WO2012024993A1 - 八天线下行控制信道发送方法及装置 - Google Patents

八天线下行控制信道发送方法及装置 Download PDF

Info

Publication number
WO2012024993A1
WO2012024993A1 PCT/CN2011/077468 CN2011077468W WO2012024993A1 WO 2012024993 A1 WO2012024993 A1 WO 2012024993A1 CN 2011077468 W CN2011077468 W CN 2011077468W WO 2012024993 A1 WO2012024993 A1 WO 2012024993A1
Authority
WO
WIPO (PCT)
Prior art keywords
antennas
port
base station
weight
antenna
Prior art date
Application number
PCT/CN2011/077468
Other languages
English (en)
French (fr)
Inventor
姜大洁
韩璐
王晓周
胡丽洁
张勇
史志华
刘光毅
Original Assignee
***通信集团公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ***通信集团公司 filed Critical ***通信集团公司
Priority to EP11819368.9A priority Critical patent/EP2611055B1/en
Priority to US13/814,505 priority patent/US20130136092A1/en
Priority to JP2013525121A priority patent/JP5735647B2/ja
Publication of WO2012024993A1 publication Critical patent/WO2012024993A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account

Definitions

  • the present invention claims the priority of the Chinese patent application filed on August 23, 2010, the Chinese Patent Application No. 201010261177.9, entitled “Eight Antenna Downlink Control Channel Transmission Method and Apparatus", The entire contents of this application are incorporated herein by reference.
  • TECHNICAL FIELD The present invention relates to the field of antenna technologies, and in particular, to a method and an apparatus for transmitting an eight-antenna downlink control channel.
  • TD-LTE Time Division Duplexing-Long Term Evolution
  • FDD Frequency Division Duplexing
  • the total power of all the antennas of the TDD base station and the FDD base station is the same, for example, the total power is 40 W, then the power of each of the eight antennas of the TDD base station is 5 W, and the power of each of the two antennas of the FDD base station is 20W.
  • the transmission mode of the downlink control channel of the FDD base station is 2x2 Space Frequency Block Coding (SFBC).
  • SFBC Space Frequency Block Coding
  • the transmission mode of the downlink control channel of the TD-LTE base station can be divided into two categories, and the first type is based on 4-port, for example, SFBC+ Frequency Switched Transmit Diversity (FSTD).
  • FSTD Frequency Switched Transmit Diversity
  • a non-negligible disadvantage of the 4-port mode is that it requires 4 ports of common demodulation pilot (CRS), and the pilot overhead is too large.
  • CRS common demodulation pilot
  • the second type is the broadcast right mode.
  • Figure 1 shows the existing TD-LTE base station. The schematic diagram of transmitting the downlink control channel by using the broadcast right mode, as shown in FIG.
  • the method uses the two-port mode of the FDD base station, that is, the eight antennas are virtualized into two antenna ports by the packet, one of the ports (ie, port 0) It is virtualized by four antennas with +45 degrees, and the other port (ie, port 1) is virtualized by four antennas in the direction of 45 degrees, and then the downlink control channel is transmitted through 2x2 SFBC.
  • the broadcast right mode has a certain attractiveness because it uses two ports and its pilot overhead is reduced compared to the 4-port mode. However, in the broadcast right mode, the weighting value on some of the four antennas of the same port is less than 1, so there is power loss, which causes the 2 antenna downlink control channel of the FDD base station that does not reach the same total power. Coverage. SUMMARY OF THE INVENTION
  • the present invention provides an 8-antenna downlink control channel transmission method and apparatus for expanding the coverage of a downlink control channel of a base station employing eight antennas.
  • a method for transmitting an eight-antenna downlink control channel comprising: For the eight antennas used by the base station for downlink transmission, the first pair and the third pair of dual-polarized antennas are virtualized as the first port, and the second pair and the fourth pair of dual-polarized antennas are virtualized as the second port;
  • the broadcast weighting value of the four antennas of the first port satisfies: one of the antennas has a weighting value of +1, and the other three antennas have a weighting value of -1; or one of the antennas has a weighting value of -1.
  • the other three antennas have a weighted value of + 1;
  • the broadcast weighting values of the four antennas of the second port are satisfied: one of the antennas has a weighting value of + 1, and the other three antennas have a weighting value of -1, or one of the antennas has a weighting value of -1, and the other three
  • the weight of the antenna is + 1; the base station sends a downlink control signal through the first port and the second port.
  • the base station is a Long Term Evolution LTE time division duplex TDD base station, or an LTE A TDD base station, or an LTE frequency division duplex FDD base station, or an LTE AFDD base station.
  • a method for transmitting an eight-antenna downlink control channel comprising:
  • the first pair and the fourth pair of dual-polarized antennas are virtualized as the first port, and the second pair and the third pair of dual-polarized antennas are virtualized as the second port;
  • the broadcast weighting values of the four antennas of the first port are: one of the antennas has a weighting value of +1, and the other three antennas have a weighting value of -1, or one of the antennas has a weighting value of -1.
  • the other three antennas have a weighted value of + 1;
  • the broadcast weights of the four antennas of the second port are: The weight of one of the antennas is + 1, and the weight of the three antennas is -1, or the weight of one of the antennas is - 1, and the other three The weight of the antenna is + 1; the base station sends a downlink control signal through the first port and the second port.
  • the base station is a Long Term Evolution LTE Time Division Duplex TDD Base Station, or an LTE A TDD Base Station, or an LTE Frequency Division Duplex FDD Base Station, or an LTE A FDD Base Station.
  • a method for transmitting an eight-antenna downlink control channel comprising:
  • the +45-degree directional antennas of the first and second pairs of dual-polarized antennas and the -45-degree directional antenna of the third and fourth pairs of dual-polarized antennas are virtualized as the first port.
  • the broadcast weighting values of the four antennas of the first port are: one of the antennas has a weighting value of +1, and the other three antennas have a weighting value of -1, or one of the antennas has a weighting value of -1.
  • the other three antennas have a weighted value of + 1;
  • the broadcast weights of the four antennas of the second port are: The weight of one of the antennas is + 1, and the weight of the three antennas is -1, or the weight of one of the antennas is - 1, and the other three The weight of the antenna is + 1; the base station sends a downlink control signal through the first port and the second port.
  • the base station is a Long Term Evolution (LTE) time division duplex TDD base station, or an LTE A TDD base station, or an LTE frequency division duplex FDD base station, or an LTE A FDD base station.
  • LTE Long Term Evolution
  • a method for transmitting an eight-antenna downlink control channel comprising:
  • the +45-degree directional antenna in the first and third pairs of dual-polarized antennas and the -45-degree directional antenna in the second and fourth pairs of dual-polarized antennas are virtualized as the first port.
  • the broadcast weighting values of the four antennas of the first port are: one of the antennas has a weighting value of +1, and the other three antennas have a weighting value of -1, or one of the antennas has a weighting value of -1.
  • the other three antennas have a weighted value of + 1;
  • the broadcast weights of the four antennas of the second port are: The weight of one of the antennas is + 1, and the weight of the three antennas is -1, or the weight of one of the antennas is - 1, and the other three The weight of the antenna is + 1; the base station sends a downlink control signal through the first port and the second port.
  • the base station is a Long Term Evolution LTE Time Division Duplex TDD Base Station, or an LTE A TDD Base Station, or an LTE Frequency Division Duplex FDD Base Station, or an LTE A FDD Base Station.
  • a method for transmitting an eight-antenna downlink control channel comprising:
  • the +45-degree directional antenna of the 1st, 4th pair of dual-polarized antennas and the _45-degree directional antenna of the 2nd, 3rd pair of dual-polarized antennas are virtualized as the first port.
  • the broadcast weighting values of the four antennas of the first port are: one of the antennas has a weighting value of +1, and the other three antennas have a weighting value of -1, or one of the antennas has a weighting value of -1.
  • the other three antennas have a weighted value of + 1;
  • the broadcast weights of the four antennas of the second port are: The weight of one of the antennas is + 1, and the weight of the three antennas is -1, or the weight of one of the antennas is - 1, and the other three The weight of the antenna is + 1; the base station sends a downlink control signal through the first port and the second port.
  • the base station is a Long Term Evolution LTE Time Division Duplex TDD Base Station, or an LTE A TDD Base Station, or an LTE Frequency Division Duplex FDD Base Station, or an LTE A FDD Base Station.
  • a method for transmitting an eight-antenna downlink control channel comprising:
  • the +45-degree directional antenna of the first, second, third, and fourth pairs of dual-polarized antennas is virtualized as the first port, and the first, second, third, and fourth pairs of bipolar
  • the -45 degree directional antenna in the antenna is virtualized as the second end;
  • the broadcast weighting values of the four antennas of the first port are: one of the antennas has a weighting value of +1, and the other three antennas have a weighting value of -1, or one of the antennas has a weighting value of -1.
  • the other three antennas have a weighted value of + 1;
  • the broadcast weights of the four antennas of the second port are: The weight of one of the antennas is + 1, and the weight of the three antennas is -1, or the weight of one of the antennas is - 1, and the other three The weight of the antenna is + 1;
  • the base station sends a downlink control signal through the first port and the second port.
  • the base station is a Long Term Evolution LTE Time Division Duplex TDD Base Station, or an LTE A TDD Base Station, or an LTE Frequency Division Duplex FDD Base Station, or an LTE A FDD Base Station.
  • An eight-antenna downlink control channel transmitting apparatus comprising:
  • Port grouping module For the 8 antennas used by the base station for downlink transmission, the first pair and the third pair of dual-polarized antennas are virtualized as the first port, and the second pair and the fourth pair of dual-polarized antennas are virtualized as the second port.
  • the weighting value of the broadcast right of the 4th antenna of the first port satisfies: the weighting value of one antenna is +1, and the weighting value of the other three antennas is _1; or, the weighting value of one antenna is _ 1 .
  • the weight of the other three antennas is + 1; the weight of the broadcast weight of the four antennas of the second port satisfies: the weight of one antenna is + 1 , and the weight of the other three antennas is _ 1 , or The weight of one antenna is -1, and the weight of the other three antennas is +1;
  • the downlink control signal sending module the first port and the second port obtained by the port grouping module send a downlink control signal.
  • the device is located on a Long Term Evolution LTE time division duplex TDD base station, or on an LTE A TDD base station, or on an LTE frequency division duplex FDD base station, or on an LTE A FDD base station.
  • An eight-antenna downlink control channel transmitting apparatus includes:
  • Port grouping module For the 8 antennas used by the base station for downlink transmission, the first pair and the fourth pair of dual-polarized antennas are virtualized as the first port, and the second pair and the third pair of dual-polarized antennas are virtualized as the second port.
  • the weighting value of the broadcast weight of the antenna of the first port is: one of the antennas has a weighting value of +1, and the other three antennas have a weighting value of -1, or one of the antennas has a weighting value of - 1 .
  • the weight of the other three antennas is + 1; the weight of the broadcast weights of the four antennas of the second port is: the weight of one antenna is + 1 , and the weight of the other three antennas is _ 1 , or The weight of one antenna is -1, and the weight of the other three antennas is +1;
  • the downlink control signal sending module the first port and the second port obtained by the port grouping module send a downlink control signal.
  • the device is located on a Long Term Evolution LTE time division duplex TDD base station, or on an LTE A TDD base station, or on an LTE frequency division duplex FDD base station, or on an LTE A FDD base station.
  • An eight-antenna downlink control channel transmitting apparatus includes:
  • Port grouping module For the 8 antennas used by the base station for downlink transmission, the +45 degree directional antenna in the first and second pairs of dual-polarized antennas and the -45-degree directional antenna in the third and fourth pairs of dual-polarized antennas are virtualized.
  • the first port virtualize the _45-degree directional antenna in the first and second pairs of dual-polarized antennas and the +45-degree directional antenna in the third and fourth pairs of dual-polarized antennas as the second port; wherein, the first port
  • the weighting values of the broadcast weights of the four antennas are: one of the antennas has a weighting value of +1, and the other three antennas have a weighting value of -1, or one of the antennas has a weighting value of -1, and the other three antennas are weighted.
  • the value of the broadcast weight of the four antennas of the second port is: the weight of one antenna is + 1 , and the weight of the other three antennas is -1, or the weight of one antenna is - 1 , the weight of the other three antennas is + 1;
  • the downlink control signal sending module the first port and the second port obtained by the port grouping module send a downlink control signal.
  • the device is located on a Long Term Evolution LTE time division duplex TDD base station, or on an LTE A TDD base station, or on an LTE frequency division duplex FDD base station, or on an LTE A FDD base station.
  • a method for transmitting an eight-antenna downlink control channel comprising:
  • Port grouping module For the 8 antennas used by the base station for downlink transmission, the +45-degree directional antenna in the first and third pairs of dual-polarized antennas and the -45-degree directional antenna in the second and fourth pairs of dual-polarized antennas are virtualized.
  • the _45-degree directional antenna in the first and third pairs of dual-polarized antennas and the +45-degree directional antenna in the second and fourth pairs of dual-polarized antennas are virtualized as the second port; wherein, the first port
