WO2012020942A2 - 프라이머가 코팅된 양극 집전체 및 이를 포함하는 마그네슘 이차전지 - Google Patents

프라이머가 코팅된 양극 집전체 및 이를 포함하는 마그네슘 이차전지 Download PDF

Info

Publication number
WO2012020942A2
WO2012020942A2 PCT/KR2011/005681 KR2011005681W WO2012020942A2 WO 2012020942 A2 WO2012020942 A2 WO 2012020942A2 KR 2011005681 W KR2011005681 W KR 2011005681W WO 2012020942 A2 WO2012020942 A2 WO 2012020942A2
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
magnesium
magnesium secondary
positive electrode
primer
Prior art date
Application number
PCT/KR2011/005681
Other languages
English (en)
French (fr)
Other versions
WO2012020942A3 (ko
Inventor
정영화
최영선
이용태
홍승태
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2013524032A priority Critical patent/JP5977236B2/ja
Priority to CN201180038278.2A priority patent/CN103053063B/zh
Priority to EP11816558.8A priority patent/EP2605325B1/en
Publication of WO2012020942A2 publication Critical patent/WO2012020942A2/ko
Publication of WO2012020942A3 publication Critical patent/WO2012020942A3/ko
Priority to US13/752,739 priority patent/US9379387B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode current collector coated with a primer and a magnesium secondary battery including the same, and more particularly, a primer including a conductive material and a polymer material is coated on the positive electrode current collector, thereby providing a magnesium secondary battery.
  • the present invention relates to a positive electrode current collector and a magnesium secondary battery including the same, which may improve performance of a battery by preventing the positive electrode active material from being peeled from the current collector at an operating voltage of 0.3 to 1.9 V.
  • a magnesium battery is a secondary battery that uses magnesium metal as a negative electrode to allow charge and discharge of magnesium ions by inserting and desorption into a cathode material, which is theoretically more than twice the energy density as a lithium ion battery, and is inexpensive. It is stable and attracts attention as a next generation lithium ion battery.
  • Mo 6 S 8 is used as a cathode material
  • Mg (AlCl 2 BuEt is used as a cathode material).
  • the only known magnesium battery using 2 ) / THF as an electrolyte is known.
  • a magnesium battery also needs to be improved for actual commercialization.
  • One of them relates to the positive electrode current collector, and when aluminum foil and copper foil are used as the positive electrode collector and the negative electrode collector, respectively, such as a lithium ion battery, aluminum reacts with the electrolyte Mg (AlCl 2 BuEt) 2 / THF.
  • the copper foil may exhibit an electrochemical reaction at 1.5V or more relative to magnesium. Due to this problem, a magnesium battery currently uses a cathode coated with a cathode material-binder-conductor mixture on a current collector made of stainless steel foil, mesh, or the like.
  • the stainless steel is stable at 0.3V to 1.9V, which is a potential region of a magnesium battery, and may be made of a foil or a grid mesh such as aluminum foil or copper foil, but the surface is smooth and the mechanical strength, ductility, and malleability are very strong.
  • a disadvantage in that the adhesion between the active material and the foil is inferior.
  • the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • the magnesium secondary battery according to the present invention includes a positive electrode including a positive electrode active material capable of occluding and detaching magnesium ions, a negative electrode including a negative electrode active material capable of occluding and detaching magnesium ions, and a separator interposed between the positive electrode and the negative electrode.
  • an electrolyte solution containing magnesium ions, and the cathode is characterized in that a cathode active material is coated on a current collector coated with a primer containing a conductive material and a polymer material on a metal substrate.
  • the current collector must be stable without causing electrochemical changes to the cell. If the current collector is corroded, the battery may not be able to exhibit sufficient current collecting ability as the battery cycle is repeated, thereby shortening the life of the battery.
  • a metal for forming a positive electrode current collector in a magnesium secondary battery As a metal for forming a positive electrode current collector in a magnesium secondary battery, a metal-based material such as stainless steel is known, but as described above, there is a problem in that adhesive strength with the positive electrode active material is inferior.
  • the metal substrate is a metal that is stable at the potential of the magnesium secondary battery, and if the metal is capable of supplying and transferring electrons, its kind is not particularly limited, and examples thereof include stainless steel, nickel, and titanium. Although stainless steel is especially preferable.
  • Such metal substrates have a thickness of about 1 ⁇ m to 150 ⁇ m, and may be made in various forms such as foils, films, sheets, nets, porous bodies, foams, and the like, and are preferably in the form of foils.
  • the primer serves to increase the adhesion of the positive electrode active material to the metal substrate while suppressing an increase in internal resistance as much as possible.
  • the conductive material and the polymer material may be included in a weight ratio of 1:10 to 10: 1. If the content of the conductive material is too small, the operating characteristics of the battery are reduced by increasing the internal resistance, and if the content of the polymer material is too small, the desired adhesive force cannot be provided, and therefore, it can be appropriately selected from the above range.
  • a more preferable ratio of the conductive material and the polymer material may be 3: 7 to 7: 3 by weight.
  • the conductive material may be, for example, one or more particles selected from the group consisting of graphite, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, carbon fibers and carbon fluoride, It is not necessarily limited to these. Especially, carbon black is especially preferable.
  • the particle diameter of the conductive material is preferably 10 to 100 nm.
  • the primer layer can be configured to provide an average surface roughness of 0.3 ⁇ m to 20 ⁇ m, preferably 0.3 ⁇ m to 5 ⁇ m, more preferably 0.3 ⁇ m to 1 ⁇ m. It can be determined mainly by the particle diameter of the conductive material. Most magnesium-based cathode active materials have particle sizes in the range of tens of nm to hundreds of nm, so it can be difficult to provide the desired adhesion without proper roughness on the surface of the primer layer. High surface roughness can be particularly preferably obtained in a coating in the form of a cluster as described later.
  • the primer layer Although only the conductive polymer is used as the primer layer, it is difficult to provide such surface roughness in this case, and thus it is difficult to exhibit the desired level of adhesive force as described above.
  • the polymer material may be, for example, polyimide copolymer, acrylate copolymer, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose At least one selected from the group consisting of rose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butylene rubber and fluororubber Although it may be mentioned, it is not necessarily limited to these. Especially, a polyimide copolymer is especially preferable.
  • the layer thickness of the primer may preferably be 100 nm to 1 ⁇ m, and the layer may be in the form of a film having a uniform thickness or in the form of a cluster having a non-uniform thickness.
  • the cluster type primer layer has a high specific surface area and thus is more preferable because it provides superior adhesion than the membrane type primer layer when attaching the positive electrode active material.
  • stainless steel may be more preferably used as the metal substrate.
  • the primer may be formed on one side or both sides of the current collector, preferably on both sides.
  • a conductive material and a polymer material may be added to a predetermined volatile solvent to form a coating solution and applied to the current collector, and then the solvent may be removed.
  • the volatile solvent include NMP, water, MIBK (methyl isobutyl ketone), isopropanol, and the like, but are not limited thereto.
  • the present invention also provides a magnesium secondary battery using such a positive electrode current collector as a component of a positive electrode.
  • a method for producing a magnesium secondary battery composed of a positive electrode, a negative electrode, a separator, and a magnesium salt-containing nonaqueous electrolyte using the positive electrode current collector according to the present invention is known in the art.
  • the positive electrode is prepared by, for example, applying a mixture of a positive electrode active material, a conductive agent, and a binder onto a positive electrode current collector, followed by drying, and optionally, a filler is further added to the mixture.
  • the cathode active material may be preferably a Mo-based compound or an alloy, and in one specific example, may be Mo 6 S 8 .
  • the conductive agent is typically added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • a conductive agent is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • the conductive agent include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the binder is a component that assists in bonding the active material and the conductive agent to the current collector, and is generally added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • a binder include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), and the like.
  • the negative electrode may be used in the form of magnesium in a metal state having a thickness of generally 3 ⁇ m to 500 ⁇ m, and may be used in various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven bodies.
  • the separator is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the separator is generally from 0.01 to 10 ⁇ m ⁇ m, thickness is generally 5 ⁇ 300 ⁇ m.
  • a separator for example, olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheets made of glass fibers or polyethylene such as glass filters, nonwoven fabrics, and the like are used.
  • a solid electrolyte such as a polymer is used as the electrolyte, the solid electrolyte may also serve as a separator.
  • the magnesium salt-containing non-aqueous electrolyte is composed of magnesium and a non-aqueous electrolyte, and preferably may be a composition containing a magnesium organometallic compound, for example, Mg (AlCl 2 BuEt) 2 / THF.
  • the magnesium secondary battery according to the present invention can be used not only in a battery cell used as a power source for a small device, but also preferably used as a unit cell in a medium-large battery pack including a plurality of battery cells used as a power source for a medium and large device. have.
  • Preferred examples of the medium and large devices include electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric motorcycles including electric bicycles (E-bikes) and electric scooters (E-scooters); Power tools; Battery storage devices and the like, but is not limited thereto.
  • EVs electric vehicles
  • HEVs hybrid electric vehicles
  • PHEVs plug-in hybrid electric vehicles
  • Electric motorcycles including electric bicycles (E-bikes) and electric scooters (E-scooters); Power tools; Battery storage devices and the like, but is not limited thereto.
  • the above is an exemplary description of the components of the magnesium secondary battery that can be configured by using the positive electrode current collector according to the present invention, and in some cases, some of the components may be excluded or substituted or other components may be added. It may be.
  • Example 3 is a graph showing the CV results of the magnesium secondary batteries of Example 1 and Comparative Example 1 in the experimental example;
  • FIG. 5 is a graph showing a capacity change according to the number of charge and discharge cycles under 1C charge and 1C discharge conditions of the magnesium secondary battery of Example 1 in the experimental example;
  • Figure 6 is a graph showing the discharge test results in 0.1C and 5C conditions of the magnesium secondary batteries of Example 1 and Comparative Example 1 in the experimental example.
  • a positive electrode for magnesium secondary batteries was manufactured under the same conditions as in Example 1 except that stainless steel foil (average surface roughness of less than 0.1 ⁇ m) was used as the positive electrode current collector.
  • the active material when the active material is coated on the stainless steel foil, it can be confirmed that the active material at the edge portion is separated from the current collector after drying and rolling. This is because the stainless steel foil has a smooth surface, and has high mechanical strength, ductility and malleability, thereby reducing adhesion between the current collector and the active material made of stainless steel foil.
  • a positive electrode for a magnesium secondary battery was manufactured under the same conditions as in Example 1 except that a stainless steel foil coated with a conductive polymer providing an average surface roughness of 0.2 ⁇ m was used as the positive electrode current collector.
  • Example 1 Between the positive electrode for magnesium secondary batteries prepared in Example 1 and Comparative Example 1 and a separator made of a glass filter between the negative electrode made of magnesium foil, containing a salt of 0.25M Mg (AlCl 2 BuEt) 2 in THF An electrolyte solution was injected to produce a coin-type magnesium secondary battery.
  • Example 1 and Comparative Example 1 are stable in a range of 0.3 to 1.9 V, which is a general operating voltage of magnesium. This is because the materials used as current collectors in Example 1 and Comparative Example 1 hardly undergo an electrochemical reaction with the Mg (AlCl 2 BuEt) 2 / THF salt of the electrolyte.
  • the magnesium secondary battery of Example 1 exhibits a peak insertion and desorption reaction of magnesium in the 0.3 ⁇ 1.8V region, referring to Figure 5, stable charge and discharge behavior even at about 200 cycles It can be seen that there is almost no dose reduction.
  • the magnesium secondary battery of Example 1 has a smaller capacity reduction rate than the magnesium secondary battery of Comparative Example 1 in both 0.1C and 5C conditions.
  • the magnesium secondary battery of Example 1 exhibits significantly higher characteristics than the magnesium secondary battery of Comparative Example 1 under a high rate discharge condition of 5C.
  • Example 1 exhibits significantly higher adhesion than Comparative Examples 1 and 2.
  • a salt of 0.25M Mg (AlCl 2 BuEt) 2 in THF was interposed through a separator made of a glass filter between the positive electrode for the magnesium secondary battery prepared in Example 1 and Comparative Examples 1 and 2, and the negative electrode made of magnesium foil.
  • the containing electrolyte solution was inject
  • the high rate discharge characteristics of the prepared magnesium secondary batteries were measured, and are shown in Table 2 below.
  • the cathode current collector according to the present invention is made of stainless steel coated with a primer containing a conductive material and a polymer material, the cathode active material appears in a cathode current collector made of stainless steel without a conventional primer coating. The phenomenon in which peeling resistance rises can be eliminated, and the electrical characteristics of a magnesium battery can be maintained outstanding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 금속기재에 프라이머가 코팅된 집전체 및 이를 포함하는 마그네슘 이차전지에 관한 것으로, 상기 프라이머는 도전성 물질 또는 고분자 물질을 포함하며, 양극 집전체와 활물질의 접착력을 강화시킴으로써, 내부 저항의 증가 없이, 전지의 작동전압에서 안정성을 유지할 수 있다.

Description

프라이머가 코팅된 양극 집전체 및 이를 포함하는 마그네슘 이차전지
본 발명은 프라이머가 코팅된 양극 집전체 및 이를 포함하고 있는 마그네슘 이차전지에 관한 것으로서, 더욱 상세하게는, 도전성 물질 및 고분자 물질을 포함하는 프라이머가 양극 집전체에 코팅이 되어 있어서, 마그네슘 이차전지의 작동 전압인 0.3 ~ 1.9V에서 양극 활물질이 집전체로부터 박리되는 것을 방지하여 전지의 성능을 향상시킬 수 있는 양극 집전체 및 이를 포함하는 마그네슘 이차전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 방전 전압의 리튬 이차전지에 대해 많은 연구가 행해졌고 또한 상용화되어 널리 사용되고 있다.
이러한 리튬 이온 전지는 뛰어난 성능에도 불구하고 셀 당 제조비용이 비싸며, 폭발의 위험성이 있고, 장차 리튬 자원의 고갈이 우려되는 바, 최근에는 그 대안으로 마그네슘 전지에 대한 연구가 활발히 진행되고 있다.
마그네슘 전지는 마그네슘 금속을 음극으로 사용하여 마그네슘 이온이 양극재에 삽입-탈리되어 충방전이 가능하게 한 2차 전지로, 리튬 이온 전지에 비하여 이론적으로 에너지 밀도가 2배 이상이고, 저가이며 대기 중에서 안정하여 차세대 리튬 이온 전지로 주목받고 있다. 그러나, 리튬 이온 전지를 넘어서는 고 에너지 밀도의 양극재와 넓은 전위 영역을 가지는 전해액을 포함하는 마그네슘 전지 개발에 많은 어려움을 겪고 있으며, 현재까지, Mo6S8을 양극재로, Mg(AlCl2BuEt)2/THF을 전해액으로 사용하는 마그네슘 전지가 유일하게 알려져 있다.
그러나, 이러한 마그네슘 전지도 실제 상용화를 위해선 개선되어야 할 부분이 많은 실정이다. 그 중 하나가 양극 집전체와 관련된 것으로, 리튬 이온 전지와 같이 양극 집전체와 음극 집전체로 각각 알루미늄 호일과 구리 호일을 사용하는 경우, 알루미늄은 전해액인 Mg(AlCl2BuEt)2/THF과 반응할 수 있고, 구리 호일은 마그네슘 대비 1.5V 이상에서 전기화학 반응을 보일 수 있다. 이러한 문제점으로, 현재 마그네슘 전지에서는 스테인리스 스틸 호일, 메쉬 등으로 이루어진 집전체에 양극재-바인더-도전재 혼합물을 도포한 양극을 사용하고 있다.
상기 스테인리스 스틸은 마그네슘 전지의 전위 영역인 0.3V ~ 1.9V에서 안정하고 알루미늄 박, 동 박처럼 얇은 호일 또는 그리드 형태의 메쉬로 만들 수 있으나, 표면이 매끈하고 기계적 강도, 연성 및 전성이 매우 강하여 전지 공정 과정 중 압연하는 경우, 활물질과 호일의 접착력이 떨어지는 단점이 있다.
따라서, 이러한 단점들을 해결하기 위한 기술에 대한 필요성이 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 이후 설명하는 바와 같이, 마그네슘 전지의 집전체로서, 도전성 물질과 고분자 물질을 포함하는 프라이머가 코팅이 된 스테인리스 스틸을 개발하기에 이르렀고, 이러한 프라이머가 코팅이 된 스테인리스 스틸을 마그네슘 전지의 집전체로 사용하는 경우, 종래의 스테인리스 호일로 이루어진 집전체가 가지는 다양한 문제점들을 해결할 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.
따라서, 본 발명에 따른 마그네슘 이차전지는 마그네슘 이온의 흡장 및 탈리가 가능한 양극 활물질을 포함하는 양극, 마그네슘 이온의 흡장 및 탈리가 가능한 음극 활물질을 포함하는 음극, 상기 양극과 음극 사이에 개재되어 있는 분리막, 및 마그네슘 이온을 포함하는 전해액을 포함하는 것으로 구성되어 있고, 상기 양극은 금속 기재에 도전성 물질과 고분자 물질을 포함하는 프라이머가 코팅된 집전체에 양극 활물질이 도포되어 있는 것을 특징으로 한다.
집전체는 당해 전지에 전기화학적 변화를 유발하지 않고 안정해야 한다. 집전체가 부식될 경우, 전지 사이클이 반복됨에 따라 충분한 집전능력을 발휘할 수 없으므로 전지의 수명을 단축시키게 된다.
마그네슘 이차전지에서 양극 집전체를 형성하는 금속으로는 스테인리스 스틸 등 금속계 물질이 알려져 있지만, 앞서 설명한 바와 같이 양극 활물질과 접착력이 떨어지는 문제점이 있다.
반면에, 본 발명에서는 금속 기재에 도전성 물질과 고분자 물질을 포함하는 프라이머가 코팅된 집전체를 사용함으로써, 그러한 문제점을 일거에 해결하고 있다.
상기 금속 기재는 마그네슘 이차전지의 전위에서 안정한 금속으로서, 전자를 공급하고 전달하는 역할을 할 수 있는 금속이라면, 그것의 종류가 특별히 한정되는 것은 아니며, 예를 들어, 스테인리스 스틸, 니켈, 티타늄 등을 들 수 있지만, 그 중에서도 스테인리스 스틸이 특히 바람직하다.
이러한 금속 기재는 약 1 ㎛ 내지 150 ㎛의 두께를 가지며, 호일, 필름, 시트, 네트, 다공질체, 발포체 등 다양한 형태로 만들어질 수 있으며, 특히, 호일 형태인 것이 바람직하다.
상기 프라이머는 내부 저항의 증가를 최대한 억제하면서 금속 기재에 대한 양극 활물질의 접착력을 높이는 역할을 하며, 바람직하게는, 도전성 물질과 고분자 물질이 중량비로 1 : 10 내지 10 : 1로 포함될 수 있다. 도전성 물질의 함량이 너무 적으면 내부 저항의 증가에 의해 전지의 작동 특성이 저하되고, 고분자 물질의 함량이 너무 적으면 소망하는 접착력을 제공할 수 없으므로, 상기 범위에서 적절히 선택할 수 있다. 더욱 바람직한 도전성 물질과 고분자 물질의 비율은 중량비로 3 : 7 내지 7 : 3일 수 있다.
상기 도전성 물질은, 예를 들어, 흑연, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소 섬유 및 불화 카본으로 이루어진 그룹에서 선택된 하나 이상의 입자일 수 있지만, 반드시 이들만으로 한정되는 것은 아니다. 그 중에서도 카본 블랙이 특히 바람직하다. 도전성 물질의 입경은 10 내지 100 nm인 것이 바람직하다.
하나의 구체적인 예에서, 프라이머 층은 0.3 ㎛ 내지 20 ㎛, 바람직하게는 0.3 ㎛ 내지 5 ㎛, 더욱 바람직하게는 0.3 ㎛ 내지 1 ㎛의 평균 표면 조도(surface roughness)를 제공하도록 구성될 수 있으며, 이는 주로 도전성 물질의 입경에 의해 결정될 수 있다. 대부분의 마그네슘 기반의 양극활물질은 수십 nm 내지 수백 nm 범위의 입자 크기를 가지므로, 프라이머 층의 표면에 적절한 조도가 확보되지 않으면 소망하는 접착력을 제공하기 어려울 수 있다. 높은 표면 조도는, 이후 설명하는 바와 같은 클러스터 형태의 코팅에서, 특히 바람직하게 얻어질 수 있다.
프라이머 층으로서 도전성 폴리머 만을 사용하는 경우도 고려할 수 있지만, 이 경우에는 상기와 같은 표면 조도가 제공되기 어려우므로, 상기와 같은 소망하는 수준의 접착력을 발휘하기 어렵다.
상기 고분자 물질은, 예를 들어, 폴리이미드계 공중합체, 아크릴레이트계 공중합체, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-부틸렌 고무 및 불소 고무로 이루어진 그룹에서 선택된 하나 이상을 들 수 있지만 반드시 이들만으로 한정되는 것은 아니다. 그 중에서도 폴리이미드계 공중합체가 특히 바람직하다.
상기 프라이머의 층 두께는 바람직하게는 100 nm 내지 1 ㎛ 일 수 있으며, 층의 형태는 균일한 두께를 가지는 막(film)의 형태이거나 불균일한 두께를 가지는 클러스터(cluster)의 형태일 수 있다. 특히, 클러스터 타입의 프라이머 층은 높은 비표면적을 가지므로 양극 활물질을 부착할 때 막 타입의 프라이머 층보다 우수한 접착력을 제공하므로 더욱 바람직하다. 이러한 클러스터 타입의 프라이머 층을 형성하는 경우에는 금속 기재로서 스테인리스 스틸이 더욱 바람직하게 사용될 수 있다.
프라이머는 집전체의 일면 또는 양면에 형성할 수 있으며, 바람직하게는 양면에 형성한다.
상기 프라이머를 집전체의 표면에 부가하는 방법은, 예를 들어, 도전성 물질과 고분자 물질을 소정의 휘발성 용매에 첨가하여 도포액을 형성하여 집전체에 도포한 후 상기 용매를 제거하는 방법을 사용할 수 있다. 상기 휘발성 용매의 예로는 NMP, 물, MIBK(메틸이소부틸케톤), 이소프로판올 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
본 발명은 또한 상기와 같은 양극 집전체를 양극의 구성요소로서 사용하는 마그네슘 이차전지를 제공한다.
본 발명에 따른 양극 집전체를 사용하여, 양극, 음극, 분리막 및 마그네슘염 함유 비수 전해질로 구성된 마그네슘 이차전지를 제조하는 방법은 당업계에 공지되어 있다.
양극은, 예를 들어, 양극 집전체 상에 양극 활물질, 도전제 및 바인더의 혼합물을 도포한 후 건조하여 제조되며, 필요에 따라, 상기 혼합물에 충진제를 더 첨가하기도 한다.
상기 양극 활물질은 바람직하게는 Mo계 화합물 또는 합금일 수 있으며, 하나의 구체적인 예에서 Mo6S8일 수 있다.
상기 도전제는 상기 도전제는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 도전제는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전제 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC) 등을 들 수 있다.
음극은 일반적으로 3 ㎛ 내지 500 ㎛의 두께의 금속 상태의 마그네슘이 사용될 수 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 글래스 필터와 같은 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
마그네슘 염 함유 비수계 전해질은, 마그네슘과 비수 전해액로 이루어져 있으며, 바람직하게는 마그네슘 유기금속화합물, 예를 들어, Mg(AlCl2BuEt)2/THF를 포함하는 조성일 수 있다.
본 발명에 따른 마그네슘 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 중대형 디바이스의 전원으로 사용되는 다수의 전지셀들을 포함하는 중대형 전지팩에 단위전지로도 바람직하게 사용될 수 있다.
상기 중대형 디바이스의 바람직한 예로는 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전동 공구; 전지저장장치 등을 들 수 있으나, 이에 한정되는 것은 아니다.
이상은 본 발명에 따른 양극 집전체를 사용하여 구성될 수 있는 마그네슘 이차전지의 구성 요소들에 대한 예시적인 설명이며, 경우에 따라서는 구성 요소들의 일부가 제외되거나 치환되거나 기타의 구성요소가 추가될 수도 있다.
도 1 및 2는 실험예에서 실시예 1 및 비교예 1의 마그네슘 코인 전지 양극을 압연한 후의 결과를 보여주는 사진들이다;
도 3은 실험예에서 실시예 1 및 비교예 1의 마그네슘 이차전지들의 CV 결과를 나타낸 그래프이다;
도 4는 실험예에서 실시예 1의 마그네슘 이차전지의 Cyclic Voltammertry 결과를 나타낸 그래프이다;
도 5는 실험예에서 실시예 1의 마그네슘 이차전지의 1C 충전 및 1C 방전 조건으로 충방전 사이클 수에 따른 용량변화를 나타낸 그래프이다;
도 6은 실험예에서 실시예 1 및 비교예 1의 마그네슘 이차전지들의 0.1C 및 5C 조건에서 방전 테스트 결과를 나타낸 그래프이다.
이하에서는 실시예를 통해 본 발명의 내용을 상술하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
<실시예 1>
입경 분포가 20 nm - 80 nm의 카본 블랙(도전성 물질) 50 중량%와 폴리이미드 50 중량%를 NMP에 첨가하여 도포액을 만들고, 이러한 도포액을 스테인리스 스틸 호일 위에 1 ㎛의 두께와 0.3 ㎛의 평균 표면 조도를 가지도록 도포한 후 건조하여 양극 집전체를 만들었다. 상기 양극 집전체에 Mo6S8 80 중량%, PVDF 10 중량% 및 Denka Black 10 중량%를 NMP에 첨가한 양극 슬러리를 70 ㎛ 두께로 도포한 후, 건조 및 압연하여 마그네슘 이차전지용 양극을 제조하였다.
도 1을 참조하면, 프라이머 코팅된 스테인리스 스틸 호일 위에 활물질이 도포되어 있는 경우, 건조 및 압연 후에도 표면이 깨끗한 것을 확인할 수 있다. 이는, 앞서 설명한 바와 같이, 스테인리스 스틸 호일의 집전체와 활물질 간의 접착력이 프라이머 코팅에 의해 증가되었기 때문이다.
<비교예 1>
양극 집전체로서 스테인리스 스틸 호일(평균 표면 조도가 0.1 ㎛ 미만임)을 그대로 사용하였다는 점을 제외하고는 실시예 1과 동일한 조건으로 마그네슘 이차전지용 양극을 제조하였다.
도 2를 참조하면, 스테인리스 스틸 호일 위에 활물질이 도포되어 있는 경우, 건조 및 압연 후에 가장자리 부분의 활물질이 집전체와 분리되는 것을 확인할 수 있다. 이는, 스테인리스 스틸 호일은 표면이 매끈하고, 기계적 강도 연성 및 전성이 강하여 스테인리스 스틸 호일로 이루어진 집전체와 활물질 간의 접착력이 감소하기 때문이다.
<비교예 2>
양극 집전체로서 0.2 ㎛의 평균 표면 조도를 제공하는 도전성 고분자가 코팅된 스테인리스 스틸 호일을 사용하였다는 점을 제외하고는 실시예 1과 동일한 조건으로 마그네슘 이차전지용 양극을 제조하였다.
<실험예 1>
상기 실시예 1 및 비교예 1에서 각각 제조된 마그네슘 이차전지용 양극과, 마그네슘 호일로 이루어진 음극 사이에 글래스 필터로 이루어진 분리막을 개재하고, THF 중의 0.25M Mg(AlCl2BuEt)2의 염을 함유하는 전해액을 주입하여, 코인형 마그네슘 이차전지를 제작하였다.
이렇게 제작된 마그네슘 이차전지들에 대해 다양한 실험을 수행하였고, 그 결과가 도 3 내지 도 6에 나타나 있으며, 이에 대해 이하에서 설명한다.
우선, 도 3을 참조하면, 실시예 1 및 비교예 1의 마그네슘 이차전지는, 마그네슘의 일반적인 작동 전압인 0.3 ~ 1.9V 영역에서 안정한 것을 확인할 수 있다. 이는, 실시예 1 및 비교예 1에서 집전체로 사용된 물질들이 전해질의 Mg(AlCl2BuEt)2/THF 염과 전기화학적인 반응이 거의 일어나지 않기 때문이다.
또한, 도 4를 참조하면, 실시예 1의 마그네슘 이차전지는 0.3 ~ 1.8V 영역에서 마그네슘의 삽입 및 탈리 반응 피크를 나타내는 것을 확인할 수 있으며, 도 5를 참조하면, 약 200 사이클에서도 안정적인 충방전 거동을 보이며 용량 감소가 거의 없는 것을 확인할 수 있다.
한편, 도 6을 참조하면, 실시예 1의 마그네슘 이차전지는 0.1C 및 5C 조건 모두 비교예 1의 마그네슘 이차전지보다 용량 감소율이 적은 것을 확인할 수 있다. 특히, 5C의 고율 방전 조건에서 실시예 1의 마그네슘 이차전지는 비교예 1의 마그네슘 이차전지에 비해 월등히 높은 특성을 발휘함을 확인할 수 있다.
<실험예 2>
상기 실시예 1과 비교예 1 및 2에서 각각 제조된 마그네슘 이차전지용 양극의 벗김 강도를 측정하였다. 구체적으로, 제조된 전극 표면을 잘라 슬라이드 글라스에 고정시킨 후, 집전체를 벗겨 내면서 180도 벗김 강도를 측정하였고, 그 결과를 하기 표 1에 나타내었다. 평가는 3개 이상의 벗김 강도를 측정하여 평균값으로 정하였다.
<표 1>
Figure PCTKR2011005681-appb-I000001
상기 표 1에서 보는 바와 같이, 실시예 1이 비교예 1 및 2에 비해 월등히 높은 접착력을 발휘함을 알 수 있다.
<실험예 3>
상기 실시예 1과 비교예 1 및 2에서 각각 제조된 마그네슘 이차전지용 양극과, 마그네슘 호일로 이루어진 음극 사이에 글래스 필터로 이루어진 분리막을 개재하고, THF 중의 0.25M Mg(AlCl2BuEt)2의 염을 함유하는 전해액을 주입하여, 코인형 마그네슘 이차전지를 제작하였다.
상기 제조된 마그네슘 이차전지들의 고율방전 특성을 측정하여, 하기 표 2에 나타냈다.
<표 2>
Figure PCTKR2011005681-appb-I000002
상기 표 2에서 보는 바와 같이, 실시예 1의 전지는 비교예 1 및 2의 전지들에 현저히 높은 고율방전 특성을 발휘함을 알 수 있다.
이상에서 설명한 바와 같이, 본 발명에 따른 양극 집전체는 도전성 물질과 고분자 물질을 포함하는 프라이머가 코팅된 스테인리스 스틸로 이루어져 있으므로, 종래 프라이머 코팅이 되지 않은 스테인리스 스틸로 이루어진 양극 집전체에서 나타나는 양극 활물질의 박리 저항이 상승되는 현상을 해소할 수 있어, 마그네슘 전지의 전기적 특성을 우수하게 유지할 수 있다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.

Claims (15)

  1. 마그네슘 이온의 흡장 및 탈리가 가능한 양극 활물질을 포함하는 양극, 마그네슘 이온의 흡장 및 탈리가 가능한 음극 활물질을 포함하는 음극, 상기 양극과 음극 사이에 개재되어 있는 분리막, 및 마그네슘 이온을 포함하는 전해액을 포함하고 있으며, 상기 양극은 금속 기재에 도전성 물질과 고분자 물질을 포함하는 프라이머가 코팅된 집전체에 양극 활물질이 도포되어 있는 것을 특징으로 하는 마그네슘 이차전지.
  2. 제 1 항에 있어서, 상기 금속 기재는 금속 호일인 것을 특징으로 하는 마그네슘 이차전지.
  3. 제 1 항에 있어서, 상기 금속 기재는 스테인리스 스틸을 포함하는 것을 특징으로 하는 마그네슘 이차전지.
  4. 제 1 항에 있어서, 상기 금속 기재의 두께는 3 ㎛ 내지 150 ㎛이고, 프라이머 코팅의 두께는 100 nm 내지 1 ㎛인 것을 특징으로 하는 마그네슘 이차전지.
  5. 제 1 항에 있어서, 상기 프라이머에서 도전성 물질과 고분자 물질의 혼합비는 중량비로 1:10 내지 10:1인 것을 특징으로 하는 마그네슘 이차전지.
  6. 제 1 항에 있어서, 상기 도전성 물질은 흑연, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소 섬유 및 불화 카본으로 이루어진 그룹에서 선택된 하나 이상인 것을 특징으로 하는 마그네슘 이차전지.
  7. 제 1 항에 있어서, 상기 고분자 물질은 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-브틸렌 고무 및 불소 고무로 이루어진 그룹에서 선택된 하나 이상인 것을 특징으로 하는 마그네슘 이차전지.
  8. 제 1 항에 있어서, 상기 프라이머의 코팅층은 0.3 ㎛ 내지 20 ㎛의 평균 표면 조도를 갖는 것을 특징으로 하는 마그네슘 이차전지.
  9. 제 1 항에 있어서, 상기 프라이머의 코팅층은 0.3 ㎛ 내지 5 ㎛의 평균 표면 조도를 갖는 것을 특징으로 하는 마그네슘 이차전지.
  10. 제 1 항에 있어서, 상기 양극 활물질은 Mo계 화합물 또는 합금인 것을 특징으로 하는 마그네슘 이차전지.
  11. 제 10 항에 있어서, 상기 양극 활물질은 Mo6S8를 포함하는 것을 특징으로 하는 마그네슘 이차전지.
  12. 제 1 항에 있어서, 상기 음극 활물질은 마그네슘 또는 마그네슘 화합물을 포함하는 것을 특징으로 하는 마그네슘 이차전지.
  13. 제 1 항에 있어서, 상기 전해액은 마그네슘 유기금속화합물을 포함하는 것을 특징으로 하는 마그네슘 이차전지.
  14. 제 1 항 내지 제 13 항 중 어느 하나에 따른 마그네슘 이차전지를 단위전지로 포함하는 중대형 전지팩.
  15. 제 14 항에 있어서, 상기 중대형 전지팩은 전기자동차, 하이브리드 전기자동차, 전동공구 또는 전기저장장치의 전원용 전지팩인 것을 특징으로 하는 중대형 전지팩.
PCT/KR2011/005681 2010-08-09 2011-08-02 프라이머가 코팅된 양극 집전체 및 이를 포함하는 마그네슘 이차전지 WO2012020942A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013524032A JP5977236B2 (ja) 2010-08-09 2011-08-02 プライマーでコーティングされたカソード集電体及びそれを備えたマグネシウム二次電池
CN201180038278.2A CN103053063B (zh) 2010-08-09 2011-08-02 涂布有底漆的正极集电体和包含所述正极集电体的镁二次电池
EP11816558.8A EP2605325B1 (en) 2010-08-09 2011-08-02 Cathode current collector coated with a primer and magnesium secondary battery including same
US13/752,739 US9379387B2 (en) 2010-08-09 2013-01-29 Cathode current collector coated with primer and magnesium secondary battery comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0076204 2010-08-09
KR20100076204 2010-08-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/752,739 Continuation US9379387B2 (en) 2010-08-09 2013-01-29 Cathode current collector coated with primer and magnesium secondary battery comprising the same

Publications (2)

Publication Number Publication Date
WO2012020942A2 true WO2012020942A2 (ko) 2012-02-16
WO2012020942A3 WO2012020942A3 (ko) 2012-05-03

Family

ID=45568013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/005681 WO2012020942A2 (ko) 2010-08-09 2011-08-02 프라이머가 코팅된 양극 집전체 및 이를 포함하는 마그네슘 이차전지

Country Status (6)

Country Link
US (1) US9379387B2 (ko)
EP (1) EP2605325B1 (ko)
JP (1) JP5977236B2 (ko)
KR (1) KR101326623B1 (ko)
CN (1) CN103053063B (ko)
WO (1) WO2012020942A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103682242A (zh) * 2012-09-13 2014-03-26 株式会社杰士汤浅国际 电极体及蓄电元件
JP2014511161A (ja) * 2011-03-08 2014-05-12 ペリオン テクノロジーズ インク. 充電式マグネシウムイオンセルコンポーネント及びアセンブリ
WO2014098898A1 (en) 2012-12-21 2014-06-26 Pellion Technologies, Inc. Rechargeable magnesium ion cell components and assembly
JP2014116164A (ja) * 2012-12-07 2014-06-26 Samsung R&D Institute Japan Co Ltd 固体電池

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6073469B2 (ja) 2013-04-29 2017-02-01 エルジー・ケム・リミテッド ケーブル型二次電池用パッケージ及びそれを含むケーブル型二次電池
EP2822085B1 (en) 2013-05-07 2018-03-07 LG Chem, Ltd. Cable-type secondary battery
CN204441378U (zh) 2013-05-07 2015-07-01 株式会社Lg化学 二次电池用电极以及包含其的二次电池和线缆型二次电池
JP6037579B2 (ja) 2013-05-07 2016-12-07 エルジー・ケム・リミテッド ケーブル型二次電池
WO2014182056A1 (ko) 2013-05-07 2014-11-13 주식회사 엘지화학 케이블형 이차전지 및 그의 제조방법
CN104466191B (zh) 2013-05-07 2018-01-23 株式会社Lg化学 二次电池用电极、其制备、以及包含其的二次电池和线缆型二次电池
WO2014182063A1 (ko) 2013-05-07 2014-11-13 주식회사 엘지화학 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
CN104393232B (zh) * 2013-05-07 2017-11-21 株式会社Lg化学 二次电池用电极、其制备、以及包含其的二次电池和线缆型二次电池
WO2014182064A1 (ko) 2013-05-07 2014-11-13 주식회사 엘지화학 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
KR101503879B1 (ko) * 2013-05-24 2015-03-20 한국과학기술연구원 마그네슘 하이브리드 전지 및 이의 제조 방법
JP6350150B2 (ja) * 2013-09-30 2018-07-04 株式会社Gsユアサ 蓄電素子
JP2015097173A (ja) * 2013-11-15 2015-05-21 株式会社豊田自動織機 集電体、電極および蓄電装置
KR101752373B1 (ko) 2014-10-31 2017-06-29 주식회사 엘지화학 전극 복합체, 그를 포함하는 이차전지 및 케이블형 전지 이차전지
KR20170132882A (ko) * 2015-04-03 2017-12-04 얀 예 고체상 배터리 셀 및 그 제조 및 사용 방법
KR102014115B1 (ko) * 2015-07-09 2019-08-26 주식회사 엘지화학 이차 전지용 음극 및 이를 포함하는 이차 전지
CN109196701A (zh) * 2016-05-31 2019-01-11 深圳中科瑞能实业有限公司 一种镁离子电池及其制备方法
US10516154B2 (en) * 2016-07-01 2019-12-24 Lg Chem, Ltd. Positive electrode for lithium secondary battery and method for preparing the same
WO2018044112A2 (ko) * 2016-09-01 2018-03-08 주식회사 엘지화학 리튬 이차전지용 전극의 제조방법 및 이로부터 제조된 리튬 이차전지용 전극
KR102207524B1 (ko) 2016-09-01 2021-01-26 주식회사 엘지화학 리튬 이차전지용 전극의 제조방법 및 이로부터 제조된 리튬 이차전지용 전극
KR102122467B1 (ko) * 2016-09-09 2020-06-12 주식회사 엘지화학 리튬 이차전지용 전극 및 이를 포함하는 리튬 이차전지
KR102358448B1 (ko) 2017-11-21 2022-02-04 주식회사 엘지에너지솔루션 리튬 이차전지용 음극 및 이의 제조 방법
JP7132327B2 (ja) 2018-05-31 2022-09-06 富士フイルム株式会社 易接着層付集電体を用いた電極、全固体二次電池、電子機器及び電気自動車、並びに、電極及び全固体二次電池の製造方法
FR3083649B1 (fr) 2018-07-05 2020-06-26 Armor Collecteur de courant a grille et dispositifs et procedes associes
KR102364463B1 (ko) * 2018-08-08 2022-02-16 주식회사 엘지에너지솔루션 리튬 이차전지용 전극 및 그를 포함하는 리튬 이차전지
US20220344672A1 (en) * 2020-08-28 2022-10-27 Lg Energy Solution, Ltd. Current collector comprising primer coating layer having improved adhesive strength, and manufacturing method for same
KR102593771B1 (ko) 2021-09-06 2023-10-24 주식회사 한화 이차전지용 프라이머 코팅장치와 프라이머 코팅용 챔버
KR20230056319A (ko) * 2021-10-20 2023-04-27 주식회사 엘지에너지솔루션 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
KR20230109972A (ko) * 2022-01-14 2023-07-21 주식회사 엘지화학 부착강화 조성물, 이를 포함하는 집전체, 상기 집전체를 포함하는 양극, 상기 양극의 제조방법 및 상기 양극을 포함하는 리튬 이차전지
KR102456715B1 (ko) 2022-02-07 2022-10-20 주식회사 이디에스 이차전지용 다공 전극박막 코팅장치
WO2023238155A1 (en) * 2022-06-08 2023-12-14 Kaushik Palicha ALL SOLID-STATE Mg-BATTERY (SSMgB) EMPLOYING ELECTROLYTE ENCOMPASSING IRON RICH MATERIAL ENRICHED WITH MAGNESIUM

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5447809A (en) * 1984-08-21 1995-09-05 Rayovac Corporation Alkaline primary battery containing coated current collector
JPH07302586A (ja) * 1994-05-09 1995-11-14 Ricoh Co Ltd 電池用電極およびその製造法
US5478676A (en) * 1994-08-02 1995-12-26 Rexam Graphics Current collector having a conductive primer layer
US5578396A (en) * 1994-10-19 1996-11-26 Arthur D. Little, Inc. Current collector device
JPH08329928A (ja) * 1995-05-31 1996-12-13 Hitachi Maxell Ltd リチウム二次電池
JP3039456B2 (ja) 1997-06-16 2000-05-08 日本電気株式会社 タスク管理システム及びタスク管理方法ならびにタスク管理プログラムを格納した記憶媒体
JPH1173947A (ja) * 1997-08-29 1999-03-16 Ricoh Co Ltd 電池用電極およびその製造方法
JPH11185733A (ja) * 1997-12-22 1999-07-09 Mitsubishi Chemical Corp リチウムポリマー二次電池の製造方法
US6316141B1 (en) * 1999-10-18 2001-11-13 Bar Ilan University High-energy, rechargeable, electrochemical cells with non-aqueous electrolytes
US6713212B2 (en) * 1999-10-18 2004-03-30 Bar-Ilan University High-energy, rechargeable electrochemical cells
US6544688B1 (en) * 2000-09-20 2003-04-08 Moltech Corporation Cathode current collector for electrochemical cells
JP3832252B2 (ja) * 2001-02-16 2006-10-11 三菱化学株式会社 リチウム二次電池用収容部材及びそれを用いた二次電池パック
JP3737729B2 (ja) * 2001-09-26 2006-01-25 株式会社東芝 非水電解液電池および非水電解液
JP3624205B2 (ja) * 2002-02-01 2005-03-02 株式会社産学連携機構九州 非水電解質二次電池用電極活物質、それを含む電極及び電池
KR20050084900A (ko) * 2002-10-29 2005-08-29 소니 가부시끼 가이샤 재충전형 전기화학 전지
CN1170328C (zh) * 2002-11-01 2004-10-06 南开大学 可充镁电池
JP2004259650A (ja) * 2003-02-27 2004-09-16 Kanegafuchi Chem Ind Co Ltd マグネシウム二次電池
KR100669335B1 (ko) * 2005-08-19 2007-01-16 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
JP4455461B2 (ja) * 2005-09-12 2010-04-21 株式会社東芝 蓄電システム
JP5162822B2 (ja) * 2005-12-02 2013-03-13 ソニー株式会社 電気化学デバイス
JP2007280627A (ja) * 2006-04-03 2007-10-25 Matsushita Electric Ind Co Ltd マグネシウム二次電池
CN100427527C (zh) * 2006-06-08 2008-10-22 上海交通大学 有机硫聚合物在二次镁电池正极材料中的应用
US9012072B2 (en) * 2007-01-25 2015-04-21 Bar-Ilan University Rechargeable magnesium battery
US7976976B2 (en) * 2007-02-07 2011-07-12 Rosecreek Technologies Inc. Composite current collector
JP5245108B2 (ja) * 2007-07-11 2013-07-24 ソニー株式会社 マグネシウムイオン含有非水電解液及びその製造方法、並びに電気化学デバイス
JP5320394B2 (ja) * 2008-06-02 2013-10-23 大日精化工業株式会社 塗工液、電極板製造用塗工液、アンダーコート剤およびその使用
JP5334156B2 (ja) * 2008-06-06 2013-11-06 Necエナジーデバイス株式会社 非水電解液二次電池の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2605325A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014511161A (ja) * 2011-03-08 2014-05-12 ペリオン テクノロジーズ インク. 充電式マグネシウムイオンセルコンポーネント及びアセンブリ
CN103682242A (zh) * 2012-09-13 2014-03-26 株式会社杰士汤浅国际 电极体及蓄电元件
JP2014116164A (ja) * 2012-12-07 2014-06-26 Samsung R&D Institute Japan Co Ltd 固体電池
WO2014098898A1 (en) 2012-12-21 2014-06-26 Pellion Technologies, Inc. Rechargeable magnesium ion cell components and assembly
EP2936588A4 (en) * 2012-12-21 2016-08-03 Pellion Technologies Inc MAGNESIUM-ION RECHARGEABLE BATTERY COMPONENTS AND ASSEMBLY

Also Published As

Publication number Publication date
CN103053063B (zh) 2016-08-03
CN103053063A (zh) 2013-04-17
JP5977236B2 (ja) 2016-08-24
EP2605325B1 (en) 2015-11-18
EP2605325A2 (en) 2013-06-19
JP2013533601A (ja) 2013-08-22
EP2605325A4 (en) 2014-07-23
KR20120014542A (ko) 2012-02-17
KR101326623B1 (ko) 2013-11-07
WO2012020942A3 (ko) 2012-05-03
US20130143126A1 (en) 2013-06-06
US9379387B2 (en) 2016-06-28

Similar Documents

Publication Publication Date Title
WO2012020942A2 (ko) 프라이머가 코팅된 양극 집전체 및 이를 포함하는 마그네슘 이차전지
WO2020177623A1 (zh) 负极片、二次电池及其装置
RU2513987C2 (ru) Тонкодисперсно осажденный порошок металлического лития
CN111261834A (zh) 负极极片、电化学装置和电子装置
WO2013002504A2 (ko) 신규한 폴리머 전해질 및 이를 포함하는 리튬 이차전지
CN111490252A (zh) 锂金属保护层及其制备方法以及具有该保护层的电池
WO2012177016A2 (ko) 신규 구조 전극조립체 및 이를 이용한 이차전지
JP2019528559A (ja) 負極及び該負極の製造方法
CN102956895A (zh) 表面复合包覆的正极材料及其制备方法和锂离子电池
WO2018044013A1 (ko) 관통형의 기공 또는 구멍들이 형성된 집전체를 사용하여 전극을 제조하는 방법
WO2012118338A2 (ko) 일체형 전극조립체 및 이를 이용한 이차전지
WO2019093709A1 (ko) 리튬-황 전지용 전해질 복합체, 이를 포함하는 전기화학소자 및 그 제조방법
CN212907803U (zh) 一种高倍率充放电的锂离子电池
CN113451586A (zh) 一种二次电池的电极片、二次电池及其制备方法
CN117637988A (zh) 高能量密度电池的负极极片及制备方法、电池和用电装置
WO2012111935A2 (ko) 일체형 전극조립체 및 이를 이용한 이차전지
WO2020085859A1 (ko) 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지
EP4207427A1 (en) Electrode assembly and battery cell including same
CN115498141A (zh) 一种负极片及其制备方法和电池
WO2015065126A1 (ko) 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2024080692A1 (ko) 음극 및 이차전지
WO2023140502A1 (ko) 수명 성능이 개선된 리튬-황 전지
WO2023211230A1 (ko) 고 에너지 밀도를 갖는 리튬-황 전지
CN116454284B (zh) 负极极片、二次电池及包括该二次电池的装置
US20230197928A1 (en) Battery electrode

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180038278.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11816558

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2013524032

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011816558

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE