み:0.115mm未満)
 本発明は、近年における熱交換器のコンパクト化や軽量化、高性能化等の要請により、フィン材の薄肉化を図る観点から、0.115mm未満の厚みのフィン材を対象とする。したがって、フィン材の厚みは、0.115mm未満とする。
(Thickness: less than 0.115 mm)
The present invention is directed to a fin material having a thickness of less than 0.115 mm from the viewpoint of reducing the thickness of the fin material in response to recent demands for downsizing, weight reduction, and high performance of heat exchangers. Therefore, the thickness of the fin material is less than 0.115 mm.
(亜結晶粒の平均粒径:2.5μm以下)
 0.115mm未満の厚みのフィン材での伸びの増加のためには、合金中の亜結晶粒の平均粒径を2.5μm以下とすることが必要である。亜結晶粒の平均粒径が2.5μmを超えると、フィン材の伸びが十分に得られない。したがって、亜結晶粒の平均粒径は、2.5μm以下とする。なお、下限値は特に規定しないが、0μmであってもよい(すなわち、亜結晶粒を含まなくてもよい)。この様な範囲にすることにより、固溶Mnや固溶Cu等により加工硬化するような場合であっても、カラー割れの発生を抑制することができる。
(Average grain size of sub-crystal grains: 2.5 μm or less)
In order to increase the elongation of the fin material having a thickness of less than 0.115 mm, it is necessary that the average grain size of the sub-crystal grains in the alloy be 2.5 μm or less. If the average grain size of the sub-crystal grains exceeds 2.5 μm, sufficient elongation of the fin material cannot be obtained. Therefore, the average grain size of the sub-crystal grains is 2.5 μm or less. In addition, although a lower limit is not specified in particular, it may be 0 μm (that is, it does not have to include subcrystal grains). By setting it as such a range, generation | occurrence | production of a color crack can be suppressed even if it is a case where it is a case where it carries out work hardening with solute Mn, solute Cu, etc. FIG.
 次に、亜結晶粒の平均粒径および金属間化合物の個数の測定方法について説明する。
 まず、走査電子顕微鏡(SEM:Scanning Electron Microscopy-Electron)組織をEBSD(Electron Back Scattered Diffraction Pattern)法により方位解析する。EBSD法は、試料に電子線を照射し、その際に生じる反射電子菊池線回折を利用して結晶方位を特定するものである。また、結晶方位解析には、例えば、TSL社製OIM(Orientation Imaging Microscopy. TM)を用いることができる。
 そして、亜結晶粒の平均粒径は、このSEM/EBSD測定データにより結晶粒の数を算出し、フィン材の全面積を結晶粒の数で除し、各結晶粒の面積を円と近似した場合の直径を亜結晶粒の平均粒径と定義する。
 なお、亜結晶粒の平均粒径および金属間化合物の個数は、成分組成と、後記する製造条件により制御することができる。具体的には、亜結晶粒の平均粒径は、各成分の含有量、均質化熱処理条件(温度と時間)、熱間仕上げ圧延終了温度、冷間加工率、調質焼鈍条件(温度と時間)、金属間化合物の個数は、各成分の含有量、均質化熱処理条件(温度と時間)等により制御する。
Next, a method for measuring the average grain size of subcrystalline grains and the number of intermetallic compounds will be described.
First, orientation analysis of a scanning electron microscope (SEM) structure is performed by an EBSD (Electron Back Scattered Diffraction Pattern) method. In the EBSD method, a sample is irradiated with an electron beam, and the crystal orientation is specified by utilizing reflected electron Kikuchi line diffraction generated at that time. For crystal orientation analysis, for example, OIM (Orientation Imaging Microscopy.TM) manufactured by TSL can be used.
The average grain size of the sub-crystal grains is calculated from the SEM / EBSD measurement data, the number of crystal grains is calculated, the total area of the fin material is divided by the number of crystal grains, and the area of each crystal grain is approximated to a circle. The diameter of the case is defined as the average grain size of the subgrains.
The average grain size of the sub-crystal grains and the number of intermetallic compounds can be controlled by the component composition and the production conditions described later. Specifically, the average grain size of subgrains is the content of each component, homogenization heat treatment conditions (temperature and time), hot finish rolling finish temperature, cold work rate, temper annealing conditions (temperature and time) ), The number of intermetallic compounds is controlled by the content of each component, homogenization heat treatment conditions (temperature and time), and the like.
 (耐力:130N/mm以上)
 本発明のフィン材は、ドローレスプレス用としてのものであるため、耐力は130N/mm以上とする。耐力が130N/mm未満では、強度が不足し、ドローレスプレス成形の際にカラー割れが生じる。したがって、耐力は130N/mm以上とする。なお、好ましくは130N/mm超である。また、強度が高過ぎると、ドローレスプレス成形の際にカラー割れが生じやすくなるため、上限値は170N/mmとすることが好ましい。
 耐力の測定は、例えば、フィン材から、引張方向が圧延方向と平行になるようにJIS5号による引張試験片を切り出し、JISZ2241による引張試験を実施することで行なうことができる。
(Yield strength: 130 N / mm 2 or more)
Since the fin material of the present invention is for a drawless press, the yield strength is 130 N / mm 2 or more. If the proof stress is less than 130 N / mm 2 , the strength is insufficient, and color cracks occur during drawless press molding. Therefore, the proof stress is 130 N / mm 2 or more. In addition, Preferably it is more than 130 N / mm < 2 >. Further, if the strength is too high, color cracks are liable to occur during drawless press molding, so the upper limit is preferably 170 N / mm 2 .
The proof stress can be measured by, for example, cutting out a tensile test piece according to JIS No. 5 from a fin material so that the tensile direction is parallel to the rolling direction and performing a tensile test according to JISZ2241.
 なお、亜結晶粒の平均粒径、耐力および金属間化合物の個数は、成分組成と、後記する製造条件により制御することができる。具体的には、亜結晶粒の平均粒径は、各成分の含有量、均質化熱処理条件(温度と時間)、熱間仕上げ圧延終了温度、冷間加工率、調質焼鈍条件(温度と時間)等、耐力は、各成分の含有量、均質化熱処理条件(温度と時間)、調質焼鈍条件(温度と時間)等により制御する。金属間化合物の個数は、各成分の含有量、均質化熱処理条件(温度と時間)等により制御する。 It should be noted that the average grain size, the yield strength, and the number of intermetallic compounds of the subcrystalline grains can be controlled by the component composition and the production conditions described later. Specifically, the average grain size of subgrains is the content of each component, homogenization heat treatment conditions (temperature and time), hot finish rolling finish temperature, cold work rate, temper annealing conditions (temperature and time) ) And the like are controlled by the content of each component, homogenization heat treatment conditions (temperature and time), temper annealing conditions (temperature and time), and the like. The number of intermetallic compounds is controlled by the content of each component, homogenization heat treatment conditions (temperature and time), and the like.
 本発明に係るフィン材は、フィン材表面に表面処理皮膜を備えたものであってもよい。なお、フィン材表面とは、フィン材の片面もしくは両面を意味する。
 (表面処理皮膜)
 表面処理皮膜としては、使用環境や用途に応じ、化成皮膜や樹脂皮膜、無機皮膜が挙げられ、これらを組み合わせ(化成皮膜上に樹脂皮膜、無機皮膜を設け)てもよい。また、樹脂皮膜、無機皮膜としては、耐食性樹脂皮膜、親水性樹脂皮膜、親水性無機皮膜、潤滑性樹脂皮膜等が挙げられ、これらを適宜組み合わせてもよい。
The fin material according to the present invention may be provided with a surface treatment film on the surface of the fin material. The fin material surface means one side or both sides of the fin material.
(Surface treatment film)
Examples of the surface treatment film include a chemical film, a resin film, and an inorganic film depending on the use environment and application, and these may be combined (a resin film and an inorganic film are provided on the chemical film). In addition, examples of the resin film and the inorganic film include a corrosion-resistant resin film, a hydrophilic resin film, a hydrophilic inorganic film, and a lubricating resin film, and these may be appropriately combined.
 化成皮膜としては、例えばリン酸クロメートが挙げられる。耐食性樹脂皮膜としては、エポキシ系、ウレタン系、アクリル系、ポリエステル系等の樹脂が挙げられ、その膜厚は、0.5~5μmが好ましい。親水性皮膜としては、水ガラス系の無機物、ポリアクリル酸またはポリアクリル酸塩を含有するような樹脂、スルホン酸基またはスルホン酸基誘導体を含有するような樹脂等が挙げられ、その膜厚は、0.05~10μmが好ましい。潤滑性樹脂皮膜としてはポリエーテルポリオールを含有する樹脂などが挙げられ、その膜厚は、0.1~10μmが好ましい。 Examples of the chemical conversion film include phosphoric acid chromate. Examples of the corrosion-resistant resin film include epoxy-based, urethane-based, acrylic-based, and polyester-based resins, and the film thickness is preferably 0.5 to 5 μm. Examples of the hydrophilic film include water glass-based inorganic substances, resins containing polyacrylic acid or polyacrylate, resins containing sulfonic acid groups or sulfonic acid group derivatives, and the like. 0.05 to 10 μm is preferable. Examples of the lubricating resin film include a resin containing polyether polyol, and the film thickness is preferably 0.1 to 10 μm.
 耐食性樹脂皮膜、親水性樹脂皮膜、親水性無機皮膜、潤滑性樹脂皮膜のうち2種以上を組み合わせる場合には、耐食性樹脂皮膜の表面側に親水性樹脂皮膜が設けられ、親水性樹脂皮膜、親水性無機皮膜の表面側に潤滑性樹脂皮膜が設けられることが好ましい。 When combining two or more of a corrosion-resistant resin film, a hydrophilic resin film, a hydrophilic inorganic film, and a lubricating resin film, a hydrophilic resin film is provided on the surface side of the corrosion-resistant resin film. It is preferable that a lubricating resin film is provided on the surface side of the conductive inorganic film.
<フィン材の製造方法>
 本発明に係るフィン材の製造方法は、前記したフィン材の製造方法であって、熱処理工程と、熱間圧延工程と、冷間加工工程と、調質焼鈍工程と、を行うものである。さらに必要に応じて、鋳塊作製工程や表面処理工程を含んでもよい。
 以下、各工程について説明する。
<Fin material manufacturing method>
The manufacturing method of the fin material according to the present invention is a manufacturing method of the above-described fin material, and includes a heat treatment process, a hot rolling process, a cold working process, and a temper annealing process. Furthermore, you may include an ingot preparation process and a surface treatment process as needed.
Hereinafter, each step will be described.
(鋳塊作製工程)
 鋳塊作製工程は、アルミニウム合金を溶解、鋳造してアルミニウム合金鋳塊を作製する工程である。
 鋳塊作製工程では、前記した化学成分を有するアルミニウム合金を溶解した溶湯から、所定形状の鋳塊を作製する。アルミニウム合金を溶解、鋳造する方法は、特に限定されるものではなく、従来公知の方法を用いればよい。例えば、真空誘導炉を用いて溶解し、連続鋳造法や、半連続鋳造法を用いて鋳造することができる。
(Ingot production process)
The ingot production step is a step of producing an aluminum alloy ingot by melting and casting an aluminum alloy.
In the ingot production step, an ingot having a predetermined shape is produced from a molten metal in which the aluminum alloy having the chemical components described above is melted. The method for melting and casting the aluminum alloy is not particularly limited, and a conventionally known method may be used. For example, it can be melted using a vacuum induction furnace and cast using a continuous casting method or a semi-continuous casting method.
(熱処理工程)
 熱処理工程は、前記アルミニウム合金の化学成分を有するアルミニウム合金鋳塊に、450~500℃の温度で1時間以上の熱処理(均質化熱処理)を施す工程である。
  熱処理温度が450℃未満では、鋳塊の組織の均質化が不十分となる。また、熱間加工性の低下を招く。さらに耐力が下限値未満となる。一方、500℃を超えると、加熱中で微細化する微細金属間化合物が粗大化し、亜結晶粒が粗大化して伸びが低下する。また、固溶量の増加を招く。したがって、熱処理温度は、450~500℃とする。また、熱処理は保持時間1時間以上であれば前記効果を得られるため、特に上限を規定する必要はない。一方で、10時間を超えると効果が飽和することから、経済的には、熱処理時間は24時間以内が好ましい。
(Heat treatment process)
The heat treatment step is a step of subjecting the aluminum alloy ingot having the chemical composition of the aluminum alloy to a heat treatment (homogenization heat treatment) at a temperature of 450 to 500 ° C. for 1 hour or longer.
If the heat treatment temperature is less than 450 ° C., the ingot structure is not sufficiently homogenized. In addition, the hot workability is reduced. Furthermore, the proof stress is less than the lower limit. On the other hand, if it exceeds 500 ° C., the fine intermetallic compound that is refined during heating becomes coarse, the sub-crystal grains become coarse, and the elongation decreases. In addition, the amount of solid solution increases. Therefore, the heat treatment temperature is 450 to 500 ° C. Moreover, since the said effect is acquired if heat processing is holding time 1 hour or more, it is not necessary to prescribe | regulate an upper limit in particular. On the other hand, since the effect is saturated after 10 hours, the heat treatment time is preferably within 24 hours economically.
(熱間圧延工程)
 熱間圧延工程は、前記熱処理後に、熱間仕上げ圧延の終了温度が250℃以上300℃未満となる条件で熱間圧延を施す工程である。
 熱間仕上げ圧延の終了温度が250℃未満では、材料の圧延性が低下し、圧延自体が困難となったり、板厚制御が難しくなったりして、生産性が低下する。一方、300℃以上では、熱延板で再結晶組織となるために、調質焼鈍後に繊維状の同一結晶方位群が生成し、ピアス&バーリング工程時にくびれを生じる。また、亜結晶粒径が大きくなり、さらに耐力が下限値未満となる。したがって、熱間仕上げ圧延の終了温度は、250℃以上300℃未満とする。より好ましくは、260~290℃である。
(Hot rolling process)
The hot rolling step is a step of performing hot rolling after the heat treatment under the condition that the finish temperature of hot finish rolling is 250 ° C. or higher and lower than 300 ° C.
When the finish temperature of hot finish rolling is less than 250 ° C., the rollability of the material is lowered, and the rolling itself becomes difficult or the thickness control becomes difficult, and the productivity is lowered. On the other hand, at 300 ° C. or higher, since a recrystallized structure is formed in the hot-rolled sheet, a fibrous group of identical crystal orientations is generated after temper annealing, and constriction occurs during the piercing and burring process. Further, the subcrystal grain size is increased, and the proof stress is less than the lower limit value. Therefore, the finish temperature of hot finish rolling is 250 ° C. or higher and lower than 300 ° C. More preferably, it is 260 to 290 ° C.
(冷間加工工程)
 冷間加工工程は、前記熱間圧延後に、冷間加工率96%以上の冷間加工(冷間圧延)を施す工程である。
 熱間圧延終了後、冷間加工を1回、あるいは複数回行なって、フィン材を所望の最終板厚とする。ただし、冷間加工率が96%未満では、調質焼鈍後に亜結晶粒が粗大化する。また、耐力が低くなる。したがって、冷間加工における冷間加工率は、96%以上とする。ここで、冷間加工の途中で中間焼鈍を行なった場合、冷間加工率は中間焼鈍後から最終板厚までの加工率である。よって、中間焼鈍を行なうと、96%以上の冷間加工率とすることが困難となることから、中間焼鈍は行なわない。なお、冷間加工率は高いほど好ましいため、上限は特に設けない。
(Cold working process)
The cold working step is a step of performing cold working (cold rolling) with a cold working rate of 96% or more after the hot rolling.
After the hot rolling is completed, the cold working is performed once or a plurality of times, so that the fin material has a desired final thickness. However, if the cold working rate is less than 96%, the sub-crystal grains become coarse after temper annealing. Moreover, the yield strength is lowered. Therefore, the cold working rate in cold working is 96% or more. Here, when intermediate annealing is performed in the middle of cold working, the cold working rate is a working rate from the intermediate annealing to the final plate thickness. Therefore, if the intermediate annealing is performed, it becomes difficult to obtain a cold working rate of 96% or more, so the intermediate annealing is not performed. In addition, since a cold work rate is so preferable that it is high, there is no upper limit in particular.
(調質焼鈍工程)
 調質焼鈍工程は、前記冷間加工後に、230℃以下の温度で1~6時間保持する調質焼鈍(仕上げ焼鈍)を施す工程である。
  調質焼鈍の温度が、230℃を超えると、しごき加工により、加工硬化が促進され、割れが生じる。また、耐力が低くなる。したがって、調質焼鈍の温度は、230℃以下とする。好ましくは180℃未満とする。なお、下限値は特に規定されるものではないが、調質焼鈍の効果を発揮させるため、100℃以上で行なうことが好ましい。なお、調質焼鈍は1時間以上行うことが通常であり、6時間を超えると効果が飽和することから、保持時間は1~6時間とする。
(Refining annealing process)
The temper annealing step is a step of performing temper annealing (finish annealing) that is maintained at a temperature of 230 ° C. or lower for 1 to 6 hours after the cold working.
When the temperature of temper annealing exceeds 230 degreeC, work hardening will be accelerated | stimulated by a ironing process and a crack will arise. Moreover, the yield strength is lowered. Therefore, the temperature of temper annealing is set to 230 ° C. or less. Preferably it is less than 180 degreeC. In addition, although a lower limit is not specifically prescribed | regulated, in order to exhibit the effect of temper annealing, it is preferable to carry out at 100 degreeC or more. The temper annealing is usually performed for 1 hour or longer, and the effect is saturated after 6 hours, so the holding time is 1 to 6 hours.
(表面処理工程)
 表面処理工程は、調質焼鈍後のフィン材に表面処理を施す工程である。
 表面処理工程において、化成皮膜を形成する場合には、通常の塗布型または反応型の薬剤を用いた化成処理によって行うことができる。耐食性樹脂皮膜、親水性樹脂皮膜、潤滑性樹脂皮膜等の樹脂皮膜を形成する場合には、ロールコーターを用いた塗布、乾燥によって行うことができる。
(Surface treatment process)
The surface treatment step is a step of subjecting the fin material after the temper annealing to a surface treatment.
In the surface treatment step, when a chemical conversion film is formed, it can be performed by a chemical conversion treatment using a normal coating type or reactive type chemical. In the case of forming a resin film such as a corrosion-resistant resin film, a hydrophilic resin film, or a lubricating resin film, it can be carried out by applying and drying using a roll coater.
 なお、本発明を行うにあたり、前記各工程に悪影響を与えない範囲において、前記各工程の間あるいは前後に、他の工程を含めてもよい。例えば、ごみ等の異物を除去する異物除去工程や、鋳塊に面削を施す面削工程や、調質焼鈍工程や表面処理工程の後に、フィン材として必要な、機械加工を適宜施す機械加工工程等を含めてもよい。 In carrying out the present invention, other steps may be included between or before and after each step as long as they do not adversely affect each step. For example, a foreign material removing process for removing foreign substances such as dust, a chamfering process for chamfering an ingot, a temper annealing process and a surface treatment process, and machining that is appropriately performed as a fin material. A process or the like may be included.
 そして、このようにして製造されたフィン材は、ドローレス方式による成形法によって成形加工される。
 ドローレス成形(ドローレスプレス)は、第1工程で打ち抜きおよび穴広げ加工(ピアス&バーリング成形)、第2、第3工程でしごき加工、第4工程でリフレア加工を施すものである。そして、本発明のフィン材は、耐カラー割れ性に優れるため、ドローレス方式による成形加工時のカラー割れの発生を抑制することができる。
And the fin material manufactured in this way is shape | molded by the shaping | molding method by a drawless system.
In the drawless molding (drawless press), punching and hole expansion processing (piercing and burring molding) are performed in the first step, ironing processing is performed in the second and third steps, and reflaring processing is performed in the fourth step. And since the fin material of this invention is excellent in color cracking resistance, generation | occurrence | production of the color crack at the time of the shaping | molding process by a drawless system can be suppressed.
 以上、本発明を実施するための形態について述べてきたが、以下に、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と対比して具体的に説明する。なお、本発明はこの実施例に限定されるものではない。 As mentioned above, although the form for implementing this invention was described, the Example which confirmed the effect of this invention is demonstrated concretely compared with the comparative example which does not satisfy | fill the requirements of this invention below. In addition, this invention is not limited to this Example.
〔供試材作製〕
(実施例No.1~10、比較例No.11~21)
 表1に示す組成のアルミニウム合金を、溶解、鋳造して鋳塊とし、この鋳塊に面削を施した後に、480℃にて4時間の均質化熱処理を施した。この均質化した鋳塊に、熱間仕上げ圧延の終了温度を270℃となるように制御して熱間圧延を施し、板厚3.0mmの熱間圧延板とした。さらに、それぞれ97.0%または97.3%程度の冷間加工率で冷間圧延を施して板厚を90μmおよび80μmとした後、表1に示す温度および保持時間の調質焼鈍を施してフィン材とした。
[Sample preparation]
(Example No. 1 to 10, Comparative Example No. 11 to 21)
An aluminum alloy having the composition shown in Table 1 was melted and cast into an ingot, and the ingot was subjected to chamfering and then subjected to homogenization heat treatment at 480 ° C. for 4 hours. This homogenized ingot was hot-rolled by controlling the finish temperature of hot finish rolling to be 270 ° C. to obtain a hot-rolled sheet having a thickness of 3.0 mm. Further, after cold rolling at a cold working rate of about 97.0% or 97.3%, respectively, the sheet thickness was set to 90 μm and 80 μm, and then subjected to temper annealing at the temperature and holding time shown in Table 1. Fin material was used.
(実施例No.22~27、比較例No.28~34)
 表2に示すアルミニウム合金(表1に対応する合金A,B,C)を、溶解、鋳造して鋳塊とし、この鋳塊に面削を施した後に、均質化熱処理、熱間圧延を施し、板厚3.0mmの熱間圧延板とした。さらに、No.34以外は、それぞれ97.0%または97.3%程度の冷間加工率で冷間圧延を施して板厚を90μmおよび80μmとした後、調質焼鈍を施してフィン材とした。No.34は、板厚3.0mmの熱間圧延板に50%の冷間加工率で冷間圧延を施した後、バッチ炉を用いて360℃×3hの中間焼鈍を実施した。その後さらに、それぞれ94.0%または94.7%程度の冷間加工率で冷間圧延を施して板厚を90μmおよび80μmとした後、調質焼鈍を施してフィン材とした。均質化熱処理、熱間仕上げ圧延の終了温度、調質焼鈍の条件は、表2に示すとおりである。なお、No.30はフィン材を製造できなかったものである。
(Example No. 22 to 27, Comparative Example No. 28 to 34)
Aluminum alloys shown in Table 2 (Alloys A, B, and C corresponding to Table 1) were melted and cast to form ingots, and after the surfaces were subjected to face grinding, homogenization heat treatment and hot rolling were performed. A hot rolled plate having a thickness of 3.0 mm was used. Furthermore, no. Except for 34, the steel sheet was cold-rolled at a cold working rate of about 97.0% or 97.3% to make the plate thickness 90 μm and 80 μm, and then subjected to temper annealing to obtain a fin material. No. In No. 34, a hot rolled plate having a thickness of 3.0 mm was subjected to cold rolling at a cold working rate of 50%, and then subjected to intermediate annealing at 360 ° C. for 3 hours using a batch furnace. Thereafter, cold rolling was performed at a cold working rate of about 94.0% or 94.7%, respectively, so that the plate thickness was 90 μm and 80 μm, and then temper annealing was performed to obtain a fin material. Table 2 shows the conditions for the homogenization heat treatment, the finish temperature of the hot finish rolling, and the temper annealing. In addition, No. 30 is a thing which could not manufacture a fin material.
(実施例No.35~38、比較例No.39~42)
 表2のNo.22と同様のフィン材であるNo.35、36、表2のNo.27と同様のフィン材であるNo.37、38、表2のNo.29と同様のフィン材であるNo.39、40、表2のNo.32と同様のフィン材であるNo.41、42に対して以下の表面処理(No.1~4)を行った。
(Example No. 35 to 38, Comparative Example No. 39 to 42)
No. in Table 2 No. 22 which is the same fin material as that of No. 22. 35, 36, No. 2 in Table 2. No. 27, which is the same fin material as No. 27. 37, 38, No. 2 in Table 2. No. 29, which is the same fin material as No. 29. 39, 40, No. 2 in Table 2. No. 32, which is the same fin material as No. 32. The following surface treatments (Nos. 1 to 4) were performed on 41 and 42.
 No.1:特開2010-223520号公報の比較例1と同じ条件の表面処理(化成皮膜、親水性皮膜、潤滑性皮膜をこの順に備える)
 No.2:特許第3383914号公報の実施例1と同じ条件の表面処理(化成皮膜、親水性皮膜、潤滑性樹脂皮膜をこの順に備える)
 No.3:特開2008-224204号公報の実施例1と同じ条件の表面処理(化成皮膜、耐食性樹脂皮膜、親水性皮膜をこの順に備える)
 No.4:特開2010-223514号公報の比較例21と同じ条件の表面処理(化成皮膜、耐食性樹脂皮膜をこの順に備える)
No. 1: Surface treatment under the same conditions as Comparative Example 1 of JP 2010-223520 A (comprising a chemical conversion film, a hydrophilic film, and a lubricating film in this order)
No. 2: Surface treatment under the same conditions as Example 1 of Japanese Patent No. 3383914 (comprising a chemical conversion film, a hydrophilic film, and a lubricating resin film in this order)
No. 3: Surface treatment under the same conditions as in Example 1 of JP 2008-224204 (comprising a chemical conversion film, a corrosion-resistant resin film, and a hydrophilic film in this order)
No. 4: Surface treatment under the same conditions as Comparative Example 21 of JP 2010-223514 A (comprising a chemical conversion film and a corrosion-resistant resin film in this order)
 成分組成を表1に、製造条件を表2、3に示す。なお、表中、本発明の範囲を満たさないものは、数値に下線を引いて示し、成分を含有しないものは、「-」で示す。なお、No.30はフィン材を製造できなかったものであるため、調質焼鈍の欄に「-」と記す。また、No.16は、特許文献1の記載に基づくアルミニウム合金フィン材に基づくものであり(表2の発明例1(但し、熱延終了温度、熱間圧延後の板厚(3.5mm)および調質焼鈍の温度が異なる)、No.13は、特許文献2の記載に基づくアルミニウム合金フィン材に基づくものである(表1の発明例4(但し、加工方式(ドロー加工)が異なる))。また、No.17は、特許文献3の記載に基づくアルミニウム合金フィン材に基づくものであり(表1の発明例3)、No.33は、特許文献4の記載に基づくアルミニウム合金フィン材に基づくものである(表2の発明例11(但し、冷間圧延後の板厚(0.115mm厚)が異なる))。 Component composition is shown in Table 1, and production conditions are shown in Tables 2 and 3. In the table, those not satisfying the scope of the present invention are indicated by underlining the numerical values, and those not containing a component are indicated by “−”. In addition, No. Since “30” was not able to produce the fin material, “-” is written in the temper annealing column. No. 16 is based on an aluminum alloy fin material based on the description in Patent Document 1 (Invention Example 1 in Table 2 (however, the hot rolling end temperature, the plate thickness after hot rolling (3.5 mm), and temper annealing) No. 13 is based on the aluminum alloy fin material based on the description in Patent Document 2 (Invention Example 4 in Table 1 (however, the processing method (drawing) is different)). No. 17 is based on the aluminum alloy fin material based on the description in Patent Document 3 (Invention Example 3 in Table 1), and No. 33 is based on the aluminum alloy fin material based on the description in Patent Document 4. (Invention Example 11 in Table 2 (however, the plate thickness after cold rolling (0.115 mm thickness) is different)).
 次に、フィン材の組織形態として、亜結晶粒の平均粒径および3μm以上の金属間化合物の個数を以下の方法により測定した。さらに、強度および伸びを以下の方法により測定した。 Next, as the microstructure of the fin material, the average grain size of subcrystal grains and the number of intermetallic compounds of 3 μm or more were measured by the following method. Furthermore, strength and elongation were measured by the following methods.
〔亜結晶粒の平均粒径〕
 亜結晶粒の平均粒径は、観察倍率1,000倍で試料表面を撮影した走査電子顕微鏡(SEM)組織を、測定間隔0.10μmにてEBSD法により方位解析したデータを基に、TSL社製OIM(Orientation Imaging Microscopy. TM)ソフト上で自動計算することにより算出した。すなわち、フィン材の全面積をSEM/EBSD測定データによりカウントされた結晶粒の数で除し、各結晶粒の面積を円と近似した場合の直径を亜結晶粒の平均粒径と定義した。なお、結晶粒の数は、隣接結晶粒間の方位差が2°以内の結晶粒界に囲まれた結晶粒を一つの結晶粒としてカウントした。
〔3μmを超える金属間化合物の個数〕
 サイズが3μmを超える化合物数は、観察倍率500倍で、面積1.0mmの試料表面を撮影した走査電子顕微鏡(SEM)組織を画像解析することにより算出した。なお、化合物のサイズとは個々の化合物の最大の長さを言う。
[Average grain size of sub-crystal grains]
The average grain size of the sub-crystal grains is based on the data obtained by analyzing the orientation of the scanning electron microscope (SEM) structure obtained by photographing the sample surface at an observation magnification of 1,000 times by the EBSD method at a measurement interval of 0.10 μm. Calculation was performed by automatic calculation on OIM (Orientation Imaging Microscopy.TM) software. That is, the total area of the fin material was divided by the number of crystal grains counted by SEM / EBSD measurement data, and the diameter when the area of each crystal grain was approximated to a circle was defined as the average grain size of the subcrystal grains. As for the number of crystal grains, a crystal grain surrounded by a crystal grain boundary whose orientation difference between adjacent crystal grains is within 2 ° was counted as one crystal grain.
[Number of intermetallic compounds exceeding 3 μm]
The number of compounds having a size exceeding 3 μm was calculated by image analysis of a scanning electron microscope (SEM) structure obtained by photographing a sample surface with an observation magnification of 500 times and an area of 1.0 mm 2 . In addition, the size of a compound means the maximum length of each compound.
〔強度および伸び〕
  フィン材から、引張方向が圧延方向と平行になるようにJIS5号による引張試験片を切り出した。この試験片で、JISZ2241による引張試験を実施し、引張強さ、0.2%耐力、および、伸びを測定した。なお、本実施例および比較例の評価における引張速度は5mm/minで行った。
[Strength and elongation]
A tensile test piece according to JIS No. 5 was cut out from the fin material so that the tensile direction was parallel to the rolling direction. A tensile test according to JISZ2241 was performed on this test piece, and tensile strength, 0.2% yield strength, and elongation were measured. In addition, the tensile speed in evaluation of a present Example and a comparative example was performed at 5 mm / min.
〔評価〕
 作製したフィン材にドローレス成形によりプレス成形を実施し、耐カラー割れ性を評価した。
 耐カラー割れ性評価は、プレス成形品400穴に対して、カラー部に生じた割れを目視にてカウントすることで評価した。
 「割れ数/400×100(%)」を発生率とし、発生率が3%未満を(◎)、3%以上5%未満を(○)、5%以上を(×)とした。そして、90μmおよび80μmのすべてにおいて(◎)、(○)のいずれかであったものを合格とした。
[Evaluation]
The produced fin material was press-molded by drawless molding, and the color cracking resistance was evaluated.
The color cracking resistance evaluation was evaluated by visually counting the cracks generated in the collar portion with respect to 400 holes of the press-formed product.
“Number of cracks / 400 × 100 (%)” was defined as an occurrence rate, and the occurrence rate was defined as (◎) when less than 3%, (◯) when 3% or more and less than 5%, and (×) when 5% or more. And what was either ((double-circle)) or ((circle)) in all 90 micrometers and 80 micrometers was set as the pass.
 測定結果および評価結果を表1~3に示す。なお、表中、本発明の範囲を満たさないものは、数値に下線を引いて示し、フィン材の製造ができないために、測定および評価ができなかったものは、「-」で示す。 Measured results and evaluation results are shown in Tables 1-3. In the table, those that do not satisfy the scope of the present invention are indicated by underlining the numerical values, and those that cannot be measured and evaluated because the fin material cannot be manufactured are indicated by “−”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(成分による評価)
 表1に示すように、実施例であるNo.1~10は、本発明の範囲を満たすため、耐カラー割れ性に優れていた。
(Evaluation by ingredients)
As shown in Table 1, the example No. Since Nos. 1 to 10 satisfy the scope of the present invention, the color cracking resistance was excellent.
 一方、比較例であるNo.11~21は、本発明の範囲を満たさないため、以下の結果となった。
 No.11は、Si含有量が上限値を超えるため、粗大な金属間化合物が増加し、耐カラー割れ性に劣った。
On the other hand, No. as a comparative example. Since 11 to 21 do not satisfy the scope of the present invention, the following results were obtained.
No. In No. 11, since the Si content exceeded the upper limit, coarse intermetallic compounds increased and the color cracking resistance was poor.
 No.12は、Fe含有量が下限値未満のため、亜結晶粒径が大きくなり、耐カラー割れ性に劣った。No.13は、Fe含有量が上限値を超えるため、また、Al純度が下限値未満のため、粗大な金属間化合物が増加し、耐カラー割れ性に劣った。No.14は、Al純度が下限値未満のため、粗大な金属間化合物が増加し、耐カラー割れ性に劣った。 No. In No. 12, since the Fe content was less than the lower limit, the subcrystal grain size was large and the color cracking resistance was poor. No. In No. 13, since the Fe content exceeded the upper limit and the Al purity was less than the lower limit, coarse intermetallic compounds increased and the color crack resistance was poor. No. In No. 14, since the Al purity was less than the lower limit, coarse intermetallic compounds increased and the color cracking resistance was poor.
 No.15は、Cu含有量が上限値を超えるため、加工硬化を招き、耐カラー割れ性に劣った。No.16は、Mn含有量が上限値を超えるため、粗大な金属間化合物が増加し、耐カラー割れ性に劣った。No.17は、Mn含有量が上限値を超えるため、粗大な金属間化合物が増加し、また、調質焼鈍の温度が上限値を超えるため、加工硬化が促進され、さらに、耐力が下限値未満となり、耐カラー割れ性に劣った。 No. No. 15 was inferior in color cracking resistance due to work hardening because the Cu content exceeded the upper limit. No. In No. 16, since the Mn content exceeded the upper limit, coarse intermetallic compounds increased and the color cracking resistance was poor. No. No. 17, since the Mn content exceeds the upper limit, coarse intermetallic compounds increase, and the temper annealing temperature exceeds the upper limit, so work hardening is promoted, and the proof stress is less than the lower limit. Inferior to color cracking resistance.
 No.18は、Cr含有量が上限値を超えるため、粗大な金属間化合物が増加し、耐カラー割れ性に劣った。No.19は、Ti含有量が上限値を超えるため、粗大な金属間化合物が増加し、耐カラー割れ性に劣った。No.20は、Ti含有量が上限値を超えるため、粗大な金属間化合物が増加し、耐カラー割れ性に劣った。No.21は、Fe含有量が上限値を超えるため、粗大な金属間化合物が増加し、耐カラー割れ性に劣った。 No. In No. 18, since the Cr content exceeded the upper limit, coarse intermetallic compounds increased and the color cracking resistance was poor. No. In No. 19, since the Ti content exceeded the upper limit, coarse intermetallic compounds increased and the color cracking resistance was poor. No. No. 20, since the Ti content exceeded the upper limit, coarse intermetallic compounds increased and the color cracking resistance was poor. No. In No. 21, since the Fe content exceeded the upper limit, coarse intermetallic compounds increased and the color cracking resistance was poor.
(製造方法による評価)
 表2に示すように、実施例であるNo.22~27は、本発明の範囲を満たすため、耐カラー割れ性に優れていた。
(Evaluation by manufacturing method)
As shown in Table 2, the example No. Nos. 22 to 27 were excellent in color cracking resistance in order to satisfy the scope of the present invention.
 一方、比較例であるNo.28~34は、本発明の範囲を満たさないため、以下の結果となった。
 No.28は、均質化熱処理の温度が下限値未満のため、均質化が十分にされず、また、耐力が下限値未満となり、耐カラー割れ性に劣った。No.29は、均質化熱処理の温度が上限値を超えるため、亜結晶粒径が大きくなり、耐カラー割れ性に劣った。
On the other hand, No. as a comparative example. Since 28 to 34 did not satisfy the scope of the present invention, the following results were obtained.
No. No. 28 was inferior in color cracking resistance because the temperature of the homogenization heat treatment was less than the lower limit value, so that homogenization was not sufficient, and the proof stress was less than the lower limit value. No. In No. 29, the temperature of the homogenization heat treatment exceeded the upper limit, so the subcrystal grain size was large and the color cracking resistance was poor.
 No.30は、熱間仕上げ圧延の終了温度が下限値未満のため、圧延自体が困難であり、フィン材の製造ができなかった。No.31は、熱間仕上げ圧延の終了温度が上限値を超えるため、亜結晶粒径が大きくなり、また、耐力が下限値未満となり、耐カラー割れ性に劣った。No.32は、調質焼鈍温度が上限値を超えるため、加工硬化が促進され、また、耐力が下限値未満となり、耐カラー割れ性に劣った。 No. No. 30, because the finish temperature of hot finish rolling was less than the lower limit, rolling itself was difficult, and the fin material could not be manufactured. No. In No. 31, since the finish temperature of hot finish rolling exceeds the upper limit value, the subcrystal grain size is increased, the proof stress is less than the lower limit value, and the color crack resistance is inferior. No. In No. 32, since the temper annealing temperature exceeded the upper limit, work hardening was promoted, and the proof stress was less than the lower limit, resulting in poor color cracking resistance.
 No.33は、均質化熱処理の温度が上限値を超えるため、亜結晶粒径が大きくなり、耐カラー割れ性に劣った。No.34は、中間焼鈍を行なったため、冷間加工率が下限値未満となったものである。そのため、亜結晶粒の平均粒径が上限値を超え、また、耐力が下限値未満となり、耐カラー割れ性に劣った。 No. In No. 33, the temperature of the homogenization heat treatment exceeded the upper limit, so the subcrystal grain size was large and the color cracking resistance was poor. No. No. 34 is an intermediate annealing, so that the cold work rate is less than the lower limit. Therefore, the average grain size of the subcrystalline grains exceeded the upper limit value, and the proof stress became less than the lower limit value, resulting in poor color cracking resistance.
(表面処理を施した場合の評価)
 No.35~42における表面処理を施したフィン材の耐カラー割れ性は、表面処理を実施していないフィン材と同様の結果となった。
(Evaluation when surface treatment is applied)
No. The color crack resistance of the fin material subjected to the surface treatment in 35 to 42 was the same as that of the fin material not subjected to the surface treatment.
 なお、No.16、13、17、33のフィン材は、それぞれ特許文献1、特許文献2、特許文献3、特許文献4に記載された従来のアルミニウム合金フィン材を想定したものである。本実施例で示すように、これら従来のアルミニウム合金フィン材は、前記の評価において一定の水準を満たさないものである。従って、本実施例によって、本発明に係るドローレスプレス用熱交換器用アルミニウム合金フィン材が従来のアルミニウム合金フィン材と比較して、優れていることが客観的に明らかとなった。 No. The fin materials of 16, 13, 17, and 33 are assumed to be the conventional aluminum alloy fin materials described in Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4, respectively. As shown in this example, these conventional aluminum alloy fin materials do not satisfy a certain level in the above evaluation. Therefore, this example objectively revealed that the aluminum alloy fin material for a heat exchanger for a drawless press according to the present invention is superior to the conventional aluminum alloy fin material.

Claims (6)

  1.  Fe:0.010~0.4質量%を含有し、残部がAlおよび不可避的不純物からなり、Al純度が99.30質量%以上のアルミニウム合金からなるドローレスプレス用熱交換器用アルミニウム合金フィン材であって、
     前記ドローレスプレス用熱交換器用アルミニウム合金フィン材の厚みが0.115mm未満であり、亜結晶粒の平均粒径が2.5μm以下および耐力が130N/mm以上であることを特徴とするドローレスプレス用熱交換器用アルミニウム合金フィン材。
    An aluminum alloy fin material for a heat exchanger for a drawless press comprising Fe: 0.010 to 0.4% by mass, the balance being Al and inevitable impurities, and an Al purity of 99.30% by mass or more. There,
    A drawless press characterized in that the aluminum alloy fin material for heat exchanger for drawless press has a thickness of less than 0.115 mm, an average grain size of sub-crystal grains of 2.5 μm or less, and a proof stress of 130 N / mm 2 or more. Aluminum alloy fin material for heat exchangers.
  2.  さらに、最大長さが3μmを超える金属間化合物が2000個/mm以下であることを特徴とする請求項1に記載のドローレスプレス用熱交換器用アルミニウム合金フィン材。 2. The aluminum alloy fin material for a heat exchanger for drawless press according to claim 1, wherein the number of intermetallic compounds having a maximum length exceeding 3 μm is 2000 pieces / mm 2 or less.
  3.  前記アルミニウム合金の化学成分について、さらに、Cu:0.005~0.05質量%を含有し、Si:0.15質量%以下、Mn:0.015質量%未満、Cr:0.015質量%以下に抑制することを特徴とする請求項1または請求項2に記載のドローレスプレス用熱交換器用アルミニウム合金フィン材。 The chemical composition of the aluminum alloy further includes Cu: 0.005 to 0.05 mass%, Si: 0.15 mass% or less, Mn: less than 0.015 mass%, Cr: 0.015 mass% The aluminum alloy fin material for a heat exchanger for a drawless press according to claim 1 or 2, characterized by being suppressed to the following.
  4.  前記アルミニウム合金の化学成分について、さらに、Ti:0.01~0.05質量%を含有することを特徴とする請求項1から請求項3のいずれか一項に記載のドローレスプレス用熱交換器用アルミニウム合金フィン材。 4. The heat exchanger for a drawless press according to claim 1, wherein the chemical component of the aluminum alloy further contains Ti: 0.01 to 0.05% by mass. Aluminum alloy fin material.
  5.  フィン材表面に表面処理皮膜を備えることを特徴とする請求項1から請求項3のいずれか一項に記載のドローレスプレス用熱交換器用アルミニウム合金フィン材。 The aluminum alloy fin material for a heat exchanger for a drawless press according to any one of claims 1 to 3, wherein a surface treatment film is provided on the surface of the fin material.
  6.  請求項1から請求項4のいずれか一項に記載のドローレスプレス用熱交換器用アルミニウム合金フィン材の製造方法であって、
     前記アルミニウム合金の化学成分を有するアルミニウム合金鋳塊に、450~500℃の温度で1時間以上の熱処理を施す熱処理工程と、
     前記熱処理後に、熱間仕上げ圧延の終了温度が250℃以上300℃未満となる条件で熱間圧延を施す熱間圧延工程と、
     前記熱間圧延後に、冷間加工率96%以上の冷間加工を施す冷間加工工程と、
     前記冷間加工後に、230℃以下の温度で1~6時間保持する調質焼鈍を施す調質焼鈍工程と、を行うことを特徴とするドローレスプレス用熱交換器用アルミニウム合金フィン材の製造方法。
    A method for producing an aluminum alloy fin material for a heat exchanger for a drawless press according to any one of claims 1 to 4,
    A heat treatment step of subjecting the aluminum alloy ingot having the chemical composition of the aluminum alloy to a heat treatment at a temperature of 450 to 500 ° C. for 1 hour or more;
    After the heat treatment, a hot rolling step of performing hot rolling under the condition that the finish temperature of hot finish rolling is 250 ° C. or more and less than 300 ° C.,
    After the hot rolling, a cold working step of performing cold working with a cold working rate of 96% or more,
    A method of producing an aluminum alloy fin material for a heat exchanger for a drawless press, comprising performing a temper annealing step of performing a temper annealing that is maintained at a temperature of 230 ° C. or lower for 1 to 6 hours after the cold working.
PCT/JP2012/055659 2011-03-31 2012-03-06 Drawless press aluminium alloy fin material for heat exchanger, and manufacturing method for same WO2012132784A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2012235012A AU2012235012B2 (en) 2011-03-31 2012-03-06 Drawless-press heat-exchanging aluminium alloy fin material and manufacturing method for the same
CN201280015567.5A CN103459629B (en) 2011-03-31 2012-03-06 Heat exchanger aluminum alloy fin material and manufacture method thereof for attenuate stretching and punching
EP12764109.0A EP2692881A4 (en) 2011-03-31 2012-03-06 Drawless press aluminium alloy fin material for heat exchanger, and manufacturing method for same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-080855 2011-03-31
JP2011-080853 2011-03-31
JP2011080853A JP5843462B2 (en) 2011-03-31 2011-03-31 Aluminum alloy fin material for heat exchanger for drawless press
JP2011080855A JP5828657B2 (en) 2011-03-31 2011-03-31 Aluminum alloy fin material for heat exchanger

Publications (1)

Publication Number Publication Date
WO2012132784A1 true WO2012132784A1 (en) 2012-10-04

Family

ID=46930530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055659 WO2012132784A1 (en) 2011-03-31 2012-03-06 Drawless press aluminium alloy fin material for heat exchanger, and manufacturing method for same

Country Status (5)

Country Link
EP (1) EP2692881A4 (en)
CN (1) CN103459629B (en)
AU (1) AU2012235012B2 (en)
MY (1) MY161707A (en)
WO (1) WO2012132784A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5830451B2 (en) * 2012-10-03 2015-12-09 株式会社神戸製鋼所 Aluminum alloy fin material for heat exchanger for combination press
CN111520806B (en) * 2020-05-13 2021-11-02 商艳萍 Manufacturing method of oil heater radiating fin

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648240A (en) 1987-06-29 1989-01-12 Furukawa Aluminium High-strength aluminum alloy sheet for drawless fin and its production
JPH032343A (en) * 1989-05-26 1991-01-08 Kobe Steel Ltd Aluminum alloy for heat-exchanger fin
JPH08313191A (en) * 1995-03-16 1996-11-29 Furukawa Electric Co Ltd:The Aluminum fin material for heat exchanger
JP3383914B2 (en) 2000-01-21 2003-03-10 株式会社神戸製鋼所 Aluminum fin material for heat exchanger
JP2005126799A (en) 2003-10-27 2005-05-19 Mitsubishi Alum Co Ltd Aluminum alloy fin material for heat exchanger having excellent avec resistance
JP2006104488A (en) 2004-09-08 2006-04-20 Kobe Steel Ltd Aluminum alloy fin material having excellent forming workability
JP2006283114A (en) * 2005-03-31 2006-10-19 Kobe Steel Ltd Aluminum foil for multi-hole machining, and its manufacturing method
JP2008224204A (en) 2007-02-16 2008-09-25 Kobe Steel Ltd Aluminum fin material for heat exchanger
JP4275560B2 (en) 2004-03-22 2009-06-10 三菱アルミニウム株式会社 Aluminum alloy fin material for heat exchangers with excellent Abeck resistance and stackability
JP2009250510A (en) * 2008-04-04 2009-10-29 Mitsubishi Electric Corp Heat exchanger and its manufacturing method
JP2010223514A (en) 2009-03-24 2010-10-07 Kobe Steel Ltd Aluminum fin material for heat exchanger
JP2010223520A (en) 2009-03-24 2010-10-07 Kobe Steel Ltd Aluminum fin material for heat exchanger
WO2012029594A1 (en) * 2010-09-03 2012-03-08 株式会社神戸製鋼所 Heat exchanger aluminum alloy fin material and method for producing same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648240A (en) 1987-06-29 1989-01-12 Furukawa Aluminium High-strength aluminum alloy sheet for drawless fin and its production
JPH032343A (en) * 1989-05-26 1991-01-08 Kobe Steel Ltd Aluminum alloy for heat-exchanger fin
JPH08313191A (en) * 1995-03-16 1996-11-29 Furukawa Electric Co Ltd:The Aluminum fin material for heat exchanger
JP3383914B2 (en) 2000-01-21 2003-03-10 株式会社神戸製鋼所 Aluminum fin material for heat exchanger
JP2005126799A (en) 2003-10-27 2005-05-19 Mitsubishi Alum Co Ltd Aluminum alloy fin material for heat exchanger having excellent avec resistance
JP4275560B2 (en) 2004-03-22 2009-06-10 三菱アルミニウム株式会社 Aluminum alloy fin material for heat exchangers with excellent Abeck resistance and stackability
JP2006104488A (en) 2004-09-08 2006-04-20 Kobe Steel Ltd Aluminum alloy fin material having excellent forming workability
JP2006283114A (en) * 2005-03-31 2006-10-19 Kobe Steel Ltd Aluminum foil for multi-hole machining, and its manufacturing method
JP2008224204A (en) 2007-02-16 2008-09-25 Kobe Steel Ltd Aluminum fin material for heat exchanger
JP2009250510A (en) * 2008-04-04 2009-10-29 Mitsubishi Electric Corp Heat exchanger and its manufacturing method
JP2010223514A (en) 2009-03-24 2010-10-07 Kobe Steel Ltd Aluminum fin material for heat exchanger
JP2010223520A (en) 2009-03-24 2010-10-07 Kobe Steel Ltd Aluminum fin material for heat exchanger
WO2012029594A1 (en) * 2010-09-03 2012-03-08 株式会社神戸製鋼所 Heat exchanger aluminum alloy fin material and method for producing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2692881A4 *

Also Published As

Publication number Publication date
AU2012235012A1 (en) 2013-08-15
MY161707A (en) 2017-05-15
AU2012235012B2 (en) 2015-09-17
EP2692881A4 (en) 2014-11-05
CN103459629A (en) 2013-12-18
CN103459629B (en) 2016-05-18
EP2692881A1 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
JP5060632B2 (en) Aluminum alloy fin material for heat exchanger and manufacturing method thereof
JP5693333B2 (en) Aluminum alloy fin material for heat exchanger for combination press
JP5828657B2 (en) Aluminum alloy fin material for heat exchanger
WO2015155911A1 (en) High-strength aluminum alloy plate having exceptional bendability and shape fixability, and method for manufacturing same
JP4996909B2 (en) Aluminum alloy brazing sheet and method for producing the same
JP5830451B2 (en) Aluminum alloy fin material for heat exchanger for combination press
JP5843462B2 (en) Aluminum alloy fin material for heat exchanger for drawless press
JP5828825B2 (en) Aluminum alloy fin material for heat exchanger and manufacturing method of heat exchanger
JP4275560B2 (en) Aluminum alloy fin material for heat exchangers with excellent Abeck resistance and stackability
WO2012132784A1 (en) Drawless press aluminium alloy fin material for heat exchanger, and manufacturing method for same
JP2008223054A (en) Aluminum alloy sheet for forming-work having excellent deep drawability and burning/softening resistance, and producing method therefor
WO2012132785A1 (en) Combination press aluminium alloy fin material for heat exchanger, and manufacturing method for same
JP2008062255A (en) SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET
JPH1180869A (en) Aluminum alloy fin material and production of aluminum alloy fin material
JP5923841B2 (en) Aluminum alloy fin material for heat exchanger for drawless press
JP5764240B2 (en) Aluminum alloy fin material for heat exchanger for combination press
JP5807079B2 (en) Aluminum alloy fin material for heat exchanger
JP2014224323A (en) Aluminum alloy fin material for heat exchanger and heat exchanger
JP2021095619A (en) Aluminum alloy sheet for cap material and method for producing the same
JP2014231641A (en) Aluminum alloy fin material for heat exchanger of combination press
JP6328374B2 (en) Aluminum alloy fin material for heat exchanger and manufacturing method thereof
JP2988322B2 (en) Aluminum sheet for cross fin and method of manufacturing the same
JP2021021127A (en) Copper alloy material and heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764109

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12013501510

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2012764109

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012235012

Country of ref document: AU

Date of ref document: 20120306

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301004768

Country of ref document: TH