WO2012017520A1 - リチウム二次電池 - Google Patents

リチウム二次電池 Download PDF

Info

Publication number
WO2012017520A1
WO2012017520A1 PCT/JP2010/063119 JP2010063119W WO2012017520A1 WO 2012017520 A1 WO2012017520 A1 WO 2012017520A1 JP 2010063119 W JP2010063119 W JP 2010063119W WO 2012017520 A1 WO2012017520 A1 WO 2012017520A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
cation
positive electrode
secondary battery
negative electrode
Prior art date
Application number
PCT/JP2010/063119
Other languages
English (en)
French (fr)
Inventor
博文 中本
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/063119 priority Critical patent/WO2012017520A1/ja
Publication of WO2012017520A1 publication Critical patent/WO2012017520A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium secondary battery capable of suppressing lithium deposition.
  • the secondary battery can convert the decrease in chemical energy associated with the chemical reaction into electrical energy and perform discharge.
  • the secondary battery converts electrical energy into chemical energy by flowing current in the opposite direction to that during discharge.
  • the battery can be stored (charged).
  • lithium secondary batteries are widely used as power sources for notebook personal computers, mobile phones, and the like because of their high energy density.
  • lithium cobaltate Li 1-x CoO 2
  • Li 1-x CoO 2 + xLi + + xe ⁇ ⁇ LiCoO 2 (II) (In the above formula (II), 0 ⁇ x ⁇ 1.)
  • reverse reactions of the above formulas (I) and (II) proceed in the negative electrode and the positive electrode, respectively, and in the negative electrode, graphite (Li x C) containing lithium by graphite intercalation is Since lithium cobaltate (Li 1-x CoO 2 ) is regenerated, re-discharge is possible.
  • Patent Document 1 discloses a non-aqueous electrolyte for a lithium secondary battery characterized by containing a hydroxy sultone compound.
  • the lithium secondary battery of the present invention is a lithium secondary battery comprising at least a positive electrode, a negative electrode, and an electrolyte solution interposed between the positive electrode and the negative electrode, wherein the negative electrode contains lithium metal,
  • the electrolytic solution contains an ionic liquid containing a cation and its counter anion, and a lithium salt, and the cation has one or more ether groups in its structure, and the counter anion is inert to lithium metal. It is characterized by.
  • the cation is an ammonium cation further having a heterocyclic structure closed by a nitrogen atom and an alkyl chain having 2 to 10 carbon atoms, and an ammonium having one or more chain alkyl groups having 1 to 10 carbon atoms.
  • a cation selected from the group consisting of cations is preferred.
  • the cation is preferably a cation represented by the following general formula (1) or (2).
  • R 1 to R 6 each independently represents a substituent selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 10 carbon atoms. And r is an integer of 1 or more.
  • the cation is a group consisting of N- (2-methoxyethyl) -N-methylpiperidinium cation and N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium cation. It is preferable that it is a cation chosen from these.
  • the ether group of the cation interacts with lithium ions, so that lithium ions can be easily supplied to the positive electrode, and as a result, precipitation of lithium metal in the battery can be suppressed. Further, according to the present invention, by using a counter anion that is inactive with respect to lithium metal, it is possible to suppress the decomposition of the ionic liquid and to extend the battery life.
  • FIG. 1 It is a figure which shows an example of the layer structure of the lithium secondary battery which concerns on this invention, Comprising: It is the figure which showed typically the cross section cut
  • FIG. 1 shows an example of the layer structure of the lithium secondary battery which concerns on this invention, Comprising: It is the figure which showed typically the cross section cut
  • the lithium secondary battery of the present invention is a lithium secondary battery comprising at least a positive electrode, a negative electrode, and an electrolyte solution interposed between the positive electrode and the negative electrode, wherein the negative electrode contains lithium metal,
  • the electrolytic solution contains an ionic liquid containing a cation and its counter anion, and a lithium salt, and the cation has one or more ether groups in its structure, and the counter anion is inert to lithium metal. It is characterized by.
  • ionic liquids have low volatility and flammability, and can be easily adjusted in physical properties during synthesis by changing substituents on the cation center.
  • the present inventor uses a cation having at least one ether group in the structure and an ionic liquid having a counter anion inert to lithium metal in the electrolyte solution, thereby allowing a cation having no ether group in the structure. It was found that lithium can be deposited more uniformly than in the case of using an ionic liquid having the present invention, and the present invention has been completed.
  • the electrolyte solutions (Example 1 and Example 2) having a cation having one or more ether groups in the structure are the electrolyte solutions (Comparative Examples 1 and 2) having a cation having no ether group in the structure. It can be seen that the uniform deposition time of lithium is several times longer than in Example 2). Further, in the present invention, by using a counter anion that is inactive with respect to lithium metal, the decomposition of the ionic liquid can be suppressed and the battery life can be extended.
  • the cation used in the present invention is an ammonium cation further having a heterocyclic structure closed by a nitrogen atom and an alkyl chain having 2 to 10 carbon atoms, or a chain shape having 1 to 10 carbon atoms. It is preferably a cation selected from the group consisting of ammonium cations further having one or more alkyl groups. Specifically, such a cation is more preferably a cation represented by the following general formula (1) or (2).
  • R 1 to R 6 each independently represents a substituent selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 10 carbon atoms. And r is an integer of 1 or more.
  • Examples of the cation represented by the general formula (1) include N- (2-methoxyethyl) -N-methylpiperidinium cation, N- (2-methoxypropyl) -N-methylpiperidinium cation, N- (2-Methoxyethyl) -N-methylpyrrolidinium cation or N- (2-methoxypropyl) -N-methylpyrrolidinium cation is more preferred.
  • Examples of the cation represented by the general formula (2) include N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium cation, N-ethyl-N, N-dimethyl-N- ( 2-methoxyethyl) ammonium cation, N, N-diethyl-N-methyl-N- (2-methoxypropyl) ammonium cation or N-ethyl-N, N-dimethyl-N- (2-methoxypropyl) ammonium cation More preferred.
  • N- (2-methoxyethyl) -N-methylpiperidinium cation or N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium cation it is further possible to use N- (2-methoxyethyl) -N-methylpiperidinium cation or N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium cation. preferable.
  • the counter anion used for this invention will not be specifically limited if it is inactive with respect to lithium metal, What is normally used as anion seed
  • the anion inactive to the lithium metal herein refers to a stable anion that does not change its chemical structure even when the lithium metal is immersed in an electrolytic solution containing the anion for 100 minutes.
  • an anion active against lithium metal refers to an anion that decomposes by immersing lithium metal in an electrolyte containing the anion for 100 minutes.
  • counter anions used in the present invention are [N (CF 3 ) 2 ] ⁇ , [N (SO 2 CF 3 ) 2 ] ⁇ , [N (SO 2 C 2 F 5 ) 2 ] ⁇ .
  • Imide anions such as RSO 3 ⁇ (hereinafter R represents an aliphatic hydrocarbon group or aromatic hydrocarbon group), RSO 4 ⁇ , R f SO 3 ⁇ (hereinafter R f is a fluorine-containing halogenated hydrocarbon group) the point), R f SO 4 -, etc.
  • the counter anion used in the present invention is preferably a bis (trifluoromethanesulfonyl) imide ion ([N (SO 2 CF 3 ) 2 ] ⁇ ).
  • the electrolytic solution used in the present invention further contains a lithium salt as a supporting salt.
  • the lithium salt include inorganic lithium salts such as LiPF 6 , LiBF 4 , LiClO 4, and LiAsF 6 ; LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 (Li-TFSI), LiN (SO 2 C 2 F 5 ) 2 and organic lithium salts such as LiC (SO 2 CF 3 ) 3 . Two or more such lithium salts may be used in combination.
  • the amount of lithium salt added to the ionic liquid is not particularly limited, but is preferably about 0.1 to 1.5 mol / kg.
  • the electrolytic solution used in the present invention may contain a non-aqueous electrolyte in addition to the ionic liquid and the lithium salt.
  • a non-aqueous electrolyte solution and a non-aqueous gel electrolyte can be used as the non-aqueous electrolyte.
  • the nonaqueous electrolytic solution used in the present invention usually contains the above-described lithium salt and nonaqueous solvent.
  • the non-aqueous solvent include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), ethyl carbonate, butylene carbonate, ⁇ -butyrolactone, sulfolane.
  • the non-aqueous solvent is preferably a solvent having high oxygen solubility.
  • the concentration of the lithium salt in the nonaqueous electrolytic solution is, for example, in the range of 0.5 mol / L to 3 mol / L.
  • the non-aqueous gel electrolyte used in the present invention is usually a gel obtained by adding a polymer to a non-aqueous electrolyte solution.
  • a polymer such as polyethylene oxide (PEO), polyacrylonitrile (PAN), or polymethyl methacrylate (PMMA)
  • PEO polyethylene oxide
  • PAN polyacrylonitrile
  • PMMA polymethyl methacrylate
  • FIG. 1 is a diagram showing an example of a layer configuration of a lithium secondary battery according to the present invention, and is a diagram schematically showing a cross section cut in a stacking direction.
  • the lithium secondary battery according to the present invention is not necessarily limited to this example.
  • the lithium secondary battery 100 is sandwiched between the positive electrode 6 including the positive electrode active material layer 2 and the positive electrode current collector 4, the negative electrode 7 including the negative electrode active material layer 3 and the negative electrode current collector 5, and the positive electrode 6 and the negative electrode 7.
  • An electrolytic solution 1 is included.
  • the electrolytic solution is as described above.
  • the positive electrode, the negative electrode, the separator, and the battery case, which are components of the lithium secondary battery according to the present invention, will be described in detail.
  • the positive electrode of the lithium secondary battery according to the present invention preferably has a positive electrode active material layer having a positive electrode active material, and is usually connected to the positive electrode current collector and the positive electrode current collector. It has a positive electrode lead.
  • the lithium secondary battery which concerns on this invention is a lithium air battery, it has an air electrode containing an air electrode layer instead of the said positive electrode.
  • the positive electrode active material layer As a positive electrode is employ
  • adopted Specific examples of the positive electrode active material used in the present invention include LiCoO 2 , LiNi 1/3 Mn 1/3 Co 1/3 O 2 , LiNiPO 4 , LiMnPO 4 , LiNiO 2 , LiMn 2 O 4 , LiCoMnO 4. , Li 2 NiMn 3 O 8 , Li 3 Fe 2 (PO 4 ) 3 and Li 3 V 2 (PO 4 ) 3 .
  • LiCoO 2 is preferably used as the positive electrode active material.
  • the thickness of the positive electrode active material layer used in the present invention varies depending on the intended use of the lithium secondary battery, but is preferably in the range of 10 ⁇ m to 250 ⁇ m, and in the range of 20 ⁇ m to 200 ⁇ m. It is particularly preferred that it is in the range of 30 ⁇ m to 150 ⁇ m.
  • the average particle diameter of the positive electrode active material is, for example, preferably in the range of 1 ⁇ m to 50 ⁇ m, more preferably in the range of 1 ⁇ m to 20 ⁇ m, and particularly preferably in the range of 3 ⁇ m to 5 ⁇ m. If the average particle size of the positive electrode active material is too small, the handleability may be deteriorated. If the average particle size of the positive electrode active material is too large, it may be difficult to obtain a flat positive electrode active material layer. Because.
  • the average particle diameter of the positive electrode active material can be determined by measuring and averaging the particle diameter of the active material carrier observed with, for example, a scanning electron microscope (SEM).
  • the positive electrode active material layer may contain a conductive material, a binder, and the like as necessary.
  • the conductive material included in the positive electrode active material layer used in the present invention is not particularly limited as long as the conductivity of the positive electrode active material layer can be improved.
  • carbon black such as acetylene black and ketjen black Etc.
  • the content of the conductive material in the positive electrode active material layer varies depending on the type of the conductive material, but is usually in the range of 1% by mass to 10% by mass.
  • binder contained in the positive electrode active material layer used in the present invention examples include polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE). Further, the content of the binder in the positive electrode active material layer may be an amount that can fix the positive electrode active material or the like, and is preferably smaller. The content of the binder is usually in the range of 1% by mass to 10% by mass.
  • the positive electrode current collector used in the present invention has a function of collecting the positive electrode active material layer.
  • Examples of the material for the positive electrode current collector include aluminum, SUS, nickel, iron, and titanium. Of these, aluminum and SUS are preferable.
  • As a shape of a positive electrode electrical power collector foil shape, plate shape, mesh shape etc. can be mentioned, for example, Foil shape is preferable.
  • the electrode active material layer of at least one of the positive electrode and the negative electrode can also be configured to contain at least an electrode active material and an electrode electrolyte.
  • an electrode electrolyte a solid electrolyte such as a solid oxide electrolyte or a solid sulfide electrolyte, the above-described polymer electrolyte, gel electrolyte, or the like can be used.
  • the method for producing the positive electrode used in the present invention is not particularly limited as long as it is a method capable of obtaining the positive electrode.
  • Air electrode layer Hereinafter, the case where the air electrode which has an air electrode layer as a positive electrode is employ
  • the air electrode layer used in the present invention contains at least a conductive material. Furthermore, you may contain at least one of a catalyst and a binder as needed.
  • the conductive material used for the air electrode layer used in the present invention is not particularly limited as long as it has conductivity, and examples thereof include a carbon material.
  • the carbon material may have a porous structure or may not have a porous structure.
  • the carbon material preferably has a porous structure. This is because the specific surface area is large and many reaction fields can be provided.
  • Specific examples of the carbon material having a porous structure include mesoporous carbon.
  • specific examples of the carbon material having no porous structure include graphite, acetylene black, carbon nanotube, and carbon fiber.
  • the content of the conductive material in the air electrode layer is, for example, preferably in the range of 65% by mass to 99% by mass, and more preferably in the range of 75% by mass to 95% by mass. If the content of the conductive material is too small, the reaction field may decrease and the battery capacity may be reduced. If the content of the conductive material is too large, the content of the catalyst is relatively reduced and sufficient. This is because it may not be possible to exert a proper catalytic function.
  • the catalyst used for the air electrode layer used in the present invention examples include cobalt phthalocyanine and manganese dioxide.
  • the catalyst content in the air electrode layer is, for example, preferably in the range of 1% by mass to 30% by mass, and more preferably in the range of 5% by mass to 20% by mass. If the catalyst content is too low, sufficient catalytic function may not be achieved. If the catalyst content is too high, the content of the conductive material is relatively reduced, the reaction field is reduced, and the battery capacity is reduced. This is because there is a possibility that a decrease in the number of times will occur. From the viewpoint that the electrode reaction is performed more smoothly, the conductive material described above preferably supports a catalyst.
  • the air electrode layer may contain at least a conductive material, but preferably further contains a binder for fixing the conductive material.
  • a binder for fixing the conductive material As the specific binder, those described in the above-mentioned “positive electrode active material layer” can be used.
  • the content of the binder in the air electrode layer is not particularly limited. For example, it is preferably 30% by mass or less, and more preferably in the range of 1% by mass to 10% by mass.
  • the thickness of the air electrode layer varies depending on the use of the air battery, but is preferably in the range of 2 ⁇ m to 500 ⁇ m, and more preferably in the range of 5 ⁇ m to 300 ⁇ m.
  • the air electrode current collector used in the present invention collects current in the air electrode layer.
  • the material for the air electrode current collector is not particularly limited as long as it has conductivity, and examples thereof include stainless steel, nickel, aluminum, iron, titanium, and carbon.
  • Examples of the shape of the air electrode current collector include a foil shape, a plate shape, and a mesh (grid) shape.
  • the shape of an air electrode electrical power collector is a mesh form. This is because the current collection efficiency is excellent.
  • a mesh-shaped air electrode current collector is disposed inside the air electrode layer.
  • the secondary battery of the present invention may have another air electrode current collector (for example, a foil-shaped current collector) that collects electric charges collected by the mesh-shaped air electrode current collector. good.
  • a battery case to be described later may also have the function of an air electrode current collector.
  • the thickness of the air electrode current collector is preferably, for example, in the range of 10 ⁇ m to 1000 ⁇ m, and more preferably in the range of 20 ⁇ m to 400 ⁇ m.
  • the negative electrode in the lithium secondary battery according to the present invention preferably has a negative electrode active material layer containing a negative electrode active material, and is usually connected to the negative electrode current collector and the negative electrode current collector in addition to this.
  • the negative electrode lead is provided.
  • the negative electrode layer in the lithium secondary battery according to the present invention contains a negative electrode active material.
  • the negative electrode active material used for the negative electrode active material layer is not particularly limited as long as it can occlude / release lithium ions.
  • metal lithium, lithium alloy, metal oxide, metal sulfide, metal nitride, and Examples thereof include carbon materials such as graphite.
  • the negative electrode active material may be in the form of a powder or a thin film.
  • the alloy having a lithium element include a lithium aluminum alloy, a lithium tin alloy, a lithium lead alloy, and a lithium silicon alloy.
  • a metal oxide which has a lithium element lithium titanium oxide etc. can be mentioned, for example.
  • metal nitride containing a lithium element examples include lithium cobalt nitride, lithium iron nitride, and lithium manganese nitride. Further, lithium coated with a solid electrolyte can also be used for the negative electrode layer.
  • the negative electrode layer may contain only a negative electrode active material, or may contain at least one of a conductive material and a binder in addition to the negative electrode active material.
  • a negative electrode layer containing only the negative electrode active material can be obtained.
  • a negative electrode layer having a negative electrode active material and a binder can be obtained.
  • the conductive material and the binder are the same as those described in the section “Air electrode” described above, and thus the description thereof is omitted here.
  • the thickness of the negative electrode active material layer is not particularly limited, but is preferably in the range of 10 ⁇ m to 100 ⁇ m, and more preferably in the range of 10 ⁇ m to 50 ⁇ m.
  • negative electrode current collector As the material and shape of the negative electrode current collector, the same materials and shapes as those of the positive electrode current collector described above can be employed.
  • the battery according to the present invention has a structure in which a laminate in which the order of positive electrode-electrolyte-negative electrode is repeatedly stacked, from the viewpoint of safety, the positive electrode and the negative electrode belonging to different laminates are stacked. It is preferable to have a separator in between.
  • the separator include porous films such as polyethylene and polypropylene; and nonwoven fabrics such as a resin nonwoven fabric and a glass fiber nonwoven fabric. These materials that can be used for the separator can also be used as a support material for the electrolytic solution by impregnating the above-described electrolytic solution.
  • the lithium secondary battery according to the present invention usually has a battery case that houses a positive electrode, an electrolytic solution, a negative electrode, and the like.
  • the shape of the battery case include a coin type, a flat plate type, a cylindrical type, and a laminate type.
  • the battery case may be an open-air battery case or a sealed battery case.
  • An open-air battery case is a battery case having a structure in which at least the air electrode layer can sufficiently come into contact with the atmosphere.
  • the battery case is a sealed battery case, it is preferable to provide a gas (air) introduction pipe and an exhaust pipe in the sealed battery case.
  • the gas to be introduced / exhausted preferably has a high oxygen concentration, and more preferably pure oxygen.
  • Example 1 N- (2-methoxyethyl) -N-methylpiperidinium bis (trifluoromethanesulfonyl) imide represented by the following formula (3) is mixed with lithium bis (trifluoromethanesulfonyl) imide at a concentration of 0.5 mol / kg. Thus, the electrolyte solution of Example 1 was prepared.
  • Example 2 N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) imide represented by the following formula (4) is mixed with 0.5 mol / liter of lithium bis (trifluoromethanesulfonyl) imide.
  • the electrolyte solution of Example 2 was prepared by dissolving to a concentration of kg.
  • FIG. 2 is a bar graph comparing the time during which lithium was deposited uniformly in the case where the electrolytic solutions of Examples 1 and 2 and Comparative Examples 1 and 2 were used.
  • the vertical axis of FIG. 2 represents the logarithm of the time during which lithium was deposited uniformly.
  • Example 1 and Comparative Example 1 which are electrolytic solutions having cations having a piperidine ring structure, are compared. From FIG. 2, in the electrolytic solution of Example 1 having one ether group in the side chain, the time for which lithium was uniformly deposited was 4200 seconds. On the other hand, in the electrolytic solution of Comparative Example 1 that does not have an ether group in the cation structure, the time during which lithium is uniformly deposited is 600 seconds.
  • Example 1 the time during which lithium was uniformly deposited was 7 times longer than that in Comparative Example 1.
  • Example 2 and Comparative Example 2 which are electrolytes having an alkylammonium cation will be compared. From FIG. 2, in the electrolytic solution of Example 2 having one ether group in the side chain, the time during which lithium was uniformly deposited was 60 seconds. On the other hand, in the electrolyte solution of Comparative Example 2 that does not have an ether group in the cation structure, the time during which lithium is uniformly deposited is 30 seconds. Therefore, in Example 2, the time during which lithium was uniformly deposited was twice as long as that in Comparative Example 2. From these results, the electrolyte solution having a cation having one or more ether groups in the structure is several times longer than the electrolyte solution having a cation having no ether group in the structure. I understand that
  • Example 1 compared with Example 2, the time during which lithium was uniformly deposited was 70 times longer. Therefore, it can be seen that the ammonium cation having a cyclic structure has a longer time for uniformly depositing lithium than the ammonium cation having only a linear alkyl group. Further, when the comparison results of Example 1 and Comparative Example 1 and the comparison results of Example 2 and Comparative Example 2 are further compared, the ammonium cation having a cyclic structure is more than the ammonium cation having only a linear alkyl group. However, it can be seen that the effect of uniform precipitation of lithium by introducing an ether group is more remarkable.

Abstract

 リチウム析出を抑制できるリチウム二次電池を提供する。 少なくとも正極と、負極と、当該正極と当該負極との間に介在する電解液とを備えるリチウム二次電池であって、前記負極はリチウム金属を含有し、前記電解液は、カチオン及びそのカウンターアニオンを含むイオン液体、並びにリチウム塩を含有し、前記カチオンは、構造中にエーテル基を1以上有し、前記カウンターアニオンはリチウム金属に対して不活性であることを特徴とする、リチウム二次電池。

Description

リチウム二次電池
 本発明は、リチウム析出を抑制できるリチウム二次電池に関する。
 二次電池は、化学反応に伴う化学エネルギーの減少分を電気エネルギーに変換し、放電を行うことができる他に、放電時と逆方向に電流を流すことにより、電気エネルギーを化学エネルギーに変換して蓄積(充電)することが可能な電池である。二次電池の中でも、リチウム二次電池は、エネルギー密度が高いため、ノート型のパーソナルコンピューターや、携帯電話機等の電源として幅広く応用されている。
 リチウム二次電池においては、負極活物質としてグラファイト(Cと表現する)を用いた場合、放電時において、負極では式(I)の反応が進行する。
 LiC→C+xLi+xe   (I)
(上記式(I)中、0<x<1である。)
 上記式(I)で生じる電子は、外部回路を経由し、外部の負荷で仕事をした後、正極に到達する。そして、式(I)で生じたリチウムイオン(Li)は、負極と正極に挟持された電解質内を、負極側から正極側に電気浸透により移動する。
 また、正極活物質としてコバルト酸リチウム(Li1-xCoO)を用いた場合、放電時において、正極では式(II)の反応が進行する。
 Li1-xCoO+xLi+xe→LiCoO   (II)
(上記式(II)中、0<x<1である。)
 充電時においては、負極及び正極において、それぞれ上記式(I)及び式(II)の逆反応が進行し、負極においてはグラファイトインターカレーションによりリチウムが入り込んだグラファイト(LiC)が、正極においてはコバルト酸リチウム(Li1-xCoO)が再生するため、再放電が可能となる。
 リチウムを活物質とする二次電池において、充放電の反復に伴い負極表面に局部的に析出するデンドライトは、二次電池の安全性、サイクル寿命、容量特性等に大きな影響を及ぼす。リチウムデンドライトによるこのようなデメリットの解決を目的とした発明として、特許文献1には、ヒドロキシスルトン化合物を含有することを特徴とするリチウム二次電池用非水系電解液が開示されている。
特開2006-4813号公報
 特許文献1の段落[0059]には、当該文献に記載されたヒドロキシプロパンスルトンの効果として、ヒドロキシ基と負極表面の金属リチウムとの間に反応が起こった後に、当該プロパンスルトンが充放電により還元され開環し、LiCO、LiFなどとともに有効な表面薄膜を負極表面上に形成できる効果が記載されている。しかし、このような効果は電解液の分解により生ずる効果であるため、デンドライト抑制効果は一時的なものであり、電池出力の長期安定性は望めない。
 本発明は、上記実状を鑑みて成し遂げられたものであり、リチウム析出を抑制できるリチウム二次電池を提供することを目的とする。
 本発明のリチウム二次電池は、少なくとも正極と、負極と、当該正極と当該負極との間に介在する電解液とを備えるリチウム二次電池であって、前記負極はリチウム金属を含有し、前記電解液は、カチオン及びそのカウンターアニオンを含むイオン液体、並びにリチウム塩を含有し、前記カチオンは、構造中にエーテル基を1以上有し、前記カウンターアニオンはリチウム金属に対して不活性であることを特徴とする。
 本発明においては、前記カチオンは、窒素原子及び炭素数2~10のアルキル鎖により閉じたヘテロ環構造をさらに有するアンモニウムカチオン、並びに、炭素数1~10の鎖状アルキル基をさらに1以上有するアンモニウムカチオンからなる群から選ばれるカチオンであることが好ましい。
 本発明においては、前記カチオンは、下記一般式(1)又は(2)で表されるカチオンであることが好ましい。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
(上記一般式(1)及び(2)中、R~Rは各々独立に、水素原子及び炭素数1~10のアルキル基からなる群から選ばれる置換基を表す。また、p、q及びrは1以上の整数である。)
 本発明においては、前記カチオンは、N-(2-メトキシエチル)-N-メチルピペリジニウムカチオン、及びN,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウムカチオンからなる群から選ばれるカチオンであることが好ましい。
 本発明によれば、カチオンが有するエーテル基がリチウムイオンと相互作用することにより、正極へリチウムイオンを供給しやすくなり、その結果、電池内におけるリチウム金属の析出を抑制することができる。また、本発明によれば、リチウム金属に対して不活性なカウンターアニオンを使用することにより、イオン液体の分解を抑制し、電池の長寿命化を達成することができる。
本発明に係るリチウム二次電池の層構成の一例を示す図であって、積層方向に切断した断面を模式的に示した図である。 実施例1及び実施例2、並びに比較例1及び比較例2の電解液を使用した場合において、リチウムが均一に析出した時間を比較した棒グラフである。
 本発明のリチウム二次電池は、少なくとも正極と、負極と、当該正極と当該負極との間に介在する電解液とを備えるリチウム二次電池であって、前記負極はリチウム金属を含有し、前記電解液は、カチオン及びそのカウンターアニオンを含むイオン液体、並びにリチウム塩を含有し、前記カチオンは、構造中にエーテル基を1以上有し、前記カウンターアニオンはリチウム金属に対して不活性であることを特徴とする。
 イオン液体は、有機溶媒と比較して、揮発性及び可燃性が低く、且つ、カチオン中心上の置換基を変えることにより、合成時においてその物性を容易に調整できることから、近年、電解液の候補として新たに注目を集めている。
 本発明者は、構造中にエーテル基を1以上有するカチオン、及びリチウム金属に対して不活性なカウンターアニオンを有するイオン液体を電解液に使用することによって、構造中にエーテル基を有しないカチオンを有するイオン液体を使用した場合よりもリチウムを均一に析出できることを見出し、本発明を完成させた。
 本発明においては、カチオンが有するエーテル基がリチウムイオンと相互作用することにより、正極へリチウムイオンを供給しやすくなり、その結果、電池内におけるリチウム金属の析出を抑制することができる。
 このような効果は、後述する実施例に支持されている。実施例の結果より、構造中にエーテル基を1以上有するカチオンを有する電解液(実施例1及び実施例2)は、構造中にエーテル基を有しないカチオンを有する電解液(比較例1及び比較例2)と比較して、リチウムの均一析出時間が数倍長くなることが分かる。