  • the weighting values of the broadcast weights of the four antennas are: one of the antennas has a weighting value of +1, and the other three antennas have a weighting value of -1, or one of the antennas has a weighting value of -1, and the other three antennas are weighted.
  • the value of the broadcast weight of the four antennas of the second port is: the weight of one antenna is + 1 , and the weight of the other three antennas is -1, or the weight of one antenna is - 1 , the weight of the other three antennas is + 1;
  • the downlink control signal sending module the first port and the second port obtained by the port grouping module send a downlink control signal.
  • the device is located on a Long Term Evolution LTE time division duplex TDD base station, or on an LTE A TDD base station, or on an LTE frequency division duplex FDD base station, or on an LTE A FDD base station.
  • a method for transmitting an eight-antenna downlink control channel comprising:
  • Port grouping module For the 8 antennas used by the base station for downlink transmission, the + and 4 pairs of dual-polarized antennas are +
  • the 45-degree directional antenna and the -45-degree directional antenna in the 2nd and 3rd pairs of dual-polarized antennas are virtualized as the first port, and the _45-degree directional antenna and the second and third pairs in the first and fourth pairs of dual-polarized antennas
  • the +45 degree directional antenna in the dual-polarized antenna is virtualized as the second port; wherein the broadcast weights of the four antennas of the first port are: The weighting value of one antenna is + 1 , and the weight of the other three antennas The value of -1, or one of the antennas is -1, and the weight of the other three antennas is +1; the weighting of the broadcast weights of the four antennas of the second port is: 1 , the other three antennas have a weight of -1, or one of the antennas has a weight of -1, and the other three antennas have a weight of +1;
  • the downlink control signal sending module the first port and the second port obtained by the port grouping module send a downlink control signal.
  • the device is located on a Long Term Evolution LTE time division duplex TDD base station, or on an LTE ATDD base station, or on an LTE frequency division duplex FDD base station, or on an LTE A FDD base station.
  • An eight-antenna downlink control channel transmitting apparatus comprising:
  • Port grouping module For the 8 antennas used by the base station for downlink transmission, the 1st, 2nd, 3rd, and 4th pairs of dual-polarized antennas
  • the +45 degree directional antenna is virtualized as the first port, and the -45 degree directional antenna in the pair 1, 2, 3, and 4 pairs of dual-polarized antennas is virtualized as the second port; wherein, the first antenna of the four antennas
  • the weighting value of the broadcast right is: the weight of one antenna is + 1 , and the weight of the other three antennas is _ 1 , or the weight of one antenna is -1 , and the weight of the other three antennas is + 1;
  • the broadcast weighting values of the four antennas of the second port are: one of the antennas has a weighted value of +1, and the other three antennas have a weighting value of _1, or one of the antennas has a weighting value of _1, and the other three The weight of the antenna is + 1;
  • the downlink control signal sending module sends the downlink control signal through the first port and the second port.
  • the device is located on a Long Term Evolution LTE time division duplex TDD base station, or on an LTE A TDD base station, or on an LTE frequency division duplex FDD base station, or on an LTE A FDD base station.
  • FIG. 1 is a schematic diagram of a conventional TD-LTE base station transmitting a downlink control channel by using a broadcast right mode
  • FIG. 2 is a flow chart showing a method for transmitting a downlink control channel of a base station using an 8-antenna according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram of a manner of transmitting a downlink control channel of a base station with 8 antennas according to Embodiment 1 of the present invention
  • FIG. 4 is a flow chart of a method for transmitting a downlink control channel of a base station using eight antennas according to Embodiment 2 of the present invention
  • FIG. 5 is a schematic diagram of a manner of transmitting a downlink control channel of a base station using eight antennas according to Embodiment 2 of the present invention
  • FIG. 6 is a flow chart of a method for transmitting a downlink control channel of a base station using eight antennas according to Embodiment 3 of the present invention
  • FIG. 7 is a schematic diagram of a manner of transmitting a downlink control channel of a base station using eight antennas according to Embodiment 3 of the present invention.
  • FIG. 8 is a flowchart of a method for transmitting a downlink control channel of a base station with 8 antennas according to Embodiment 4 of the present invention
  • FIG. 9 is a schematic diagram of a manner of transmitting a downlink control channel of a base station with 8 antennas according to Embodiment 4 of the present invention
  • FIG. 8 is a flowchart of a method for transmitting a downlink control channel of a base station with 8 antennas according to Embodiment 4 of the present invention
  • FIG. 9 is a schematic diagram of a manner of transmitting a downlink control channel of a base station with 8 antennas according to Embodiment 4 of the present invention
  • FIG. 8 is a flowchart of a method for transmitting a downlink control channel of a base station with 8 antennas according to Embodiment 4 of the present invention
  • FIG. 9 is a schematic diagram of a manner of transmitting a downlink control channel of a base station with 8 antennas according to Embodiment
  • FIG. 10 is a flowchart of a method for transmitting a downlink control channel of a base station using eight antennas according to Embodiment 5 of the present invention
  • FIG. 11 is a schematic diagram of a manner of transmitting a downlink control channel of a base station using eight antennas according to Embodiment 5 of the present invention.
  • FIG. 12 is a flowchart of a method for transmitting a downlink control channel of a base station using eight antennas according to Embodiment 6 of the present invention.
  • FIG. 13 is a schematic diagram of a manner of transmitting a downlink control channel of a base station using eight antennas according to Embodiment 6 of the present invention.
  • FIG. 14 is a schematic diagram of a configuration of an apparatus for transmitting an 8-antenna downlink control channel according to Embodiment 1 of the present invention
  • FIG. 15 is a comparison diagram of simulation results of an existing broadcast right scheme according to Embodiments 1 to 6 of the present invention. DETAILED DESCRIPTION OF THE INVENTION The present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments.
  • FIG. 2 is a flowchart of a method for transmitting a downlink control channel of a base station with 8 antennas according to Embodiment 1 of the present invention. As shown in FIG. 2, the specific steps are as follows:
  • Step 201 For the 8 antennas used by the base station for downlink transmission, the first pair and the third pair of dual-polarized antennas are virtualized as port 0, and the second pair and the fourth pair of dual-polarized antennas are virtualized as port 1.
  • the broadcast weighting values of the four antennas of port 0 are: one of the antennas has a weighting value of +1, and the other three antennas have a weighting value of _1, or one of the antennas has a weighting value of -1.
  • the weight of the three antennas is + 1; the weight of the broadcast weights of the four antennas of port 1 is: the weight of one antenna is + 1 , and the weight of the other three antennas is -1 , or one of the antennas
  • the weighting value is _ 1 and the weight of the other three antennas is + 1.
  • FIG. 3 is a schematic diagram showing a manner of transmitting a downlink control channel of a base station using eight antennas according to Embodiment 1 of the present invention.
  • Step 202 The base station sends a downlink control signal through port 0 and port 1.
  • FIG. 4 is a flowchart of a method for transmitting a downlink control channel of a base station with eight antennas according to Embodiment 2 of the present invention. As shown in FIG. 4, the specific steps are as follows:
  • Step 401 For the 8 antennas used by the base station for downlink transmission, the first pair and the fourth pair of dual-polarized antennas are virtualized as port 0, and the second pair and the third pair of dual-polarized antennas are virtualized as port 1.
  • the weighting value of the broadcast weight of the 4 antennas of port 0 is: one of the antennas has a weighted value of +1, and the other three antennas have a weighting value of _1, or one of the antennas has a weighting value of -1.
  • the weighting values of the other three antennas are + 1; the weighting values of the broadcast weights of the four antennas of port 1 are: the weighting value of one antenna is + 1 , and the weighting value of the other three antennas is -1 , or one of the antennas Weighting The value is _ 1 and the weight of the other three antennas is + 1.
  • FIG. 5 is a schematic diagram showing a manner of transmitting a downlink control channel of a base station using eight antennas according to Embodiment 2 of the present invention.
  • Step 402 The base station sends a downlink control signal through port 0 and port 1.
  • FIG. 6 is a flowchart of a method for transmitting a downlink control channel of a base station using eight antennas according to Embodiment 3 of the present invention. As shown in FIG. 6, the specific steps are as follows:
  • Step 601 For the eight antennas used by the base station for downlink transmission, the +45 degree directional antennas of the first and second pairs of dual polarized antennas and the _45 degree directional antennas of the third and fourth pairs of dual polarized antennas are virtualized as Port 0, virtualizes the _45-degree directional antenna in the first and second pairs of dual-polarized antennas and the +45-degree directional antenna in the third and fourth pairs of dual-polarized antennas as port 1.
  • the broadcast weighting values of the four antennas of port 0 are: one of the antennas has a weighting value of +1, and the other three antennas have a weighting value of -1, or one of the antennas has a weighting value of _1.
  • the weight of the three antennas is + 1; the weight of the broadcast weights of the four antennas of port 1 is: the weight of one antenna is + 1 , and the weight of the other three antennas is _ 1 , or one of the antennas
  • the weighting value is -1 and the weighting of the other three antennas is +1.
  • FIG. 7 is a schematic diagram showing a manner of transmitting a downlink control channel of a base station using eight antennas according to Embodiment 3 of the present invention.
  • Step 602 The base station sends a downlink control signal by using the port 0 and the second port.
  • FIG. 8 is a flowchart of a method for transmitting a downlink control channel of a base station with eight antennas according to Embodiment 4 of the present invention. As shown in FIG. 8, the specific steps are as follows:
  • Step 801 For the eight antennas used by the base station for downlink transmission, the +45 degree directional antennas of the first and third pairs of dual polarized antennas and the _45 degree directional antennas of the second and fourth pairs of dual polarized antennas are virtualized as Port 0, virtualizes the _45-degree directional antenna in the first and third pairs of dual-polarized antennas and the +45-degree directional antenna in the second and fourth pairs of dual-polarized antennas as port 1.
  • the broadcast weighting values of the four antennas of port 0 are: one of the antennas has a weighting value of +1, and the other three antennas have a weighting value of -1, or one of the antennas has a weighting value of _1.
  • the weight of the three antennas is + 1; the weight of the broadcast weights of the four antennas of port 1 is: the weight of one antenna is + 1 , and the weight of the other three antennas is _ 1 , or one of the antennas
  • the weighting value is -1 and the weighting of the other three antennas is +1.
  • FIG. 9 is a schematic diagram showing a manner of transmitting a downlink control channel of a base station using eight antennas according to Embodiment 4 of the present invention.
  • Step 802 The base station sends a downlink control signal by using port 0 and the second port.
  • FIG. 10 is a flowchart of a method for transmitting a downlink control channel of a base station using eight antennas according to Embodiment 5 of the present invention. As shown in FIG. 10, the specific steps are as follows:
  • Step 1001 For the eight antennas used by the base station for downlink transmission, the +45 degree directional antennas of the first and fourth pairs of dual polarized antennas and the _45 degree directional antennas of the second and third pairs of dual polarized antennas are virtualized as Port 0, virtualizes the _45-degree directional antenna in the first and fourth pairs of dual-polarized antennas and the +45-degree directional antenna in the second and third pairs of dual-polarized antennas as port 1. Its The broadcast weighting values of the four antennas of port 0 are: one of the antennas has a weighting value of +1, and the other three antennas have a weighting value of -1, or one of the antennas has a weighting value of _1.
  • the weight of the three antennas is + 1; the weight of the broadcast weights of the four antennas of port 1 is: the weight of one antenna is + 1 , and the weight of the other three antennas is _ 1 , or one of the antennas
  • the weighting value is -1 and the weighting of the other three antennas is +1.
  • FIG. 11 is a schematic diagram showing a manner of transmitting a downlink control channel of a base station using eight antennas according to Embodiment 5 of the present invention.
  • Step 1002 The base station sends a downlink control signal by using port 0 and the second port.
  • FIG. 12 is a flowchart of a method for transmitting a downlink control channel of a base station using eight antennas according to Embodiment 6 of the present invention. As shown in FIG. 12, the specific steps are as follows:
  • Step 1201 For the 8 antennas used by the base station for downlink transmission, the first, 2, 3, and 4 pairs of dual-polarized antennas
  • the +45 degree directional antenna is virtual port 0, and the -45 degree directional antenna in the pair 1, 2, 3, and 4 pairs of dual-polarized antennas is virtualized as port 1.
  • the broadcast weighting values of the four antennas of port 0 are: one of the antennas has a weighting value of +1, and the other three antennas have a weighting value of -1, or one of the antennas has a weighting value of -1.
  • the weight of the three antennas is + 1;
  • the weight of the broadcast weights of the four antennas of port 1 is: the weight of one antenna is + 1 , and the weight of the other three antennas is -1, or one of the antennas
  • the weighting value is -1 and the weighting of the other three antennas is +1.
  • FIG. 13 is a schematic diagram showing a manner of transmitting a downlink control channel of a base station using eight antennas according to Embodiment 6 of the present invention.
  • Step 1202 The base station sends a downlink control signal by using port 0 and the second port.
  • the weighting values of the four antennas of the two ports may be the same or different.
  • the weight of the four antennas of port 1 can be the same as or different from the weight of the four antennas of port 0.
  • the base station in the first to sixth embodiments of the present invention may be an LTE TDD base station or an LTE ATDD base station or an LTE FDD base station or an LTE A FDD base station.
  • FIG. 14 is a schematic structural diagram of an apparatus for transmitting an 8-antenna downlink control channel according to Embodiment 1 of the present invention. As shown in FIG. 14, the method mainly includes: a port grouping module and a downlink control signal sending module, where:
  • Port grouping module For the 8 antennas used by the base station for downlink transmission, the first pair and the third pair of dual-polarized antennas are virtualized as the first port, and the second pair and the fourth pair of dual-polarized antennas are virtualized as the second port.
  • the weighting value of the broadcast right of the 4th antenna of the first port satisfies: the weighting value of one antenna is +1, and the weighting value of the other three antennas is _1; or, the weighting value of one antenna is _ 1 .
  • the weight of the other three antennas is + 1; the weight of the broadcast weight of the four antennas of the second port satisfies: the weight of one antenna is + 1 , and the weight of the other three antennas is _ 1 , or The weight of one antenna is -1, and the weight of the other three antennas is +1.
  • the correspondence between each port number and the antenna identifier is recorded, and the broadcast weighting value of each antenna included in each port is recorded.
  • the downlink control signal sending module according to the correspondence between each port number recorded by the port grouping module and the antenna identifier And a broadcast weighting value of each antenna included in each port, and sending a downlink control signal through the first port and the second port.
  • the device shown in FIG. 14 may be located on an LTE TDD base station, or on an LTE ATDD base station, or on an LTE FDD base station, or on an LTE A FDD base station.
  • composition of the eight-antenna downlink control channel sending apparatus provided by the second embodiment of the present invention, which mainly includes: a port grouping module and a downlink control signal sending module, where:
  • Port grouping module For the 8 antennas used by the base station for downlink transmission, the first pair and the fourth pair of dual-polarized antennas are virtualized as the first port, and the second pair and the third pair of dual-polarized antennas are virtualized as the second port.
  • the weighting value of the broadcast weight of the antenna of the first port is: one of the antennas has a weighting value of +1, and the other three antennas have a weighting value of -1, or one of the antennas has a weighting value of - 1 .
  • the weight of the other three antennas is + 1; the weight of the broadcast weights of the four antennas of the second port is: the weight of one antenna is + 1 , and the weight of the other three antennas is _ 1 , or The weight of one antenna is -1, and the weight of the other three antennas is +1.
  • the correspondence between each port number and the antenna identifier is recorded, and the broadcast weighting value of each antenna included in each port is recorded.
  • the downlink control signal sending module sends the downlink control signal through the first port and the second port according to the correspondence between each port number recorded by the port grouping module and the antenna identifier and the broadcast weighting value of each antenna included in each port.
  • the device provided in the second embodiment of the present invention may be located on an LTE TDD base station, or on an LTE ATDD base station, or on an LTE FDD base station, or on an LTE A FDD base station.
  • composition of an eight-antenna downlink control channel sending apparatus which mainly includes: a port grouping module and a downlink control signal sending module, where:
  • Port grouping module For the 8 antennas used by the base station for downlink transmission, the +45 degree directional antenna in the first and second pairs of dual-polarized antennas and the -45-degree directional antenna in the third and fourth pairs of dual-polarized antennas are virtualized.
  • the first port virtualize the _45-degree directional antenna in the first and second pairs of dual-polarized antennas and the +45-degree directional antenna in the third and fourth pairs of dual-polarized antennas as the second port; wherein, the first port
  • the weighting values of the broadcast weights of the four antennas are: one of the antennas has a weighting value of +1, and the other three antennas have a weighting value of -1, or one of the antennas has a weighting value of -1, and the other three antennas are weighted.
  • the value of the broadcast weight of the four antennas of the second port is: the weight of one antenna is + 1 , and the weight of the other three antennas is -1, or the weight of one antenna is - 1 , the weight of the other three antennas is + 1; record the correspondence between each port number and the antenna identifier, and record the broadcast weighting value of each antenna included in each port.
  • the downlink control signal sending module sends the downlink control signal through the first port and the second port according to the correspondence between each port number recorded by the port grouping module and the antenna identifier and the broadcast weighting value of each antenna included in each port.
  • the device provided in Embodiment 3 of the present invention may be located on an LTE TDD base station, or on an LTE ATDD base station, or on an LTE FDD base station, or on an LTE A FDD base station.
  • Embodiment 4 of the present invention mainly includes: a port grouping module and a downlink control signal sending module, where:
  • Port grouping module For the 8 antennas used by the base station for downlink transmission, the + in the 1st and 3rd pairs of dual-polarized antennas The 45-degree directional antenna and the -45-degree directional antenna in the 2nd, 4th pair of dual-polarized antennas are virtualized as the first port, and the _45-degree directional antenna and the second and fourth pairs in the first and third pairs of dual-polarized antennas The +45 degree directional antenna in the dual-polarized antenna is virtualized as the second port; wherein the broadcast weights of the four antennas of the first port are: The weighting value of one antenna is + 1 , and the weight of the other three antennas The value of -1, or one of the antennas is -1, and the weight of the other three antennas is +1; the weighting of the broadcast weights of the four antennas of the second port is: 1 .
  • the weight of the other three antennas is -1, or one of the antennas has a weight of -1, and the other three antennas have a weight of +1. Record the correspondence between each port number and the antenna identifier, and record each port. The broadcast weighting value of each antenna included.
  • the downlink control signal sending module sends the downlink control signal through the first port and the second port according to the correspondence between each port number recorded by the port grouping module and the antenna identifier and the broadcast weighting value of each antenna included in each port.
  • the device provided in Embodiment 4 of the present invention may be located on an LTE TDD base station, or on an LTE ATDD base station, or on an LTE FDD base station, or on an LTE A FDD base station.
  • composition of an eight-antenna downlink control channel sending apparatus which mainly includes: a port grouping module and a downlink control signal sending module, where:
  • Port grouping module For the 8 antennas used by the base station for downlink transmission, the +45 degree directional antenna in the first and fourth pairs of dual-polarized antennas and the -45-degree directional antenna in the second and third pairs of dual-polarized antennas are virtualized.
  • the _45 degree directional antenna in the first and fourth pairs of dual polarized antennas and the +45 directional antenna in the second and third pairs of dual polarized antennas are virtualized as the second port; wherein, the first port
  • the weighting values of the broadcast weights of the four antennas are: one of the antennas has a weighting value of +1, and the other three antennas have a weighting value of -1, or one of the antennas has a weighting value of -1, and the other three antennas are weighted.
  • the value of the broadcast weight of the four antennas of the second port is: the weight of one antenna is + 1 , and the weight of the other three antennas is -1, or the weight of one antenna is - 1 , the weight of the other three antennas is + 1; record the correspondence between each port number and the antenna identifier, and record the broadcast weighting value of each antenna included in each port.
  • the downlink control signal sending module sends the downlink control signal through the first port and the second port according to the correspondence between each port number recorded by the port grouping module and the antenna identifier and the broadcast weighting value of each antenna included in each port.
  • the device provided in Embodiment 5 of the present invention may be located on an LTE TDD base station, or on an LTE ATDD base station, or on an LTE FDD base station, or on an LTE A FDD base station.
  • Embodiment 6 of the present invention mainly includes: a port grouping module and a downlink control signal sending module, where:
  • Port grouping module For the 8 antennas used by the base station for downlink transmission, the +45 degree directional antenna of the pair 1, 2, 3, and 4 pairs of dual-polarized antennas is virtualized as the first port, and the first, second, third, The -45 degree directional antenna in the pair of dual-polarized antennas is virtualized as the second port; wherein, the broadcast weights of the four antennas of the first port are weighted: one of the antennas has a weighting value of +1, and the other three antennas The weighting value is _ 1 , or one of the antennas has a weighting value of -1 , and the other three antennas have a weighting value of + 1; the second antenna has a broadcast weighting value of four antennas: one of the antennas has a weighting value For + 1 , the other three antennas have a weight of _ 1 , or one of the antennas has a weight of _ 1 and the other three antennas The weighted value is + 1 ; the correspondence between each port number and the antenna
  • the downlink control signal sending module sends the downlink control signal through the first port and the second port according to the correspondence between each port number recorded by the port grouping module and the antenna identifier and the broadcast weighting value of each antenna included in each port.
  • the device provided in Embodiment 6 of the present invention may be located on an LTE TDD base station, or on an LTE ATDD base station, or on an LTE FDD base station, or on an LTE A FDD base station. It has been experimentally proved that the 8-antenna downlink control channel transmission method provided by the present invention can make the performance of the downlink control channel reach or exceed the performance of the 2-antenna downlink control channel of the LTE FDD base station.
  • the comparison between the method provided by the six embodiments of the present invention and the existing broadcast right method in the same simulation scenario is given below:
  • the simulation conditions are as follows:
  • the simulation scenario is a third-generation partner organization 2D Antenna Scene 1 (3GPP Case 1-2D).
  • the base station is a TD-LTE base station, and the downlink transmission uses 8 (4 pairs) dual-polarized antennas, and the distance between two adjacent pairs of antennas is 0.5 times wavelength; setting user equipment (UE, User Equipment) Two co-polarized antennas with a spacing of 0.5 times the wavelength of the two antennas.
  • UE User Equipment
  • the simulation process is as follows:
  • the solution includes: six solutions provided in Embodiments 1 to 6 of the present invention and an existing broadcast right scheme, recording that each antenna of each UE is received from each port of the TD-LTE base station, that is, port 0 and port 1, The power level of the downlink control signal. For each scheme, the power of the downlink control signals received by each of the two antennas of each UE in the predetermined time period from the TD-LTE base station, that is, port 0 and port 1, is linearly averaged.
  • Figure 15 shows a comparison of simulation results, where the unit of the abscissa is 10 degrees. Since the main lobe of the sector antenna of the TD-LTE base station corresponds to one UE every 10 degrees on both sides, in Figure 15, on the abscissa Each integer point represents a UE, a total of 25 UEs, the closer to the central integer point is closer to the main lobe of the antenna; the ordinate indicates that the two antennas of the UE are received from port 0 of the TD-LTE base station within a predetermined time period.
  • Option 0 The existing broadcast rights scheme, that is, port 0 is virtualized by four antennas in the direction of +45 degrees, port 1 is virtualized by four antennas in the direction of 45 degrees, and the broadcasting rights of four antennas of port 0
  • the weighted value is [-0.6230-0.0025j, 1.0, 1.0 0.2986-0.0020j ]
  • the broadcast weight of the 4 ⁇ antenna of port 1 is also [-0.6230-0.0025j 1.0, 1.0, 0.2986-0.0020j]
  • the first embodiment of the present invention wherein the weight of the four antennas of the port 0 is [1 -1, 1,1].
  • the second embodiment of the present invention wherein the antennas of the port 0 1 are The weighting value is [1 1 1 - 1].
  • the weighting value of the four antennas of the port 0 1 is [1 -1, 1 1].
  • the weighting value of the four antennas of the port 0 1 is [1 ⁇ , ⁇ , -1].
  • the third embodiment of the present invention wherein the weight of the four antennas of the port 0 1 is [1 -1, 1 1
  • the fourth embodiment of the present invention wherein the weighting values of the four antennas of the port 0 1 are [1 1 1 - 1].
  • the fourth embodiment of the present invention wherein the weighting of the four antennas of the port 0 1 The value is [1 -1 1 1].
  • Scenario 51 Embodiment 5 of the present invention, wherein the weight of the four antennas of port 0 1 is [1 1 1 - 1].
  • Scheme 52 Embodiment 5 of the present invention, wherein the port The weighting value of the four antennas of 0 1 is [1 -1, 1 1].
  • Scheme 61 Embodiment 6 of the present invention, wherein the weighting values of the four antennas of port 0 1 are [1 ⁇ , ⁇ , - 1] 62: The invention In the sixth embodiment, the weighting value of the four antennas of the port 0 1 is [1 -1, 1 1].
  • the existing broadcast right scheme is in the vicinity of the main lobe of the sector antenna of the TD-LTE base station.
  • the downlink control performance of the present invention is superior to the existing broadcast rights scheme.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种八天线下行控制信道发送方法及装置,包括:对于基站用于下行传输的8根天线,将第1对和第3对双极化天线虚拟为第一端口,将第2对和第4对双极化天线虚拟为第二端口;其中,第一端口的4根天线的广播权加权值满足:其中一根天线的加权值为+1,另外三根天线的加权值为-1;或者,其中一根天线的加权值为-1,另外三根天线的加权值为+1;第二端口的4根天线的广播权加权值满足:其中一根天线的加权值为+1,另外三根天线的加权值为-1,或者,其中一根天线的加权值为-1,另外三根天线的加权值为+1;基站通过第一端口和第二端口发送下行控制信号。通过上述方法,可扩大采用8天线的基站的下行控制信道的覆盖范围。

Description

八天线下行控制信道发送方法及装置 本申请要求在 2010年 08月 23 日提交中国专利局、 申请号为 201010261177.9发明名 称为"八天线下行控制信道发送方法及装置"的中国专利申请的优先权, 其全部内容通过引 用结合在本申请中。 技术领域 本发明涉及天线技术领域, 具体涉及八天线下行控制信道发送方法及装置。 背景技术 目前, 时分双工长期演进 ( TD-LTE, Time Division Duplexing- Long Term Evolution ) 基站下行传输釆用 8天线发送, 而 LTE频分双工 (FDD, Frequency Division Duplexing ) 基站下行传输则釆用 2天线发送。 若 TDD基站和 FDD基站的所有天线的总功率一样, 例 如总功率都是 40W, 那么 TDD基站的 8根天线中每根天线的功率为 5W, FDD基站的两 根天线中每根天线的功率为 20W。
FDD基站的下行控制信道的发送方式釆用 2x2空频块编码(SFBC, Space Frequency Block Coding )方式。 TD-LTE基站的下行控制信道的发送方式可以分为两大类, 第一类是 基于 4 端口的, 例如 SFBC+频率切换发送分集 (FSTD , Frequency Switched Transmit Diversity )。 4端口方式的一个不可忽视的缺点是需要占用 4端口的公共解调导频 ( CRS ), 导频开销太大; 第二类是广播权方式, 图 1给出了现有的 TD-LTE基站釆用广播权方式进 行下行控制信道发送的示意图, 如图 1所示, 该方式沿用了 FDD基站的两端口方式, 即 将 8根天线通过分组虚拟为 2个天线端口, 其中一个端口 (即端口 0 ) 由 4根 + 45度方向 的天线虚拟而成, 另一端口 (即端口 1 )则由 4根- 45度方向的天线虚拟而成, 然后通过 2x2 SFBC完成下行控制信道的发送过程。 广播权方式由于其釆用 2端口, 其导频开销比 4 端口方式减少, 因此有一定的吸引力。 但是, 在广播权方式下, 同一端口的 4根天线中某 些天线上的加权值是小于 1的, 因此有功率损失, 导致其达不到相同总功率的 FDD基站 的 2天线的下行控制信道的覆盖范围。 发明内容 本发明提供 8天线下行控制信道发送方法及装置, 以扩大釆用 8天线的基站的下行控 制信道的覆盖范围。
本发明的技术方案是这样实现的:
一种八天线下行控制信道发送方法, 该方法包括: 对于基站用于下行传输的 8根天线, 将第 1对和第 3对双极化天线虚拟为第一端口, 将第 2对和第 4对双极化天线虚拟为第二端口;
其中, 第一端口的 4根天线的广播权加权值满足: 其中一根天线的加权值为 + 1, 另 外三根天线的加权值为 - 1; 或者, 其中一根天线的加权值为 - 1, 另外三根天线的加权值 为 + 1;
第二端口的 4根天线的广播权加权值满足: 其中一根天线的加权值为 + 1, 另外三根 天线的加权值为 - 1, 或者, 其中一根天线的加权值为 - 1, 另外三根天线的加权值为 + 1; 基站通过第一端口和第二端口发送下行控制信号。
所述基站为长期演进 LTE时分双工 TDD基站,或者 LTE A TDD基站,或者 LTE频分 双工 FDD基站, 或者 LTEAFDD基站。
一种八天线下行控制信道发送方法, 该方法包括:
对于基站用于下行传输的 8根天线, 将第 1对和第 4对双极化天线虚拟为第一端口, 将第 2对和第 3对双极化天线虚拟为第二端口;
其中, 第一端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1, 另外 三根天线的加权值为 -1, 或者, 其中一根天线的加权值为 - 1, 另外三根天线的加权值为 + 1;
第二端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1, 另外三根天 线的加权值为 - 1, 或者, 其中一根天线的加权值为 - 1, 另外三根天线的加权值为 + 1; 基站通过第一端口和第二端口发送下行控制信号。
所述基站为长期演进 LTE时分双工 TDD基站,或者 LTE A TDD基站,或者 LTE频分 双工 FDD基站, 或者 LTE A FDD基站。
一种八天线下行控制信道发送方法, 该方法包括:
对于基站用于下行传输的 8根天线, 将第 1、 2对双极化天线中的 +45度方向天线和 第 3、 4对双极化天线中的 -45度方向天线虚拟为第一端口, 将第 1、 2对双极化天线中的 - 45度方向天线和第 3、 4对双极化天线中的 + 45度方向天线虚拟为第二端口;
其中, 第一端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1, 另外 三根天线的加权值为 -1, 或者, 其中一根天线的加权值为 - 1, 另外三根天线的加权值为 + 1;
第二端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1, 另外三根天 线的加权值为 - 1, 或者, 其中一根天线的加权值为 - 1, 另外三根天线的加权值为 + 1; 基站通过第一端口和第二端口发送下行控制信号。
所述基站为长期演进 LTE时分双工 TDD基站,或者 LTE A TDD基站,或者 LTE频分 双工 FDD基站, 或者 LTE A FDD基站。 一种八天线下行控制信道的发送方法, 该方法包括:
对于基站用于下行传输的 8根天线, 将第 1、 3对双极化天线中的 + 45度方向天线和 第 2、 4对双极化天线中的 -45度方向天线虚拟为第一端口, 将第 1、 3对双极化天线中的 -45度方向天线和第 2、 4对双极化天线中的 +45度方向天线虚拟为第二端口;
其中, 第一端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1, 另外 三根天线的加权值为 -1, 或者, 其中一根天线的加权值为 - 1, 另外三根天线的加权值为 + 1;
第二端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1, 另外三根天 线的加权值为 - 1, 或者, 其中一根天线的加权值为 - 1, 另外三根天线的加权值为 + 1; 基站通过第一端口和第二端口发送下行控制信号。
所述基站为长期演进 LTE时分双工 TDD基站,或者 LTE A TDD基站,或者 LTE频分 双工 FDD基站, 或者 LTE A FDD基站。
一种八天线下行控制信道发送方法, 该方法包括:
对于基站用于下行传输的 8根天线, 将第 1、 4对双极化天线中的 +45度方向天线和 第 2、 3对双极化天线中的 _ 45度方向天线虚拟为第一端口, 将第 1、 4对双极化天线中的 -45度方向天线和第 2、 3对双极化天线中的 +45度方向天线虚拟为第二端口;
其中, 第一端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1, 另外 三根天线的加权值为 -1, 或者, 其中一根天线的加权值为 - 1, 另外三根天线的加权值为 + 1;
第二端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1, 另外三根天 线的加权值为 - 1, 或者, 其中一根天线的加权值为 - 1, 另外三根天线的加权值为 + 1; 基站通过第一端口和第二端口发送下行控制信号。
所述基站为长期演进 LTE时分双工 TDD基站,或者 LTE A TDD基站,或者 LTE频分 双工 FDD基站, 或者 LTE A FDD基站。
一种八天线下行控制信道发送方法, 该方法包括:
对于基站用于下行传输的 8根天线, 将第 1、 2、 3、 4对双极化天线中的 +45度方向 天线虚拟为第一端口, 将第 1、 2、 3、 4对双极化天线中的 -45度方向天线虚拟为第二端 ;
其中, 第一端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1, 另外 三根天线的加权值为 -1, 或者, 其中一根天线的加权值为 - 1, 另外三根天线的加权值为 + 1;
第二端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1, 另外三根天 线的加权值为 - 1, 或者, 其中一根天线的加权值为 - 1, 另外三根天线的加权值为 + 1; 基站通过第一端口和第二端口发送下行控制信号。
所述基站为长期演进 LTE时分双工 TDD基站,或者 LTE A TDD基站,或者 LTE频分 双工 FDD基站, 或者 LTE A FDD基站。
一种八天线下行控制信道发送装置, 该装置包括:
端口分组模块: 对于基站用于下行传输的 8根天线, 将第 1对和第 3对双极化天线虚 拟为第一端口, 将第 2对和第 4对双极化天线虚拟为第二端口; 其中, 第一端口的 4才艮天 线的广播权加权值满足: 其中一根天线的加权值为 + 1 , 另外三根天线的加权值为 _ 1; 或 者, 其中一根天线的加权值为 _ 1 , 另外三根天线的加权值为 + 1; 第二端口的 4根天线的 广播权加权值满足: 其中一根天线的加权值为 + 1 , 另外三根天线的加权值为 _ 1 , 或者, 其中一根天线的加权值为 - 1 , 另外三根天线的加权值为 + 1;
下行控制信号发送模块: 通过端口分组模块得到的第一端口和第二端口发送下行控制 信号。
所述装置位于长期演进 LTE时分双工 TDD基站上, 或者位于 LTE A TDD基站上, 或 者位于 LTE频分双工 FDD基站上, 或者位于 LTE A FDD基站上。
一种八天线下行控制信道发送装置, 包括:
端口分组模块: 对于基站用于下行传输的 8根天线, 将第 1对和第 4对双极化天线虚 拟为第一端口, 将第 2对和第 3对双极化天线虚拟为第二端口; 其中, 第一端口的 4才艮天 线的广播权加权值为: 其中一根天线的加权值为 + 1 , 另外三根天线的加权值为 - 1 , 或者, 其中一根天线的加权值为 - 1 , 另外三根天线的加权值为 + 1; 第二端口的 4根天线的广播 权加权值为: 其中一根天线的加权值为 + 1 , 另外三根天线的加权值为 _ 1 , 或者, 其中一 根天线的加权值为 - 1 , 另外三根天线的加权值为 + 1;
下行控制信号发送模块: 通过端口分组模块得到的第一端口和第二端口发送下行控制 信号。
所述装置位于长期演进 LTE时分双工 TDD基站上, 或者位于 LTE A TDD基站上, 或 者位于 LTE频分双工 FDD基站上, 或者位于 LTE A FDD基站上。
一种八天线下行控制信道发送装置, 包括:
端口分组模块: 对于基站用于下行传输的 8根天线, 将第 1、 2对双极化天线中的 + 45度方向天线和第 3、 4对双极化天线中的 - 45度方向天线虚拟为第一端口, 将第 1、 2 对双极化天线中的 _ 45度方向天线和第 3、 4对双极化天线中的 + 45度方向天线虚拟为第 二端口; 其中, 第一端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1 , 另外三根天线的加权值为 - 1 , 或者, 其中一根天线的加权值为 - 1 , 另外三根天线的加权 值为 + 1; 第二端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1 , 另外三 根天线的加权值为 - 1 , 或者, 其中一根天线的加权值为 - 1 , 另外三根天线的加权值为 + 1;
下行控制信号发送模块: 通过端口分组模块得到的第一端口和第二端口发送下行控制 信号。
所述装置位于长期演进 LTE时分双工 TDD基站上, 或者位于 LTE A TDD基站上, 或 者位于 LTE频分双工 FDD基站上, 或者位于 LTE A FDD基站上。
一种八天线下行控制信道的发送方法, 该方法包括:
端口分组模块: 对于基站用于下行传输的 8根天线, 将第 1、 3对双极化天线中的 + 45度方向天线和第 2、 4对双极化天线中的 - 45度方向天线虚拟为第一端口, 将第 1、 3 对双极化天线中的 _ 45度方向天线和第 2、 4对双极化天线中的 + 45度方向天线虚拟为第 二端口; 其中, 第一端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1 , 另外三根天线的加权值为 - 1 , 或者, 其中一根天线的加权值为 - 1 , 另外三根天线的加权 值为 + 1; 第二端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1 , 另外三 根天线的加权值为 - 1 , 或者, 其中一根天线的加权值为 - 1 , 另外三根天线的加权值为 + 1;
下行控制信号发送模块: 通过端口分组模块得到的第一端口和第二端口发送下行控制 信号。
所述装置位于长期演进 LTE时分双工 TDD基站上, 或者位于 LTE A TDD基站上, 或 者位于 LTE频分双工 FDD基站上, 或者位于 LTE A FDD基站上。
一种八天线下行控制信道发送方法, 该方法包括:
端口分组模块: 对于基站用于下行传输的 8根天线, 将第 1、 4对双极化天线中的 +
45度方向天线和第 2、 3对双极化天线中的 - 45度方向天线虚拟为第一端口, 将第 1、 4 对双极化天线中的 _ 45度方向天线和第 2、 3对双极化天线中的 + 45度方向天线虚拟为第 二端口; 其中, 第一端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1 , 另外三根天线的加权值为 - 1 , 或者, 其中一根天线的加权值为 - 1 , 另外三根天线的加权 值为 + 1; 第二端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1 , 另外三 根天线的加权值为 - 1 , 或者, 其中一根天线的加权值为 - 1 , 另外三根天线的加权值为 + 1;
下行控制信号发送模块: 通过端口分组模块得到的第一端口和第二端口发送下行控制 信号。
所述装置位于长期演进 LTE时分双工 TDD基站上, 或者位于 LTE ATDD基站上, 或 者位于 LTE频分双工 FDD基站上, 或者位于 LTE A FDD基站上。
一种八天线下行控制信道发送装置, 该装置包括:
端口分组模块: 对于基站用于下行传输的 8根天线, 将第 1、 2、 3、 4对双极化天线 中的 + 45度方向天线虚拟为第一端口, 将第 1、 2、 3、 4对双极化天线中的 - 45度方向天 线虚拟为第二端口; 其中, 第一端口的 4根天线的广播权加权值为: 其中一根天线的加权 值为 + 1 , 另外三根天线的加权值为 _ 1 , 或者, 其中一根天线的加权值为 - 1 , 另外三根 天线的加权值为 + 1; 第二端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1 , 另外三根天线的加权值为 _ 1 , 或者, 其中一根天线的加权值为 _ 1 , 另外三根天线 的加权值为 + 1;
下行控制信号发送模块: 通过第一端口和第二端口发送下行控制信号。
所述装置位于长期演进 LTE时分双工 TDD基站上, 或者位于 LTE A TDD基站上, 或 者位于 LTE频分双工 FDD基站上, 或者位于 LTE A FDD基站上。
与现有技术相比, 本发明可以从整体上扩大釆用 8天线的基站的下行控制信道的覆盖 范围。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施例或现 有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅 是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前 提下, 还可以根据这些附图获得其他的附图。
图 1为现有的 TD-LTE基站釆用广播权方式进行下行控制信道发送的示意图; 图 2为本发明实施例一提供的釆用 8天线的基站的下行控制信道发送方法的流程 图;
图 3为本发明实施例一提供的釆用 8天线的基站的下行控制信道的发送方式示意 图;
图 4为本发明实施例二提供的釆用 8天线的基站的下行控制信道发送方法的流程 图;
图 5为本发明实施例二提供的釆用 8天线的基站的下行控制信道的发送方式示意 图;
图 6为本发明实施例三提供的釆用 8天线的基站的下行控制信道发送方法的流程 图;
图 7为本发明实施例三提供的釆用 8天线的基站的下行控制信道的发送方式示意 图;
图 8为本发明实施例四提供的釆用 8天线的基站的下行控制信道发送方法的流程 图; 图 9为本发明实施例四提供的釆用 8天线的基站的下行控制信道的发送方式示意 图;
图 10为本发明实施例五提供的釆用 8天线的基站的下行控制信道发送方法的流程 图;
图 11为本发明实施例五提供的釆用 8天线的基站的下行控制信道的发送方式示意 图;
图 12为本发明实施例六提供的釆用 8天线的基站的下行控制信道发送方法的流程 图;
图 13为本发明实施例六提供的釆用 8天线的基站的下行控制信道的发送方式示意 图;
图 14为本发明实施例一提供的 8天线下行控制信道发送装置的组成示意图; 图 15为本发明实施例一〜六与现有广播权方案的仿真结果对比图。 具体实施方式 下面结合附图及具体实施例对本发明再作进一步详细的说明。
图 2为本发明实施例一提供的釆用 8天线的基站的下行控制信道发送方法的流程图, 如图 2所示, 其具体步骤如下:
步骤 201: 对于基站用于下行传输的 8根天线, 将第 1对和第 3对双极化天线虚拟为 端口 0, 将第 2对和第 4对双极化天线虚拟为端口 1。 其中, 端口 0的 4根天线的广播权 加权值为: 其中一根天线的加权值为 + 1 , 另外三根天线的加权值为 _ 1 , 或者, 其中一根 天线的加权值为 - 1 ,另外三根天线的加权值为 + 1;端口 1的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1 , 另外三根天线的加权值为 - 1 , 或者, 其中一根天线的加权 值为 _ 1 , 另外三根天线的加权值为 + 1。
图 3给出了本发明实施例一提供的釆用 8天线的基站的下行控制信道发送方式的示意 图。
步骤 202: 基站通过端口 0和端口 1发送下行控制信号。
图 4为本发明实施例二提供的釆用 8天线的基站的下行控制信道发送方法的流程图, 如图 4所示, 其具体步骤如下:
步骤 401: 对于基站用于下行传输的 8根天线, 将第 1对和第 4对双极化天线虚拟为 端口 0, 将第 2对和第 3对双极化天线虚拟为端口 1。 其中, 端口 0的 4才艮天线的广播权 加权值为: 其中一根天线的加权值为 + 1 , 另外三根天线的加权值为 _ 1 , 或者, 其中一根 天线的加权值为 - 1 ,另外三根天线的加权值为 + 1;端口 1的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1 , 另外三根天线的加权值为 - 1 , 或者, 其中一根天线的加权 值为 _ 1 , 另外三根天线的加权值为 + 1。
图 5给出了本发明实施例二提供的釆用 8天线的基站的下行控制信道发送方式的示意 图。
步骤 402: 基站通过端口 0和端口 1发送下行控制信号。
图 6为本发明实施例三提供的釆用 8天线的基站的下行控制信道发送方法的流程图, 如图 6所示, 其具体步骤如下:
步骤 601: 对于基站用于下行传输的 8根天线, 将第 1、 2对双极化天线中的 + 45度 方向天线和第 3、 4对双极化天线中的 _ 45度方向天线虚拟为端口 0 , 将第 1、 2对双极化 天线中的 _ 45度方向天线和第 3、 4对双极化天线中的 + 45度方向天线虚拟为端口 1。 其 中, 端口 0的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1 , 另外三根天线 的加权值为 - 1 , 或者, 其中一根天线的加权值为 _ 1 , 另外三根天线的加权值为 + 1; 端 口 1的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1 , 另外三根天线的加权 值为 _ 1 , 或者, 其中一根天线的加权值为 - 1 , 另外三根天线的加权值为 + 1。
图 7给出了本发明实施例三提供的釆用 8天线的基站的下行控制信道发送方式的示意 图。
步骤 602: 基站通过端口 0和第二端口发送下行控制信号。
图 8为本发明实施例四提供的釆用 8天线的基站的下行控制信道发送方法的流程图, 如图 8所示, 其具体步骤如下:
步骤 801: 对于基站用于下行传输的 8根天线, 将第 1、 3对双极化天线中的 + 45度 方向天线和第 2、 4对双极化天线中的 _ 45度方向天线虚拟为端口 0 , 将第 1、 3对双极化 天线中的 _ 45度方向天线和第 2、 4对双极化天线中的 + 45度方向天线虚拟为端口 1。 其 中, 端口 0的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1 , 另外三根天线 的加权值为 - 1 , 或者, 其中一根天线的加权值为 _ 1 , 另外三根天线的加权值为 + 1; 端 口 1的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1 , 另外三根天线的加权 值为 _ 1 , 或者, 其中一根天线的加权值为 - 1 , 另外三根天线的加权值为 + 1。
图 9给出了本发明实施例四提供的釆用 8天线的基站的下行控制信道发送方式的示意 图。
步骤 802: 基站通过端口 0和第二端口发送下行控制信号。
图 10为本发明实施例五提供的釆用 8天线的基站的下行控制信道发送方法的流程图, 如图 10所示, 其具体步骤如下:
步骤 1001: 对于基站用于下行传输的 8根天线, 将第 1、 4对双极化天线中的 + 45度 方向天线和第 2、 3对双极化天线中的 _ 45度方向天线虚拟为端口 0 , 将第 1、 4对双极化 天线中的 _ 45度方向天线和第 2、 3对双极化天线中的 + 45度方向天线虚拟为端口 1。 其 中, 端口 0的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1 , 另外三根天线 的加权值为 - 1 , 或者, 其中一根天线的加权值为 _ 1 , 另外三根天线的加权值为 + 1; 端 口 1的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1 , 另外三根天线的加权 值为 _ 1 , 或者, 其中一根天线的加权值为 - 1 , 另外三根天线的加权值为 + 1。
图 11给出了本发明实施例五提供的釆用 8天线的基站的下行控制信道发送方式的示意 图。
步骤 1002: 基站通过端口 0和第二端口发送下行控制信号。
图 12为本发明实施例六提供的釆用 8天线的基站的下行控制信道发送方法的流程图, 如图 12所示, 其具体步骤如下:
步骤 1201: 对于基站用于下行传输的 8根天线, 将第 1、 2、 3、 4对双极化天线中的
+ 45度方向天线虚拟为端口 0, 将第 1、 2、 3、 4对双极化天线中的 - 45度方向天线虚拟 为端口 1。 其中, 端口 0的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1 , 另 外三根天线的加权值为 - 1 , 或者, 其中一根天线的加权值为 - 1 , 另外三根天线的加权值 为 + 1; 端口 1的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1 , 另外三根天 线的加权值为 - 1 , 或者, 其中一根天线的加权值为 - 1 , 另外三根天线的加权值为 + 1。
图 13给出了本发明实施例六提供的釆用 8天线的基站的下行控制信道发送方式的示 意图。
步骤 1202: 基站通过端口 0和第二端口发送下行控制信号。
需要说明的是, 对于本发明任一实施例中的端口 0和端口 1 , 该两端口的 4根天线的 加权值可以相同也可以不同。 例如: 对端口 1来说, 端口 1的 4根天线的加权值可以与端 口 0的 4根天线的加权值完全相同, 也可以不同。
本发明实施例一〜六中的基站可以是 LTE TDD基站或 LTE ATDD基站或 LTE FDD基 站或 LTE A FDD基站。
图 14为本发明实施例一提供的 8天线下行控制信道发送装置的组成示意图, 如图 14 所示, 其主要包括: 端口分组模块和下行控制信号发送模块, 其中:
端口分组模块: 对于基站用于下行传输的 8根天线, 将第 1对和第 3对双极化天线虚 拟为第一端口, 将第 2对和第 4对双极化天线虚拟为第二端口; 其中, 第一端口的 4才艮天 线的广播权加权值满足: 其中一根天线的加权值为 + 1 , 另外三根天线的加权值为 _ 1; 或 者, 其中一根天线的加权值为 _ 1 , 另外三根天线的加权值为 + 1; 第二端口的 4根天线的 广播权加权值满足: 其中一根天线的加权值为 + 1 , 另外三根天线的加权值为 _ 1 , 或者, 其中一根天线的加权值为 - 1 , 另外三根天线的加权值为 + 1; 记录各端口号与天线标识的 对应关系, 并记录各端口包含的各天线的广播权加权值。
下行控制信号发送模块: 根据端口分组模块记录的各端口号与天线标识的对应关系以 及各端口包含的各天线的广播权加权值, 通过第一端口和第二端口发送下行控制信号。 图 14所示装置可位于 LTE TDD基站上,或者位于 LTE ATDD基站上,或者位于 LTE FDD基站上, 或者位于 LTE A FDD基站上。
以下给出本发明实施例二提供的八天线下行控制信道发送装置的组成, 其主要包括: 端口分组模块和下行控制信号发送模块, 其中:
端口分组模块: 对于基站用于下行传输的 8根天线, 将第 1对和第 4对双极化天线虚 拟为第一端口, 将第 2对和第 3对双极化天线虚拟为第二端口; 其中, 第一端口的 4才艮天 线的广播权加权值为: 其中一根天线的加权值为 + 1 , 另外三根天线的加权值为 - 1 , 或者, 其中一根天线的加权值为 - 1 , 另外三根天线的加权值为 + 1; 第二端口的 4根天线的广播 权加权值为: 其中一根天线的加权值为 + 1 , 另外三根天线的加权值为 _ 1 , 或者, 其中一 根天线的加权值为 - 1 , 另外三根天线的加权值为 + 1; 记录各端口号与天线标识的对应关 系, 并记录各端口包含的各天线的广播权加权值。
下行控制信号发送模块: 根据端口分组模块记录的各端口号与天线标识的对应关系以 及各端口包含的各天线的广播权加权值, 通过第一端口和第二端口发送下行控制信号。
本发明实施例二提供的装置可位于 LTE TDD基站上, 或者位于 LTE ATDD基站上, 或者位于 LTE FDD基站上, 或者位于 LTE A FDD基站上。
以下给出本发明实施例三提供的八天线下行控制信道发送装置的组成, 其主要包括: 端口分组模块和下行控制信号发送模块, 其中:
端口分组模块: 对于基站用于下行传输的 8根天线, 将第 1、 2对双极化天线中的 + 45度方向天线和第 3、 4对双极化天线中的 - 45度方向天线虚拟为第一端口, 将第 1、 2 对双极化天线中的 _ 45度方向天线和第 3、 4对双极化天线中的 + 45度方向天线虚拟为第 二端口; 其中, 第一端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1 , 另外三根天线的加权值为 - 1 , 或者, 其中一根天线的加权值为 - 1 , 另外三根天线的加权 值为 + 1; 第二端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1 , 另外三 根天线的加权值为 - 1 , 或者, 其中一根天线的加权值为 - 1 , 另外三根天线的加权值为 + 1; 记录各端口号与天线标识的对应关系, 并记录各端口包含的各天线的广播权加权值。
下行控制信号发送模块: 根据端口分组模块记录的各端口号与天线标识的对应关系以 及各端口包含的各天线的广播权加权值, 通过第一端口和第二端口发送下行控制信号。
本发明实施例三提供的装置可位于 LTE TDD基站上, 或者位于 LTE ATDD基站上, 或者位于 LTE FDD基站上, 或者位于 LTE A FDD基站上。
以下给出本发明实施例四提供的八天线下行控制信道发送装置的组成, 其主要包括: 端口分组模块和下行控制信号发送模块, 其中:
端口分组模块: 对于基站用于下行传输的 8根天线, 将第 1、 3对双极化天线中的 + 45度方向天线和第 2、 4对双极化天线中的 - 45度方向天线虚拟为第一端口, 将第 1、 3 对双极化天线中的 _ 45度方向天线和第 2、 4对双极化天线中的 + 45度方向天线虚拟为第 二端口; 其中, 第一端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1 , 另外三根天线的加权值为 - 1 , 或者, 其中一根天线的加权值为 - 1 , 另外三根天线的加权 值为 + 1; 第二端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1 , 另外三 根天线的加权值为 - 1 , 或者, 其中一根天线的加权值为 - 1 , 另外三根天线的加权值为 + 1; 记录各端口号与天线标识的对应关系, 并记录各端口包含的各天线的广播权加权值。
下行控制信号发送模块: 根据端口分组模块记录的各端口号与天线标识的对应关系以 及各端口包含的各天线的广播权加权值, 通过第一端口和第二端口发送下行控制信号。
本发明实施例四提供的装置可位于 LTE TDD基站上, 或者位于 LTE ATDD基站上, 或者位于 LTE FDD基站上, 或者位于 LTE A FDD基站上。
以下给出本发明实施例五提供的八天线下行控制信道发送装置的组成, 其主要包括: 端口分组模块和下行控制信号发送模块, 其中:
端口分组模块: 对于基站用于下行传输的 8根天线, 将第 1、 4对双极化天线中的 + 45度方向天线和第 2、 3对双极化天线中的 - 45度方向天线虚拟为第一端口, 将第 1、 4 对双极化天线中的 _ 45度方向天线和第 2、 3对双极化天线中的 + 45度方向天线虚拟为第 二端口; 其中, 第一端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1 , 另外三根天线的加权值为 - 1 , 或者, 其中一根天线的加权值为 - 1 , 另外三根天线的加权 值为 + 1; 第二端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1 , 另外三 根天线的加权值为 - 1 , 或者, 其中一根天线的加权值为 - 1 , 另外三根天线的加权值为 + 1; 记录各端口号与天线标识的对应关系, 并记录各端口包含的各天线的广播权加权值。
下行控制信号发送模块: 根据端口分组模块记录的各端口号与天线标识的对应关系以 及各端口包含的各天线的广播权加权值, 通过第一端口和第二端口发送下行控制信号。
本发明实施例五提供的装置可位于 LTE TDD基站上, 或者位于 LTE ATDD基站上, 或者位于 LTE FDD基站上, 或者位于 LTE A FDD基站上。
以下给出本发明实施例六提供的八天线下行控制信道发送装置的组成, 其主要包括: 端口分组模块和下行控制信号发送模块, 其中:
端口分组模块: 对于基站用于下行传输的 8根天线, 将第 1、 2、 3、 4对双极化天线 中的 + 45度方向天线虚拟为第一端口, 将第 1、 2、 3、 4对双极化天线中的 - 45度方向天 线虚拟为第二端口; 其中, 第一端口的 4根天线的广播权加权值为: 其中一根天线的加权 值为 + 1 , 另外三根天线的加权值为 _ 1 , 或者, 其中一根天线的加权值为 - 1 , 另外三根 天线的加权值为 + 1; 第二端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1 , 另外三根天线的加权值为 _ 1 , 或者, 其中一根天线的加权值为 _ 1 , 另外三根天线 的加权值为 + 1 ; 记录各端口号与天线标识的对应关系, 并记录各端口包含的各天线的广 播权加权值。
下行控制信号发送模块: 根据端口分组模块记录的各端口号与天线标识的对应关系以 及各端口包含的各天线的广播权加权值, 通过第一端口和第二端口发送下行控制信号。
本发明实施例六提供的装置可位于 LTE TDD基站上, 或者位于 LTE ATDD基站上, 或者位于 LTE FDD基站上, 或者位于 LTE A FDD基站上。 经过实验证明, 本发明提供的 8天线下行控制信道发送方法可以使得下行控制信道的 性能达到甚至超越 LTE FDD基站的 2天线下行控制信道的性能。 以下给出在同一仿真场景下, 本发明 6个实施例提供的方法和现有的广播权方法的对 比:
仿真条件如下:
仿真场景为第三代合作伙伴组织二维天线场景 1 ( 3GPP Case 1-2D )。 设定基站为 TD-LTE基站, 其下行传输釆用 8根(4对)双极化天线, 相邻两对天线的间距为 0.5倍波 长; 设定用户设备(UE, User Equipment )端釆用 2根同极化天线, 两根天线的间距为 0.5 倍波长。
设不考虑阴影衰落的影响。
仿真过程如下:
选择一个 TD-LTE基站, 在距离该 TD-LTE基站 100米处, 设从该 TD-LTE基站扇区 天线主瓣到两侧每隔 10度对应一个 UE, 设定考虑快衰落, 分别针对每个方案包括: 本发 明实施例一〜六提供的六个方案以及现有的广播权方案, 记录每个 UE两根天线从 TD-LTE 基站的每个端口, 即端口 0和端口 1 , 接收到的下行控制信号的功率大小。 针对每个方案, 对预定时间段内每个 UE两根天线从 TD-LTE基站的每个端口, 即端口 0和端口 1 , 接收 到的下行控制信号的功率和进行线性平均。
图 15给出了仿真结果对比图, 其中横坐标的单位为 10度, 由于从 TD-LTE基站扇区 天线主瓣到两侧每隔 10度对应一个 UE, 因此图 15中, 横坐标上的每个整数点代表一个 UE, 共有 25个 UE, 越靠近中央的整数点离天线主瓣越近; 纵坐标表示预定时间段内, UE的两根天线从 TD-LTE基站的端口 0接收到的下行控制信号的功率和的线性平均值, 单位为 dbm。
图 15的右上角给出了每条曲线所对应的方案, 其中:
方案 0: 现有的广播权方案, 即端口 0由 4根 + 45度方向的天线虚拟而成, 端口 1由 4根- 45度方向的天线虚拟而成,端口 0的 4根天线的广播权加权值为 [-0.6230-0.0025j, 1.0, 1.0 0.2986-0.0020j ] , 端口 1 的 4才艮天线的广播权加权值也为 [-0.6230-0.0025j 1.0, 1.0, 0.2986-0.0020j]
方案 11: 本发明实施例一, 其中, 端口 0 1的 4根天线的加权值为 [1, U,-i]
方案 12: 本发明实施例一, 其中, 端口 0 1的 4根天线的加权值为 [1 -1, 1,1] 方案 21: 本发明实施例二, 其中, 端口 0 1的 4根天线的加权值为 [1 1 1 - 1] 方案 22: 本发明实施例二, 其中, 端口 0 1的 4根天线的加权值为 [1 -1,1 1] 方案 31: 本发明实施例三, 其中, 端口 0 1的 4根天线的加权值为 [1 ι,ι,- 1] 方案 32: 本发明实施例三, 其中, 端口 0 1的 4根天线的加权值为 [1 -1,1 1] 方案 41: 本发明实施例四, 其中, 端口 0 1的 4根天线的加权值为 [1 1 1 - 1] 方案 42: 本发明实施例四, 其中, 端口 0 1的 4根天线的加权值为 [1 -1 1 1] 方案 51: 本发明实施例五, 其中, 端口 0 1的 4根天线的加权值为 [1 1 1 - 1] 方案 52: 本发明实施例五, 其中, 端口 0 1的 4根天线的加权值为 [1 -1,1 1] 方案 61: 本发明实施例六, 其中, 端口 0 1的 4根天线的加权值为 [1 ι,ι,- 1] 方案 62: 本发明实施例六, 其中, 端口 0 1的 4根天线的加权值为 [1 -1,1 1] 从图 15可以看出,在 TD-LTE基站扇区天线主瓣附近,现有的广播权方案的下行控制 性能优于本发明实施例提供的六个方案, 但从整体来看, 本发明实施例提供的 6个方案的 下行控制的整体性能都优于现有的广播权方案。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的精神和 原则之内, 所做的任何修改、 等同替换、 改进等, 均应包含在本发明保护的范围之内。

Claims

权 利 要 求
1、 一种八天线下行控制信道发送方法, 其特征在于, 该方法包括:
对于基站用于下行传输的 8根天线, 将第 1对和第 3对双极化天线虚拟为第一端口, 将第 2对和第 4对双极化天线虚拟为第二端口;
其中, 第一端口的 4根天线的广播权加权值满足: 其中一根天线的加权值为 + 1, 另 外三根天线的加权值为 - 1; 或者, 其中一根天线的加权值为 - 1, 另外三根天线的加权值 为 + 1;
第二端口的 4根天线的广播权加权值满足: 其中一根天线的加权值为 + 1, 另外三根 天线的加权值为 - 1, 或者, 其中一根天线的加权值为 - 1, 另外三根天线的加权值为 + 1; 基站通过第一端口和第二端口发送下行控制信号。
2、根据权利要求 1所述的方法,其特征在于,所述基站为长期演进 LTE时分双工 TDD 基站, 或者 LTEATDD基站, 或者 LTE频分双工 FDD基站, 或者 LTEAFDD基站。
3、 一种八天线下行控制信道发送方法, 其特征在于, 该方法包括:
对于基站用于下行传输的 8根天线, 将第 1对和第 4对双极化天线虚拟为第一端口, 将第 2对和第 3对双极化天线虚拟为第二端口;
其中, 第一端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1, 另外 三根天线的加权值为 -1, 或者, 其中一根天线的加权值为 - 1, 另外三根天线的加权值为 + 1;
第二端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1, 另外三根天 线的加权值为 - 1, 或者, 其中一根天线的加权值为 - 1, 另外三根天线的加权值为 + 1; 基站通过第一端口和第二端口发送下行控制信号。
4、根据权利要求 3所述的方法,其特征在于,所述基站为长期演进 LTE时分双工 TDD 基站, 或者 LTEATDD基站, 或者 LTE频分双工 FDD基站, 或者 LTEAFDD基站。
5、 一种八天线下行控制信道发送方法, 其特征在于, 该方法包括:
对于基站用于下行传输的 8根天线, 将第 1、 2对双极化天线中的 + 45度方向天线和 第 3、 4对双极化天线中的 -45度方向天线虚拟为第一端口, 将第 1、 2对双极化天线中的 -45度方向天线和第 3、 4对双极化天线中的 +45度方向天线虚拟为第二端口;
其中, 第一端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1, 另外 三根天线的加权值为 -1, 或者, 其中一根天线的加权值为 - 1, 另外三根天线的加权值为 + 1;
第二端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1, 另外三根天 线的加权值为 - 1, 或者, 其中一根天线的加权值为 - 1, 另外三根天线的加权值为 + 1; 基站通过第一端口和第二端口发送下行控制信号。
6、根据权利要求 5所述的方法,其特征在于,所述基站为长期演进 LTE时分双工 TDD 基站, 或者 LTEATDD基站, 或者 LTE频分双工 FDD基站, 或者 LTEAFDD基站。
7、 一种八天线下行控制信道的发送方法, 其特征在于, 该方法包括:
对于基站用于下行传输的 8根天线, 将第 1、 3对双极化天线中的 + 45度方向天线和 第 2、 4对双极化天线中的 -45度方向天线虚拟为第一端口, 将第 1、 3对双极化天线中的 -45度方向天线和第 2、 4对双极化天线中的 +45度方向天线虚拟为第二端口;
其中, 第一端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1, 另外 三根天线的加权值为 -1, 或者, 其中一根天线的加权值为 - 1, 另外三根天线的加权值为 + 1;
第二端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1, 另外三根天 线的加权值为 - 1, 或者, 其中一根天线的加权值为 - 1, 另外三根天线的加权值为 + 1; 基站通过第一端口和第二端口发送下行控制信号。
8、根据权利要求 7所述的方法,其特征在于,所述基站为长期演进 LTE时分双工 TDD 基站, 或者 LTEATDD基站, 或者 LTE频分双工 FDD基站, 或者 LTEAFDD基站。
9、 一种八天线下行控制信道发送方法, 其特征在于, 该方法包括:
对于基站用于下行传输的 8根天线, 将第 1、 4对双极化天线中的 +45度方向天线和 第 2、 3对双极化天线中的 -45度方向天线虚拟为第一端口, 将第 1、 4对双极化天线中的 -45度方向天线和第 2、 3对双极化天线中的 +45度方向天线虚拟为第二端口;
其中, 第一端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1, 另外 三根天线的加权值为 -1, 或者, 其中一根天线的加权值为 - 1, 另外三根天线的加权值为 + 1;
第二端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1, 另外三根天 线的加权值为 - 1, 或者, 其中一根天线的加权值为 - 1, 另外三根天线的加权值为 + 1; 基站通过第一端口和第二端口发送下行控制信号。
10、 根据权利要求 9所述的方法, 其特征在于, 所述基站为长期演进 LTE时分双工 TDD基站, 或者 LTEATDD基站, 或者 LTE频分双工 FDD基站, 或者 LTEAFDD基站。
11、 一种八天线下行控制信道发送方法, 其特征在于, 该方法包括:
对于基站用于下行传输的 8根天线, 将第 1、 2、 3、 4对双极化天线中的 +45度方向 天线虚拟为第一端口, 将第 1、 2、 3、 4对双极化天线中的 -45度方向天线虚拟为第二端 a;
其中, 第一端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1, 另外 三根天线的加权值为 -1, 或者, 其中一根天线的加权值为 - 1, 另外三根天线的加权值为 + 1;
第二端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1 , 另外三根天 线的加权值为 - 1 , 或者, 其中一根天线的加权值为 - 1 , 另外三根天线的加权值为 + 1; 基站通过第一端口和第二端口发送下行控制信号。
12、 根据权利要求 11所述的方法, 其特征在于, 所述基站为长期演进 LTE时分双工
TDD基站, 或者 LTE ATDD基站, 或者 LTE频分双工 FDD基站, 或者 LTE A FDD基站。
13、 一种八天线下行控制信道发送装置, 其特征在于, 该装置包括:
端口分组模块: 对于基站用于下行传输的 8根天线, 将第 1对和第 3对双极化天线虚 拟为第一端口, 将第 2对和第 4对双极化天线虚拟为第二端口; 其中, 第一端口的 4才艮天 线的广播权加权值满足: 其中一根天线的加权值为 + 1 , 另外三根天线的加权值为 _ 1; 或 者, 其中一根天线的加权值为 _ 1 , 另外三根天线的加权值为 + 1; 第二端口的 4根天线的 广播权加权值满足: 其中一根天线的加权值为 + 1 , 另外三根天线的加权值为 _ 1 , 或者, 其中一根天线的加权值为 - 1 , 另外三根天线的加权值为 + 1;
下行控制信号发送模块: 通过端口分组模块得到的第一端口和第二端口发送下行控制 信号。
14、 根据权利要求 13所述的装置, 其特征在于, 所述装置位于长期演进 LTE时分双 工 TDD基站上, 或者位于 LTE A TDD基站上, 或者位于 LTE频分双工 FDD基站上, 或 者位于 LTE A FDD基站上。
15、 一种八天线下行控制信道发送装置, 其特征在于, 包括:
端口分组模块: 对于基站用于下行传输的 8根天线, 将第 1对和第 4对双极化天线虚 拟为第一端口, 将第 2对和第 3对双极化天线虚拟为第二端口; 其中, 第一端口的 4才艮天 线的广播权加权值为: 其中一根天线的加权值为 + 1 , 另外三根天线的加权值为 - 1 , 或者, 其中一根天线的加权值为 - 1 , 另外三根天线的加权值为 + 1; 第二端口的 4根天线的广播 权加权值为: 其中一根天线的加权值为 + 1 , 另外三根天线的加权值为 _ 1 , 或者, 其中一 根天线的加权值为 _ 1 , 另外三根天线的加权值为 + 1;
下行控制信号发送模块: 通过端口分组模块得到的第一端口和第二端口发送下行控制 信号。
16、 根据权利要求 15所述的装置, 其特征在于, 所述装置位于长期演进 LTE时分双 工 TDD基站上, 或者位于 LTE A TDD基站上, 或者位于 LTE频分双工 FDD基站上, 或 者位于 LTE A FDD基站上。
17、 一种八天线下行控制信道发送装置, 其特征在于, 包括:
端口分组模块: 对于基站用于下行传输的 8根天线, 将第 1、 2对双极化天线中的 + 45度方向天线和第 3、 4对双极化天线中的 - 45度方向天线虚拟为第一端口, 将第 1、 2 对双极化天线中的 _ 45度方向天线和第 3、 4对双极化天线中的 + 45度方向天线虚拟为第 二端口; 其中, 第一端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1, 另外三根天线的加权值为 - 1, 或者, 其中一根天线的加权值为 - 1, 另外三根天线的加权 值为 + 1; 第二端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1, 另外三 根天线的加权值为 - 1, 或者, 其中一根天线的加权值为 - 1, 另外三根天线的加权值为 + 1;
下行控制信号发送模块: 通过端口分组模块得到的第一端口和第二端口发送下行控制 信号。
18、 根据权利要求 17所述的装置, 其特征在于, 所述装置位于长期演进 LTE时分双 工 TDD基站上, 或者位于 LTE A TDD基站上, 或者位于 LTE频分双工 FDD基站上, 或 者位于 LTE A FDD基站上。
19、 一种八天线下行控制信道的发送装置, 其特征在于, 该装置包括:
端口分组模块: 对于基站用于下行传输的 8根天线, 将第 1、 3对双极化天线中的 + 45度方向天线和第 2、 4对双极化天线中的 -45度方向天线虚拟为第一端口, 将第 1、 3 对双极化天线中的 _ 45度方向天线和第 2、 4对双极化天线中的 + 45度方向天线虚拟为第 二端口; 其中, 第一端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1, 另外三根天线的加权值为 - 1, 或者, 其中一根天线的加权值为 - 1, 另外三根天线的加权 值为 + 1; 第二端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1, 另外三 根天线的加权值为 - 1, 或者, 其中一根天线的加权值为 - 1, 另外三根天线的加权值为 + 1;
下行控制信号发送模块: 通过端口分组模块得到的第一端口和第二端口发送下行控制 信号。
20、 根据权利要求 19所述的装置, 其特征在于, 所述装置位于长期演进 LTE时分双 工 TDD基站上, 或者位于 LTE A TDD基站上, 或者位于 LTE频分双工 FDD基站上, 或 者位于 LTE A FDD基站上。
21、 一种八天线下行控制信道发送装置, 其特征在于, 该装置包括:
端口分组模块: 对于基站用于下行传输的 8根天线, 将第 1、 4对双极化天线中的 + 45度方向天线和第 2、 3对双极化天线中的 -45度方向天线虚拟为第一端口, 将第 1、 4 对双极化天线中的 _ 45度方向天线和第 2、 3对双极化天线中的 + 45度方向天线虚拟为第 二端口; 其中, 第一端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1, 另外三根天线的加权值为 - 1, 或者, 其中一根天线的加权值为 - 1, 另外三根天线的加权 值为 + 1; 第二端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1, 另外三 根天线的加权值为 - 1, 或者, 其中一根天线的加权值为 - 1, 另外三根天线的加权值为 + 1;
下行控制信号发送模块: 通过端口分组模块得到的第一端口和第二端口发送下行控制 信号。
22、 根据权利要求 20所述的装置, 其特征在于, 所述装置位于长期演进 LTE时分双 工 TDD基站上, 或者位于 LTE A TDD基站上, 或者位于 LTE频分双工 FDD基站上, 或 者位于 LTE A FDD基站上。
23、 一种八天线下行控制信道发送装置, 其特征在于, 该装置包括:
端口分组模块: 对于基站用于下行传输的 8根天线, 将第 1、 2、 3、 4对双极化天线 中的 + 45度方向天线虚拟为第一端口, 将第 1、 2、 3、 4对双极化天线中的 - 45度方向天 线虚拟为第二端口; 其中, 第一端口的 4根天线的广播权加权值为: 其中一根天线的加权 值为 + 1 , 另外三根天线的加权值为 _ 1 , 或者, 其中一根天线的加权值为 - 1 , 另外三根 天线的加权值为 + 1; 第二端口的 4根天线的广播权加权值为: 其中一根天线的加权值为 + 1 , 另外三根天线的加权值为 _ 1 , 或者, 其中一根天线的加权值为 _ 1 , 另外三根天线 的加权值为 + 1;
下行控制信号发送模块: 通过第一端口和第二端口发送下行控制信号。
24、 根据权利要求 23所述的装置, 其特征在于, 所述装置位于长期演进 LTE时分双 工 TDD基站上, 或者位于 LTE A TDD基站上, 或者位于 LTE频分双工 FDD基站上, 或 者位于 LTE A FDD基站上。
PCT/CN2011/077468 2010-08-23 2011-07-22 八天线下行控制信道发送方法及装置 WO2012024993A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11819368.9A EP2611055B1 (en) 2010-08-23 2011-07-22 Sending method and device for 8-antenna downlink control channel
US13/814,505 US20130136092A1 (en) 2010-08-23 2011-07-22 Sending method and device for 8-antenna downlink control channel
JP2013525121A JP5735647B2 (ja) 2010-08-23 2011-07-22 8本のアンテナを使用するダウンリンク制御チャネルの伝送方法と装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010261177.9 2010-08-23
CN201010261177.9A CN102377467B (zh) 2010-08-23 2010-08-23 八天线下行控制信道发送方法及装置

Publications (1)

Publication Number Publication Date
WO2012024993A1 true WO2012024993A1 (zh) 2012-03-01

Family

ID=45722878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077468 WO2012024993A1 (zh) 2010-08-23 2011-07-22 八天线下行控制信道发送方法及装置

Country Status (5)

Country Link
US (1) US20130136092A1 (zh)
EP (1) EP2611055B1 (zh)
JP (1) JP5735647B2 (zh)
CN (1) CN102377467B (zh)
WO (1) WO2012024993A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107547122A (zh) * 2016-06-24 2018-01-05 北京信威通信技术股份有限公司 一种发送信号的方法及装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105991172A (zh) * 2015-02-16 2016-10-05 富士通株式会社 天线阵列的虚拟化模型选择方法、装置以及通信***
CN105227223B (zh) * 2015-08-31 2019-01-11 上海华为技术有限公司 一种用于多天线的信号发送方法及装置
EP3355410A4 (en) * 2015-10-13 2018-10-17 Huawei Technologies Co., Ltd. Multi-sector mimo active antenna system and communication device
CN110380767B (zh) * 2018-04-13 2022-03-25 华为技术有限公司 一种预编码矩阵确定方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101431357A (zh) * 2007-11-08 2009-05-13 大唐移动通信设备有限公司 一种数据传输的方法和装置
WO2010071492A1 (en) * 2008-12-18 2010-06-24 Telefonaktiebolaget Lm Ericsson (Publ) A system for wireless communication and a method for providing wireless communication
CN101764632A (zh) * 2008-12-23 2010-06-30 中兴通讯股份有限公司 Lte-tdd室内分布***中端口与天线映射方法及装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6421543B1 (en) * 1996-01-29 2002-07-16 Ericsson Inc. Cellular radiotelephone base stations and methods using selected multiple diversity reception
JP2002124816A (ja) * 2000-10-16 2002-04-26 Mitsubishi Electric Corp 偏波ダイバーシチアンテナ
JP2007329666A (ja) * 2006-06-07 2007-12-20 Ntt Docomo Inc アレーアンテナ装置
CN101281997B (zh) * 2007-04-05 2012-05-30 电信科学技术研究院 智能天线故障处理方法及装置
EP2145400B1 (en) * 2007-04-30 2013-03-20 Telefonaktiebolaget L M Ericsson (publ) Method and arrangement for adapting a multi-antenna transmission
US7629902B2 (en) * 2007-06-08 2009-12-08 Samsung Electronics Co., Ltd. MIMO wireless precoding system robust to power imbalance
US8254487B2 (en) * 2007-08-09 2012-08-28 Samsung Electronics Co., Ltd. Method and apparatus of codebook-based single-user closed-loop transmit beamforming (SU-CLTB) for OFDM wireless systems
EP3119050B1 (en) * 2007-08-17 2017-10-11 Sun Patent Trust Radio communication device and radio communication method
US7916081B2 (en) * 2007-12-19 2011-03-29 Qualcomm Incorporated Beamforming in MIMO systems
CN101562504B (zh) * 2008-04-18 2012-06-06 ***通信集团公司 基于双极化阵列天线的自适应数据发送方法及其***
CN101686072A (zh) * 2008-09-22 2010-03-31 中兴通讯股份有限公司 天线分集方法和装置
JP2010161475A (ja) * 2009-01-06 2010-07-22 Toshiba Corp アレーアンテナ
CN102239647A (zh) * 2009-02-01 2011-11-09 华为技术有限公司 发送参考信号的方法
CN101800577A (zh) * 2009-02-10 2010-08-11 大唐移动通信设备有限公司 一种广播权值生成方法及装置
CN101807976B (zh) * 2009-02-16 2015-09-16 中兴通讯股份有限公司 一种波频处理装置及方法
WO2011091586A1 (zh) * 2010-01-27 2011-08-04 中兴通讯股份有限公司 多输入多输出波束赋形数据发送方法和装置
US8848817B2 (en) * 2010-04-30 2014-09-30 Texas Instruments Incorporated Transmission modes and signaling for uplink MIMO support or single TB dual-layer transmission in LTE uplink
US8509338B2 (en) * 2010-05-05 2013-08-13 Motorola Mobility Llc Method and precoder information feedback in multi-antenna wireless communication systems
CN101902312B (zh) * 2010-06-21 2016-02-10 中兴通讯股份有限公司 一种多精度的信道信息获取方法及***
US8559294B2 (en) * 2010-07-29 2013-10-15 Motorola Mobility Llc Method and apparatus for major group scheduling in a fixed beam communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101431357A (zh) * 2007-11-08 2009-05-13 大唐移动通信设备有限公司 一种数据传输的方法和装置
WO2010071492A1 (en) * 2008-12-18 2010-06-24 Telefonaktiebolaget Lm Ericsson (Publ) A system for wireless communication and a method for providing wireless communication
CN101764632A (zh) * 2008-12-23 2010-06-30 中兴通讯股份有限公司 Lte-tdd室内分布***中端口与天线映射方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107547122A (zh) * 2016-06-24 2018-01-05 北京信威通信技术股份有限公司 一种发送信号的方法及装置

Also Published As

Publication number Publication date
EP2611055A1 (en) 2013-07-03
EP2611055A4 (en) 2017-04-19
JP5735647B2 (ja) 2015-06-17
CN102377467A (zh) 2012-03-14
CN102377467B (zh) 2015-02-04
EP2611055B1 (en) 2020-03-18
US20130136092A1 (en) 2013-05-30
JP2013541256A (ja) 2013-11-07

Similar Documents

Publication Publication Date Title
KR101999355B1 (ko) 무선 통신 시스템에서 상향링크 데이터 전송 방법 및 이를 위한 장치
RU2613526C1 (ru) Способ и устройство для выполнения фрагментарного формирования диаграммы направленности посредством крупномасштабной системы mimo в системе беспроводной связи
US11538568B2 (en) Methods and systems for CSI-RS port selection for CSI-reporting
CN110024299B (zh) 用于波束管理的***和方法
EP2961216B1 (en) Method for reporting channel state information for 3-dimensional beam forming in wireless communications system
EP2984768B1 (en) Method and apparatus for providing control information for fractional beamforming in a wireless communication system
TWI679871B (zh) 資料傳輸方法、裝置、網路側設備和使用者設備
EP2643988B1 (en) Multi-layer beamforming with partial channel state information
JP6771582B2 (ja) 低複雑性マルチ設定csiレポート
KR20160148032A (ko) 배향 기반 빔 선택을 위한 방법 및 장치
JP7228693B2 (ja) Pdschダイバーシティをシグナリングするためのシステム及び方法
KR20150121002A (ko) 무선 통신 시스템에서 대규모 mimo를 위한 안테나 포트 간 qcl 설정 방법 및 이를 위한 장치
WO2015180178A1 (zh) 一种报告信道状态信息csi的方法、装置和基站天线
WO2015014321A1 (zh) 配置csi过程的方法和基站以及csi反馈方法和用户设备
WO2013144360A1 (en) Codebook feedback method for per-user elevation beamforming
WO2017114516A1 (zh) 一种广播信息传输方法及装置
CN111512571B (zh) 用于mimo通信***中的信号检测的方法和装置
WO2012024993A1 (zh) 八天线下行控制信道发送方法及装置
WO2019208992A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 송수신하는 방법 및 이를 위한 장치
US20220022223A1 (en) Uplink rank adaptation for mimo communication
JP2013541256A5 (zh)
WO2017166200A1 (zh) 一种数据传输方法和装置
EP3190734B1 (en) Signal processing method and base station
WO2022105888A1 (zh) 信息传输方法、装置、通信设备及存储介质
WO2024065653A1 (en) Methods and systems for enhanced beam management for multiple transmission and reception points

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819368

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13814505

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011819368

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013525121

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE