JP5050577B2 - Aluminum alloy plate for forming process excellent in deep drawability and bake-proof softening property and method for producing the same - Google Patents

Aluminum alloy plate for forming process excellent in deep drawability and bake-proof softening property and method for producing the same Download PDF

Info

Publication number
JP5050577B2
JP5050577B2 JP2007059466A JP2007059466A JP5050577B2 JP 5050577 B2 JP5050577 B2 JP 5050577B2 JP 2007059466 A JP2007059466 A JP 2007059466A JP 2007059466 A JP2007059466 A JP 2007059466A JP 5050577 B2 JP5050577 B2 JP 5050577B2
Authority
JP
Japan
Prior art keywords
annealing
aluminum alloy
alloy plate
manufacturing
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007059466A
Other languages
Japanese (ja)
Other versions
JP2008223054A (en
Inventor
照栄 高橋
丕植 趙
敏也 穴見
富美雄 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2007059466A priority Critical patent/JP5050577B2/en
Publication of JP2008223054A publication Critical patent/JP2008223054A/en
Application granted granted Critical
Publication of JP5050577B2 publication Critical patent/JP5050577B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Continuous Casting (AREA)
  • Metal Rolling (AREA)

Description

本発明は、家電製品や自動車の外板などの構造材に見られるように、例えば深絞り成形加工後に焼付け塗装が施されるような場合、成形加工性に優れかつ焼付け処理後に高い強度が求められる成形加工用アルミニウム合金板に関する。   As seen in structural materials such as home appliances and automobile outer plates, the present invention requires excellent formability and high strength after baking, for example, when baking coating is applied after deep drawing. The present invention relates to an aluminum alloy plate for forming.

Al−Mg系合金は、成形性に優れていることから、当該技術分野において種々の製造方法、成形性に優れた合金板、特に深絞り成形性に優れた合金板が提唱されてきた。   Since Al—Mg alloys are excellent in formability, various production methods and alloy plates excellent in formability, particularly alloy plates excellent in deep drawability have been proposed in the technical field.

成形加工用のアルミニウム合金板として、従来からJIS 5052合金、JIS 5182合金材が使用されてきた。深絞り成形加工に適するAl−Mg系合金板の製造方法としては、所定の組成の溶湯をDC鋳造してスラブとし、両面面削後に均質化処理を施して、熱間圧延、中間冷間圧延、中間焼鈍、最終冷間圧延、最終焼鈍を行うことが一般的である。特許文献1では、このような一般的な製造方法を採用し、Mn、Crを添加することにより、焼鈍板の集合組織および結晶粒径を適正な範囲として、(110)方位集積度などを制御した深絞り成形性に優れたAl−Mg系合金板が提案されている。   Conventionally, JIS 5052 alloy and JIS 5182 alloy material have been used as aluminum alloy plates for forming. As a method for producing an Al-Mg alloy sheet suitable for deep drawing, a molten metal having a predetermined composition is DC-cast to form a slab, subjected to homogenization after both-side chamfering, hot rolling, intermediate cold rolling In general, intermediate annealing, final cold rolling, and final annealing are performed. In Patent Document 1, such a general manufacturing method is adopted, and by adding Mn and Cr, the texture and crystal grain size of the annealed plate are set within an appropriate range, and the (110) orientation integration degree and the like are controlled. An Al-Mg alloy plate excellent in deep drawability has been proposed.

また、絞り比が2.0に近い食缶材等の深絞り成形において、ストレッチャー・ストレインマーク(SSマーク)が発生し、プレス加工速度の増大や温度制御によるSSマークの防止が困難であることから、材料面からの改善が要望されていた。特許文献2では、中間圧延における加工率、中間焼鈍温度、仕上げ圧延における加工率、安定化焼鈍温度などを規定することにより、特に絞り比が2.0に近い深絞り加工においてもストレッチャー・ストレインマークの発生しないAl−Mg合金板の製造方法が提案されている。   In addition, in deep drawing of food cans with a drawing ratio close to 2.0, stretcher strain marks (SS marks) are generated, and it is difficult to increase the press working speed and prevent SS marks by temperature control. Therefore, improvement from the material aspect has been demanded. In Patent Document 2, by specifying the processing rate in intermediate rolling, the intermediate annealing temperature, the processing rate in finish rolling, the stabilized annealing temperature, and the like, particularly in deep drawing with a drawing ratio close to 2.0, stretcher strain A method for producing an Al—Mg alloy plate free of marks has been proposed.

さらに、DI缶など深絞り缶の製造において、ネックの縮径率を大きくするとネック耳が生じ、しごき加工後のトリム加工において耳も除去され歩留まりが低下して製造コストが上昇するという問題があった。特許文献3では、トリム加工の際に除去される板材の量割合(耳率)を低くするため、熱間圧延の全工程にシングルミルのリバース式熱間粗圧延機を用い、熱間圧延、中間冷間圧延、中間焼鈍、最終冷間圧延などの製造条件を細かく規定した深絞り成形用アルミニウム基合金板の製造方法が開示されている。   Furthermore, in the manufacture of deep drawn cans such as DI cans, there is a problem that when the diameter reduction ratio of the neck is increased, neck ears are generated, and the ears are also removed in the trim processing after ironing, resulting in a decrease in yield and an increase in manufacturing cost. It was. In Patent Document 3, in order to reduce the amount ratio (ear ratio) of the plate material to be removed during trim processing, a single-mill reverse hot rough rolling mill is used for all the hot rolling processes, A method of manufacturing an aluminum-based alloy sheet for deep drawing, in which manufacturing conditions such as intermediate cold rolling, intermediate annealing, and final cold rolling are specified in detail, is disclosed.

一方、耐焼付け軟化性について、特許文献4では、質量%で、Mg:2〜5%、Fe:0.05を超え1.5%以下、Mn:0.05〜1.5%および結晶粒微細化剤を含有し、残部Alおよび不可避的不純物からなり、不可避的不純物のうちSi:0.20%未満とし、Fe+Mn>0.3%であり、Feの固溶量が50ppm以上で、円相当径で1〜6μmの金属間化合物が5000個/mm2以上存在し、しかも再結晶粒径の平均値が20μmである耐焼付け軟化性に優れたアルミニウム合金板が提案されている。   On the other hand, regarding the softening resistance to seizure, in Patent Document 4, Mg: 2 to 5%, Fe: more than 0.05 and 1.5% or less, Mn: 0.05 to 1.5% and crystal grains in mass% It contains a refining agent, and consists of the balance Al and unavoidable impurities. Among unavoidable impurities, Si: less than 0.20%, Fe + Mn> 0.3%, Fe solid solution amount of 50 ppm or more, There has been proposed an aluminum alloy plate excellent in seizure softening resistance, in which an intermetallic compound having an equivalent diameter of 1 to 6 μm is present in an amount of 5000 / mm 2 or more and the average recrystallized grain size is 20 μm.

家電製品や自動車の外板などの構造材などを深絞り加工した場合に外観を綺麗に仕上げるため、焼付け塗装が施されるケースも多い。この場合、従来法で製造された所謂DC材では、深絞り加工性に優れるAl−Mg合金板であっても、マトリックス中におけるFe、Mn、Crなどの遷移金属元素の固溶量が低いために、焼付け塗装時の加熱によって転位の回復が起こり、成形部材の強度が低下するという問題点があった。さらに上述したように、従来法では、所定の組成の溶湯をDC鋳造によりスラブを製造し、両面面削後に均質化処理を施して、熱間圧延、中間冷間圧延、中間焼鈍、最終冷間圧延、最終焼鈍を施すため、工程が複雑となり製造コストが高くなるという問題点もあった。   In many cases, a deep-drawing process is performed on structural materials such as home appliances and automobile outer panels, so that the appearance is beautifully baked. In this case, the so-called DC material manufactured by the conventional method has a low solid solution amount of transition metal elements such as Fe, Mn, and Cr in the matrix even in the case of an Al-Mg alloy plate having excellent deep drawing workability. Furthermore, there is a problem in that dislocation recovery occurs due to heating during baking coating, and the strength of the molded member is reduced. Furthermore, as described above, in the conventional method, a slab is manufactured by DC casting of a molten metal having a predetermined composition, subjected to homogenization treatment after double-side chamfering, hot rolling, intermediate cold rolling, intermediate annealing, final cold Since rolling and final annealing are performed, there is a problem that the process becomes complicated and the manufacturing cost increases.

特開平5-295476JP-A-5-295476 特開平9-13152JP-A-9-13152 特開平10-330898JP 10-330898 A 特開2004-76155JP 2004-76155 A

本発明は、上記従来の問題を解決し、複雑な製造工程を必要とせずに、深絞り性と耐焼付け軟化性とを同時に高めた成形加工用アルミニウム合金板およびその製造方法を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and provides an aluminum alloy plate for forming and a method for producing the same that have improved deep drawability and anti-seizure softening properties without requiring a complicated production process. Objective.

上記目的を達成するために、本発明の成形加工用アルミニウム合金板は、質量%で、Mg:1〜5%、Fe:0.1〜1.0%、Ti:0.005〜0.1%、B:0.0005〜0.01%を含み、残部Alと不可避的不純物からなり、不可避的不純物のうちSi:0.20%未満とし、マトリックス中のFeの固溶量が50ppm以上であり、再結晶粒径が12μm以下、限界絞り比が2.13以上であることを特徴とする。   In order to achieve the above object, the aluminum alloy sheet for forming according to the present invention is in mass%, Mg: 1 to 5%, Fe: 0.1 to 1.0%, Ti: 0.005 to 0.1. %, B: 0.0005 to 0.01%, the balance is Al and inevitable impurities, Si is less than 0.20% among the inevitable impurities, and the solid solution amount of Fe in the matrix is 50 ppm or more. The recrystallized grain size is 12 μm or less, and the limiting drawing ratio is 2.13 or more.

上記の成形加工用アルミニウム合金板を製造する方法は、本発明によれば、質量%で、Mg:1〜5%、Fe:0.1〜1.0%、Ti:0.005〜0.1%、B:0.0005〜0.01%を含み、残部Alと不可避的不純物からなり、不可避的不純物のうちSi:0.20%未満とする合金組成の溶湯を双ベルト式鋳造機により連続鋳造して薄スラブとし、該薄スラブに均質化処理および中間焼鈍を施すことなく、冷間圧延を行った後に、最終焼鈍を施すことを特徴とする。   According to the present invention, the method for producing the above-described aluminum alloy sheet for forming is in mass%, Mg: 1-5%, Fe: 0.1-1.0%, Ti: 0.005-0. 1%, B: 0.0005-0.01%, the balance is Al and unavoidable impurities, Si: less than 0.20% of the unavoidable impurities of the alloy composition of molten metal by a double belt caster A continuous slab is formed into a thin slab. The thin slab is subjected to final rolling after cold rolling without being subjected to homogenization and intermediate annealing.

本発明の成形加工用アルミニウム合金板においては、再結晶粒が12μm以下のサイズであり、しかも再結晶時に圧延集合組織を残存させ、(110)方位を得やすく、r値やLDRが高く深絞り性に優れたAl−Mg系合金板を製造することができる。しかも、このAl−Mg系合金板は、マトリックス中におけるFe、Mnなどの遷移金属元素の固溶量が高く、成形後の焼付け塗装時の加熱による耐力の低下が少ないため、耐焼付け軟化性にも優れている。   In the aluminum alloy sheet for forming according to the present invention, the recrystallized grains have a size of 12 μm or less, and the rolled texture remains at the time of recrystallization so that the (110) orientation can be easily obtained, and the r value and LDR are high. An Al—Mg-based alloy plate having excellent properties can be manufactured. In addition, this Al-Mg alloy plate has a high solid solution amount of transition metal elements such as Fe and Mn in the matrix, and since there is little decrease in yield strength due to heating during baking after molding, Is also excellent.

本発明の製造方法によると、双ベルト鋳造機による薄スラブ鋳造時、薄スラブ中にAl-Fe、Al-(Fe・Mn)-Si、Al-Cr系化合物などが均一かつ微細に晶出して、最終焼鈍時に再結晶粒の核となり、同時に結晶粒界の移動を妨げるピン止め効果を発揮するため、再結晶粒径が12μm以下と微細になる。また、母相Al中に過飽和に固溶したFe、Mnなど遷移金属元素が、Mgとともに固溶体強化元素となり、再結晶の際に圧延集合組織の転位やセル境界の移動を止め、そこに存在する圧延集合組織を残存させる。この結果、(110)方位が得られ、r値やLDRが高く深絞り性に優れたAl−Mg系合金板とすることができる。   According to the production method of the present invention, during thin slab casting with a twin belt caster, Al—Fe, Al— (Fe · Mn) —Si, Al—Cr based compounds, etc. are crystallized uniformly and finely in the thin slab. In the final annealing, it becomes a nucleus of recrystallized grains and at the same time exhibits a pinning effect that hinders the movement of grain boundaries, so that the recrystallized grain size becomes as fine as 12 μm or less. In addition, transition metal elements such as Fe and Mn, which are supersaturated in the matrix Al, become solid solution strengthening elements together with Mg, and stop the dislocation of the rolling texture and the movement of the cell boundary during recrystallization and exist there. The rolling texture remains. As a result, the (110) orientation can be obtained, and an Al—Mg alloy plate having high r value and LDR and excellent deep drawability can be obtained.

しかもこのAl−Mg系合金板は、マトリックス中におけるFe、Mnなどの遷移金属元素の固溶量が高く、成形後の焼付け塗装時の加熱によるによる耐力の低下が少ないため、耐焼付け軟化性にも優れている。   Moreover, this Al-Mg alloy plate has a high solid solution amount of transition metal elements such as Fe and Mn in the matrix, and there is little decrease in yield strength due to heating at the time of baking coating after molding. Is also excellent.

本発明の合金成分の意義および限定理由について説明する。本願においては、特に断りのない限り、「%」は「質量%」を意味する。   The significance and reasons for limitation of the alloy components of the present invention will be described. In the present application, “%” means “mass%” unless otherwise specified.

まず、必須要件から説明する。   First, the essential requirements will be described.

〔Mg:1〜5%〕
Mgは必須成分であり、マトリックス中に固溶して固溶体強化元素として作用し、強度と成形性を付与するために添加する。Mg含有量を1〜5%と限定したのは、1%未満ではその効果が小さく、5%を越えると塑性変形による加工硬化が進み、冷間圧延時に耳割れが生じやすくいことに加え、応力腐食割れに敏感になるなどの問題が発生する可能性があるからである。Mg含有量の好ましい範囲は、1.5〜3.5%である。
[Mg: 1-5%]
Mg is an essential component, and is added to the solid solution to act as a solid solution strengthening element and impart strength and formability. The Mg content is limited to 1 to 5%. If the content is less than 1%, the effect is small. If the content exceeds 5%, work hardening by plastic deformation proceeds, and ear cracks are likely to occur during cold rolling. This is because problems such as sensitivity to stress corrosion cracking may occur. A preferable range of the Mg content is 1.5 to 3.5%.

〔Fe:0.1〜1.0%〕
Feは必須成分であり、Mn、Siと共存させることにより、薄スラブ中にAl-Fe、Al-(Fe・Mn)-Si系化合物などを均一かつ微細に晶出させる。これら微細な金属間化合物は最終焼鈍時に再結晶粒の核となり、同時に結晶粒界の移動を妨げるピン止め効果を発揮するため、再結晶粒径が12μm以下と微細になり、深絞り性に優れた板となる。また、薄スラブ連続鋳造機では、溶湯の凝固冷却速度が速いため、Feが過飽和に固溶する傾向が大きくなり、均質化処理、中間焼鈍を施さない本発明においては、最終焼鈍板におけるマトリックス中のFe固溶量が50ppm以上となる。マトリックスに固溶したFeは、圧延集合組織を残存させ、深絞り性に優れた板となる。しかも、成形後の焼付け塗装時の加熱による軟化の度合いが、従来法によるDC材に比較して小さくなり、耐焼付け軟化性にも優れた板となる。
[Fe: 0.1 to 1.0%]
Fe is an essential component, and by coexisting with Mn and Si, Al—Fe, Al— (Fe · Mn) —Si compounds and the like are crystallized uniformly and finely in a thin slab. These fine intermetallic compounds become the core of recrystallized grains during the final annealing, and at the same time exhibit a pinning effect that hinders the movement of the crystal grain boundaries, so the recrystallized grain size becomes as fine as 12 μm or less and excellent deep drawability It becomes a plate. In the thin slab continuous casting machine, since the solidification cooling rate of the molten metal is fast, the tendency of Fe to dissolve in supersaturation increases, and in the present invention in which homogenization treatment and intermediate annealing are not performed, The Fe solid solution amount becomes 50 ppm or more. Fe dissolved in the matrix leaves a rolling texture and becomes a plate excellent in deep drawability. In addition, the degree of softening due to heating during baking after molding is smaller than that of a DC material obtained by the conventional method, and the plate is excellent in baking softening resistance.

Fe含有量を0.1〜1.0%と限定したのは、0.1%未満ではその効果が小さく、1.0%を越えると鋳造時に粗大な金属間化合物を生じやすく、深絞り成形性を劣化させる可能性があるからである。Fe含有量のさらに好ましい範囲は、0.15〜0.5%である。   The reason for limiting the Fe content to 0.1 to 1.0% is that the effect is small if it is less than 0.1%, and if it exceeds 1.0%, a coarse intermetallic compound is likely to be produced at the time of casting. This is because there is a possibility of deteriorating the performance. A more preferable range of the Fe content is 0.15 to 0.5%.

〔Ti:0.005〜0.1%〕
Tiは必須成分であり、薄スラブの結晶粒微細化剤として作用し、スラブ割れ等の鋳造欠陥を確実に防止することができる。Ti含有量が0.005%未満では、その効果が十分でなく、Ti含有量が0.10%を超える場合には、鋳造時にTiAl3等の粗大な金属間化合物が生成するため、曲げ性が著しく低下する。したがって、Ti含有量は0.005〜0.10%とする。Ti含有量の好ましい範囲は、0.005〜0.05%である。
[Ti: 0.005 to 0.1%]
Ti is an essential component and acts as a grain refiner for thin slabs, and can reliably prevent casting defects such as slab cracking. When the Ti content is less than 0.005%, the effect is not sufficient, and when the Ti content exceeds 0.10%, a coarse intermetallic compound such as TiAl 3 is generated during casting, so that the bendability is increased. Is significantly reduced. Therefore, the Ti content is 0.005 to 0.10%. A preferred range for the Ti content is 0.005 to 0.05%.

〔B:0.0005〜0.01%〕
Bは必須成分であり、鋳塊の結晶粒微細化剤としてのロッドハードナー(例えば、Al-5%Ti-1%B)を添加することで、必然的に混入する。Bは、溶湯中で必須元素であるTiと混在することで、鋳塊の結晶粒微細化効果が飛躍的に向上する。B含有量が0.0005%未満の場合には、結晶粒微細化効果が十分でなく、スラブ割れ等の鋳造欠陥を確実に防止することが困難である。B含有量が0.01%を超える場合には、鋳塊の結晶粒微細化効果が飽和するだけではなく、最終焼鈍板において、余剰のTiB2の凝集体が介在物として作用する場合があり、深絞り加工時に板表面キズを発生させるなど成形性を低下させる虞がある。
[B: 0.0005 to 0.01%]
B is an essential component and is inevitably mixed by adding a rod hardener (for example, Al-5% Ti-1% B) as a crystal grain refining agent for the ingot. When B is mixed with Ti which is an essential element in the molten metal, the crystal grain refining effect of the ingot is dramatically improved. When the B content is less than 0.0005%, the crystal grain refining effect is not sufficient, and it is difficult to reliably prevent casting defects such as slab cracks. When the B content exceeds 0.01%, not only the crystal grain refining effect of the ingot is saturated, but excessive TiB 2 aggregates may act as inclusions in the final annealed plate. Further, there is a possibility that the formability may be deteriorated by causing scratches on the plate surface during deep drawing.

〔不可避的不純物〕
不可避的不純物は、アルミニウム地金、返り材、フラックスなどに含まれる不純物元素、或いは溶湯中のMgによる炉材シリカの還元溶出、溶製治具と溶湯との反応などが原因で混入する。Si、Cu、Ni、Zn、Ga、V、Ca、Naなどが代表的な元素である。
[Inevitable impurities]
Inevitable impurities are mixed due to the impurity element contained in the aluminum ingot, the return material, the flux, or the like, or the reduction elution of the furnace material silica by Mg in the molten metal, the reaction between the melting jig and the molten metal, or the like. Si, Cu, Ni, Zn, Ga, V, Ca, Na, etc. are typical elements.

特にSiは返り材から多く混入するので配合には注意を要する。 過剰に含有すると、Mg2SiやAl-(Fe・Mn)-Siなどの晶出物が増加して、深絞り成形性を劣化させる。したがって、Si含有量は0.2%未満に制限すべきである。Si含有量の更に好ましい範囲は0.15%未満である。 In particular, since Si is mixed in a large amount from the return material, it is necessary to pay attention to the formulation. If excessively contained, increasing the crystallized substances, such as Mg 2 Si and Al- (Fe · Mn) -Si, deteriorating the deep drawability. Therefore, the Si content should be limited to less than 0.2%. A more preferable range of the Si content is less than 0.15%.

〔マトリクス中のFe固溶量:50ppm以上〕
マトリクス中のFeの固溶量を50ppm以上に限定したのは以下の理由による。
[Fe solid solution in the matrix: 50 ppm or more]
The reason why the solid solution amount of Fe in the matrix is limited to 50 ppm or more is as follows.

すなわち、マトリクス中に固溶したFeは、再結晶の際に圧延集合組織を残存させ、深絞り成形性を高める効果がある。同時に、板成形後、焼付け塗装の加熱時に転位の回復を妨げて強度低下を抑制する効果もある。Fe固溶量が50ppm未満であると、これらの効果が十分に得られない。   That is, Fe dissolved in the matrix has the effect of increasing the deep drawability by leaving the rolling texture during recrystallization. At the same time, after plate forming, there is also an effect of inhibiting the recovery of dislocation during heating of the baking coating and suppressing the strength reduction. If the Fe solid solution amount is less than 50 ppm, these effects cannot be obtained sufficiently.

次に、任意要件を説明する。   Next, optional requirements will be described.

〔Cr:0.05〜0.4%〕
Crは任意成分であり、鋳造時に5μm以下のサイズのAl-Cr系金属間化合物を均一かつ微細に晶出させる。これら微細な金属間化合物は最終焼鈍時に再結晶粒の核となり、同時に結晶粒界の移動を妨げるピン止め効果を発揮するため、製造条件(特に最終焼鈍温度など)を厳しく制限しなくとも再結晶粒径が容易に12μm以下に微細化する。
[Cr: 0.05-0.4%]
Cr is an optional component, and Al—Cr intermetallic compounds having a size of 5 μm or less are crystallized uniformly and finely during casting. These fine intermetallic compounds become the cores of recrystallized grains during final annealing, and at the same time exert a pinning effect that hinders the movement of grain boundaries, so recrystallization is possible without severely limiting production conditions (especially final annealing temperature). The particle size is easily reduced to 12 μm or less.

したがって、本発明の合金は0.05〜0.40%のCrを含有することが好ましい。Cr含有量が0.05%未満ではその効果が十分でなく、再結晶粒の粒径を12μm以下に微細化するには上記したような製造条件を厳しく制限しなくてはならない。再結晶粒径が12μmを超えると肌荒れ性が低下する。一方、Cr含有量が0.40%を超えると鋳造時に粗大な金属間化合物を生じやすく、深絞り性を劣化させる。   Therefore, the alloy of the present invention preferably contains 0.05 to 0.40% Cr. If the Cr content is less than 0.05%, the effect is not sufficient, and the production conditions as described above must be severely limited in order to reduce the grain size of the recrystallized grains to 12 μm or less. When the recrystallized grain size exceeds 12 μm, the rough skin property decreases. On the other hand, if the Cr content exceeds 0.40%, a coarse intermetallic compound is likely to be produced during casting, and the deep drawability is deteriorated.

〔Mn:0.05〜0.5%〕
Mnは任意成分であり、Fe、Siとともに鋳造時に5μm以下のサイズのAl-(Fe・Mn)-Si系金属間化合物を均一かつ微細に晶出させる。これら微細な金属間化合物は最終焼鈍時に再結晶粒の核となり、同時に結晶粒界の移動を妨げるピン止め効果を発揮するため、前記のような製造条件を厳しく制限しなくとも、再結晶粒径が容易に12μm以下に微細化する。また、薄スラブ連続鋳造機では、溶湯の凝固冷却速度が速いため、Mnが過飽和に固溶する傾向が大きくなり、均質化処理、中間焼鈍を施さない本発明においては、最終焼鈍板におけるマトリックス中のMn固溶量が50ppm以上となる。マトリックスに固溶されたMnは圧延集合組織を残存させ、深絞り性に優れた板となる。しかも、成形後の焼付け塗装時の加熱による軟化の度合いが、従来法によるDC材に比較して小さくなり、耐焼付け軟化性にも優れた板となる。
[Mn: 0.05 to 0.5%]
Mn is an optional component, and together with Fe and Si, Al— (Fe · Mn) —Si intermetallic compounds having a size of 5 μm or less are crystallized uniformly and finely during casting. These fine intermetallic compounds become the core of recrystallized grains during the final annealing, and at the same time exert a pinning effect that hinders the movement of grain boundaries. However, it is easily refined to 12 μm or less. Also, in the thin slab continuous casting machine, the solidification cooling rate of the molten metal is fast, so the tendency of Mn to dissolve in supersaturation increases, and in the present invention in which homogenization treatment and intermediate annealing are not performed, The Mn solid solution amount is 50 ppm or more. Mn dissolved in the matrix leaves a rolling texture and becomes a plate excellent in deep drawability. In addition, the degree of softening due to heating during baking after molding is smaller than that of a DC material obtained by the conventional method, and the plate is excellent in baking softening resistance.

したがって、本発明の合金は0.05〜0.50%のMnを含有することが好ましい。Mn含有量が0.05%未満ではその効果が十分でなく、再結晶粒の粒径を12μm以下に微細化するには上記したような製造条件を厳しく制限しなくてはならない。再結晶粒の粒径が12μmを超えると肌荒れ性が低下する。0.50%を超えると鋳造時に粗大な金属間化合物を生じやすく、深絞り性を劣化させる。   Therefore, the alloy of the present invention preferably contains 0.05 to 0.50% Mn. If the Mn content is less than 0.05%, the effect is not sufficient, and the production conditions as described above must be severely restricted in order to reduce the grain size of the recrystallized grains to 12 μm or less. When the grain size of the recrystallized grains exceeds 12 μm, the rough skin property decreases. If it exceeds 0.50%, a coarse intermetallic compound is likely to be produced during casting, and the deep drawability is deteriorated.

本発明の製造方法の諸条件を限定した理由を説明する。   The reason why the conditions of the production method of the present invention are limited will be described.

以下の説明においては、製造工程順に記載し、必須要件と任意要件と明記した。   In the following explanation, it describes in order of a manufacturing process, and specified it as an essential requirement and an arbitrary requirement.

〔双ベルト鋳造機により連続鋳造して薄スラブとし<必須要件>〕
本発明の高温高速成形性に優れたAl−Mg系合金板の製造に用いる薄スラブは双ベルト式鋳造機により鋳造する。
[Continuous casting by twin belt casting machine to make a thin slab <required requirement>]
The thin slab used for the production of the Al—Mg alloy plate excellent in high-temperature high-speed formability of the present invention is cast by a twin-belt casting machine.

双ベルト式鋳造機とは、上下に対面し水冷されている一対の回転ベルト間に溶湯を注湯してベルト面からの冷却で溶湯を凝固させてスラブとし、ベルトの反注湯側より該スラブを連続して引き出してコイル状に巻き取る方式の鋳造機である。   The twin-belt casting machine is a method in which molten metal is poured between a pair of rotating belts facing up and down and cooled by water, and the molten metal is solidified by cooling from the belt surface to form a slab. This is a casting machine that draws out a slab continuously and winds it up in a coil.

〔双ベルト式鋳造機により鋳造した厚さ3〜15mmのスラブを巻き取り(任意要件)〕
〔スラブ厚み1/4における凝固冷却速度が20〜150℃/sec(任意要件)〕
本発明においては、鋳造する薄スラブの厚さは3〜15mmとすることが好ましい。この範囲の厚さであれば、スラブ厚み1/4において20〜150℃/sec程度の凝固冷却速度を容易に確保できるので、均一な鋳造組織を形成し易く、マトリックス中へのFe、Mnなどの遷移金属元素の固溶量を確保することが容易にできる。また、鋳造凝固時に生成される金属間化合物のサイズを5μm以下に抑え易くなり、結果的に最終焼鈍後の再結晶粒の平均粒径を12μm以下に制御することが容易になる。
[Take up 3-15mm thick slab cast by twin belt casting machine (optional requirement)]
[Solidification cooling rate at slab thickness 1/4 is 20 to 150 ° C./sec (optional requirement)]
In the present invention, the thickness of the cast thin slab is preferably 3 to 15 mm. If the thickness is within this range, a solidification cooling rate of about 20 to 150 ° C./sec can be easily secured at a slab thickness of 1/4, so that a uniform cast structure can be easily formed, such as Fe and Mn in the matrix. It is easy to secure a solid solution amount of the transition metal element. Moreover, it becomes easy to suppress the size of the intermetallic compound produced | generated at the time of casting solidification to 5 micrometers or less, and it becomes easy to control the average particle diameter of the recrystallized grain after final annealing to 12 micrometers or less as a result.

上記のスラブ厚さ範囲は、ベルト式鋳造機の実行面からも最適である。すなわち、スラブ厚さが3mm未満であると、単位時間当りに鋳造機を通過するアルミニウム合金量が少ないため、鋳造が困難になる。スラブ厚さが15mmを超えると、コイルとして巻き取ることが困難になる。   The above slab thickness range is also optimal from the practical aspect of the belt type casting machine. That is, when the slab thickness is less than 3 mm, casting becomes difficult because the amount of aluminum alloy passing through the casting machine per unit time is small. When the slab thickness exceeds 15 mm, it becomes difficult to wind it as a coil.

〔薄スラブに均質化処理および中間焼鈍を施すことなく<必須要件>〕
本発明においては、コイルに巻き取った薄スラブに均質化処理および中間焼鈍のいずれも施すことなく最終板厚まで冷間圧延する。均質化処理、中間焼鈍を施さないため、マトリックス中に過飽和に固溶されたFe、Mnは、そのまま維持され、耐焼付け軟化性に優れた板を製造できる。
[Necessary homogenization and intermediate annealing of thin slabs <required requirement>]
In the present invention, the thin slab wound around the coil is cold-rolled to the final plate thickness without any homogenization treatment or intermediate annealing. Since the homogenization and intermediate annealing are not performed, Fe and Mn dissolved in supersaturation in the matrix are maintained as they are, and a plate excellent in bake resistance and softening can be manufactured.

また、この製造方法では、従来法による複雑な工程のうち、両面面削、均質化処理、熱間圧延、中間焼鈍などの工程が省略されるため、製造コストを低く抑えることが可能である。   Moreover, in this manufacturing method, steps such as double-sided chamfering, homogenization treatment, hot rolling, and intermediate annealing among the complicated steps according to the conventional method are omitted, so that the manufacturing cost can be kept low.

〔連続焼鈍炉により保持温度400〜520℃で行う(任意要件)〕
本願発明においては、冷間圧延後に最終焼鈍を行う。この最終焼鈍は、バッチ焼鈍炉で実施してもよいが、連続焼鈍炉(CAL)で実施する方が好ましい。連続焼鈍炉(CAL)とは、コイルを連続的に溶体化処理等するための設備であり、熱処理を施すための誘導加熱装置や水冷するための水槽および空冷するためのエアノズル等を備えたことを特徴としている。最終焼鈍温度は400〜520℃の範囲が好ましい。400℃未満であると、再結晶に必要なエネルギー供給が少ないため、再結晶が十分に起きることが困難になり、微細な再結晶組織を得ることが困難になる。しかし、最終焼鈍温度が520℃を超えると、再結晶粒径が12μmを超えて粗大化し易くなり、微細な再結晶組織を得ることが困難になる。
[Performed at a holding temperature of 400 to 520 ° C. in a continuous annealing furnace (optional requirement)]
In the present invention, final annealing is performed after cold rolling. This final annealing may be performed in a batch annealing furnace, but is preferably performed in a continuous annealing furnace (CAL). Continuous annealing furnace (CAL) is equipment for continuously solution treatment of coils, etc., equipped with induction heating device for heat treatment, water tank for water cooling, air nozzle for air cooling, etc. It is characterized by. The final annealing temperature is preferably in the range of 400 to 520 ° C. If it is less than 400 ° C., the energy supply required for recrystallization is small, so that it is difficult for recrystallization to occur sufficiently, and it becomes difficult to obtain a fine recrystallized structure. However, when the final annealing temperature exceeds 520 ° C., the recrystallized grain size exceeds 12 μm, and it becomes easy to coarsen, and it becomes difficult to obtain a fine recrystallized structure.

連続焼鈍炉における焼鈍温度での保持時間は40秒以内とすることが好ましい。40秒以上の保持時間の場合、再結晶粒が粗大化し易くなり、微細な再結晶組織を得ることが困難になる。   The holding time at the annealing temperature in the continuous annealing furnace is preferably within 40 seconds. When the holding time is 40 seconds or longer, the recrystallized grains are likely to be coarsened, and it becomes difficult to obtain a fine recrystallized structure.

〔バッチ焼鈍炉により保持温度300〜400℃で行う(任意要件)〕
この最終焼鈍をバッチ焼鈍炉で実施する場合、最終焼鈍温度は300〜400℃の範囲とすることが好ましい。300℃未満であると、再結晶に必要なエネルギー供給が少ないため、再結晶が不十分に起きることが困難になり、微細な再結晶組織を得ることが困難になる。しかし、最終焼鈍温度が400℃を超えると、再結晶粒径が12μmを超えて粗大化し易くなり、微細な再結晶組織を得ることが困難になる。
[Performed at a holding temperature of 300 to 400 ° C. with a batch annealing furnace (optional requirement)]
When this final annealing is performed in a batch annealing furnace, the final annealing temperature is preferably in the range of 300 to 400 ° C. When the temperature is lower than 300 ° C., the energy supply necessary for recrystallization is small, so that it becomes difficult for recrystallization to occur insufficiently, and it becomes difficult to obtain a fine recrystallized structure. However, when the final annealing temperature exceeds 400 ° C., the recrystallized grain size easily exceeds 12 μm and becomes coarse, and it becomes difficult to obtain a fine recrystallized structure.

バッチ焼鈍炉における焼鈍温度での保持時間は0.5〜12時間とすることが好ましい。保持時間が0.5時間未満の場合、コイルの実体温度が炉内雰囲気温度まで到達しない虞れがある。保持時間が12時間を超えても、微細な再結晶組織を発現させる作用が更に増加することはなく、単に生産性の低下を招くだけである。   The holding time at the annealing temperature in the batch annealing furnace is preferably 0.5 to 12 hours. If the holding time is less than 0.5 hour, the actual temperature of the coil may not reach the furnace atmosphere temperature. Even if the holding time exceeds 12 hours, the effect of developing a fine recrystallized structure is not further increased, and the productivity is simply lowered.

本発明例として、表1に「CC材」と示す合金組成のアルミニウム合金溶湯を双ベルト式連続鋳造機で10mmの厚みの薄スラブを鋳造してコイルに巻き取った。鋳造した薄スラブはその後、均質化処理、中間焼鈍を行わず、最終板厚1mmまで冷間圧延した。   As an example of the present invention, a molten aluminum alloy having an alloy composition shown as “CC material” in Table 1 was cast into a thin slab having a thickness of 10 mm with a twin belt type continuous casting machine and wound around a coil. Thereafter, the cast thin slab was cold-rolled to a final thickness of 1 mm without performing homogenization and intermediate annealing.

比較例として、表1に「DC材」と示す合金組成のアルミニウム合金溶湯をDC鋳造機にて1000mm×500mm×4000mmのスラブに鋳造し、両面面削した後、熱処理炉にて450℃×12hrsの均質化処理を行い、引き続き熱間圧延機にて、熱延を行って、6mm厚さの熱間圧延板をコイルに巻き取った。その後、中間焼鈍することなく、最終板厚1mmまで冷間圧延した。   As a comparative example, a molten aluminum alloy having an alloy composition shown in Table 1 as “DC material” was cast into a 1000 mm × 500 mm × 4000 mm slab with a DC casting machine, both sides were cut, and then 450 ° C. × 12 hrs in a heat treatment furnace. Next, hot rolling was performed with a hot rolling mill, and a 6 mm thick hot rolled plate was wound around the coil. Then, it cold-rolled to the final board thickness of 1 mm, without carrying out intermediate annealing.

本発明例のCC材冷延板および比較例のDC材冷延板を、いずれも連続焼鈍炉(CAL:continuous annealing line)にて、保持温度425℃で焼鈍を行った。   The CC cold-rolled sheet of the inventive example and the DC cold-rolled sheet of the comparative example were both annealed at a holding temperature of 425 ° C. in a continuous annealing furnace (CAL).

上記焼鈍後の各板材からミクロ組織観察用試料を採取して断面を研磨し、クロスカット法で再結晶粒径の測定を行った。さらにマトリックス中のFe固溶量、Mn固溶量を熱フェノール法にて測定した。結果を表2に示す。CC材の再結晶粒径は12μm以下であり、Fe、Mnの固溶量は各々50ppm以上である。   A sample for microstructural observation was collected from each plate after the annealing, the cross section was polished, and the recrystallized grain size was measured by a cross-cut method. Further, the Fe solid solution amount and the Mn solid solution amount in the matrix were measured by a hot phenol method. The results are shown in Table 2. The recrystallized grain size of the CC material is 12 μm or less, and the solid solution amounts of Fe and Mn are each 50 ppm or more.

同じく上記焼鈍後の各板材から、L方向、LT方向、圧延45°方向の引張試験片を切り出し加工して、引張試験を行い、引張強さ、耐力、伸びを測定し、平均値を算出した。結果を表3に示す。   Similarly, from each of the plate materials after the annealing, a tensile test piece in the L direction, the LT direction, and the rolling 45 ° direction was cut out and subjected to a tensile test, and the average value was calculated by measuring the tensile strength, the yield strength, and the elongation. . The results are shown in Table 3.

またr値(ランクフォード値)については、前記3方向の平均値(mean value)であるrm値により、n値(加工硬化指数)についても前記3方向の平均値であるnm値により評価した。結果を表3に示す。 For also r value (Lankford value) evaluation, the r m values wherein a three-way average (mean value), the n m value is an average value of the three-way also n value (work hardening exponent) did. The results are shown in Table 3.

表3に示す各結果から、CC材はDC材に比べ、引張強さ、耐力、rm値ともに高いが、伸び、nm値についてはCC材もDC材と同等であることが判った。 From each result shown in Table 3, CC material compared to DC material, tensile strength, yield strength, but high r m values for both, elongation, for n m value was found that CC material also is equivalent to DC material.

さらに上記焼鈍後の各板材から、φ68.0〜74.6mmの範囲で9種類のサイズの円盤を打ち抜き、深絞り性評価試験を行って限界絞り比(LDR)の測定を行った。なお、シワ押さえ力は500kgとし、ポンチ径はφ33mmであった。結果を表3に示す。   Furthermore, nine types of discs were punched from each plate after the annealing in the range of φ68.0 to 74.6 mm, and a deep drawability evaluation test was performed to measure a limit drawing ratio (LDR). The wrinkle pressing force was 500 kg, and the punch diameter was 33 mm. The results are shown in Table 3.

DC材の限界絞り比(LDR)が2.11であるのに対し、CC材の限界絞り比(LDR)は2.17であり、CC材はDC材に比べ、深絞り性に優れていることが判った。   The limit drawing ratio (LDR) of the DC material is 2.11, whereas the limit drawing ratio (LDR) of the CC material is 2.17, and the CC material is superior in the deep drawing property compared to the DC material. I found out.

さらに上記焼鈍後の各板材引張試験片について、成形後の耐焼付軟化性をシミュレートするため、5%、10%の予歪を加えて予歪材とし、更にこれら予歪材の一部について180℃×30minの熱処理(加熱)を行った。熱処理前、熱処理後の予歪材について引張り試験を行った。結果を表4に示す。   Furthermore, in order to simulate the seizure softening resistance after forming the above-mentioned annealed sheet material tensile test pieces, 5% and 10% pre-strains are added to form pre-strained materials, and a part of these pre-strained materials. Heat treatment (heating) was performed at 180 ° C. for 30 minutes. A tensile test was performed on the pre-strained material before and after heat treatment. The results are shown in Table 4.

CC材はDC材に比べ、引張強度・耐力について軟化率が低く、耐焼付け軟化性に優れていることが判った。   It was found that the CC material had a lower softening rate in terms of tensile strength and proof stress than the DC material, and was excellent in anti-seizure softening property.

Figure 0005050577
Figure 0005050577

Figure 0005050577
Figure 0005050577

Figure 0005050577
Figure 0005050577

Figure 0005050577
Figure 0005050577

以上説明したように、本発明によれば、複雑な製造工程を必要とせずに、深絞り性と耐焼付け軟化性とを同時に高めた成形加工用アルミニウム合金板およびその製造方法が提供される。   As described above, according to the present invention, there is provided an aluminum alloy plate for forming and a method for producing the same that have improved deep drawability and anti-seizure softening properties without requiring a complicated production process.

Claims (5)

質量%で、Mg:1〜5%、Fe:0.1〜1.0%、Ti:0.005〜0.1%、B:0.0005〜0.01%、Cr:0.05〜0.4%を含み、残部Alと不可避的不純物からなり、不可避的不純物のうちSi:0.20%未満とし、マトリックス中のFeの固溶量が50ppm以上であり、再結晶粒径が12μm以下、限界絞り比が2.13以上であることを特徴とする深絞り性、耐焼付け軟化性に優れた成形加工用アルミニウム合金板。 In mass%, Mg: 1 to 5%, Fe: 0.1 to 1.0%, Ti: 0.005 to 0.1%, B: 0.0005 to 0.01% , Cr: 0.05 to Containing 0.4% , balance Al and inevitable impurities, Si: less than 0.20% of inevitable impurities, solid solution amount of Fe in the matrix is 50ppm or more, recrystallized grain size is 12μm Hereinafter, an aluminum alloy plate for forming excellent in deep drawability and anti-seizure softening property, characterized in that the limit drawing ratio is 2.13 or more. 請求項1に記載の合金組成の溶湯を双ベルト式鋳造機により連続鋳造して薄スラブとし、該薄スラブに均質化処理および中間焼鈍を施すことなく、冷間圧延を行った後、最終焼鈍を施すことを特徴とするアルミニウム成形加工用アルミニウム合金板の製造方法。 The molten alloy having the alloy composition according to claim 1 is continuously cast by a twin-belt casting machine to form a thin slab, and after performing cold rolling without subjecting the thin slab to homogenization and intermediate annealing, final annealing is performed. The manufacturing method of the aluminum alloy plate for aluminum forming processing characterized by performing these. 請求項において、上記薄スラブの厚みが5〜15mmであり、スラブ厚み1/4における凝固冷却速度が20〜150℃/secであることを特徴とする製造方法。 The manufacturing method according to claim 2, wherein the thin slab has a thickness of 5 to 15 mm and a solidification cooling rate at a slab thickness of 1/4 is 20 to 150 ° C / sec. 請求項2または3において、前記最終焼鈍を連続焼鈍炉にて保持温度400〜520℃で行うことを特徴とする製造方法。 The manufacturing method according to claim 2 or 3 , wherein the final annealing is performed in a continuous annealing furnace at a holding temperature of 400 to 520 ° C. 請求項2または3において、前記最終焼鈍をバッチ焼鈍炉にて保持温度300〜400℃で行うことを特徴とする製造方法。 The manufacturing method according to claim 2 or 3 , wherein the final annealing is performed in a batch annealing furnace at a holding temperature of 300 to 400 ° C.
JP2007059466A 2007-03-09 2007-03-09 Aluminum alloy plate for forming process excellent in deep drawability and bake-proof softening property and method for producing the same Active JP5050577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007059466A JP5050577B2 (en) 2007-03-09 2007-03-09 Aluminum alloy plate for forming process excellent in deep drawability and bake-proof softening property and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007059466A JP5050577B2 (en) 2007-03-09 2007-03-09 Aluminum alloy plate for forming process excellent in deep drawability and bake-proof softening property and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008223054A JP2008223054A (en) 2008-09-25
JP5050577B2 true JP5050577B2 (en) 2012-10-17

Family

ID=39842012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007059466A Active JP5050577B2 (en) 2007-03-09 2007-03-09 Aluminum alloy plate for forming process excellent in deep drawability and bake-proof softening property and method for producing the same

Country Status (1)

Country Link
JP (1) JP5050577B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5640399B2 (en) * 2010-03-03 2014-12-17 日本軽金属株式会社 Aluminum alloy plate with anodized film and method for producing the same
EP2738273B1 (en) 2011-07-25 2016-06-29 Nippon Light Metal Company, Ltd. Aluminum alloy sheet and method for manufacturing same
JP5870791B2 (en) * 2012-03-21 2016-03-01 日本軽金属株式会社 Aluminum alloy plate excellent in press formability and shape freezing property and manufacturing method thereof
JP6294962B2 (en) * 2014-06-30 2018-03-14 日本軽金属株式会社 Aluminum alloy plate excellent in press formability and shape freezing property and method for producing the same
CN112553512B (en) * 2020-12-02 2022-07-26 中铝材料应用研究院有限公司 Aluminum-magnesium alloy sheet material with high thermal stability, weldability and corrosion resistance and use thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4001059B2 (en) * 2002-06-21 2007-10-31 日本軽金属株式会社 Method for producing aluminum alloy sheet with excellent bake resistance
JP4534573B2 (en) * 2004-04-23 2010-09-01 日本軽金属株式会社 Al-Mg alloy plate excellent in high-temperature high-speed formability and manufacturing method thereof
WO2006011242A1 (en) * 2004-07-30 2006-02-02 Nippon Light Metal Co., Ltd. Aluminum alloy sheet and method for manufacturing the same
JP5220310B2 (en) * 2006-12-26 2013-06-26 日本軽金属株式会社 Aluminum alloy plate for automobile and manufacturing method thereof

Also Published As

Publication number Publication date
JP2008223054A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
JP5059423B2 (en) Aluminum alloy plate
US8016958B2 (en) High strength aluminum alloy sheet and method of production of same
JP4577218B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in bake hardness and hemmability
CN105838927B (en) high-strength aluminium alloy plate
US20070217943A1 (en) Al-Mg Alloy Sheet with Excellent Formability at High Temperatures and High Speeds and Method of Production of Same
KR20140114031A (en) Aluminum alloy sheet with excellent baking-paint curability
JP5918158B2 (en) Aluminum alloy sheet with excellent properties after aging at room temperature
JP5870791B2 (en) Aluminum alloy plate excellent in press formability and shape freezing property and manufacturing method thereof
JP2007031819A (en) Method for producing aluminum alloy sheet
JP6176393B2 (en) High-strength aluminum alloy plate with excellent bending workability and shape freezing property
KR101950595B1 (en) Aluminium alloy and methods of fabricating the same
WO2009098732A1 (en) Aluminum alloy sheet for motor vehicle and process for producing the same
CN104451285A (en) Al-Mg alloy sheet for car body and manufacturing method of Al-Mg alloy sheet
JP5050577B2 (en) Aluminum alloy plate for forming process excellent in deep drawability and bake-proof softening property and method for producing the same
WO2016031937A1 (en) Aluminum alloy sheet for forming
JP5643479B2 (en) Al-Mg-Si aluminum alloy plate with excellent bendability
JP5813358B2 (en) Highly formable Al-Mg-Si alloy plate and method for producing the same
JP5412714B2 (en) Manufacturing method of aluminum alloy plate excellent in heat resistance, manufacturing method of aluminum alloy plate excellent in heat resistance and deep drawability
JP6719219B2 (en) High strength aluminum alloy sheet excellent in formability and method for producing the same
JP5233568B2 (en) Aluminum alloy plate excellent in heat resistance and formability and manufacturing method thereof
JP3838504B2 (en) Aluminum alloy plate for panel forming and manufacturing method thereof
WO2008078399A1 (en) Method of producing aluminum alloy sheet
JP2008062255A (en) SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET
WO2017170835A1 (en) Aluminum alloy sheet and aluminum alloy sheet manufacturing method
JP3867569B2 (en) Aluminum foil for containers and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

R150 Certificate of patent or registration of utility model

Ref document number: 5050577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350