WO2012011403A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2012011403A1
WO2012011403A1 PCT/JP2011/065787 JP2011065787W WO2012011403A1 WO 2012011403 A1 WO2012011403 A1 WO 2012011403A1 JP 2011065787 W JP2011065787 W JP 2011065787W WO 2012011403 A1 WO2012011403 A1 WO 2012011403A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
alignment
display device
crystal display
conductive layer
Prior art date
Application number
PCT/JP2011/065787
Other languages
English (en)
French (fr)
Inventor
井出 哲也
豪 鎌田
誠二 大橋
昇平 勝田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012011403A1 publication Critical patent/WO2012011403A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement

Definitions

  • the present invention relates to a liquid crystal display device.
  • This application claims priority on July 23, 2010 based on Japanese Patent Application No. 2010-166055 filed in Japan, the contents of which are incorporated herein by reference.
  • a liquid crystal display device described in Patent Document 1 is known as an active matrix type liquid crystal display device driven by a counter drive system.
  • a gate bus line and a reference bus line connected to a thin film transistor are formed on a first substrate on which a pixel electrode and a thin film transistor are formed, and on a second substrate facing the first substrate.
  • a transparent conductive layer also used as a data bus line is formed.
  • the gate bus line and the data bus line are formed on different substrates, and therefore, it is said that the manufacturing yield and the aperture ratio can be improved.
  • the data bus line is formed on the second substrate side.
  • the data bus line is formed only by the transparent conductive layer, the electric resistance increases and a problem of signal delay occurs. Therefore, in Patent Document 1, in order to lower the electrical resistance of the data bus line, the data bus line is connected to the plurality of transparent first conductive layers provided independently for each pixel electrode and the first conductive layers. The low-resistance second conductive layer is formed.
  • the second conductive layer is usually formed of a metal material, it is opaque to visible light. For this reason, all data bus line portions formed of the second conductive layer serve as light shielding regions, and the aperture ratio decreases.
  • the second conductive layer is formed along the edge of the pixel electrode. However, a region partially overlapping with the pixel electrode is generated, and a decrease in the aperture ratio is inevitable.
  • an alignment division structure (multi-domain structure) that divides the alignment direction of the liquid crystal into a plurality of areas within one pixel electrode arrangement region has been developed.
  • a liquid crystal display device having an alignment division structure a plurality of regions (domains) having different alignment directions of liquid crystals are formed in one pixel electrode arrangement region, so that a wide viewing angle display is possible.
  • the liquid crystal display device of Patent Document 1 is an STN or TN liquid crystal display device.
  • the liquid crystal display device of Patent Document 1 does not have an alignment division structure, and a single domain is formed in an arrangement region of one pixel electrode.
  • the alignment division structure can be applied to the liquid crystal display device of Patent Document 1
  • the liquid crystal display device provided with the alignment division structure has an alignment defect at the boundary between domains. Therefore, when the alignment division structure is applied to the liquid crystal display device of Patent Document 1, in addition to the decrease in aperture ratio due to the second conductive layer, the aperture ratio decreases due to alignment defects, resulting in dark display.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a liquid crystal display device capable of displaying a bright and wide viewing angle.
  • a liquid crystal display includes a first substrate on which a pixel electrode is formed, a second substrate on which a data bus line facing the pixel electrode is formed, the pixel electrode, and the data bus line.
  • a liquid crystal disposed between the pixel electrode and the data bus line, the orientation direction of the liquid crystal is within one pixel electrode placement region when a voltage is applied between the pixel electrode and the data bus line.
  • a plurality of different domains are formed, and the data bus line is formed by laminating a transparent first conductive layer and a second conductive layer having higher conductivity and lower transmittance than the first conductive layer, The two conductive layers are formed at positions overlapping the boundary portions of the domains.
  • the liquid crystal is a liquid crystal having negative dielectric anisotropy, and the liquid crystal is vertically aligned on the liquid crystal side surface of the first substrate without applying a voltage between the pixel electrode and the liquid crystal.
  • a first alignment film is formed, and a second alignment film that vertically aligns the liquid crystal without applying a voltage between the liquid crystal and the data bus line is formed on the liquid crystal side surface of the second substrate. May be.
  • a first polarizing plate is provided on one side of the first substrate, a second polarizing plate is provided on one side of the second substrate, and the transmission axis of the first polarizing plate and the transmission of the second polarizing plate.
  • the axes are orthogonal to each other, and the first alignment film tilts the liquid crystal in a first direction parallel to or orthogonal to the transmission axis of the first polarizing plate in one pixel electrode arrangement region 2.
  • Two first alignment regions are provided, and the two first alignment regions are provided so as to divide the pixel electrode arrangement region into two with a straight line parallel to the first direction interposed therebetween, and the two first alignment regions
  • the tilt direction of the liquid crystal in the region is opposite to each other across a straight line parallel to the normal line of the first substrate, and the second alignment film includes the first electrode in the region where the pixel electrode is disposed.
  • Two second alignment regions that tilt the liquid crystal in a second direction orthogonal to one direction
  • the two second alignment regions are provided so as to divide the pixel electrode arrangement region into two across a straight line parallel to the second direction, and the liquid crystal tilts in the two second alignment regions.
  • the directions are opposite to each other across a straight line parallel to the normal line of the second substrate, and the four first regions and the two second alignment regions are overlapped to form four regions. Four of the domains may be formed.
  • the two first alignment regions and the two second alignment regions may be formed by performing a photo-alignment process on the first alignment film and the second alignment film.
  • the plurality of domains may be arranged on at least one of the first substrate and the second substrate, and may be formed of an alignment regulating structure that regulates the alignment direction of the liquid crystal when a voltage is applied.
  • a liquid crystal composition in which a monomer is mixed with the liquid crystal is sealed between substrates, and a voltage is applied between the substrates to cause the liquid crystal molecules to be tilted to polymerize and polymerize the monomers. It may be formed by the orientation maintaining layer.
  • a plurality of the pixel electrodes are arranged in the first direction and the second direction on the first substrate, and the data bus line extending in the second direction is formed on the second substrate.
  • a plurality may be formed in one direction.
  • the second conductive layer may be formed linearly in the second direction across the plurality of pixel electrodes arranged in the second direction.
  • the second conductive layer includes a first straight line that overlaps a boundary between the two first alignment regions or a second straight line that overlaps a boundary between the two second alignment regions in one pixel electrode arrangement region. And the second conductive layers formed in the adjacent pixel electrode arrangement region are connected to each other via a third straight line portion overlapping an occurrence region of an alignment defect generated at an edge of the pixel electrode. It may be connected.
  • the second conductive layer includes a first straight line portion that overlaps a boundary portion between the two first alignment regions and a second straight line portion that overlaps a boundary portion between the two second alignment regions in one pixel electrode arrangement region. And a straight portion.
  • the second conductive layer may have a third straight portion that overlaps with a region where an alignment defect is generated at the edge of the pixel electrode.
  • a black light absorption layer may be provided between the second conductive layer and the liquid crystal.
  • a black light absorption layer may be provided on the side opposite to the liquid crystal with the second conductive layer interposed therebetween.
  • liquid crystal display device capable of displaying bright and wide viewing angles.
  • FIG. 4 is a cross-sectional view taken along line AA in FIG. 3. It is a schematic diagram which shows the orientation state of the liquid crystal in 1 domain when a voltage is not applied between a pixel electrode and a data bus line. It is a schematic diagram which shows the orientation state of the liquid crystal in 1 domain when a voltage is applied between a pixel electrode and a data bus line.
  • FIG. 1 It is a figure which shows the arrangement
  • FIG. 1 It is a schematic plan view which expands and shows 1 display element of the liquid crystal display device of 4th Embodiment.
  • FIG. 1 is a plan view of an image display region of a liquid crystal display device 1 which is a first embodiment of an active matrix type liquid crystal display device driven by a counter driving method.
  • the liquid crystal display device 1 displays an image related to an image signal in an image display area.
  • a plurality of pixel electrodes 11 having a substantially rectangular shape in a plan view are arranged in the X direction and the Y direction.
  • a gate bus line 12 and a reference bus line 13 are connected to each pixel electrode 11 via a TFT (thin film transistor) 14.
  • the gate bus line 12 and the reference bus line 13 extend linearly in the X direction along the gap between the pixel electrodes 11 adjacent in the Y direction.
  • a data bus line 22 is formed facing the pixel electrode 11.
  • a strip shown by a dotted line 22 indicates a data bus line (transparent first conductive layer) on the second substrate superimposed on the pixel electrode 11 on the first substrate.
  • the data bus line 22 extends linearly in the Y direction so as to straddle the plurality of pixel electrodes 11 arranged in the Y direction.
  • a plurality of data bus lines 22 are formed in the X direction according to the arrangement of the pixel electrodes 11.
  • a region where the pixel electrode 11 and the data bus line 22 face each other is one display element, and display is possible for each display element arranged in a matrix.
  • FIG. 2 is an equivalent circuit diagram of a plurality of display elements P constituting the image display area of the liquid crystal display device 1.
  • FIG. 2 for the sake of simplicity, an equivalent circuit for four display elements is shown.
  • the pixel electrodes 11 and the TFTs 14 are formed on the plurality of display elements P, respectively.
  • a gate bus line 12 is connected to the gate 12 a of the TFT 14.
  • a reference bus line 13 is connected to the source 16 of the TFT 14.
  • the pixel electrode 11 is connected to the drain 17 of the TFT 14.
  • the gate voltages G1 and G2 are applied to the plurality of gate bus lines 12 in a line-sequential manner in a pulse manner at a predetermined timing.
  • the voltage of the reference bus line 13 is applied to the pixel electrode 11 at a predetermined timing.
  • Data voltages D1 and D2 are supplied to the plurality of data bus lines 22 in a line sequential manner.
  • the alignment state of the liquid crystal disposed between the pixel electrode 11 and the data bus line 22 is changed by the voltage between the pixel electrode 11 and the data bus line 22. As a result, light transmitted through the liquid crystal is modulated, and gradation display is performed.
  • FIG. 3 is a schematic plan view showing one display element P in an enlarged manner.
  • the display element P is provided with a pixel electrode 11 on the first substrate and a data bus line 22 on the second substrate that overlaps the pixel electrode 11 in a plane.
  • the data bus line 22 includes a transparent first conductive layer 24 and a second conductive layer 23 having a higher conductivity than the first conductive layer 24.
  • the first conductive layer 24 is made of a transparent conductive material such as ITO (Indium Tin Oxide; a compound in which tin is added to indium oxide).
  • the width of the first conductive layer 24 in the X direction is the same as or larger than the width of the pixel electrode 11 in the X direction.
  • the first conductive layer 24 extends linearly in the Y direction so as to overlap the entire plurality of pixel electrodes 11 arranged in the Y direction. The light modulated by the liquid crystal layer passes through the first conductive layer 24 and is visually recognized by an observer.
  • the second conductive layer 23 is made of a conductive material having a lower transmittance than the first conductive layer 24, for example, an opaque or nearly opaque conductive material such as Al.
  • the second conductive layer 23 functions as an auxiliary wiring for reducing the electric resistance of the data bus line 22.
  • the width of the second conductive layer 23 in the X direction is smaller than the width of the pixel electrode 11 in the X direction.
  • the second conductive layer 23 passes through the center of the pixel electrode 11 and extends in a straight line in the Y direction so as to overlap with the plurality of pixel electrodes 11 arranged in the Y direction.
  • FIG. 4 is a cross-sectional view taken along the line AA in FIG.
  • the liquid crystal display device 1 includes a first substrate 10 and a second substrate 20 disposed to face the first substrate 10.
  • a liquid crystal layer 30 made of nematic liquid crystal having negative dielectric anisotropy is sandwiched between the first substrate 10 and the second substrate 20.
  • the first substrate 10 is made of a translucent substrate such as glass or plastic.
  • a circuit layer 18 including the gate bus line 12, the reference bus line 13 and the TFT 14 shown in FIG. 3 is formed on the liquid crystal layer 30 side of the first substrate 10.
  • a pixel electrode 11 made of a transparent conductive material such as ITO is formed on the circuit layer 18.
  • a first alignment film 19 made of polyimide or the like is formed so as to cover the pixel electrode 11.
  • the second substrate 20 is made of a translucent substrate such as glass or plastic.
  • a color filter layer 21 is formed on the liquid crystal layer 30 side of the second substrate 20.
  • the color filter layer 21 includes a red color filter 21R, a green color filter 21G, a blue color filter 21B, and a black matrix BM.
  • the black matrix BM is formed in a lattice shape at a position facing the gap portion of the pixel electrode 11.
  • a data bus line 22 is formed on the color filter layer 21.
  • the data bus line 22 is formed by laminating a second conductive layer 23 and a first conductive layer 24 in order from the color filter layer 21 side.
  • a second alignment film 29 made of polyimide or the like is formed so as to cover the data bus line 22.
  • a first polarizing plate 38 is disposed on the opposite side of the liquid crystal layer 30 with the first substrate 10 interposed therebetween.
  • a second polarizing plate 39 is disposed on the opposite side of the liquid crystal layer 30 across the second substrate 20.
  • the transmission axis of the first polarizing plate 38 and the transmission axis of the second polarizing plate 39 are orthogonal to each other.
  • a backlight device 40 is disposed on the opposite side of the liquid crystal layer 30 with the first polarizing plate 38 interposed therebetween.
  • the first alignment film 19 and the second alignment film 29 are vertical alignment films that align liquid crystal in a direction perpendicular to the surface of the alignment film.
  • the first alignment film 19 and the second alignment film 29 give a pretilt angle of several degrees to the liquid crystal in a state where no voltage is applied between the pixel electrode 11 and the data bus line 22.
  • the first alignment film 19 and the second alignment film 29 are provided with a plurality of regions for pretilting the liquid crystal in different directions without applying a voltage between the pixel electrode 11 and the data bus line 22.
  • a plurality of domains (multidomains) having different alignment states of the liquid crystals are formed. In the example of FIG.
  • two first alignment regions 191 and 192 provided in the first alignment film 19 with different pretilt directions and two second alignments provided in the second alignment film 29 with different pretilt directions are provided.
  • the areas 291 and 292 four domains are formed in one display element (in the arrangement area of the one pixel electrode 11).
  • Pretilt is a state in which the alignment direction of the liquid crystal (the molecular long axis direction of the liquid crystal) is slightly inclined from the direction perpendicular to the surface of the alignment film (Z direction) to the horizontal direction (direction parallel to the XY plane) Say.
  • the “pretilt angle” refers to an angle formed between the molecular long axis of the liquid crystal and the Z axis.
  • the “pretilt direction” refers to a direction in which a direction parallel to the molecular long axis of the liquid crystal and directed from the side closer to the alignment film to the side farther is projected onto the XY plane.
  • a method for giving a pretilt angle to the liquid crystal there are a method of performing a rubbing process on the alignment film, a method of performing a photo alignment process on the alignment film, and the like. Even if the alignment film is formed by oblique vapor deposition, a pretilt angle can be imparted to the liquid crystal.
  • the photo-alignment treatment can easily realize a multi-domain structure by a simple method. Therefore, the liquid crystal display device 1 performs the alignment process on the first alignment film 19 and the second alignment film 29 by the photo-alignment process.
  • such an alignment treatment method is an example, and the alignment treatment method of the first alignment film 19 and the second alignment film 29 is not limited to this.
  • FIG. 5A and 5B are schematic views showing the alignment state of the liquid crystal 31 in one domain LD.
  • FIG. 5A is a schematic diagram showing an alignment state (off state) of the liquid crystal 31 in a state where no voltage is applied between the pixel electrode and the data bus line
  • FIG. 5B is a diagram between the pixel electrode and the data bus line. It is a schematic diagram which shows the orientation state (ON state) of the liquid crystal 31 when a voltage is applied.
  • the first alignment film 19 and the second alignment film 29 align the liquid crystal 31 in the vicinity of the alignment film in a direction that forms an angle ⁇ P ( ⁇ 90 °) with respect to the XY plane.
  • the pretilt direction 19a of the liquid crystal 31 in the vicinity of the first alignment film 19 and the pretilt direction 29a of the liquid crystal 31 in the vicinity of the second alignment film 29 are orthogonal to each other.
  • the liquid crystal 30 takes a VATN (Vertical Alignment Twisted Nematic) mode in which the first alignment film 19 and the second alignment film 29 are twisted by 90 °.
  • the liquid crystal 31 in the central portion of the liquid crystal layer that contributes to display is substantially vertically aligned, and the pretilt direction is a direction that forms 45 ° with the pretilt direction 19 a of the first alignment film 19.
  • the liquid crystal 31 when a voltage is applied between the pixel electrode and the data bus line, the liquid crystal 31 is aligned in a direction parallel to the film surface of the alignment film according to the applied voltage, and is transmitted through the liquid crystal layer 30. Exhibits birefringence.
  • the alignment state of the liquid crystal 31 in the vicinity of the first alignment film 19 and the liquid crystal 31 in the vicinity of the second alignment film 29 hardly change even in the on state due to the anchoring effect of the alignment film.
  • the alignment state of the liquid crystal 31 at the center of the liquid crystal layer 30 changes from a direction perpendicular to the film surface of the alignment film to a direction parallel to the film surface in the on state.
  • the change in the alignment state occurs in a plane including the Z direction and the pretilt direction 19a of the first alignment film 19 and a direction that forms 45 °.
  • FIG. 6 is a schematic diagram showing the alignment relationship between the alignment treatment direction of the alignment films 19 and 29 in one display element, the transmission axes of the polarizing plates 38 and 39, and the second conductive layer 23 of the data bus line.
  • the transmission axis 38a of the first polarizing plate 38 is parallel to the Y axis
  • the transmission axis 39a of the second polarizing plate 39 is parallel to the X axis.
  • the extending direction of the second conductive layer 23 of the data bus line is parallel to the Y axis.
  • the first alignment film 19 has two first alignment regions 191 and 192 that tilt the liquid crystal in the Y direction in one display element.
  • the two first alignment regions 191 and 192 are provided so as to divide one display element into two with a straight line 51 parallel to the Y axis interposed therebetween.
  • the liquid crystal tilt directions in the two first alignment regions 191 and 192 are opposite to each other across a straight line parallel to the Z axis.
  • the second alignment film 29 has two second alignment regions 291 and 292 for tilting the liquid crystal in the X direction in one display element.
  • the two second alignment regions 291 and 292 are provided so as to divide one display element into two with a straight line 52 parallel to the X axis interposed therebetween.
  • the tilt directions of the liquid crystals in the two second alignment regions 291 and 292 are opposite to each other across a straight line parallel to the Z axis.
  • a region where the first alignment region 191 and the second alignment region 291 overlap, a region where the first alignment region 192 and the second alignment region 291 overlap, a region where the first alignment region 191 and the second alignment region 292 overlap, and Four domains are formed by the region where the first alignment region 192 and the second alignment region 292 overlap.
  • the boundary between the four domains overlaps with the straight line 51 and the straight line 52.
  • the second conductive layer 23 of the data bus line is disposed so as to overlap the boundary portion 51 between the first alignment region 191 and the first alignment region 192. Therefore, the second conductive layer 23 overlaps at least a part of the boundary between the four domains.
  • the transmission axis 38a of the first polarizing plate 38 is parallel to the Y axis
  • the transmission axis 39a of the second polarizing plate 39 is parallel to the X axis. May be parallel to the X axis
  • the transmission axis 39a of the second polarizing plate 39 may be parallel to the Y axis.
  • the first alignment film 19 and the second alignment film 29 are formed by, for example, baking at 180 ° C. for 60 minutes after applying a solution containing the photo-alignment film material to the substrate.
  • a known material can be used as the photo-alignment film material.
  • a polyimide containing a photosensitive group such as a 4-chalcone group, a 4'-chalcone group, a coumarin group, or a cinnamoyl group is preferable. These photosensitive groups cause crosslinking reaction (including dimerization reaction), isomerization reaction, photoreorientation, etc. by UV irradiation, and reduce variation in pretilt angle compared to photodegradable photoalignment film materials. Can do.
  • the photo-alignment treatment is performed using an exposure apparatus that irradiates the alignment films 19 and 29 with ultraviolet rays obliquely.
  • the first alignment regions 191 and 192 are irradiated with ultraviolet rays from a direction inclined by a predetermined angle ⁇ with respect to the Z direction.
  • the directions of the ultraviolet rays irradiated to the first alignment region 191 and the first alignment region 192 are such that, when the optical axis of the irradiated ultraviolet rays is projected onto the XY plane, the projected optical axes are parallel to the Y axis and are substantially the same.
  • the direction is 180 ° different.
  • the second alignment regions 291 and 292 are irradiated with ultraviolet rays from a direction inclined by a predetermined angle ⁇ with respect to the Z direction.
  • the directions of the ultraviolet rays irradiated to the second alignment region 291 and the first alignment region 292 are such that, when the optical axes of the irradiated ultraviolet rays are projected on the XY plane, the projected optical axes are parallel to the X axis and are substantially the same.
  • the direction is 180 ° different.
  • the incident angle of ultraviolet rays incident on the first alignment regions 191 and 192 and the incident angle of ultraviolet rays incident on the second alignment regions 291 and 292 may be the same or different.
  • the incident angle of the ultraviolet light incident on the first alignment region 191 and the incident angle of the ultraviolet light incident on the first alignment region 192 may be the same or different.
  • the incident angle of the ultraviolet light incident on the second alignment region 291 and the incident angle of the ultraviolet light incident on the second alignment region 292 may be the same or different.
  • the exposure apparatus may be any apparatus that selectively irradiates ultraviolet rays onto a specific region of the alignment film through a photomask.
  • a photomask and a light source for ultraviolet irradiation are used on the substrate using a small photomask with slit-shaped openings. It is desirable to scan (relative movement). For example, using a photomask that shields the first alignment region 192, the ultraviolet light irradiation light source is scanned in the + Y direction while irradiating the first alignment region 191 with the ultraviolet light 53, and then the first alignment region 191 is shielded from light.
  • the UV light source is scanned in the + X direction while irradiating the second alignment region 291 with the ultraviolet light 55, and then the photomask that shields the second alignment region 291. Irradiating the second alignment region 292 with the ultraviolet ray 56 and scanning the ultraviolet irradiation light source in the ⁇ X direction.
  • an existing pattern formed on the substrate for example, a gate bus line, a reference bus line, a black matrix, a data bus line (first conductive layer, second substrate) It is desirable to take a pattern of a conductive layer), a pixel electrode, and the like, and a positioning mark provided on the photomask with a camera, and to control an ultraviolet irradiation position using the taken image.
  • FIG. 7A to 7C are schematic views of the alignment state of the liquid crystal 31 as viewed from the second substrate side.
  • FIG. 7A is a schematic diagram showing the alignment state of the liquid crystal 31 in the vicinity of the first alignment film 19.
  • FIG. 7B is a schematic diagram showing the alignment state of the liquid crystal 31 in the vicinity of the second alignment film 29.
  • FIG. 7C is a schematic diagram illustrating the alignment state of the liquid crystal 31 at the center portion in the layer thickness direction of the liquid crystal layer 30.
  • the portion shown in a columnar shape is the liquid crystal 31, and the liquid crystal 31 is tilted so that the end of the liquid crystal 31 is closer to the second substrate side.
  • the direction of the ultraviolet rays 53 to 56 irradiated to the alignment films 19 and 29 is defined as the direction of the projected optical axis obtained by projecting the optical axis of the ultraviolet rays 53 to 56 onto the XY plane
  • the ultraviolet rays irradiated to the first alignment region 191 The direction is the + Y direction
  • the direction of the ultraviolet rays applied to the first alignment region 192 is the ⁇ Y direction
  • the direction of ultraviolet rays irradiated to the second alignment region 291 is the + X direction
  • the direction of ultraviolet rays irradiated to the second alignment region 292 is the ⁇ X direction.
  • the tilt directions of the liquid crystal 31 in the first alignment region 191 and the first alignment film 192 are opposite to each other across a straight line parallel to the Z axis, and the liquid crystal 31 in the second alignment region 291 and the second alignment film 292 The tilt directions are opposite to each other across a straight line parallel to the Z axis.
  • a domain 32 is formed in a region where the first alignment region 191 and the second alignment region 291 face each other
  • a domain 33 is formed in a region where the first alignment region 191 and the second alignment region 292 face each other
  • a domain 34 is formed in a region where the first alignment region 192 and the second alignment region 292 face each other
  • a domain 35 is formed in a region where the first alignment region 192 and the second alignment region 291 face each other.
  • the pretilt directions of the liquid crystal 31 at the center of the liquid crystal layer 30 in the layer thickness direction are different from each other.
  • the change in the alignment state of the liquid crystal 31 occurs in a plane including the axis that forms 45 ° with the X axis and the Z axis.
  • the tilt directions of the liquid crystal 31 are opposite to each other across a straight line that passes through the center of the pixel electrode and is parallel to the Z axis.
  • the tilt direction of the liquid crystal 31 is opposite to each other across a straight line passing through the center of the pixel electrode and parallel to the Z axis.
  • FIG. 8 is a schematic diagram showing the luminance distribution in one display element in the on state.
  • the boundary portion 36 between the domain 32 and the domain 35 and the boundary portion 36 between the domain 33 and the domain 34 coincide with the boundary portions between the two first alignment regions 191 and 192 shown in FIG. 7A.
  • the boundary portion 36 between the domain 32 and the domain 33 and the boundary portion 36 between the domain 35 and the domain 34 coincide with the boundary portions between the two second alignment regions 291 and 292 shown in FIG. 7B.
  • a swirl type dark line 37 caused by an orientation defect is formed in one display element.
  • the dark line 37 includes a straight line portion 37a generated at the domain boundary part 36 parallel to the Y axis, a straight line part 37b generated at the domain boundary part 36 parallel to the X axis, and a straight line part 37c generated at the edge of the pixel electrode.
  • Have The dark line 37 is caused by an alignment defect caused by disorder of alignment at the domain boundary portion or an oblique electric field at the periphery of the pixel electrode, and the position thereof is fixed.
  • FIG. 9 is a schematic diagram showing an arrangement relationship between the dark line 37 and the second conductive layer 23 of the data bus line.
  • FIG. 9 shows the second conductive layer 23 of the data bus line superimposed on the luminance distribution for two display elements in the ON state.
  • the second conductive layer 23 is disposed so as to overlap the boundary portion 51 between the first alignment region 191 and the first alignment region 192. Therefore, the second conductive layer 23 overlaps the domain boundary portion 36 parallel to the Y axis. Since the second conductive layer 23 is made of an opaque conductive material, the arrangement region of the second conductive layer 23 becomes a light shielding region. However, since the dark line 37 is an area that does not contribute to display, if the second conductive layer 23 is disposed at a position overlapping the dark line 37, the aperture ratio does not significantly decrease. Therefore, bright display can be achieved while realizing a wide viewing angle by multi-domain (orientation division).
  • FIG. 10 is an enlarged schematic plan view showing one display element P of the liquid crystal display device 2 which is the second embodiment of the active matrix type liquid crystal display device driven by the counter drive method.
  • the liquid crystal display device 2 is a VATN type liquid crystal display device having an alignment division structure, like the liquid crystal display device 1 of the first embodiment.
  • the same components as those in the liquid crystal display device 1 of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the difference between the liquid crystal display device 2 and the liquid crystal display device 1 of the first embodiment is the shape of the second conductive layer 26 of the data bus line 25.
  • the second conductive layer 23 of the liquid crystal display device 1 is formed linearly in the Y direction
  • the second conductive layer 26 of the liquid crystal display device 2 extends in the X direction and a first straight portion 26a extending in the Y direction.
  • the second straight portion 26b and a third straight portion 26c extending along the peripheral edge of the pixel electrode 11 are bent.
  • the first straight line portion 26a is arranged so as to overlap the boundary portion 51 between the first alignment region 191 and the first alignment region 192 shown in FIG.
  • the second straight portion 26b is disposed so as to overlap the boundary portion 52 between the second alignment region 291 and the second alignment region 292 shown in FIG.
  • the third straight portion 26c is arranged so as to overlap with a region where an alignment defect is generated at the peripheral portion of the pixel electrode.
  • FIG. 11 is a schematic diagram showing an arrangement relationship between the dark line 37 and the second conductive layer 26 of the data bus line.
  • FIG. 11 shows the second conductive layer 26 of the data bus line superimposed on the luminance distribution for two display elements in the ON state.
  • the first straight portion 26 a of the second conductive layer 26 is disposed so as to overlap the boundary portion 51 between the first alignment region 191 and the first alignment region 192. Therefore, the first straight portion 26 a overlaps with the straight portion 37 a of the dark line 37.
  • the second straight portion 26 b of the second conductive layer 26 is disposed so as to overlap the boundary portion 52 between the second alignment region 291 and the second alignment region 292. Therefore, the second straight portion 26 b overlaps with the straight portion 37 b of the dark line 37.
  • the third straight portion 26c of the second conductive layer 26 is disposed so as to overlap with a region where an alignment defect is generated at the edge of the pixel electrode. Therefore, the third straight portion 26 c overlaps with the straight portion 37 c of the dark line 37.
  • the second conductive layer 26 is made of an opaque conductive material. Therefore, the arrangement region of the second conductive layer 26 becomes a light shielding region.
  • the dark line 37 is an area that does not contribute to display, if the second conductive layer 26 is disposed at a position overlapping the dark line 37, the aperture ratio does not decrease greatly. Therefore, bright display is possible.
  • FIG. 12 shows the alignment treatment direction of the alignment films 19 and 29 in one display element of the liquid crystal display device 3 which is the third embodiment of the active matrix type liquid crystal display device driven by the counter driving method, and the polarizing plates 38 and 39. It is a schematic diagram which shows the arrangement
  • the liquid crystal display device 3 is a VATN type liquid crystal display device having an alignment division structure, like the liquid crystal display device 1 of the first embodiment.
  • the same components as those in the liquid crystal display device 1 of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the liquid crystal display device 3 is different from the liquid crystal display device 1 of the first embodiment in the alignment treatment direction of the alignment films 19 and 29.
  • the alignment treatment direction of the first alignment regions 191 and 192 is parallel to the Y direction
  • the alignment treatment direction of the second alignment regions 291 and 292 is parallel to the X direction.
  • the alignment treatment direction of the first alignment regions 193 and 194 is parallel to the X direction
  • the alignment treatment direction of the second alignment regions 293 and 294 is parallel to the Y direction.
  • the first alignment film 19 has two first alignment regions 193 and 194 that tilt the liquid crystal in the X direction in one display element.
  • the two first alignment regions 193 and 194 are provided so as to divide one display element into two with a straight line 61 parallel to the X axis interposed therebetween.
  • the tilt directions of the liquid crystals in the two first alignment regions 193 and 194 are opposite to each other across a straight line parallel to the Z axis.
  • the second alignment film 29 has two second alignment regions 293 and 294 for tilting the liquid crystal in the Y direction in one display element.
  • the two second alignment regions 293 and 294 are provided so as to divide one display element into two with a straight line 62 parallel to the Y axis interposed therebetween.
  • the tilt directions of the liquid crystals in the two second alignment regions 293 and 294 are opposite to each other across a straight line parallel to the Z axis.
  • a region where the first alignment region 193 and the second alignment region 293 overlap, a region where the first alignment region 194 and the second alignment region 293 overlap, a region where the first alignment region 193 and the second alignment region 294 overlap, and Four domains are formed by the region where the first alignment region 194 and the second alignment region 294 overlap.
  • the boundary between the four domains overlaps with the straight line 61 and the straight line 62.
  • the second conductive layer 23 of the data bus line is disposed so as to overlap the boundary 62 between the second alignment region 293 and the second alignment region 294. Therefore, the second conductive layer 23 overlaps at least a part of the boundary between the four domains.
  • the extending direction of the second conductive layer 23 formed on the same second substrate and the boundary portion 62 of the two second alignment regions 293 and 294 of the second alignment film 29 overlap each other. Has been placed. Therefore, when the alignment process is performed on the second alignment film 29, the boundary 62 of the second alignment regions 293 and 294 can be accurately positioned at a position overlapping the second conductive layer 23.
  • the boundary portion 51 between the two first alignment regions 191 and 192 of the first alignment film 19 formed on the first substrate 10 and the second substrate 20 When the second conductive layer 23 formed on the first and second conductive layers 23 is overlapped, the accuracy of the positional deviation between the two is determined by the bonding accuracy when the first substrate 10 and the second substrate 20 are bonded by the substrate bonding apparatus.
  • the accuracy of the positional deviation between them is determined by the alignment accuracy of the photomask in the exposure apparatus. Since the alignment accuracy of the photomask in the exposure apparatus is generally higher than the bonding accuracy of the substrate bonding apparatus, the decrease in the aperture ratio caused by the positional deviation between the second conductive layer 23 and the domain boundary portion is reduced. Bright display is possible.
  • FIG. 13 is an enlarged schematic plan view showing one display element P of the liquid crystal display device 4 which is the fourth embodiment of the active matrix type liquid crystal display device driven by the counter drive method.
  • the liquid crystal display device 4 is a VATN type liquid crystal display device having an alignment division structure, similar to the liquid crystal display device 1 of the first embodiment.
  • the same components as those in the liquid crystal display device 1 of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the liquid crystal display device 4 is different from the liquid crystal display device 1 of the first embodiment in the shape of the second conductive layer 28 of the data bus line 27.
  • the second conductive layer 23 of the liquid crystal display device 1 is formed linearly in the Y direction
  • the second conductive layer 28 of the liquid crystal display device 4 extends in the X direction and a first straight portion 28a extending in the Y direction.
  • the second straight portion 28 b and the third straight portion 28 c extending along the peripheral edge of the pixel electrode 11 are bent.
  • the first straight line portion 28a is disposed so as to overlap the boundary portion 51 between the first alignment region 191 and the first alignment region 192 shown in FIG.
  • the second straight portion 28b is arranged so as to overlap with the boundary portion 52 between the second alignment region 291 and the second alignment region 292 shown in FIG.
  • the third straight line portion 28c is disposed so as to overlap with a region where an alignment defect occurs at the peripheral edge of the pixel electrode.
  • FIG. 14A and 14B are schematic diagrams showing the luminance distribution in one display element in the on state.
  • FIG. 14A is a schematic diagram illustrating a first form of the luminance distribution
  • FIG. 14B is a schematic diagram illustrating a second form of the luminance distribution.
  • the luminance distribution of the first form and the luminance distribution of the second form occur in different display elements in the same image display area.
  • swirl type dark lines 37 caused by orientation defects are formed in one display element.
  • the dark line 37 includes a straight line portion 37a generated at the domain boundary part 36 parallel to the Y axis, a straight line part 37b generated at the domain boundary part 36 parallel to the X axis, and a straight line part 37c generated at the edge of the pixel electrode.
  • Have The dark line 37 is caused by an alignment defect caused by disorder of alignment at the domain boundary portion or an oblique electric field at the periphery of the pixel electrode, and the position thereof is fixed.
  • a “8” -shaped dark line 37 caused by an alignment defect is formed in one display element.
  • the luminance distribution in FIG. 14B is generated when the alignment division structure described in FIG. 22 is applied.
  • the dark line 37 includes a straight line portion 37a generated at the domain boundary part 36 parallel to the Y axis, a straight line part 37b generated at the domain boundary part 36 parallel to the X axis, and a straight line part 37c generated at the edge of the pixel electrode.
  • Have The dark line 37 is caused by an alignment defect caused by disorder of alignment at the domain boundary portion or an oblique electric field at the periphery of the pixel electrode, and the position thereof is fixed.
  • FIG. 15 is a schematic diagram showing an arrangement relationship between the dark line 37 and the second conductive layer 28 of the data bus line.
  • FIG. 15 displays the second conductive layer 28 of the data bus line superimposed on the luminance distribution of two display elements indicating the luminance distribution of the first form shown in FIG. 14A and the luminance distribution of the second form shown in FIG. 14B. is doing.
  • the first straight portion 28 a of the second conductive layer 28 is disposed so as to overlap the boundary portion 51 between the first alignment region 191 and the first alignment region 192. Therefore, the first straight portion 28 a overlaps with the straight portion 37 a of the dark line 37.
  • the second straight portion 28 b of the second conductive layer 28 is disposed so as to overlap the boundary portion 52 between the second alignment region 291 and the second alignment region 292. For this reason, the second straight line portion 28 b overlaps with the straight line portion 37 b of the dark line 37.
  • the third straight portion 28c of the second conductive layer 28 is disposed so as to overlap with a region where an alignment defect is generated at the edge of the pixel electrode. Therefore, the third straight line portion 28 c overlaps with the straight line portion 37 c of the dark line 37.
  • the second conductive layer 28 is made of an opaque conductive material. Therefore, the arrangement region of the second conductive layer 28 is a light shielding region. However, since the dark line 37 is a region that does not contribute to display, if the second conductive layer 28 is disposed at a position overlapping the dark line 37, the aperture ratio does not decrease greatly. Therefore, bright display is possible.
  • FIG. 16 is an enlarged schematic plan view showing one display element P of the liquid crystal display device 5 which is the fifth embodiment of the active matrix type liquid crystal display device driven by the counter drive method.
  • the liquid crystal display device 5 is a VATN type liquid crystal display device having an alignment division structure, like the liquid crystal display device 1 of the first embodiment.
  • the same components as those of the liquid crystal display device 1 of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the liquid crystal display device 5 is different from the liquid crystal display device 1 of the first embodiment in the shape of the second conductive layer 71 of the data bus line 70.
  • the second conductive layer 23 of the liquid crystal display device 1 is formed linearly in the Y direction, the second conductive layer 71 of the liquid crystal display device 5 extends in the X direction and the first straight portion 71a extending in the Y direction.
  • the second linear portion 71b and the third linear portion 71c extending along the peripheral edge of the pixel electrode 11 are bent.
  • the second conductive layer 23 of the liquid crystal display device 1 is formed over the plurality of display elements P, but the second conductive layer 71 of the liquid crystal display device 5 is formed separately for each display element P.
  • the second conductive layer 71 of each display element P is electrically connected via the first conductive layer 24.
  • the first straight line portion 71a is disposed so as to overlap the boundary portion 51 between the first alignment region 191 and the first alignment region 192 shown in FIG.
  • the second straight line portion 71b is disposed so as to overlap the boundary portion 52 between the second alignment region 291 and the second alignment region 292 shown in FIG.
  • the third straight portion 71c is arranged so as to overlap with a region where an alignment defect is generated at the peripheral portion of the pixel electrode.
  • FIG. 17 is a schematic diagram showing an arrangement relationship between the dark line 37 and the second conductive layer 71 of the data bus line.
  • FIG. 17 shows the second conductive layer 71 of the data bus line superimposed on the luminance distribution for two display elements in the on state.
  • the first straight line portion 71 a of the second conductive layer 71 is disposed so as to overlap the boundary portion 51 between the first alignment region 191 and the first alignment region 192. Therefore, the first straight line portion 71 a overlaps with the straight line portion 37 a of the dark line 37.
  • the second straight portion 71 b of the second conductive layer 71 is disposed so as to overlap with the boundary portion 52 between the second alignment region 291 and the second alignment region 292. Therefore, the second straight line portion 71 b overlaps with the straight line portion 37 b of the dark line 37.
  • the third straight portion 71c of the second conductive layer 71 is disposed so as to overlap with a region where an alignment defect is generated at the edge of the pixel electrode. Therefore, the third straight line portion 71 c overlaps with the straight line portion 37 c of the dark line 37.
  • the second conductive layer 71 is made of an opaque conductive material. Therefore, the arrangement region of the second conductive layer 71 is a light shielding region. However, since the dark line 37 is a region that does not contribute to display, if the second conductive layer 71 is disposed at a position overlapping the dark line 37, the aperture ratio does not greatly decrease. Therefore, bright display is possible.
  • FIG. 18 shows the alignment treatment direction of the alignment films 19 and 29 in one display element of the liquid crystal display device 6 which is the sixth embodiment of the active matrix type liquid crystal display device driven by the counter drive method, and the polarizing plates 38 and 39. It is a schematic diagram which shows the arrangement
  • the liquid crystal display device 6 is a VATN type liquid crystal display device having an alignment division structure, like the liquid crystal display device 1 of the first embodiment.
  • the same components as those in the liquid crystal display device 1 of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the liquid crystal display device 6 is different from the liquid crystal display device 1 of the first embodiment in that a black light absorption layer 80 is provided between the second conductive layer 23 and the liquid crystal layer.
  • a black light absorption layer 80 is provided between the second conductive layer 23 and the liquid crystal layer.
  • the second alignment film 29 is formed so as to cover the surface of the second conductive layer 23, but in the liquid crystal display device 6, the surface of the second conductive layer 23 is formed.
  • a black light absorption layer 80 is formed.
  • the second alignment film 29 is formed on the surface of the light absorption layer 80.
  • the second conductive layer 23 may be formed of a metal material such as Al. Since the second conductive layer 23 made of a metal material has a high visible light reflectivity, the second conductive layer 23 is modulated by the liquid crystal layer without any treatment on the liquid crystal layer side surface of the second conductive layer 23. In some cases, a part of the modulated light is reflected. The modulated light reflected by the second conductive layer 23 becomes stray light and may reduce the contrast. Therefore, in the liquid crystal display device 6, the modulated light that has passed through the liquid crystal layer and entered the second conductive layer 23 is absorbed by the light absorption layer 80, thereby suppressing a decrease in contrast.
  • a metal material such as Al. Since the second conductive layer 23 made of a metal material has a high visible light reflectivity, the second conductive layer 23 is modulated by the liquid crystal layer without any treatment on the liquid crystal layer side surface of the second conductive layer 23. In some cases, a part of the modulated light is reflected. The modulated light reflected by the second conductive layer
  • FIG. 19 shows the alignment treatment direction of the alignment films 19 and 29 in one display element of the liquid crystal display device 7 which is the seventh embodiment of the active matrix type liquid crystal display device driven by the counter drive system, and the polarizing plates 38 and 39. It is a schematic diagram which shows the arrangement
  • the liquid crystal display device 7 is a VATN type liquid crystal display device having an alignment division structure.
  • the same components as those in the liquid crystal display device 1 of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the liquid crystal display device 7 is different from the liquid crystal display device 1 of the first embodiment in that a black light absorption layer 81 is provided on the opposite side of the liquid crystal layer with the second conductive layer 23 interposed therebetween.
  • a black light absorption layer 81 is provided on the opposite side of the liquid crystal layer with the second conductive layer 23 interposed therebetween.
  • the second conductive layer 23 is formed on the surface of the first conductive layer 24, but in the liquid crystal display device 7, the light absorbing layer is formed on the surface of the first conductive layer. 81 is formed, and the second conductive layer 23 is formed on the surface of the light absorption layer 81.
  • the second conductive layer 23 may be formed of a metal material such as Al. Since the second conductive layer 23 made of a metal material has a high visible light reflectivity, the second conductive layer 23 is formed in the second conductive layer 23 without any treatment on the surface of the second conductive layer 23 on the second polarizing plate 39 side. In some cases, part of external light incident from the two polarizing plates 39 is reflected. There is a possibility that the external light reflected by the second conductive layer 23 is superimposed on the modulated light modulated by the liquid crystal layer and the contrast is lowered. Therefore, in the liquid crystal display device 7, external light that has passed through the second polarizing plate 39 and entered from the second substrate side is absorbed by the light absorption layer 81, and a reduction in contrast is suppressed.
  • a metal material such as Al. Since the second conductive layer 23 made of a metal material has a high visible light reflectivity, the second conductive layer 23 is formed in the second conductive layer 23 without any treatment on the surface of the second conductive layer 23 on the second
  • the light absorption layer 81 is formed on the back surface of the second conductive layer, that is, between the first conductive layer 24 and the second conductive layer 23 of the data bus line. Is not limited to this.
  • the light absorption layer 81 may be formed between the first conductive layer 24 and the second substrate 20 of the data bus line 22 illustrated in FIG. 4.
  • the light absorption layer 81 may be formed simultaneously with the black matrix BM of the color filter layer 21. In this case, it is not necessary to newly add a step of forming the light absorption layer 81, and the manufacturing process is simplified.
  • FIG. 20 shows the alignment treatment direction of the alignment films 19 and 29 in one display element of the liquid crystal display device 8 which is the eighth embodiment of the active matrix type liquid crystal display device driven by the counter drive method, and the polarizing plates 38 and 39. It is a schematic diagram which shows the arrangement
  • the liquid crystal display device 8 is a VATN type liquid crystal display device having an alignment division structure, like the liquid crystal display device 1 of the first embodiment.
  • the same components as those in the liquid crystal display device 1 of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the liquid crystal display device 8 is different from the liquid crystal display device 1 of the first embodiment in that a black light absorption layer 83 is provided between the second conductive layer 23 and the liquid crystal layer, and the second conductive layer 23 is sandwiched between the liquid crystals.
  • the black light absorption layer 82 is provided on the opposite side to the layer.
  • the second conductive layer 23 is formed on the surface of the first conductive layer 24, and the second alignment film 29 is formed to cover the surface of the second conductive layer 23.
  • the light absorption layer 82 is formed on the surface of the first conductive layer
  • the second conductive layer 23 is formed on the surface of the light absorption layer 82
  • light absorption is performed on the surface of the second conductive layer 23.
  • the layer 83 is formed, and the second alignment film 29 is formed on the surface of the light absorption layer 83.
  • the second conductive layer 23 may be formed of a metal material such as Al. Since the second conductive layer 23 made of a metal material has a high visible light reflectivity, the second conductive layer 23 is formed in the second conductive layer 23 without any treatment on the surface of the second conductive layer 23 on the second polarizing plate 39 side. In some cases, part of external light incident from the two polarizing plates 39 is reflected. There is a possibility that the external light reflected by the second conductive layer 23 is superimposed on the modulated light modulated by the liquid crystal layer and the contrast is lowered. If no treatment is performed on the surface of the second conductive layer 23 on the liquid crystal layer side, the second conductive layer 23 may reflect part of the modulated light modulated by the liquid crystal layer.
  • the modulated light reflected by the second conductive layer 23 becomes stray light and may reduce the contrast. Therefore, in the liquid crystal display device 8, the modulated light that has been transmitted through the liquid crystal layer and incident on the second conductive layer 23 is absorbed by the light absorption layer 83, is transmitted through the second polarizing plate 39, and is incident from the second substrate side. Absorption of light by the light absorption layer 82 suppresses a decrease in contrast.
  • the light absorption layer 82 is formed on the back surface of the second conductive layer, that is, between the first conductive layer and the second conductive layer 23 of the data bus line. It is not limited to this.
  • the light absorption layer 82 may be formed between the first conductive layer 24 and the second substrate 20 of the data bus line 22 illustrated in FIG. 4.
  • the light absorption layer 82 may be formed simultaneously with the black matrix BM of the color filter layer 21. In this case, it is not necessary to newly add a step of forming the light absorption layer 82, and the manufacturing process is simplified.
  • FIG. 21A is a schematic diagram illustrating the alignment state of the liquid crystal 31 in the vicinity of the first alignment film 19
  • FIG. 21B is a schematic diagram illustrating the alignment state of the liquid crystal 31 in the vicinity of the second alignment film 29
  • FIG. 3 is a schematic diagram illustrating an alignment state of a liquid crystal 31 at a central portion in a layer thickness direction of the liquid crystal layer 30.
  • the portion shown in a columnar shape is the liquid crystal 31, and the liquid crystal 31 is tilted so that the end of the liquid crystal 31 is closer to the second substrate side.
  • the liquid crystal display device of this embodiment is a VATN type liquid crystal display device having an alignment division structure, similar to the liquid crystal display devices of the first to eighth embodiments.
  • FIGS. 21A to 21C components common to the liquid crystal display devices of the first to eighth embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the ultraviolet rays 53 to 56 are applied to the alignment films 19 and 29 from a direction inclined by a predetermined angle from the Z direction.
  • the direction of the ultraviolet rays applied to the alignment films 19 and 29 is defined as the direction of the projection optical axis obtained by projecting the optical axis of the ultraviolet rays onto the XY plane, each of the alignment regions 191 and 192 in the liquid crystal display device of FIGS.
  • the direction of ultraviolet rays incident on 291 and 292 is as follows.
  • the direction of ultraviolet rays irradiated to the first alignment region 191 is the ⁇ Y direction.
  • the direction of the ultraviolet rays applied to the first alignment region 192 is the + Y direction.
  • the direction of ultraviolet rays irradiated to the second alignment region 291 is the + X direction.
  • the direction of ultraviolet rays irradiated to the second alignment region 292 is the ⁇ X direction.
  • a domain 32 is formed in a region where the first alignment region 191 and the second alignment region 291 face each other
  • a domain 33 is formed in a region where the first alignment region 191 and the second alignment region 292 face each other
  • a domain 34 is formed in a region where the first alignment region 192 and the second alignment region 292 face each other
  • a domain 35 is formed in a region where the first alignment region 192 and the second alignment region 291 face each other.
  • the shape of the dark line is a shape symmetrical to the shape shown in FIG. 14B and the Y axis (“8” shape).
  • the pretilt directions of the liquid crystal 31 at the center in the layer thickness direction of the liquid crystal layer 30 are different from each other.
  • the change in the alignment state of the liquid crystal 31 occurs in a plane including the axis that forms 45 ° with the X axis and the Z axis.
  • the tilt directions of the liquid crystal 31 are opposite to each other across a straight line that passes through the center of the pixel electrode and is parallel to the Z axis.
  • the tilt direction of the liquid crystal 31 is opposite to each other across a straight line passing through the center of the pixel electrode and parallel to the Z axis.
  • FIG. 22A to 22C are schematic views showing a tenth embodiment of an active matrix liquid crystal display device driven by a counter driving method.
  • 22A to 22C are schematic views of the alignment state of the liquid crystal 31 as viewed from the second substrate side.
  • 22A is a schematic diagram showing the alignment state of the liquid crystal 31 in the vicinity of the first alignment film 19
  • FIG. 22B is a schematic diagram showing the alignment state of the liquid crystal 31 in the vicinity of the second alignment film 29
  • FIG. 3 is a schematic diagram illustrating an alignment state of a liquid crystal 31 at a central portion in a layer thickness direction of the liquid crystal layer 30.
  • the portion shown in a columnar shape is the liquid crystal 31, and the liquid crystal 31 is tilted so that the end of the liquid crystal 31 is closer to the second substrate side.
  • the liquid crystal display device of this embodiment is a VATN type liquid crystal display device having an alignment division structure, similar to the liquid crystal display devices of the first to eighth embodiments. 22A to 22C, components common to the liquid crystal display devices of the first to eighth embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the ultraviolet rays 53 to 56 are applied to the alignment films 19 and 29 from a direction inclined by a predetermined angle from the Z direction. If the direction of the ultraviolet rays applied to the alignment films 19 and 29 is defined as the direction of the projection optical axis obtained by projecting the optical axis of the ultraviolet rays onto the XY plane, the alignment regions 191, 192 and 192 in the liquid crystal display device of FIGS.
  • the direction of ultraviolet rays incident on 291 and 292 is as follows.
  • the direction of ultraviolet rays irradiated to the first alignment region 191 is the + Y direction.
  • the direction of ultraviolet rays irradiated to the first alignment region 192 is the ⁇ Y direction.
  • the direction of ultraviolet rays irradiated to the second alignment region 291 is the + X direction.
  • the direction of ultraviolet rays irradiated to the second alignment region 292 is the ⁇ X direction.
  • the tilt directions of the liquid crystal 31 in the first alignment region 191 and the first alignment film 192 are opposite to each other across a straight line parallel to the Z axis.
  • the tilt directions of the liquid crystal 31 in the second alignment region 291 and the second alignment film 292 are opposite to each other across a straight line parallel to the Z axis.
  • a domain 32 is formed in a region where the first alignment region 191 and the second alignment region 291 face each other
  • a domain 33 is formed in a region where the first alignment region 191 and the second alignment region 292 face each other
  • a domain 34 is formed in a region where the first alignment region 192 and the second alignment region 292 face each other
  • a domain 35 is formed in a region where the first alignment region 192 and the second alignment region 291 face each other.
  • the shape of the dark line is the shape shown in FIG. 14B.
  • the pretilt directions of the liquid crystal 31 at the center in the layer thickness direction of the liquid crystal layer 30 are different from each other.
  • the change in the alignment state of the liquid crystal 31 occurs in a plane including the axis that forms 45 ° with the X axis and the Z axis.
  • the tilt directions of the liquid crystal 31 are opposite to each other across a straight line that passes through the center of the pixel electrode and is parallel to the Z axis.
  • the tilt direction of the liquid crystal 31 is opposite to each other across a straight line passing through the center of the pixel electrode and parallel to the Z axis.
  • FIG. 23A is a schematic diagram illustrating the alignment state of the liquid crystal 31 in the vicinity of the first alignment film 19
  • FIG. 23B is a schematic diagram illustrating the alignment state of the liquid crystal 31 in the vicinity of the second alignment film 29
  • FIG. 4 is a schematic diagram illustrating an alignment state of a liquid crystal 31 at a central portion in a thickness direction of the liquid crystal layer 30.
  • the portion shown in a columnar shape is the liquid crystal 31, and the liquid crystal 31 is tilted so that the end of the liquid crystal 31 is closer to the second substrate side.
  • the liquid crystal display device of the present embodiment is a VATN type liquid crystal display device having an alignment division structure, similarly to the liquid crystal display devices of the first to eighth embodiments. 23A to 23C, the same reference numerals are given to the same components as those of the liquid crystal display devices of the first embodiment to the eighth embodiment, and detailed description thereof will be omitted.
  • the ultraviolet rays 53 to 56 are applied to the alignment films 19 and 29 from a direction inclined by a predetermined angle from the Z direction.
  • the direction of ultraviolet rays applied to the alignment films 19 and 29 is defined as the direction of the projection optical axis obtained by projecting the optical axis of the ultraviolet rays onto the XY plane, the alignment regions 191, 192 and 192 in the liquid crystal display device of FIGS.
  • the direction of ultraviolet rays incident on 291 and 292 is as follows.
  • the direction of ultraviolet rays irradiated to the first alignment region 191 is the ⁇ Y direction.
  • the direction of the ultraviolet rays applied to the first alignment region 192 is the + Y direction.
  • the direction of ultraviolet rays irradiated to the second alignment region 291 is the ⁇ X direction.
  • the direction of ultraviolet rays irradiated to the second alignment region 292 is the + X direction.
  • a domain 32 is formed in a region where the first alignment region 191 and the second alignment region 291 face each other
  • a domain 33 is formed in a region where the first alignment region 191 and the second alignment region 292 face each other
  • a domain 34 is formed in a region where the first alignment region 192 and the second alignment region 292 face each other
  • a domain 35 is formed in a region where the first alignment region 192 and the second alignment region 291 face each other.
  • the shape of the dark line is a shape symmetrical to the shape shown in FIG. 14A and the Y axis (reverse swirl shape).
  • the pretilt directions of the liquid crystal 31 at the center in the layer thickness direction of the liquid crystal layer 30 are different from each other.
  • the change in the alignment state of the liquid crystal 31 occurs in a plane including the axis that forms 45 ° with the X axis and the Z axis.
  • the tilt directions of the liquid crystal 31 are opposite to each other across a straight line that passes through the center of the pixel electrode and is parallel to the Z axis.
  • the tilt direction of the liquid crystal 31 is opposite to each other across a straight line passing through the center of the pixel electrode and parallel to the Z axis.
  • FIG. 24 is a schematic diagram showing a twelfth embodiment of an active matrix liquid crystal display device driven by a counter driving method.
  • FIG. 24 is an enlarged plan view showing two display elements P of the liquid crystal display device.
  • the liquid crystal display device of FIG. 24 uses alignment regulating structures 90 and 91 instead of photo-alignment for forming a multi-domain structure.
  • FIG. 24 only the alignment regulating structures 90 and 91, the pixel electrode 92, and the second wiring layer 75 of the data bus line are shown, and the thin film transistor, the gate bus line, the reference bus line, the first wiring layer of the data bus line, etc. The other components are not shown.
  • MVA multi-domain vertical alignment mode
  • the liquid crystal 31 having negative dielectric anisotropy is vertically aligned, and the liquid crystal alignment azimuth at the time of voltage application is controlled to a plurality of directions by the alignment regulating structure.
  • the alignment regulating structures 90 and 91 are provided, the alignment film need not be subjected to alignment treatment such as rubbing.
  • Alignment regulating structures 90 and 91 are provided on the first substrate and the second substrate, respectively.
  • a bank linear protrusion
  • a cutout is provided on an electrode (pixel electrode, data bus line).
  • first linear protrusions (first alignment regulating structures) 90 that are bent in a “U” shape are formed on the first substrate, and the first linear protrusions 90 are formed on the second substrate.
  • the second linear protrusion 91 (second alignment regulating structure) 91 is formed without being parallel to the substrate, but the alignment regulating structure is formed on at least one of the first substrate and the second substrate.
  • the pixel electrode 92 is formed in a shape that is bent in a “U” shape in accordance with the pattern of the alignment regulating structure, and the first conductive layer of the data bus line formed on the second substrate side is also the pixel electrode 92. It is formed in a shape that is bent in a “shape” according to the pattern.
  • the first linear protrusions 90 and the second linear protrusions 91 are alternately arranged with their positions shifted.
  • the alignment of the liquid crystal 31 is defined by the alignment regulating force in the oblique direction generated by the two linear protrusions 90 and 91, and alignment division in four directions A, B, C, and D shown in FIG. 24 is performed.
  • the domain boundary (not shown) is formed at a position overlapping the alignment regulating structures 90 and 91, and a dark line is generated at the domain boundary.
  • a second conductive layer 75 of the data bus line is formed at the domain boundary so as to overlap the dark line.
  • the alignment regulating structures 90 and 91 are used for forming the multi-domain structure, and the second wiring layer 75 of the data bus line is formed at a position overlapping the alignment regulating structures 90 and 91.
  • the pixel electrode 92, the first conductive layer of the data bus line, and the second conductive layer 75 of the data bus line are formed in a " ⁇ " shape according to the shape of the alignment regulating structures 90 and 91. Except for this point, it is the same as the liquid crystal display device of the first embodiment.
  • FIG. 25 is a schematic diagram showing a thirteenth embodiment of an active matrix liquid crystal display device driven by a counter driving method.
  • FIG. 25 is an enlarged plan view showing one display element P of the liquid crystal display device.
  • the liquid crystal display device of FIG. 25 uses an alignment maintaining layer 95 instead of photo-alignment for forming a multi-domain structure.
  • FIG. 25 only the alignment maintaining layer 95, the pixel electrode 93, and the second wiring layer 76 of the data bus line are illustrated, and other configurations such as a thin film transistor, a gate bus line, a reference bus line, and a first wiring layer of the data bus line are illustrated. Illustration of elements is omitted.
  • the liquid crystal display device shown in FIG. 25 is a so-called Polymer Stabilization Alignment (hereinafter abbreviated as PSA).
  • PSA Polymer Stabilization Alignment
  • a liquid crystal composition in which a monomer is mixed with liquid crystal 31 is sealed between a first substrate and a second substrate, and a voltage is applied between the first substrate and the second substrate.
  • the alignment orientation layer 95 obtained by polymerizing the monomers in a state where the liquid crystal 31 is tilted to polymerize the liquid crystal orientation orientation during voltage application is controlled to a plurality of orientations.
  • the alignment maintaining layer 95 since the alignment maintaining layer 95 is provided, the alignment film does not have to be subjected to alignment treatment such as rubbing.
  • the pixel electrode 93 includes a cross-shaped trunk portion 93a and a plurality of stripe-shaped branch portions 93b branched radially from the trunk portion 93a.
  • One display element P is divided into four regions by a trunk portion 93a formed in a cross shape.
  • the plurality of branch portions 93b formed in each region are arranged in parallel to each other.
  • the liquid crystal 31 is aligned in a direction parallel to the branch portion 93b by an oblique electric field generated at the edge portion of the fine stripe pattern of the branch portion 93b.
  • the alignment sustaining layer 95 acts to maintain this alignment state even after the voltage is removed.
  • the orientation direction by the oblique electric field is parallel to the branch portions 93b arranged in a stripe shape and is directed to the trunk portion 93a.
  • alignment division is performed in the four directions A, B, C, and D in the drawing, and dark lines are generated at the boundary 36 of the domain.
  • a second conductive layer 76 of the data bus line is formed in a cross shape at the domain boundary 36 so as to overlap the dark line.
  • the alignment maintaining layer 95 is used to form a multi-domain structure
  • the shape of the pixel electrode 93 includes a trunk portion 93a and a branch portion 93b
  • the second wiring layer of the data bus line is used.
  • the liquid crystal display device of the first embodiment is the same as the liquid crystal display device of the first embodiment except that 76 is formed in a cross shape at a position overlapping the trunk portion 93a.
  • the present invention can be widely used in the technical field of display devices that perform image display.
  • the present invention can be applied to a direct-view liquid crystal television, a liquid crystal display unit of a portable information terminal, a light valve (liquid crystal engine) of a liquid crystal projector that displays an image on a screen, and the like.
  • the present invention can be applied not only to a transmission type but also to a reflection type liquid crystal display device.
  • Second substrate 11 Pixel electrode 10 First alignment film 20 Second substrate 22 Data bus line 23 Second conductive layer 24 First conductive layer 25 Data Bus line 26 Second conductive layer 26a First straight line portion 26b Second straight line portion 26c Third straight line portion 27 Data bus line 28 Second conductive layer 28a First straight line portion 28b Second straight line portion 28c Third straight line portion 29 Second orientation Film 30 Liquid crystal layer 31 Liquid crystal 32, 33, 34, 35 Domain 36 Domain boundary 38 First polarizing plate 38a Transmission axis of first polarizing plate 39 Second polarizing plate 39a Transmission axis of second polarizing plate 51 First alignment region Boundary part 52 Boundary part of the second alignment region 61 Boundary part of the first alignment region 62 Boundary part of the second alignment region 70 Data bus line 71 Second conductive layer 71a 1 straight line portion 71b second straight line portion 71c third straight line portion 75, 76 second conductive layer 80, 81, 82, 83 light absorbing layer 90, 91 alignment

Abstract

 本発明の液晶表示装置は、画素電極が形成された第1基板と、画素電極と対向するデータバスラインが形成された第2基板と、画素電極とデータバスラインとの間に配置された液晶と、を有し、画素電極とデータバスラインとの間に電圧を印加したときに、1つの画素電極の配置領域内に、液晶の配向方向が異なる複数のドメインが形成され、データバスラインは、透明な第1導電層と、第1導電層よりも導電率が高く透過率が低い第2導電層とを積層してなり、第2導電層は、前記ドメインの境界部と重なる位置に形成されていることを特徴とする。

Description

液晶表示装置
 本発明は、液晶表示装置に関する。
 本願は、2010年7月23日に、日本に出願された特願2010-166055号に基づき優先権を主張し、その内容をここに援用する。
 対向駆動方式により駆動されるアクティブマトリクス型の液晶表示装置として、特許文献1に記載の液晶表示装置が知られている。特許文献1の液晶表示装置は、画素電極及び薄膜トランジスタが形成された第1基板上に、薄膜トランジスタと接続されるゲートバスライン及びリファレンスバスラインが形成され、第1基板と対向する第2基板上に、データバスラインとして兼用される透明導電層が形成されたものである。対向駆動方式の液晶表示装置は、ゲートバスラインとデータバスラインとを別々の基板に形成するため、製造歩留まりの向上と開口率の向上を実現することができるとされている。
特開平7-20495号公報
 対向駆動方式の液晶表示装置では、第2基板側にデータバスラインを形成するが、透明導電層のみでデータバスラインを形成しようとすると、電気抵抗が大きくなり、信号遅延の問題が発生する。そのため特許文献1では、データバスラインの電気抵抗を下げるために、データバスラインを、画素電極毎に独立して設けられた複数の透明な第1導電層と、第1導電層同士を接続する低抵抗の第2導電層とにより形成している。
 しかし、第2導電層は通常、金属材料で形成されるため、可視光に対して不透明となる。そのため、第2導電層で形成したデータバスラインの部分は全て遮光領域となり、開口率が低下してしまう。特許文献1では、第2導電層を画素電極の縁に沿って形成しているが、画素電極と部分的に重なる領域が生じており、開口率の低下は避けられない。
 一方、液晶表示装置の視野角を拡大する技術として、液晶の配向方向を1つの画素電極の配置領域内で複数に分割する配向分割構造(マルチドメイン構造)が開発されている。配向分割構造を備えた液晶表示装置では、1つの画素電極の配置領域内に、液晶の配向方向が異なる複数の領域(ドメイン)が形成されるため、広視野角な表示が可能となる。
 特許文献1の液晶表示装置は、STN方式又はTN方式の液晶表示装置である。特許文献1の液晶表示装置は、配向分割構造を備えたものではなく、1つの画素電極の配置領域内には単一のドメインが形成される。特許文献1の液晶表示装置に配向分割構造を適用することはできるが、配向分割構造を備えた液晶表示装置は、ドメインの境界部に配向欠陥が発生する。そのため、特許文献1の液晶表示装置に配向分割構造を適用すると、第2導電層による開口率の低下に加えて、配向欠陥による開口率の低下が発生し、暗い表示となってしまう。
 本発明は、上記事情に鑑みてなされたものであり、明るく広視野角な表示が可能な液晶表示装置を提供することを目的とする。
 本発明の一実施形態に係る液晶表示装置は、画素電極が形成された第1基板と、前記画素電極と対向するデータバスラインが形成された第2基板と、前記画素電極と前記データバスラインとの間に配置された液晶と、を有し、前記画素電極と前記データバスラインとの間に電圧を印加したときに、1つの前記画素電極の配置領域内に、前記液晶の配向方向が異なる複数のドメインが形成され、前記データバスラインは、透明な第1導電層と、前記第1導電層よりも導電率が高く透過率が低い第2導電層とを積層してなり、前記第2導電層は、前記ドメインの境界部と重なる位置に形成されている。
 前記液晶は、誘電異方性が負の液晶であり、前記第1基板の前記液晶側の面には、前記画素電極と前記液晶との間に電圧を印加しない状態で前記液晶を垂直配向させる第1配向膜が形成され、前記第2基板の前記液晶側の面には、前記液晶と前記データバスラインとの間に電圧を印加しない状態で前記液晶を垂直配向させる第2配向膜が形成されていてもよい。
 前記第1基板の一方の側に第1偏光板が設けられ、前記第2基板の一方の側に第2偏光板が設けられ、前記第1偏光板の透過軸と前記第2偏光板の透過軸は互いに直交しており、前記第1配向膜には、1つの前記画素電極の配置領域内に、前記第1偏光板の透過軸と平行若しくは直交する第1方向に前記液晶を傾倒させる2つの第1配向領域が設けられ、前記2つの第1配向領域は、前記第1方向と平行な直線を挟んで前記画素電極の配置領域を2分割するように設けられ、前記2つの第1配向領域における前記液晶の傾倒方向は、前記第1基板の法線と平行な直線を挟んで互いに反対方向であり、前記第2配向膜には、1つの前記画素電極の配置領域内に、前記第1方向と直交する第2方向に前記液晶を傾倒させる2つの第2配向領域が設けられ、前記2つの第2配向領域は、前記第2方向と平行な直線を挟んで前記画素電極の配置領域を2分割するように設けられ、前記2つの第2配向領域における前記液晶の傾倒方向は、前記第2基板の法線と平行な直線を挟んで互いに反対方向であり、前記2つの第1配向領域と前記2つの第2配向領域とが重なって形成される4つの領域によって、4つの前記ドメインが形成されていてもよい。
 前記2つの第1配向領域と前記2つの第2配向領域は、前記第1配向膜と前記第2配向膜に対して光配向処理を行うことにより形成されていてもよい。
 前記複数のドメインは、少なくとも前記第1基板と前記第2基板との一方に配置され、電圧印加時において前記液晶の配向方向を規制する配向規制用構造物により形成されていてもよい。
 前記複数のドメインは、前記液晶にモノマーを混合した液晶組成物を基板間に封止し、基板間に電圧を印加して液晶分子をチルトさせた状態下で、モノマーを重合してポリマー化させた配向維持層により形成されていてもよい。
 前記第1基板には、前記画素電極が前記第1方向及び前記第2方向に複数配列して形成され、前記第2基板には、前記第2方向に延在した前記データバスラインが前記第1方向に複数配列して形成されていてもよい。
 前記第2導電層は、前記第2方向に配列した複数の前記画素電極に跨って前記第2方向に直線状に形成されていてもよい。
 前記第2導電層は、1つの前記画素電極の配置領域内に、前記2つの第1配向領域の境界部と重なる第1直線部又は前記2つの第2配向領域の境界部と重なる第2直線部を有し、隣接する前記画素電極の配置領域内に形成された前記第2導電層同士は、前記画素電極の縁部に発生する配向欠陥の発生領域と重なる第3直線部を介して互いに接続されていてもよい。
 前記第2導電層は、1つの前記画素電極の配置領域内に、前記2つの第1配向領域の境界部と重なる第1直線部と、前記2つの第2配向領域の境界部と重なる第2直線部と、を有していてもよい。
 前記第2導電層は、前記画素電極の縁部に発生する配向欠陥の発生領域と重なる第3直線部を有していてもよい。
 前記第2導電層と前記液晶との間には、黒色の光吸収層が設けられていてもよい。
 前記第2導電層を挟んで前記液晶とは反対側には、黒色の光吸収層が設けられていてもよい。
 本発明によれば、明るく広視野角な表示が可能な液晶表示装置を提供することができる。
第1実施形態の液晶表示装置の画像表示領域の平面図である。 画像表示領域を構成する複数の表示要素の等価回路図である。 1表示要素を拡大して示す概略平面図である。 図3のA-A断面図である。 画素電極とデータバスラインとの間に電圧を印加しないときの1ドメイン内の液晶の配向状態を示す模式図である。 画素電極とデータバスラインとの間に電圧を印加したときの1ドメイン内の液晶の配向状態を示す模式図である。 配向膜の配向処理方向、偏光板の透過軸及び第2導電層の配置を示す図である。 液晶の配向状態を第2基板側から見た模式図であって、第1配向膜近傍の液晶の配向状態を示す模式図である。 液晶の配向状態を第2基板側から見た模式図であって、第2配向膜近傍の液晶の配向状態を示す模式図である。 液晶の配向状態を第2基板側から見た模式図であって、液晶層の層厚方向中央部の液晶の配向状態を示す模式図である。 オン状態における1表示要素内の輝度分布を示す模式図である。 暗線と第2導電層との配置を示す模式図である。 第2実施形態の液晶表示装置の1表示要素を拡大して示す概略平面図である。 暗線と第2導電層との配置を示す模式図である。 第3実施形態の液晶表示装置の配向膜の配向処理方向、偏光板の透過軸及び第2導電層の配置を示す図である。 第4実施形態の液晶表示装置の1表示要素を拡大して示す概略平面図である。 オン状態における1表示要素内の輝度分布の第1形態を示す模式図である。 オン状態における1表示要素内の輝度分布の第2形態を示す模式図である。 暗線と第2導電層との配置を示す模式図である。 第5実施形態の液晶表示装置の1表示要素を拡大して示す概略平面図である。 暗線と第2導電層との配置を示す模式図である。 第6実施形態の液晶表示装置の配向膜の配向処理方向、偏光板の透過軸及び第2導電層の配置を示す図である。 第7実施形態の液晶表示装置の配向膜の配向処理方向、偏光板の透過軸及び第2導電層の配置を示す図である。 第8実施形態の液晶表示装置の配向膜の配向処理方向、偏光板の透過軸及び第2導電層の配置を示す図である。 第9実施形態における液晶の配向状態を第2基板側から見た模式図であって、第1配向膜近傍の液晶の配向状態を示す模式図である。 第9実施形態における液晶の配向状態を第2基板側から見た模式図であって、第2配向膜近傍の液晶の配向状態を示す模式図である。 第9実施形態における液晶の配向状態を第2基板側から見た模式図であって、液晶層の層厚方向中央部の液晶の配向状態を示す模式図である。 第10実施形態における液晶の配向状態を第2基板側から見た模式図であって、第1配向膜近傍の液晶の配向状態を示す模式図である。 第10実施形態における液晶の配向状態を第2基板側から見た模式図であって、第2配向膜近傍の液晶の配向状態を示す模式図である。 第10実施形態における液晶の配向状態を第2基板側から見た模式図であって、液晶層の層厚方向中央部の液晶の配向状態を示す模式図である。 第11実施形態における液晶の配向状態を第2基板側から見た模式図であって、第1配向膜近傍の液晶の配向状態を示す模式図である。 第11実施形態における液晶の配向状態を第2基板側から見た模式図であって、第3配向膜近傍の液晶の配向状態を示す模式図である。 第11実施形態における液晶の配向状態を第2基板側から見た模式図であって、液晶層の層厚方向中央部の液晶の配向状態を示す模式図である。 第12実施形態における液晶の配向規制構造と液晶の配向状態を示す模式図である。 第13実施形態における液晶の配向規制構造と液晶の配向状態を示す模式図である。
(第1の実施形態)
 図1は、対向駆動方式により駆動されるアクティブマトリクス型の液晶表示装置の第1実施形態である液晶表示装置1の画像表示領域の平面図である。液晶表示装置1は、画像表示領域に画像信号に係る画像を表示するものである。
 液晶表示装置1の画像表示領域には、平面視略矩形状を成す複数の画素電極11がX方向及びY方向に配列されている。各画素電極11には、TFT(薄膜トランジスタ)14を介して、ゲートバスライン12及びリファレンスバスライン13が接続されている。ゲートバスライン12及びリファレンスバスライン13は、Y方向に隣接する画素電極11の間隙に沿ってX方向に直線状に延びている。
 画素電極11と対向してデータバスライン22が形成されている。点線22で示す細片は、第2基板上のデータバスライン(透明な第1導電層)を第1基板上の画素電極11に重ねて示すものである。データバスライン22は、Y方向に配列した複数の画素電極11に跨るようにY方向に直線状に延びている。データバスライン22は、画素電極11の配列に合わせて、X方向に複数本形成されている。画素電極11とデータバスライン22が対向する領域が、1表示要素であり、マトリクス状に配置された1表示要素毎に表示が可能となっている。
 図2は、液晶表示装置1の画像表示領域を構成する複数の表示要素Pの等価回路図である。図2では、簡単のため、4表示要素分の等価回路を図示している。
 複数の表示要素Pには、画素電極11とTFT14とがそれぞれ形成されている。TFT14のゲート12aにはゲートバスライン12が接続されている。TFT14のソース16にはリファレンスバスライン13が接続されている。TFT14のドレイン17には画素電極11が接続されている。
 複数のゲートバスライン12に対してゲート電圧G1、G2が所定のタイミングでパルス的に線順次で印加される。TFT14を一定期間だけオンすることにより、リファレンスバスライン13の電圧が所定のタイミングで画素電極11に印加される。複数のデータバスライン22に対して、データ電圧D1,D2が線順次に供給される。画素電極11とデータバスライン22との間に配置された液晶は、画素電極11とデータバスライン22との間の電圧により配向状態が変化する。これにより、液晶を透過する光が変調され、階調表示が行われる。
 図3は、1表示要素Pを拡大して示す概略平面図である。
 表示要素Pには、第1基板上の画素電極11と、画素電極11と平面的に重なる第2基板上のデータバスライン22とが設けられている。データバスライン22は、透明な第1導電層24と、第1導電層24よりも導電率が高い第2導電層23とを有する。
 第1導電層24は、ITO(Indium Tin Oxide;酸化インジウムに錫を添加した化合物)等の透明導電材料からなる。第1導電層24のX方向の幅は画素電極11のX方向の幅と同じかそれよりも大きく形成されている。第1導電層24は、Y方向に配列した複数の画素電極11の全体と重なるように、Y方向に直線状に延びている。液晶層で変調された光は、第1導電層24を透過して観察者に視認される。
 第2導電層23は、第1導電層24よりも透過率が低い導電材料、例えば、Al等の不透明若しくは不透明に近い導電材料からなる。第2導電層23は、データバスライン22の電気抵抗を小さくするための補助配線として機能する。第2導電層23のX方向の幅は画素電極11のX方向の幅よりも小さく形成されている。第2導電層23は、画素電極11の中央部を通って、Y方向に配列した複数の画素電極11と重なるようにY方向の直線状に延びている。
 図4は、図3のA-A断面図である。
 液晶表示装置1は、第1基板10と、該第1基板10と対向配置された第2基板20とを有する。第1基板10と第2基板20との間には、誘電異方性が負のネマチック液晶からなる液晶層30が挟持されている。第1基板10は、ガラスやプラスチック等の透光性の基板からなる。第1基板10の液晶層30側には、図3に示したゲートバスライン12、リファレンスバスライン13及びTFT14を含む回路層18が形成されている。回路層18上に、ITO等の透明導電材料からなる画素電極11が形成されている。画素電極11を覆って、ポリイミド等からなる第1配向膜19が形成されている。
 第2基板20は、ガラスやプラスチック等の透光性の基板からなる。第2基板20の液晶層30側には、カラーフィルタ層21が形成されている。カラーフィルタ層21は、赤色カラーフィルタ21R、緑色カラーフィルタ21G、青色カラーフィルタ21B及びブラックマトリクスBMを含む。ブラックマトリクスBMは、画素電極11の間隙部に対向する位置に格子状に形成されている。カラーフィルタ層21上にデータバスライン22が形成されている。データバスライン22は、カラーフィルタ層21側から順に第2導電層23と第1導電層24とを積層することにより形成されている。データバスライン22を覆って、ポリイミド等からなる第2配向膜29が形成されている。
 第1基板10を挟んで液晶層30と反対側には、第1偏光板38が配置されている。第2基板20を挟んで液晶層30とは反対側には、第2偏光板39が配置されている。第1偏光板38の透過軸と第2偏光板39の透過軸は、互いに直交している。第1偏光板38を挟んで液晶層30とは反対側にはバックライト装置40が配置されている。
 第1配向膜19と第2配向膜29は、液晶を配向膜の表面に対して垂直方向に配向させる垂直配向膜である。第1配向膜19と第2配向膜29は、画素電極11とデータバスライン22の間に電圧を印加しない状態で、液晶に対して数度のプレチルト角を付与する。第1配向膜19と第2配向膜29には、画素電極11とデータバスライン22の間に電圧を印加しない状態で、液晶を異なる方向にプレチルトさせる複数の領域が設けられており、これにより、液晶層30内に液晶の配向状態の異なる複数のドメイン(マルチドメイン)が形成されるようになっている。図4の例では、第1配向膜19に設けられた互いにプレチルト方向が異なる2つの第1配向領域191,192と、第2配向膜29に設けられた互いにプレチルト方向が異なる2つの第2配向領域291,292によって、1表示要素内(1画素電極11の配置領域内)に4つのドメインが形成されるようになっている。
 「プレチルト」とは、液晶の配向方向(液晶の分子長軸方向)が配向膜の表面に対して垂直な方向(Z方向)から若干水平な方向(XY平面と平行な方向)に傾いた状態をいう。「プレチルト角」とは、液晶の分子長軸とZ軸との成す角度をいう。「プレチルト方向」とは、液晶の分子長軸と平行な方向であって配向膜に近い側から遠い側に向く方向をXY平面に投影した方向をいう。
 液晶にプレチルト角を付与する方法としては、配向膜にラビング処理を行う方法や、配向膜に光配向処理を行う方法などがある。配向膜を斜方蒸着で形成しても、液晶にプレチルト角を付与することができる。光配向処理は簡便な方法で容易にマルチドメイン構造を実現できる。そのため、液晶表示装置1では光配向処理により第1配向膜19と第2配向膜29に配向処理を行うものとしている。勿論、このような配向処理方法は一例であって、第1配向膜19及び第2配向膜29の配向処理方法はこれに限定されない。
 図5Aおよび図5Bは、1つのドメインLD内の液晶31の配向状態を示す模式図である。図5Aは、画素電極とデータバスラインとの間に電圧を印加しない状態の液晶31の配向状態(オフ状態)を示す模式図であり、図5Bは、画素電極とデータバスラインとの間に電圧を印加したときの液晶31の配向状態(オン状態)を示す模式図である。
 図5Aに示すように、第1配向膜19と第2配向膜29は、配向膜近傍の液晶31をXY平面に対して角度θ(<90°)をなす方向に配向させる。第1配向膜19近傍の液晶31のプレチルト方向19aと第2配向膜29近傍の液晶31のプレチルト方向29aとは互いに直交している。液晶30は、第1配向膜19と第2配向膜29との間で90°ツイストするVATN(Vertical Alignment Twisted Nematic)モードをとる。表示に寄与する液晶層中央部の液晶31は、概ね垂直配向しており、そのプレチルト方向は、第1配向膜19のプレチルト方向19aと45°をなす方向である。
 図5Bに示すように、画素電極とデータバスラインとの間に電圧を印加すると、液晶31は印加電圧に応じて配向膜の膜面に平行な方向に配向され、液晶層30を透過する光に対して複屈折性を示す。第1配向膜19近傍の液晶31と第2配向膜29近傍の液晶31は、配向膜のアンカリング効果によって、オン状態でも配向状態は殆ど変化しない。一方、液晶層30の中央部の液晶31は、オン状態において、配向膜の膜面に垂直な方向から膜面に平行な方向に配向状態が変化する。配向状態の変化は、Z方向と第1配向膜19のプレチルト方向19aと45°をなす方向とを含む平面内で生じる。
 図6は、1表示要素内における配向膜19,29の配向処理方向、偏光板38,39の透過軸及びデータバスラインの第2導電層23の配置関係を示す模式図である。
 第1偏光板38の透過軸38aはY軸と平行であり、第2偏光板39の透過軸39aはX軸と平行である。データバスラインの第2導電層23の延在方向はY軸と平行である。
 第1配向膜19は、1つの表示要素内に、Y方向に液晶を傾倒させる2つの第1配向領域191,192を有する。2つの第1配向領域191,192は、Y軸と平行な直線51を挟んで1表示要素を2分割するように設けられている。2つの第1配向領域191,192における液晶の傾倒方向は、Z軸と平行な直線を挟んで互いに反対方向である。
 第2配向膜29は、1つの表示要素内に、X方向に液晶を傾倒させる2つの第2配向領域291,292を有する。2つの第2配向領域291,292は、X軸と平行な直線52を挟んで1表示要素を2分割するように設けられている。2つの第2配向領域291,292における液晶の傾倒方向は、Z軸と平行な直線を挟んで互いに反対方向である。
 第1配向領域191と第2配向領域291とが重なる領域、第1配向領域192と第2配向領域291とが重なる領域、第1配向領域191と第2配向領域292とが重なる領域、及び、第1配向領域192と第2配向領域292とが重なる領域によって、4つのドメインが形成される。4つのドメインの境界部は、直線51及び直線52と重なる。
 データバスラインの第2導電層23は、第1配向領域191と第1配向領域192との境界部51と重なるように配置されている。したがって、第2導電層23は、4つのドメインの境界部の少なくとも一部と重なる。
 図6では、第1偏光板38の透過軸38aはY軸と平行とされ、第2偏光板39の透過軸39aはX軸と平行とされているが、第1偏光板38の透過軸38aはX軸と平行とされ、第2偏光板39の透過軸39aはY軸と平行とされていてもよい。
 第1配向膜19及び第2配向膜29は、光配向膜材料を含む溶液を基板に塗布した後、例えば180℃で60分間焼成することにより形成される。光配向膜材料としては公知の材料を用いることができる。4-カルコン基、4′-カルコン基、クマリン基、シンナモイル基等の感光性基を含むポリイミドが好適である。これらの感光性基は、紫外線照射によって架橋反応(二量化反応を含む)、異性化反応、光再配向等を生じ、光分解型の光配向膜材料に比べてプレチルト角のばらつきを小さくすることができる。
 光配向処理は、配向膜19,29に対して斜めに紫外線を照射する露光装置を用いて行われる。第1配向領域191,192では、Z方向に対して所定の角度θだけ傾斜した方向から紫外線が照射される。第1配向領域191と第1配向領域192に照射される紫外線の向きは、それぞれ照射される紫外線の光軸をXY平面に投影した場合に、投影した光軸がY軸に平行で且つ互いに略180°異なる向きである。第2配向領域291,292では、Z方向に対して所定の角度θだけ傾斜した方向から紫外線が照射される。第2配向領域291と第1配向領域292に照射される紫外線の向きは、それぞれ照射される紫外線の光軸をXY平面に投影した場合に、投影した光軸がX軸に平行で且つ互いに略180°異なる向きである。
 第1配向領域191,192に入射する紫外線の入射角と第2配向領域291,292に入射する紫外線の入射角とは同じでも良く、異なっていてもよい。第1配向領域191に入射する紫外線の入射角と第1配向領域192に入射する紫外線の入射角とは同じでも良く、異なっていてもよい。第2配向領域291に入射する紫外線の入射角と第2配向領域292に入射する紫外線の入射角とは同じでも良く、異なっていてもよい。
 露光装置は、フォトマスクを介して配向膜の特定領域に選択的に紫外線を照射するものであればよい。大型の液晶表示装置に光配向処理を行う場合には、基板が大型化することから、スリット状の開口部が形成された小型のフォトマスクを用いて、フォトマスク及び紫外線照射用光源を基板に対してスキャン(相対移動)することが望ましい。例えば、第1配向領域192を遮光するフォトマスクを用いて第1配向領域191に紫外線53を照射しつつ+Y方向に紫外線照射用光源をスキャンし、その後、第1配向領域191を遮光するフォトマスクを用いて第1配向領域192に紫外線54を照射しつつ-Y方向に紫外線照射用光源をスキャンする。また、第2配向領域292を遮光するフォトマスクを用いて第2配向領域291に紫外線55を照射しつつ+X方向に紫外線照射用光源をスキャンし、その後、第2配向領域291を遮光するフォトマスクを用いて第2配向領域292に紫外線56を照射しつつ-X方向に紫外線照射用光源をスキャンする。
 紫外線照射用光源と基板とを相対移動させる場合には、基板上に形成されている既存のパターン、例えば、ゲートバスライン、リファレンスバスライン、ブラックマトリクス、データバスライン(第1導電層、第2導電層)、画素電極等のパターンと、フォトマスクに設けられる位置決め用のマークとをカメラで撮影し、撮影された画像を用いて、紫外線の照射位置を制御することが望ましい。
 図7A~7Cは、液晶31の配向状態を第2基板側から見た模式図である。図7Aは、第1配向膜19近傍の液晶31の配向状態を示す模式図である。図7Bは、第2配向膜29近傍の液晶31の配向状態を示す模式図である。図7Cは、液晶層30の層厚方向中央部の液晶31の配向状態を示す模式図である。図中、円柱状に示された部分が液晶31であり、液晶31の端部が描かれている方が第2基板側に近付くように液晶31がチルトしていることを示している。
 紫外線53~56の照射方向と液晶31のプレチルト方向とは相関がある。紫外線53,54の照射方向が1表示要素内で異なることによって、第1配向膜19には、プレチルト方向がY方向に平行で且つ反平行な2つの第1配向領域191,192が形成されている。紫外線55,56の照射方向が1表示要素内で異なることによって、第2配向膜29には、プレチルト方向がX方向に平行で且つ互いに反平行な2つの第1配向領域191,192が形成されている。
 配向膜19,29に照射される紫外線53~56の向きを、紫外線53~56の光軸をXY平面に投影した投影光軸の向きと定義すると、第1配向領域191に照射される紫外線の向きは、+Y方向であり、第1配向領域192に照射される紫外線の向きは、-Y方向である。第2配向領域291に照射される紫外線の向きは、+X方向であり、第2配向領域292に照射される紫外線の向きは、-X方向である。これにより、第1配向領域191と第1配向膜192における液晶31の傾倒方向は、Z軸と平行な直線を挟んで互いに反対方向となり、第2配向領域291と第2配向膜292における液晶31の傾倒方向は、Z軸と平行な直線を挟んで互いに反対方向となっている。
 この結果、第1配向領域191と第2配向領域291とが対向する領域にドメイン32が形成され、第1配向領域191と第2配向領域292とが対向する領域にドメイン33が形成され、第1配向領域192と第2配向領域292とが対向する領域にドメイン34が形成され、第1配向領域192と第2配向領域291とが対向する領域にドメイン35が形成されている。
 ドメイン32~35では、液晶層30の層厚方向中央部の液晶31のプレチルト方向が互いに異なっている。ドメイン32~35では、液晶31の配向状態の変化は、X軸と45°をなす軸とZ軸とを含む平面内で生じる。ドメイン32とドメイン34では、液晶31の傾倒方向は、画素電極の中心を通りZ軸と平行な直線を挟んで互いに反対方向である。ドメイン33とドメイン35では、液晶31の傾倒方向は、画素電極の中心を通りZ軸と平行な直線を挟んで互いに反対方向である。
 図8は、オン状態における1表示要素内の輝度分布を示す模式図である。
 1表示要素内には、4つのドメイン32~35が形成されている。ドメイン32とドメイン35との境界部36及びドメイン33とドメイン34との境界部36は、図7Aに示した2つの第1配向領域191,192の境界部と一致する。ドメイン32とドメイン33との境界部36及びドメイン35とドメイン34との境界部36は、図7Bに示した2つの第2配向領域291,292の境界部と一致する。
 1表示要素内には、配向欠陥によって生じたまんじ型の暗線37が形成されている。暗線37は、Y軸と平行なドメイン境界部36に発生する直線部37aと、X軸と平行なドメイン境界部36に発生する直線部37bと、画素電極の縁部に発生する直線部37cとを有する。暗線37は、ドメイン境界部の配向の乱れや画素電極周縁部における斜め電界の影響などによって生じる配向欠陥に起因するものであり、その位置は固定されている。
 図9は、暗線37とデータバスラインの第2導電層23との配置関係を示す模式図である。図9は、オン状態における2表示要素分の輝度分布にデータバスラインの第2導電層23を重ねて表示している。
 図6に示したように、第2導電層23は、第1配向領域191と第1配向領域192との境界部51と重なるように配置されている。そのため、第2導電層23は、Y軸と平行なドメイン境界部36と重なる。第2導電層23は不透明な導電材料で形成されているため、第2導電層23の配置領域は遮光領域となる。しかし、暗線37は表示に寄与しない領域であるので、第2導電層23が暗線37と重なる位置に配置されていれば、開口率が大きく低下することはない。よって、マルチドメイン(配向分割)による広視野角化を実現しつつ、明るい表示が可能となる。
(第2の実施形態)
 図10は、対向駆動方式により駆動されるアクティブマトリクス型の液晶表示装置の第2実施形態である液晶表示装置2の1表示要素Pを拡大して示す概略平面図である。液晶表示装置2は、第1実施形態の液晶表示装置1と同様に、配向分割構造を有するVATN型の液晶表示装置である。液晶表示装置2において、第1実施形態の液晶表示装置1と共通の構成要素については、同じ符号を付し、詳細な説明は省略する。
 液晶表示装置2において第1実施形態の液晶表示装置1と異なる点は、データバスライン25の第2導電層26の形状である。液晶表示装置1の第2導電層23はY方向に直線状に形成されていたが、液晶表示装置2の第2導電層26は、Y方向に延びる第1直線部26aと、X方向に延びる第2直線部26bと、画素電極11の周縁部に沿って延びる第3直線部26cとを有する屈曲形状とされている。
 第1直線部26aは、図6に示した第1配向領域191と第1配向領域192との境界部51と重なるように配置されている。第2直線部26bは、図6に示した第2配向領域291と第2配向領域292との境界部52と重なるように配置されている。第3直線部26cは、画素電極の周縁部に発生する配向欠陥の発生領域と重なるように配置されている。
 図11は、暗線37とデータバスラインの第2導電層26との配置関係を示す模式図である。図11は、オン状態における2表示要素分の輝度分布にデータバスラインの第2導電層26を重ねて表示している。
 第2導電層26の第1直線部26aは、第1配向領域191と第1配向領域192との境界部51と重なるように配置されている。そのため、第1直線部26aは、暗線37の直線部37aと重なる。第2導電層26の第2直線部26bは、第2配向領域291と第2配向領域292との境界部52と重なるように配置されている。そのため、第2直線部26bは、暗線37の直線部37bと重なる。第2導電層26の第3直線部26cは、画素電極の縁部に発生する配向欠陥の発生領域と重なるように配置されている。そのため、第3直線部26cは、暗線37の直線部37cと重なる。
 第2導電層26は不透明な導電材料で形成されている。そのため、第2導電層26の配置領域は遮光領域となる。しかし、暗線37は表示に寄与しない領域であるので、第2導電層26が暗線37と重なる位置に配置されていれば、開口率が大きく低下することはない。よって、明るい表示が可能となる。
(第3の実施形態)
 図12は、対向駆動方式により駆動されるアクティブマトリクス型の液晶表示装置の第3実施形態である液晶表示装置3の1表示要素内の配向膜19,29の配向処理方向、偏光板38,39の透過軸38a,39a及びデータバスラインの第2導電層23の配置関係を示す模式図である。液晶表示装置3は、第1実施形態の液晶表示装置1と同様に、配向分割構造を有するVATN型の液晶表示装置である。液晶表示装置3において、第1実施形態の液晶表示装置1と共通の構成要素については、同じ符号を付し、詳細な説明は省略する。
 液晶表示装置3において第1実施形態の液晶表示装置1と異なる点は、配向膜19,29の配向処理方向である。液晶表示装置1では、第1配向領域191,192の配向処理方向はY方向と平行であり、第2配向領域291,292の配向処理方向はX方向と平行であったが、液晶表示装置3では、第1配向領域193,194の配向処理方向はX方向と平行であり、第2配向領域293,294の配向処理方向はY方向と平行である。
 第1配向膜19は、1つの表示要素内に、X方向に液晶を傾倒させる2つの第1配向領域193,194を有する。2つの第1配向領域193,194は、X軸と平行な直線61を挟んで1表示要素を2分割するように設けられている。2つの第1配向領域193,194における液晶の傾倒方向は、Z軸と平行な直線を挟んで互いに反対方向である。
 第2配向膜29は、1つの表示要素内に、Y方向に液晶を傾倒させる2つの第2配向領域293,294を有する。2つの第2配向領域293,294は、Y軸と平行な直線62を挟んで1表示要素を2分割するように設けられている。2つの第2配向領域293,294における液晶の傾倒方向は、Z軸と平行な直線を挟んで互いに反対方向である。
 第1配向領域193と第2配向領域293とが重なる領域、第1配向領域194と第2配向領域293とが重なる領域、第1配向領域193と第2配向領域294とが重なる領域、及び、第1配向領域194と第2配向領域294とが重なる領域によって、4つのドメインが形成される。4つのドメインの境界部は、直線61及び直線62と重なる。
 データバスラインの第2導電層23は、第2配向領域293と第2配向領域294との境界部62と重なるように配置されている。したがって、第2導電層23は、4つのドメインの境界部の少なくとも一部と重なる。
 液晶表示装置3では、同一の第2基板上に形成される第2導電層23の延在方向と第2配向膜29の2つの第2配向領域293,294の境界部62とが重なるように配置されている。そのため、第2配向膜29に対して配向処理を行う場合に、第2配向領域293,294の境界部62を第2導電層23と重なる位置に正確に位置決めすることができる。
 例えば、第1実施形態の液晶表示装置1のように、第1基板10上に形成される第1配向膜19の2つの第1配向領域191,192の境界部51と、第2基板20上に形成される第2導電層23とを重ねる場合、両者の位置ズレの精度は、第1基板10と第2基板20とを基板貼り合せ装置で貼り合わせる際の貼り合せ精度によって決まる。それに対して、第3実施形態の液晶表示装置3では、両者の位置ズレの精度は、露光装置におけるフォトマスクのアライメント精度によって決まる。露光装置におけるフォトマスクのアライメント精度は、一般的に基板貼り合せ装置の貼り合せ精度よりも高いことから、第2導電層23とドメイン境界部との位置ズレによって生じる開口率の低下は少なくなり、明るい表示が可能となる。
(第4の実施形態)
 図13は、対向駆動方式により駆動されるアクティブマトリクス型の液晶表示装置の第4実施形態である液晶表示装置4の1表示要素Pを拡大して示す概略平面図である。液晶表示装置4は、第1実施形態の液晶表示装置1と同様に、配向分割構造を有するVATN型の液晶表示装置である。液晶表示装置4において、第1実施形態の液晶表示装置1と共通の構成要素については、同じ符号を付し、詳細な説明は省略する。
 液晶表示装置4において第1実施形態の液晶表示装置1と異なる点は、データバスライン27の第2導電層28の形状である。液晶表示装置1の第2導電層23はY方向に直線状に形成されていたが、液晶表示装置4の第2導電層28は、Y方向に延びる第1直線部28aと、X方向に延びる第2直線部28bと、画素電極11の周縁部に沿って延びる第3直線部28cとを有する屈曲形状とされている。
 第1直線部28aは、図6に示した第1配向領域191と第1配向領域192との境界部51と重なるように配置されている。第2直線部28bは、図6に示した第2配向領域291と第2配向領域292との境界部52と重なるように配置されている。第3直線部28cは、画素電極の周縁部に発生する配向欠陥の発生領域と重なるように配置されている。
 図14A,14Bは、オン状態における1表示要素内の輝度分布を示す模式図である。図14Aは、輝度分布の第1形態を示す模式図であり、図14Bは、輝度分布の第2形態を示す模式図である。第1形態の輝度分布と第2形態の輝度分布は、同一画像表示領域の異なる表示要素に発生する。
 図14Aの輝度分布では、1表示要素内に、配向欠陥によって生じたまんじ型の暗線37が形成されている。暗線37は、Y軸と平行なドメイン境界部36に発生する直線部37aと、X軸と平行なドメイン境界部36に発生する直線部37bと、画素電極の縁部に発生する直線部37cとを有する。暗線37は、ドメイン境界部の配向の乱れや画素電極周縁部における斜め電界の影響などによって生じる配向欠陥に起因するものであり、その位置は固定されている。
 図14Bの輝度分布では、1表示要素内に、配向欠陥によって生じた「8」の字型の暗線37が形成されている。図14Bの輝度分布は、図22で説明する配向分割の構造を適用した場合に生じるものである。暗線37は、Y軸と平行なドメイン境界部36に発生する直線部37aと、X軸と平行なドメイン境界部36に発生する直線部37bと、画素電極の縁部に発生する直線部37cとを有する。暗線37は、ドメイン境界部の配向の乱れや画素電極周縁部における斜め電界の影響などによって生じる配向欠陥に起因するものであり、その位置は固定されている。
 図15は、暗線37とデータバスラインの第2導電層28との配置関係を示す模式図である。図15は、図14Aに示した第1形態の輝度分布と図14Bに示した第2形態の輝度分布を示す2表示要素分の輝度分布にデータバスラインの第2導電層28を重ねて表示している。
 第2導電層28の第1直線部28aは、第1配向領域191と第1配向領域192との境界部51と重なるように配置されている。そのため、第1直線部28aは、暗線37の直線部37aと重なる。第2導電層28の第2直線部28bは、第2配向領域291と第2配向領域292との境界部52と重なるように配置されている。そのため、第2直線部28bは、暗線37の直線部37bと重なる。第2導電層28の第3直線部28cは、画素電極の縁部に発生する配向欠陥の発生領域と重なるように配置されている。そのため、第3直線部28cは、暗線37の直線部37cと重なる。
 第2導電層28は不透明な導電材料で形成されている。そのため、第2導電層28の配置領域は遮光領域となる。しかし、暗線37は表示に寄与しない領域であるので、第2導電層28が暗線37と重なる位置に配置されていれば、開口率が大きく低下することはない。よって、明るい表示が可能となる。
(第5の実施形態)
 図16は、対向駆動方式により駆動されるアクティブマトリクス型の液晶表示装置の第5実施形態である液晶表示装置5の1表示要素Pを拡大して示す概略平面図である。液晶表示装置5は、第1実施形態の液晶表示装置1と同様に、配向分割構造を有するVATN型の液晶表示装置である。液晶表示装置5において、第1実施形態の液晶表示装置1と共通の構成要素については、同じ符号を付し、詳細な説明は省略する。
 液晶表示装置5において第1実施形態の液晶表示装置1と異なる点は、データバスライン70の第2導電層71の形状である。液晶表示装置1の第2導電層23はY方向に直線状に形成されていたが、液晶表示装置5の第2導電層71は、Y方向に延びる第1直線部71aと、X方向に延びる第2直線部71bと、画素電極11の周縁部に沿って延びる第3直線部71cとを有する屈曲形状とされている。また、液晶表示装置1の第2導電層23は、複数の表示要素Pに跨って形成されていたが、液晶表示装置5の第2導電層71は、1表示要素P毎に分離して形成されており、各表示要素Pの第2導電層71が第1導電層24を介して電気的に接続されている。
 第1直線部71aは、図6に示した第1配向領域191と第1配向領域192との境界部51と重なるように配置されている。第2直線部71bは、図6に示した第2配向領域291と第2配向領域292との境界部52と重なるように配置されている。第3直線部71cは、画素電極の周縁部に発生する配向欠陥の発生領域と重なるように配置されている。
 図17は、暗線37とデータバスラインの第2導電層71との配置関係を示す模式図である。図17は、オン状態における2表示要素分の輝度分布にデータバスラインの第2導電層71を重ねて表示している。
 第2導電層71の第1直線部71aは、第1配向領域191と第1配向領域192との境界部51と重なるように配置されている。そのため、第1直線部71aは、暗線37の直線部37aと重なる。第2導電層71の第2直線部71bは、第2配向領域291と第2配向領域292との境界部52と重なるように配置されている。そのため、第2直線部71bは、暗線37の直線部37bと重なる。第2導電層71の第3直線部71cは、画素電極の縁部に発生する配向欠陥の発生領域と重なるように配置されている。そのため、第3直線部71cは、暗線37の直線部37cと重なる。
 第2導電層71は不透明な導電材料で形成されている。そのため、第2導電層71の配置領域は遮光領域となる。しかし、暗線37は表示に寄与しない領域であるので、第2導電層71が暗線37と重なる位置に配置されていれば、開口率が大きく低下することはない。よって、明るい表示が可能となる。
(第6の実施形態)
 図18は、対向駆動方式により駆動されるアクティブマトリクス型の液晶表示装置の第6実施形態である液晶表示装置6の1表示要素内における配向膜19,29の配向処理方向、偏光板38,39の透過軸38a,39a及びデータバスラインの第2導電層23の配置関係を示す模式図である。液晶表示装置6は、第1実施形態の液晶表示装置1と同様に、配向分割構造を有するVATN型の液晶表示装置である。液晶表示装置6において、第1実施形態の液晶表示装置1と共通の構成要素については、同じ符号を付し、詳細な説明は省略する。
 液晶表示装置6において第1実施形態の液晶表示装置1と異なる点は、第2導電層23と液晶層との間に黒色の光吸収層80が設けられている点である。図4に示したように、液晶表示装置1では、第2導電層23の表面を覆って第2配向膜29が形成されていたが、液晶表示装置6では、第2導電層23の表面に黒色の光吸収層80が形成されている。第2配向膜29は、光吸収層80の表面に形成されている。
 第2導電層23は、Al等の金属材料で形成される場合がある。金属材料で形成された第2導電層23は可視光の反射率が高いため、第2導電層23の液晶層側の面に何らの処理もしないと、第2導電層23が液晶層で変調された変調光の一部を反射する場合がある。第2導電層23で反射された変調光は、迷光となって、コントラストを低下させる惧れがある。そのため、液晶表示装置6では、液晶層を透過して第2導電層23に入射した変調光を光吸収層80で吸収し、コントラストの低下を抑制している。
(第7の実施形態)
 図19は、対向駆動方式により駆動されるアクティブマトリクス型の液晶表示装置の第7実施形態である液晶表示装置7の1表示要素内における配向膜19,29の配向処理方向、偏光板38,39の透過軸38a,39a及びデータバスラインの第2導電層23の配置関係を示す模式図である。液晶表示装置7は、第1実施形態の液晶表示装置1と同様に、配向分割構造を有するVATN型の液晶表示装置である。液晶表示装置7において、第1実施形態の液晶表示装置1と共通の構成要素については、同じ符号を付し、詳細な説明は省略する。
 液晶表示装置7において第1実施形態の液晶表示装置1と異なる点は、第2導電層23を挟んで液晶層とは反対側に黒色の光吸収層81が設けられている点である。図4に示したように、液晶表示装置1では、第2導電層23は第1導電層24の表面に形成されていたが、液晶表示装置7では、第1導電層の表面に光吸収層81が形成され、光吸収層81の表面に第2導電層23が形成されている。
 第2導電層23は、Al等の金属材料で形成される場合がある。金属材料で形成された第2導電層23は可視光の反射率が高いため、第2導電層23の第2偏光板39側の面に何らの処理もしないと、第2導電層23が第2偏光板39から入射する外光の一部を反射する場合がある。第2導電層23で反射された外光は、液晶層で変調された変調光と重畳されて、コントラストを低下させる惧れがある。そのため、液晶表示装置7では、第2偏光板39を透過して第2基板側から入射した外光を光吸収層81で吸収し、コントラストの低下を抑制している。
 図19では、光吸収層81は第2導電層の裏面、すなわち、データバスラインの第1導電層24と第2導電層23との間に形成されているが、光吸収層81の形成位置はこれに限られない。光吸収層81は、図4に示したデータバスライン22の第1導電層24と第2基板20との間に形成されてもよい。例えば、光吸収層81はカラーフィルタ層21のブラックマトリクスBMと同時に形成されてもよい。この場合、光吸収層81を形成する工程を新たに追加する必要がなくなり、製造プロセスが簡略化される。
(第8の実施形態)
 図20は、対向駆動方式により駆動されるアクティブマトリクス型の液晶表示装置の第8実施形態である液晶表示装置8の1表示要素内における配向膜19,29の配向処理方向、偏光板38,39の透過軸38a,39a及びデータバスラインの第2導電層23の配置関係を示す模式図である。液晶表示装置8は、第1実施形態の液晶表示装置1と同様に、配向分割構造を有するVATN型の液晶表示装置である。液晶表示装置8において、第1実施形態の液晶表示装置1と共通の構成要素については、同じ符号を付し、詳細な説明は省略する。
 液晶表示装置8において第1実施形態の液晶表示装置1と異なる点は、第2導電層23と液晶層との間に黒色の光吸収層83が設けられ、第2導電層23を挟んで液晶層とは反対側に黒色の光吸収層82が設けられている点である。図4に示したように、液晶表示装置1では、第1導電層24の表面に第2導電層23が形成され、第2導電層23の表面を覆って第2配向膜29が形成されていたが、液晶表示装置8では、第1導電層の表面に光吸収層82が形成され、光吸収層82の表面に第2導電層23が形成され、第2導電層23の表面に光吸収層83が形成され、光吸収層83の表面に第2配向膜29が形成されている。
 第2導電層23は、Al等の金属材料で形成される場合がある。金属材料で形成された第2導電層23は可視光の反射率が高いため、第2導電層23の第2偏光板39側の面に何らの処理もしないと、第2導電層23が第2偏光板39から入射する外光の一部を反射する場合がある。第2導電層23で反射された外光は、液晶層で変調された変調光と重畳されて、コントラストを低下させる惧れがある。また、第2導電層23の液晶層側の面に何らの処理もしないと、第2導電層23が液晶層で変調された変調光の一部を反射する場合がある。第2導電層23で反射された変調光は、迷光となって、コントラストを低下させる惧れがある。そのため、液晶表示装置8では、液晶層を透過して第2導電層23に入射した変調光を光吸収層83で吸収し、第2偏光板39を透過して第2基板側から入射した外光を光吸収層82で吸収することで、コントラストの低下を抑制している。
 図20では、光吸収層82は第2導電層の裏面、すなわち、データバスラインの第1導電層と第2導電層23との間に形成されているが、光吸収層82の形成位置はこれに限られない。光吸収層82は、図4に示したデータバスライン22の第1導電層24と第2基板20との間に形成されてもよい。例えば、光吸収層82はカラーフィルタ層21のブラックマトリクスBMと同時に形成されてもよい。この場合、光吸収層82を形成する工程を新たに追加する必要がなくなり、製造プロセスが簡略化される。
(第9の実施形態)
 図21A~21Cは、対向駆動方式により駆動されるアクティブマトリクス型の液晶表示装置の第9実施形態を示す模式図である。図21A~21Cは、液晶31の配向状態を第2基板側から見た模式図である。図21Aは、第1配向膜19近傍の液晶31の配向状態を示す模式図であり、図21Bは、第2配向膜29近傍の液晶31の配向状態を示す模式図であり、図21Cは、液晶層30の層厚方向中央部の液晶31の配向状態を示す模式図である。図中、円柱状に示された部分が液晶31であり、液晶31の端部が描かれている方が第2基板側に近付くように液晶31がチルトしていることを示している。本実施形態の液晶表示装置は、第1実施形態~第8実施形態の液晶表示装置と同様に、配向分割構造を有するVATN型の液晶表示装置である。図21A~21Cにおいて、第1実施形態~第8実施形態の液晶表示装置と共通の構成要素については、同じ符号を付し、詳細な説明は省略する。
 図21A~21Cの液晶表示装置は、配向膜19,29に照射される紫外線53~56の照射方向が第1実施形態~第8実施形態の液晶表示装置と異なるものである。紫外線53~56は配向膜19,29に対して、Z方向から所定の角度だけ傾斜した方向から照射される。配向膜19,29に照射される紫外線の向きを、紫外線の光軸をXY平面に投影した投影光軸の向きと定義すると、図21A~21Cの液晶表示装置において、各配向領域191,192,291,292に入射する紫外線の向きは次のようになっている。
 第1配向領域191に照射される紫外線の向きは、-Y方向である。第1配向領域192に照射される紫外線の向きは、+Y方向である。第2配向領域291に照射される紫外線の向きは、+X方向である。第2配向領域292に照射される紫外線の向きは、-X方向である。これにより、第1配向領域191と第1配向膜192における液晶31の傾倒方向は、Z軸と平行な直線を挟んで互いに反対方向となる。第2配向領域291と第2配向膜292における液晶31の傾倒方向は、Z軸と平行な直線を挟んで互いに反対方向となる。
 この結果、第1配向領域191と第2配向領域291とが対向する領域にドメイン32が形成され、第1配向領域191と第2配向領域292とが対向する領域にドメイン33が形成され、第1配向領域192と第2配向領域292とが対向する領域にドメイン34が形成され、第1配向領域192と第2配向領域291とが対向する領域にドメイン35が形成されている。暗線の形状は、図14Bに示した形状とY軸に対して線対称な形状(「8」の字型の形状)である。
 ドメイン32~35では、液晶層30の層厚方向中央部における液晶31のプレチルト方向が互いに異なっている。ドメイン32~35では、液晶31の配向状態の変化は、X軸と45°をなす軸とZ軸とを含む平面内で生じる。ドメイン32とドメイン34では、液晶31の傾倒方向は、画素電極の中心を通りZ軸と平行な直線を挟んで互いに反対方向である。ドメイン33とドメイン35では、液晶31の傾倒方向は、画素電極の中心を通りZ軸と平行な直線を挟んで互いに反対方向である。
(第10の実施形態)
 図22A~22Cは、対向駆動方式により駆動されるアクティブマトリクス型の液晶表示装置の第10実施形態を示す模式図である。図22A~22Cは、液晶31の配向状態を第2基板側から見た模式図である。図22Aは、第1配向膜19近傍の液晶31の配向状態を示す模式図であり、図22Bは、第2配向膜29近傍の液晶31の配向状態を示す模式図であり、図22Cは、液晶層30の層厚方向中央部の液晶31の配向状態を示す模式図である。図中、円柱状に示された部分が液晶31であり、液晶31の端部が描かれている方が第2基板側に近付くように液晶31がチルトしていることを示している。本実施形態の液晶表示装置は、第1実施形態~第8実施形態の液晶表示装置と同様に、配向分割構造を有するVATN型の液晶表示装置である。図22A~22Cにおいて、第1実施形態~第8実施形態の液晶表示装置と共通の構成要素については、同じ符号を付し、詳細な説明は省略する。
 図22A~22Cの液晶表示装置は、配向膜19,29に照射される紫外線53~56の照射方向が第1実施形態~第8実施形態の液晶表示装置と異なるものである。紫外線53~56は配向膜19,29に対して、Z方向から所定の角度だけ傾斜した方向から照射される。配向膜19,29に照射される紫外線の向きを、紫外線の光軸をXY平面に投影した投影光軸の向きと定義すると、図22A~22Cの液晶表示装置において、各配向領域191,192,291,292に入射する紫外線の向きは次のようになっている。
 第1配向領域191に照射される紫外線の向きは、+Y方向である。第1配向領域192に照射される紫外線の向きは、-Y方向である。第2配向領域291に照射される紫外線の向きは、+X方向である。第2配向領域292に照射される紫外線の向きは、-X方向である。これにより、第1配向領域191と第1配向膜192における液晶31の傾倒方向は、Z軸と平行な直線を挟んで互いに反対方向となる。第2配向領域291と第2配向膜292における液晶31の傾倒方向は、Z軸と平行な直線を挟んで互いに反対方向となる。
 この結果、第1配向領域191と第2配向領域291とが対向する領域にドメイン32が形成され、第1配向領域191と第2配向領域292とが対向する領域にドメイン33が形成され、第1配向領域192と第2配向領域292とが対向する領域にドメイン34が形成され、第1配向領域192と第2配向領域291とが対向する領域にドメイン35が形成されている。暗線の形状は、図14Bに示した形状である。
 ドメイン32~35では、液晶層30の層厚方向中央部における液晶31のプレチルト方向が互いに異なっている。ドメイン32~35では、液晶31の配向状態の変化は、X軸と45°をなす軸とZ軸とを含む平面内で生じる。ドメイン32とドメイン34では、液晶31の傾倒方向は、画素電極の中心を通りZ軸と平行な直線を挟んで互いに反対方向である。ドメイン33とドメイン35では、液晶31の傾倒方向は、画素電極の中心を通りZ軸と平行な直線を挟んで互いに反対方向である。
(第11の実施形態)
 図23A~23Cは、対向駆動方式により駆動されるアクティブマトリクス型の液晶表示装置の第11実施形態を示す模式図である。図23A~23Cは、液晶31の配向状態を第2基板側から見た模式図である。図23Aは、第1配向膜19近傍の液晶31の配向状態を示す模式図であり、図23Bは、第2配向膜29近傍の液晶31の配向状態を示す模式図であり、図23Cは、液晶層30の層厚方向中央部の液晶31の配向状態を示す模式図である。図中、円柱状に示された部分が液晶31であり、液晶31の端部が描かれている方が第2基板側に近付くように液晶31がチルトしていることを示している。本実施形態の液晶表示装置は、第1実施形態~第8実施形態の液晶表示装置と同様に、配向分割構造を有するVATN型の液晶表示装置である。図23A~23Cにおいて、第1実施形態~第8実施形態の液晶表示装置と共通の構成要素については、同じ符号を付し、詳細な説明は省略する。
 図23A~23Cの液晶表示装置は、配向膜19,29に照射される紫外線53~56の照射方向が第1実施形態~第8実施形態の液晶表示装置と異なるものである。紫外線53~56は配向膜19,29に対して、Z方向から所定の角度だけ傾斜した方向から照射される。配向膜19,29に照射される紫外線の向きを、紫外線の光軸をXY平面に投影した投影光軸の向きと定義すると、図23A~23Cの液晶表示装置において、各配向領域191,192,291,292に入射する紫外線の向きは次のようになっている。
 第1配向領域191に照射される紫外線の向きは、-Y方向である。第1配向領域192に照射される紫外線の向きは、+Y方向である。第2配向領域291に照射される紫外線の向きは、-X方向である。第2配向領域292に照射される紫外線の向きは、+X方向である。これにより、第1配向領域191と第1配向膜192における液晶31の傾倒方向は、Z軸と平行な直線を挟んで互いに反対方向となる。第2配向領域291と第2配向膜292における液晶31の傾倒方向は、Z軸と平行な直線を挟んで互いに反対方向となる。
 この結果、第1配向領域191と第2配向領域291とが対向する領域にドメイン32が形成され、第1配向領域191と第2配向領域292とが対向する領域にドメイン33が形成され、第1配向領域192と第2配向領域292とが対向する領域にドメイン34が形成され、第1配向領域192と第2配向領域291とが対向する領域にドメイン35が形成されている。暗線の形状は、図14Aに示した形状とY軸に対して線対称な形状(逆まんじ型の形状)である。
 ドメイン32~35では、液晶層30の層厚方向中央部における液晶31のプレチルト方向が互いに異なっている。ドメイン32~35では、液晶31の配向状態の変化は、X軸と45°をなす軸とZ軸とを含む平面内で生じる。ドメイン32とドメイン34では、液晶31の傾倒方向は、画素電極の中心を通りZ軸と平行な直線を挟んで互いに反対方向である。ドメイン33とドメイン35では、液晶31の傾倒方向は、画素電極の中心を通りZ軸と平行な直線を挟んで互いに反対方向である。
(第12の実施形態)
 図24は、対向駆動方式により駆動されるアクティブマトリクス型の液晶表示装置の第12実施形態を示す模式図である。図24は、液晶表示装置の2つの表示要素Pを拡大して示す平面図である。図24の液晶表示装置は、マルチドメイン構造の形成に光配向ではなく配向規制用構造物90,91を用いたものである。図24では、配向規制用構造物90,91と画素電極92とデータバスラインの第2配線層75のみを図示し、薄膜トランジスタ、ゲートバスライン、リファレンスバスライン、データバスラインの第1配線層などの他の構成要素の図示は省略している。
 図24の液晶表示装置は、Multi-domain Vertical Alignment mode(以下MVAと略す)と呼ばれるものである。図24の液晶表示装置では、負の誘電率異方性を有する液晶31を垂直配向させ、配向規制用構造物により電圧印加時の液晶配向方位を複数の方位に制御している。MVAの液晶表示装置では、配向規制用構造物90,91を設けているため、配向膜にラビングなどの配向処理を施さなくてもよい。
 第1基板と第2基板には、それぞれ配向規制用構造物90,91が設けられている。配向規制用構造物90,91としては、基板(第1基板、第2基板)上に土手(線状突起)を設ける、電極(画素電極、データバスライン)に抜き部(スリット)を設ける等の手法がある。図24の液晶表示装置では、第1基板に「くの字」型に屈曲した第1線状突起(第1配向規制用構造物)90を形成し、第2基板に第1線状突起90と平行なくの字型の第2線状突起(第2配向規制用構造物)91を形成しているが、配向規制用構造物は、少なくとも第1基板と第2基板の一方に形成されていればよい。画素電極92は配向規制用構造物のパターンに合わせて「くの字」型に屈曲した形状に形成され、第2基板側に形成されるデータバスラインの第1導電層もこの画素電極92のパターンに合わせて「くの字」型に屈曲した形状に形成される。
 第1線状突起90と第2線状突起91は、位置をずらして交互に配置されている。2つの線状突起90、91により生じる斜め方向の配向規制力により液晶31の配向が規定され、図24中に示すA、B、C、Dの四方向での配向分割が行われる。ドメイン境界部(図示せず)は配向規制用構造物90,91と重なる位置に形成され、ドメインの境界部には暗線が生じる。ドメインの境界部には、暗線と重なるようにデータバスラインの第2導電層75が形成されている。
 図24の液晶表示装置は、マルチドメイン構造の形成に配向規制用構造物90,91を用いた点、データバスラインの第2配線層75が配向規制用構造物90,91と重なる位置に形成されている点、画素電極92とデータバスラインの第1導電層とデータバスラインの第2導電層75が配向規制用構造物90,91の形状に合わせて「くの字」型に形成されている点以外は、第1実施形態の液晶表示装置と同じである。
(第13の実施形態)
 図25は、対向駆動方式により駆動されるアクティブマトリクス型の液晶表示装置の第13実施形態を示す模式図である。図25は、液晶表示装置の1表示要素Pを拡大して示す平面図である。図25の液晶表示装置は、マルチドメイン構造の形成に光配向ではなく、配向維持層95を用いたものである。図25では、配向維持層95と画素電極93とデータバスラインの第2配線層76のみを図示し、薄膜トランジスタ、ゲートバスライン、リファレンスバスライン、データバスラインの第1配線層などの他の構成要素の図示は省略している。
 図25の液晶表示装置は、Polymer Stabilization Alignment(以下PSAと略す)と呼ばれるものである。図25の液晶表示装置では、液晶31にモノマーを混合した液晶組成物を第1基板と第2基板との間に封止し、第1基板と第2基板との間に電圧を印加して液晶31をチルトさせた状態下でモノマーを重合してポリマー化させた配向維持層95により、電圧印加時の液晶配向方位を複数の方位に制御している。PSAの液晶表示装置では、配向維持層95を設けているため、配向膜にラビングなどの配向処理を施さなくてもよい。
 画素電極93は、十字状の幹部93aと、幹部93aから放射状に分岐した複数のストライプ状の枝部93bと、を備えている。1表示要素Pは、十字状に形成された幹部93aによって4つの領域に分割されている。各領域に形成される複数の枝部93bは互いに平行に配列されている。液晶31は、枝部93bの微細なストライプパターンのエッジ部に生じる斜め電界により、枝部93bと平行な方向に配向する。配向維持層95は、電圧を取り去った後もこの配向状態を維持するように作用する。斜め電界による配向方向はストライプ状に配列された枝部93bと平行で、且つ、幹部93aに向かう方向である。図25の画素電極構造では、図中A,B,C,Dの四方向での配向分割が行われ、ドメインの境界部36では暗線が生じる。ドメインの境界部36には、暗線と重なるようにデータバスラインの第2導電層76が十字状に形成されている。
 図25の液晶表示装置は、マルチドメイン構造の形成に配向維持層95を用いた点、画素電極93の形状が幹部93aと枝部93bとを備えている点、データバスラインの第2配線層76が幹部93aと重なる位置に十字状に形成されている点以外は、第1実施形態の液晶表示装置と同じである。
 本発明は、画像表示を行うディスプレイデバイスの技術分野において広く利用することができる。例えば、直視型の液晶テレビ、携帯情報端末の液晶表示部、スクリーンに画像を表示する液晶プロジェクタのライトバルブ(液晶エンジン)等に本発明を適用することができる。本発明は、透過型のみならず、反射型の液晶表示装置にも適用可能である。
 1,2,3,4,5,6,7,8  液晶表示装置
 10  第1基板
 11  画素電極
 10  第1配向膜
 20  第2基板
 22  データバスライン
 23  第2導電層
 24  第1導電層
 25  データバスライン
 26  第2導電層
 26a  第1直線部
 26b  第2直線部
 26c  第3直線部
 27  データバスライン
 28  第2導電層
 28a  第1直線部
 28b  第2直線部
 28c  第3直線部
 29  第2配向膜
 30  液晶層
 31  液晶
 32,33,34,35  ドメイン
 36  ドメインの境界部
 38  第1偏光板
 38a  第1偏光板の透過軸
 39  第2偏光板
 39a  第2偏光板の透過軸
 51  第1配向領域の境界部
 52  第2配向領域の境界部
 61  第1配向領域の境界部
 62  第2配向領域の境界部
 70  データバスライン
 71  第2導電層
 71a  第1直線部
 71b  第2直線部
 71c  第3直線部
 75,76  第2導電層
 80,81,82,83  光吸収層
 90,91  配向規制用構造物
 92,93  画素電極
 95  配向維持層
 191,192,193,194  第1配向領域
 291,292,293,294  第2配向領域

Claims (13)

  1.  画素電極が形成された第1基板と、
     前記画素電極と対向するデータバスラインが形成された第2基板と、
     前記画素電極と前記データバスラインとの間に配置された液晶と、を有し、
     前記画素電極と前記データバスラインとの間に電圧を印加したときに、1つの前記画素電極の配置領域内に、前記液晶の配向方向が異なる複数のドメインが形成され、
     前記データバスラインは、透明な第1導電層と、前記第1導電層よりも導電率が高く透過率が低い第2導電層とを積層してなり、
     前記第2導電層は、前記ドメインの境界部と重なる位置に形成されている液晶表示装置。
  2.  前記液晶は、誘電異方性が負の液晶であり、
     前記第1基板の前記液晶側の面には、前記画素電極と前記液晶との間に電圧を印加しない状態で前記液晶を垂直配向させる第1配向膜が形成され、
     前記第2基板の前記液晶側の面には、前記液晶と前記データバスラインとの間に電圧を印加しない状態で前記液晶を垂直配向させる第2配向膜が形成されている請求項1に記載の液晶表示装置。
  3.  前記第1基板の一方の側に第1偏光板が設けられ、
     前記第2基板の一方の側に第2偏光板が設けられ、
     前記第1偏光板の透過軸と前記第2偏光板の透過軸は互いに直交しており、
     前記第1配向膜には、1つの前記画素電極の配置領域内に、前記第1偏光板の透過軸と平行若しくは直交する第1方向に前記液晶を傾倒させる2つの第1配向領域が設けられ、
     前記2つの第1配向領域は、前記第1方向と平行な直線を挟んで前記画素電極の配置領域を2分割するように設けられ、
     前記2つの第1配向領域における前記液晶の傾倒方向は、前記第1基板の法線と平行な直線を挟んで互いに反対方向であり、
     前記第2配向膜には、1つの前記画素電極の配置領域内に、前記第1方向と直交する第2方向に前記液晶を傾倒させる2つの第2配向領域が設けられ、
     前記2つの第2配向領域は、前記第2方向と平行な直線を挟んで前記画素電極の配置領域を2分割するように設けられ、
     前記2つの第2配向領域における前記液晶の傾倒方向は、前記第2基板の法線と平行な直線を挟んで互いに反対方向であり、
     前記2つの第1配向領域と前記2つの第2配向領域とが重なって形成される4つの領域によって、4つの前記ドメインが形成されている請求項2に記載の液晶表示装置。
  4.  前記2つの第1配向領域と前記2つの第2配向領域は、前記第1配向膜と前記第2配向膜に対して光配向処理を行うことにより形成されている請求項3に記載の液晶表示装置。
  5.  前記複数のドメインは、少なくとも前記第1基板と前記第2基板との一方に配置され、電圧印加時において前記液晶の配向方向を規制する配向規制用構造物により形成されている請求項2に記載の液晶表示装置。
  6.  前記複数のドメインは、前記液晶にモノマーを混合した液晶組成物を基板間に封止し、基板間に電圧を印加して液晶分子をチルトさせた状態下で、モノマーを重合してポリマー化させた配向維持層により形成されている請求項2に記載の液晶表示装置。
  7.  前記第1基板には、複数の前記画素電極が前記第1方向及び前記第2方向に配列して形成され、
     前記第2基板には、前記第2方向に延在した複数の前記データバスラインが前記第1方向に配列して形成されている請求項4に記載の液晶表示装置。
  8.  前記第2導電層は、前記第2方向に配列した複数の前記画素電極に跨って前記第2方向に直線状に形成されている請求項7に記載の液晶表示装置。
  9.  前記第2導電層は、1つの前記画素電極の配置領域内に、前記2つの第1配向領域の境界部と重なる第1直線部又は前記2つの第2配向領域の境界部と重なる第2直線部を有し、
     隣接する前記画素電極の配置領域内に形成された前記第2導電層同士は、前記画素電極の縁部に発生する配向欠陥の発生領域と重なる第3直線部を介して互いに接続されている請求項7に記載の液晶表示装置。
  10.  前記第2導電層は、1つの前記画素電極の配置領域内に、前記2つの第1配向領域の境界部と重なる第1直線部と、前記2つの第2配向領域の境界部と重なる第2直線部と、を有する請求項7に記載の液晶表示装置。
  11.  前記第2導電層は、前記画素電極の縁部に発生する配向欠陥の発生領域と重なる第3直線部を有する請求項10に記載の液晶表示装置。
  12.  前記第2導電層と前記液晶との間には、黒色の光吸収層が設けられている請求項1ないし11のいずれか1項に記載の液晶表示装置。
  13.  前記第2導電層を挟んで前記液晶とは反対側には、黒色の光吸収層が設けられている請求項1ないし12のいずれか1項に記載の液晶表示装置。
PCT/JP2011/065787 2010-07-23 2011-07-11 液晶表示装置 WO2012011403A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010166055 2010-07-23
JP2010-166055 2010-07-23

Publications (1)

Publication Number Publication Date
WO2012011403A1 true WO2012011403A1 (ja) 2012-01-26

Family

ID=45496830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065787 WO2012011403A1 (ja) 2010-07-23 2011-07-11 液晶表示装置

Country Status (1)

Country Link
WO (1) WO2012011403A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112748614A (zh) * 2021-01-04 2021-05-04 成都中电熊猫显示科技有限公司 显示面板和液晶显示器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194684A (ja) * 1992-12-25 1994-07-15 Sharp Corp 液晶表示装置
JPH07325288A (ja) * 1995-06-26 1995-12-12 Toshiba Corp 液晶表示装置
JPH11295758A (ja) * 1998-04-10 1999-10-29 Nec Corp 液晶表示装置及びその駆動方法
JP2000221466A (ja) * 1999-01-29 2000-08-11 Sharp Corp 表示装置および液晶表示装置
JP2001311951A (ja) * 2000-04-27 2001-11-09 Toshiba Corp 液晶表示装置
WO2008007583A1 (fr) * 2006-07-14 2008-01-17 Sharp Kabushiki Kaisha Dispositif d'affichage à cristaux liquides
WO2009037889A1 (ja) * 2007-09-21 2009-03-26 Sharp Kabushiki Kaisha 液晶表示装置及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194684A (ja) * 1992-12-25 1994-07-15 Sharp Corp 液晶表示装置
JPH07325288A (ja) * 1995-06-26 1995-12-12 Toshiba Corp 液晶表示装置
JPH11295758A (ja) * 1998-04-10 1999-10-29 Nec Corp 液晶表示装置及びその駆動方法
JP2000221466A (ja) * 1999-01-29 2000-08-11 Sharp Corp 表示装置および液晶表示装置
JP2001311951A (ja) * 2000-04-27 2001-11-09 Toshiba Corp 液晶表示装置
WO2008007583A1 (fr) * 2006-07-14 2008-01-17 Sharp Kabushiki Kaisha Dispositif d'affichage à cristaux liquides
WO2009037889A1 (ja) * 2007-09-21 2009-03-26 Sharp Kabushiki Kaisha 液晶表示装置及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112748614A (zh) * 2021-01-04 2021-05-04 成都中电熊猫显示科技有限公司 显示面板和液晶显示器

Similar Documents

Publication Publication Date Title
US11106097B2 (en) Liquid crystal display apparatus
EP2916166B1 (en) Liquid crystal display device
JP4618321B2 (ja) 液晶表示素子
US7684001B2 (en) Liquid crystal display panel having photo-alignment film and patterned pixel electrodes with micro slits disposed therein, electronic apparatus, and manufacturing method thereof
US20180284544A1 (en) Liquid crystal display panel, liquid crystal display panel manufacturing method, and liquid crystal display panel manufacturing device
KR101439605B1 (ko) 액정 표시 장치
JP5845035B2 (ja) 液晶表示装置
US8482707B2 (en) Liquid crystal display panel
JP5555663B2 (ja) 液晶表示装置
US9891466B2 (en) Liquid crystal display panel and fabrication method thereof
WO2011040080A1 (ja) 液晶表示装置
JP2015148790A (ja) 液晶表示装置
KR20060088053A (ko) 액정 표시 장치 및 그 제조 방법
WO2012046608A1 (ja) 液晶表示装置
US10642094B2 (en) Display panel
US20090201453A1 (en) Liquid crystal display panel and method of manufacturing the same
JP5100047B2 (ja) 液晶装置及び電子機器
US20150015817A1 (en) Liquid crystal display device
KR102071633B1 (ko) 액정 표시 장치
CN110320710B (zh) 液晶面板及其制造方法
WO2012090839A1 (ja) 液晶パネル、及び、液晶ディスプレイ
US20130033663A1 (en) Liquid crystal display device
CN109313369B (zh) 偏光照射装置以及液晶显示装置的制造方法
WO2012011403A1 (ja) 液晶表示装置
CN110320715B (zh) 液晶面板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11809577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11809577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP