WO2012029379A1 - 高純度白金の回収方法 - Google Patents

高純度白金の回収方法 Download PDF

Info

Publication number
WO2012029379A1
WO2012029379A1 PCT/JP2011/064096 JP2011064096W WO2012029379A1 WO 2012029379 A1 WO2012029379 A1 WO 2012029379A1 JP 2011064096 W JP2011064096 W JP 2011064096W WO 2012029379 A1 WO2012029379 A1 WO 2012029379A1
Authority
WO
WIPO (PCT)
Prior art keywords
platinum
ruthenium
aqua regia
dissolved
purity
Prior art date
Application number
PCT/JP2011/064096
Other languages
English (en)
French (fr)
Inventor
関口 淳之輔
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to US13/813,354 priority Critical patent/US20130139648A1/en
Priority to JP2011539574A priority patent/JP5399510B2/ja
Priority to SG2012093555A priority patent/SG186401A1/en
Priority to CN201180030294.7A priority patent/CN102959103B/zh
Publication of WO2012029379A1 publication Critical patent/WO2012029379A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • C22B11/042Recovery of noble metals from waste materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/02Obtaining noble metals by dry processes
    • C22B11/021Recovery of noble metals from waste materials
    • C22B11/025Recovery of noble metals from waste materials from manufactured products, e.g. from printed circuit boards, from photographic films, paper, or baths
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a high-purity platinum recovery method for recovering high-purity platinum in a high yield from scraps such as platinum alloys containing platinum and ruthenium as a component, particularly magnetic material targets.
  • the impurities as described above cause a decrease in the performance of the recording medium, the hard disk, and the semiconductor device element, and may cause splash, abnormal discharge, particles, and the like during the sputtering, thereby reducing the properties of the thin film.
  • acid such as aqua regia and removing the residue
  • the acid dissolved with platinum and ammonium chloride solution are reacted to precipitate and recover as ammonium chloroplatinate. Platinum is recovered by baking.
  • Magnetic thin films containing platinum as a main component of constituent elements or a part of constituent elements are often containing ruthenium as a part of the constituent elements. Since ruthenium is a platinum group element, its properties are similar and it is difficult to separate platinum and ruthenium. Ruthenium is an impurity unless platinum and ruthenium are separated, except in special cases where even if ruthenium is mixed in platinum, there is no particular problem with the properties of the material. Since platinum itself is a very expensive material, it must be recovered with good yield. Several techniques for recovering platinum have been proposed in the patent literature. The following are introduced below. What is an efficient recovery method for separating ruthenium from platinum and recovering high-purity platinum? I can not say.
  • Patent Document 1 when platinum is extracted as an ammonium chloride salt by extracting platinum, the pH of the gold-containing platinum group metal-containing chloride-containing aqueous solution is adjusted to perform two-stage neutralization and filtration. Techniques for separating are disclosed. Patent Document 2 below discloses a technique for removing impurities ruthenium by heating to high temperature in an oxygen gas stream against ammonium chloroplatinate or platinum.
  • Patent Document 3 when ruthenium is separated from a platinum group-containing solution by oxidative distillation, the pH of the solution is adjusted, and then sodium bromate is used to convert ruthenium to ruthenium tetroxide for oxidative distillation.
  • Patent Document 4 listed below discloses a method for producing platinum powder in which, when ammonium chloroplatinate is formed, fine ammonium chloroplatinate is obtained using a dispersion stabilizer in an ammonium chloride solution, and this is baked at a low temperature. Has been.
  • Patent Document 5 discloses a method for recovering high-purity platinum in which platinum-containing scraps are dissolved with an acid, reacted with an ammonium chloride solution, precipitated and recovered as ammonium chloroplatinate, and roasted to obtain a platinum sponge. It is disclosed.
  • Patent Document 6 after a platinum-containing scrap is dissolved with an acid, it is reacted with an ammonium chloride solution, and precipitated and recovered as ammonium chloroplatinate, and the remaining platinum is recovered using an ion exchange resin and activated carbon. The technology is described.
  • the present invention is a platinum alloy for sputtering, in particular, target scrap containing platinum used for forming a magnetic thin film (used target) or scraps generated in the manufacturing process of the target, cutting scrap, flat grinding scrap. It is possible to efficiently remove cobalt, chromium, copper, iron, nickel, silicon and the like mixed in scrap such as ruthenium contained in platinum alloy scrap for sputtering, and thereby platinum and
  • the present invention provides a method for recovering high-purity platinum that can be reused for a platinum-containing target at a low cost and in a high yield.
  • the present invention 1) Dissolve a platinum alloy containing ruthenium in aqua regia and remove the residue, then react the platinum-dissolved acid with an ammonium chloride solution to precipitate an ammonium chloroplatinate salt.
  • This ammonium chloroplatinate salt Of high purity platinum to obtain platinum sponge by reducing platinum, wherein the acid in which platinum is dissolved and ammonium chloride solution are reacted at a temperature of 40 ° C or higher 2
  • the platinum alloy containing ruthenium is A method for recovering high-purity platinum according to 1) or 2), wherein the ruthenium concentration of a solution dissolved in water is 6 g / L or less.
  • the present invention also provides: 4) The ruthenium content as an impurity in the platinum sponge obtained by roasting ammonium chloroplatinate is 2% or less, 1) to 3) 5) The high purity platinum recovery method according to 4), wherein the ruthenium content is 1% or less. 6) The ruthenium-containing platinum alloy is a scrap of a magnetic material target. A method for recovering high-purity platinum according to any one of 1) to 5), wherein the platinum recovery rate from the scrap is 99% or more.
  • Cobalt, chromium, copper, iron, nickel, silicon, etc. mixed into scraps such as scrap containing platinum-containing target scrap (used target) for sputtering or scraps generated in the target manufacturing process, cutting scraps, flat scraps, etc. are relatively easy.
  • it has an excellent effect of efficiently separating ruthenium, which is a platinum group element contained in the magnetic material target, from platinum.
  • a scrap containing platinum and ruthenium and further containing cobalt, chromium, copper, iron, nickel, silicon and the like as impurity elements is first dissolved with an acid.
  • Aqua regia is used as the acid for dissolution.
  • aqua regia is used, dissolution is sufficiently achieved, and since nitrogen oxides and hydrogen are generated at the same time, there is an advantage that hydrogen is diluted and there is no danger of explosion.
  • platinum does not readily dissolve in the initial stage, but platinum gradually dissolves well.
  • an acid in which platinum is dissolved is reacted with an ammonium chloride solution to precipitate ammonium chloroplatinate ((NH 4 ) 2 PtCl 6 ) crystals.
  • an ammonium chloride solution to precipitate ammonium chloroplatinate ((NH 4 ) 2 PtCl 6 ) crystals.
  • aqua regia in which platinum is dissolved to the ammonium chloride solution.
  • it is common knowledge to try to add an ammonium chloride solution to aqua regia in which platinum is dissolved.
  • ammonium chloroplatinate is redissolved and hardly precipitated, and platinum remains in the solution.
  • a phenomenon in which the yield of platinum falls is observed.
  • the problem is that ruthenium separation has not been studied in the scrap. This is because the formation of a magnetic film or the addition of ruthenium as a constituent element of the target has not been widely performed, so that the separation of ruthenium has not been a major problem. However, it is urgent at present. On the other hand, since ruthenium is a platinum group element as described above, separation from platinum is not easy. The present invention provides a technique for easily and efficiently separating this.
  • the high purity platinum recovery method of the present invention involves dissolving a ruthenium-containing platinum alloy with aqua regia, removing the residue, and then reacting an acid in which platinum is dissolved with an ammonium chloride solution to obtain an ammonium chloroplatinate salt.
  • the acid in which the platinum is dissolved and the ammonium chloride solution are reacted at a temperature of 40 ° C. or higher.
  • the upper limit of the temperature is not particularly limited, but it can be said that the upper limit of the temperature is preferably 100 ° C. or less at which the liquid does not evaporate.
  • the process until obtaining the sponge can be said to be a conventional technique.
  • it was difficult to separate ruthenium and the intended separation was not realized.
  • the platinum recovery rate was improved, and the ruthenium content in the platinum salt could be reduced. This was a very unexpected result.
  • the technique of reducing the chloroplatinic acid ammonium salt to obtain a platinum sponge is a relatively simple and efficient manufacturing process, and this technique on the extension line enables the separation of ruthenium. Although this looks simple at first glance, as described above, it was difficult to predict and a dramatic effect was obtained.
  • the platinum concentration of a solution obtained by dissolving a platinum alloy containing ruthenium with aqua regia is preferably 15 g / L or more. This is because, when the platinum concentration is reduced to less than 15 g / L, the solubility of the platinum salt increases, so that the platinum recovery rate from scrap decreases (less than 99%).
  • the platinum content in scrap is usually 30% by weight or more.
  • the platinum concentration in the solution is much higher than 15 g / L, diluted with a large amount of water. As long as it is not, the concentration never falls below 15 g / L.
  • the concentration of ruthenium is high and the platinum content is relatively low, if the concentration is lower than 15 g / L as it is, the aqua regia can be dissolved by mixing with scrap having a high platinum content.
  • the ruthenium concentration of a solution obtained by dissolving a platinum alloy containing ruthenium with aqua regia is 6 g / L or less.
  • the reaction temperature is also affected, but if the ruthenium concentration exceeds 6 g / L, ruthenium tends to enter precipitates. To reduce this ruthenium concentration, it is only necessary to dilute with water. However, since the platinum concentration of the liquid is decreased, mutual adjustment is necessary.
  • the ruthenium content as an impurity in the platinum sponge obtained by baking the chloroplatinic acid ammonium salt is 2% or less, further 1% or less. Can do. Furthermore, it is possible to achieve a platinum recovery rate of 99% or more from scrap of a magnetic material target containing a platinum alloy containing ruthenium.
  • the present invention provides a method for recovering such high-purity platinum.
  • Example 1 In Example 1, a scrap of a magnetic material target containing platinum, cobalt, chromium and ruthenium was dissolved in aqua regia to remove the residue, and then diluted with water to have a platinum concentration of 30 g / L and a ruthenium concentration of 5 g / L. The aqua regia solution. This aqua regia solution and ammonium chloride were reacted at 45 ° C. to obtain ammonium chloroplatinate ((NH 4 ) 2 PtCl 6 ) crystals. Next, it was baked at 800 ° C. to obtain a platinum sponge, and the platinum recovery rate from the aqua regia solution and the ruthenium content rate as impurities were measured. The results are shown in Table 1.
  • the platinum recovery rate reached 99.5%, and the ruthenium content in the platinum salt decreased to 0.5% by weight. This ruthenium content was sufficiently reduced in the case of using recycled platinum as a target. Further, if the reaction temperature between the aqua regia solution and ammonium chloride is 40 ° C. or higher, the same platinum purity and ruthenium reduction can be achieved.
  • the roasting temperature is not particularly limited and can be adjusted as appropriate, and the temperature at which a platinum sponge is usually obtained can be arbitrarily selected. The same applies hereinafter.
  • Example 2 the scrap of the magnetic material target containing platinum, cobalt, chromium, and ruthenium was dissolved in aqua regia to remove the residue, and then diluted with water to obtain a platinum concentration of 18 g / L and a ruthenium concentration of 3 g / L.
  • the aqua regia solution This aqua regia solution and ammonium chloride are reacted at 90 ° C. to precipitate ammonium chloroplatinate salt, which is roasted at 800 ° C. to form a platinum sponge.
  • Platinum recovery rate and impurities from the aqua regia solution The ruthenium content as was measured. The results are shown in Table 1.
  • the platinum recovery rate reached 99.3%, and the ruthenium content in the platinum salt decreased to 0.3% by weight. This ruthenium content was sufficiently reduced in the case of using recycled platinum as a target. Further, if the reaction temperature between the aqua regia solution and ammonium chloride is 40 ° C. or higher, the same platinum purity and ruthenium reduction can be achieved.
  • Example 3 In Example 3, the scrap of the magnetic material target containing platinum, cobalt, chromium and ruthenium was dissolved in aqua regia to remove the residue, and then diluted with water to have a platinum concentration of 16 g / L and a ruthenium concentration of 5 g / L.
  • the aqua regia solution This aqua regia solution and ammonium chloride are reacted at 50 ° C. to precipitate an ammonium chloroplatinate salt, which is baked at 800 ° C. to form a platinum sponge.
  • the ruthenium content was measured. The results are shown in Table 1.
  • the platinum recovery rate reached 99.2%, and the ruthenium content in the platinum salt decreased to 1.7% by weight. This ruthenium content was sufficiently reduced in the case of using recycled platinum as a target. Further, if the reaction temperature between the aqua regia solution and ammonium chloride is 40 ° C. or higher, the same platinum purity and ruthenium reduction can be achieved.
  • Cobalt, chromium, copper, iron, nickel, silicon, etc. mixed in scrap such as scraps, cutting scraps, flat polishing scraps, etc., generated in the manufacturing process of platinum for sputtering and platinum-containing targets are removed in a relatively simple process, It has an excellent effect that high-purity platinum that can be reused for platinum and a target containing these can be recovered in a high yield.
  • ruthenium which is said to be particularly difficult to separate from platinum, has the effect that it can be reduced in a relatively simple method, so it is useful to recover high-purity platinum at a low cost and in a high yield. Can provide a simple method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

 ルテニウムを含有する白金合金を王水で溶解し、残渣を除去した後、白金を溶解した酸と塩化アンモニウム溶液とを反応させて塩化白金酸アンモニウム塩を析出させ、この塩化白金酸アンモニウム塩を還元して白金スポンジを得る高純度白金の回収方法であって、前記白金を溶解した酸と塩化アンモニウム溶液とを40℃以上の温度で反応させることを特徴とする高純度白金の回収方法。使用済みの、特に磁性材ターゲットである白金合金スパッタリング用ターゲット、及び該ターゲットの製造工程等に発生する端材、切削屑、平研屑等のスクラップに混入するルテニウム、コバルト、クロム、銅、鉄、ニッケル、シリコン等を効率良く除去し、白金及び白金含有ターゲットに再利用できる高純度白金を高収率で回収できる方法を提供する。

Description

高純度白金の回収方法
 本発明は、白金及びルテニウムを成分として含む白金合金、特に磁性材ターゲット等のスクラップから、純度の高い白金を高収率で回収する高純度白金の回収方法に関する。
 近年、半導体集積回路の大きな進展に伴い、回路設計や各種の電気・電子素子形成のために様々な薄膜が形成されているが、その中で記録媒体用磁性薄膜又は半導体材料用として、白金を含有する合金スパッタリングターゲットを使用して特定の薄膜を形成することも行われている。このような白金合金ターゲットには、多くの場合ルテニウムも合金元素として含有されている。
 これらの薄膜は、白金等を含有する合金製のターゲットをアルゴンガス等の不活性雰囲気下でスパッタリングすることにより形成される。
 このターゲットが製作される段階で、切削屑等の多量の端材が生じる。これらは全てスクラップとなる。また使用済みのターゲットもスクラップとなる。
 ターゲットへの製作工程では、溶解鋳造後にインゴットの鍛造・圧延等の塑性加工又は切削等の機械加工さらにはバッキングプレートへの接合工程により、ターゲットに接触する部分の汚染が起きる。特に機械加工の切削工具や周辺の加工具を構成する材料からの重金属等の汚染が著しい。
 白金は高価な材料なので、これを回収して再使用する必要があるが、上記のような汚染が入った材料はそのままでは使用できないという問題がある。
 上記のような不純物は、記録媒体やハードディスクや半導体デバイス素子の性能を低下させる原因となるとともに、スパッタリング中にスプラッシュ、異常放電、パーティクル等を発生させ、薄膜の性質を低下させる虞がある。
 通常、白金含有スクラップを王水等の酸で溶解し残渣を除去した後、白金を溶解した酸と塩化アンモニウム溶液を反応させて塩化白金酸アンモニウムとして沈殿回収し、さらにこの塩化白金酸アンモニウムを焙焼することにより白金を回収することが行われている。
 白金を構成元素の主要成分又は構成元素の一部として含有する磁性薄膜には、ルテニウムも叉構成元素の一部として含有させることが多くなっている。ルテニウムは白金族元素なので、性質が似ていると同時に、白金とルテニウムを分離することが難しいという問題がある。
 白金中にルテニウムが混入していても材料の特性に特に問題とならないという特殊なケースを除いて、白金とルテニウムを分離しない限り、ルテニウムが不純物となる。白金自体は非常に高価な材料なので収率良く回収する必要がある。
 白金を回収するという技術について、特許文献にいくつか提案されているので、それを下記に紹介するが、白金からルテニウムを分離し、高純度の白金を回収するための効率的な回収方法とは言えない。
 下記特許文献1には、白金を塩化アンモニウム塩として沈殿させて白金を抽出する際に、金、白金族金属含有塩化物含有水溶液のpHを調整して2段中和、濾過を行い、テルルを分離する技術が開示されている。
 下記特許文献2には、塩化白金酸アンモニウム又は白金に対して、酸素ガスの気流中で、高温に加熱し、不純物ルテニウムを除去する技術が開示されている。
 下記特許文献3には、白金族を含む溶液からルテニウムを酸化蒸留で分離する際に、溶液のpH調整を行った後、臭素酸ナトリウムを用いて、ルテニウムを四酸化ルテニウムに変換して酸化蒸留し、ルテニウムを分離回収する技術が開示されている。
 下記特許文献4には、塩化白金酸アンモニウムを形成する際に、塩化アンモニウム溶液に分散安定化剤を用いて微細な塩化白金酸アンモニウムを得、これを低温で焼成する白金粉末の製造方法が開示されている。
 下記特許文献5には、白金含有スクラップを酸で溶解した後、塩化アンモニウム溶液と反応させ、塩化白金酸アンモニウムとして沈殿回収し、これを焙焼して白金スポンジを得る高純度白金の回収方法が開示されている。
 下記特許文献6には、白金含有スクラップを酸で溶解した後、塩化アンモニウム溶液と反応させ、塩化白金酸アンモニウムとして沈殿回収し、後液に残存する白金をイオン交換樹脂、活性炭を用いて回収する技術が記載されている。
特開平10-102156号公報 特開2006-183099号公報 特開2006-161096号公報 特開2008-106349号公報 特開2003-27154号公報 特開2003-129145号公報
 以上から、本発明はスパッタリング用白金合金、特に磁性薄膜を形成するために使用された白金を含有するターゲットスクラップ(使用済みターゲット)又はターゲットの製造工程に発生する端材、切削屑、平研屑等のスクラップに混入するコバルト、クロム、銅、鉄、ニッケル、シリコン等を効率良く除去すると共に、特にスパッタリング用白金合金のスクラップに含まれるルテニウムを分離することが可能であり、これによって、白金及び白金含有ターゲットに再使用できる高純度の白金を低コストで収率良く回収する方法を提供するものである。
 本発明は、
 1)ルテニウムを含有する白金合金を王水で溶解し、残渣を除去した後、白金を溶解した酸と塩化アンモニウム溶液とを反応させて塩化白金酸アンモニウム塩を析出させ、この塩化白金酸アンモニウム塩を還元して白金スポンジを得る高純度白金の回収方法であって、前記白金を溶解した酸と塩化アンモニウム溶液とを40°C以上の温度で反応させることを特徴とする高純度白金の回収方法
 2)ルテニウムを含有する白金合金を王水により溶解した液の白金濃度を15g/L以上とすることを特徴とする1)記載の高純度白金の回収方法
 3)ルテニウムを含有する白金合金を王水により溶解した液のルテニウム濃度を6g/L以下とすることを特徴とする1)又は2)記載の高純度白金の回収方法、を提供する。
 本発明は、また
 4)塩化白金酸アンモニウム塩を焙焼して得られる白金スポンジ中の不純物としてのルテニウム含有量を2%以下とすることを特徴とする1)~3)のいずれか一項に記載の高純度白金の回収方法
 5)ルテニウム含有量を1%以下とすることを特徴とする4)記載の高純度白金の回収方法
 6)ルテニウムを含有する白金合金が磁性材ターゲットのスクラップであって、該スクラップからの白金回収率が99%以上であることを特徴とする1)~5)のいずれか一項に記載の高純度白金の回収方法、を提供する。
 スパッタリング用白金含有ターゲットスクラップ(使用済ターゲット)又はターゲットの製造工程に発生する端材、切削屑、平研屑等のスクラップに混入するコバルト、クロム、銅、鉄、ニッケル、シリコン等を比較的簡単な工程で除去すると共に、特に磁性材ターゲットに含有する白金族元素であるルテニウムを、白金から効率良く分離できる優れた効果を有する。
 本発明は、白金とルテニウムを含有し、さらに不純物元素としてコバルト、クロム、銅、鉄、ニッケル、シリコン等を含有するスクラップを、まず酸で溶解する。溶解用の酸には王水を用いる。他の酸で溶解することも可能であるが、例えば塩酸で溶解した場合には溶解が不完全であり、また水素が発生し水素爆発の可能性がある。
 王水を用いると溶解が十分達成され、また溶解時に窒素酸化物と水素が同時に発生するので、水素が希釈され爆発の危険性がないという利点がある。王水を使用した場合、初期においては白金がなかなか溶解しないが、次第に白金が良く溶けるようになる。
 白金含有スクラップの酸による溶解後、残渣であるタンタル酸化物(Ta)、ボロン酸化物(B)等の不純物を除去する。
 この残渣を除去した後、白金を含有する溶液に水酸化ナトリウム(NaOH)等の苛性アルカリを添加しpHを3~6に調整して中和し、コバルト、銅等を水酸化物として沈殿させ、これを濾過除去する。
 溶液にパラジウムが含有している場合には、コバルト、銅等の水酸化物を沈殿除去した後、溶媒抽出によりパラジウムを抽出する。パラジウム抽出後、該抽出されたパラジウムをアンモニアで逆抽出し、パラジウム含有液を還元剤、例えばヒドラジン等で還元して高純度パラジウムスポンジを回収することができる。
 次に、白金を溶解した酸と塩化アンモニウム溶液を反応させて塩化白金酸アンモニウム((NHPtCl)結晶を沈殿させる。この場合、白金を溶解した王水を塩化アンモニウム溶液に添加することが望ましい。
 通常、白金を溶解した王水に塩化アンモニウム溶液を添加しようとするのが常識であるが、このような手法をとると塩化白金酸アンモニウムが再溶解し、析出し難くなり、液に白金が残存し、白金の収率が落ちる現象が見られる。
 したがって、白金の収率を上げるために、白金を溶解した王水を塩化アンモニウム溶液に添加することは重要である。
 次に、このようにして得た塩化白金酸アンモニウム((NHPtCl)結晶を600~1000°Cで焙焼して高純度白金スポンジを得る。これによって、白金の収率は97%に達し、比較的簡単な方法で高純度の白金が収率良く回収できる。以上の工程については、本特許出願人の前身である日鉱マテリアルズ(社名変更)が開発した特許文献6に開示された方法であり、効率的な高純度白金の回収方法である。
 問題は、上記スクラップにおいては、ルテニウムの分離が検討されていない点である。これは磁性膜の形成又はターゲットの構成元素として、ルテニウムの添加ということが広く行われていなかったために、ルテニウムの分離が大きな問題とされていなかったためである。しかし、現状では急務となっている。
 一方、ルテニウムは上記の通り、白金族元素であるために、白金との分離は簡単ではない。本願発明は、これを簡単にかつ効率良く分離する技術を提供するものである。
 本願発明の高純度白金の回収方法は、ルテニウムを含有する白金合金を王水で溶解し、残渣を除去した後、白金を溶解した酸と塩化アンモニウム溶液とを反応させて塩化白金酸アンモニウム塩を析出させ、この塩化白金酸アンモニウム塩を還元して白金スポンジを得る高純度白金の回収方法において、前記白金を溶解した酸と塩化アンモニウム溶液とを40°C以上の温度で反応させるものである。
 温度の上限は、特に制限はないが、液が蒸発しない100°C以下とするのが望ましいと言える。
 前記スポンジを得る工程までは、従来技術と言える。しかし、ルテニウムを分離することは難しく、意図する分離は実現していなかった。しかし、常温よりも、わずか10~20°C程度に昇温させることにより、白金の回収率が向上し、白金塩中のルテニウムの含有率を低減させることが可能となった。これは極めて予想外の結果であった。
 すなわち、上記塩化白金酸アンモニウム塩を還元して白金スポンジを得るという技術は、比較的簡単かつ効率的な製造工程であり、この延長線上の技術でルテニウムの分離が可能となったのである。
 これは、一見単純に見えるが、上記にも述べたように、予想することは困難であり、飛躍的な効果を得るものであった。
 また、本願発明の高純度白金の回収方法は、ルテニウムを含有する白金合金を王水により溶解した液の白金濃度を15g/L以上とすることが望ましい。これは白金濃度を15g/L未満に低下すると、白金塩の溶解度が上がるために、スクラップからの白金回収率が低下する(99%未満に)ためである。
 スクラップ中の白金含有率は通常30重量%以上あり、これを通常の条件で王水溶解した場合、溶解液中の白金濃度は15g/Lを大きく上回る濃度になっており、大量の水で希釈しない限り、濃度が15g/Lを下回ることはない。但し、ルテニウム含有率が高く、白金含有率が相対的に低い場合など、そのままでは濃度が15g/Lを下回る場合は、白金含有率の高いスクラップと混ぜて王水溶解を行えば良い。
 また、本願発明の高純度白金の回収方法は、ルテニウムを含有する白金合金を王水により溶解した液のルテニウム濃度を6g/L以下とすることが望ましい。
 上記反応温度にも影響するが、このルテニウム濃度を6g/Lを超えると、ルテニウムが析出物に入り易くなるからである。このルテニウム濃度を下げることは、水で薄めるだけで良い。しかし、逆に液の白金濃度を低下させることになるので、相互の調整が必要である。
 本発明の高純度白金の回収方法は、上記によって、塩化白金酸アンモニウム塩を焙焼して得られる白金スポンジ中の不純物としてのルテニウム含有量を2%以下に、さらには1%以下とすることができる。さらに、ルテニウムを含有する白金合金を含有する磁性材ターゲットのスクラップからの白金回収率99%以上を達成できる。本願発明は、このような高純度白金の回収方法を提供するものである。
 次に、実施例に基づいて説明する。なお、これらは本発明の理解を容易にするためのものであり、本発明はこれらに制限されるものではない。すなわち、本願発明は、特許請求の範囲及び明細書に記載する技術思想により、制限されるのみである。
(実施例1)
 本実施例1においては、白金、コバルト、クロム、ルテニウムを含有する磁性材ターゲットのスクラップを王水に溶解して残渣を除去した後、水で薄めて白金濃度30g/L、ルテニウム濃度5g/Lの王水溶解液とした。
 この王水溶解液と塩化アンモニウムを45°Cで反応させて塩化白金酸アンモニウム塩((NHPtCl)結晶を得た。次に、それを800°Cで焙焼して白金スポンジとし、王水溶解液からの白金回収率及び不純物としてのルテニウム含有率を測定した。この結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 この表1に示すように、白金回収率は99.5%に達し、白金塩中のルテニウム含有率は0.5重量%と低下した。このルテニウム含有量は、再生白金をターゲットとして用いるものにおいて、十分低減されたものであった。また、王水溶解液と塩化アンモニウムとの反応温度については、40°C以上であれば、同様の白金の純度とルテニウムの低減化が可能であった。なお、焙焼温度は、特に制限されるものではなく、適宜調節でき、通常に白金スポンジが得られる温度を任意に選択できるものである。以下、同様である。
(実施例2)
 本実施例2においては、白金、コバルト、クロム、ルテニウムを含有する磁性材ターゲットのスクラップを王水に溶解して残渣を除去した後、水で薄めて白金濃度18g/L、ルテニウム濃度3g/Lの王水溶解液とした。
 この王水溶解液と塩化アンモニウムを90°Cで反応させて塩化白金酸アンモニウム塩を析出させ、それを800°Cで焙焼して白金スポンジとし、王水溶解液からの白金回収率及び不純物としてのルテニウム含有率を測定した。
 この結果を表1に示す。
 この表1に示すように、白金回収率は99.3%に達し、白金塩中のルテニウム含有率は0.3重量%と低下した。このルテニウム含有量は、再生白金をターゲットとして用いるものにおいて、十分低減されたものであった。また、王水溶解液と塩化アンモニウムとの反応温度については、40°C以上であれば、同様の白金の純度とルテニウムの低減化が可能であった。
(実施例3)
 本実施例3においては、白金、コバルト、クロム、ルテニウムを含有する磁性材ターゲットのスクラップを王水に溶解して残渣を除去した後、水で薄めて白金濃度16g/L、ルテニウム濃度5g/Lの王水溶解液とした。
 この王水溶解液と塩化アンモニウムを50℃で反応させて塩化白金酸アンモニウム塩を析出させ、それを800℃で焙焼して白金スポンジとし、王水溶解液からの白金回収率及び不純物としてのルテニウム含有率を測定した。
 この結果を表1に示す。
 この表1に示すように、白金回収率は99.2%に達し、白金塩中のルテニウム含有率は1.7重量%と低下した。このルテニウム含有量は、再生白金をターゲットとして用いるものにおいて、十分低減されたものであった。また、王水溶解液と塩化アンモニウムとの反応温度については、40°C以上であれば、同様の白金の純度とルテニウムの低減化が可能であった。
(比較例1)
 白金、コバルト、クロム、ルテニウムを含有する磁性材ターゲットのスクラップを王水に溶解して残渣を除去した後、水で薄めて白金濃度12g/L、ルテニウム濃度2g/Lの王水溶解液とした。この場合、白金濃度は薄く、本願発明の15g/Lよりも低かった。
 この王水溶解液と塩化アンモニウムを70°Cで反応させて塩化白金酸アンモニウム塩を析出させ、それを800°Cで焙焼して白金スポンジとし、王水溶解液からの白金回収率及び不純物としてのルテニウム含有率を測定した。
 この結果を表1に示す。この表1に示すように、白金塩中のルテニウム含有率は0.6重量%と低下し、ルテニウムの含有は目的の条件を満たしていたが、白金回収率は96.0%と低下した。白金濃度が低いことは、白金の回収率が悪くなり、好ましくないことが分かった。
(比較例2)
 白金、コバルト、クロム、ルテニウムを含有する磁性材ターゲットのスクラップを王水に溶解して残渣を除去した後、水で薄めて白金濃度48g/L、ルテニウム濃度8g/Lの王水溶解液とした。この場合、ルテニウム濃度は、本願発明の上限とする6g/Lを超えていた。
 この王水溶解液と塩化アンモニウムを70°Cで反応させて塩化白金酸アンモニウム塩を析出させ、それを800°Cで焙焼して白金スポンジとし、王水溶解液からの白金回収率及び不純物としてのルテニウム含有率を測定した。
 この結果を表1に示す。この表1に示すように、白金回収率は99.5%と高かったが、白金塩中のルテニウム含有率は2.3重量%と増加した。王水溶解液中のルテニウム濃度が高いことは、好ましくないことが分かった。
(比較例3)
 白金、コバルト、クロム、ルテニウムを含有する磁性材ターゲットのスクラップを王水に溶解して残渣を除去した後、水で薄めて白金濃度30g/L、ルテニウム濃度5g/Lの王水溶解液とした。この王水溶解液と塩化アンモニウムを30°Cで反応させて塩化白金酸アンモニウム塩を析出させ、それを800°Cで焙焼して白金スポンジとし、王水溶解液からの白金回収率及び不純物としてのルテニウム含有率を測定した。この場合、王水溶解液と塩化アンモニウムとを反応させる温度は、本願発明の条件である40°C以上を満たしていなかった。
 この結果を表1に示す。この表1に示すように、白金回収率は99.2%と高かったが、白金塩中のルテニウム含有率は3.5重量%と増加した。王水溶解液と塩化アンモニウムとを反応させる温度が低いと、ルテニウムの含有量を増加させ、好ましくないことが分かった。
 以上、スクラップとしての磁性材料である白金、コバルト、クロム、ルテニウムだけでなく、白金を含有するターゲットの製造工程に発生する端材、切削屑、平研屑からくる多くの他の不純物である、例えば銅、鉄、ニッケル、シリコン等が含有されているにもかかわらず、これらの殆どが除去することが可能であり、高純度白金が得られ白金の収率は99%に達した。
 また、白金から分離することが難しいルテニウムの低減化が可能であるという結果を得ることができた。
 上記においては、白金、コバルト、クロム、ルテニウムを含有する磁性材ターゲットのスクラップを用いて説明をしたが、他の不純物を有するスクラップにおいても同様に適用できるものである。
 スパッタリング用白金及び白金含有ターゲットの製造工程に発生する端材、切削屑、平研屑等のスクラップに混入するコバルト、クロム、銅、鉄、ニッケル、シリコン等を比較的簡単な工程で除去し、白金及びこれらを含有するターゲットに再使用できる高純度白金を高収率で回収することができるという優れた効果を有する。また、特に白金との分離が難しいと言われているルテニウムも、比較的簡便な方法において、低減化が可能であるという効果を有するので、高純度の白金を低コストで収率良く回収する有用な方法を提供することができる。

Claims (6)

  1.  ルテニウムを含有する白金合金を王水で溶解し、残渣を除去した後、白金を溶解した酸と塩化アンモニウム溶液とを反応させて塩化白金酸アンモニウム塩を析出させ、この塩化白金酸アンモニウム塩を還元して白金スポンジを得る高純度白金の回収方法であって、前記白金を溶解した酸と塩化アンモニウム溶液とを40°C以上の温度で反応させることを特徴とする高純度白金の回収方法。
  2.  ルテニウムを含有する白金合金を王水により溶解した液の白金濃度を15g/L以上とすることを特徴とする請求項1記載の高純度白金の回収方法。
  3.  ルテニウムを含有する白金合金を王水により溶解した液のルテニウム濃度を6g/L以下とすることを特徴とする請求項1又は2記載の高純度白金の回収方法。
  4.  塩化白金酸アンモニウム塩を焙焼して得られる白金スポンジ中の不純物としてのルテニウム含有量を2%以下とすることを特徴とする請求項1~3のいずれか一項に記載の高純度白金の回収方法。
  5.  ルテニウム含有量を1%以下とすることを特徴とする請求項4記載の高純度白金の回収方法。
  6.  ルテニウムを含有する白金合金が磁性材ターゲットのスクラップであって、該スクラップからの白金回収率が99%以上であることを特徴とする請求項1~5のいずれか一項に記載の高純度白金の回収方法。
PCT/JP2011/064096 2010-09-03 2011-06-21 高純度白金の回収方法 WO2012029379A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/813,354 US20130139648A1 (en) 2010-09-03 2011-06-21 Recovery Method for High Purity Platinum
JP2011539574A JP5399510B2 (ja) 2010-09-03 2011-06-21 高純度白金の回収方法
SG2012093555A SG186401A1 (en) 2010-09-03 2011-06-21 Recovery method for high purity platinum
CN201180030294.7A CN102959103B (zh) 2010-09-03 2011-06-21 高纯度铂的回收方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-198024 2010-09-03
JP2010198024 2010-09-03

Publications (1)

Publication Number Publication Date
WO2012029379A1 true WO2012029379A1 (ja) 2012-03-08

Family

ID=45772491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064096 WO2012029379A1 (ja) 2010-09-03 2011-06-21 高純度白金の回収方法

Country Status (6)

Country Link
US (1) US20130139648A1 (ja)
JP (1) JP5399510B2 (ja)
CN (1) CN102959103B (ja)
MY (1) MY160898A (ja)
SG (1) SG186401A1 (ja)
WO (1) WO2012029379A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103627902A (zh) * 2013-04-25 2014-03-12 上海派特贵金属有限公司 一种从失效贵金属催化剂中回收铑的方法
AU2014201077B2 (en) * 2013-03-05 2015-08-13 Heraeus Precious Metals Gmbh & Co. Kg Method for producing highly pure platinum powder, as well as platinum powder that can be obtained according to said method, and use thereof
CN111926195A (zh) * 2020-06-24 2020-11-13 重庆材料研究院有限公司 一种从铂合金废料中制备高纯铂的方法
CN112126789A (zh) * 2020-09-17 2020-12-25 朱俊 一种氯铂酸溶液浓缩工艺及设备

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3026110B1 (fr) * 2014-09-24 2016-11-18 Commissariat Energie Atomique Procede de recuperation du platine present dans un assemblage membrane-electrode.
TWI623623B (zh) * 2017-04-17 2018-05-11 國立中山大學 回收貴金屬的處理方法
DE102019217188A1 (de) * 2019-11-07 2021-05-12 Robert Bosch Gmbh Verfahren zur Gewinnung von Platin und/oder Ruthenium
CN110964912A (zh) * 2019-12-20 2020-04-07 有研亿金新材料有限公司 一种从铂钨合金回收提纯铂的方法
CN111676371A (zh) * 2020-04-27 2020-09-18 励福(江门)环保科技股份有限公司 一种从钨坩埚中分离提纯铂的方法
CN111690819A (zh) * 2020-06-24 2020-09-22 广东金正龙科技有限公司 一种铂金提纯方法及一种反应釜
CN115125398A (zh) * 2022-08-09 2022-09-30 顾秀华 一种金属铂的半金属化合物制备工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322114A (en) * 1976-06-21 1978-03-01 Nat I Fuoa Metaraajii Separating and refining method of ruthenium
JPH09316560A (ja) * 1996-05-27 1997-12-09 Nikko Kinzoku Kk 白金の回収方法
JP2006183099A (ja) * 2004-12-28 2006-07-13 Nippon Mining & Metals Co Ltd 白金中の不純物除去方法
JP2009144183A (ja) * 2007-12-12 2009-07-02 Mitsubishi Materials Corp 白金の回収方法
JP2010222613A (ja) * 2009-03-20 2010-10-07 Mitsubishi Materials Corp 白金の回収処理方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4865156B2 (ja) * 2001-07-18 2012-02-01 Jx日鉱日石金属株式会社 高純度白金及びパラジウムの回収方法
JP2003129145A (ja) * 2001-10-22 2003-05-08 Nikko Materials Co Ltd 白金の回収方法
JP2004141824A (ja) * 2002-10-28 2004-05-20 Nikko Materials Co Ltd 白金等の有価金属回収方法
CN101358287A (zh) * 2008-09-10 2009-02-04 灵宝市金源矿业有限责任公司 一种难熔合质金中金、银及铂族金属的分离方法
JP5339068B2 (ja) * 2009-03-20 2013-11-13 三菱マテリアル株式会社 ルテニウムの精製回収方法
CN101797649B (zh) * 2010-01-19 2012-09-05 兰州大学 一种制备高纯钌的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322114A (en) * 1976-06-21 1978-03-01 Nat I Fuoa Metaraajii Separating and refining method of ruthenium
JPH09316560A (ja) * 1996-05-27 1997-12-09 Nikko Kinzoku Kk 白金の回収方法
JP2006183099A (ja) * 2004-12-28 2006-07-13 Nippon Mining & Metals Co Ltd 白金中の不純物除去方法
JP2009144183A (ja) * 2007-12-12 2009-07-02 Mitsubishi Materials Corp 白金の回収方法
JP2010222613A (ja) * 2009-03-20 2010-10-07 Mitsubishi Materials Corp 白金の回収処理方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014201077B2 (en) * 2013-03-05 2015-08-13 Heraeus Precious Metals Gmbh & Co. Kg Method for producing highly pure platinum powder, as well as platinum powder that can be obtained according to said method, and use thereof
CN103627902A (zh) * 2013-04-25 2014-03-12 上海派特贵金属有限公司 一种从失效贵金属催化剂中回收铑的方法
CN111926195A (zh) * 2020-06-24 2020-11-13 重庆材料研究院有限公司 一种从铂合金废料中制备高纯铂的方法
CN112126789A (zh) * 2020-09-17 2020-12-25 朱俊 一种氯铂酸溶液浓缩工艺及设备

Also Published As

Publication number Publication date
CN102959103B (zh) 2014-03-05
JP5399510B2 (ja) 2014-01-29
US20130139648A1 (en) 2013-06-06
CN102959103A (zh) 2013-03-06
MY160898A (en) 2017-03-31
JPWO2012029379A1 (ja) 2013-10-28
SG186401A1 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP5399510B2 (ja) 高純度白金の回収方法
JP6030005B2 (ja) 白金族元素の回収方法
JP4782238B2 (ja) Izoスクラップからの有価金属の回収方法
JP5132226B2 (ja) ルテニウムの回収方法
KR101567499B1 (ko) Led 폐기물로부터 유가금속의 선별 회수 방법
AU2011280153A1 (en) Process for recovery of precious metals
JP2009203486A (ja) ルテニウムを含むスクラップからルテニウムを回収する方法
JP4865156B2 (ja) 高純度白金及びパラジウムの回収方法
JP2007009274A (ja) インジウムの回収方法
JP5351747B2 (ja) 金の還元回収方法
JP5217480B2 (ja) 粗インジウムの回収方法
JP2007056367A (ja) ブラスト粒子からインジウムを回収する方法
JP5291968B2 (ja) ルテニウムの回収方法
EP2993242B1 (en) Method for recovering acid and platinum group metal from leaching solution of waste catalyst
JP2003129145A (ja) 白金の回収方法
JP5881469B2 (ja) ルテニウムの回収方法
JP6786280B2 (ja) ルテニウム含有物に対する処理方法およびルテニウムの回収方法
JP2010222612A (ja) ルテニウムの精製回収方法
JP2007039798A (ja) インジウム回収方法とその用途
JP2011208248A (ja) 白金族元素の分離方法
JP2011208249A (ja) 白金族元素の分離方法
JP5315103B2 (ja) ルテニウムの濃縮方法及び回収方法
JP3690989B2 (ja) タンタル、ニオブ等の採取精製用溶液のアンチモン除去方法
JP3763286B2 (ja) 高品位ロジウム粉の回収方法
JP3613443B2 (ja) タンタルおよび/またはニオブ含有合金の溶解抽出方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180030294.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011539574

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821397

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13813354

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821397

Country of ref document: EP

Kind code of ref document: A1