 また、本発明においては、リチウム金属に対して不活性なカウンターアニオンを使用することにより、イオン液体の分解を抑制し、電池の長寿命化を達成することができる。
 本発明に使用されるカチオンは、上述したエーテル基の他に、窒素原子及び炭素数2~10のアルキル鎖により閉じたヘテロ環構造をさらに有するアンモニウムカチオン、又は、炭素数1~10の鎖状アルキル基をさらに1以上有するアンモニウムカチオンからなる群から選ばれるカチオンであることが好ましい。このようなカチオンとしては、具体的には、下記一般式(1)又は(2)で表されるカチオンであることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
(上記一般式(1)及び(2)中、R~Rは各々独立に、水素原子及び炭素数1~10のアルキル基からなる群から選ばれる置換基を表す。また、p、q及びrは1以上の整数である。)
 上記一般式(1)で表されるカチオンとしては、N-(2-メトキシエチル)-N-メチルピペリジニウムカチオン、N-(2-メトキシプロピル)-N-メチルピペリジニウムカチオン、N-(2-メトキシエチル)-N-メチルピロリジニウムカチオン又はN-(2-メトキシプロピル)-N-メチルピロリジニウムカチオンがより好ましい。また、上記一般式(2)で表されるカチオンとしては、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウムカチオン、N-エチル-N,N-ジメチル-N-(2-メトキシエチル)アンモニウムカチオン、N,N-ジエチル-N-メチル-N-(2-メトキシプロピル)アンモニウムカチオン又はN-エチル-N,N-ジメチル-N-(2-メトキシプロピル)アンモニウムカチオンがより好ましい。
 これらのカチオンの中でも、N-(2-メトキシエチル)-N-メチルピペリジニウムカチオン、又はN,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウムカチオンを使用することがさらに好ましい。
 本発明に使用されるカウンターアニオンは、リチウム金属に対して不活性であれば特に限定されず、通常イオン液体のアニオン種として使用されるものが挙げられる。
 ここでいうリチウム金属に対して不活性なアニオンとは、当該アニオンを含む電解液にリチウム金属を100分間浸漬させても化学構造が変化せず、安定なアニオンをいう。一方、リチウム金属に対して活性なアニオンとは、当該アニオンを含む電解液にリチウム金属を100分間浸漬させることによって分解するアニオンをいう。
 本発明に使用されるカウンターアニオンは、具体的には、[N(CF、[N(SOCF、[N(SO等のイミドアニオン;RSO (以下、Rは脂肪族炭化水素基又は芳香族炭化水素基を指す)、RSO 、RSO (以下、Rは含フッ素ハロゲン化炭化水素基を指す)、RSO 等のスルフェートアニオン又はスルフォネートアニオン;R P(O)O、R PF 等のリン酸アニオン;その他、ラクテート、トリフルオロアセテート等が挙げられる。
 これらのアニオンのうち、本発明に使用されるカウンターアニオンは、ビス(トリフルオロメタンスルホニル)イミドイオン([N(SOCF)であることが好ましい。
 本発明に使用される電解液は、さらに支持塩としてリチウム塩を含有する。リチウム塩としては、例えばLiPF、LiBF、LiClO及びLiAsF等の無機リチウム塩;LiCFSO、LiN(SOCF(Li-TFSI)、LiN(SO及びLiC(SOCF等の有機リチウム塩が挙げられる。このようなリチウム塩を2種以上組み合わせて用いてもよい。また、イオン液体に対するリチウム塩の添加量は特に限定されないが、0.1~1.5mol/kg程度とすることが好ましい。
 本発明に使用される電解液は、上記イオン液体及びリチウム塩の他に、非水系電解質を含んでいてもよい。
 非水系電解質としては、非水系電解液及び非水ゲル電解質を用いることができる。
 本発明に使用される非水系電解液は、通常、上述したリチウム塩および非水溶媒を含有する。上記非水溶媒としては、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、エチルカーボネート、ブチレンカーボネート、γ-ブチロラクトン、スルホラン、アセトニトリル、1,2-ジメトキシメタン、1,3-ジメトキシプロパン、ジエチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフランおよびこれらの混合物等を挙げることができる。また、溶存した酸素を効率良く反応に用いることができるという観点から、上記非水溶媒は、酸素溶解性が高い溶媒であることが好ましい。非水系電解液におけるリチウム塩の濃度は、例えば0.5mol/L~3mol/Lの範囲内である。
 また、本発明に用いられる非水ゲル電解質は、通常、非水系電解液にポリマーを添加してゲル化したものである。例えば、上述した非水系電解液に、ポリエチレンオキシド(PEO)、ポリアクリルニトリル(PAN)またはポリメチルメタクリレート(PMMA)等のポリマーを添加し、ゲル化することにより、得ることができる。本発明においては、LiTFSI(LiN(CFSO)-PEO系の非水ゲル電解質を用いることが好ましい。
 図1は、本発明に係るリチウム二次電池の層構成の一例を示す図であって、積層方向に切断した断面を模式的に示した図である。なお、本発明に係るリチウム二次電池は、必ずしもこの例のみに限定されるものではない。
 リチウム二次電池100は、正極活物質層2及び正極集電体4を備える正極6と、負極活物質層3及び負極集電体5を備える負極7と、正極6及び負極7に挟持される電解液1を有する。
 本発明に係るリチウム二次電池のうち、電解液については上述した通りである。以下、本発明に係るリチウム二次電池の構成要素である、正極、負極、セパレータ、電池ケースについて、詳細に説明する。
 (正極)
 本発明に係るリチウム二次電池の正極は、好ましくは正極活物質を有する正極活物質層を有するものであり、通常、これに加えて、正極集電体、及び当該正極集電体に接続された正極リードを有するものである。なお、本発明に係るリチウム二次電池がリチウム空気電池である場合には、上記正極の替わりに、空気極層を含む空気極を有する。
 (正極活物質層)
 以下、正極として、正極活物質層を有する正極を採用した場合について説明する。
 本発明に用いられる正極活物質としては、具体的には、LiCoO、LiNi1/3Mn1/3Co1/3、LiNiPO、LiMnPO、LiNiO、LiMn、LiCoMnO、LiNiMn、LiFe(PO及びLi(PO等を挙げることができる。これらの中でも、本発明においては、LiCoOを正極活物質として用いることが好ましい。
 本発明に用いられる正極活物質層の厚さは、目的とするリチウム二次電池の用途等により異なるものであるが、10μm~250μmの範囲内であるのが好ましく、20μm~200μmの範囲内であるのが特に好ましく、特に30μm~150μmの範囲内であることが最も好ましい。
 正極活物質の平均粒径としては、例えば1μm~50μmの範囲内、中でも1μm~20μmの範囲内、特に3μm~5μmの範囲内であることが好ましい。正極活物質の平均粒径が小さすぎると、取り扱い性が悪くなる可能性があり、正極活物質の平均粒径が大きすぎると、平坦な正極活物質層を得るのが困難になる場合があるからである。なお、正極活物質の平均粒径は、例えば走査型電子顕微鏡(SEM)により観察される活物質担体の粒径を測定して、平均することにより求めることができる。
 正極活物質層は、必要に応じて導電化材および結着材等を含有していても良い。
 本発明において用いられる正極活物質層が有する導電化材としては、正極活物質層の導電性を向上させることができれば特に限定されるものではないが、例えばアセチレンブラック、ケッチェンブラック等のカーボンブラック等を挙げることができる。また、正極活物質層における導電化材の含有量は、導電化材の種類によって異なるものであるが、通常1質量%~10質量%の範囲内である。
 本発明において用いられる正極活物質層が有する結着材としては、例えばポリビニリデンフロライド(PVDF)、ポリテトラフルオロエチレン(PTFE)等を挙げることができる。また、正極活物質層における結着材の含有量は、正極活物質等を固定化できる程度の量であれば良く、より少ないことが好ましい。結着材の含有量は、通常1質量%~10質量%の範囲内である。
 (正極集電体)
 本発明において用いられる正極集電体は、上記の正極活物質層の集電を行う機能を有するものである。上記正極集電体の材料としては、例えばアルミニウム、SUS、ニッケル、鉄およびチタン等を挙げることができ、中でもアルミニウムおよびSUSが好ましい。また、正極集電体の形状としては、例えば、箔状、板状、メッシュ状等を挙げることができ、中でも箔状が好ましい。
 前記正極及び前記負極のうち少なくとも一方の電極の電極活物質層が、少なくとも電極活物質及び電極用電解質を含有するという構成をとることもできる。この場合、電極用電解質としては、固体酸化物電解質、固体硫化物電解質等の固体電解質や、上述したポリマー電解質、ゲル電解質等を用いることができる。
 本発明に用いられる正極を製造する方法は、上記の正極を得ることができる方法であれば特に限定されるものではない。なお、正極活物質層を形成した後、電極密度を向上させるために、正極活物質層をプレスしても良い。
 (空気極層)
 以下、正極として、空気極層を有する空気極を採用した場合について説明する。本発明に用いられる空気極層は、少なくとも導電性材料を含有するものである。さらに、必要に応じて、触媒および結着材の少なくとも一方を含有していても良い。
 本発明に用いられる空気極層に用いられる導電性材料としては、導電性を有するものであれば特に限定されるものではないが、例えば炭素材料等を挙げることができる。さらに、炭素材料は、多孔質構造を有するものであっても良く、多孔質構造を有しないものであっても良いが、本発明においては、多孔質構造を有するものであることが好ましい。比表面積が大きく、多くの反応場を提供することができるからである。多孔質構造を有する炭素材料としては、具体的にはメソポーラスカーボン等を挙げることができる。一方、多孔質構造を有しない炭素材料としては、具体的にはグラファイト、アセチレンブラック、カーボンナノチューブおよびカーボンファイバー等を挙げることができる。空気極層における導電性材料の含有量としては、例えば65質量%~99質量%の範囲内、中でも75質量%~95質量%の範囲内であることが好ましい。導電性材料の含有量が少なすぎると、反応場が減少し、電池容量の低下が生じる可能性があり、導電性材料の含有量が多すぎると、相対的に触媒の含有量が減り、充分な触媒機能を発揮できない可能性があるからである。
 本発明に用いられる空気極層に用いられる触媒としては、例えばコバルトフタロシアニンおよび二酸化マンガン等を挙げることができる。空気極層における触媒の含有量としては、例えば1質量%~30質量%の範囲内、中でも5質量%~20質量%の範囲内であることが好ましい。触媒の含有量が少なすぎると、充分な触媒機能を発揮できない可能性があり、触媒の含有量が多すぎると、相対的に導電性材料の含有量が減り、反応場が減少し、電池容量の低下が生じる可能性があるからである。
 電極反応がよりスムーズに行われるという観点から、上述した導電性材料は触媒を担持していることが好ましい。
 上記空気極層は、少なくとも導電性材料を含有してれば良いが、さらに、導電性材料を固定化する結着材を含有することが好ましい。具体的な結着材としては、上述した「正極活物質層」の項に記載したものを用いることができる。空気極層における結着材の含有量としては、特に限定されるものではないが、例えば30質量%以下、中でも1質量%~10質量%の範囲内であることが好ましい。
 上記空気極層の厚さは、空気電池の用途等により異なるものであるが、例えば2μm~500μmの範囲内、中でも5μm~300μmの範囲内であることが好ましい。
 (空気極集電体)
 本発明に用いられる空気極集電体は、空気極層の集電を行うものである。空気極集電体の材料としては、導電性を有するものであれば特に限定されるものではないが、例えばステンレス、ニッケル、アルミニウム、鉄、チタン、カーボン等を挙げることができる。空気極集電体の形状としては、例えば箔状、板状およびメッシュ(グリッド)状等を挙げることができる。中でも、本発明においては、空気極集電体の形状がメッシュ状であることが好ましい。集電効率に優れているからである。この場合、通常、空気極層の内部にメッシュ状の空気極集電体が配置される。さらに、本発明の二次電池は、メッシュ状の空気極集電体により集電された電荷を集電する別の空気極集電体(例えば箔状の集電体)を有していても良い。また、本発明においては、後述する電池ケースが空気極集電体の機能を兼ね備えていても良い。
 空気極集電体の厚さは、例えば10μm~1000μmの範囲内、中でも20μm~400μmの範囲内であることが好ましい。
 (負極)
 本発明に係るリチウム二次電池中の負極は、好ましくは負極活物質を含有する負極活物質層を有するものであり、通常、これに加えて負極集電体、及び当該負極集電体に接続された負極リードを有するものである。
 (負極活物質層)
 本発明に係るリチウム二次電池中の負極層は、負極活物質を含有する。負極活物質層に用いられる負極活物質は、リチウムイオンを吸蔵・放出可能なものであれば特に限定されないが、例えば、金属リチウム、リチウム合金、金属酸化物、金属硫化物、金属窒化物、およびグラファイト等の炭素材料等を挙げることができる。また、負極活物質は、粉末状であっても良く、薄膜状であっても良い。
 リチウム元素を有する合金としては、例えばリチウムアルミニウム合金、リチウムスズ合金、リチウム鉛合金、リチウムケイ素合金等を挙げることができる。また、リチウム元素を有する金属酸化物としては、例えばリチウムチタン酸化物等を挙げることができる。また、リチウム元素を含有する金属窒化物としては、例えばリチウムコバルト窒化物、リチウム鉄窒化物、リチウムマンガン窒化物等を挙げることができる。また、負極層には、固体電解質をコートしたリチウムを用いることもできる。
 また、上記負極層は、負極活物質のみを含有するものであっても良く、負極活物質の他に、導電性材料および結着剤の少なくとも一方を含有するものであっても良い。例えば、負極活物質が箔状である場合は、負極活物質のみを含有する負極層とすることができる。一方、負極活物質が粉末状である場合は、負極活物質および結着剤を有する負極層とすることができる。なお、導電性材料および結着剤については、上述した「空気極」の項に記載した内容と同様であるので、ここでの説明は省略する。
 負極活物質層の膜厚としては、特に限定されるものではないが、例えば10μm~100μmの範囲内、中でも10μm~50μmの範囲内であることが好ましい。
 (負極集電体)
 負極集電体の材料及び形状としては、上述した正極集電体の材料及び形状と同様のものを採用することができる。
 (セパレータ)
 本発明に係る電池が、正極-電解質-負極の順番で配置されている積層体を、繰り返し何層も重ねる構造を取る場合には、安全性の観点から、異なる積層体に属する正極および負極の間に、セパレータを有することが好ましい。上記セパレータとしては、例えばポリエチレン、ポリプロピレン等の多孔膜;および樹脂不織布、ガラス繊維不織布等の不織布等を挙げることができる。
 セパレータに使用できるこれらの材料は、上述した電解液を含浸させることにより、電解液の支持材として使用することもできる。
 (電池ケース)
 本発明に係るリチウム二次電池は、通常、正極、電解液及び負極等を収納する電池ケースを有する。電池ケースの形状としては、具体的にはコイン型、平板型、円筒型、ラミネート型等を挙げることができる。
 本発明に係る電池がリチウム空気電池である場合には、電池ケースは、大気開放型の電池ケースであっても良く、密閉型の電池ケースであっても良い。大気開放型の電池ケースは、少なくとも空気極層が十分に大気と接触可能な構造を有する電池ケースである。一方、電池ケースが密閉型電池ケースである場合は、密閉型電池ケースに、気体(空気)の導入管および排気管を設けることが好ましい。この場合、導入・排気する気体は、酸素濃度が高いことが好ましく、純酸素であることがより好ましい。また、放電時には酸素濃度を高くし、充電時には酸素濃度を低くすることが好ましい。
 以下に、実施例及び比較例を挙げて、本発明をさらに具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。
 1.電解液の調製
 [実施例1]
 下記式(3)で表されるN-(2-メトキシエチル)-N-メチルピペリジニウム ビス(トリフルオロメタンスルホニル)イミドに、リチウムビス(トリフルオロメタンスルホニル)イミドを0.5mol/kgの濃度となるように溶解させ、実施例1の電解液を調製した。
Figure JPOXMLDOC01-appb-C000007
 [実施例2]
 下記式(4)で表されるN,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム ビス(トリフルオロメタンスルホニル)イミドに、リチウムビス(トリフルオロメタンスルホニル)イミドを0.5mol/kgの濃度となるように溶解させ、実施例2の電解液を調製した。
Figure JPOXMLDOC01-appb-C000008
 [比較例1]
 下記式(5)で表されるN-メチル-N-プロピルピペリジニウム ビス(トリフルオロメタンスルホニル)イミドに、リチウムビス(トリフルオロメタンスルホニル)イミドを0.5mol/kgの濃度となるように溶解させ、比較例1の電解液を調製した。
Figure JPOXMLDOC01-appb-C000009
 [比較例2]
 下記式(6)で表されるN,N-ジエチル-N-メチル-N-プロピルアンモニウム ビス(トリフルオロメタンスルホニル)イミドに、リチウムビス(トリフルオロメタンスルホニル)イミドを0.5mol/kgの濃度となるように溶解させ、比較例2の電解液を調製した。
Figure JPOXMLDOC01-appb-C000010
 2.リチウムが均一に析出した時間の比較
 実施例1及び2、並びに比較例1及び2の電解液を、それぞれリチウム/リチウム対称セルに導入し、電流密度0.2mA/cmの条件で、一定時間定電流保持した。一定時間経過後、セル内の正極を取り出し、当該正極表面に析出したリチウム固体の表面を光学顕微鏡にて観察した。同一条件で複数回、一定時間ごとに正極表面の観察を繰り返し、正極表面において均一にリチウムが析出する時間を、その電解液においてリチウムが均一に析出した時間とした。これらの操作は、全てアルゴン雰囲気下で行った。
 図2は、実施例1及び実施例2、並びに比較例1及び比較例2の電解液を使用した場合において、リチウムが均一に析出した時間を比較した棒グラフである。図2の縦軸には、リチウムが均一に析出した時間の対数をとった。
 まず、ピペリジン環構造を有するカチオンを有する電解液である実施例1及び比較例1を比較する。図2より、側鎖にエーテル基を1つ有する実施例1の電解液において、リチウムが均一に析出した時間は4200秒である。これに対し、カチオン構造中にエーテル基を有しない比較例1の電解液において、リチウムが均一に析出した時間は600秒である。したがって、実施例1は比較例1と比べて、リチウムが均一に析出した時間が7倍長い。
 次に、アルキルアンモニウムカチオンを有する電解液である実施例2及び比較例2を比較する。図2より、側鎖にエーテル基を1つ有する実施例2の電解液において、リチウムが均一に析出した時間は60秒である。これに対し、カチオン構造中にエーテル基を有しない比較例2の電解液において、リチウムが均一に析出した時間は30秒である。したがって、実施例2は比較例2と比べて、リチウムが均一に析出した時間が2倍長い。
 これらの結果から、構造中にエーテル基を1以上有するカチオンを有する電解液は、構造中にエーテル基を有しないカチオンを有する電解液と比較して、リチウムが均一に析出した時間が数倍長くなることが分かる。
 さらに、実施例1は実施例2と比べて、リチウムが均一に析出した時間が70倍長い。したがって、直鎖のアルキル基のみを有するアンモニウムカチオンよりも、環状構造を有するアンモニウムカチオンの方が、リチウムが均一に析出した時間が長いことが分かる。また、実施例1及び比較例1の比較結果、並びに実施例2及び比較例2の比較結果をさらに比較すると、直鎖のアルキル基のみを有するアンモニウムカチオンよりも、環状構造を有するアンモニウムカチオンの方が、エーテル基を導入することによるリチウムの均一析出の効果が、より著しいことが分かる。
1 電解液
2 正極活物質層
3 負極活物質層
4 正極集電体
5 負極集電体
6 正極
7 負極
100 リチウム二次電池

Claims (4)

  1.  少なくとも正極と、負極と、当該正極と当該負極との間に介在する電解液とを備えるリチウム二次電池であって、
     前記負極はリチウム金属を含有し、
     前記電解液は、カチオン及びそのカウンターアニオンを含むイオン液体、並びにリチウム塩を含有し、
     前記カチオンは、構造中にエーテル基を1以上有し、
     前記カウンターアニオンはリチウム金属に対して不活性であることを特徴とする、リチウム二次電池。
  2.  前記カチオンは、窒素原子及び炭素数2~10のアルキル鎖により閉じたヘテロ環構造をさらに有するアンモニウムカチオン、並びに、炭素数1~10の鎖状アルキル基をさらに1以上有するアンモニウムカチオンからなる群から選ばれるカチオンである、請求の範囲第1項に記載のリチウム二次電池。
  3.  前記カチオンは、下記一般式(1)又は(2)で表されるカチオンである、請求の範囲第1項又は第2項に記載のリチウム二次電池。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (上記一般式(1)及び(2)中、R~Rは各々独立に、水素原子及び炭素数1~10のアルキル基からなる群から選ばれる置換基を表す。また、p、q及びrは1以上の整数である。)
  4.  前記カチオンは、N-(2-メトキシエチル)-N-メチルピペリジニウムカチオン、及びN,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウムカチオンからなる群から選ばれるカチオンである、請求の範囲第1項乃至第3項のいずれか一項に記載のリチウム二次電池。
PCT/JP2010/063119 2010-08-03 2010-08-03 リチウム二次電池 WO2012017520A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/063119 WO2012017520A1 (ja) 2010-08-03 2010-08-03 リチウム二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/063119 WO2012017520A1 (ja) 2010-08-03 2010-08-03 リチウム二次電池

Publications (1)

Publication Number Publication Date
WO2012017520A1 true WO2012017520A1 (ja) 2012-02-09

Family

ID=45559052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063119 WO2012017520A1 (ja) 2010-08-03 2010-08-03 リチウム二次電池

Country Status (1)

Country Link
WO (1) WO2012017520A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051309A1 (ja) * 2011-10-07 2013-04-11 トヨタ自動車株式会社 リチウム空気電池用の電解液
CN103387731A (zh) * 2012-05-08 2013-11-13 海洋王照明科技股份有限公司 凝胶聚合物电解质膜及其制备方法
CN104078721A (zh) * 2013-03-29 2014-10-01 丰田自动车株式会社 用于锂-空气电池的电解质溶液

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002076924A1 (fr) * 2001-03-26 2002-10-03 Nisshinbo Industries, Inc., Liquide ionique, sel electrolytique et solution electrolytique pour dispositif de stockage, condensateur electrique a double couche et pile secondaire
JP2004146346A (ja) * 2002-08-28 2004-05-20 Nisshinbo Ind Inc 非水電解質および非水電解質二次電池
JP2004262897A (ja) * 2003-03-04 2004-09-24 Tosoh Corp 4級アンモニウム系常温溶融塩及び製造法
JP2004262896A (ja) * 2003-03-04 2004-09-24 Tosoh Corp 4級アンモニウム系常温溶融塩及び該化合物の製造法
WO2005003108A1 (ja) * 2003-07-01 2005-01-13 Otsuka Chemical Co., Ltd. 第4級アンモニウム塩および電解質並びに電気化学デバイス
JP2005026023A (ja) * 2003-06-30 2005-01-27 Toshiba Corp 非水電解質空気電池
WO2005043668A1 (ja) * 2003-11-04 2005-05-12 Stella Chemifa Corporation 電解液および非水電解液リチウム二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002076924A1 (fr) * 2001-03-26 2002-10-03 Nisshinbo Industries, Inc., Liquide ionique, sel electrolytique et solution electrolytique pour dispositif de stockage, condensateur electrique a double couche et pile secondaire
JP2004146346A (ja) * 2002-08-28 2004-05-20 Nisshinbo Ind Inc 非水電解質および非水電解質二次電池
JP2004262897A (ja) * 2003-03-04 2004-09-24 Tosoh Corp 4級アンモニウム系常温溶融塩及び製造法
JP2004262896A (ja) * 2003-03-04 2004-09-24 Tosoh Corp 4級アンモニウム系常温溶融塩及び該化合物の製造法
JP2005026023A (ja) * 2003-06-30 2005-01-27 Toshiba Corp 非水電解質空気電池
WO2005003108A1 (ja) * 2003-07-01 2005-01-13 Otsuka Chemical Co., Ltd. 第4級アンモニウム塩および電解質並びに電気化学デバイス
WO2005043668A1 (ja) * 2003-11-04 2005-05-12 Stella Chemifa Corporation 電解液および非水電解液リチウム二次電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051309A1 (ja) * 2011-10-07 2013-04-11 トヨタ自動車株式会社 リチウム空気電池用の電解液
CN103387731A (zh) * 2012-05-08 2013-11-13 海洋王照明科技股份有限公司 凝胶聚合物电解质膜及其制备方法
CN104078721A (zh) * 2013-03-29 2014-10-01 丰田自动车株式会社 用于锂-空气电池的电解质溶液
JP2014197454A (ja) * 2013-03-29 2014-10-16 トヨタ自動車株式会社 リチウム空気電池用の電解液

Similar Documents

Publication Publication Date Title
Olbasa et al. High-rate and long-cycle stability with a dendrite-free zinc anode in an aqueous Zn-ion battery using concentrated electrolytes
Zhang et al. Challenges and Strategy on Parasitic Reaction for High‐Performance Nonaqueous Lithium–Oxygen Batteries
US10629958B2 (en) Aqueous electrolytic solution for power storage device and power storage device including said aqueous electrolytic solution
Zeng et al. Nonflammable fluorinated carbonate electrolyte with high salt-to-solvent ratios enables stable silicon-based anode for next-generation lithium-ion batteries
Wang et al. A scalable approach for dendrite-free alkali metal anodes via room-temperature facile surface fluorination
JP5519862B2 (ja) イオン液体、当該イオン液体を含有するリチウム二次電池用電解質、及び当該電解質を備えるリチウム二次電池
JP5273256B2 (ja) 非水電解質および金属空気電池
JP7216734B2 (ja) 再充電可能な金属ハロゲン化物バッテリー
KR102164001B1 (ko) 리튬 이차 전지
JP2010010095A (ja) 非水電解液および非水電解液二次電池
WO2013051309A1 (ja) リチウム空気電池用の電解液
JP5328745B2 (ja) リチウム二次電池
KR20160081692A (ko) 실리콘계 음극 활물질, 이의 제조방법, 상기 실리콘계 음극 활물질을 포함하는 음극 및 상기 음극을 포함하는 리튬 이차전지
JP2012084379A (ja) 金属空気電池システム、及び金属空気電池の充電方法
WO2013031776A1 (ja) 電池用電解液及びその製造方法、並びに当該電解液を備える電池
JP5556618B2 (ja) リチウム空気電池
JP5621745B2 (ja) 空気電池用電解液
WO2012017520A1 (ja) リチウム二次電池
CN114284559B (zh) 含添加剂的电解液和锂金属二次电池
WO2020189361A1 (ja) 蓄電デバイス用水系電解液及びこの水系電解液を含む蓄電デバイス
JP7288775B2 (ja) 蓄電デバイス用水系電解液及びこの水系電解液を含む蓄電デバイス
TWI840529B (zh) 蓄電裝置用水系電解液,及包含該水系電解液之蓄電裝置,以及作為電解質之混合鹽
WO2023007991A1 (ja) リチウムイオン二次電池
Manoj et al. Li-ion full cell using LiFePO4 and Mn3O4-mesoporous carbon composite as electrodes for energy storage applications
Soman et al. Green Technologies and Sustainable Energy Materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10855610

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10855610

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP