WO2012023399A1 - 医用画像診断装置及び心臓計測値表示方法 - Google Patents

医用画像診断装置及び心臓計測値表示方法 Download PDF

Info

Publication number
WO2012023399A1
WO2012023399A1 PCT/JP2011/067189 JP2011067189W WO2012023399A1 WO 2012023399 A1 WO2012023399 A1 WO 2012023399A1 JP 2011067189 W JP2011067189 W JP 2011067189W WO 2012023399 A1 WO2012023399 A1 WO 2012023399A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
cardiac
heart
tomographic image
systole
Prior art date
Application number
PCT/JP2011/067189
Other languages
English (en)
French (fr)
Inventor
貴広 樫山
西浦 朋史
智章 長野
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to JP2012529544A priority Critical patent/JPWO2012023399A1/ja
Priority to CN201180030143.1A priority patent/CN102958443B/zh
Publication of WO2012023399A1 publication Critical patent/WO2012023399A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0883Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0858Detecting organic movements or changes, e.g. tumours, cysts, swellings involving measuring tissue layers, e.g. skin, interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5284Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving retrospective matching to a physiological signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/503Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of the heart

Definitions

  • the present invention relates to a medical image diagnostic apparatus and a cardiac measurement value display method for measuring living tissue using measurement points set in a tomographic image.
  • a conventional medical image diagnostic apparatus an operator sets a measurement point on an acquired tomographic image using an input unit such as a mouse or a trackball. Thereafter, the medical image diagnostic apparatus measures a cardiac measurement value based on the set measurement point, and displays the cardiac measurement value.
  • the measurement application of the medical image diagnostic apparatus measures the distance between the measurement points and the area or volume surrounded by the plurality of measurement points.
  • the measurement application calculates the area and volume in the set predetermined area.
  • the measurement point is automatically set (for example, Patent Document 1 and Patent Document 2).
  • Patent Document 1 and Patent Document 2 since the operator must manually set the end diastole and the end systole, the setting becomes complicated and it takes time to measure the cardiac function index value.
  • the present invention provides a medical image diagnostic apparatus and a cardiac measurement value display method that specify an end diastole and an end systole and calculate a cardiac function index value using a cardiac measurement value at the end diastole and a cardiac measurement value at the end systole. For the purpose.
  • the present invention analyzes an electrocardiogram waveform detected from a subject to detect a feature waveform from the electrocardiogram waveform, and includes a systole in a cardiac cycle set based on the feature waveform, A cardiac measurement value indicating the form of the end-diastolic heart is measured, the cardiac measurement value and the heartbeat cycle are used to identify the end-systole and the end-diastolic phase, and the end-diastolic heart measurement value and the end-systolic heart A cardiac function index value indicating the cardiac function of the heart is calculated using the measured value, and the cardiac measured value and the cardiac function index value are displayed.
  • the end diastole and the end systole can be specified, and the cardiac function index value can be calculated using the end diastole cardiac measurement value and the end systolic heart measurement value.
  • FIG. 1 is a diagram showing an overall configuration of a medical image diagnostic apparatus (ultrasound diagnostic apparatus) according to the present invention.
  • 1 is a diagram showing Example 1 of the present invention.
  • FIG. 1 is a diagram showing Example 1 of the present invention.
  • FIG. 2 is a flowchart showing the operation of the first embodiment of the present invention.
  • FIG. 6 is a diagram showing Example 4 of the present invention.
  • 10 is a flowchart showing the operation of Embodiment 4 of the present invention.
  • FIG. 6 is a diagram showing Example 5 of the present invention.
  • FIG. 6 is a diagram showing Example 6 of the present invention.
  • FIG. 1 is a block diagram showing a configuration of a medical image diagnostic apparatus to which the present invention is applied.
  • an ultrasonic diagnostic apparatus will be described as an example of a medical image diagnostic apparatus.
  • the ultrasonic diagnostic apparatus includes a tomographic image measurement unit 200 that measures measurement data for obtaining a tomographic image of a subject, and a tomographic image configuration unit 300 that forms the tomographic image from the measurement data.
  • a measurement unit 36 (cardiac measurement value measurement unit 100) that measures a cardiac measurement value indicating the form of the heart in the tomographic image, and a measurement unit 36 (cardiac measurement value) that calculates a cardiac function index value indicating the cardiac function of the heart
  • a function index value calculation unit 108 a feature waveform specifying unit 400 that detects a feature waveform of the electrocardiogram waveform detected from the subject, and the end systole in a heartbeat cycle based on the feature waveform
  • An end systole / end diastole specifying unit 500 that specifies the end systole and the end diastole using the cardiac measurement value at the end diastole and the heartbeat cycle.
  • the tomographic image measurement unit 200 includes an ultrasonic probe 12 used in contact with the subject 10, and a transmission unit that repeatedly transmits ultrasonic waves to the subject 10 via the ultrasonic probe 12 at time intervals. 14, a receiving unit 16 that receives the ultrasonic wave reflected from the subject 10 as a reflected echo signal, and a control signal (for example, by a freeze release signal) transmitted from the control unit 42 in response to an operation of the operating unit 40 by the operator
  • the ultrasonic transmission / reception control unit 18 controls the unit 14 and the reception unit 16 so that transmission / reception functions alternately according to the transmission / reception repetition frequency.
  • the tomographic image construction unit 300 includes a phasing addition unit 20 that performs phasing addition of the reflected echo received by the receiving unit 16, and a tomographic image of the subject 10 based on the RF signal frame data from the phasing addition unit 20, for example, A tomographic image composing unit 22 constituting a black and white tomographic image; and a black and white scan converter 24 for converting the tomographic image data output from the tomographic image composing unit 22 to match the display of the image display unit 26.
  • a phasing addition unit 20 that performs phasing addition of the reflected echo received by the receiving unit 16, and a tomographic image of the subject 10 based on the RF signal frame data from the phasing addition unit 20, for example, A tomographic image composing unit 22 constituting a black and white tomographic image; and a black and white scan converter 24 for converting the tomographic image data output from the tomographic image composing unit 22 to match the display of the image display unit 26.
  • the feature waveform specifying unit 400 includes an electrocardiogram waveform detection unit 30 and a feature waveform detection unit 32.
  • the end systole / end diastole specifying unit 500 includes a heartbeat cycle setting unit 34, a cardiac measurement value analysis unit 102, an end systole setting unit 104, and an end diastole setting unit 106.
  • the measurement unit 36 (cardiac measurement value measurement unit 100), for the tomographic image selected by the tomographic image selection unit 46, the first feature waveform and the first feature waveform that are the newest (newest) time difference from the real time
  • a cardiac measurement value indicating a heart form such as an area of the heart at the end systole and an end diastole and a volume of the heart in a heartbeat cycle specified (set) by a second feature waveform adjacent to (continuous) is measured.
  • the measuring unit 36 (cardiac function index value calculating unit 108) calculates a cardiac function index value indicating the cardiac function of the heart using the cardiac measurement value at the end diastole and the cardiac measurement value at the end systole.
  • the cardiac function index value is, for example, the ejection volume (EF value), which is a value obtained by dividing the volume of blood delivered every heartbeat cycle by the volume when the heart is expanded, the blood volume delivered in one heartbeat cycle One cardiac output, the amount of blood that the heart pumps in one minute is the cardiac output.
  • EF value ejection volume
  • the image display unit 26 reads the RF signal frame data or tomographic image data corresponding to the tomographic image selected by the tomographic image selection unit 46 from the phasing addition unit 20, the tomographic image construction unit 22, and the monochrome scan converter 24.
  • the image display unit 26 reads the cardiac measurement value and the cardiac function index value measured by the measurement unit 36. Then, the image display unit 26 displays the cardiac measurement value and the cardiac function index value together with the tomographic image.
  • end diastole and end systole are identified (set) from the electrocardiogram based on the cardiac cycle and cardiac measurements, and the cardiac function index values are calculated using the cardiac values measured at the end diastole and the cardiac measurements at the end systole. This will be specifically described with reference to FIGS.
  • the measurement unit 36 uses a cardiac measurement value measurement unit 100 that measures cardiac measurement values such as a heart area or a heart volume, and uses a cardiac measurement value at the end diastole and a cardiac measurement value at the end systole.
  • a cardiac function index value calculation unit 108 that calculates a cardiac function index value
  • a cardiac function index value storage unit 110 that stores the cardiac function index value calculated by the cardiac function index value calculation unit 108.
  • the image display unit 26 includes an electrocardiogram waveform 50 detected by the electrocardiogram waveform detection unit 30, a tomographic image 70 output from the black and white scan converter 24, and a cardiac measurement value measurement unit.
  • the cardiac measurement value graph 84 based on the cardiac measurement value 80 measured by the cardiac measurement value measurement unit 100, the cardiac function index value 82 calculated by the cardiac function index value calculation unit 106, and the cardiac measurement value measured by the cardiac measurement value measurement unit 100 Is displayed.
  • the electrocardiogram waveform 50 is detected by the electrocardiogram waveform detector 30, and a display time phase mark 52 indicating the time when the tomographic image 70 is acquired is displayed on the electrocardiogram waveform 50.
  • the display time phase mark 52 is moved and displayed in the time direction (right direction) as the electrocardiogram waveform 50 is updated.
  • the operator can freeze the tomographic image 70 displayed on the image display unit 26 by the control unit 42 by pressing the freeze button of the operation unit 40.
  • the operator can arbitrarily move the display time phase mark 52 by rotating the trackball of the operation unit 40.
  • a tomographic image 70 acquired at the time when the display time phase mark 52 that is arbitrarily moved is located is displayed on the image display unit 26.
  • the newest reference waveform (here, R wave 54) detected by the feature waveform detection unit 32, the second new R wave 56 adjacent to the R wave 54, and the R wave 56 are adjacent.
  • a third new R wave 58 is displayed.
  • the time when the R wave 54 is acquired is set as t54
  • the time when the R wave 56 is acquired is set as t56
  • the time when the R wave 58 is acquired is set as t58.
  • the heartbeat cycle setting unit 34 is configured by a heartbeat cycle A that is set by the newest R wave 54 and the R wave 56 that is next to the R wave 54.
  • Set (R-R cycle) The heartbeat period A sandwiched between the R wave 54 and the R wave 56 is one heartbeat period sandwiched between the newest feature waveform and the second newest feature waveform. Therefore, the heartbeat cycle A sandwiched between the R wave 54 and the R wave 56 is the newest heartbeat cycle.
  • An electrocardiogram mark 60 is displayed on the image display unit 26 on the electrocardiogram waveform 50 corresponding to the heartbeat cycle A so that it can be recognized that the latest heartbeat cycle A has been set by the heartbeat cycle setting unit 34.
  • the electrocardiogram waveform mark 60 is displayed with, for example, a line type (thick line, broken line, etc.) different from the electrocardiogram waveform 50 on the electrocardiogram waveform 50 corresponding to the heartbeat period A sandwiched between the R wave 54 and the R wave 56.
  • a different color (red, blue, etc.) from the electrocardiogram waveform 50 is displayed on the electrocardiogram waveform 50 corresponding to the cardiac cycle A.
  • the tomographic image 70 is a cross-sectional image of the heart of the subject 10, and is, for example, a two-chamber image (A2C) of the apex.
  • a plurality of measurement points 72 are installed in the tomographic image 70. In the present embodiment, nine measurement points 72 are set along the inner wall of the heart displayed as the tomographic image 70.
  • the region 76 is a region surrounded by a plurality of measurement points 72.
  • the cardiac measurement value measuring unit 100 measures the area of the region 76 surrounded by the plurality of measurement points 72 based on the number of pixels included in the region 76. First, the cardiac measurement value measurement unit 100 counts the number of pixels in the region 76. The cardiac measurement value measurement unit 100 previously grasps the number of pixels per 1 mm 2 and measures the area of the region 76 by performing area conversion on the number of pixels counted in the region 76. For example, if the measurement unit 36 grasps the number of pixels per 1 mm 2 as 10 pixels in advance, if the number of pixels counted in the region 76 is 5000 pixels, the area is converted to 500 mm 2 .
  • the cardiac measurement value measuring unit 100 measures the volume of the heart using the Simpson method.
  • the Simpson method is a rectangular area obtained by dividing an area 76 surrounded by a plurality of measurement points 72 into rectangular areas in the longitudinal direction, obtaining the area of the rectangular area, calculating the volume for each rectangular area, and dividing the obtained volume. This is a technique for obtaining the volume by adding the minutes.
  • a storage unit 44 that stores RF signal frame data or tomographic image data together with time (time information), and a tomographic image selection unit 46 that selects a desired tomographic image from the RF signal frame data or tomographic image data stored in the storage unit 44 And.
  • the ultrasonic diagnostic apparatus includes an electrocardiogram waveform detection unit 30 that detects an electrocardiogram waveform by an electrocardiograph attached to a desired portion of the subject 10, for example, the hand and foot of the subject 10, and an electrocardiogram waveform detection unit Analyzing the electrocardiogram waveform detected at 30 and detecting the characteristic waveform of the electrocardiogram waveform 32, and setting the heart rate cycle based on the feature waveform detected by the feature waveform detection unit 32 Part 34.
  • the operator manually sets a plurality of measurement points on the tomographic image displayed on the image display unit 26 via the operation unit 40.
  • the control unit 42 can also analyze the tissue shape of the tomographic image 70 updated in real time for each heartbeat, and automatically set measurement points based on the tissue shape.
  • the control unit 42 has a database that stores diagnostic image information based on the templated tissue of the subject.
  • the control unit 42 collates the tomographic image updated in real time with the templated diagnostic image information stored in the database, and sets measurement points according to the tissue shape based on the collation result. For example, a plurality of measurement points are set along the tissue shape (heart lumen).
  • the heartbeat cycle setting unit 34 by making a plurality of measurement points follow each tomographic image, cardiac measurement values such as heart area and heart volume, and cardiac measurement values at the end diastole And a cardiac function index value indicating the cardiac function of the heart using the cardiac measurement value at the end systole, and a measurement unit 36 for displaying on the image display unit 26.
  • an operation unit 40 that gives an instruction such as setting a measurement point by an operator, and a control unit 42 that controls each component according to the instruction from the operation unit 40 are provided.
  • the operation unit 40 includes a trackball for positioning the measurement points, an execution key for executing the operation, a freeze key for freezing the tomographic image, and the like.
  • the ultrasonic probe 12 is formed by arranging a plurality of transducers, and has a function of transmitting and receiving ultrasonic waves to and from the subject 10 via the transducers.
  • the transmission unit 14 generates a transmission pulse for generating an ultrasonic wave by driving the ultrasonic probe 12, and has a function of setting a convergence point of the transmitted ultrasonic wave to a certain depth. Yes.
  • the receiving unit 16 has a function of amplifying the reflected echo signal based on the ultrasonic wave received by the ultrasonic probe 12 with a predetermined gain to generate an RF signal, that is, a received signal.
  • the phasing / adding unit 20 has a function of inputting the RF signal amplified by the receiving unit 16 and performing phase control, and forming an ultrasonic beam at one or more convergence points to generate RF signal frame data. is doing.
  • the tomographic image construction unit 22 receives the RF signal frame data from the phasing addition unit 20 and performs signal processing such as gain correction, log compression, detection, contour enhancement, and filter processing to obtain tomographic image data.
  • the monochrome scan converter 24 also includes an A / D converter that converts tomographic image data output from the tomographic image construction unit 22 into a digital signal, and a frame memory that stores a plurality of converted tomographic image data in time series. , Including a controller.
  • the black and white scan converter 24 acquires tomographic image data in the subject 10 stored in the frame memory as an image, and reads the acquired tomographic image data in synchronization with the television of the image display unit 26.
  • the storage unit 44 stores either the RF signal frame data output from the phasing addition unit 20 and the tomographic image data output from the tomographic image construction unit 22 or the black and white scan converter 24 together with time.
  • the storage unit 44 can continuously store a plurality of RF signal frame data or tomographic image data, for example, can continuously store RF signal frame data or tomographic image data in one heartbeat cycle.
  • the tomographic image selection unit 46 selects a desired tomographic image based on the RF signal frame data or the tomographic image data stored in the storage unit 44.
  • the tomographic image selected by the tomographic image selection unit 46 is output to the measurement unit 36.
  • the feature waveform detection unit 32 analyzes the electrocardiogram waveform detected by the electrocardiogram waveform detection unit 30, and detects a feature waveform that appears for each heartbeat period from the shape of the electrocardiogram waveform.
  • the vertical axis indicates voltage (potential difference) and the horizontal axis indicates time.
  • the characteristic waveform detection unit 32 is a characteristic waveform using the characteristic that the R wave is the largest waveform among the electrocardiographic waveforms detected by the electrocardiogram waveform detection unit 30, that is, the R wave has the largest voltage. R wave is detected.
  • the feature waveform detection unit 32 compares the voltage of the electrocardiogram waveform detected by the electrocardiogram waveform detection unit 30 with a predetermined threshold value, and if the voltage exceeds the threshold value, it is an R wave. Is detected. This threshold is set so that the peak (maximum voltage) of the electrocardiographic waveform can be detected. Further, the feature waveform detection unit 32 may detect the R wave based on a differential value obtained by differentiating the electrocardiogram waveform detected by the electrocardiogram waveform detection unit 30. In this embodiment, the example of detecting the characteristic waveform of the R wave has been described. However, the characteristic waveform detection unit 32 detects the characteristics of the electrocardiographic waveform such as the P wave, the Q wave, the S wave, and the T wave. It may be a waveform. The type of feature waveform detected by the feature waveform detector 32 can be selected from the R wave, P wave, Q wave, S wave, T wave, and the like by the operation unit 40.
  • the heartbeat cycle setting unit 34 Based on the feature waveform that appears for each heartbeat cycle detected by the feature waveform detection unit 32, the heartbeat cycle setting unit 34 includes the newest first feature waveform and the second feature waveform adjacent to the first feature waveform. Set the heartbeat cycle set by. The second feature waveform is the next new feature waveform after the first feature waveform. Therefore, the heartbeat cycle set by the heartbeat cycle setting unit 34 is the newest heartbeat cycle.
  • the end systole setting unit 104 sets the end systole based on the heartbeat cycle set by the heartbeat cycle setting unit 34 and the analysis information of the heart measurement value measured by the heart measurement value measurement unit 100.
  • the end systole is, for example, the time when the heart area or the heart volume becomes the smallest in the cardiac cycle. In the present embodiment, description will be made assuming that the cardiac measurement value is the volume of the heart.
  • the image display unit 26 displays a volume change graph 84 (cardiac measurement value graph 84) showing the volume change of the heart in the heartbeat period A.
  • the volume change graph 84 shows the volume change in one heartbeat period of the heartbeat period A.
  • the left end of the volume change graph 84 corresponds to the time phase of the R wave 56, and the time is t56.
  • the right end of the volume change graph 84 corresponds to the time phase of the R wave 54, and the time is t54.
  • the cardiac measurement value analysis unit 102 analyzes the volume change graph 84 of the heartbeat period A, and specifies the time phase (time) at which the heart volume is the smallest among the heart volumes obtained in the heartbeat period A.
  • a minimum volume time phase mark 86 is displayed at the time phase identified as the smallest volume of the heart on the volume change graph 84.
  • the end systolic setting unit 104 measures the time difference (ta) from the time phase of the R wave 56 to the time phase where the volume of the heart is the smallest. Therefore, the time phase in which the volume of the heart is the smallest is time (t56 + ta). Then, the end systole setting unit 104 sets the time (t56 + ta), which is the time phase in which the volume of the heart is the smallest, as the end systole.
  • the control unit 42 compares the time (acquisition time) of the RF signal frame data or tomographic image data related to the tomographic image stored in the storage unit 44 with the time of the end systole set by the end systole setting unit 104.
  • the image display unit 26 can display a tomographic image corresponding to the end systole.
  • the operator can adjust the end systolic time within a desired time range from the time (t56 + ta) when the volume of the heart is smallest while confirming the tomographic image and the heart measurement value by the operation unit 40. For example, if the desired time range is 10 ms, the operator can adjust the end systolic time (t56 + ta ⁇ 10 ms) while confirming the tomographic image and the cardiac measurement value.
  • the end diastole setting unit 106 sets the time phase of the characteristic waveform (R wave, Q wave) of the heartbeat period as the end diastole.
  • end diastole setting unit 106 sets the time phase of R wave 56 in heartbeat cycle A as the end diastole, and calculates the time (t56) corresponding to R wave 56.
  • the control unit 42 compares the time (acquisition time) of the RF signal frame data or tomographic image data related to the tomographic image stored in the storage unit 44 with the end diastole time set by the end diastole setting unit 106.
  • the image display unit 26 can display a tomographic image corresponding to the end diastole.
  • the end systole setting unit 104 outputs the end systole time (t56 + ta) to the cardiac measurement value measuring unit 100.
  • the cardiac measurement value measurement unit 100 selects and reads out a tomographic image corresponding to the end systolic time by the tomographic image selection unit 46.
  • the cardiac measurement value measurement unit 100 measures a cardiac measurement value at the end systole using a tomographic image corresponding to the time at the end systole and a measurement point that is followed. For example, the cardiac measurement value measurement unit 100 measures the volume of the heart at the end systole.
  • the end diastole setting unit 106 outputs the end diastole time (t56) to the cardiac measurement value measurement unit 100.
  • the cardiac measurement value measurement unit 100 selects and reads out a tomographic image corresponding to the end diastole time by the tomographic image selection unit 46.
  • the cardiac measurement value measuring unit 100 measures the cardiac measurement value at the end diastole using the tomographic image corresponding to the end diastole time and the measurement point that is followed. For example, the cardiac measurement value measurement unit 100 measures the volume of the heart at the end diastole.
  • the cardiac function index value calculation unit 108 calculates the cardiac measurement value of the cardiac measurement value of the end systole (t56 + ta) set by the end systole setting unit 104 and the cardiac measurement value of the end diastole (t56) set by the end diastole setting unit 106. Read from the measurement unit 100.
  • the cardiac function index value calculation unit 108 calculates a cardiac function index value, which is an index value indicating the contractile function of the heart, using the cardiac measurement value at the end systole and the cardiac measurement value at the end diastole.
  • the cardiac function index value calculation unit 108 is a cardiac function index value ejection rate, single cardiac output, cardiac output, etc. from the volume of the heart corresponding to the end systole and the volume of the heart corresponding to the end diastole Is calculated.
  • the cardiac function index value calculation unit 108 calculates the ejection fraction from the volume of the heart at the end systole and the volume of the heart at the end diastole.
  • the ejection fraction can be obtained from the following equation using the volume of the heart at the end systole and the volume of the heart at the end diastole.
  • Ejection rate (%) (End-diastolic heart volume-end-systolic heart volume) / end-diastolic heart volume x 100
  • the cardiac function index value calculation unit 108 calculates a single cardiac output. Stroke output is the difference between the end-diastolic heart volume and the end-systolic heart volume at end diastole.
  • the cardiac output can be obtained by the following formula using the volume of the heart at the end systole and the volume of the heart at the end diastole.
  • One-time cardiac output end-diastolic heart volume ⁇ end-systolic heart volume
  • the cardiac function index value calculator 108 calculates cardiac output.
  • the cardiac output is obtained by the following formula using the volume of the heart at the end systole and the volume of the heart at the end diastole, that is, the cardiac output and the heart rate.
  • the ejection fraction, the single cardiac output, and the cardiac output are calculated by the cardiac function index value calculation unit 108 as the cardiac function index value of the cardiac cycle A.
  • the image display unit 26 displays the calculated cardiac function index value 82.
  • the cardiac function index value storage unit 110 stores the cardiac function index value calculated by the cardiac function index value calculation unit 108.
  • the cardiac function index value stored in the cardiac function index value storage unit 110 can be associated with the tomographic image selected by the tomographic image selection unit 46.
  • the tomographic image selection unit 46 selects a tomographic image within the cardiac cycle A set by the cardiac cycle setting unit 34. Then, the tomographic image selection unit 46 reads the cardiac function index value of the cardiac cycle A stored in the cardiac function index value storage unit 110 and associates it with the tomographic image corresponding to the cardiac cycle A. Then, the image display unit 26 displays the tomographic image corresponding to the heartbeat period A and the cardiac function index value that are associated with each other by the tomographic image selection unit 46. That is, the image display unit 26 can display the cardiac function index value of the heartbeat cycle A while the tomographic image of the heartbeat cycle A set by the heartbeat cycle setting unit 34 is displayed.
  • the image display unit 26 displays the heartbeat cycle while the tomographic image of the heartbeat cycle set by the heartbeat cycle setting unit 34 is displayed.
  • the cardiac function index value of the cycle can be displayed. That is, the cardiac measurement value and the cardiac function index value can be measured and displayed for each heartbeat period after the tomographic image is frozen.
  • the tomographic image 70 of the subject 10 is displayed on the image display unit 26 by repeatedly transmitting and receiving ultrasonic waves to the subject 10 at time intervals. indicate.
  • the tomographic image 70 displayed on the image display unit 26 is updated in real time.
  • the image display unit 26 displays a frozen tomographic image 70, and a plurality of previously displayed tomographic images 70 are stored.
  • the heartbeat cycle setting unit 34 includes the newest first feature waveform and the second feature waveform adjacent to the first feature waveform. Set the heartbeat cycle set by.
  • the end systole setting unit 104 sets the end systole based on the heart rate set by the heart rate cycle setting unit 34 and the heart measurement value (minimum volume of the heart or the minimum area of the heart) measured by the heart measurement value measurement unit 100. To do.
  • the end diastole setting unit 106 sets the end diastole based on the characteristic waveform (R wave) of the heartbeat cycle.
  • the cardiac function index value calculation unit 108 calculates a cardiac function index value by using the end-systolic heart measurement value set by the end-systolic setting unit 104 and the end-diastolic heart measurement value set by the end-diastolic setting unit 106. To do.
  • the image display unit 26 displays the cardiac function index value calculated by the cardiac function index value calculation unit 108.
  • the operator selects whether or not to change the initially set heartbeat cycle via the operation unit 40.
  • the process moves to S103.
  • the heartbeat cycle setting unit 34 is set by the newest first feature waveform (R wave 54) and the second feature waveform (R wave 56) adjacent to the first feature waveform (R wave 54).
  • the heartbeat period A can be changed to another heartbeat period. For example, it can be changed to a heartbeat cycle sandwiched between the R wave 56 and the R wave 58. If the heartbeat cycle is not changed, the operation ends.
  • measurement data for obtaining a tomographic image of a subject is measured, the tomographic image is configured from the measurement data, and a characteristic waveform of an electrocardiographic waveform detected from the subject is detected.
  • the end systole and the end diastole are identified using the cardiac measurements of the end systole and end diastole in the heartbeat cycle based on the characteristic waveform and the heartbeat cycle, and the specified end systole and end diastole are identified.
  • the cardiac function index value indicating the cardiac function of the heart is calculated, and the tomographic image, the cardiac measurement value and the cardiac function index value are displayed.
  • the end diastole and end systole can be identified, and the cardiac function index value can be calculated using the end diastole cardiac measurement and the end systolic heart measurement.
  • Example 1 the unique effect of Example 1 is that the end diastole and end systole are set based on the cardiac cycle and cardiac measurement values by the volume of the heart, etc., and the end diastole cardiac measurement value and the end systolic heart measurement value are used. Since the cardiac function index value can be calculated, the efficiency of the routine work of the operator can be improved.
  • Example 2 (End systole specified by time phase)
  • the end systole setting unit 104 measures in advance the time difference from the time of the characteristic waveform to the time when the volume of the heart becomes the smallest, and sets the end systole in the heartbeat cycle.
  • the cardiac measurement value analysis unit 102 analyzes the volume change graph of one heartbeat cycle obtained before the heartbeat cycle A, and calculates the time phase in which the heart volume is the smallest among the heart volumes obtained in one heartbeat cycle. Identify.
  • the end systole setting unit 104 measures a time difference (tb) from the time of the characteristic waveform (R wave 58) to the time when the volume of the heart becomes the smallest.
  • the end systole setting unit 104 Based on the time difference (tb) from the time phase of the characteristic waveform (R wave 56) to the time phase where the volume of the heart becomes the smallest, the end systole setting unit 104 The time (t56 + tb) corresponding to is calculated. Therefore, it is estimated that the time phase in which the volume of the heart is the smallest is time (t56 + tb). Then, the end systole setting unit 104 sets the time (t56 + tb), which is the time phase in which the volume of the heart is the smallest, as the end systole.
  • the cardiac function index value calculation unit 108 calculates the cardiac measurement value of the cardiac measurement value of the end systole (t56 + tb) set by the end systole setting unit 104 and the cardiac measurement value of the end diastole (t56) set by the end diastole setting unit 106. Read from the measurement unit 100.
  • the cardiac function index value calculation unit 108 calculates a cardiac function index value, which is an index value indicating the contractile function of the heart, using the cardiac measurement value at the end systole and the cardiac measurement value at the end diastole.
  • the end systole is set based on the heartbeat cycle and the volume of the heart, and the cardiac function index value can be calculated using the heart measurement value at the end diastole and the heart measurement value at the end systole.
  • Example 3 (End systole specified by heart sound)
  • the end systole setting unit 104 sets the end systole based on the heart sound of the subject 10
  • the end diastole setting unit 106 sets the end diastole based on the heart sound of the subject 10. It is a point to do.
  • One heart sound is a sound that occurs when the atrioventricular valve closes when the heart's ventricle contracts, indicating the end diastole.
  • the two sounds in the heart sound are sounds that occur when the arterial valve closes when the heart's ventricle dilates, and indicate the end systole.
  • the heart measurement value measuring unit 100 measures the heart sound of the subject 10 with a known heart sound meter, for example. Then, the heart measurement value analysis unit 102 analyzes the measured heart sound and detects one sound and two sounds in the heart sound.
  • the end diastole setting unit 106 sets the time phase when one sound is detected by the cardiac measurement value analysis unit 102 as the end diastole.
  • the end diastole setting unit 106 calculates a time corresponding to the time phase of the end diastole.
  • the control unit 42 compares the time of the RF signal frame data or tomographic image data stored in the storage unit 44 with the end diastole time set by the end diastole setting unit 106, whereby the image display unit 26 A tomographic image corresponding to the end diastole can be displayed.
  • the end systole setting unit 104 sets the time phase when two sounds are detected by the cardiac measurement value analysis unit 102 as the end systole.
  • the end systole setting unit 104 calculates a time corresponding to the time phase of the end systole.
  • the control unit 42 compares the time of the RF signal frame data or tomographic image data stored in the storage unit 44 with the time of the end systole set by the end systole setting unit 104, whereby the image display unit 26 A tomographic image corresponding to the end systole can be displayed.
  • the cardiac function index value calculation unit 108 is the cardiac measurement value of the end systole (measurement time of two sounds) set by the end systole setting unit 104 and the end diastole (measurement time of one sound) set by the end diastole setting unit 106. Are read from the cardiac measurement value measuring unit 100.
  • the cardiac function index value calculation unit 108 calculates a cardiac function index value, which is an index value indicating the contractile function of the heart, using the cardiac measurement value at the end systole and the cardiac measurement value at the end diastole.
  • the end diastole and end systole of the heart are set by an electrocardiogram waveform, heart sound, etc., but the end diastole and end systole by Doppler or M mode may be set.
  • M mode measurement can be made at the end systole by measuring the left ventricular end systolic diameter of the heart, and can be measured at the end diastole by measuring the left ventricular end diastole diameter of the heart.
  • the end systole can be set by the heart sound, and the cardiac function index value can be calculated using the cardiac measurement value at the end diastole and the cardiac measurement value at the end systole.
  • Example 4 will be described with reference to FIGS.
  • the difference from the first to third embodiments is that a selection unit (120, 122, 124, 130, 134) for selecting setting parameters for the end diastolic heart and the end systolic heart disclosed in the first to third embodiments is provided. It is.
  • the setting by volume described in Example 1, the setting by time phase described in Example 2, and the setting parameter by heart sound described in Example 3 can be selected.
  • the image display unit 26 displays a volume setting button 120, a time phase setting button 122, and a heart sound setting button 124 as end systolic setting parameters.
  • the operator can select a setting parameter for the end systole of the heart via the operation unit 40.
  • the volume button 120 is selected.
  • the selected volume button 120 is subjected to an emphasis process such as a highlight process so that the operator can know that the volume button 120 has been selected.
  • FIG. 6 is a flowchart showing the selection operation at the end systole in Example 4. This selection operation is performed in S104 of the flowchart shown in FIG.
  • the cardiac measurement value analysis unit 102 analyzes the volume change graph 84 of one heartbeat cycle, and specifies the time at which the heart volume is smallest among the heart volumes obtained in one heartbeat cycle.
  • the end systole setting unit 104 sets the time when the minimum volume is obtained as the end systole.
  • the cardiac measurement value analysis unit 102 analyzes the volume change graph of one heartbeat cycle obtained before the heartbeat cycle, and calculates the time phase in which the heart volume is the smallest among the heart volumes obtained in one heartbeat cycle. Identify.
  • the end systolic setting unit 104 calculates the time corresponding to the time phase in which the heart volume is smallest in the heartbeat cycle based on the time difference from the time phase of the R wave to the time phase in which the heart volume is smallest, That time is set as the end systole.
  • the end systole setting unit 104 sets the time phase when two sounds are measured by the heart sound measuring unit as the end systole.
  • the end systole setting unit 104 calculates a time corresponding to the time phase of the end systole and sets the time as the end systole.
  • the setting by the characteristic waveform (R wave) described in the first embodiment and the setting parameter by the heart sound described in the third embodiment can be selected.
  • the image display unit 26 displays a characteristic waveform setting button 130 and a heart sound setting button 134 as end diastole setting parameters. The operator can select a setting parameter at the end diastole via the operation unit 40.
  • the selection operation at the end diastole is the same as the flowchart showing the selection operation at the end systole shown in FIG.
  • the operator can select the setting parameters for the end diastole and the end systole of the heart, the optimum setting for diagnosis can be performed.
  • Example 5 (Correction flow)
  • the cardiac function index value calculation unit 108 calculates a cardiac function index value based on cross sections of a plurality of tomographic images.
  • FIG. 7 is a flowchart showing an operation for calculating a cardiac function index value based on cross sections of a plurality of tomographic images. This operation is performed in S104 of the flowchart shown in FIG.
  • the operator confirms whether the tomographic image / cardiac function index value is valid, and selects whether it is valid using the operation unit 40. For example, for a tomographic image, it is confirmed whether a measurement point is set and followed. Regarding the cardiac function index value, it is confirmed whether or not an abnormal cardiac function index value that is not normally calculated is calculated. If the operator selects appropriate, the operation ends.
  • the operator rotates the ultrasound probe 12 and switches tomographic images so that the apex four-chamber image (A4C) becomes the apex two-chamber image (A2C).
  • the tomographic image is switched so that the apex two-chamber image (A2C) becomes the apex four-chamber image (A4C). Note that the tomographic images of the switched apex four-chamber image (A4C) and apex-two-chamber image (A2C) may be read from the storage unit 44.
  • S303 The end diastole and end systole are set for the tomographic image whose cross section is switched.
  • the operations in S303 to S305 are the same as those in S104 to S106 shown in FIG.
  • the image display unit 26 displays the cardiac measurement values and cardiac function index values of the apex two-chamber image (A2C) and the apex four-chamber image (A4C) which are different cross sections.
  • the RF signal frame data or tomographic image data stored in the storage unit 44 is read, and the tomographic image of the apex four-chamber image (A4C) is converted into the tomographic image of the apex two-chamber image (A2C). It can be displayed on the image display unit 26 together with 70.
  • the tomographic image 70 of the apex two-chamber image (A2C) can be displayed in accordance with the cardiac cycle.
  • a tomographic image of a cross section suitable for diagnosis can be selected and a cardiac function index value can be calculated.
  • Example 6 will be described with reference to FIG. A difference from the first to fifth embodiments is that a cardiac measurement value measurement unit 100 measures a cardiac measurement value for a tomographic image corresponding to the end diastole or a tomographic image corresponding to the end systole, or a cardiac function index value calculation unit 108 It is a point to measure a cardiac function index value.
  • the RF signal frame data or tomographic image data stored in the storage unit 44 is reduced and displayed in time series.
  • the reduced-displayed RF signal frame data or tomographic image data includes an end diastole mark 150 indicating end diastole, an end systole mark 152 indicating end systole, and a screen display mark 154 corresponding to the time phase of the display time phase mark 52. Is displayed.
  • the control unit 42 includes the time of the RF signal frame data or tomographic image data stored in the storage unit 44, the end systole time set by the end systole setting unit 104, and the end diastole set by the end diastole setting unit 106. By comparing the time and the time of the display phase of the tomographic image displayed on the image display unit 26, the end diastole mark 150, the end systole mark 152, and the screen display mark 154 can be set.
  • the image display unit 26 displays an end systole button 160 for reading an end systolic tomographic image and an end diastole button 162 for reading an end diastole tomographic image.
  • the control unit 42 compares the time of the RF signal frame data or tomographic image data stored in the storage unit 44 with the end systole time set in the end systole setting unit 104.
  • the image display unit 26 can display the tomographic image 70 corresponding to the end systole via the tomographic image selection unit 46.
  • the tomographic image 70 corresponding to the end systole is a tomographic image corresponding to the end systolic mark 152.
  • the control unit 42 analyzes the tissue shape of the tomographic image 70 corresponding to the end systole, and automatically sets the measurement point in the tomographic image 70 corresponding to the end systole based on the tissue shape. Since the automatic setting of measurement points in the tomographic image has been described in the first embodiment, the description thereof is omitted here.
  • the operator can also manually set a plurality of measurement points on the tomographic image 70 corresponding to the end systole displayed on the image display unit 26 via the operation unit 40.
  • the cardiac measurement value measurement unit 100 of the measurement unit 36 for the tomographic image at the end systole selected by the tomographic image selection unit 46, based on a plurality of newly set measurement points, Measure cardiac measurements such as volume. Then, the cardiac function index value calculation unit 108 of the measurement unit 36 calculates a cardiac function index value by using the cardiac measurement value at the end systole and the cardiac measurement value at the end diastole in the cardiac cycle at the end systole.
  • the control unit 42 displays the time of the RF signal frame data or tomographic image data stored in the storage unit 44 and the time of the end diastole set by the end diastole setting unit 106.
  • the image display unit 26 can display the tomographic image 70 corresponding to the end diastole via the tomographic image selection unit 46.
  • the tomographic image 70 corresponding to the end diastole is a tomographic image corresponding to the end diastole mark 150.
  • the control unit 42 can also analyze the tissue shape of the tomographic image 70 corresponding to the expansion, and automatically set the measurement point to the tomographic image 70 corresponding to the end of expansion based on the tissue shape.
  • the operator can also manually set a plurality of measurement points on the tomographic image 70 corresponding to the end diastole displayed on the image display unit 26 via the operation unit 40.
  • the cardiac measurement value measurement unit 100 of the measurement unit 36 for the tomographic image at the end diastole selected by the tomographic image selection unit 46, based on a plurality of newly set measurement points, Measure cardiac measurements such as volume. Then, the cardiac function index value calculation unit 108 of the measurement unit 36 calculates a cardiac function index value using the cardiac measurement value at the end diastole and the cardiac measurement value at the end systole in the cardiac cycle of the end diastole.
  • Example 6 the tomographic images 70 corresponding to the end systole and the end diastole were displayed, and the measurement points were newly set on the tomographic image 70. Therefore, even if the measurement point is not appropriately tracked for each tomographic image, the measurement of the cardiac measurement value and the cardiac function index value can be accurately performed.
  • the tomographic image measurement unit 200 part of the ultrasonic diagnostic apparatus is used as the transmission / reception unit of the MRI apparatus and the X-ray generation of the X-ray CT apparatus. If the system and the detection system are replaced, the present invention can be applied to the MRI apparatus and the X-ray CT apparatus of the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

 本発明の医用画像診断装置は、被検体の断層画像を得るための計測データを計測する断層画像計測部と、前記計測データから前記断層画像を構成する断層画像構成部と、前記断層画像中の心臓の形態を示す心臓計測値を計測する計測部と、前記心臓の心機能を示す心機能指標値を演算する演算部と、前記断層画像、前記心臓計測値及び前記心機能指標値を表示する画像表示部と、を備えた医用画像診断装置であって、前記被検体から検出された心電波形の特徴波形を検出する特徴波形検出部と、前記心臓計測値計測部によって計測される前記特徴波形に基づく心拍周期における収縮末期と拡張末期の心臓計測値と前記心拍周期とを用いて前記収縮末期と前記拡張末期を特定する収縮末期・拡張末期特定部と、を備える。

Description

医用画像診断装置及び心臓計測値表示方法
 本発明は、断層画像に設定された計測点を用いて生体組織の計測を行う医用画像診断装置及び心臓計測値表示方法に関する。
 従来の医用画像診断装置では、操作者は、取得した断層画像上でマウスやトラックボール等の入力部を用いて計測点を設定する。その後、医用画像診断装置は、設定された計測点に基づいて心臓計測値を計測し、心臓計測値を表示する。
 具体的には、操作者が断層画像上で複数の計測点を設定すると、医用画像診断装置の計測アプリケーションは、計測点間の距離、複数の計測点で囲まれた面積や体積を計測する。また、操作者が断層画像上で所定領域を設定すると、計測アプリケーションは、設定された所定領域内の面積や体積を計算する。
 断層画像上に計測点を表示して計測を実行する場合において、計測点を自動的に設定することが行われている(例えば、特許文献1、特許文献2)。
特開2005-224465号公報 特開2009-153600号公報
 しかしながら、特許文献1及び特許文献2では、操作者が手動で拡張末期と収縮末期を設定しなければならないため、設定が煩雑となり心機能指標値の計測に時間を要することになる。
 つまり、特許文献1及び特許文献2には、拡張末期と収縮末期を心拍周期と心臓計測値に基づき手動に拠らずに設定し、拡張末期及び収縮末期のそれぞれの心臓計測値を用いて心機能を示す心機能指標値を演算することついては考慮されていないという未解決の問題が依然として残っている。
 本発明では、拡張末期と収縮末期を特定し、拡張末期の心臓計測値と収縮末期の心臓計測値を用いて心機能指標値を演算すること医用画像診断装置及び心臓計測値表示方法を提供することを目的とする。
 上記目的を達成するため、本発明は、被検体から検出された心電波形を解析して前記心電波形から特徴波形を検出し、前記特徴波形に基づいて設定される心拍周期における収縮末期と拡張末期の心臓の形態を示す心臓計測値を計測して前記心臓計測値と前記心拍周期を用いて前記収縮末期と前記拡張末期を特定し、前記拡張末期の心臓計測値と前記収縮末期の心臓計測値を用いて心臓の心機能を示す心機能指標値を演算し、前記心臓計測値と前記心機能指標値を表示する。
 本発明によれば、拡張末期と収縮末期を特定し、拡張末期の心臓計測値と収縮末期の心臓計測値を用いて心機能指標値を演算することができる。
本発明の医用画像診断装置(超音波診断装置)の全体構成を示す図。 本発明の実施例1を示す図。 本発明の実施例1を示す図。 本発明の実施例1の動作を示すフローチャート。 本発明の実施例4を示す図。 本発明の実施例4の動作を示すフローチャート。 本発明の実施例5を示す図。 本発明の実施例6を示す図。
 以下、図面を用いて本発明を適用した医用画像診断装置を説明する。
 図1は本発明を適用した医用画像診断装置の構成を示すブロック図である。ここでは、医用画像診断装置の1例として超音波診断装置を用いて説明する。
 図1に示すように、超音波診断装置は、被検体の断層画像を得るための計測データを計測する断層画像計測部200と、前記計測データから前記断層画像を構成する断層画像構成部300と、前記断層画像中の心臓の形態を示す心臓計測値などを計測する計測部36(心臓計測値計測部100)と、前記心臓の心機能を示す心機能指標値を演算する計測部36(心機能指標値演算部108)と、を備え、前記被検体から検出された心電波形の特徴波形を検出することなどを行う特徴波形特定部400と、前記特徴波形に基づく心拍周期における収縮末期と拡張末期の心臓計測値と前記心拍周期とを用いて前記収縮末期と前記拡張末期を特定する収縮末期・拡張末期特定部500と、を備える。
 断層画像計測部200は、被検体10に当接させて用いる超音波探触子12と、超音波探触子12を介して被検体10に時間間隔をおいて超音波を繰り返し送信する送信部14と、被検体10から反射された超音波を反射エコー信号として受信する受信部16と、操作者による操作部40の操作を受けて制御部42からの制御信号(例えばフリーズ解除信号により)送信部14と受信部16が送信/受信繰り返し周波数により交互に送受信が機能するように制御する超音波送受信制御部18と、を有する。
 断層画像構成部300は、受信部16で受信された反射エコーを整相加算する整相加算部20と、整相加算部20からのRF信号フレームデータに基づいて被検体10の断層画像、例えば白黒断層画像を構成する断層画像構成部22と、断層画像構成部22から出力される断層画像データを画像表示部26の表示に合うように変換する白黒スキャンコンバータ24と、を有する。
 特徴波形特定部400は、心電波形検出部30と、特徴波形検出部32とを有する。
 収縮末期・拡張末期特定部500は、心拍周期設定部34と、心臓計測値解析部102と、収縮末期設定部104と、拡張末期設定部106とを有している。
 計測部36(心臓計測値計測部100)は、断層画像選択部46で選択された断層画像について、実時間より最も短い時間差となる(最も新しい)第1の特徴波形と、第1の特徴波形に隣接(連続)する第2の特徴波形とによって特定(設定)される心拍周期における収縮末期と拡張末期の心臓の面積、心臓の体積等の心臓の形態を示す心臓計測値を計測する。そして、計測部36(心機能指標値演算部108)は、拡張末期の心臓計測値と収縮末期の心臓計測値を用いて心臓の心機能を示す心機能指標値を演算する。
 心機能指標値とは、例えば、心拍周期毎に送り出される血液量を心臓が拡張したときの体積で除した値である駆出率(EF値)、1回の心拍周期で送り出す血液量である1回心拍出量、心臓が1分間に送り出す血液量を心拍出量等である。
 画像表示部26は、断層画像選択部46で選択された断層画像に対応したRF信号フレームデータ又は断層画像データを整相加算部20、断層画像構成部22、白黒スキャンコンバータ24から読み出す。画像表示部26は、計測部36で計測された心臓計測値と心機能指標値を読み出す。そして、画像表示部26は、断層画像とともに心臓計測値と心機能指標値を表示する。
 ここで、心電波形から拡張末期と収縮末期を心拍周期と心臓計測値に基づいて特定(設定)し、拡張末期の心臓計測値と収縮末期の心臓計測値を用いて心機能指標値を演算することについて図2、図3を用いて具体的に説明する。
 図2に示すように、計測部36は、心臓の面積又は心臓の体積等の心臓計測値を計測する心臓計測値計測部100と、拡張末期の心臓計測値と収縮末期の心臓計測値を用いて心機能指標値を演算する心機能指標値演算部108と、心機能指標値演算部108によって演算された心機能指標値を記憶する心機能指標値記憶部110とを有している。
 また、図3に示すように、画像表示部26には、心電波形検出部30で検出された心電波形50と、白黒スキャンコンバータ24から出力される断層画像70と、心臓計測値計測部100で計測された心臓計測値80と、心機能指標値演算部106で演算された心機能指標値82と、心臓計測値計測部100で計測された心臓計測値に基づく心臓計測値グラフ84が表示される。
 心電波形50は心電波形検出部30で検出されたものであり、心電波形50上には、断層画像70が取得された時刻を示す表示時相マーク52が表示されている。断層画像70をリアルタイムに更新している場合、表示時相マーク52は心電波形50の更新とともに時間方向(右方向)に移動して表示される。
 操作者は、操作部40のフリーズボタンを押すことにより、制御部42によって画像表示部26に表示されている断層画像70をフリーズさせることができる。断層画像70をフリーズした場合、操作者は、操作部40のトラックボールを回転させることによって、表示時相マーク52を任意に移動させることができる。任意に移動された表示時相マーク52が位置する時刻で取得された断層画像70が画像表示部26に表示される。
 画像表示部26には、特徴波形検出部32によって検出された、最も新しい基準波形(ここではR波54)と、R波54に隣接する2番目に新しいR波56と、R波56に隣接する3番目に新しいR波58が表示されている。
 R波54が取得された時刻をt54とし、R波56が取得された時刻をt56とし、R波58が取得された時刻をt58とする。
 心拍周期設定部34は、特徴波形検出部32で検出された特徴波形であるR波に基づいて、最も新しいR波54とR波54の次に新しいR波56とによって設定される心拍周期A(R-R周期)を設定する。R波54とR波56で挟まれる心拍周期Aは、最も新しい特徴波形と2番目に新しい特徴波形とによって挟まれる1周期の心拍周期となる。よって、R波54とR波56で挟まれる心拍周期Aは、最も新しい心拍周期となる。
 最も新しい心拍周期Aが心拍周期設定部34によって設定されたことが認識できるように、心拍周期Aに該当する心電波形50上に心電波形マーク60が画像表示部26に表示される。心電波形マーク60は、例えば、R波54とR波56で挟まれる心拍周期Aに該当する心電波形50上に心電波形50と異なる線種(太い線、破線等)で表示されたり、心拍周期Aに該当する心電波形50上に心電波形50と異なる色(赤色、青色等)で表示されたりする。
 断層画像70は被検体10の心臓の断面画像であり、例えば、心尖部二腔像(A2C)である。断層画像70には複数の計測点72が設置されている。本実施例では、断層画像70として表示される心臓の内壁に沿って9点の計測点72が設定されている。領域76は、複数の計測点72によって囲まれる領域である。
 心臓計測値計測部100は、複数の計測点72によって囲まれる領域76の面積を、領域76に含まれる画素数に基づいて計測する。まず、心臓計測値計測部100は、領域76内の画素数をカウントする。心臓計測値計測部100は、予め1mm2辺りの画素数を把握しておき、領域76でカウントされた画素数に対して面積換算を行なうことにより、領域76の面積を計測する。例えば、計測部36が予め1mm2辺りの画素数を10画素として把握しておくと、領域76でカウントされた画素数が5000画素であれば、500mm2として面積換算を行なう。
 また、心臓計測値計測部100は、シンプソン法を用いて心臓の体積を計測する。シンプソン法とは、複数の計測点72によって囲まれる領域76を長手方向に矩形領域に分割し、矩形領域の面積を求め、矩形領域毎に体積を計算し、得られた体積を分割した矩形領域分加算することにより体積を求める手法である。
 再び、図1に戻って、図1で説明していない部分を説明する。RF信号フレームデータ又は断層画像データを時刻(時間情報)とともに記憶する記憶部44と、記憶部44に記憶されたRF信号フレームデータ又は断層画像データから所望の断層画像を選択する断層画像選択部46とを備えている。
 また、超音波診断装置は、被検体10の所望部位、例えば被検体10の手と足に取り付けられた心電計により心電波形を検出する心電波形検出部30と、心電波形検出部30で検出された心電波形を解析し、心電波形の特徴波形を検出する特徴波形検出部32と、特徴波形検出部32で検出された特徴波形に基づいて心拍周期を設定する心拍周期設定部34とを備えている。
 操作者は、画像表示部26に表示されている断層画像に複数の計測点を操作部40を介して手動で設定する。また、制御部42は、リアルタイムに更新されている断層画像70の組織形状を心拍毎に解析して、組織形状に基づいて自動的に計測点を設定することもできる。具体的には、図示しないが、制御部42は、テンプレート化された被検体の組織に基づく診断用画像情報を格納しているデータベースを有している。制御部42は、リアルタイムに更新される断層画像をデータベース中に格納されているテンプレート化された診断用画像情報と照合し、照合結果に基づいて、組織形状に合わせて計測点を設置する。例えば、組織形状(心臓の内腔)に沿って計測点が複数設置される。
 心拍周期設定部34で設定された心拍周期において、設定された複数の計測点を各断層画像で追従させることにより、心臓の面積、心臓の体積等の心臓計測値と、拡張末期の心臓計測値及び収縮末期の心臓計測値を用いて心臓の心機能を示す心機能指標値とを計測し、画像表示部26に表示させる計測部36を備えている。また、操作者が計測点を設定する等の指示を行う操作部40と、操作部40の指示に従って各構成要素の制御を行う制御部42が備えられている。操作部40には、計測点の位置決めなどを行うためのトラックボールや、操作を実行するための実行キー、断層画像をフリーズさせるためのフリーズキーなどが配置されている。
 ここで、超音波診断装置について詳細に説明する。超音波探触子12は、複数の振動子を配設して形成されており、被検体10に振動子を介して超音波を送受信する機能を有している。送信部14は、超音波探触子12を駆動して超音波を発生させるための送波パルスを生成するとともに、送信される超音波の収束点をある深さに設定する機能を有している。また、受信部16は、超音波探触子12で受信した超音波に基づく反射エコー信号について所定のゲインで増幅してRF信号すなわち受波信号を生成する機能を有している。整相加算部20は、受信部16で増幅されたRF信号を入力して位相制御し、1点又は複数の収束点に対し超音波ビームを形成してRF信号フレームデータを生成する機能を有している。
 断層画像構成部22は、整相加算部20からのRF信号フレームデータを入力してゲイン補正、ログ圧縮、検波、輪郭強調、フィルタ処理等の信号処理を行い、断層画像データを得るものである。また、白黒スキャンコンバータ24は、断層画像構成部22から出力される断層画像データをデジタル信号に変換するA/D変換器と、変換された複数の断層画像データを時系列に記憶するフレームメモリと、制御コントローラを含んで構成されている。この白黒スキャンコンバータ24は、フレームメモリに格納された被検体10内の断層画像データを画像として取得し、取得された断像画像データを画像表示部26のテレビ同期で読み出すものである。
 記憶部44は、整相加算部20から出力されるRF信号フレームデータと、断層画像構成部22若しくは白黒スキャンコンバータ24から出力される断層画像データとのいずれかを時刻とともに記憶する。記憶部44は、RF信号フレームデータ又は断層画像データは連続して複数記憶することができ、例えば、1心拍周期におけるRF信号フレームデータ又は断層画像データを連続して記憶することができる。
 断層画像選択部46は、記憶部44に記憶されたRF信号フレームデータ又は断層画像データに基づき所望の断層画像を選択する。断層画像選択部46で選択された断層画像は計測部36に出力される。
 特徴波形検出部32は、心電波形検出部30で検出された心電波形を解析し、心電波形の形状から心拍周期毎に現れる特徴波形を検出する。心電波形検出部30で検出された心電波形は、縦軸が電圧(電位差)、横軸が時間で示される。特徴波形検出部32は、心電波形検出部30で検出された心電波形の中でR波が最も大きな波形である、すなわちR波は電圧が最も大きいという特性を利用して特徴波形であるR波を検出する。
 具体的には、特徴波形検出部32は、心電波形検出部30で検出された心電波形の電圧に対し予め定められた閾値と比較し、電圧が閾値を超えた場合、R波であると検出する。この閾値は心電波形のピーク(極大電圧)を検出できるように設定されている。また、特徴波形検出部32は、心電波形検出部30で検出された心電波形を微分して得られた微分値によってR波を検出してもよい。なお、本実施例ではR波の特徴波形を検出した例を説明したが、特徴波形検出部32で検出されるのは、心電波形のP波、Q波、S波、T波等の特徴波形であってもよい。操作部40によって、特徴波形検出部32で検出する特徴波形の種類をR波、P波、Q波、S波、T波等から選択することができる。
 心拍周期設定部34は、特徴波形検出部32で検出された心拍周期毎に現れる特徴波形に基づいて、最も新しい第1の特徴波形と、第1の特徴波形に隣接する第2の特徴波形とによって設定される心拍周期を設定する。第2の特徴波形は、第1の特徴波形の次に新しい特徴波形である。よって、心拍周期設定部34によって設定された心拍周期は、最も新しい心拍周期となる。
 (体積による収縮末期特定)
 収縮末期設定部104は、心拍周期設定部34で設定された心拍周期と心臓計測値計測部100で計測された心臓計測値の解析情報に基づいて収縮末期を設定する。収縮末期とは、例えば、心拍周期で心臓の面積又は心臓の体積が最も小さくなる時である。本実施例では、心臓計測値は心臓の体積であるとして説明する。
 画像表示部26には、心拍周期Aの心臓の体積変化を示す体積変化グラフ84(心臓計測値グラフ84)が表示されている。体積変化グラフ84は、心拍周期Aの1心拍周期の体積変化を示すものである。このとき、体積変化グラフ84の左端は、R波56の時相に対応され、時刻はt56である。体積変化グラフ84の右端は、R波54の時相に対応され、時刻はt54である。
 心臓計測値解析部102は、心拍周期Aの体積変化グラフ84を解析して、心拍周期Aで得られる心臓の体積の中で心臓の体積が最も小さくなる時相(時刻)を特定する。体積変化グラフ84上で心臓の体積が最も小さいと特定された時相には最小体積時相マーク86が表示される。そして、収縮末期設定部104は、R波56の時相から心臓の体積が最も小さくなる時相までの時間差(ta)を計測する。よって、心臓の体積が最も小さくなる時相は、時刻(t56+ta)となる。そして、収縮末期設定部104は、心臓の体積が最も小さくなる時相である時刻(t56+ta)を収縮末期として設定する。
 制御部42は、記憶部44に記憶されている断層画像に関するRF信号フレームデータ又は断層画像データの時刻(取得時刻)と収縮末期設定部104で設定された収縮末期の時刻とを照らし合わせることにより、画像表示部26は、収縮末期に対応する断層画像を表示させることができる。
 なお、操作者は、操作部40によって、断層画像や心臓計測値を確認しながら心臓の体積が最も小さくなる時刻(t56+ta)から所望の時間範囲内で収縮末期の時刻を調整することができる。例えば、所望の時間範囲が10msであるとすると、操作者は断層画像や心臓計測値を確認しながら、収縮末期の時刻(t56+ta±10ms)を調整することができる。
 (特徴波形による拡張末期特定)
 一方、拡張末期設定部106は、心拍周期の特徴波形(R波、Q波)の時相を拡張末期として設定する。ここでは、拡張末期設定部106は、心拍周期AのR波56の時相を拡張末期として設定し、R波56に対応する時刻(t56)を算出する。
 制御部42は、記憶部44に記憶されている断層画像に関するRF信号フレームデータ又は断層画像データの時刻(取得時刻)と拡張末期設定部106で設定された拡張末期の時刻とを照らし合わせることにより、画像表示部26は、拡張末期に対応する断層画像を表示させることができる。
 収縮末期設定部104は、収縮末期の時刻(t56+ta)を心臓計測値計測部100に出力する。心臓計測値計測部100は、収縮末期の時刻に対応する断層画像を断層画像選択部46で選択して読み出す。心臓計測値計測部100は、収縮末期の時刻に対応する断層画像と追従された計測点を用いて収縮末期の心臓計測値を計測する。例えば、心臓計測値計測部100は、収縮末期の心臓の体積を計測する。
 同様にして、拡張末期設定部106は、拡張末期の時刻(t56)を心臓計測値計測部100に出力する。心臓計測値計測部100は、拡張末期の時刻に対応する断層画像を断層画像選択部46で選択して読み出す。心臓計測値計測部100は、拡張末期の時刻に対応する断層画像と追従された計測点を用いて拡張末期の心臓計測値を計測する。例えば、心臓計測値計測部100は、拡張末期の心臓の体積を計測する。
 心機能指標値演算部108は、収縮末期設定部104で設定された収縮末期(t56+ta)の心臓計測値と拡張末期設定部106で設定された拡張末期(t56)の心臓計測値を心臓計測値計測部100から読み出す。心機能指標値演算部108は、収縮末期の心臓計測値と拡張末期の心臓計測値とを用いて、心臓の収縮機能を示す指標値である心機能指標値を演算する。
 心機能指標値演算部108は、収縮末期に対応する心臓の体積と拡張末期に対応する心臓の体積とから心機能指標値である駆出率、1回心拍出量、心拍出量等を演算する。例えば、心機能指標値演算部108は、収縮末期の心臓の体積と拡張末期の心臓の体積から駆出率を演算する。駆出率は収縮末期の心臓の体積と拡張末期の心臓の体積を用いた下記式により求められる。
 {数1}
駆出率(%)=
(拡張末期の心臓の体積-収縮末期の心臓の体積)/拡張末期の心臓の体積×100 
 また、心機能指標値演算部108は、1回心拍出量を演算する。1回心拍出量は、拡張末期における拡張末期の心臓の体積と収縮末期の心臓の体積の差である。1回心拍出量は、収縮末期の心臓の体積と拡張末期の心臓の体積を用いた下記式により求められる。
 {数2}
 1回心拍出量=拡張末期の心臓の体積-収縮末期の心臓の体積
 また、心機能指標値演算部108は、心拍出量を演算する。心拍出量は、収縮末期の心臓の体積と拡張末期の心臓の体積、すなわち1回心拍出量と心拍数を用いた下記式により求められる。
 {数3}
  心拍出量=心拍数×1回心拍出量
  =心拍数×(拡張末期の心臓の体積-収縮末期の心臓の体積)
 上記のように、駆出率、1回心拍出量、心拍出量は、心拍周期Aの心機能指標値として心機能指標値演算部108で演算される。画像表示部26は、演算された心機能指標値82を表示する。
 また、心機能指標値記憶部110は、心機能指標値演算部108で演算された心機能指標値を記憶する。心機能指標値記憶部110に記憶された心機能指標値と、断層画像選択部46で選択された断層画像に対応付けを行うことができる。
 具体的には、断層画像選択部46は、心拍周期設定部34によって設定された心拍周期A内の断層画像を選択する。そして、断層画像選択部46は、心機能指標値記憶部110に記憶された心拍周期Aの心機能指標値を読み出し、心拍周期Aに該当する断層画像と対応付けを行う。そして、画像表示部26は、断層画像選択部46によって対応付けが行われた心拍周期Aに該当する断層画像と心機能指標値を表示する。つまり、画像表示部26は、心拍周期設定部34によって設定された心拍周期Aの断層画像が表示されている間、心拍周期Aの心機能指標値を表示することができる。
 なお、心拍周期Aだけでなく、心拍周期A以前の心拍周期においても同様に、画像表示部26は、心拍周期設定部34によって設定された心拍周期の断層画像が表示されている間、当該心拍周期の心機能指標値を表示することができる。つまり、断層画像のフリーズ後に心拍周期毎に心臓計測値と心機能指標値を計測し、表示させることができる。
 ここで、実施例1の動作を図4に示すフローチャートを用いて説明する。
 (S101)
 被検体10に当接させて用いる超音波探触子12を用いて、被検体10に時間間隔をおいて超音波を繰り返し送受信させることにより、画像表示部26に被検体10の断層画像70を表示する。画像表示部26に表示されている断層画像70はリアルタイムに更新されている。
 (S102)
 操作者は、操作部40のフリーズボタンを押すことにより、制御部42によって画像表示部26に表示されている断層画像70をフリーズさせる。画像表示部26にはフリーズされた断層画像70が表示され、過去に表示された断層画像70が複数記憶される。
 (S103)
 心拍周期設定部34は、特徴波形検出部32で検出された心拍周期毎に現れる特徴波形に基づいて、最も新しい第1の特徴波形と、第1の特徴波形に隣接する第2の特徴波形とによって設定される心拍周期を設定する。
 (S104)
 画像表示部26に表示されている断層画像に複数の計測点を手動又は自動で設定し、各断層画像に計測点を追従させる。収縮末期設定部104は、心拍周期設定部34で設定された心拍周期と心臓計測値計測部100で計測された心臓計測値(心臓の最小体積又は心臓の最小面積)に基づいて収縮末期を設定する。拡張末期設定部106は、心拍周期の特徴波形(R波)に基づいて拡張末期を設定する。
 (S105)
 心機能指標値演算部108は、収縮末期設定部104で設定された収縮末期の心臓計測値と拡張末期設定部106で設定された拡張末期の心臓計測値とを用いて心機能指標値を演算する。
 (S106)
 画像表示部は26、心機能指標値演算部108で演算された心機能指標値を表示する。
 (S107)
 操作者は、操作部40を介して初期設定された心拍周期を変更するかどうかを選択する。心拍周期を変更する場合、S103に移動する。S103において、心拍周期設定部34は最も新しい第1の特徴波形(R波54)と、第1の特徴波形(R波54)に隣接する第2の特徴波形(R波56)とによって設定される心拍周期Aを他の心拍周期に変更することができる。例えば、R波56とR波58で挟まれる心拍周期に変更することができる。心拍周期を変更しない場合、動作が終了する。
 以上、実施例1によれば、被検体の断層画像を得るための計測データを計測し、前記計測データから前記断層画像を構成し、前記被検体から検出された心電波形の特徴波形を検出し、前記特徴波形に基づく心拍周期における収縮末期と拡張末期の心臓計測値と前記心拍周期とを用いて前記収縮末期と前記拡張末期を特定し、前記特定された前記収縮末期と前記拡張末期の断層画像中の心臓の形態を示す心臓計測値を計測し、前記心臓の心機能を示す心機能指標値を演算し 、前記断層画像、前記心臓計測値及び前記心機能指標値を表示するので、拡張末期と収縮末期を特定し、拡張末期の心臓計測値と収縮末期の心臓計測値を用いて心機能指標値を演算することができる。
 また、実施例1の特有の効果は、拡張末期と収縮末期を心臓の体積等によって心拍周期と心臓計測値に基づいて設定し、拡張末期の心臓計測値と収縮末期の心臓計測値を用いて心機能指標値を演算することができるため、操作者のルーチンワークの効率を向上させることができる。
 (時相による収縮末期特定)
 ここで、実施例2について説明する。実施例1と異なる点は、収縮末期設定部104は特徴波形の時刻から心臓の体積が最も小さくなる時刻までの時間差を予め計測し、心拍周期における収縮末期を設定する点である。
 心臓計測値解析部102は、心拍周期A以前に得られた1心拍周期の体積変化グラフを解析して、1心拍周期で得られる心臓の体積の中で心臓の体積が最も小さくなる時相を特定する。収縮末期設定部104は、特徴波形(R波58)の時刻から心臓の体積が最も小さくなる時刻までの時間差(tb)を計測する。
 収縮末期設定部104は、特徴波形(R波56)の時相から心臓の体積が最も小さくなる時相までの時間差(tb)に基づいて、心拍周期Aにおける心臓の体積が最も小さくなる時相に対応する時刻(t56+tb)を演算する。よって、心臓の体積が最も小さくなる時相は、時刻(t56+tb)と推測される。そして、収縮末期設定部104は、心臓の体積が最も小さくなる時相である時刻(t56+tb)を収縮末期として設定する。
 心機能指標値演算部108は、収縮末期設定部104で設定された収縮末期(t56+tb)の心臓計測値と拡張末期設定部106で設定された拡張末期(t56)の心臓計測値を心臓計測値計測部100から読み出す。心機能指標値演算部108は、収縮末期の心臓計測値と拡張末期の心臓計測値とを用いて、心臓の収縮機能を示す指標値である心機能指標値を演算する。
 以上、実施例2によれば、収縮末期を心臓の心拍周期と体積に基づいて設定し、拡張末期の心臓計測値と収縮末期の心臓計測値を用いて心機能指標値を演算することができる。
 (心音による収縮末期特定)
 ここで、実施例3について説明する。実施例1、2と異なる点は、収縮末期設定部104は、被検体10の心音に基づいて収縮末期を設定し、拡張末期設定部106は、被検体10の心音に基づいて拡張末期を設定する点である。
 心音における1音は、心臓の心室が収縮する際に房室弁が閉じる時に発生する音であり、拡張末期を示すものである。心音における2音は、心臓の心室が拡張する際に動脈弁が閉じる時に発生する音であり、収縮末期を示すものである。
 心臓計測値計測部100は、例えば公知の心音計で、被検体10の心音を計測する。そして、心臓計測値解析部102は、計測された心音を解析し、心音における1音、2音を検出する。
 拡張末期設定部106は、心臓計測値解析部102で1音を検出した時相を拡張末期として設定する。拡張末期設定部106は、拡張末期の時相に対応する時刻を算出する。制御部42は、記憶部44に記憶されているRF信号フレームデータ又は断層画像データの時刻と拡張末期設定部106で設定された拡張末期の時刻とを照らし合わせることにより、画像表示部26は、拡張末期に対応する断層画像を表示させることができる。
 収縮末期設定部104は、心臓計測値解析部102で2音を検出した時相を収縮末期として設定する。収縮末期設定部104は、収縮末期の時相に対応する時刻を算出する。制御部42は、記憶部44に記憶されているRF信号フレームデータ又は断層画像データの時刻と収縮末期設定部104で設定された収縮末期の時刻とを照らし合わせることにより、画像表示部26は、収縮末期に対応する断層画像を表示させることができる。
 心機能指標値演算部108は、収縮末期設定部104で設定された収縮末期(2音の計測時刻)の心臓計測値と拡張末期設定部106で設定された拡張末期(1音の計測時刻)の心臓計測値を心臓計測値計測部100から読み出す。心機能指標値演算部108は、収縮末期の心臓計測値と拡張末期の心臓計測値とを用いて、心臓の収縮機能を示す指標値である心機能指標値を演算する。
 なお、実施例1~3では、心電波形、心音等で心臓の拡張末期と収縮末期を設定したが、ドプラやMモードによる拡張末期と収縮末期を設定してもよい。例えば、Mモードでは、心臓の左室収縮末期径を計測することにより、収縮末期で計測することができ、心臓の左室拡張末期径を計測することにより、拡張末期で計測することができる。
 以上、実施例3によれば、収縮末期を心音によって設定し、拡張末期の心臓計測値と収縮末期の心臓計測値を用いて心機能指標値を演算することができる。
 (選択可能) 
 ここで、実施例4について、図5、図6を用いて説明する。実施例1~3と異なる点は、上記実施例1~3で開示した心臓の拡張末期と心臓の収縮末期の設定パラメータを選択する選択部(120、122、124、130、134)を備える点である。
 収縮末期については、実施例1に記載した体積による設定、実施例2に記載した時相による設定、実施例3に記載した心音による設定パラメータを選択することができる。画像表示部26には、収縮末期設定パラメータとして、体積設定ボタン120、時相設定ボタン122、心音設定ボタン124が表示される。操作者は、操作部40を介して、心臓の収縮末期の設定パラメータを選択することができる。図5では、体積ボタン120が選択されている。体積ボタン120が選択されたことが操作者が把握できるように、選択された体積ボタン120には、ハイライト処理等の強調処理が行われている。
 図6に実施例4の収縮末期の選択動作を示すフローチャートを示す。この選択動作は、図4で示すフローチャートのS104で行われる。
 (S201)
 まず、操作者は、操作部40を介して、収縮末期の設定パラメータを体積、時相、心音から選択する。
 (S202)
 S201において、体積により設定することが選択された場合、制御部42は、心臓の体積によって収縮末期を設定するように各構成要素に指示を行う。
 (S203)
 心臓計測値解析部102は、1心拍周期の体積変化グラフ84を解析して、1心拍周期で得られる心臓の体積の中で心臓の体積が最も小さくなる時刻を特定する。収縮末期設定部104は、最小体積が得られる時刻を収縮末期として設定する。
 (S204)
 S201において、時相により設定することが選択された場合、制御部42は、時相によって収縮末期を設定するように各構成要素に指示を行う。
 (S205)
 心臓計測値解析部102は、当該心拍周期以前に得られた1心拍周期の体積変化グラフを解析して、1心拍周期で得られる心臓の体積の中で心臓の体積が最も小さくなる時相を特定する。収縮末期設定部104は、R波の時相から心臓の体積が最も小さくなる時相までの時間差に基づいて、当該心拍周期における心臓の体積が最も小さくなる時相に対応する時刻を演算し、その時刻を収縮末期として設定する。
 (S206)
 S201において、心音により設定することが選択された場合、制御部42は、心音によって収縮末期を設定するように各構成要素に指示を行う。
 (S207)
 収縮末期設定部104は、心音計測部で2音を計測した時相を収縮末期として設定する。収縮末期設定部104は、収縮末期の時相に対応する時刻を算出し、その時刻を収縮末期として設定する。
 拡張末期についても同様に、実施例1に記載した特徴波形(R波)による設定、実施例3に記載した心音による設定パラメータを選択することができる。画像表示部26には、拡張末期設定パラメータとして、特徴波形設定ボタン130、心音設定ボタン134が表示される。操作者は、操作部40を介して、拡張末期の設定パラメータを選択することができる。
 なお、拡張末期の選択動作は、図6に示した収縮末期の選択動作を示すフローチャートと同様であるため、説明は省略する。
 以上、実施例4によれば、操作者は心臓の拡張末期と収縮末期の設定パラメータを選択できるため、診断に最適な設定を行うことができる。
 (修正フロー)
 ここで、実施例5について、図7を用いて説明する。実施例1~4と異なる点は、心機能指標値演算部108は複数の断層画像の断面に基づく心機能指標値を演算する点である。
 図7に複数の断層画像の断面に基づく心機能指標値を演算する動作を示すフローチャートを示す。この動作は、図4で示すフローチャートのS104で行われる。
 (S301)
 まず、操作者は、断層画像・心機能指標値が妥当かどうかを確認し、妥当かどうかを操作部40を用いて選択する。例えば、断層画像に関しては、計測点が設定され、追従されているかどうかを確認する。心機能指標値に関しては、通常では演算されない異常な心機能指標値が演算されているかどうかを確認する。操作者が妥当と選択した場合、動作が終了する。
 (S302)
 操作者が妥当でないと選択した場合、操作者は超音波探触子12を回転移動させ、心尖部四腔像(A4C)が心尖部二腔像(A2C)になるように断層画像を切り替える。また、心尖部二腔像(A2C)が心尖部四腔像(A4C)になるように断層画像を切り替える。なお、切り換えられた心尖部四腔像(A4C)と心尖部二腔像(A2C)の断層画像は記憶部44から読み出されてもよい。
 (S303)
 断面が切り換えられた断層画像について、拡張末期と収縮末期を設定する。S303~S305の動作は、図4に示されるS104~S106と同様であるため、説明は省略する。
 画像表示部26は、異なる断面である心尖部二腔像(A2C)と心尖部四腔像(A4C)の心臓計測値と心機能指標値をそれぞれ表示する。
 また、図示はしないが、記憶部44に記憶されているRF信号フレームデータ又は断層画像データを読み出して、心尖部四腔像(A4C)の断層画像を心尖部二腔像(A2C)の断層画像70とともに画像表示部26に表示させることもできる。心尖部四腔像(A4C)の断層画像を表示させる際、心尖部四腔像(A4C)で取得される特徴波形と心尖部二腔像(A2C)で取得される特徴波形を一致させることにより、心尖部二腔像(A2C)の断層画像70の心拍周期に合わせて表示させることもできる。
 実施例5によれば、診断に適した断面の断層画像を選択して、心機能指標値を演算することができる。
 (ROI再設定)
ここで、実施例6について、図8を用いて説明する。実施例1~5と異なる点は、拡張末期に該当する断層画像又は収縮末期に該当する断層画像に対し心臓計測値計測部100によって心臓計測値を計測したり、心機能指標値演算部108によって心機能指標値を計測したりする点である。
 図8に示すように、画像表示部26は、記憶部44に記憶されているRF信号フレームデータ又は断層画像データが時系列に縮小表示されている。縮小表示されたRF信号フレームデータ又は断層画像データには、拡張末期を示す拡張末期マーク150と、収縮末期を示す収縮末期マーク152と、表示時相マーク52の時相に対応する画面表示マーク154が表示されている。
 制御部42は、記憶部44に記憶されているRF信号フレームデータ又は断層画像データの時刻と収縮末期設定部104で設定された収縮末期の時刻、拡張末期設定部106で設定された拡張末期の時刻、画像表示部26に表示されている断層画像の表示時相の時刻とを照らし合わせることにより、拡張末期マーク150、収縮末期マーク152、画面表示マーク154を設定することができる。
 また、画像表示部26には、収縮末期の断層画像を読み出す収縮末期ボタン160と、拡張末期の断層画像を読み出す拡張末期ボタン162が表示されている。操作者が収縮末期ボタン160を押すと、制御部42は記憶部44に記憶されているRF信号フレームデータ又は断層画像データの時刻と収縮末期設定部104で設定された収縮末期の時刻を照らし合わせ、画像表示部26は、断層画像選択部46を介して収縮末期に対応する断層画像70を表示させることができる。収縮末期に対応する断層画像70は、収縮末期マーク152に対応する断層画像である。
 制御部42は、収縮末期に対応する断層画像70の組織形状を解析して、組織形状に基づいて自動的に計測点を収縮末期に対応する断層画像70に設定する。自動的に計測点を断層画像に設定することに関しては、実施例1で説明したため、ここでは説明を省略する。なお、操作者は、画像表示部26に表示されている収縮末期に対応する断層画像70に複数の計測点を操作部40を介して手動で設定することもできる。
 計測部36の心臓計測値計測部100は、断層画像選択部46で選択された収縮末期の断層画像について、新たに設定された複数の計測点に基づいて、収縮末期の心臓の面積、心臓の体積等の心臓計測値を計測する。そして、計測部36の心機能指標値演算部108は、収縮末期の心臓計測値と、収縮末期の心拍周期における拡張末期の心臓計測値とを用いて心機能指標値を演算する。
 また、操作者が拡張末期ボタン162を押すと、制御部42は記憶部44に記憶されているRF信号フレームデータ又は断層画像データの時刻と拡張末期設定部106で設定された拡張末期の時刻を照らし合わせ、画像表示部26は、断層画像選択部46を介して拡張末期に対応する断層画像70を表示させることができる。拡張末期に対応する断層画像70は、拡張末期マーク150に対応する断層画像である。
 制御部42は、拡張に対応する断層画像70の組織形状を解析して、組織形状に基づいて自動的に計測点を拡張末期に対応する断層画像70に設定することもできる。なお、操作者は、画像表示部26に表示されている拡張末期に対応する断層画像70に複数の計測点を操作部40を介して手動で設定することもできる。
 計測部36の心臓計測値計測部100は、断層画像選択部46で選択された拡張末期の断層画像について、新たに設定された複数の計測点に基づいて、拡張末期の心臓の面積、心臓の体積等の心臓計測値を計測する。そして、計測部36の心機能指標値演算部108は、拡張末期の心臓計測値と、拡張末期の心拍周期における収縮末期の心臓計測値とを用いて心機能指標値を演算する。
 実施例6によれば、収縮末期と拡張末期に対応する断層画像70を表示し、当該断層画像70に改めて計測点を設定した。よって、各断層画像に対して計測点の追従が適切に行われない場合であっても、心臓計測値と心機能指標値の計測を正確に行うことができる。
 また、本発明の各実施例は、超音波診断装置を例示して説明してきたが、超音波診断装置の断層画像計測部200の部分をMRI装置の送受信部、X線CT装置のX線発生系、検出系に置換すれば、本発明のMRI装置やX線CT装置への適用は可能である。
 10 被検体、12 超音波探触子、14 送信部、16 受信部、18 超音波送受信制御部、20 整相加算部、22 断層画像構成部、24 白黒スキャンコンバータ、26 画像表示部、30 心電波形検出部、32 特徴波形検出部、34 心拍周期設定部、36 計測部、40 操作部、42 制御部 200 断層画像計測部 300 断層画像構成部 400 特徴波形特定部 500 収縮末期・拡張末期特定部

Claims (15)

  1.  被検体の断層画像を得るための計測データを計測する断層画像計測部と、
     前記計測データから前記断層画像を構成する断層画像構成部と、
     前記断層画像中の心臓の形態を示す心臓計測値を計測する計測部と、
     前記心臓の心機能を示す心機能指標値を演算する演算部と、
     前記断層画像、前記心臓計測値及び前記心機能指標値を表示する画像表示部と、を備えた医用画像診断装置であって、
     前記被検体から検出された心電波形の特徴波形を検出する特徴波形検出部と、
     前記計測部によって計測される前記特徴波形に基づく心拍周期における収縮末期と拡張末期の心臓計測値と前記心拍周期とを用いて前記収縮末期と前記拡張末期を特定する収縮末期・拡張末期特定部と、を備えたことを特徴とする医用画像診断装置。
  2.  前記計測部は、前記心臓計測値に心臓の面積、心臓の体積のいずれか1つを用いることを特徴とする請求項1記載の医用画像診断装置。
  3.  前記演算部は、前記心機能指標値に駆出率、1回心拍出量、心拍出量のいずれか1つを用いることを特徴とする請求項1記載の医用画像診断装置。
  4.  前記演算部は、前記収縮末期に対応する心臓の体積と前記拡張末期に対応する心臓の体積とから前記心機能指標値を演算することを特徴とする請求項1記載の医用画像診断装置。
  5.  前記収縮末期・拡張末期特定部は、前記特徴波形をR波を含む基準波形としたとき、前記基準波形に基づく心拍周期における収縮末期の心臓計測値と前記心拍周期を用いて前記収縮末期を特定することを特徴とする請求項1記載の医用画像診断装置。
  6.  前記収縮末期・拡張末期特定部は、前記心拍周期で得られる心臓の体積の中で心臓の体積が最も小さくなる時相を算出し、前記心臓の体積が最も小さくなる時相を前記収縮末期として特定することを特徴とする請求項5記載の医用画像診断装置。
  7.  前記収縮末期・拡張末期特定部は、前記特徴波形の時刻から心臓の体積が最も小さくなる時刻までの時間差を予め計測し、前記心拍周期における前記収縮末期を特定することを特徴とする請求項5記載の医用画像診断装置。
  8.  前記収縮末期・拡張末期特定部は、前記被検体の心音に基づいて前記収縮末期を特定することを特徴とする請求項5記載の医用画像診断装置。
  9.  前記収縮末期・拡張末期特定部は、前記特徴波形又は心音に基づいて前記拡張末期を特定することを特徴とする請求項1記載の医用画像診断装置。
  10.  前記断層画像に関するRF信号フレームデータ又は断層画像データを時刻ともに記憶する記憶部と、
     前記RF信号フレームデータ又は断層画像データの時刻と、
     前記収縮末期・拡張末期特定部によって特定された前記収縮末期の時刻又は前記拡張末期の時刻とを照らし合わせる制御部と、をさらに備え、
     前記画像表示部は、前記収縮末期に対応する前記断層画像又は前記拡張末期に対応する前記断層画像を表示することを特徴とする請求項1記載の医用画像診断装置。
  11.  前記画像表示部は、前記心拍周期の前記断層画像が表示されている間、当該心拍周期の前記心機能指標値を表示することを特徴とする請求項10記載の医用画像診断装置。
  12.  前記計測部は、前記収縮末期・拡張末期特定部によって特定された前記拡張末期に該当する前記断層画像又は前記収縮末期に該当する前記断層画像に対し心臓計測値を計測し、
     前記演算部は、前記拡張末期に該当する前記断層画像又は前記収縮末期に該当する前記断層画像に対して心機能指標値を演算することを特徴とする請求項10記載の医用画像診断装置。
  13.  前記拡張末期と前記収縮末期の設定パラメータを選択する選択部をさらに備えたことを特徴とする請求項1記載の医用画像診断装置。
  14.  前記演算部は、複数の前記断層画像の断面に基づく前記心機能指標値を演算することを特徴とする請求項1記載の医用画像診断装置。
  15.  被検体の断層画像を得るための計測データを計測するステップと、
     前記計測データから前記断層画像を構成するステップと、
     前記被検体から検出された心電波形の特徴波形を検出するステップと、
     前記特徴波形に基づく心拍周期における収縮末期と拡張末期の心臓計測値と前記心拍周期とを用いて前記収縮末期と前記拡張末期を特定するステップと、
     前記特定された前記収縮末期と前記拡張末期の断層画像中の心臓の形態を示す心臓計測値を計測するステップと、
     前記心臓の心機能を示す心機能指標値を演算するステップと、
     前記断層画像、前記心臓計測値及び前記心機能指標値を表示するステップと、
     とを含むことを特徴とする心臓計測値表示方法。
PCT/JP2011/067189 2010-08-19 2011-07-28 医用画像診断装置及び心臓計測値表示方法 WO2012023399A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012529544A JPWO2012023399A1 (ja) 2010-08-19 2011-07-28 医用画像診断装置及び心臓計測値表示方法
CN201180030143.1A CN102958443B (zh) 2010-08-19 2011-07-28 医用图像诊断装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-183535 2010-08-19
JP2010183535 2010-08-19

Publications (1)

Publication Number Publication Date
WO2012023399A1 true WO2012023399A1 (ja) 2012-02-23

Family

ID=45605060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067189 WO2012023399A1 (ja) 2010-08-19 2011-07-28 医用画像診断装置及び心臓計測値表示方法

Country Status (3)

Country Link
JP (1) JPWO2012023399A1 (ja)
CN (1) CN102958443B (ja)
WO (1) WO2012023399A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146710A1 (ja) * 2012-03-30 2013-10-03 株式会社東芝 超音波診断装置、画像処理装置及び画像処理方法
JP2015150862A (ja) * 2014-02-19 2015-08-24 ローランドディー.ジー.株式会社 3次元造形装置を用いて造形物を造形するためのコンピュータプログラムおよびそれを備えた3次元造形システム
JP2017006213A (ja) * 2015-06-17 2017-01-12 東芝メディカルシステムズ株式会社 超音波診断装置及び制御プログラム
JP2017121520A (ja) * 2012-03-30 2017-07-13 東芝メディカルシステムズ株式会社 超音波診断装置、画像処理装置及び画像処理方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110176294A (zh) * 2019-05-31 2019-08-27 数坤(北京)网络科技有限公司 一种血管cta影像数据的调度方法、装置及可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1099328A (ja) * 1996-09-26 1998-04-21 Toshiba Corp 画像処理装置及び画像処理方法
JP2002085404A (ja) * 2000-09-19 2002-03-26 Aloka Co Ltd 超音波画像処理装置
JP2005342006A (ja) * 2004-05-31 2005-12-15 Toshiba Corp 超音波診断装置、超音波画像処理装置、及び超音波信号処理プログラム
JP2006247395A (ja) * 2005-03-09 2006-09-21 Siemens Medical Solutions Usa Inc 超音波データから周期的情報を求める方法及びシステム
JP2007175235A (ja) * 2005-12-27 2007-07-12 Toshiba Corp 超音波画像処理装置及び超音波画像処理装置の制御プログラム
JP2008012047A (ja) * 2006-07-05 2008-01-24 Aloka Co Ltd 超音波診断装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447454B1 (en) * 2000-12-07 2002-09-10 Koninklijke Philips Electronics N.V. Acquisition, analysis and display of ultrasonic diagnostic cardiac images
JP5619347B2 (ja) * 2007-12-20 2014-11-05 東芝メディカルシステムズ株式会社 超音波診断装置、超音波画像解析装置及び超音波画像解析プログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1099328A (ja) * 1996-09-26 1998-04-21 Toshiba Corp 画像処理装置及び画像処理方法
JP2002085404A (ja) * 2000-09-19 2002-03-26 Aloka Co Ltd 超音波画像処理装置
JP2005342006A (ja) * 2004-05-31 2005-12-15 Toshiba Corp 超音波診断装置、超音波画像処理装置、及び超音波信号処理プログラム
JP2006247395A (ja) * 2005-03-09 2006-09-21 Siemens Medical Solutions Usa Inc 超音波データから周期的情報を求める方法及びシステム
JP2007175235A (ja) * 2005-12-27 2007-07-12 Toshiba Corp 超音波画像処理装置及び超音波画像処理装置の制御プログラム
JP2008012047A (ja) * 2006-07-05 2008-01-24 Aloka Co Ltd 超音波診断装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146710A1 (ja) * 2012-03-30 2013-10-03 株式会社東芝 超音波診断装置、画像処理装置及び画像処理方法
JP2013226400A (ja) * 2012-03-30 2013-11-07 Toshiba Corp 超音波診断装置、画像処理装置及び画像処理方法
CN103648402A (zh) * 2012-03-30 2014-03-19 株式会社东芝 超声波诊断装置、图像处理装置以及图像处理方法
JP2017121520A (ja) * 2012-03-30 2017-07-13 東芝メディカルシステムズ株式会社 超音波診断装置、画像処理装置及び画像処理方法
JP2015150862A (ja) * 2014-02-19 2015-08-24 ローランドディー.ジー.株式会社 3次元造形装置を用いて造形物を造形するためのコンピュータプログラムおよびそれを備えた3次元造形システム
JP2017006213A (ja) * 2015-06-17 2017-01-12 東芝メディカルシステムズ株式会社 超音波診断装置及び制御プログラム
US11039777B2 (en) 2015-06-17 2021-06-22 Canon Medical Systems Corporation Ultrasonic diagnostic apparatus and control method

Also Published As

Publication number Publication date
CN102958443A (zh) 2013-03-06
JPWO2012023399A1 (ja) 2013-10-28
CN102958443B (zh) 2017-02-08

Similar Documents

Publication Publication Date Title
US20230200785A1 (en) Ultrasound diagnosis apparatus, image processing apparatus, and image processing method
JP5414157B2 (ja) 超音波診断装置、超音波画像処理装置、及び超音波画像処理プログラム
JP4890554B2 (ja) 超音波診断装置
JP4206107B2 (ja) 超音波診断装置
US11617561B2 (en) Ultrasound imaging system and method
KR20030078760A (ko) 화상 처리 장치 및 초음파 진단 장치
JP2013528458A (ja) 3d超音波胎児イメージングのための自動心拍数検出
JP5820128B2 (ja) 超音波診断装置
WO2012023399A1 (ja) 医用画像診断装置及び心臓計測値表示方法
WO2013105568A1 (ja) 画像診断装置及び画像表示方法
WO2014091999A1 (ja) 超音波撮像装置及び方法
US10918358B2 (en) Monitoring system method and device
KR102351124B1 (ko) 혈관의 특징을 산출하는 방법 및 이를 위한 초음파 장치
JP2010269018A (ja) 超音波診断装置
JP5400095B2 (ja) 超音波診断装置
JP4149177B2 (ja) 超音波診断装置及び画像処理装置
JP2011036271A (ja) 超音波診断装置
JP5814921B2 (ja) 医用画像診断装置及び心臓計測値表示方法
JP2009039277A (ja) 超音波診断装置
CN111317508B (zh) 超声波诊断装置、医用信息处理装置、计算机程序产品
JP4921816B2 (ja) 超音波診断装置及びその制御プログラム
JP5444408B2 (ja) 超音波診断装置、超音波画像処理装置、及び超音波画像処理プログラム
JP6430558B2 (ja) 超音波診断装置、画像処理装置及び画像処理方法
WO2019076839A1 (en) SYSTEM AND METHOD FOR ULTRASONIC IMAGING
JP7356229B2 (ja) 超音波診断装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180030143.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11818042

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012529544

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11818042

Country of ref document: EP

Kind code of ref document: A1