TW201101153A - Optical detecting device, method and touch panel comprising the same - Google Patents

Optical detecting device, method and touch panel comprising the same Download PDF

Info

Publication number
TW201101153A
TW201101153A TW98122100A TW98122100A TW201101153A TW 201101153 A TW201101153 A TW 201101153A TW 98122100 A TW98122100 A TW 98122100A TW 98122100 A TW98122100 A TW 98122100A TW 201101153 A TW201101153 A TW 201101153A
Authority
TW
Taiwan
Prior art keywords
reflector
planar light
fabry
laser diode
cavity laser
Prior art date
Application number
TW98122100A
Other languages
Chinese (zh)
Inventor
Ching-Hui Lin
Original Assignee
Arima Lasers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arima Lasers Corp filed Critical Arima Lasers Corp
Priority to TW98122100A priority Critical patent/TW201101153A/en
Publication of TW201101153A publication Critical patent/TW201101153A/en

Links

Landscapes

  • Position Input By Displaying (AREA)

Abstract

An optical detecting device is disclosed. The device includes a first and a second Fabry-Perot horizontal cavity laser diode assemblies, a reflecting module, and a detecting unit. Each of the first and the second Fabry-Perot horizontal cavity laser diode assembly is operable to project a first and a second sheet of light respectively to a sensing region. The reflecting module is disposed along a portion of the peripheries of the sensing area, and has a step-shaped reflecting surface to reflect the first and second sheets of light. The detecting unit is designed to receive and detect the first and second sheets of light reflected from the reflecting module.

Description

201101153 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種用以偵測一感測區内一物體之位 置的光學偵測裝置及方法。 【先前技術】 隨著電腦科技、可攜式電子產品以及平面顯示器的蓬 勃發展,觸控輸入或手寫輸入技術的需求也日益受到重視。 Π W 傳統的觸控技術包括多種不同類型,其中一類為電阻 式或電容式觸控螢幕。電阻式或電容式觸控技術是在顯示 器的顯示面上方設置兩層彼此分離的薄層,兩薄層内側塗 佈有導電物質。當一物件壓觸外部的薄層並使兩薄層相接 觸時,藉由計算兩薄層電阻或電容的變化而得出接觸點的 位置。但上述電阻式或電容式觸控技術很難同時偵測觸控 螢幕上多個觸控點。 另一常用的觸控技術為利用攝影來決定出螢幕上一觸 〇 ^ 控點位置。此種觸控技術是在觸控區域表面預先設置多數 個「位置記號」,例如在觸控區域佈滿多數個線條陣列,且 這些線條陣列在偵測區中的特定位置是唯一的。然後利用 一攝影裝置(即攝影觸控筆)對於觸控點的線條陣列進行攝 影,再將所得的影像傳送到一分析單元進行分析而判斷出 觸控點的位置。此觸控技術必須使用特定的攝影觸控筆才 能正常運作,並無法使用其他的物件取代攝影觸控筆,所 以製造成本上相對較高。 5 201101153 第三種常用的觸控技術是利用紅外線感應觸控螢幕。 紅外線感應觸控螢幕技術是在顯示器的顯示面四週設置複 數個紅外線發光源以及複數個相對應的紅外線接收器,且 紅外線發光源與紅外線接收器是一對一的關係。當一物件 出現在顯示器的顯示面時,此物件遮蔽對應位置上的紅外 線接收器的光線,藉由分析複數紅外線接收器的光線而決 定此物件的位置。但傳統的紅外線觸控技術所發出的光源 的指向性較差,因此不利於大尺寸的螢幕。再者,紅外線 ^ 發光源與紅外線接收器是一對一的配置,若要得到較佳的 解析度,必須同時設置更多的紅外線發光源與接收器。因 此,在需要高解析度的觸控螢幕中,傳統的紅外線感應觸 技術受到很大限制。 【發明内容】 本發明之一態樣係提供一種光學偵測裝置,用以偵測 一感測區内一物體之位置。此裝置包含一第一法布里-伯羅 Q 水平空腔雷射二極體組件、一第二法布里-伯羅水平空腔雷 射二極體組件、一反射模組以及一偵測單元。第一與第二 法布里-伯羅水平空腔雷射二極體組件分別位在感測區之 一侧的兩端,並可分別向感測區投射一第一平面光以及一 第二平面光。反射模組配置在感測區中除該侧外的周邊 上,並具有一階梯狀反射面用以反射第一及第二平面光。 偵測單元配置在反射模組之一侧,用以接收及偵測由反射 模組反射而來的第一平面光以及第二平面光。 201101153 依據本發明一實施例,此光學偵測裝置中第一及第二 法布里-伯羅水平空腔雷射二極體組件,分別包括一第一及 第二法布里-伯羅水平空腔雷射二極體;一第一及第二準直 鏡片,用以分別與該第一及第二法布里-伯羅水平空腔雷射 二極體共同運作而發射出一第一及第二平行光束;以及一 第一及第二光學鏡片,分別配置於該第一及第二平行光束 之光學路徑上,用以轉換該第一及第二平行光束為該第一 及第二平面光。如上所述之光學偵測裝置,第一光學鏡片 0 可為一線光源鏡片或一柱狀鏡片。 依據本發明一實施例,此光學偵測裝置中之階梯狀反 射面包括複數個反射平面以及複數個連結面,且每一該些 連結面連接該些反射平面中之相鄰兩反射平面。 本發明之另一態樣係提供一種用以偵測一感測區内一 物體之一位置的方法,此方法包括:提供如上所述之光學 偵測裝置;分別以該第一與第二法布里-伯羅水平空腔雷射 二極體組件投射該第一平面光以及該第二平面光至該感測 Q 區;以該反射模組之階梯狀反射面將該第一平面光以及該 第二平面光反射向該偵測單元;以該偵測單元分別偵測該 第一平面光及該第二平面光,當該該偵測單元偵測到部分 該第一平面光及該第二平面光之強度降低時,即根據所測 得之該部分強度降低之第一平面光及第二平面光,分別產 生一第一及一第二位置資訊;以及根據該第一及第二位置 資訊,決定出該物體在該感測區内的一位置座標。 本發明之另一態樣係提供一種觸控面板,此觸控面板 包含一顯示面板以及如上所述之光學偵測裝置。光學偵測 7 201101153 裝置配置在顯示面板上’且光學偵測裝置之感測區大致位 於顯不面板之"""顯不區域上。 應用本發明具有下列優點:(1)雷射光束的指向特性 高,不論投射距離遠近都可得到清晰的影像,特別適合用 於大型顯示螢幕上。(2)本發明適合用於位置感測解析度要 求較低的產品。本發明藉由一階梯狀反射面將入射光反射 並壓縮在較小的偵測空間内,所以降低整體裝置的成本。 〇 【實施方式】 請參照第1圖’其為本發明一實施方式之光學偵測裝 置的前視示意圖。光學偵測裝置10〇主要包括有第一法布 里-伯羅水平空腔雷射二極體組件ll〇(Fabry-Perot horizontal cavity laser diode)'第二法布里-伯羅水平空腔雷 射二極體組件120、反射模組170以及偵測單元14〇。第一 與第二法布里-伯羅水平空腔雷射二極體組件(11〇,12〇)以 及反射模組170大致圍繞一感測區150設置。 Ο 第一法布里-伯羅水平空腔雷射二極體組件1丨〇以及第 二法布里-伯羅水平空腔雷射二極體組件12〇分別配置在感 測區150任一側的兩端,例如,第1圖中之z侧。第一及 第二法布里-伯羅水平空腔雷射二極體組件(11〇,12〇)之間 的直線距離為L,且可分別向感測區15〇投射第一平面光 以及第二平面光。第一平面光以及第二平面光分別可涵蓋 感測區150的全部區域。在一實施例中,第一及第二平面 光之波長為780奈米至85〇奈米的雷射;例如,第一以及 第二平面光可分別為波長780、808或850奈米的雷射光。 201101153 在一實施例中,第一及第二法布里-伯羅水平空腔雷射 二極體組件(110,120)是相互交替投射第一平面光以及第 二平面光。亦即,當第一法布里-伯羅水平空腔雷射二極體 組件110發射第一平面光時,第二法布里_伯羅水平空腔雷 射二極體組件120並未發射第二平面光。而當第二法布里-伯羅水平空腔雷射二極體組件120發射第二平面光時,第 一法布里·伯羅水平空腔雷射二極體組件110並未發射第一 平面光。在另一實施例中,第一與第二法布里-伯羅水平空 ◎ 腔雷射二極體組件(110, 120)是同時向感測區150投射第一 平面光以及第二平面光。 在一實施例中,第一與第二法布里-伯羅水平空腔雷射 二極體組件(110, 120)兩者具有相同的結構。第2圖為本發 明一實施例之第一法布里·伯羅水平空腔雷射二極體組件 110的示意圖。如第2圖所示,第一法布里-伯羅水平空腔 雷射二極體組件110包括第一法布里-伯羅水平空腔雷射二 極體112、第一準直鏡片114、以及一第一光學鏡片116。 ❹ 第一法布里-伯羅水平空腔雷射二極體112作為一發光源, 第一準直鏡片114與第一法布里-伯羅水平空腔雷射二極體 112共同運作而將第一法布里-伯羅水平空腔雷射二極體 112所產生之光線轉換為第一平行光束115。第一光學鏡片 116配置於第一平行光束115之光學路徑上,第一平行光束 115經過第一光學鏡片116後被轉換為第一平面光117。在 一實施例中,此第一光學鏡片116可為一線光源鏡片或一 柱狀鏡片。 9 201101153 在一實施例中,第一與第二法布里-伯羅水平空腔雷射 二極體(110, 120)是配置在不同的平面高度,所以發射出的 第一平面光以及第二平面光也是位於不同的高度。第一平 面光以及第二平面光的高度是配合反射模組170的設計’ 將於以下敘述反射模組時一併說明。 反射模組170配置在感測區150的周邊上方,但不包 括感測區150上設有二極體組件(110, 120)之邊。在一實施 例中,反射模組170包括第一反射器171、第二反射器172、 q 第三反射器173以及第四反射器Π4。如第1圖所示,第 一反射器171大致垂直於第二反射器172 ’且第三反射器 173大致垂直於第四反射器174。第二反射器272以及第四 反射器274是位於感測區250的下緣。 第3圖為本發明一實施例之第二反射器172與第四反 射器174的立體示意圖。請同時參照第1圖及第3圖,第 二反射器172與第四反射器174相互疊置’所以第二反射 器的反射面172r與第四反射器的反射面Π4γ是位於不同 〇 的高度,且提供不同的反射方向。在一實施例中’第一反 射器的反射面171ι•與第二反射器的反射面172r大致位於 相同的高度,而第三反射器的反射面173r與第四反射器的 反射面174r大致位於另一相同的高度。 在一實施例中,第一與第二反射器(Π1,Π2)用以反射 第一法布里·伯羅水平空腔雷射二極體110所投射出的第一 平面光,因此第一法布里·伯羅水平空腔雷射二極體110的 高度與第一及第二反射器(Π1,172)的高度大致相同。同 理,第三及第四反射器(173, 174)用以反射第二法布里-伯羅 201101153 水平空腔雷射二極體120所發射之第二平面光,所以第二 法布里·伯羅水平空腔雷射二極體120的高度與第三與第四 反射器(173, 174)的高度大致相同。 反射模組170具有一階梯狀反射面,用以將第一平面 光以及第二平面光反射至偵測單元140。在一實施例中, 每一反射器的反射面(171r,172r, 173r,174r)上分別具有一 階梯狀反射面,如第3圖所示。在一實施例中’為了確保 反射器的反射效果.,每一反射器的階梯狀反射面可包括一 〇 銀反射層、鋁反射層或鉻反射層。 偵測單元140配置於反射模組170之一側,適以接收 及偵測由反射模組Π0反射而來之第一平面光及第二平面 光。在一實施例中,偵測單元140包含第一、第二、第三 及第四偵測器(141, 142, 143, 144),且分別配置在第一、第 二、第三及第四反射器(171, 172, 173, 174)的一侧上’如第 1圖所示。更詳細地說,第一反射器Π1將第一平面光反 射至第一偵測器141 ’第二反射器Π2將第一平面光反射 Q 至第二偵測器142,第三反射器173將第二平面光反射至 第三偵測器143,第四反射器174將第二平面光反射至第 四偵測器144。 在一實施例中,偵測單元可包括一接觸式影像感測 器、一互補式金屬氧半導體線性光偵測器、或一線性電荷 耦合光偵測器,用以偵測第一平面光及第二平面光的強度。 請參照第4圖,其為本發明一實施例之第一平面光經 由第二反射器172反射至第二偵測器142的光學路徑示意 圖。如圖所示,階梯狀反射面包括複數個反射平面(Rl, 11 201101153201101153 VI. Description of the Invention: [Technical Field] The present invention relates to an optical detecting apparatus and method for detecting the position of an object in a sensing area. [Prior Art] With the rapid development of computer technology, portable electronic products and flat panel displays, the demand for touch input or handwriting input technology has also received increasing attention. Π W Traditional touch technologies include many different types, one of which is a resistive or capacitive touch screen. Resistive or capacitive touch technology is to provide two layers separated from each other above the display surface of the display, and the inside of the two layers is coated with a conductive material. When an object is pressed against the outer thin layer and the two thin layers are brought into contact, the position of the contact point is obtained by calculating the change of the two thin layers of resistance or capacitance. However, the above-mentioned resistive or capacitive touch technology is difficult to simultaneously detect multiple touch points on the touch screen. Another commonly used touch technology is the use of photography to determine the position of a touch point on the screen. In the touch technology, a plurality of "position marks" are preset on the surface of the touch area, for example, a plurality of line arrays are covered in the touch area, and the line arrays are unique in a specific position in the detection area. Then, a photographing device (i.e., a photographic stylus) is used to take a picture of the line array of the touch point, and then the obtained image is transmitted to an analysis unit for analysis to determine the position of the touch point. This touch technology must work with a specific stylus and cannot replace the stylus with other objects, so the manufacturing cost is relatively high. 5 201101153 The third commonly used touch technology is the use of infrared sensing touch screen. Infrared sensing touch screen technology is to set a plurality of infrared light sources and a plurality of corresponding infrared receivers around the display surface of the display, and the infrared light source and the infrared receiver are in a one-to-one relationship. When an object appears on the display surface of the display, the object shields the light of the infrared receiver at the corresponding location, and the position of the object is determined by analyzing the light of the plurality of infrared receivers. However, the directivity of the light source emitted by the conventional infrared touch technology is poor, which is not conducive to large-size screens. Furthermore, the infrared source and the infrared receiver are one-to-one. For better resolution, more infrared sources and receivers must be provided at the same time. Therefore, in the touch screen requiring high resolution, the conventional infrared sensing touch technology is greatly limited. SUMMARY OF THE INVENTION One aspect of the present invention provides an optical detecting device for detecting the position of an object in a sensing area. The device comprises a first Fabry-Perot Q horizontal cavity laser diode assembly, a second Fabry-Boro horizontal cavity laser diode assembly, a reflection module and a detection unit. The first and second Fabry-Berro horizontal cavity laser diode assemblies are respectively located at one ends of one side of the sensing region, and respectively project a first planar light and a second to the sensing region Plane light. The reflective module is disposed on the periphery of the sensing area except the side, and has a stepped reflecting surface for reflecting the first and second planar lights. The detecting unit is disposed on one side of the reflective module for receiving and detecting the first planar light and the second planar light reflected by the reflective module. According to an embodiment of the invention, the first and second Fabry-Berro horizontal cavity laser diode assemblies of the optical detecting device respectively include a first and second Fabry-Berro level a cavity laser diode; a first and second collimating lens for respectively operating together with the first and second Fabry-Boro horizontal cavity laser diodes to emit a first And a second parallel beam; and a first and second optical lens respectively disposed on the optical paths of the first and second parallel beams for converting the first and second parallel beams into the first and second Plane light. In the optical detecting device as described above, the first optical lens 0 may be a line source lens or a column lens. According to an embodiment of the invention, the stepped reflective surface of the optical detecting device comprises a plurality of reflecting planes and a plurality of connecting planes, and each of the connecting planes connects adjacent ones of the reflecting planes. Another aspect of the present invention provides a method for detecting a position of an object in a sensing area, the method comprising: providing an optical detecting device as described above; respectively using the first and second methods a Brill-Boro horizontal cavity laser diode assembly projects the first planar light and the second planar light to the sensing Q region; the first planar light is illuminated by a stepped reflective surface of the reflective module The second planar light is reflected to the detecting unit; the detecting unit respectively detects the first planar light and the second planar light, and when the detecting unit detects a portion of the first planar light and the first When the intensity of the two plane lights is reduced, that is, according to the measured first plane light and the second plane light whose intensity is reduced, respectively, generating a first and a second position information; and according to the first and second positions Information determines the coordinates of a position of the object within the sensing area. Another aspect of the present invention provides a touch panel including a display panel and an optical detecting device as described above. Optical detection 7 201101153 The device is placed on the display panel' and the sensing area of the optical detection device is located roughly on the """ display area of the display panel. The application of the present invention has the following advantages: (1) The laser beam has a high directivity characteristic, and a clear image can be obtained regardless of the projection distance, and is particularly suitable for use on a large display screen. (2) The present invention is suitable for products requiring lower position sensing resolution. The present invention reflects and compresses incident light in a small detection space by a stepped reflecting surface, thereby reducing the cost of the overall device. [Embodiment] Please refer to Fig. 1 for a front view of an optical detecting device according to an embodiment of the present invention. The optical detecting device 10 〇 mainly includes a first Fabry-Perot horizontal cavity laser diode 第二 a second Fabry-Berro horizontal cavity ray The diode assembly 120, the reflection module 170, and the detection unit 14A. The first and second Fabry-Berro horizontal cavity laser diode assemblies (11 〇, 12 〇) and the reflection module 170 are disposed generally around a sensing region 150. Ο The first Fabry-Berro horizontal cavity laser diode assembly 1丨〇 and the second Fabry-Berro horizontal cavity laser diode assembly 12〇 are respectively disposed in any of the sensing regions 150 Both ends of the side, for example, the z side in Fig. 1. The linear distance between the first and second Fabry-Berro horizontal cavity laser diode assemblies (11 〇, 12 〇) is L, and the first planar light can be projected to the sensing region 15 以及 and The second plane light. The first planar light and the second planar light may encompass the entire area of the sensing region 150, respectively. In one embodiment, the first and second planar lights have a wavelength of from 780 nanometers to 85 nanometers; for example, the first and second planar lights are respectively 780, 808 or 850 nanometers of light. Shoot light. In an embodiment, the first and second Fabry-Berro horizontal cavity laser diode assemblies (110, 120) are alternately projecting first planar light and second planar light. That is, when the first Fabry-Berro horizontal cavity laser diode assembly 110 emits the first planar light, the second Fabry-Berro horizontal cavity laser diode assembly 120 does not emit. The second plane light. When the second Fabry-Boro horizontal cavity laser diode assembly 120 emits the second planar light, the first Fabry-Berro horizontal cavity laser diode assembly 110 does not emit the first Plane light. In another embodiment, the first and second Fabry-Perot horizontal empty cavity laser diode assemblies (110, 120) simultaneously project the first planar light and the second planar light toward the sensing region 150. . In one embodiment, both the first and second Fabry-Perot horizontal cavity laser diode assemblies (110, 120) have the same structure. Figure 2 is a schematic illustration of a first Fabry-Perot horizontal cavity laser diode assembly 110 in accordance with an embodiment of the present invention. As shown in FIG. 2, the first Fabry-Perot horizontal cavity laser diode assembly 110 includes a first Fabry-Boro horizontal cavity laser diode 112, a first collimating lens 114. And a first optical lens 116. ❹ The first Fabry-Berro horizontal cavity laser diode 112 serves as a light source, and the first collimating lens 114 cooperates with the first Fabry-Berro horizontal cavity laser diode 112. The light generated by the first Fabry-Perot horizontal cavity laser diode 112 is converted into a first parallel beam 115. The first optical lens 116 is disposed on the optical path of the first parallel beam 115, and the first parallel beam 115 is converted into the first planar light 117 after passing through the first optical lens 116. In one embodiment, the first optical lens 116 can be a line of light source lenses or a cylindrical lens. 9 201101153 In an embodiment, the first and second Fabry-Berro horizontal cavity laser diodes (110, 120) are arranged at different plane heights, so the first planar light emitted and the The two plane lights are also located at different heights. The height of the first planar light and the second planar light is the design of the matching reflective module 170. The same will be described below with reference to the reflective module. The reflective module 170 is disposed above the perimeter of the sensing region 150, but does not include the side of the sensing region 150 on which the diode assembly (110, 120) is disposed. In one embodiment, the reflective module 170 includes a first reflector 171, a second reflector 172, a q third reflector 173, and a fourth reflector Π4. As shown in Fig. 1, the first reflector 171 is substantially perpendicular to the second reflector 172' and the third reflector 173 is substantially perpendicular to the fourth reflector 174. The second reflector 272 and the fourth reflector 274 are located at the lower edge of the sensing region 250. Fig. 3 is a perspective view showing a second reflector 172 and a fourth reflector 174 according to an embodiment of the present invention. Referring to FIGS. 1 and 3 simultaneously, the second reflector 172 and the fourth reflector 174 are stacked on each other' so that the reflection surface 172r of the second reflector and the reflection surface Π4γ of the fourth reflector are at different heights. And provide different directions of reflection. In one embodiment, the reflective surface of the first reflector is substantially at the same height as the reflective surface 172r of the second reflector, and the reflective surface 173r of the third reflector is located substantially at the reflective surface 174r of the fourth reflector. Another identical height. In an embodiment, the first and second reflectors (Π1, Π2) are used to reflect the first planar light projected by the first Fabry-Perot horizontal cavity laser diode 110, thus first The height of the Fabry-Perot horizontal cavity laser diode 110 is substantially the same as the height of the first and second reflectors (Π1, 172). Similarly, the third and fourth reflectors (173, 174) are used to reflect the second plane light emitted by the second Fabry-Bero 201101153 horizontal cavity laser diode 120, so the second Fabri The height of the Boro horizontal cavity laser diode 120 is substantially the same as the height of the third and fourth reflectors (173, 174). The reflective module 170 has a stepped reflective surface for reflecting the first planar light and the second planar light to the detecting unit 140. In one embodiment, each reflector has a reflective surface (171r, 172r, 173r, 174r) having a stepped reflective surface, as shown in FIG. In an embodiment, in order to ensure the reflection effect of the reflector, the stepped reflecting surface of each reflector may comprise a silver reflective layer, an aluminum reflective layer or a chrome reflective layer. The detecting unit 140 is disposed on one side of the reflective module 170, and is adapted to receive and detect the first planar light and the second planar light reflected by the reflective module Π0. In an embodiment, the detecting unit 140 includes first, second, third, and fourth detectors (141, 142, 143, 144) and is respectively configured in the first, second, third, and fourth On one side of the reflector (171, 172, 173, 174) is shown in Figure 1. In more detail, the first reflector Π1 reflects the first planar light to the first detector 141 'the second reflector Π2 reflects the first planar light Q to the second detector 142, and the third reflector 173 The second planar light is reflected to the third detector 143, and the fourth reflector 174 reflects the second planar light to the fourth detector 144. In one embodiment, the detecting unit may include a contact image sensor, a complementary metal oxide semiconductor linear light detector, or a linear charge coupled light detector for detecting the first planar light and The intensity of the second planar light. Please refer to FIG. 4, which is a schematic diagram of an optical path of the first planar light reflected by the second reflector 172 to the second detector 142 according to an embodiment of the invention. As shown, the stepped reflecting surface includes a plurality of reflecting planes (Rl, 11 201101153)

Rn)以及複數個連結面(q,C2,·.·,Cn),且每一連結面連接兩 相鄰的反射平面。每一反射平面(Rl5 R2,···,Rn)分別具有不 同的反射角度(6^,02,…,0n),亦即,每一反射平面的法 向量方向不同。當第一平面光投射到第二反射器172上 時,在第二反射器172的不同位置上會形成不同的入射 角。第二反射器172上的每一個反射平面 有不同的反射角度,故可將不同入射角度的第一平面光以 平行的方式反射向第二偵測器142。例如,光學路徑I的入 0 射光會沿著光學路徑Γ反射,光學路徑J的入射光會沿著 光學路徑Γ反射,光學路徑Κ的入射光會沿著光學路徑Κ’ 反射,且光學路徑Γ、Γ及Κ’是相互平行,並分別投射到 第二偵測器242上的不同位置I〇、J0及Κ0。換言之,第二 偵測器142上的不同偵測位置是對應於不同的光學路徑。 請再參照第1圖,當感測區150内存在一物體160時, 物體160遮蔽部分的第一平面光,而在第二反射器172的 位置Α上形成一陰影,並經由第二反射器172將位置Α的 ^ 陰影投影到第二偵測器142上。換言之,藉由分析第二偵 測器142所偵測到的光強度可以決定A點的位置。同理, 物體160亦遮蔽部分的第二平面光,而在第三反射器173 的位置B上形成另一陰影,由第三偵測器143所偵測到光 強度可以決定B點的位置。當決定A點及B點的座標後, 便可藉由以下敘述的方法決定出物體160的座標Q(x,y)。 如第1圖所示,第一與第二法布里-伯羅水平空腔雷射 二極體組件(110, 120)的出光口位置分別為D點及E點。當 第二偵測器142定義出A點的座標後,由A點的座標便可 12 201101153 決定ZADE的角度α,且每一個A點座標只會對應到一個 α值。同理,當第三偵測器143偵測定義出B點的座標後, 可將Β點的座標轉換成ZBED的角度冷。 由角度α、角度/3以及D點與Ε點間的直線距離L, 便可利用以下三角函數關係式(1)及式(2)計算出物體160的 座標位置Q(x,y): tan^ = — (2)Rn) and a plurality of joint faces (q, C2, . . . , Cn), and each joint face connects two adjacent reflection planes. Each of the reflection planes (Rl5 R2, . . . , Rn) has a different reflection angle (6^, 02, ..., 0n), that is, the normal vector direction of each reflection plane is different. When the first planar light is projected onto the second reflector 172, different incident angles are formed at different positions of the second reflector 172. Each of the reflection planes on the second reflector 172 has a different reflection angle, so that the first plane light of different incident angles can be reflected to the second detector 142 in a parallel manner. For example, the incident light of the optical path I is reflected along the optical path ,, the incident light of the optical path J is reflected along the optical path ,, and the incident light of the optical path Κ is reflected along the optical path Κ′, and the optical path Γ , Γ and Κ' are parallel to each other and are projected to different positions I 〇, J0 and Κ 0 on the second detector 242, respectively. In other words, the different detection positions on the second detector 142 correspond to different optical paths. Referring again to FIG. 1, when the object 160 is present in the sensing region 150, the object 160 shields a portion of the first planar light, and a shadow is formed at the position of the second reflector 172, and passes through the second reflector. 172 projects the shadow of the position Α onto the second detector 142. In other words, the position of point A can be determined by analyzing the intensity of light detected by second detector 142. Similarly, the object 160 also shields part of the second planar light, and another shadow is formed at the position B of the third reflector 173. The light intensity detected by the third detector 143 determines the position of the B point. When the coordinates of points A and B are determined, the coordinate Q(x, y) of the object 160 can be determined by the method described below. As shown in Fig. 1, the positions of the light exits of the first and second Fabry-Berro horizontal cavity laser diode assemblies (110, 120) are points D and E, respectively. When the second detector 142 defines the coordinates of the point A, the coordinate of the ZADE can be determined by the coordinates of the point A, 201101153, and each coordinate of the point A will only correspond to an alpha value. Similarly, when the third detector 143 detects the coordinates defining the point B, the coordinates of the defect can be converted into the angle of the ZBED. From the angle α, the angle /3, and the linear distance L between the D point and the Ε point, the coordinate position Q(x, y) of the object 160 can be calculated by the following trigonometric relationship equations (1) and (2): tan ^ = — (2)

XX

由式(1)及式(2)可得 (3) (4)Available from formula (1) and formula (2) (3) (4)

Lx tan a (tana + tan^) (Z-xtanaxtanyi?) (tana + tan 因此,由式(3)及式(4)可計算出感測區150内物體160 的座標位置Q (x,y)。 根據以上的敘述,本發明之另一態樣係提供一種偵測 一感測區内一物體之位置的方法,此方法包括以下敘述的 〇 步驟。 首先,提供如上所述之光學偵測裝置100,並分別以 第一與第二法布里-伯羅水平空腔雷射二極體組件(110、120) 投射第一平面光以及第二平面光至感測區150。 接著,以反射模組170之階梯狀反射面將第一平面光 以及第二平面光反射向偵測單元140。 然後,以偵測單元140分別偵測第一平面光以及第二 平面光。當偵測單元140偵測到部分的第一平面光以及部 分的第二平面光之強度降低時,即根據所測得之此部分強 13 201101153 度降低之第一平面光以及第二平面光,分別產生一第一及 一第二位置資訊(即如上所述之A點與B點座標)。 最後,根據第一及第二位置資訊決定物體在感測區内 的位置座標(x,y)。 請參照第5圖,其為本發明一實施方式之觸控面板的 前視示意圖。觸控面板500主要包含一顯示面板580以及 如上所述之一光學偵測裝置。光學偵測裝置配置於顯示面 板580上’且光學偵測裝置之感測區大致位於顯示面板580 〇 之一顯示區域上。如圖所示’光學偵測裝置包括第一羅水 平空腔雷射二極體組件510、第二法布里-伯羅水平空腔雷 射二極體組件520、四個偵測器(541,542, 543, 544)以及四 個反射器(571,572, 573, 574)。 第一及第二法布里-伯羅水平空腔雷射二極體組件 (510, 520)配置在顯示面板580 —側的兩端。第一及法布里 -伯羅水平空腔雷射二極體組件(510, 520)可分別向向顯示 面板580上之顯示區投射第一平面光以及第二平面光。第 Q 一及第二平面光可分別涵蓋顯示面板380的顯示區,顯示 面板380可例如為一液晶顯示面板。 反射器(571,572, 573, 574)分別配置在顯示面板580的 周邊上方,但不包括顯示面板580上設有二極體組件(510, 520)之邊,用以反射第一平面光以及第二平面光至偵測器 (541,542, 543, 544)。反射器571及572分別用以反射第一 平面光至偵測器541及542,反射器573、574用以反射第 二平面光至偵測器543及544。 14 201101153 當顯示面板580的顯示區中存在一物體560時,物题 560遮蔽部分的第一平面光,而在反射器572的位置A上 形成一陰影’並經由反射器572將位置A的陰影投射偵剛 器542。經由分析偵測器542所偵測到光強度訊號,便可 決定A點的位置。同理,物體560亦遮蔽部分的第二平面 光,而在反射器573的位置B上形成另一陰影,經由分析 偵測器543所偵測到光強度訊號,可以決定b點的位置。 當位置A及位置B的座標決定後,便可藉由如上所述的計 〇 算方法決定物體560的座標位置。 由上述本發明實施方式可知,應用本發明具有下列優 (1) 雷射光束的指向特性極高,不管投射距離遠近都可 以得到清晰的影像,所以本發明適合用於大面積的感測區。 (2) 本發明非常適合用於位置感測解析度要求較低的 產品。本發明藉由一階梯狀反射面將入射光反射並壓縮在 較小的偵測空間内’所以可使用體積較小的偵測器, 〇 低整體裝置的成本》 、° 降 雖然本發明已以實施方式揭露如上,然其並非用以阳 定本發明,/壬何熟習此技藝者,在不脫離本發明之精神2 範圍内,當可作各種之更動與潤飾,因此本發明之保護 圍當視後附之申請專利範圍所界定者為準。 5 【圖式簡單說明】 第1圖係繪示依照本發明一實施方式之光學偵測 的前視示意圖。 、置 15 201101153 第2圖係緣示依照本發明一實施方式之第一法布里-伯 羅水平空腔雷射二極體組件的示意圖。 第3圖係繪示依照本發明一實施方式之反射器的立體 示意圖。 第4圖係繪示依照本發明一實施方式之光學路徑示意 圖。 第5圖係繪示依照本發明一實施方式之觸控面板的前 視示意圖。 〇 【主要元件符號說明】 100光學偵測裝置 110第一法布里-伯羅水平空腔雷射二極體組件 112第一法布里-伯羅水平空腔雷射二極體 114第一準直鏡片 116第一光學鏡片 〇 U5第一平行光束 117第一平面光 120第二法布里-伯羅水平空腔雷射二極體組件 140偵測單元 141第一偵測器 142第二偵測器 143第三偵測器 144第四偵測器 150感測區 201101153 160物體 Π0反射模組 171第一反射器 171r第一反射器反射面 172第二反射器 172r第二反射器反射面 173第三反射器 173r第三反射器反射面 〇 174第四反射器 174r第四反射器反射面 500觸控面板 510第一法布里-伯羅水平空腔雷射二極體組件 5 20第二法布里-伯羅水平空腔雷射二極體組件 541,542, 543, 544 偵測器 560物體 571, 572, 573, 574 反射器 〇 580顯示面板 A,B,D,E,Q,1〇, J〇, K〇 點 L, X,y 距離 Ci,C2,···,Cn 連結面 Rl,R2,"_,Rn 射平面 I,J, Κ, Ι’,Γ,Κ’ 光學路徑 α角度 02,…,0η反射角度 17Lx tan a (tana + tan^) (Z-xtanaxtanyi?) (tana + tan Therefore, the coordinate position Q (x, y) of the object 160 in the sensing region 150 can be calculated from the equations (3) and (4). According to the above description, another aspect of the present invention provides a method of detecting the position of an object in a sensing area, the method comprising the steps described below. First, an optical detecting device as described above is provided. 100, and projecting the first planar light and the second planar light to the sensing region 150 by the first and second Fabry-Boro horizontal cavity laser diode assemblies (110, 120), respectively. The stepped reflective surface of the module 170 reflects the first planar light and the second planar light toward the detecting unit 140. Then, the detecting unit 140 detects the first planar light and the second planar light respectively. When the intensity of the first planar light and the portion of the second planar light are detected to decrease, that is, the first planar light and the second planar light reduced according to the measured portion of the intensity 13 201101153 degrees respectively generate a first And a second location information (ie, points A and B as described above). The position coordinates (x, y) of the object in the sensing area are determined according to the first and second position information. Please refer to FIG. 5 , which is a front view of the touch panel according to an embodiment of the invention. The panel 500 mainly includes a display panel 580 and an optical detecting device as described above. The optical detecting device is disposed on the display panel 580 and the sensing region of the optical detecting device is located substantially on one of the display panels 580 显示As shown in the figure, the optical detecting device includes a first horizontal horizontal cavity laser diode assembly 510, a second Fabry-Broad horizontal cavity laser diode assembly 520, and four detectors ( 541, 542, 543, 544) and four reflectors (571, 572, 573, 574). The first and second Fabry-Berro horizontal cavity laser diode assemblies (510, 520) are arranged in Display panel 580 - both ends of the side. The first and Fabry-Berro horizontal cavity laser diode assemblies (510, 520) can respectively project a first planar light to the display area on the display panel 580 and The second planar light may cover the display area of the display panel 380, respectively. The panel 380 can be, for example, a liquid crystal display panel. The reflectors (571, 572, 573, 574) are respectively disposed above the periphery of the display panel 580, but do not include the display panel 580 with the diode assembly (510, 520). The side is configured to reflect the first planar light and the second planar light to the detectors (541, 542, 543, 544). The reflectors 571 and 572 respectively reflect the first planar light to the detectors 541 and 542, and reflect The devices 573, 574 are configured to reflect the second planar light to the detectors 543 and 544. 14 201101153 When an object 560 is present in the display area of the display panel 580, the object 560 shields a portion of the first planar light, while forming a shadow on the position A of the reflector 572 and shadowing the position A via the reflector 572. Projection detector 542. The position of point A can be determined by analyzing the light intensity signal detected by detector 542. Similarly, the object 560 also shields a portion of the second planar light, and another shadow is formed at the position B of the reflector 573. The position of the b-point can be determined by analyzing the light intensity signal detected by the detector 543. When the coordinates of position A and position B are determined, the coordinate position of the object 560 can be determined by the calculation method as described above. As is apparent from the above-described embodiments of the present invention, the present invention has the following advantages: (1) The laser beam has extremely high directivity characteristics, and a clear image can be obtained regardless of the projection distance, so the present invention is suitable for use in a large-area sensing region. (2) The present invention is well suited for use in products where position sensing resolution is less demanding. The invention reflects and compresses the incident light in a small detection space by a stepped reflecting surface, so that a smaller volume detector can be used, which reduces the cost of the overall device, although the invention has The embodiments are disclosed above, but are not intended to be used in the present invention, and those skilled in the art can make various modifications and retouchings within the scope of the spirit of the present invention. The scope defined in the appended patent application shall prevail. 5 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a front elevational view showing optical detection according to an embodiment of the present invention. 15 201101153 FIG. 2 is a schematic diagram showing a first Fabry-Perot horizontal cavity laser diode assembly in accordance with an embodiment of the present invention. Fig. 3 is a perspective view showing a reflector according to an embodiment of the present invention. Figure 4 is a schematic illustration of an optical path in accordance with an embodiment of the present invention. Figure 5 is a front elevational view of a touch panel in accordance with an embodiment of the present invention. 〇[Main component symbol description] 100 optical detection device 110 first Fabry-Berro horizontal cavity laser diode assembly 112 first Fabry-Berro horizontal cavity laser diode 114 first Collimating lens 116 first optical lens 〇 U5 first parallel beam 117 first plane light 120 second Fabry-Boro horizontal cavity laser diode assembly 140 detecting unit 141 first detector 142 second Detector 143 third detector 144 fourth detector 150 sensing area 201101153 160 object 反射 0 reflection module 171 first reflector 171r first reflector reflecting surface 172 second reflector 172r second reflector reflecting surface 173 third reflector 173r third reflector reflecting surface 〇 174 fourth reflector 174r fourth reflector reflecting surface 500 touch panel 510 first Fabry-Berro horizontal cavity laser diode assembly 5 20 Two Fabry-Berro Horizontal Cavity Laser Diode Components 541, 542, 543, 544 Detector 560 Objects 571, 572, 573, 574 Reflector 〇 580 Display Panels A, B, D, E, Q ,1〇, J〇, K〇点L, X,y distance Ci,C2,···,Cn joint surface Rl,R2,"_,Rn plane I J, Κ, Ι ', Γ, Κ' angle α of the optical path 02, ..., 0η reflection angle 17

Claims (1)

201101153 七、申請專利範圍·· 一種光學偵測裝置,係用以偵測一感測區内一物 體之位ί,該裝置包含: 一第一法布里-伯羅水平空腔雷射二極體組件,適以向 該感測區投射一第一平面光; 一第二法布里-伯羅水平空腔雷射二極體組件,適以向 該感測區投射一第二平面光,其中該第一與第二法布里-伯 羅水平空腔雷射二極體分別配置在該感測區之一側上的兩 〇 端; 一反射模組,具有一階梯狀反射面,其中該反射模組 配置於該感測區除該侧外之周邊,且該階梯狀反射面用以 反射該第一平面光以及該第二平面光;以及 一偵測單元,配置於該反射模組之一侧,適以接收及 偵測由該反射模組反射而來之該第一平面光及該第二平面 光0 2.如請求項1所述之光學偵測裝置,其中該第一法 布里-伯羅水平空腔雷射二極體組件包括: 一第一法布里-伯羅水平空腔雷射二極體; 一第一準直鏡片,用以與該第一法布里-伯羅水平空腔 雷射二極體共同運作而發射出一第一平行光束;以及 一第一光學鏡片,配置於該第一平行光束之光學路徑 上,用以轉換該第一平行光束為該第一平面光。 18 201101153 3. 如請求項2所述之光學偵測裝置,其中該第一光 學鏡片為一線光源鏡片或一柱狀鏡片。 4. 如請求項1所述之光學偵測裝置,其中該第一法 布里-伯羅水平空腔雷射二極體組件所投射之該第一平面 光與該第二法布里-伯羅水平空腔雷射二極體組件所投射 之該第二平面光係位於不同的高度。 〇 5.如請求項1所述之光學偵測裝置,其中該反射模 組包括一第一反射器、一第二反射器、一第三反射器以 及一第四反射器,該第一反射器大致垂直於該第二反射 器,且該第三反射器大致垂直於該第四反射器。 6. 如請求項5所述之光學偵測裝置,其中該第一反 射器與該第二反射器大致位於相同平面,且該第三反射 器與該第四反射器大致位於另一相同平面。 7. 如請求項5所述之光學偵測裝置,其中該偵測單 元包括一第一偵測器、一第二偵測器、一第三偵測器及 一第四偵測器,分別配置在該第一反射器、該第二反射 器、該第三反射器及該第四反射器之一侧上。 8. 如請求項1所述之光學偵測裝置,其中該階梯狀 反射面具有一銀反射層、铭反射層或鉻反射層。 19 201101153 9. 如請求項1所述之光學偵測裝置,其中該階梯狀 反射面包括複數個反射平面以及複數個連結面,且每一 — 該些連結面連接該些反射平面中之相鄰兩反射平面。 10. 如請求項9所述之光學偵測裝置,其中每一該些 反射平面的法向量方向不同。 11. 如請求項1所述之光學偵測裝置,其中該偵測單 〇 元包括一接觸式影像感測器、一互補式金屬氧半導體線 性光偵測器、或一線性電荷耦合光偵測器。 12. —種彳貞測一感測區内一物體之一位置的方法,該 方法包括: 提供如請求項1所述之光學偵測裴置; 分別以該第一與第二法布里-伯羅水平空腔雷射二極 體組件投射該第一平面光以及該第二平面光至該感測區; ^ 以該反射模組之階梯狀反射面將該第一平面光以及該 第二平面光反射向該偵測單元; 以該偵測單元分別偵測該第一平面光及該第二平面 光,當該該偵測單元偵測到部分該第一平面光及該第二平 面光之強度降低時,即根據所測得之該部分強度降低之第 一平面光及第二平面光,分別產生一第一及一第二位置資 訊;以及 根據該第一及第二位置資訊,決定出該物體在該感測 區内的一位置座標。 20 201101153 13. 如請求項12所述之方法,其中該第一與第二法布 里-伯羅水平空腔雷射二極體組件係同時向該感測區投射 該第一平面光以及該第二平面光。 14. 如請求項12所述之方法,其中該第一與第二法布 里-伯羅水平空腔雷射二極體組件係交替向該感測區投射 該第一平面光以及該第二平面光。 〇 15. —種觸控面板,包含: 一顯示面板;以及 如請求項第1項至第11項中任一項所述之光學偵測裝 置,配置於該顯示面板上; 其中該光學偵測裝置之該感測區大致位於該顯示面板 之一顯示區域上。 G 21201101153 VII. Patent Application Range · An optical detection device for detecting an object in a sensing area. The device comprises: a first Fabry-Berro horizontal cavity laser diode a body assembly adapted to project a first planar light to the sensing region; a second Fabry-Boro horizontal cavity laser diode assembly adapted to project a second planar light to the sensing region, The first and second Fabry-Berro horizontal cavity laser diodes are respectively disposed at two ends of one side of the sensing region; and a reflective module has a stepped reflecting surface, wherein The reflective module is disposed on the periphery of the sensing area except the side, and the stepped reflective surface is configured to reflect the first planar light and the second planar light; and a detecting unit is disposed on the reflective module The first side is adapted to receive and detect the first planar light and the second planar light reflected by the reflective module. 2. The optical detecting device according to claim 1, wherein the first method The Brill-Berro horizontal cavity laser diode assembly includes: a first Fabry-Berro horizontal space a first collimating lens for cooperating with the first Fabry-Berro horizontal cavity laser diode to emit a first parallel beam; and a first optical lens And configured on the optical path of the first parallel beam to convert the first parallel beam into the first planar light. The optical detecting device of claim 2, wherein the first optical lens is a line source lens or a column lens. 4. The optical detecting device of claim 1, wherein the first Fabry-Boro horizontal cavity laser diode assembly projects the first planar light and the second Fabry-Beau The second planar light system projected by the horizontal cavity laser diode assembly is at a different height. The optical detecting device of claim 1, wherein the reflective module comprises a first reflector, a second reflector, a third reflector, and a fourth reflector, the first reflector Roughly perpendicular to the second reflector, and the third reflector is substantially perpendicular to the fourth reflector. 6. The optical detection device of claim 5, wherein the first reflector and the second reflector are substantially in the same plane, and the third reflector and the fourth reflector are substantially in the same plane. 7. The optical detection device of claim 5, wherein the detecting unit comprises a first detector, a second detector, a third detector, and a fourth detector, respectively configured On one side of the first reflector, the second reflector, the third reflector, and the fourth reflector. 8. The optical detecting device of claim 1, wherein the stepped reflective mask has a silver reflective layer, a reflective layer or a chrome reflective layer. The optical detecting device of claim 1, wherein the stepped reflecting surface comprises a plurality of reflecting planes and a plurality of connecting surfaces, and each of the connecting surfaces is adjacent to the adjacent ones of the reflecting planes Two reflective planes. 10. The optical detecting device of claim 9, wherein a normal vector direction of each of the reflecting planes is different. 11. The optical detection device of claim 1, wherein the detection unit comprises a contact image sensor, a complementary metal oxide semiconductor linear light detector, or a linear charge coupled light detection Device. 12. A method of detecting a position of an object in a sensing area, the method comprising: providing an optical detection device as claimed in claim 1; respectively, the first and second Fabry- a Boro horizontal cavity laser diode assembly projects the first planar light and the second planar light to the sensing region; ^ the first planar light and the second with the stepped reflective surface of the reflective module The detecting unit detects the first planar light and the second planar light, and the detecting unit detects a portion of the first planar light and the second planar light. When the intensity is reduced, that is, according to the measured first plane light and the second plane light whose intensity is reduced, respectively, generating a first and a second position information; and determining, according to the first and second position information, A position coordinate of the object in the sensing area. The method of claim 12, wherein the first and second Fabry-Perot horizontal cavity laser diode assemblies simultaneously project the first planar light to the sensing region and the The second plane light. 14. The method of claim 12, wherein the first and second Fabry-Perot horizontal cavity laser diode assemblies alternately project the first planar light and the second to the sensing region Plane light. A touch panel comprising: a display panel; and the optical detecting device according to any one of the items of the present invention, The sensing area of the device is located substantially on a display area of the display panel. G 21
TW98122100A 2009-06-30 2009-06-30 Optical detecting device, method and touch panel comprising the same TW201101153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98122100A TW201101153A (en) 2009-06-30 2009-06-30 Optical detecting device, method and touch panel comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98122100A TW201101153A (en) 2009-06-30 2009-06-30 Optical detecting device, method and touch panel comprising the same

Publications (1)

Publication Number Publication Date
TW201101153A true TW201101153A (en) 2011-01-01

Family

ID=44836916

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98122100A TW201101153A (en) 2009-06-30 2009-06-30 Optical detecting device, method and touch panel comprising the same

Country Status (1)

Country Link
TW (1) TW201101153A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI472987B (en) * 2011-04-15 2015-02-11 Pixart Imaging Inc Optical touchpad and portable electronic device
US9141231B2 (en) 2011-12-05 2015-09-22 Wistron Corporation Optical touch device and frame thereof
CN105573505A (en) * 2016-01-28 2016-05-11 异视科技(北京)有限公司 Vehicle-mounted head-up display, spatial orientation method and vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI472987B (en) * 2011-04-15 2015-02-11 Pixart Imaging Inc Optical touchpad and portable electronic device
US9141231B2 (en) 2011-12-05 2015-09-22 Wistron Corporation Optical touch device and frame thereof
TWI511003B (en) * 2011-12-05 2015-12-01 Wistron Corp Optical touch device and frame thereof
CN105573505A (en) * 2016-01-28 2016-05-11 异视科技(北京)有限公司 Vehicle-mounted head-up display, spatial orientation method and vehicle
CN105573505B (en) * 2016-01-28 2018-12-14 未来(北京)黑科技有限公司 Vehicle-mounted head-up display, space-location method and automobile

Similar Documents

Publication Publication Date Title
JP5552296B2 (en) Optical touch device and shielding object position detection method
US8659561B2 (en) Display device including optical sensing frame and method of sensing touch
US8803845B2 (en) Optical touch input system and method of establishing reference in the same
US8803846B2 (en) Method for detecting touch and optical touch sensing system
US7755026B2 (en) Generating signals representative of sensed light that is associated with writing being done by a user
US8922526B2 (en) Touch detection apparatus and touch point detection method
CN108446670B (en) Fingerprint identification method and fingerprint identification device
CN102449584A (en) Optical position detection apparatus
JP2010257089A (en) Optical position detection apparatus
US20100207909A1 (en) Detection module and an optical detection device comprising the same
KR101303443B1 (en) Liquid Crystal Display
WO2013035553A1 (en) User interface display device
WO2016132568A1 (en) Non-contact input device and method
JP2010287225A (en) Touch input device
JP2016154035A5 (en)
KR20100092912A (en) A detection module and an optical detection system comprising the same
US20240019715A1 (en) Air floating video display apparatus
US20240005825A1 (en) Aerial floating image display apparatus
US20150015545A1 (en) Pointing input system having sheet-like light beam layer
TW201101153A (en) Optical detecting device, method and touch panel comprising the same
JP2019133284A (en) Non-contact input device
CN201853211U (en) Laser optics touch-control module
CN102063228B (en) Optical sensing system and touch screen applying same
CN102375615A (en) Laser optical contact module
TWI518575B (en) Optical touch module