WO2012022018A1 - 激光光学触控模块及其模拟数字转换***与方法 - Google Patents

激光光学触控模块及其模拟数字转换***与方法 Download PDF

Info

Publication number
WO2012022018A1
WO2012022018A1 PCT/CN2010/002079 CN2010002079W WO2012022018A1 WO 2012022018 A1 WO2012022018 A1 WO 2012022018A1 CN 2010002079 W CN2010002079 W CN 2010002079W WO 2012022018 A1 WO2012022018 A1 WO 2012022018A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
reference level
laser
variable reference
analog
Prior art date
Application number
PCT/CN2010/002079
Other languages
English (en)
French (fr)
Inventor
陈国仁
温明华
林顺正
Original Assignee
Chen Guozen
Wen Minghua
Lin Shuncheng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2010102582649A external-priority patent/CN102375615A/zh
Priority claimed from CN2010105255102A external-priority patent/CN102457278A/zh
Application filed by Chen Guozen, Wen Minghua, Lin Shuncheng filed Critical Chen Guozen
Priority to US13/818,065 priority Critical patent/US9471179B2/en
Publication of WO2012022018A1 publication Critical patent/WO2012022018A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters
    • H03M1/129Means for adapting the input signal to the range the converter can handle, e.g. limiting, pre-scaling ; Out-of-range indication
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values

Definitions

  • the present invention relates to an optical touch module and an analog-to-digital conversion system and method thereof, and more particularly to a light-emitting portion using a laser light source and a light-receiving portion having a position sensor, and the light-emitting portion and the light-receiving portion Forming a module in a parallel optical path or a common optical path; and using a variable reference level generator for determining a signal peak value and/or a reference voltage level and/or a signal according to the position sensor output signal Variation values such as temperature, light source intensity, ambient light intensity, etc. are numerically calculated to generate a variable reference level, and the comparator is judged by a level so that the sensor output data can be referenced to the variable reference level. Effectively and quickly convert to a clear digital signal and output. Background technique
  • the popular touch display screen is directly touched on the surface of the display screen by a touch finger such as a finger or a stylus to control various functions of the display, such as clicking a job, switching a screen, or enlarging/reducing a screen, etc. It replaces the common push-button control method of the general display; currently, the touch display has included many different touch systems, such as Resistive, Capacitive, and Surface Acoustic Wave (SAW). ), IR, Infrared, optical imaging, etc., each having its own advantages and disadvantages. Among them, the advantages of the optical touch system are that it is applied to a large-sized display screen, which has the advantage of cost.
  • SAW Surface Acoustic Wave
  • the screen has good transparency (up to 100%) and has good touch resolution; its disadvantage is that it is not suitable for small-sized panels (under 15 ⁇ ), it is easier Affected by ambient light and additional lighting sources and reflective strips or light absorbing strips.
  • the optical touch system includes a number of prior art technologies such as US 2009/0200453, US 7,538,759, US 7,692,625, US 7,629,967, etc.
  • the prior art of the plurality of optical touch systems is on the side of the surface of the display screen.
  • On the rim such as on the four sides of the rectangular display surface or at the four corners, at least one set of light source devices, such as an LED as a light source, is used to illuminate the entire
  • a light or linear light irradiation area is formed on the surface of the entire display screen, which may be called a light curtain, and mutually perpendicular reflective strips are arranged on the peripheral edge (frame side) of the display screen surface.
  • a light absorbing strip and at least two sets of position sensors are arranged on the side edges of the display surface in a direction of sensing direction; then when a touch part, such as a finger or a stylus, touches When the display screen is on the surface of the display, the touch component can scatter or block the light that is irradiated on the surface of the display screen. At this time, the reflection effect of the reflective strip or the absorption of the light absorption strip can be passed.
  • the at least two sets of position sensors sense the relative position of the touch object in at least two directions, and then use a computing function of the processing circuit to know the actual position coordinates of the touch object on the display surface, A function of using an optical touch system is known.
  • LEDs LEDs
  • Light-emitting diode as a light source
  • the LED light is not a highly coherent light source, so the sensitivity of the touch cannot be effectively improved
  • the existing LED light source device and the position sensor used are Separate individuals are respectively disposed at a certain position (frame side) of the surface of the display screen, and must be used with the reflective strip or the light absorbing strip on the overall structure, so that the structure is complicated, the cost is increased, and the like, especially the LED
  • the illumination light provided by the light source device is generally visible light, and is easily interfered or affected by the visible light generated in the use environment and the visible light generated by the display screen, so that the sensing sensitivity of the position sensor in the optical touch system is reduced, that is, signal noise.
  • the ratio (S) is lowered to relatively affect the interpretation of the signal, so that the use efficiency of the optical touch system is reduced.
  • FIG. 1 , FIG. 1A , FIG. 8 and FIG. 8A respectively, the use state of the light reflective type and the light blocking type optical touch system and the position (image) sensor (sensor/camera ) are respectively used.
  • the optical touch system is generally disposed on a side edge of a surface of the display screen 2, such as a four-sided frame edge or a four corner of a rectangular display screen surface, and at least one light source device 11 (10) is provided, such as an LED or a thunder.
  • the light source is used to illuminate the surface of the entire display screen, that is, a light or linear light irradiation area is formed on the surface of the entire display screen, which may be referred to as a light curtain; the peripheral edge of the surface of the display screen 2 ( a reflective strip or a light absorbing strip (not shown) that is perpendicular to each other on the side of the frame; on the side of the surface of the display screen 2 At least two sets of position (image) sensors are arranged on the rim in a staggered manner of sensing directions
  • the control 4 can cause light scattering (light reflection type as shown in FIG. 1) or occlusion (light blocking type as shown in FIG. 8) for the light irradiated on the surface of the entire display screen 1, and the light reflecting strip is transmitted through the reflective strip.
  • the reflection or absorption of the light absorbing strip, the reflected or occluded laser beam generated by the position of the touch device 3 is as shown in Figs. 1 and 8, and can be on the active pixel axis of the position (image) sensor 21.
  • a reaction is generated to form a signal output/sensor data, as shown in Figs. 1A and 8A, which is represented by Vout.
  • the at least two sets of position (image) sensors 21 are used to sense the relative position of the touch object 3 in at least two directions, and then the operation function of a processor or a processing circuit is used to know that the touch object 3 is touched and displayed.
  • the actual position coordinates on the surface of the screen 2 achieve the function of an optical touch system.
  • the sensor output data Vout formed by the position (image) sensor 21 is an analog data, which must be converted into digital data before passing through a computing function of a processor.
  • MCU Micro Control Unit
  • CPU Central Processing Unit
  • DSP Digital Signal Processing
  • analog-to-digital conversion operation of the sensor output data Vout of the image sensor described above is generally performed by an analog-to-digital conversion (ADC) circuit, such as U.S. Patent No. 4,839,739 and U.S. Patent Publication Pub. No.
  • ADC analog-to-digital conversion
  • the main objective of the present invention is to provide a laser optical touch module that combines a light-emitting portion of a laser light source such as an infrared (IR) laser with a light-receiving portion of a position sensor to make the laser light source
  • the position sensor is disposed at the same position on one side of the display screen surface, wherein the light emitting portion emits a laser beam through a laser light source and is refracted by a wide-angle optical component such as line generator optics.
  • the rear light fan can be greater than 90 degrees to form a wide-angle linear beam on the display surface, and the light receiving portion receives and senses the laser light reflected by the touch beam by the position sensor. Sensing the relative position of the touch member, improving the sensitivity of the touch by the high coherent light of the laser beam, and avoiding the trouble of using the reflective strip or the light absorbing strip in the prior art, achieving structural simplification And the touch sensitivity is high.
  • a further object of the present invention is to provide a laser optical touch module in which the high homology of the optical path of the light emitting portion enhances the sensitivity of the touch and achieves a simplified structure and easy installation.
  • Another object of the present invention is to provide a laser optical touch module in which the optical path of the light-emitting portion and the optical path of the light-receiving portion are combined together in a common optical path to make the position of the laser light source and the light-receiving portion of the light-emitting portion
  • the detector can share a wide-angle optical component such as a line generator Optics ) , that is, the laser beam emitted by the laser source and the reflected beam received and induced by the position sensor pass through the same wide-angle optical element, and a beam splitter is disposed behind the wide-angle optical element.
  • the wide-angle optical element originally required for the device such as a wide-angle imaging lens (viewing angle > 90 degrees), and avoiding the optical aberration of the wide-angle optical element, that is, the optical distortion of the peripheral field; and the position sensor
  • a further lens can be placed on the sensing surface, just like a commercially available CMOS sensor to increase the light-receiving power and efficiency.
  • Another object of the present invention is to provide a laser optical touch module, wherein when the optical path of the light-emitting portion and the light path of the light-receiving portion are combined together in a common optical path, the laser light source can further use a small-diameter laser beam.
  • a beam expander (beam) may be further provided. expander optics), ⁇ to the laser beam 1 is expanded into a small-diameter laser beam then enters the larger diameter to the sensing surface of the position sensor, thereby effectively using the image forming unit (i.e. pixels, the pixels on the position sensor) , which improves the resolution of the touch.
  • Another object of the present invention is to provide a laser optical touch module, wherein when the optical path of the light-emitting portion and the light path of the light-receiving portion are combined together in a common optical path, the optical element can further be used for the wide-angle optical element.
  • a quarter wave-plate and a polarization beam splitter are arranged in the rear of the line generator optics to make the laser light (P-polarization) and the S line.
  • the use efficiency of the light can be improved, that is, the use efficiency of the laser light energy can be maximized.
  • Another object of the present invention is to provide an analog to digital conversion system and method for sensing output (sensor output/sensor data) obtained by a position (image) sensor in a laser optical touch module.
  • Vout is effectively converted to a digital signal to provide processing by the processor, which utilizes a digital decision comparator to replace the commonly used analog-to-digital conversion (ADC) circuit and is tuned by a variable reference level generator
  • the sensor output data (Vout) generates a variable reference level (VREF) by a signal peak (VA) detected by at least one detecting circuit, and the comparator is used to determine the comparator to output the sensor.
  • Vout can be compared and compared based on the variable reference level (VREF) to be efficiently and quickly converted into an explicit digital signal and output to the processor to achieve a non-use analog-to-digital conversion (ADC) circuit.
  • VREF variable reference level
  • ADC analog-to-digital conversion
  • Still another object of the present invention is to provide an analog-to-digital conversion system and method, wherein the variable reference level generator can further be detected by the at least one detection circuit according to the sensor output signal (Vout) Knowing the signal peak value (VA) and a reference voltage level (VB), the reference voltage level (VB) is a voltage level other than the signal peak value (VA) in the sensor output data (Vout);
  • the output data (Vout) can be judged and compared based on the variable reference level (VREF) to be efficiently and quickly converted into an explicit digital signal and output.
  • Still another object of the present invention is to provide an analog-to-digital conversion system and method, wherein the variable reference level generator is further identifiable by the at least one detection circuit according to the analog output signal (Vout).
  • the resulting variation value (VE) and is produced via the variable reference level
  • the numerical operation of the generator is to generate a variable reference level (VREF), and the comparator is used to determine the comparator so that the sensor output data (Vout) can be determined based on the variable reference level (VREF).
  • the comparison is efficiently and quickly converted to a clear digital signal and output to the processor for further and/or resistance to ambient light variability, and the advantages and effects of the reference voltage level step need not be adjusted during production.
  • Still another object of the present invention is to provide an analog to digital conversion system and method, wherein a variable reference level (VREF) generated by a numerical operation of the variable reference level generator can be further set to segmented a reference level for the digital determination comparator to use the sensor output data (Vout) to select an appropriate reference level (VREF) of the reference level of the segment as a reference to
  • the detector output data (Vout) is efficiently and quickly converted into an explicit digital signal and output to the processor; thereby, the variable reference level (VREF) generated by the numerical operation of the variable reference level generator is made
  • the variable reference level (VREF) is originally a variable reference level (VREF) that is not segmented or segmented, and is changed to a reference reference level of the segment, that is, each segment of the segmented reference level.
  • the numerical spacing between the reference levels is magnified, that is, the range of application of each reference level is relatively expanded to reduce the processor program load and improve program execution efficiency.
  • Still another object of the present invention is to provide an analog-to-digital conversion system and method for efficiently converting analog output data sensed by a position (image) sensor in a laser optical touch module into a digital signal. to provide a processor for processing, wherein the method of operation of the system to digital conversion (processing method) analog, comprising 1 j bad steps of:
  • a signal peak value (VA) of the sensor output data (Vout) is detected by at least one detection circuit; and a variable reference level is provided according to the sensor output data (Vout) and the signal peak value (VA) ( VREF) ;
  • the comparator is judged by the number such that the sensor output data (Vout) can be converted to an unambiguous digital signal and output based on the variable reference level.
  • Vout the sensor output data
  • VA the signal peak value
  • a variable reference level generator can be provided, and the numerical calculation function of the variable reference level generator can be used to generate the one according to the signal peak value (VA). Change the reference level.
  • the variable reference level generator may further pass the signal peak value (VA) and/or a reference voltage level (VB) and/or a variation value (VC) obtained by temperature detection and/or one pass.
  • VA signal peak value
  • VB reference voltage level
  • VC variation value obtained by temperature detection and/or one pass.
  • VD variation value obtained by detecting the intensity of the light source and/or a variation value (VE) obtained by detecting the ambient light intensity, and performing a numerical calculation function of the variable reference level generator to generate a variable reference level .
  • variable reference level (VREF) generated by the numerical operation of the variable reference level generator can be further set as a reference level of the segment.
  • FIG. 1 is a schematic view showing a state of use of a first embodiment of a laser optical touch module of the present invention (transceiving parallel optical path) disposed on one side of a surface of a display screen to provide a light reflective positioning input function;
  • FIG. 1A is a schematic diagram of an inductive signal output of a pixel of a position sensor of the present invention in the embodiment of FIG. 1;
  • FIG. 2 is a perspective view showing a first embodiment (transceiver parallel optical path) of the laser optical touch module of the present invention
  • FIG. 3 is a plan view (top view) of the embodiment of FIG. 2 (transceiving parallel optical path);
  • FIG. 4 is a plan view showing a second embodiment of the laser optical touch module of the present invention (transceiving common light path);
  • FIG. 5 is a schematic diagram showing the functional state of a microlens (Mirco Lens) on the sensing surface of the position sensor of the present invention
  • FIG. 6 is a plan view showing a third embodiment (transceiver common light path) of the laser optical touch module of the present invention.
  • FIG. 7 is a plan view showing a fourth embodiment of the laser optical touch module of the present invention (transceiver common light path) Intention
  • FIG. 8 is a schematic view showing a state of use of a light-blocking optical touch system
  • Vout analog output data
  • Figure 9 is a block diagram showing the state of use of the analog-to-digital conversion system of the present invention.
  • Figure 10 is a functional block diagram of the analog to digital conversion system of the present invention (applied to a light reflective touch control system);
  • FIG. 11 is a functional block diagram of an analog-to-digital conversion system of the present invention (applied to a light-blocking touch system);
  • FIG. 12 is a functional explanatory diagram of a level determination comparator of the analog-to-digital conversion system of the present invention (applied to light reflection) Touch system);
  • FIG. 13 is a functional explanatory diagram of a level determining comparator of the analog-to-digital conversion system of the present invention (applied to a light-blocking touch system);
  • Figure 14 is a block diagram showing the structure of the first embodiment of the analog-to-digital conversion system of the present invention
  • Figure 15 is a block diagram showing the structure of the analog-to-digital conversion system of the present invention
  • Figure 16 is a third embodiment of the analog-to-digital conversion system of the present invention.
  • Figure 17 is a block diagram showing the structure and function of the fourth embodiment of the analog-to-digital conversion system of the present invention
  • Figure 18 is a block diagram showing the structure of the fifth embodiment of the analog-to-digital conversion system of the present invention.
  • laser optical touch module-1 la, lb, lc; display-2; touch member-3; light-emitting portion-10; laser light source -11, 11a; laser diode-111; first-order optical -112; wide-angle optical element -12, 22; light-receiving portion-20; position sensor-21; sensing surface -211; wide-angle optical element-22; outer casing -30; opening -301, 302; Beams -101, 102, 102a.
  • FIGS. 1 and 1A are respectively a schematic diagram of a state of use of a first embodiment of a laser optical touch module of the present invention (transceiving parallel optical path) disposed on one side of a display screen to provide a light reflective positioning input function and a pixel of a position sensor Schematic diagram of the sensing signal output.
  • the laser optical touch module 1 of the present invention is disposed on one side of the surface of the display screen 2 for providing an optical positioning input function for forming an optical touch system on the display screen 2; in general, the display screen At least two laser optical touch modules 1 are disposed on the periphery of the surface of the second surface.
  • a laser optical touch module 1 is disposed at two adjacent corners of the side edge of the display screen 2, wherein each laser optical touch module 1 has The sensing direction of the position sensor is formed in a staggered manner on the surface of the display screen 2. Only the state of use of one of the laser optical touch modules 1 is shown in FIG.
  • the laser optical touch module 1 is composed of a light-emitting portion 10 and a light-receiving portion 20, and the light-emitting portion 10 and the light-receiving portion 20 can be accommodated in an outer casing 30 to form an assembly.
  • the light-emitting portion 10 is mainly passed through a laser light source 11 to emit a laser beam and is refracted by a wide-angle optical element 12 such as a line generator optics, so that the refracted laser light light can be greater than 90 degrees. As shown in FIG.
  • a wide-angle linear beam 101 is formed on the surface of the display screen 2; when the touch member 3 touches the surface of the display screen 2, the linear beam 101 is blocked and a reflected laser beam 102 is formed; the light-receiving portion 20 is Receiving and sensing the reflected laser beam 102 through a position sensor 21 to sense the relative position of the touch member 3 on a corresponding optical axis 103 on the sensing surface of the position sensor 21; As shown in 1A, The reflected laser beam 102 generated by the position of the touch device 3 can react on the active pixel axis of the position sensor 21 to form a signal output, and is sensed by at least two sets of position sensors 21.
  • the actual position coordinate of the touch component 3 on the surface of the display screen 2 can be known by the calculation function of the processing circuit; because the position sensor 21 or the wide angle is used
  • the optical component 12, such as the body structure of the line generator optics and the computing function of the processing circuit, can be achieved by using current electronic technology or the prior art, and are not technical features of the present invention, and thus will not be described herein.
  • FIG. 2 and FIG. 3 are respectively a perspective view and a plan view (top view) of the first embodiment (transceiver parallel optical path) of the laser optical touch module of the present invention.
  • the embodiment shown in FIG. 2 and FIG. 3 is only for explaining but not limiting the main components of the laser optical touch module 1 of the present invention; the laser optical touch module 1 of the present invention utilizes a laser light source 11 such as The light-emitting portion 10 of the infrared laser (IR LD ) and the light-receiving portion 20 of the position sensor 21 are combined into a module such that the laser light source 11 and the position sensor 21 can be disposed on one side of the surface of the display screen 2.
  • IR LD infrared laser
  • the light-emitting portion 10 passes through a laser light source 11 and includes a laser diode 111 and a first-order optical member 112 to emit a laser beam and pass through a wide-angle optical element 12 such as
  • the refraction of the line generator optics allows the refracted light fan to be greater than 90 degrees as shown in Figure 3, to form a wide-angle linear beam 101 on the surface of the display 2 as shown in Figures 1 and 3.
  • the light receiving portion 20 receives and senses the laser beam 102 reflected by the touch member 3 through a position sensor 21 and a wide-angle optical element 22, as shown in FIG.
  • the relative position of the touch element 3 is sensed; therefore, the laser optical touch module 1 of the present invention enhances the sensitivity of the touch by the high coherent light of the laser beam, and can avoid the reflection of the prior art.
  • the trouble of the strip or the light absorbing strip has the advantages of simplified structure, easy installation, and high touch sensitivity.
  • the laser optical touch module 1 of the first embodiment is composed of a light emitting portion 10 and a light receiving portion 20, and the light emitting portion 10 and the light receiving portion 20 can be accommodated in the module.
  • An outer casing 30 is internally assembled to form a module; the outer casing 30 is provided with a corresponding light emitting portion 10
  • the opening of the optical path of the light-receiving unit 20 includes a light-emitting portion opening 301 and a light-receiving portion opening 302 as shown in FIGS.
  • the optical path of the light-emitting portion 10 and the light path of the light-receiving portion 20 are laterally combined side by side in a horizontal (relative to the surface of the display screen 2) and parallel optical paths, but are not limited, such as vertical (relative to the display screen 2)
  • the surface is parallel and the optical path is vertically and side by side combined (not shown).
  • the laser optical touch module 1a of the second embodiment is composed of a light-emitting portion 10 and a light-receiving portion 20, and the light-emitting portion 10 and the light-receiving portion 20 can be accommodated in an outer casing 30 to be combined into a module.
  • the optical path of the light-emitting portion 10 and the optical path of the light-receiving portion 20, that is, between the laser light source 11 and the optical path of the position sensor 21, are combined in a common light path manner.
  • the optical path opening corresponding to the light-emitting portion 10 and the light-receiving portion 20 provided in the outer casing 30 of the second embodiment such as the light-emitting portion opening 301 and the light-receiving portion opening 302 of the first embodiment, is in the outer casing.
  • the same opening 301 (302) is formed on the body 30 for the optical path of the laser light source 11 and the position sensor 21 to pass; and the laser light source 11 of the light-emitting portion 10 and the light-receiving portion are formed by the common light path method of the second embodiment.
  • the position sensor 21 of the portion 20 can share the same wide-angle optical element 12 (22) such as a line generator optics, that is, the laser beam 101 emitted by the laser light source 11 and the position sensor 21 receive and sense The reflected laser beam 102 passes through a same wide angle
  • the optical element 12 (22), i.e., the lens wire (line generator optics) may generate a reverse light path such as a wide-angle imaging lens (viewing angle> 90 °) condensing effect.
  • a beam splitter 40 is disposed behind the wide-angle optical element 12 ( 22 ) such that the laser beam 101 emitted by the laser source 11 passes through the beam splitter 40 and is emitted to the wide-angle optical element.
  • the wide-angle optical element 22 originally required for the position sensor 21 can be saved, that is, the wire bonding lens (line)
  • the reverse optical path of the generator optics can produce a wide-angle imaging lens (viewing angle > 90 degrees) and can avoid optical aberrations of the wide-angle optical element 22, that is, optical distortion of the peripheral field.
  • a collimator 50 may be further disposed between the laser source 11 and the beam splitter 40 such that the laser beam 104 emitted by the laser source 11 passes through the collimator 50.
  • a parallel beam 105 can be formed to facilitate passage of the wide-angle optical element 12 (22), such as line generator optics, to form a wide-angle linear beam on the display surface.
  • the sensing surface 211 of the position sensor 21 may further be provided with a micro lens (Mirco Lens) 60, which functions as a complementary type for general commercial use.
  • the metal oxide semiconductor sensor (CMOS) can further condense the laser beam 102 generated by the touch object 3 at the position ⁇ 4 corresponding to the position ⁇ 1 ⁇ ⁇ ⁇ on the optical axis 103 to be further concentrated on the sensing surface 211.
  • Fig. 6 is a plan view showing a third embodiment (transceiver common light path) of the laser optical touch module of the present invention.
  • the structure of the laser optical touch module 1b of the third embodiment is substantially the same as that of the laser optical touch module 1a of the second embodiment shown in FIG. 5, the main difference is that: the laser light source is further used to emit a small-diameter laser 104a.
  • the laser light source l la is used to enhance the astigmatism efficiency of the wide-angle optical component 12 ( 22 ) such as a wire bonding lens; at this time, the front end of the sensing surface 211 of the position sensor 21, that is, the position sensor 21 and the beam splitting Between the mirrors 40, a beam expander optics 70 is further provided for expanding the small-diameter reflected laser beam 102a into a larger-diameter laser beam and then incident on the sensing surface 211 of the position sensor 21. In order to effectively utilize the imaging unit (ie, pixels, pixels) on the position sensor 21, thereby improving the resolution of the touch.
  • the imaging unit ie, pixels, pixels
  • FIG. 7 is a schematic plan view showing a fourth embodiment of the laser optical touch module of the present invention (transceiver common light path).
  • the structure of the laser optical touch module lc of the fourth embodiment is substantially the same as that of the laser optical touch module lb of the third embodiment shown in FIG. 6.
  • the main difference is that: the wide-angle optical component 12 (22) is used.
  • a quarter-wave plate is sequentially arranged behind the line generator optics (quarter A wave-plate 80 and a polarization beam splitter 90 are used in place of the beam splitter 40 in the laser optical touch module lb of the third embodiment; in use, the laser source 11 emits
  • the laser beam 104a can utilize the characteristics of two kinds of linearly polarized light provided by the laser, that is, P-polarization and S-polarization, and two orthogonal linearly polarized lights, after passing through the one
  • the polarization beam splitter 90 is polarized, another linearly polarized light (usually S-line polarized light) in which one linearly polarized light (usually P-line polarized light) passes completely is orthogonally reflected; and then one quarter
  • the wave plate 80 converts the passed linear polarization into a circularly polarized light (left hand circular polarization / right hand circular polarization), wherein if converted to a left-handed (or right-handed) circularly polarized light, Then, after
  • FIG. 1 , 1A and FIG. 8 and FIG. 8A Schematic diagram of signal output/sensor data (Vout).
  • the sensor output data Vout induced by the position (image) sensor 21 is as shown in FIGS. 1A and 8A, and is an analog data, which must be converted into digital data before the processor is provided for calculation;
  • An analog-to-digital conversion (ADC) circuit is used to convert the analog sensor output data Vout into digital data, but the analog-to-digital conversion (ADC) circuit has a high setup cost, increases the program load of the processor, and reduces Shortcomings such as program execution efficiency.
  • FIG. 10 there is shown a block diagram of the state of use of the analog to digital conversion system of the present invention.
  • the analog-to-digital conversion system 100 of the present invention is applied to an optical touch display screen system, and the analog sensor output data (Vout) 200 sensed by the sensor 21 is as shown in FIG. 10 and FIG. , converted to digital signal 300 to provide processor 5 for operation.
  • Vout analog sensor output data
  • the analog-to-digital conversion system 100 of the present invention mainly includes a digital judgment comparator 110 and a variable reference level generator 120.
  • the digital judgment comparator 110 is used to replace a conventional analog-to-digital conversion (ADC) circuit; the main function of the variable reference level generator 120 can be performed according to the signal peak value (VA) in the sensor output data (Vout).
  • VA signal peak value
  • the peak value (VA) of the signal can be detected by the at least one detecting circuit 130 for detecting the sensor output data (Vout), and is input to the a variable reference level generator 120; the variable reference level generator 120 can perform a numerical operation on the input reference value, such as the signal peak (VA) but not limited, to generate a peak value (VA) matched variable reference level VREF; due to the reference value input to the variable reference level generator 120, as described above, the signal peak (VA) is not limited, and is not a fixed value as shown in FIG.
  • the sensor output data (Vout) shown in the line portion is not limited, so the generated matching reference level VREF is also not a fixed value, that is, when the peak value (VA) of the signal changes, the reference level VREF is also Variable ginseng Level VREF, i.e., the variable reference level VREF needs to follow changes in the vertical up and down arrows at the VREF 10, 11 as shown in FIG.
  • the sensor output data (Vout) 200 and the variable reference level VREF are respectively input to the digital determination comparator 110, and the judgment comparison function of the comparator 110 is determined by the number, so that the sensor outputs data ( The Vout) 200 can be converted to an unambiguous digital signal 300 based on the variable reference level VREF and output to the processor.
  • the function description diagrams of the level determining comparator 120 of the analog-to-digital conversion system of the present invention are applied to the light reflecting type and the light blocking type touch system, respectively.
  • the digital determination comparator 110 receives the sensor output data (Vout) 200 and the variable reference level VREF respectively input, the digital determination comparator 110 is based on the variable reference level VREF.
  • the sensor output data (Vout) 200 is compared and judged. Since the variable reference level VREF is matched as the signal peak (VA) changes, that is, regardless of how the sensor output data (Vout) 200 and the signal peak (VA) change, as shown in FIG. 1A. As shown in FIG.
  • variable reference level VREF can be varied, that is, the number of the variable reference level generator 120 is The value is operated to form a matched reference; therefore, when the sensor output data (Vout) 200 is used as the reference for the progressive comparison with the matched variable reference level VREF, as shown in FIG. 12 and FIG.
  • the position (timing) of the signal peak (VA) can be clearly displayed, and thus efficiently and quickly converted into a clear digital signal 300 for output to the processor.
  • the type of the digital signal 300 is not limited, and a positive pulse or a negative pulse type can be formed with respect to the variable reference level VREF as shown in FIGS. 12 and 13.
  • variable reference level generator 120 is mainly used to generate a matching value according to a signal peak value (VA) in the sensor output data (Vout).
  • the variable reference level VREF in actual use, the variable reference level generator 120 can further depend on the following reference values in addition to the signal peak value (VA) in the sensor output data (Vout): Reference voltage level (VB), a variation value (VC) obtained by temperature detection, a variation value (VD) obtained by detecting the intensity of the light source, and a variation value (VE) obtained by detecting the intensity of the ambient light, one of which The reference value or a combination thereof is operated via the numerical operation of the variable reference level generator 120 to generate a matched variable reference level VREF.
  • VB Reference voltage level
  • VD variation value obtained by temperature detection
  • VD variation value obtained by detecting the intensity of the light source
  • VE variation value obtained by detecting the intensity of the ambient light
  • variable reference level generator is based on a signal peak value (VA) and a reference voltage level (VB) detected by the signal peak detection 140, and is generated via the variable reference level.
  • VA signal peak value
  • VB reference voltage level
  • the numerical operation of the device 120 is performed by adding, subtracting, multiplying, and dividing to generate the variable reference level VREF.
  • variable reference level generator 120 is based on a signal peak value (VA) detected by the signal peak detection 140, a reference voltage level (VB), and a temperature obtained by the temperature detection 150.
  • VA signal peak value
  • VB reference voltage level
  • variable reference level generator 120 performing numerical operations based on the signal peak value (VA), the reference voltage level (VB), and the temperature variation value (VC) via the variable reference level generator 12 to generate the variable reference
  • the signal peak detection 140 and the temperature detection 150 can be completed by the detection circuit 130 or the related detection circuit; wherein the numerical operation mode of the variable reference level generator 120 can be set in advance, so that the A variable reference level VREF can achieve a better match with the sensor output data (Vout) to facilitate the digital determination comparator 110 to perform a comparison and simulate a conversion of the digits.
  • the comparator 110 is further determined by the number, so that the sensor output data (Vout) can be compared with the variable reference level VREF, and is compared and converted into an explicit digital signal for output to the processor;
  • the variable reference level generator 120 has taken the temperature variation value (VC) into consideration, that is, as one of the parameters for generating the variable reference level VREF, so that the analog-to-digital conversion system 100 of the embodiment can be achieved.
  • VC temperature variation value
  • variable reference level generator 120 is based on a signal peak value (VA) detected by the signal peak detection 140, a reference voltage level (VB), and a temperature obtained by the temperature detection 150.
  • VA signal peak value
  • VB reference voltage level
  • VC variation value
  • VD source intensity variation value
  • VE ambient light intensity variation value
  • variable reference level generator 120 performing numerical operations on the signal peak (VA), the reference voltage level (VB), the temperature variation value (VC), and the intensity variation value (VD) or the ambient light intensity variation value (VE) to generate the variable Reference level VREF; where the signal peak value
  • variable reference level generator 120 can all be completed by the detection circuit 130 or the related detection circuit; wherein the numerical operation mode of the variable reference level generator 120 can be The setting is such that the variable reference level VREF can achieve a better matching degree with the sensor output data (Vout), so that the digital judgment comparator 11 performs the analog to digital conversion operation.
  • the comparator 110 is further determined by the number, so that the sensor output data (Vout) can be compared with the variable reference level VREF, and is compared and converted into an explicit digital signal for output to the processor;
  • the variable reference level generator 120 has taken into account the temperature variation value (VC), the source intensity variation value (VD), or the ambient light intensity variation value (VE), that is, to generate the variable reference level.
  • One of the parameters of the VREF, the analog-to-digital conversion system 100 of the present embodiment can achieve the variability of the anti-sensor component, the variability against temperature, and the variability against the output of the light source, and/or the variability against ambient light. .
  • variable reference level generator 120 is based on a signal peak value (VA) detected by the signal peak detection 140, a temperature variation value (VC) obtained by the temperature detection 150, and a light source.
  • VA signal peak value
  • VC temperature variation value
  • the temperature variation value (VC) and the source intensity variation value (VD) or the ambient light intensity variation value (VE) are numerically calculated to generate the variable reference level VREF; wherein the signal peak detection 140, the temperature detection 150, and the light source
  • the intensity detection 160 or the ambient light intensity detection 170 can be performed by the detection circuit 130 or the related detection circuit.
  • the numerical operation mode of the variable reference level generator 120 can be set in advance, so that the The variable reference level VREF can achieve a better match with the sensor output data (Vout) to facilitate the digital determination comparator 110 to perform analog to digital conversion operations.
  • the comparator 110 is further determined by the number so that the sensor output data (Vout) can be compared with the variable reference level VREF, and is compared and converted into an explicit digital signal for output to the processor.
  • the main difference between the fourth embodiment and the third embodiment is that the variable reference level generator 120 does not take the reference voltage level (VB) into consideration, that is, the reference voltage level is not ( VB) One of the parameters that act to generate the variable reference level VREF.
  • a structural block diagram of a fifth embodiment of the analog-to-digital conversion system of the present invention is shown.
  • the structure and the use efficiency of the embodiment are substantially the same as those of the first embodiment.
  • the main difference between the two is that the variable reference level generator 120 of the embodiment is based on the signal peak value (VA) and the reference voltage level.
  • the variable reference level VREF generated by the numerical operation of the bit (VB) is a segment variable reference level for the digital judgment comparator to select the segment based on the sensor output data (Vout).
  • variable reference level (VREF) of the reference level as a reference to efficiently and quickly convert the sensor output data (Vout) into a clear digital signal and output it to the processor; thereby
  • the variable reference level (VREF) generated by the numerical operation of the variable reference level generator that is, the variable reference level (VREF) is originally a variable reference level (VREF) that is not segmented or segmented. ), instead of the segment variable reference level, that is, the numerical interval between each reference reference level in the segmented reference level is enlarged, that is, the application range of each reference level is relatively enlarged to reduce the processor.
  • variable reference level generated by the variable reference level generator 120 in the first embodiment is a stepless change as the parameters change, such as the peak value of the signal (VA) and the reference voltage level (VB).
  • the generated variable reference level VREF is divided into multi-segment reference levels, that is, the slight change caused by the variable reference level (VA) and the reference voltage level (VB) is deliberately ignored.
  • the value of each reference level is coarsened, and the applicable range of each reference level is relatively enlarged to reduce the processor program load and improve program execution efficiency.
  • the second to fourth embodiments described above can also use the coarse segmentation method of the fifth embodiment to make the variable reference level generator according to the signal peak (VA) and/or a reference.
  • Voltage level (VB) or each of the variability values (VC, VD, VE) and the variable reference level generated by the numerical operation are further set to the variable reference level of the segment.
  • the method for operating an analog-to-digital conversion system for a position (image) sensor signal of the present invention comprises the following steps:
  • a signal peak VA of the sensor output data Vout is detected by at least one detecting circuit 130; a variable reference level VREF is provided according to the signal peak VA;
  • the comparator 110 is determined by the number such that the sensor output data Vout can be converted into an unambiguous digital signal and output to the reference signal VREF of the sensor output data Vout based on the variable reference level VREF. processor.
  • variable reference level generator 120 For the peak value VA of the signal, a variable reference level generator 120 can be provided.
  • the numerical calculation function of the variable reference level generator 120 can be used to generate the variable reference according to the signal peak value VA.
  • Level VREF Level VREF.
  • the variable reference level generator 120 may further detect the signal peak value VA and/or a reference voltage level VB and/or a variation value VC obtained by temperature detection and/or a light source intensity detection.
  • the variation value VD or a variation value VE obtained by the ambient light intensity detection is passed through the numerical operation function of the variable reference level generator 120 to generate a variable reference level VREF, that is, the reference voltage level VB Or a variation value VC obtained by temperature detection and/or a variation value VD obtained by detecting the intensity of the light source and/or a variation value VE obtained by detecting the ambient light intensity is included in the value of the variable reference level generator 120.
  • the use efficiency of the analog-to-digital conversion system for improving the image sensor signal of the present invention is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Description

激光光学触控模块及其模拟数字转换***与方法 技术领域
本发明有关一种光学触控模块及其模拟数字转换***与方法, 尤指一 种利用一具激光光源的发光部及一具位置感测器的收光部, 且该发光部与 收光部的光路之间以平行光路方式或共光路方式组成一模块; 并利用一可 变参考准位产生器用以依据该位置感测器输出信号的信号峰值及 /或一参考电 压准位及 /或一温度、 光源强度、 环境光强度等变异值并经由数值运算以产生 一可变参考准位, 再通过一准位判断比较器以使该感测器输出数据能以该可 变参考准位为基准以有效且快速地转换成一明确的数字信号并输出。 背景技术
目前正流行的触控式显示屏, 通过触控件如手指或触控笔直接触摸在 显示屏的表面上以控制显示器的各项功能如点选作业、 切换画面或放大 / 缩小画面等, 用以取代一般显示器常见的按键式控制方式; 而目前的触控 式显示屏已包含多种不同的触控***, 如电阻式 (Resistive ) 、 电容式 ( Capacitive ) 、 表面声波式 ( SAW, Surface Acoustic Wave ) 、 红夕卜光式 ( IR, Infrared ) 、 光学式( optical imaging )等, 各有各的优缺点, 其中, 光学式触控***的优点为应用于大尺寸显示屏, 具有成本的优势, 介于表 面声波式与电容式之间, 荧幕具有良好的透明度 (可达 100%)及具有良好的 触控解析度; 其缺点为不适合小尺寸面板(15吋以下)的应用, 较易受周边 环境光的影响及须采用额外照明光源及反光条或吸光条。
光学式触控***方面已包含 US 2009/0200453、 US 7,538,759、 US 7,692,625、 US 7,629,967等多件现有技术, 一般而言, 该多个光学式触控 ***现有技术在显示屏的表面的侧缘边上, 如一矩形显示屏表面的四侧框 边上或四角处, 设置至少一组光源装置如以 LED作光源, 用以照射在整个 荧幕的外表面上,即在整个显示屏的表面上形成一光线或线性光线照射区, 可称为光幕, 并于该显示屏表面的四周缘(框边) 上设置相互垂直的反光 条或吸光条, 又于该显示屏表面的侧缘边上以感测方向交错的方式设置至 少二组位置感测器 (camera ) ; 则当一触控件, 如手指或触控笔, 触摸在 ' 该显示屏表面上时, 该触控件即可对该照射在整个显示屏表面的光线造成 光的散射或遮断, 此时透过该反光条的 '反射作用或吸光条的吸收作用, 即 可通过该至少二组位置感测器以感测得知该触控件至少二方向的相对位 置, 再通过一处理电路的运算功能以得知该触控件触摸在显示屏表面上的 实际位置座标, 以达成目前已知一光学触控***的使用功能。
现有一般光学式触控***在设计上大都采用发光二极管 (LED,
light-emitting diode )作为光源,而 LED光并非高同调性( highly coherent light ) 光源, 故无法有效提高触控的灵敏度; 又现有的 LED光源装置与所使用的位 置感测器( camera )是分开的个体,且分别设置于显示屏表面的四周缘(框边) 某一位置处, 且整体架构上又必须配合反光条或吸光条使用, 以致具有结构 复杂、成本增加等缺点,尤其该 LED光源装置所提供的照射光一般为可见光, 容易受到使用环境下的可见光与显示屏所产生的可见光的干扰或影响, 以致 光学式触控***中位置感测器的感测灵敏度降低, 即信噪比 (S )降低而 相对影响信号的判读, 以致降低光学式触控***的使用效率。
又参考图 1、 图 1A及图 8、 图 8A所示, 其分别是光反射式及光遮断式 的光学式触控***的使用状态示意图及位置(影像)感测器(sensor/camera ) 的像素的感应所得的模拟式输出数据 ( signal output/sensor data, Vout )示意 图。 该光学式触控***一般是在一显示幕 2 的表面的侧缘边上, 如一矩形显 示幕表面的四侧框边上或四角处, 设置至少一光源装置 11(10)如以 LED或雷 射作光源, 用以照射在整个显示幕的表面上, 即在整个显示幕的表面上形成 一光线或线性光线照射区,在此可称为光幕; 于该显示幕 2表面的四周缘(框 边)上设置相互垂直的反光条或吸光条(图未示) ; 于该显示幕 2表面的侧 缘边上以感测方向交错的方式设置至少二组位置 (影像) 感测器
( sensor/camera ) 21 , 或称为位置感测器(图中只表示一感测器); 则当一触 控件 3 , 如手指或触控笔, 触摸在该显示幕表面上时, 该触控件 4即可对该照 射在整个显示幕 1表面的光线造成光的散射(光反射式如图 1所示)或遮断 (光遮断式如图 8所示) , 此时透过该反光条的反射作用或吸光条的吸收作 用, 该触控件 3位置所产生的反射或遮断雷射光束如图 1、 8所示, 即可在位 置(影像)感测器 21的像素 (active pixel )轴上产生反应而形成一信号输出 / 感测器输出数据( signal output/sensor data ) , 如图 1A、 图 8A所示, 在此以 Vout代表。 通过该至少二组位置(影像)感测器 21以感测得知该触控件 3至 少二方向的相对位置, 再通过一处理器或处理电路的运算功能以得知该触控 件 3触摸在显示幕 2表面上的实际位置座标, 达成一光学触控***的使用功 能。 又该位置(影像)感测器 21所感应形成的感测器输出数据 Vout如图 1A、 图 8A所示, 为一模拟数据, 须先转换成数字数据, 才能通过一处理器的运算 功能, 如微处理器(MCU, Micro Control Unit )、 中央处理器(CPU, Central Processing Unit )或数字信号处理器(DSP, Digital Signal Processing )但不限 制, 以运算得知该触控件 3触摸在显示幕 2表面上的实际位置座标。
然而, 针对上述该影像感测器的感测器输出数据 Vout的模拟转数字的转 换作业, 一般是采用一模拟数字转换 ( ADC ) 电路, 如美国发明专利 US4,839,739及美国发明公开 Pub. No. US2009/0190944及 US2010/0171853所 揭露者; 但该等模拟数字转换(ADC ) 电路的设置成本较高, 而且会增加处 理器的程序负担, 也相对降低程序的执行效率; 又, 在使用一光学式触控系 统时, 其操作条件常随着外在环境及元件特性而产生变化, 在此称为变异性, 如感测器元件的变异性、 温度的变异性、 光源输出的变异性、 环境光的变异 性等, 导致该位置(影像)感测器 21所侦测得知的感测器输出数据 Vout的 基本电压准位也相对会有向上或向下的变动, 如图 1A、 图 8A中的感测器输 出数据 Vout由实线部分所示改变为点线部分所示但不限制, 也会增加处理器 的程序负担并相对降低程序的执行效率; 而上述诸缺点均不利于该位置 (影 像)感测器信号的模拟数字转换电路***或该光学式触控***的发展及普及 化。
由上可知, 在光学式触控***及位置(影像)感测器信号的模拟数字转 换***的技术领域中, 发展设计一种不须釆用反光条或吸光条且结构筒化、 成本节省的光学式触控***, 及一种非使用模拟数字转换(ADC )电路、 降 低成本、 减少处理器程序负担及增进程序执行效率的模拟数字转换***, 确 实有其需要性。 发明内容
本发明主要目的在于提供一种激光光学触控模块, 其利用一具激光光 源如红外线(IR )激光的发光部与一具位置感测器的收光部组合在一起, 以使该激光光源与位置感测器设于显示屏表面的一侧的同一位置处使用, 其中该发光部通过一激光光源发出激光光束并经一广角用光学元件如打线 镜片 ( line generator optics )的折射而使折射后的光视角 ( light fan )能大于 90 度, 以在显示屏表面上形成广角的线性光束, 该收光部通过位置感测器接收 并感应该线性光束受到触控件的阻挡而反射的激光光以感测得知该触控件的 相对位置, 使通过激光光束的高同调性(highly coherent light ) 以增进触控的 灵敏度, 并避免现有技术须采用反光条或吸光条的麻烦, 达成结构简化且触 控灵敏度高的使用功效。
本发明再一目的在于提供一种激光光学触控模块, 其中该发光部的光路 束的高同调性以增进触控的灵敏度, 并达成结构简化且容易安装的使用功效。
本发明另一目的在于提供一种激光光学触控模块, 其中该发光部的光 路与收光部的光路之间以共光路方式组合在一起, 使发光部的激光光源与 收光部的位置感测器能共用一广角用光学元件如打线镜片 (line generator optics ) , 即激光光源所发出的激光光束及位置感测器所接收并感应的反射光 束都经过相同的广角用光学元件, 再于该广角用光学元件的后方设一分光镜
( beam splitter ) 以使激光光源所发出的激光光束穿过该分光镜而向外射出, 并使反射激光光束经由该分光镜反射而进入该位置感测器所接收感应, 以节 省该位置感测器原本所须的广角用光学元件如广角成像镜片(可视角 >90度), 并避免该广角用光学元件的光学像差, 即周边外场的光学畸变 (optical distortion ) ;又该位置感测器的感测面上进一步可设置一敖透镜( Mirco Lens ), 如同一般商业用的 CMOS sensor, 以增加收光能力与效率。
本发明另一目的在于提供一种激光光学触控模块, 其中当该发光部的 光路与收光部的光路之间以共光路方式组合在一起时, 该激光光源进一步 可使用小直径激光光束,以提升该广角用光学元件如打线镜片的散光效率, 又在该位置感测器的感测面前端, 即该位置感测器与分光镜之间, 进一步可 设一光扩束镜 ( beam expander optics ) , 以^1小直径的激光光束扩成较大直径 的激光光束再入射至位置感测器的感测面, 藉以有效利用该位置感测器上的 成像单元(即像素, pixels ) , 进而提升触控的解析度。
本发明另一目的在于提供一种激光光学触控模块, 其中当该发光部的光 路与收光部的光路之间系以共光路方式组合在一起时, 其进一步可于该广角 用光学元件如打线镜片 ( line generator optics ) 的后方依序设一四分之一波片 ( quarter wave-plate )及一偏振分光镜 ( polarization beam splitter ) , 使激光光 振光( P-polarization )及 S线偏振光( S-polarization ) 两正交的线偏振光, 在 经过该一偏振分光镜时, 使其中一线偏振光(通常为 P线偏振光) 完全通 过而与其正交的另一线偏振光(通常为 S线偏振光) 则完全反射; 再经该 一四分之一波片,将通过的线偏振转换为一圆偏振光(称左旋或右旋圆偏光, left hand circular polarization /right hand circular polarization ), 其中若是转换为 左旋(或右旋)圓偏振光出射, 则经由触控件的阻挡而反射后将变为右旋(或 左旋) 圆偏光, 而反射光束先经过该一四分之一波片以转换为一与原出射线 偏光正交的线偏光, 再入射至该一偏振分光镜并完全反射至该位置感测器上, 藉此, 可提升光的使用效率, 即该激光光能量的使用效率达成最大化效果。
本发明又一目的是在提供一种模拟数字转换***及方法, 供用以将一激 光光学触控模块中的位置(影像)感测器感测所得的模拟式输出数据(signal output/sensor data, Vout)有效地转换成数字信号以提供处理器进行处理, 其 是利用一数字判断比较器以取代常用的模拟数字转换(ADC) 电路, 并通过 一可变参考准位产生器其可依据一由该感测器输出数据 (Vout)通过至少一 侦测电路所检知的信号峰值 ( VA) 以产生一可变参考准位(VREF) , 再通 过该数字判断比较器以使该感测器输出数据 (Vout) 能以该可变参考准位 (VREF)为基准而进行判断比较, 以有效且快速地转换成一明确的数字信号 并输出至处理器, 以达成非使用模拟数字转换(ADC ) 电路而降低成本及减 少处理器程序负担而增进程序执行效率的优点及功效。
本发明又再一目的是在提供一种模拟数字转换***及方法, 其中该可变 参考准位产生器进一步可依据该一由该感测器输出信号 (Vout)通过至少一 侦测电路所检知的信号峰值 (VA)及一参考电压准位(VB), 该参考电压准 位(VB) 为该感测器输出数据 (Vout) 中信号峰值 (VA) 以外的电压准位; 并经由该可变参考准位产生器的数值运算如加减乘除以产生该一可变参考准 位(VREF)如 VREF= (VA+VB) /2; 再通过该数字判断比较器以使该感测 器输出数据 (Vout)能以该可变参考准位(VREF)为基准进行判断比较以有 效且快速地转换成一明确的数字信号并输出。
本发明又另一目的是在于提供一种模拟数字转换***及方法, .其中该可 变参考准位产生器进一步可依据该一由模拟输出信号 (Vout)通过至少一侦 测电路所检知的信号峰值 (VA)及 /或一参考电压准位(VB) 或一通过温 度检测所得的变异值( VC)及 /或一通过光源强度检测所得的变异值(VD) 或一通过环境光强度检测所得的变异值(VE), 并经由该可变参考准位产 生器的数值运算以产生一可变参考准位(VREF ) , 再通过该数字判断比较器 以使该感测器输出数据 ( Vout )能以该可变参考准位(VREF )为基准进行判 断比较以有效且快速地转换成一明确的数字信号并输出至处理器, 以进一步 及 /或抗环境光的变异性,且生产时无须调整参考电压准位步骤的优点及功效。
本发明又另一目的是在于提供一种模拟数字转换***及方法, 其中通过 该可变参考准位产生器的数值运算所产生的可变参考准位(VREF )进一步可 设定为分段的参考准位, 供该数字判断比较器得能根据该感测器输出数据 ( Vout )以选择该分段的参考准位的中一适当的参考准位( VREF )作为基准, 以将该该感测器输出数据(Vout )有效且快速地转换成一明确的数字信号并 输出至处理器; 藉此, 使通过该可变参考准位产生器的数值运算所产生的可 变参考准位(VREF ) , 即该可变参考准位(VREF )原是属于不分段或无法 分段的可变参考准位(VREF ) , 改为分段的参考准位, 即分段的参考准位中 每一段参考准位之间的数值间距被扩大化, 即相对扩大每一段参考准位的适 用范围, 以减少处理器程序负担而增进程序执行效率。
本发明又另一目的是在于提供一种模拟数字转换***及方法, 供用以将 一激光光学触控模块中的位置(影像)感测器感测所得的模拟式输出数据有 效地转换成数字信号以提供处理器进行处理 , 其中该模拟转数字的转换*** 的操作方法 ( processing method ) , 包含下歹1 j步骤:
提供一数字判断比较器;
通过至少一侦测电路以检知感测器输出数据 ( Vout )的信号峰值 ( VA ); 根据该感测器输出数据 ( Vout )及该信号峰值 ( VA ) , 提供一可变参考 准位(VREF ) ; 及
通过该数字判断比较器, 以使该感测器输出数据 (Vout ) 能以该可变参 考准位为基准, 将该感测器输出数据(Vout )转换成一明确的数字信号并输 出。 其中, 针对该信号峰值 ( VA ) , 可提供一可变参考准位产生器, 俾可通 过该一可变参考准位产生器的数值运算功能, 以依据该信号峰值(VA )产生 该一可变参考准位。
其中, 该可变参考准位产生器进一步可依据该一信号峰值 ( VA )及 /或一 参考电压准位(VB )及 /或一通过温度检测所得的变异值(VC )及 /或一通过 光源强度检测所得的变异值(VD )及 /或一通过环境光强度检测所得的变异值 ( VE ) , 并经由该可变参考准位产生器的数值运算功能, 以产生一可变参考 准位。
其中, 通过该可变参考准位产生器的数值运算所产生的可变参考准位 ( VREF )进一步可设定为分段的参考准位。 附图说明
图 1是本发明激光光学触控模块第一实施例 (收发平行光路)设置于显 示屏表面的一侧以提供光反射式定位输入功能的使用状态示意图;
图 1A是图 1实施例中本发明的位置感测器的像素的感应信号输出示意 图;
图 2是本发明激光光学触控模块第一实施例 (收发平行光路) 的立体示 意图;
图 3是图 2实施例 (收发平行光路) 的一平面 (上视)示意图; 图 4是本发明激光光学触控模块第二实施例 (收发共光路) 的一平面示 意图;
图 5是本发明的位置感测器的感测面上设一微透镜(Mirco Lens )的功能 状态示意图;
图 6是本发明激光光学触控模块第三实施例 (收发共光路) 的一平面示 意图;
图 7是本发明激光光学触控模块第四实施例 (收发共光路) 的一平面示 意图;
图 8是一种光遮断式的光学式触控***的使用状态示意图;
图 8A是图 8光遮断式的光学式触控***的位置感测器的像素的感应所得 的模拟式输出数据(Vout )示意图;
图 9是本发明模拟数字转换***的使用状态方块说明图;
图 10是本发明模拟数字转换***的功能方块说明图 (应用于光反射式触 控***) ;
图 11是本发明模拟数字转换***的功能方块说明图(应用于光遮断式触 控***) ; ' 图 12是本发明模拟数字转换***的准位判断比较器的功能说明图 (应用 于光反射式触控***) ;
图 13是本发明模拟数字转换***的准位判断比较器的功能说明图 (应用 于光遮断式触控***) ;
图 14是本发明模拟数字转换***第 1实施例的结构功能方块示意图; 图 15是本发明模拟数字转换***笫 2实施例的结构功能方块示意图; 图 16是本发明模拟数字转换***第 3实施例的结构功能方块示意图; 图 17是本发明模拟数字转换***第 4实施例的结构功能方块示意图; 图 18是本发明模拟数字转换***第 5实施例的结构功能方块示意图。 附图标记说明: 激光光学触控模块 -1、 la、 lb、 lc; 显示屏 -2; 触控件 -3; 发光部 -10; 激光光源 -11、 11a; 激光二极管 -111 ; 第一级光学件 -112; 广角用 光学元件 -12、 22; 收光部 -20; 位置感测器 -21 ; 感测面 -211 ; 广角用光学元件 -22; 外壳体 -30; 开口 -301、 302; 光束 -101、 102、 102a. 104、 104a、 105; 对应光轴 -103; 分光镜 -40; 准直镜 -50; 微透镜 -60; 光扩束镜 -70; 四分之一 波片 -80; 偏振分光镜 -90;光源装置(激光光源) -11 ( 10 ) ; 感测器 -21 ; 触 控件 -3; 处理器 -5; 模拟数字转换*** -100; 数字判断比较器 -110; 可变参考 准位产生器 -120; 侦测电路 -130; 信号峰值检测 -140; 温度检测 -150; 光源强 度检测 -160; 环境光强度检测 -170; 感测器输出数据(Vout ) -200; 数字信号 -300; 信号峰值 -VA; 可变参考准位 -VREF; 参考电压准位 -VB; 温度变异值 -VC; 光源强度变异值 -VD; 环境光强度变异值 -VE。 具体实施方式
为使本发明更加明确详实, 将本发明的结构及其技术特征配合下列附 图详述如后:
图 1、 1A分别是本发明激光光学触控模块第一实施例(收发平行光路) 设置于显示屏表面的一侧以提供光反射式定位输入功能的使用状态示意图 及位置感测器的像素的感应信号输出示意图。 本发明的激光光学触控模块 1 设置于显示屏 2表面的一侧, 用以提供光学式定位输入功能, 供可在该显示 屏 2上形成一光学式触控***; 一般而言, 显示屏 2表面的周边上须设置 至少二激光光学触控模块 1 ,如在显示屏 2侧缘边的相邻二角处各设一激光光 学触控模块 1, 其中各激光光学触控模块 1所具有的位置感测器( camera )的 感测方向在该显示屏 2表面上形成交错方式。 图 1中仅表示其中的一激光光 学触控模块 1的使用状态。
该激光光学触控模块 1由一发光部 10及一收光部 20组成一模块, 又该 发光部 10及收光部 20可容设在一外壳体 30内部以形成一组合体, 而该外壳 如一发光部开口 301及一收光部开口 302。 该发光部 10主要通过一激光光源 11以发出激光光束并经一广角用光学元件 12如打线镜片 ( line generator optics )的折射, 使折射后的激光光视角 (light fan )能大于 90度如图 1所示, 以在显示屏 2表面上形成广角的线性光束 101; 当触控件 3触摸显示屏 2表面 上时, 会阻挡该线性光束 101并形成反射激光光束 102; 该收光部 20则通过 一位置感测器 21以接收并感应该反射激光光束 102, 以在位置感测器 21的感 测面上感测得知该触控件 3在一对应光轴 103上的相对位置; 如图 1A所示, 该触控件 3位置所产生的反射激光光束 102即可在位置感测器 21的像素 ( active pixel )轴上产生反应而形成一信号输出, 而通过至少二组位置感测器 21以感测得知该触控件 3至少二方向的相对位置, 即可通过处理电路的运算 功能以得知该触控件 3触摸在显示屏 2表面上的实际位置座标; 由于该位置 感测器 21或广角用光学元件 12如打线镜片 ( line generator optics ) 的本体结 构及处理电路的运算功能利用目前的电子技术或现有技术可达成, 且非本 发明的技术特征, 故于此不再赘述。
图 2、图 3分别是本发明激光光学触控模块第一实施例(收发平行光路) 的立体示意图及平面 (上视) 示意图。 而图 2、 3所示实施例 (收发平行光 路)只是用来说明但非用以限制本发明激光光学触控模块 1的主要构件; 本 发明激光光学触控模块 1利用一具激光光源 11如红外线激光(IR LD ) 的发 光部 10与一具位置感测器 21的收光部 20组合成一模块,以使该激光光源 11 与位置感测器 21能设于显示屏 2表面的一侧的同侧位置处,其中该发光部 10 通过一激光光源 11, 包含一激光二极管 (laser diode ) 111及一第一级光学件 ( 1st optics ) 112, 发出激光光束并经一广角用光学元件 12如打线镜片 (line generator optics ) 的折射, 使折射后的光视角 (light fan ) 能大于 90度如图 3 所示, 以在显示屏 2表面上形成广角的线性光束 101如图 1、 3所示; 该收光 部 20通过一位置感测器 21及一广角用光学元件 22接收并感应该线性光束 101 受到触控件 3的阻挡而反射的激光光束 102如图 1所示, 以感测得知该触控 件 3的相对位置; 因此, 本发明激光光学触控模块 1通过激光光束的高同调 性(highly coherent light )以增进触控的灵敏度, 并可避免现有技术须采用反 光条或吸光条的麻烦, 故具有结构简化、 容易安装且触控灵敏度高的使用 功效。
再参考图 2、 3所示, 本第一实施例的激光光学触控模块 1由一发光部 10及一收光部 20组成一模块,又该发光部 10及收光部 20可容设在一外壳体 30内部以组合成一模块的使用样态; 该外壳体 30上设有对应于该发光部 10 及收光部 20的光路的开口 , 包含一发光部开口 301及一收光部开口 302如图 1、 2所示, 其中该发光部 10的光路与收光部 20的光路之间, 即激光光源 11 与位置感测器 21的光路之间,亦即该发光部开口 301与收光部开口 302之间, 以平行光路方式并排组合在一起, 以本第一实施例如图 2、 3所示而言, 该发 光部 10的光路与收光部 20的光路之间以水平 (相对于显示屏 2表面)且平 行光路方式横向并排组合在一起但不限制, 如以垂直(相对于显示屏 2表面) 且平行光路方式上下垂直并排组合在一起(图未示) 。
图 4是本发明激光光学触控模块第二实施例 (收发共光路) 的一平面示 意图。 本第二实施例的激光光学触控模块 la由一发光部 10及一收光部 20组 成一模块, 又该发光部 10及收光部 20可容设在一外壳体 30内部以组合成一 模块的使用样态; 在本第二实施例中, 该发光部 10的光路与收光部 20的光 路之间, 即激光光源 11与位置感测器 21的光路之间, 以共光路方式组合在 一起, 因此本第二实施例的外壳体 30上所设的对应于该发光部 10及收光部 20的光路开口, 如第一实施例的发光部开口 301及收光部开口 302, 在外壳 体 30上形成共用同一开口 301 ( 302 )供激光光源 11与位置感测器 21的光路 通过; 又通过本第二实施例的共光路方式, 使该发光部 10的激光光源 11与 该收光部 20的位置感测器 21能共用同一广角用光学元件 12 ( 22 )如打线镜 片 ( line generator optics ) , 即激光光源 11所发出的激光光束 101及位置感测 器 21所接收并感应的反射激光光束 102都经过一相同的广角用光学元件 12 ( 22 ) , 即该打线镜片 ( line generator optics ) 的反向光路可产生如一广角成 像镜片 (可视角>90度) 的聚光作用。 该广角用光学元件 12 ( 22 ) 的后方设 一具分光作用的分光镜 ( beam splitter ) 40以使激光光源 11所发出的激光光 束 101穿过该分光镜 40而向外射出至广角用光学元件 12 ( 22 ) , 并使反射激 光光束 102经由该广角用光学元件 12 ( 22 )射入至该分光镜 40时可反射而进 入并被该位置感测器 21接收感应; 而本第二实施例通过共光路方式的结构, 可节省该位置感测器 21原本所须的广角用光学元件 22, 即该打线镜片 (line generator optics ) 的反向光路可产生如一广角成像镜片 (可视角>90度) 的作 用, 并可避免该广角用光学元件 22的光学像差, 即周边外场的光学畸变 ( optical distortion )。 又在该激光光源 11与分光镜 ( beam splitter ) 40之间进 一步可设一准直镜(collimator ) 50, 以使激光光源 11所发出的激光光束 104 在经过该准直镜 ( collimator ) 50后能形成平行光束 105 , 以有利于再通过该 广角用光学元件 12 ( 22 )如打线镜片 ( line generator optics ) 以在显示屏表面 上形成广角的线性光束。
再参考图 4、 5所示, 该位置感测器 21的感测面 211上进一步可设置一 微透镜(Mirco Lens ) 60, 该微透镜(Mirco Lens ) 60的作用如同一般商业用 的互补型金属氧化物半导体感测器( CMOS ) , 可使触控件 3触控在对应光轴 103上位置 Φ 1 ~ ΦΝ中的位置 Φ4所产生的激光光束 102能进一步聚光在感 测面 211上各像素(pixel ) #1 ~ #N的中的对应像素 #4上, 以增加收光能力与 效率。
图 6是本发明激光光学触控模块第三实施例 (收发共光路) 的一平面示 意图。 本第三实施例的激光光学触控模块 lb的架构与图 5所示第二实施例的 激光光学触控模块 la大体相同,— 主要不同点在于: 该激光光源进一步使用可 发出小直径激光 104a的激光光源 l la, 以提升该广角用光学元件 12 ( 22 )如 打线镜片的散光效率; 此时在该位置感测器 21的感测面 211前端, 即该位置 感测器 21与分光镜 40之间 ,进一步设一光扩束镜 ( beam expander optics ) 70, 用以将小直径的反射激光光束 102a扩成较大直径的激光光束再入射至位置感 测器 21的感测面 211 , 以有效利用该位置感测器 21上的成像单元(即像素, pixels ) , 进而提升触控的解析度。
图 7是本发明激光光学触控模块第四实施例 (收发共光路) 的一平面示 意图。 本第四实施例的激光光学触控模块 lc的架构与图 6所示第三实施例的 激光光学触控模块 lb大体相同, 主要不同点在于: 于该广角用光学元件 12 ( 22 )如打线镜片( line generator optics )的后方依序设一四分之一波片( quarter wave-plate ) 80及一偏振分光镜 ( polarization beam splitter ) 90, 用以取代第三 实施例的激光光学触控模块 lb中的分光镜 ( beam splitter ) 40; 使用时, 该激 光光源 11所发出的激光光束 104a可利用激光所具备的两种线性偏振光的特 性, 即 P线偏振光( P-polarization )及 S线偏振光( S- polarization ) 两正交的 线偏振光, 在经过该一偏振分光镜 90时, 使其中一线偏振光(通常为 P线偏 振光) 完全通过而与其正交的另一线偏振光(通常为 S线偏振光)则完全反 射; 再经该一四分之一波片 80, 将通过的线偏振转换为一圆偏振光(称左旋 或右旋圆偏光, left hand circular polarization /right hand circular polarization ) , 其中若是转换为左旋(或右旋) 圓偏振光出射, 则经由触控件的阻挡而反射 后将变为右旋(或左旋) 圓偏光, 而反射光先经过该一四分之一波片以转换 为一与原出射线偏光正交的线偏光, 再入射至该一偏振分光镜并完全反射至 该位置感测器 21上, 藉此, 可提升光的使用效率, 即该激光光能量的使用效 率达成最大化效果。
参考图 1、 1A及图 8、 图 8A所示, 其分别是光反射式及光遮断式的光学 式触控***的使用状态示意图及位置 (影像)感测器的像素的感应所得的感 测器输出数据 ( signal output/sensor data, Vout )示意图。 其中该位置(影像) 感测器 21所感应形成的感测器输出数据 Vout如图 1A、 8A所示, 为一模拟 数据, 须先转换成数字数据, 才能提供处理器进行运算; 又一般是采用一模 拟数字转换(ADC )电路以将上述该模拟式感测器输出数据 Vout转换成数字 数据, 但模拟数字转换(ADC ) 电路一舨具有设置成本较高、 增加处理器的 程序负担、 降低程序执行效率等缺点。
参考图 9所示, 其是本发明模拟数字转换***的使用状态方块说明图。 本发明的模拟数字转换*** 100是应用于光学式触控显示幕***中, 用以将 感测器 21感测所得的模拟式感测器输出数据 ( Vout ) 200如图 10、 图 11所 示, 转换成数字信号 300, 以提供处理器 5进行运作。
参考图 10、 图 11所示, 其分别是本发明模拟数字转换系铳应用于光反射 式及光遮断式触控***时的功能方块说明图。本发明的模拟数字转换*** 100 主要包含一数字判断比较器 110及一可变参考准位产生器 120。该数字判断比 较器 110用以取代习用的模拟数字转换(ADC) 电路; 该可变参考准位产生 器 120的主要作用可依据该感测器输出数据 (Vout) 中的信号峰值 (VA)进 行数值运算以产生一相匹配的可变参考准位 VREF; 该信号峰值 (VA)可通 过至少一侦测电路 130 以针对该感测器输出数据(Vout)进行检测而得知, 并输至该可变参考准位产生器 120;该可变参考准位产生器 120即可针对所输 入的参考数值, 如上述该信号峰值(VA)但不限制, 进行数值运算, 以产生 一与该信号峰值 (VA)相匹配的可变参考准位 VREF; 由于输入该可变参考 准位产生器 120的参考数值, 如上述该信号峰值(VA)但不限制, 并非固定 值如图 1A、 8A 中点线部分所示的感测器输出数据 (Vout)但不限制, 因此 所产生的相匹配的参考准位 VREF也非一固定值, 即当该信号峰值 (VA) 变 化时该参考准位 VREF也随的变化,故称为可变参考准位 VREF, 即该可变参 考准位 VREF可依需求而上下变动如图 10、 图 11中 VREF处上下箭头所示。 再使该感测器输出数据 ( Vout ) 200及该可变参考准位 VREF分别输入该数字 判断比较器 110, 并通过该数字判断比较器 110的判断比较功能,使该感测器 输出数据 (Vout) 200能以该可变参考准位 VREF为基准, 以转换成一明确的 数字信号 300, 并再输出至处理器。
参考图 12、 图 13所示, 其分别是本发明模拟数字转换***的准位判断比 较器 120应用于光反射式及光遮断式触控***的功能说明图。 当该数字判断 比较器 110接收到分别输入的该感测器输出数据(Vout) 200及该可变参考准 位 VREF时, 该数字判断比较器 110即以该可变参考准位 VREF为基准, 而 对该感测器输出数据 (Vout) 200进行判断比较。 由于该可变参考准位 VREF 是随着该信号峰值 (VA) 的变化而相匹配产生, 也就是无论该感测器输出数 据(Vout) 200及该信号峰值 (VA)产生如何变化如图 1A、 图 8A所示, 该 可变参考准位 VREF均可随的变化, 即通过该可变参考准位产生器 120的数 值运算以形成一相匹配的基准; 因此当该感测器输出数据 ( Vout ) 200以该相 匹配的可变参考准位 VREF为判渐比较的基准时如图 12、 图 13所示, 即能明 确地显示出该信号峰值 (VA) 的位置(时序) , 进而有效且快速地转换成一 明确的数字信号 300供输出至处理器。 另, 又该数字信号 300的型态不限制, 可相对于该可变参考准位 VREF 而形成正脉沖或负脉冲型态如图 12、 图 13 所示。
本发明的模拟数字转换*** 100中, 该可变参考准位产生器 120主要是 用以依据该感测器输出数据 (Vout) 中的信号峰值 (VA)但不限制, 以产生 一相匹配的可变参考准位 VREF; 于实际使用时, 该可变参考准位产生器 120 除了依据该感测器输出数据 (Vout) 中的信号峰值 (VA) 夕卜, 进一步可依据 下列参考数值:一参考电压准位(VB)、一通过温度检测所得的变异值(VC)、 一通过光源强度检测所得的变异值(VD) 、 一通过环境光强度检测所得的变 异值(VE) , 其中的一参考数值或其组合, 并经由该可变参考准位产生器 120 的数值运算以产生一相匹配的可变参考准位 VREF。以下兹列举各实施例并分 别说明:
<第 1实施例〉
参考图 14, 其是本发明模拟数字转换***第 1实施例的结构功能方块示 意图。在本实施例中, 该可变参考准位产生器是依据一通过信号峰值检测 140 所检知的信号峰值 (VA)及一参考电压准位(VB) , 并经由该可变参考准位 产生器 120的数值运算如加减乘除, 以产生该一可变参考准位 VREF, 如将该 可变参考准位产生器 120的数值运算设定成 VREF= ( VA+ VB ) 12但不限制, 即该一可变参考准位 VREF等于该信号峰值 (VA)及该参考电压准位(VB) 的算术平均值; 其中, 该信号峰值检测 140可通过该侦测电路 130完'成; 该 参考电压准位(VB)是该感测器输出数据(Vout) 中信号峰值 (VA)以外的 电压准位如图 12、 图 13所示, 其可通过侦测电路( 130) 以检知取得; 再通 过该数字判断比较器 110, 以使该感测器输出数据 (Vout)能以该可变参考准 位 VREF为基准, 进行判断比较并转换成一明确的数字信号以输出至处理器。 〈第 2实施例〉
参考图 15, 其是本发明模拟数字转换***第 2实施例的结构功能方块示 意图。 在本实施例中, 该可变参考准位产生器 120是依据一通过信号峰值检 测 140所检知的信号峰值( VA )、 一参考电压准位( VB )及一通过温度检测 150所得的温度变异值(VC) , 并经由该可变参考准位产生器 12依据上述信 号峰值(VA) 、 参考电压准位(VB)及温度变异值(VC)进行数值运算, 以产生该一可变参考准位 VREF; 其中该信号峰值检测 140及温度检测 150 可通过侦测电路 130或相关的侦测电路完成;其中该可变参考准位产生器 120 的数值运算模式可事先设定, 以使该一可变参考准位 VREF能与该感测器输 出数据 (Vout) 达成较佳的匹配程度, 以利于该数字判断比较器 110进行判 断比较并模拟转数字的转换作业。再通过该数字判断比较器 110, 以使该感测 器输出数据 (Vout) 能以该可变参考准位 VREF为基准, 进行判断比较并转 换成一明确的数字信号以输出至处理器; 由于该可变参考准位产生器 120 已 将该温度变异值(VC)考虑在内, 即当作产生该一可变参考准位 VREF的参 数之一, 故本实施例的模拟数字转换*** 100可达成抗感测器元件的变异性 及抗温度的变异性的优点。
〈第 3实施例 >
参考图 16, 其是本发明模拟数字转换***第 3实施例的结构功能方块示 意图。 在本实施例中, 该可变参考准位产生器 120是依据一通过信号峰值检 测 140所检知的信号峰值(VA)、 一参考电压准位(VB)、 一通过温度检测 150所得的温度变异值 (VC)及一通过光源强度检测 160所得的光源强度变 异值(VD)或一通过环境光强度检测 170所得的环境光强度变异值(VE) , 并经由该可变参考准位产生器 120针对上述信号峰值 (VA) 、 参考电压准位 (VB) 、 温度变异值 (VC)及光源强度变异值(VD)或环境光强度变异值 (VE)进行数值运算, 以产生该一可变参考准位 VREF; 其中该信号峰值检 测 140、温度检测 150及光源强度检测 160或环境光强度检测 170等, 皆可通 过侦测电路 130或相关的侦测电路完成; 其中该可变参考准位产生器 120的 数值运算模式可事先设定, 以使该一可变参考准位 VREF 能与该感测器输出 数据(Vout )达成较佳的匹配程度, 以利于该数字判断比较器 11进行模拟转 数字的转换作业。 再通过该数字判断比较器 110, 以使该感测器输出数据 ( Vout ) 能以该可变参考准位 VREF为基准, 进行判断比较并转换成一明确 的数字信号以输出至处理器; 由于该可变参考准位产生器 120 已将该温度变 异值(VC ) 、 光源强度变异值(VD )或环境光强度变异值(VE )考虑在内, 即当作用以产生该一可变参考准位 VREF的参数之一, 故本实施例的模拟数 字转换*** 100可达成抗感测器元件的变异性、 抗温度的变异性及抗光源输 出的变异性^/或抗环境光的变异性的优点。
<第 4实施例 >
参考图 17, 其是本发明模拟数字转换***第 4实施例的结构功能方块示 意图。 在本实施例中, 该可变参考准位产生器 120是依据一通过信号峰值检 测 140所检知的信号峰值( VA )、一通过温度检测 150所得的温度变异值( VC ) 及一通过光源强度检测 160所得的光源强度变异值(VD )或一通过环境光强 度检测 170所得的环境光强度变异值(VE ) , 并经由该可变参考准位产生器 120针对上述信号峰值(VA ) 、 温度变异值(VC )及光源强度变异值(VD ) 或环境光强度变异值(VE )进行数值运算, 以产生该一可变参考准位 VREF; 其中该信号峰值检测 140、温度检测 150及光源强度检测 160或环境光强度检 测 170等, 皆可通过侦测电路 130或相关的侦测电路完成; 其中该可变参考 准位产生器 120 的数值运算模式可事先设定, 以使该一可变参考准位 VREF 能与该感测器输出数据(Vout ) 达成较佳的匹配程度, 以利于该数字判断比 较器 110进行模拟转数字的转换作业。再通过该数字判断比较器 110, 以使该 感测器输出数据 ( Vout ) 能以该可变参考准位 VREF为基准, 进行判断比较 并转换成一明确的数字信号以输出至处理器。 本第 4实施例与第 3实施例之间的主要不同点在于该可变参考准位产生 器 120并未将该参考电压准位(VB)考虑在内, 即未将该参考电压准位(VB) 当作用以产生该一可变参考准位 VREF的参数之一。
〈第 5实施例 >
参考图 12, 其是本发明模拟数字转换***第 5实施例的结构功能方块示 意图。 本实施例的结构及使用功效与第 1 实施例大致相同, 二者之间的主要 不同点在于本实施例的该可变参考准位产生器 120依据该信号峰值 (VA)及 该参考电压准位(VB)进行数值运算所产生的可变参考准位 VREF, 是分段 可变参考准位, 供该数字判断比较器得能根据该感测器输出数据 (Vout) 以 选择该分段的参考准位的中一适当的参考准位(VREF)作为基准, 以将该感 测器输出数据 (Vout)有效且快速地转换成一明确的数字信号并输出至处理 器; 藉此, 使通过该可变参考准位产生器的数值运算所产生的可变参考准位 (VREF) , 即该可变参考准位(VREF)原是属于不分段或无法分段的可变 参考准位(VREF) , 改为分段可变参考准位, 即分段的参考准位中每一段参 考准位之间的数值间距被扩大化, 即相对扩大每一段参考准位的适用范围, 以减少处理器程序负担而增进程序执行效率
第 1 实施例中该可变参考准位产生器 120所产生的可变参考准位是随着 各参数的变动而无段式变化, 如该信号峰值 (VA)及该参考电压准位(VB) 产生细微变动时, 该可变参考准位 VREF= (VA+ VB) /2也会随的产生细微 变化, 即形如无段式变化; 而本实施例的该可变参考准位产生器 12所产生的 可变参考准位 VREF,是分为多段参考准位, 即故意忽视该可变参考准位随该 信号峰值 (VA)及该参考电压准位(VB)所产生的细微变动, 使每一段参考 准位的数值粗化, 相对扩大每一段参考准位的适用范围, 以减少处理器程序 负担而增进程序执行效率。
同理, 上述的第 2至第 4实施例亦可利用本第 5实施例的粗分的分段方 式, 使该可变参考准位产生器依据该一信号峰值 (VA)及 /或一参考电压准位 ( VB ) 或各变异值(VC、 VD、 VE )并通过数值运算所产生的可变参考准 位, 皆进一步设定成分段可变参考准位。 ~
综上所述, 本发明位置(影像)感测器信号的模拟数字转换***的操作 方法, 包含下列步骤:
提供一数字判断比较器 110;
通过至少一侦测电路 130以检知感测器输出数据 Vout的信号峰值 VA; 根据该信号峰值 VA, 提供一可变参考准位 VREF; 及
通过该数字判断比较器 110以使该感测器输出数据 Vout能以该可变参考 准位 VREF为基准, 将该感测器输出数据 Vout中的信号峰值 VA转换成一明 确的数字信号并输出至处理器。
其中, 针对该信号峰值 VA, 可提供一可变参考准位产生器 120, 俾可通 过该一可变参考准位产生器 120的数值运算功能, 以依据该信号峰值 VA产 生该一可变参考准位 VREF。
其中, 该可变参考准位产生器 120进一步可依据该一信号峰值 VA及 /或 一参考电压准位 VB及 /或一通过温度检测所得的变异值 VC及 /或一通过光源 强度检测所得的变异值 VD 或一通过环境光强度检测所得的变异值 VE,并 经由该可变参考准位产生器 120 的数值运算功能, 以产生一可变参考准位 VREF,也就是将参考电压准位 VB 或一通过温度检测所得的变异值 VC及 /或一通过光源强度检测所得的变异值 VD及 /或一通过环境光强度检测所得的 变异值 VE, 纳入该可变参考准位产生器 120的数值运算中, 以增进本发明影 像感测器信号的模拟数字转换***的使用效率。
以上所示仅为本发明的优选实施例, 对本发明而言仅是说明性的, 而 非限制性的。 在本专业技术领域具通常知识人员理解, 在本发明权利要求 所限定的精神和范围内可对其进行许多改变, 修改, 甚至等效的变更, 但 都将落入本发明的保护范围内。

Claims

权利要求
1、一种激光光学触控模块,设置于显示屏表面的一侧以提供光学式定 位输入功能用以构成一光学式触控显示屏***供触控件触摸, 其由一发光 部及一收光部组成一模块, 其特征在于:
该发光部, 其通过一激光光源以发出激光光束并经一广角用光学元件 折射后,使激光光视角能大于 90度, 以在显示屏表面上形成广角的线性光 束, 当触控件触摸显示屏表面上时, 会阻挡该线性光束并形成反射激光光 束;
该收光部, 其通过一位置感测器及一聚光用光学元件以接收感应该反 射激光光束并形成一信号输出, 以感测得知该触控件的相对位置;
其中该发光部的光路与收光部的光路之间, 以平行光路方式并排组合 在一起。
2、 如权利要求 1所述的激光光学触控模块, 其特征在于, 该发光部的 光路与收光部的光路之间, 相对于显示屏表面, 以水平且平行光路方式横 向并排组合在一起。
3、 如权利要求 1所述的激光光学触控模块, 其特征在于, 该广角用光 学元件是一打线镜片。
4、 如权利要求 1所述的激光光学触控模块, 其特征在于, 该发光部及 收光部容设在一有开口的外壳体内部以形成一组合体。
5、 如权利要求 1所述的激光光学触控模块, 其特征在于,
该位置感测器的感测面上进一步设置一微透镜以使因触控件触摸显示 屏表面上所形成的反射激光光束得进一步聚光在该感测面上。
6、一种激光光学触控模块,设置于显示屏表面的一侧以提供光学式定 位输入功能用以构成一光学式触控显示屏***供触控件触摸, 其由一发光 部及一收光部组成一模块, 其特征在于:
该发光部, 其通过一激光光源以发出激光光束并经一广角用光学元件 折射后,使激光光视角能大于 90度, 以在显示屏表面上形成广角的线性光 束, 当触控件触摸显示屏表面上时, 会阻挡该线性光束并形成反射激光光 束; 该收光部, 其通过一位置感测器以接收感应该反射激光光束并形成一 信号输出, 以感测得知该触控件的相对位置;
其中该发光部的光路与收光部的光路之间,以共光路方式组合在一起, 使该发光部的激光光源与该收光部的位置感测器共用同一广角用光学元 件, 使该激光光源所发出的激光光束及位置感测器所接收并感应的反射激 光光束都经过相同的广角用光学元件;
其中该广角用光学元件的后方设一分光镜以使敎光光源所发出的激光 光束穿过该分光镜而向外射出至广角用光学元件,并使反射激光光束经由该 广角用光学元件射入至该分光镜并反射进入并被该位置感测器接收感应。
7、 如权利要求 6所述的激光光学触控模块, 其特征在于, 该广角用光 学元件是一打线镜片。
8、 如权利要求 6所述的激光光学触控模块, 其特征在于, 该发光部及 收光部容设在一有开口的外壳体内部以形成一组合体。
9、 如权利要求 6所述的激光光学触控模块, 其特征在于, 该激光光源 与分光镜之间进一步设一准直镜。
10、 如权利要求 6所述的激光光学触控模块, 其特征在于, 该激光光 源进一步使用可发出小直径激光光束的激光光源, 并进一步在该位置感测 器的感测面与该分光镜之间设一光扩束镜。
11、 如权利要求 6所述的激光光学触控模块, 其特征在于, 该分光镜 是一偏振分光镜, 并在该广角用光学元件与该偏振分光镜之间设一四分之 一波片, 以使该激光光源所发出的激光光束在经过该一偏振分光镜时, 该 激光光束中的一线偏振光得通过该一偏振分光镜, 而与其正交的另一线偏 振光则反射;
其中通过该一偏振分光镜的该线偏振光, 再经该一四分之一波片转换 为一左旋或右旋二相反旋中一圆偏振光, 使经由触控件反射后的反射激光 光束变为二相反旋中另一圆偏光, 再经过该四分之一波片又转换为一与原 线偏振光正交的线偏振光, 再入射至该一偏振分光镜并反射至该位置感测 器上。
12、 一种模拟数字转换***, 供用以将位置感测器感测所得的模拟式 输出数据 (Vout) 转换成数字信号以提供处理器进行处理, 其特征在于, 其包含:
一数字判断比较器, 用以接收分别由该位置感测器形成并输入的感测 器输出数据 (Vout)及由一可变参考准位产生器产生并输入的一可变参考 准位; 及
一可变参考准位产生器, 其是根据该感测器输出数据 (Vout) 中的信 号峰值(VA), 并通过该可变参考准位产生器的数值运算, 以产生一可变 参考准位(VREF) , 并输入至该数字判断比较器;
其中, 通过该数字判断比较器的判断比较, 以使该感测器输出数据 (Vout) 能以该一可变参考准位为基准, 以转换成一数字信号, 再输出至 处理器。
13、 如权利要求 12所述的模拟数字转换***, 其特征在于, 该感测器 输出数据(Vout) 中的信号峰值(VA)是利用至少一侦测电路以由该感测 器输出数据 (Vout) 中检知。
14、 如权利要求 12所述的模拟数字转换***, 其特征在于, 该可变参 考准位产生器进一步根据该感测器输出数据 (Vout) 中的信号峰值 (VA) 及一参考电压准位(VB), 并通过该可变参考准位产生器的数值运算以产 生一可变参考准位 (VREF) , 其中该参考电压准位 (VB) 为该感测器输 出数据 (Vout) 中信号峰值 (VA) 以外的电压准位。
15、 如权利要求 14所述的模拟数字转换***, 其特征在于, 该一可变 参考准位(VREF) 为该信号峰值(VA)与该参考电压准位(VB) 的算术 平均值: VREF= ( VA+ VB ) /2。
16、 如权利要求 12所述的模拟数字转换***, 其特征在于, 该可变参 考准位产生器进一步根据该感测器输出信号 (Vout) 中的信号峰值 (VA) 及下列参数: 参考电压准位 (VB) 、 温度变异值 (VC) 、 光源强度变异 值 (VD) 、 环境光强度变异值 (VE) 中的其一或其组合, 并经由该可变 参考准位产生器的数值运算以产生一可变参考准位(VREF) , 其中, 该参 考电压准位 (VB) 为该感测器输出数据 (Vout) 中信号峰值 (VA) 以外 的电压准位, 该温度变异值(VC)是通过温度检测所得, 该光源强度变异 值是通过光源强度检测所得, 该环境光强度变异值(VE )通过环境光强度 检测所得。
17、 如权利要求 12所述的模拟数字转换***, 其特征在于, 该可变参 考准位 (VREF ) 进一步设定成分段可变参考准位。
18、一种基于权利要求 12所述的模拟数字转换***的模拟数字转换方 法, 其特征在于, 供用以将位置感测器感测所得的模拟式输出数据(Vout ) 有效地转换成数字信号以提供处理器进行处理, 包含下列步骤:
提供一数字判断比较器;
通过至少一侦测电路以检知感测器输出数据( Vout )的信号峰值( VA ); 根据该感测器输出数据(Vout )及该信号峰值(VA ) , 提供一可变参 考准位; 及
通过该数字判断比较器以使该感测器输出数据能以该可变参考准位为 基准, 将该感测器输出数据中的信号峰值(VA )转换成一明确的数字信号 并输出至处理器。
19、 如权利要求 18所述的模拟数字转换方法, 其特征在于, 其进一步 提供一可变参考准位产生器用以根据该信号峰值(VA ) , 并通过该可变参 考准位产生器的数值运算, 以产生该一可变参考准位。
20、 如权利要求 19所述的模拟数字转换方法, 其特征在于, 该可变参 考准位产生器进一步根据该感测器输出信号 (Vout ) 中的信号峰值 (VA ) 及下列参数: 参考电压准位 (VB ) 、 温度变异值 (VC ) 、 光源强度变异 值 (VD ) 、 环境光强度变异值 (VE ) 中之一或其组合, 并经由该可变参 考准位产生器的数值运算以产生一可变参考准位(VREF ) , 其中, 该参考 电压准位 (VB ) 为该感测器输出数据 (Vout ) 中信号峰值 (VA ) 以外的 电压准位, 该温度变异值(VC )通过温度检测所得, 该光源强度变异值通 过光源强度检测所得, 该环境光强度变异值(VE )通过环境光强度检测所
21、 如权利要求 19所述的模拟数字转换方法, 其特征在于, 通过该可 变参考准位产生器的数值运算所产生的可变参考准位( VREF )进一步设定 为分段参考准位。
PCT/CN2010/002079 2010-08-20 2010-12-17 激光光学触控模块及其模拟数字转换***与方法 WO2012022018A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/818,065 US9471179B2 (en) 2010-08-20 2010-12-17 Laser optical touch control module analog-to-digital conversion system and method of the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2010102582649A CN102375615A (zh) 2010-08-20 2010-08-20 激光光学触控模块
CN201010258264.9 2010-08-20
CN201010525510.2 2010-10-27
CN2010105255102A CN102457278A (zh) 2010-10-27 2010-10-27 影像感测器信号的模拟数字转换***及方法

Publications (1)

Publication Number Publication Date
WO2012022018A1 true WO2012022018A1 (zh) 2012-02-23

Family

ID=45604673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/002079 WO2012022018A1 (zh) 2010-08-20 2010-12-17 激光光学触控模块及其模拟数字转换***与方法

Country Status (2)

Country Link
US (1) US9471179B2 (zh)
WO (1) WO2012022018A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013210956A (ja) * 2012-03-30 2013-10-10 Ricoh Co Ltd ディスプレイ装置
US10760969B1 (en) 2019-02-28 2020-09-01 Biospex, Inc. Fluorescence and systemic noise reduction in time-gated spectroscopy
US11326944B2 (en) * 2019-07-12 2022-05-10 Biospex, Inc. Wearable spectrometer with filtered sensor
US11454540B2 (en) 2019-07-12 2022-09-27 Biospex, Inc. Wearable spectroscopy using filtered sensor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6353405B1 (en) * 2000-06-29 2002-03-05 System General Corp. Low distortion video analog-to-digital converter
CN1629620A (zh) * 2003-12-19 2005-06-22 财团法人工业技术研究院 荧光辅助检测装置
CN2824143Y (zh) * 2005-09-23 2006-10-04 成都吉锐触摸电脑有限公司 带有光学透镜的红外触摸屏
CN101033937A (zh) * 2007-04-13 2007-09-12 南京师范大学 光学干涉测量中分光、成像及同步移相的方法和装置
CN101315287A (zh) * 2007-06-01 2008-12-03 凌通科技股份有限公司 电容式接触传感器
CN201218936Y (zh) * 2008-06-05 2009-04-08 比亚迪股份有限公司 一种光电传感定位装置及采用该定位装置的手机
CN101644976A (zh) * 2009-08-27 2010-02-10 广东威创视讯科技股份有限公司 表面多点触摸装置及其定位方法
CN201489499U (zh) * 2009-07-31 2010-05-26 飞宏科技股份有限公司 红外线扩展光源式多点触控***

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4553842A (en) * 1983-05-09 1985-11-19 Illinois Tool Works Inc. Two dimensional optical position indicating apparatus
US4839739A (en) 1986-03-14 1989-06-13 Hitachi, Ltd. Image signal binary circuit with a variable-frequency clock signal generator for driving an image sensor
JP4033582B2 (ja) * 1998-06-09 2008-01-16 株式会社リコー 座標入力/検出装置および電子黒板システム
ATE453147T1 (de) 2000-07-05 2010-01-15 Smart Technologies Ulc Verfahren für ein kamerabasiertes berührungssystem
US7629967B2 (en) 2003-02-14 2009-12-08 Next Holdings Limited Touch screen signal processing
US7460110B2 (en) * 2004-04-29 2008-12-02 Smart Technologies Ulc Dual mode touch system
US7538759B2 (en) 2004-05-07 2009-05-26 Next Holdings Limited Touch panel display system with illumination and detection provided from a single edge
US8405636B2 (en) * 2008-01-07 2013-03-26 Next Holdings Limited Optical position sensing system and optical position sensor assembly
JP2009178860A (ja) 2008-01-29 2009-08-13 Kyocera Mita Corp 光走査装置,画像形成装置及び画像形成方法
US7781722B2 (en) 2008-02-07 2010-08-24 Lumio Inc Optical touch screen assembly
KR100972932B1 (ko) * 2008-10-16 2010-07-28 인하대학교 산학협력단 터치 스크린 패널
JP4640507B2 (ja) 2009-01-06 2011-03-02 ソニー株式会社 固体撮像装置、固体撮像装置の信号処理方法、および撮像装置
US8896576B2 (en) * 2009-05-28 2014-11-25 Sharp Kabushiki Kaisha Touch panel, liquid crystal panel, liquid crystal display device, and touch panel-integrated liquid crystal display device
US8711093B2 (en) * 2010-06-24 2014-04-29 Avago Technologies General Ip (Singapore) Pte. Ltd. Input device with photodetector pairs

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6353405B1 (en) * 2000-06-29 2002-03-05 System General Corp. Low distortion video analog-to-digital converter
CN1629620A (zh) * 2003-12-19 2005-06-22 财团法人工业技术研究院 荧光辅助检测装置
CN2824143Y (zh) * 2005-09-23 2006-10-04 成都吉锐触摸电脑有限公司 带有光学透镜的红外触摸屏
CN101033937A (zh) * 2007-04-13 2007-09-12 南京师范大学 光学干涉测量中分光、成像及同步移相的方法和装置
CN101315287A (zh) * 2007-06-01 2008-12-03 凌通科技股份有限公司 电容式接触传感器
CN201218936Y (zh) * 2008-06-05 2009-04-08 比亚迪股份有限公司 一种光电传感定位装置及采用该定位装置的手机
CN201489499U (zh) * 2009-07-31 2010-05-26 飞宏科技股份有限公司 红外线扩展光源式多点触控***
CN101644976A (zh) * 2009-08-27 2010-02-10 广东威创视讯科技股份有限公司 表面多点触摸装置及其定位方法

Also Published As

Publication number Publication date
US20130147766A1 (en) 2013-06-13
US9471179B2 (en) 2016-10-18

Similar Documents

Publication Publication Date Title
US9696853B2 (en) Optical touch apparatus capable of detecting displacement and optical touch method thereof
TWI409678B (zh) 光學觸控系統
US20100207909A1 (en) Detection module and an optical detection device comprising the same
JP2013178807A (ja) センシングシステム
TW201019175A (en) Optical motion track module
JP5591069B2 (ja) 座標入力装置及びその制御方法、プログラム
US8922526B2 (en) Touch detection apparatus and touch point detection method
US10962646B2 (en) Electronic device with improved work surface adaptability
WO2012022018A1 (zh) 激光光学触控模块及其模拟数字转换***与方法
TW201030578A (en) A detection module and an optical detection system comprising the same
JP2010287225A (ja) タッチ式入力装置
JP2001142630A (ja) 光デジタイザ
US20160239151A1 (en) Touch Panel and Display Device
TWI464445B (zh) 薄型化光學系統、光源模組及可攜式電子裝置
CN201853211U (zh) 激光光学触控模块
CN103870063A (zh) 光学触控***、触控检测方法及校正方法
CN102375615A (zh) 激光光学触控模块
US20120026084A1 (en) Signaling device position determination
TWI582672B (zh) 光學觸控裝置及其觸控偵測方法
TW201327324A (zh) 光學式觸控模組
TWI518575B (zh) 光學觸控模組
TW201101153A (en) Optical detecting device, method and touch panel comprising the same
TW201207703A (en) Laser optical touch module
US20120139878A1 (en) Touch module and touch display apparatus
TW201218643A (en) Analog-to-digital conversion circuit system for image sensor signal and operating method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13818065

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10856016

Country of ref document: EP

Kind code of ref document: A1