WO2012011247A1 - リチウムイオン二次電池負極材用粉末、リチウムイオン二次電池負極およびキャパシタ負極、ならびに、リチウムイオン二次電池およびキャパシタ - Google Patents

リチウムイオン二次電池負極材用粉末、リチウムイオン二次電池負極およびキャパシタ負極、ならびに、リチウムイオン二次電池およびキャパシタ Download PDF

Info

Publication number
WO2012011247A1
WO2012011247A1 PCT/JP2011/003938 JP2011003938W WO2012011247A1 WO 2012011247 A1 WO2012011247 A1 WO 2012011247A1 JP 2011003938 W JP2011003938 W JP 2011003938W WO 2012011247 A1 WO2012011247 A1 WO 2012011247A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
ion secondary
lithium ion
powder
Prior art date
Application number
PCT/JP2011/003938
Other languages
English (en)
French (fr)
Inventor
安田 幸司
木崎 信吾
下崎 新二
Original Assignee
株式会社大阪チタニウムテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大阪チタニウムテクノロジーズ filed Critical 株式会社大阪チタニウムテクノロジーズ
Priority to KR1020137003667A priority Critical patent/KR101495451B1/ko
Priority to JP2012525309A priority patent/JP5497177B2/ja
Priority to EP11809423.4A priority patent/EP2597708A4/en
Priority to US13/810,554 priority patent/US8900749B2/en
Priority to CN2011800354547A priority patent/CN103003986A/zh
Publication of WO2012011247A1 publication Critical patent/WO2012011247A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/0425Electrodes or formation of dielectric layers thereon characterised by the material specially adapted for cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention provides a negative electrode material powder capable of providing a lithium ion secondary battery that has a large discharge capacity and good cycle characteristics when used in a lithium ion secondary battery and can withstand use at a practical level.
  • the present invention relates to a lithium ion secondary battery negative electrode and a capacitor negative electrode using powder for a negative electrode material, and a lithium ion secondary battery and a capacitor using the lithium ion secondary battery negative electrode and the capacitor negative electrode.
  • high energy density secondary batteries include nickel cadmium batteries, nickel metal hydride batteries, lithium ion secondary batteries, and polymer batteries.
  • lithium ion secondary batteries have a much longer lifespan and higher capacity than nickel cadmium batteries and nickel metal hydride batteries, and thus the demand thereof has shown high growth in the power supply market.
  • FIG. 1 is a diagram showing a configuration example of a coin-shaped lithium ion secondary battery.
  • the lithium ion secondary battery maintains the electrical insulation between the positive electrode 1, the negative electrode 2, the separator 3 impregnated with the electrolyte, and the positive electrode 1 and the negative electrode 2 and seals the battery contents. It consists of a gasket 4.
  • lithium ions reciprocate between the positive electrode 1 and the negative electrode 2 through the electrolytic solution of the separator 3.
  • the positive electrode 1 includes a counter electrode case 1a, a counter electrode current collector 1b, and a counter electrode 1c.
  • Lithium cobaltate (LiCoO 2 ) and manganese spinel (LiMn 2 O 4 ) are mainly used for the counter electrode 1c.
  • the negative electrode 2 is composed of a working electrode case 2a, a working electrode current collector 2b, and a working electrode 2c, and the negative electrode material used for the working electrode 2c is generally an active material capable of occluding and releasing lithium ions (negative electrode active material). And a conductive assistant and a binder.
  • a negative electrode active material of a lithium ion secondary battery a composite oxide of lithium and boron, a composite oxide of lithium and a transition metal (V, Fe, Cr, Mo, Ni, etc.), Si, Ge, or Sn A compound containing N and O, Si particles whose surface is coated with a carbon layer by chemical vapor deposition, and the like have been proposed.
  • silicon oxide powder represented by SiO x (0 ⁇ x ⁇ 2) such as SiO As the negative electrode active material.
  • Silicon oxide has a low electrode potential with respect to lithium (base), and does not occlude lithium ions during charging / discharging, and does not degrade the crystal structure due to release or generation of irreversible substances, and reversibly occludes lithium ions. And since it can discharge
  • silicon oxide powder is used as the negative electrode active material
  • carbon powder or the like is generally mixed as a conductive aid in order to compensate for the low electrical conductivity of silicon oxide.
  • the electrical conductivity of the contact part vicinity of a silicon oxide powder and a conductive support agent is securable.
  • electrical conductivity cannot be ensured at a location away from the contact portion, and it is difficult to function as a negative electrode active material.
  • Patent Document 1 discloses a non-aqueous electrolyte secondary battery negative electrode material in which a carbon film is formed on the surface of particles (conductive silicon composite) having a structure in which silicon microcrystals are dispersed in silicon dioxide.
  • conductive silicon composite and a method for producing the same have been proposed.
  • Patent Document 1 According to the method proposed in Patent Document 1, a uniform carbon film is formed on the conductive silicon composite, and sufficient electrical conductivity can be imparted.
  • the lithium ion secondary battery using the conductive silicon composite of Patent Document 1 uses silicon dioxide in which silicon microcrystals are dispersed as the negative electrode material. The expansion / contraction at the time of desorption of lithium ions is increased, and there is a problem that the capacity suddenly decreases at a certain point when charging and discharging are repeated. Further, the discharge capacity and cycle characteristics were not sufficient.
  • the present invention has been made in view of this problem, and has a large discharge capacity, good cycle characteristics, and a negative electrode material powder for a lithium ion secondary battery that can withstand use at a practical level, and the negative electrode material.
  • An object of the present invention is to provide a lithium ion secondary battery negative electrode and a capacitor negative electrode using the powder for use, and a lithium ion secondary battery and a capacitor using the lithium ion secondary battery negative electrode and the capacitor negative electrode.
  • Li 22 Si 5 in the first term on the right side of the equation (1) is a component responsible for reversible capacity, and Li 4 SiO 4 in the second term is responsible for irreversible capacity. Li 4 SiO 4 cannot release lithium ions.
  • the theoretical characteristic of the lithium ion secondary battery when silicon oxide (SiO x ) is used as the negative electrode material powder and x 1 is a reversible capacity of 2007 mAh / g, The initial efficiency was found to be 76%.
  • Conventional lithium ion secondary batteries using silicon oxide as a negative electrode material powder have a reversible capacity of about 1500 mAh / g, so a lithium ion secondary battery using silicon oxide as a negative electrode material powder. It was found that there is still room for improvement in the reversible capacity of the battery.
  • the present inventors examined suppression of the generation of irreversible capacity components. It is considered that the generation of the irreversible capacity component during the first charge / discharge can be suppressed as the specific surface area (surface area per unit mass) of the silicon oxide powder is smaller. As a result of examination based on this viewpoint, excellent initial efficiency is obtained when the specific surface area of the silicon oxide powder measured by the BET method is 40 m 2 / g or less, and more excellent when it is 5.0 m 2 / g or less. It was found that the initial efficiency was obtained. However, in order to reduce the specific surface area, it is necessary to increase the size of the particles. If particles having a large specific surface area are excessively demanded, the yield during the production of the silicon oxide powder is lowered and it is difficult to industrialize economically. For this reason, the specific surface area is set to 0.3 m 2 / g or more.
  • the present inventors can particularly increase the capacity of the lithium ion secondary battery and make the initial efficiency and cycle characteristics relatively good.
  • the cause of the decrease in the capacity of the lithium ion secondary battery was investigated for silicon oxide on which a carbon film was formed.
  • silicon oxide with the same composition and the same average particle size was subjected to carbon film formation treatment under the same conditions, and then subjected to heat treatment under various conditions to graphitize the carbon component for negative electrode materials.
  • capacitance by repetition of charging / discharging was investigated.
  • the negative electrode material powder was analyzed using an X-ray diffractometer (XRD).
  • the initial capacity of the lithium ion secondary battery was particularly small when a SiC peak appeared in the XRD chart and its half-value width was less than 2 °.
  • the appearance of the SiC peak means that SiC was generated in the vicinity of the interface between the silicon oxide and the carbon film, and the half-value width of the peak is less than 2 ° means that the generation of crystalline SiC is excessive. It means that the state has progressed to. From these facts, it is considered that the reason why the initial capacity was small was that SiC converted to Si could no longer contribute to the battery capacity. Furthermore, it is considered that one of the reasons is that the formed SiC layer hinders the entry of lithium ions into silicon oxide.
  • SiC is likely to be generated in the case of high-temperature heat treatment in which silicon oxide and the carbon film are likely to react.
  • the heat treatment temperature is as high as 1100 ° C.
  • the present invention has been made on the basis of the above knowledge, and the gist thereof is as follows. (1) to (4) Lithium ion secondary battery negative electrode powder, (5) Lithium ion secondary battery negative electrode and It exists in a capacitor negative electrode and the lithium ion secondary battery and capacitor of the following (6).
  • a characteristic powder for a negative electrode material of a lithium ion secondary battery is
  • the “lower silicon oxide powder” is a SiO x powder satisfying 0.4 ⁇ x ⁇ 1.2. A method for measuring x and a method for measuring the specific surface area by the BET method will be described later.
  • “having a conductive carbon film on the surface” of the lower silicon oxide powder is a result of surface analysis using an X-ray photoelectron spectroscopic analyzer.
  • the Si / C molar ratio value Si / C Is 0.02 or less that is, the surface of the lower silicon oxide powder is almost covered with C and Si is hardly exposed.
  • Lithium ion secondary battery negative electrode powder according to the present invention, and lithium ion secondary battery negative electrode or capacitor negative electrode are used to provide lithium having a large discharge capacity and good cycle characteristics, and can be used at a practical level. An ion secondary battery and a capacitor can be obtained. Moreover, the lithium ion secondary battery and capacitor of the present invention have a large discharge capacity and good cycle characteristics.
  • FIG. 1 is a diagram illustrating a configuration example of a coin-shaped lithium ion secondary battery.
  • FIG. 2 is a diagram showing a configuration example of a silicon oxide manufacturing apparatus.
  • the powder for a negative electrode material of a lithium ion secondary battery of the present invention is a powder for a negative electrode material of a lithium ion secondary battery having a conductive carbon film on the surface of a lower silicon oxide powder.
  • the SiC peak at 1 ° does not exist or the half width of the peak is 2 ° or more.
  • the specific surface area measured by the BET method is larger than 0.3 m 2 / g and preferably 5.0 m 2 / g or less.
  • the lower silicon oxide powder is a SiO x powder satisfying 0.4 ⁇ x ⁇ 1.2 as described above.
  • the reason why x is in this range is that when the value of x is less than 0.4, the lithium ion secondary battery using the negative electrode material powder of the present invention and the capacitor are severely deteriorated due to charge / discharge cycles, and 1.2. This is because the capacity of the battery is reduced when the value exceeds.
  • x preferably satisfies 0.8 ⁇ x ⁇ 1.05.
  • the proportion of the conductive carbon film (hereinafter referred to as “carbon film ratio”) is preferably 0.2% by mass or more and 2.5% by mass or less.
  • the carbon film also contributes to the charge / discharge capacity of the lithium ion secondary battery as in the case of lower silicon oxide, but its charge / discharge capacity per unit mass is smaller than that of lower silicon oxide. Therefore, it is preferable that the carbon film rate of the powder for a negative electrode material for a lithium ion secondary battery is as small as possible in order to ensure the charge / discharge capacity of the lithium ion secondary battery. On the other hand, if the carbon film rate is too small, the effect of imparting conductivity by the conductive carbon film cannot be obtained. From these, the carbon film rate is preferably 0.2% by mass or more and 2.5% by mass or less.
  • the average particle size of the lithium ion secondary battery negative electrode powder is preferably 1 ⁇ m or more and 15 ⁇ m or less, and more preferably 3 ⁇ m or more and 12 ⁇ m or less. If the average particle size is too small, a uniform slurry cannot be obtained during electrode production, and the powder tends to fall off from the current collector. On the other hand, if the average particle diameter is too large, it is difficult to produce the electrode film constituting the working electrode 2c shown in FIG. 1, and the powder may be peeled off from the current collector.
  • the average particle diameter is a value measured as a weight average value D 50 (particle diameter or median diameter when the cumulative weight is 50% of the total weight) in the particle size distribution measurement by the laser light diffraction method.
  • the specific resistance of the powder for a negative electrode material for a lithium ion secondary battery is preferably 100000 ⁇ cm or less. This is because when the specific resistance is larger than 100,000 ⁇ cm, it is difficult to act as an electrode active material of a lithium ion secondary battery. The smaller the specific resistance, the better the electric conduction and the better the electrode active material of the lithium ion secondary battery, so there is no need to provide a lower limit.
  • the specific surface area of the lower silicon oxide powder can be measured by the following BET method in both cases where the conductive carbon film is formed and not formed. 0.5 g of sample is put in a glass cell and dried under reduced pressure at 200 ° C. for about 5 hours. Then, the specific surface area is calculated from the nitrogen gas adsorption isotherm at the liquid nitrogen temperature ( ⁇ 196 ° C.) measured for this sample. The measurement conditions are as shown in Table 2.
  • Carbon film ratio measurement method The carbon film ratio is determined by measuring the mass of the powder for the negative electrode material of the lithium ion secondary battery and the CO 2 gas by an oxygen gas flow combustion-infrared absorption method using a carbon concentration analyzer (Leco, CS400). It is calculated from the result of carbon amount quantitatively evaluated by analysis.
  • the crucible is a ceramic crucible, the auxiliary combustor is copper, and the analysis time is 40 seconds.
  • Measuring method of O content O content in powder for lithium ion secondary battery negative electrode material was analyzed by 10% of sample by inert gas melting / infrared absorption method using oxygen concentration analyzer (Leco, TC436). It is calculated from the O content in the sample quantitatively evaluated.
  • Si content in the negative electrode powder for lithium ion secondary batteries was determined by adding nitric acid and hydrofluoric acid to the sample to dissolve the sample, and then adding the resulting solution to an ICP emission spectrometer (Shimadzu Corporation). And the Si content in the sample under quantitative evaluation. In this method, Si, SiO and SiO 2 are dissolved, and Si constituting them can be detected.
  • Calculation method of x of SiO x x of SiO x is a molar ratio (O / Si) of O content and Si content in the powder for negative electrode of lithium ion secondary battery, and O content measured by the above measurement method It calculates using a rate and Si content rate.
  • the specific resistance ⁇ ( ⁇ cm) of the powder for a negative electrode material for a lithium ion secondary battery is calculated using the following equation (2).
  • R ⁇ A / L
  • R electrical resistance ( ⁇ ) of the sample
  • A bottom area (cm 2 ) of the sample
  • L thickness (cm) of the sample.
  • the electrical resistance of the sample was as follows: 0.20 g of the sample was filled in a powder resistance measurement jig (jig part: stainless steel with an inner diameter of 20 mm, frame part: made of polytetrafluoroethylene), and pressurized at 20 kgf / cm 2 for 60 seconds. After that, the measurement is performed by a two-terminal method using a digital multimeter (VOAC7513, manufactured by Iwatatsu Measurement Co., Ltd.). The thickness of the sample is measured with a micrometer.
  • VOAC7513 digital multimeter
  • FIG. 2 is a diagram showing a configuration example of a silicon oxide manufacturing apparatus.
  • This apparatus includes a vacuum chamber 5, a raw material chamber 6 disposed in the vacuum chamber 5, and a deposition chamber 7 disposed on the upper portion of the raw material chamber 6.
  • the raw material chamber 6 is formed of a cylindrical body, and a cylindrical raw material container 8 and a heating source 10 surrounding the raw material container 8 are disposed at the center thereof.
  • a heating source 10 for example, an electric heater can be used.
  • the deposition chamber 7 is composed of a cylindrical body arranged so that its axis coincides with the raw material container 8.
  • a deposition base 11 made of stainless steel is provided on the inner peripheral surface of the deposition chamber 7 for vapor deposition of gaseous silicon oxide generated by sublimation in the raw material chamber 6.
  • a vacuum device (not shown) for discharging the atmospheric gas is connected to the vacuum chamber 5 that accommodates the raw material chamber 6 and the deposition chamber 7, and the gas is discharged in the direction of arrow A.
  • a mixed granulated raw material 9 in which silicon powder and silicon dioxide powder are blended at a predetermined ratio as a raw material, mixed, granulated and dried is used.
  • the mixed granulated raw material 9 is filled in the raw material container 8 and heated (heated by a heating source 10) in an inert gas atmosphere or vacuum to generate (sublimate) SiO.
  • Gaseous SiO generated by the sublimation rises from the raw material chamber 6 and enters the deposition chamber 7, is vapor-deposited on the surrounding deposition base 11, and is deposited as lower silicon oxide 12. Thereafter, the lower silicon oxide 12 deposited from the deposition base 11 is removed and pulverized using a ball mill or the like to obtain a lower silicon oxide powder.
  • the conductive carbon film is formed on the surface of the lower silicon oxide powder by CVD or the like. Specifically, a rotary kiln is used as an apparatus, and a gas mixture of a hydrocarbon gas or an organic substance-containing gas and an inert gas is used as a gas.
  • the forming temperature of the conductive carbon film is 600 ° C. or higher and 900 ° C. or lower.
  • the treatment time is 20 minutes or more and 120 minutes or less, and is set according to the thickness of the conductive carbon film to be formed. This treatment time is a range in which SiC is not formed in the vicinity of the interface between the surface of the lower silicon oxide powder and the carbon film.
  • the negative electrode material used for the negative electrode 2, that is, the working electrode 2c constituting the negative electrode of the lithium ion secondary battery of the present invention is configured using the powder for negative electrode material of the lithium ion secondary battery of the present invention. Specifically, it can be comprised with the powder for lithium ion secondary battery negative electrode materials of this invention which is an active material, another active material, a conductive support material, and a binder. Of the constituent materials in the negative electrode material, the ratio of the powder for the negative electrode material of the lithium ion secondary battery of the present invention to the total of the constituent materials excluding the binder is 20% by mass or more. It is not always necessary to add an active material other than the powder for a negative electrode material of the lithium ion secondary battery of the present invention.
  • the conductive additive for example, acetylene black or carbon black can be used
  • the binder for example, polyacrylic acid (PAA) or polyvinylidene fluoride can be used.
  • the lithium ion secondary battery of the present invention uses the above-described powder for a lithium ion secondary battery negative electrode material and a lithium ion secondary battery negative electrode of the present invention, the discharge capacity is large, the cycle characteristics are good, and the practical level. Can withstand use in
  • the powder for negative electrode material of the present invention and the negative electrode using the same can also be applied to capacitors.
  • Test conditions 1-1 Configuration of Lithium Ion Secondary Battery
  • the configuration of the lithium ion secondary battery was the coin shape shown in FIG.
  • Silicon powder and silicon dioxide powder are blended at a predetermined ratio, and mixed, granulated and dried mixed granulated raw materials are used as raw materials, and lower silicon oxide is deposited on the deposition substrate using the apparatus shown in FIG. .
  • the deposited lower silicon oxide was pulverized for 24 hours using an alumina ball mill to obtain a powder having an average particle diameter (D 50 ) of 5.1 ⁇ m.
  • a conductive carbon film was formed on the surface of the lower silicon oxide powder using a rotary kiln as an apparatus and a mixed gas of C 3 H 8 and Ar as a gas.
  • the carbon film rate was 2.4% by mass.
  • the lower silicon oxide powder on which the conductive carbon film was formed was heat-treated to obtain a powder for a negative electrode material for a lithium ion secondary battery.
  • the heat treatment conditions (temperature and time) were as shown in Table 3.
  • Test Nos. 1 and 2 are examples of the present invention in which no peak of SiC was present or the half width of the peak was 2 ° or more as a result of XRD measurement of the powder for a negative electrode material for a lithium ion secondary battery
  • the examples of test numbers 3 to 6 are comparative examples in which the half width of the SiC peak was less than 2 °.
  • a slurry is prepared by adding n-methylpyrrolidone to a mixture containing 65% by mass of the negative electrode powder for a lithium ion secondary battery, 10% by mass of acetylene black, and 25% by mass of PAA. This slurry was applied to a copper foil having a thickness of 20 ⁇ m, dried in an atmosphere at 120 ° C. for 30 minutes, and then punched out to a size with an area of 1 cm 2 on one side to obtain a negative electrode 2.
  • the counter electrode 1c was a lithium foil.
  • LiPF 6 lithium phosphorous hexafluoride
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • a polyethylene porous film having a thickness of 30 ⁇ m was used as the separator.
  • Test results A lithium-ion secondary battery produced under the above conditions was subjected to a charge / discharge test and evaluated using the initial discharge capacity as an index. Moreover, the specific resistance of the powder for lithium ion secondary battery negative electrode materials was also measured. These values are shown in Table 3 together with the test conditions.
  • Test No. 1 which is an example of the present invention
  • SiC was not generated in the vicinity of the interface between the silicon oxide and the carbon film, and no peak existed in the XRD chart.
  • Test No. 2 which is an example of the present invention
  • SiC was produced, but a small amount and low crystallinity, and an SiC peak having a peak half-value width of 2 ° or more appeared in the XRD chart. Therefore, the initial discharge capacity was an excellent value of 1796 mAh / g or more.
  • both the lithium ion secondary batteries of Test Nos. 1 and 2 have good cycle characteristics.
  • test numbers 3 to 6 which are comparative examples, since the heat treatment temperature was high, the generation of crystalline SiC progressed in the vicinity of the interface between the silicon oxide and the carbon film, and the SiC half peak width of the XRD chart was less than 2 °. The peak appeared. Therefore, the initial discharge capacity was inferior to that of the inventive example.
  • Lithium ion secondary battery negative electrode powder according to the present invention, and lithium ion secondary battery negative electrode or capacitor negative electrode are used to provide lithium having a large discharge capacity and good cycle characteristics, and can be used at a practical level. An ion secondary battery and a capacitor can be obtained. Moreover, the lithium ion secondary battery and capacitor of the present invention have a large discharge capacity and good cycle characteristics. Therefore, the present invention is a useful technique in the field of secondary batteries and capacitors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

 低級酸化珪素粉末の表面に導電性炭素皮膜を有するリチウムイオン二次電池負極材用粉末であって、BET法で測定した比表面積が0.3m2/gを超えて大きく、40m2/g以下であり、CuKα線を用いたXRDで測定した場合に、2θ=35.6°±0.1°におけるSiCのピークが存在しないまたはピークの半値幅が2°以上であることを特徴とするリチウムイオン二次電池負極材用粉末。リチウムイオン二次電池負極材用粉末における導電性炭素皮膜の占める割合は0.2質量%以上2.5質量%以下であることが好ましい。低級酸化珪素粉末の比抵抗は100000Ωcm以下であることが好ましく、XRD測定でSiOx由来のハローの最大値P1とSi(111)の最強線ピークの値P2がP2/P1<0.01を満たすことが好ましい。 これにより、放電容量が大きく、かつサイクル特性が良好であり、実用レベルでの使用に耐え得るリチウムイオン二次電池に用いられる負極材用粉末を提供することができる。

Description

リチウムイオン二次電池負極材用粉末、リチウムイオン二次電池負極およびキャパシタ負極、ならびに、リチウムイオン二次電池およびキャパシタ
 本発明は、リチウムイオン二次電池に用いることにより放電容量が大きく、かつサイクル特性が良好であり、実用レベルでの使用に耐え得るリチウムイオン二次電池を得ることができる負極材用粉末、この負極材用粉末を用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにこのリチウムイオン二次電池負極およびキャパシタ負極を用いたリチウムイオン二次電池およびキャパシタに関する。
 近年、携帯型の電子機器、通信機器等の著しい発展に伴い、経済性と機器の小型化および軽量化の観点から、高エネルギー密度の二次電池の開発が強く要望されている。現在、高エネルギー密度の二次電池として、ニッケルカドミウム電池、ニッケル水素電池、リチウムイオン二次電池およびポリマー電池等がある。このうち、リチウムイオン二次電池は、ニッケルカドミウム電池やニッケル水素電池に比べて格段に高寿命かつ高容量であることから、その需要は電源市場において高い伸びを示している。
 図1は、コイン形状のリチウムイオン二次電池の構成例を示す図である。リチウムイオン二次電池は、図1に示すように、正極1、負極2、電解液を含浸させたセパレーター3、および正極1と負極2の電気的絶縁性を保つとともに電池内容物を封止するガスケット4から構成されている。充放電を行うと、リチウムイオンがセパレーター3の電解液を介して正極1と負極2の間を往復する。
 正極1は、対極ケース1aと対極集電体1bと対極1cとで構成され、対極1cにはコバルト酸リチウム(LiCoO)やマンガンスピネル(LiMn)が主に使用される。負極2は、作用極ケース2aと作用極集電体2bと作用極2cとで構成され、作用極2cに用いる負極材は、一般に、リチウムイオンの吸蔵放出が可能な活物質(負極活物質)と導電助剤およびバインダーとで構成される。
 従来、リチウムイオン二次電池の負極活物質としては、リチウムとホウ素の複合酸化物、リチウムと遷移金属(V、Fe、Cr、Mo、Ni等)との複合酸化物、Si、GeまたはSnとNおよびOを含む化合物、化学蒸着により表面を炭素層で被覆したSi粒子等が提案されている。
 しかし、これらの負極活物質はいずれも、充放電容量を向上させ、エネルギー密度を高めることができるものの、充放電の繰り返しにともなって電極上にデンドライトや不働体化合物が生成するため劣化が顕著であり、またはリチウムイオンの吸蔵、放出時の膨張や収縮が大きくなる。そのため、これらの負極活物質を用いたリチウムイオン二次電池は、充放電の繰り返しによる放電容量の維持性(以下、「サイクル特性」という)が不十分である。
 これに対し、負極活物質としてSiO等、SiO(0<x≦2)で表される酸化珪素の粉末を用いることが、従来から試みられている。酸化珪素は、リチウムに対する電極電位が低く(卑であり)、充放電時のリチウムイオンの吸蔵、放出による結晶構造の崩壊や不可逆物質の生成等の劣化がなく、かつ可逆的にリチウムイオンを吸蔵および放出可能であることから、有効な充放電容量がより大きな負極活物質となり得る。そのため、酸化珪素を負極活物質として用いることにより、カーボンを用いた場合と比較して高容量であり、SiやSn合金といった高容量負極材を用いた場合と比較してサイクル特性が良好なリチウムイオン二次電池が得られている。
 負極活物質として酸化珪素粉末を用いる場合、酸化珪素の電気伝導度の低さを補うために、一般に導電助剤としてカーボン粉末等が混合される。これにより、酸化珪素粉末と導電助剤との接触部近辺の電気伝導性は確保できる。しかし、接触部から離れた箇所では電気伝導性が確保できず、負極活物質として機能しにくい。
 この問題を解決するため、特許文献1では、珪素の微結晶が二酸化珪素に分散した構造を有する粒子(導電性珪素複合体)の表面に炭素の皮膜を形成した非水電解質二次電池負極材用の導電性珪素複合体およびその製造方法が提案されている。
特許第3952180号公報
 特許文献1で提案された方法によれば、導電性珪素複合体に均一な炭素皮膜が形成され、十分な電気伝導性を付与することができる。しかし、本発明者らの検討によると、特許文献1の導電性珪素複合体を用いたリチウムイオン二次電池は、珪素の微結晶が分散した二酸化珪素を負極材として用いるため、充放電時におけるリチウムイオンの脱着時の膨張・収縮が大きくなり、充放電を繰り返すとある時点で容量が突然低下する等の課題があった。また、放電容量およびサイクル特性が十分ではなかった。
 本発明は、この課題に鑑みてなされたものであり、放電容量が大きく、かつサイクル特性が良好であり、実用レベルでの使用に耐え得るリチウムイオン二次電池の負極材用粉末、この負極材用粉末を用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにこのリチウムイオン二次電池負極およびキャパシタ負極を用いたリチウムイオン二次電池およびキャパシタを提供することを目的とする。
 上記の課題を解決するために、本発明者らは、特にリチウムイオン二次電池の高容量化を図れる負極材用粉末(負極活物質)であると考えられる酸化珪素について種々検討を行った。その結果、初期効率(リチウムイオン二次電池の製造後、最初の充放電時(初回充放電時)の、放電容量と充電容量の比の値)の劣化は、下記(1)式に示す、負極材におけるリチウムイオンの脱着によるLiSiOの生成によるものと考えるに至った。(1)式の右辺第1項のLi22Siが可逆容量、第2項のLiSiOが不可逆容量を担う成分である。LiSiOはリチウムイオンを放出することができない。
  SiO+(44-x)/10Li+(44-x)/10e
   → (4-x)/20Li22Si+x/4LiSiO …(1)
 本発明者らの検討によると、酸化珪素(SiO)を負極材用粉末とし、x=1である場合のリチウムイオン二次電池の理論上の特性は、可逆容量が2007mAh/gであり、初期効率は76%であることがわかった。これまでの酸化珪素を負極材用粉末として用いたリチウムイオン二次電池では可逆容量の大きいものであっても1500mAh/g程度であったため、酸化珪素を負極材用粉末として用いたリチウムイオン二次電池の可逆容量には未だに改善の余地があることがわかった。
 そこで、本発明者らは、不可逆容量成分の生成の抑制について検討した。初回充放電時における不可逆容量成分の生成は、酸化珪素粉末の比表面積(単位質量あたりの表面積)が小さいほど抑制することができると考えられる。この観点に基づいて検討した結果、BET法で測定した酸化珪素粉末の比表面積を40m/g以下とした場合に優れた初期効率が得られ、5.0m/g以下とした場合により優れた初期効率が得られることがわかった。ただし、比表面積を小さくするには粒子を大きくする必要があり、比表面積の大きな粒子を過度に要求すると酸化珪素粉末の製造時の収率が低下し、経済的に工業化することが困難であるため、比表面積は0.3m/g以上とする。
 さらに、本発明者らは、負極材用粉末として用いられる酸化珪素系材料の中でも、特にリチウムイオン二次電池の容量を大きくし、かつ初期効率およびサイクル特性を比較的良好とすることが可能な、炭素皮膜を形成した酸化珪素について、リチウムイオン二次電池の容量の低下の原因について調査した。
 この調査では、同じ組成、同じ平均粒径の酸化珪素に対して同じ条件で炭素皮膜の形成処理を施した後、さまざまな条件で熱処理を施して炭素成分を黒鉛化させたものを負極材用粉末として用いたリチウムイオン二次電池について充放電の繰り返しによる容量の変化について調査した。また、この負極材用粉末についてX線回折装置(XRD)を用いて分析した。
 その結果、XRDチャートにおいてSiCのピークが出現した負極材用粉末を用いたリチウムイオン二次電池では容量の劣化が大きいことがわかった。さらに調査を進めたところ、XRDチャートにおけるSiCのピーク(CaKα線を用いて測定した場合、2θ=35.6°±0.1°に出現する。)の有無およびそのピークの半値幅と、リチウムイオン二次電池の初期容量との間に相関関係があることが確認できた。
 具体的には、XRDチャートにおいてSiCのピークが出現し、その半値幅が2°未満である場合に、リチウムイオン二次電池の初期容量が特に小さかった。SiCのピークが出現したということは、酸化珪素と炭素皮膜との界面近傍においてSiCが生成したことを意味し、そのピークの半値幅が2°未満であるということは、結晶SiCの生成が過度に進行した状態であることを意味する。これらのことから、初期容量が小さかった理由は、SiC化したSiが電池の容量に寄与できなくなったためと考えられる。さらに、形成されたSiC層が酸化珪素へのリチウムイオンの進入の妨げとなることも、理由の一つと考えられる。SiCは、酸化珪素と炭素皮膜とが反応しやすい高温熱処理の場合に生成しやすく、例えば熱処理温度が1100℃の高温であった場合には、XRDチャートにおいて半値幅が2°未満のSiCのピークが出現した。
 本発明は、上記知見に基づいてなされたものであり、その要旨は、下記(1)~(4)のリチウムイオン二次電池負極材用粉末、下記(5)のリチウムイオン二次電池負極およびキャパシタ負極、ならびに下記(6)のリチウムイオン二次電池およびキャパシタにある。
(1)低級酸化珪素粉末の表面に導電性炭素皮膜を有するリチウムイオン二次電池負極材用粉末であって、BET法で測定した比表面積が0.3m/gを超えて大きく、40m/g以下であり、CuKα線を用いたXRDで測定した場合に、2θ=35.6°±0.1°におけるSiCのピークが存在しないまたはピークの半値幅が2°以上であることを特徴とするリチウムイオン二次電池負極材用粉末。
(2)前記導電性炭素皮膜の占める割合が0.2質量%以上2.5質量%以下であることを特徴とする前記(1)に記載のリチウムイオン二次電池負極材用粉末。
(3)比抵抗が100000Ωcm以下であることを特徴とする前記(1)または(2)のリチウムイオン二次電池負極材用粉末。
(4)CuKα線を用いたXRDで測定した場合に、2θ=10°~30°に現れるSiOに由来するハローの最大値P1と、2θ=28.4±0.3°に現れるSi(111)の最強線ピークの値P2が、P2/P1<0.01を満たすことを特徴とする前記(1)~(3)のいずれかのリチウムイオン二次電池負極材用粉末。
(5)前記(1)~(4)のいずれかのリチウムイオン二次電池負極材用粉末を用いたリチウムイオン二次電池負極またはキャパシタ負極。
(6)前記(5)のリチウムイオン二次電池負極またはキャパシタ負極を用いたリチウムイオン二次電池またはキャパシタ。
 本発明において、「低級酸化珪素粉末」とは、0.4≦x≦1.2を満たすSiOの粉末である。xの測定方法、およびBET法による比表面積の測定方法については後述する。
 低級酸化珪素粉末について「表面に導電性炭素皮膜を有する」とは、後述するように、X線光電子分光分析装置を用いて表面分析を行った結果、SiとCのモル比の値Si/Cが0.02以下であること、すなわち低級酸化珪素粉末の表面のほとんどがCに覆われており、Siがほとんど露出していない状態をいう。
 本発明のリチウムイオン二次電池負極材用粉末、ならびにリチウムイオン二次電池負極またはキャパシタ負極を用いることにより、放電容量が大きく、かつサイクル特性が良好であり、実用レベルでの使用に耐え得るリチウムイオン二次電池およびキャパシタを得ることができる。また、本発明のリチウムイオン二次電池およびキャパシタは、放電容量が大きく、かつサイクル特性が良好である。
図1はコイン形状のリチウムイオン二次電池の構成例を示す図である。 図2は酸化珪素の製造装置の構成例を示す図である。
1.本発明のリチウムイオン二次電池負極材用粉末
 本発明のリチウムイオン二次電池負極材用粉末は、低級酸化珪素粉末の表面に導電性炭素皮膜を有するリチウムイオン二次電池負極材用粉末であって、BET法で測定した比表面積が0.3m/gを超えて大きく、40m/g以下であり、CuKα線を用いたXRDで測定した場合に、2θ=35.6°±0.1°におけるSiCのピークが存在しないまたはピークの半値幅が2°以上であることを特徴とする。BET法で測定した比表面積は、0.3m/gを超えて大きく、5.0m/g以下であることが好ましい。
 低級酸化珪素粉末とは、上述のように0.4≦x≦1.2を満たすSiOの粉末である。xをこの範囲とする理由は、xの値が0.4を下回ると、本発明の負極材用粉末を用いたリチウムイオン二次電池およびキャパシタの充放電サイクルに伴う劣化が激しく、1.2を超えると電池の容量が小さくなるからである。また、xは、0.8≦x≦1.05を満たすことが好ましい。
 本発明のリチウムイオン二次電池負極材用粉末は、導電性炭素皮膜の占める割合(以下、「炭素皮膜率」という)が0.2質量%以上2.5質量%以下であることが好ましい。
 炭素皮膜も、低級酸化珪素と同様にリチウムイオン二次電池の充放電容量に寄与するものの、その単位質量あたりの充放電容量は低級酸化珪素に比較して小さい。そのため、リチウムイオン二次電池負極材用粉末の炭素皮膜率はできる限り小さいことが、リチウムイオン二次電池の充放電容量を確保するために好ましい。一方、炭素皮膜率が小さすぎると、導電性炭素皮膜による導電性付与の効果が得られない。これらのことから、炭素皮膜率は、0.2質量%以上2.5質量%以下が好ましい。
 リチウムイオン二次電池負極材用粉末は、CuKα線を用いたXRDで測定した場合に、10°≦2θ≦30°に現れるSiOに由来するハローの最大値P1と、2θ=28.4±0.3°に現れるSi(111)の最強線ピークの値P2が、P2/P1<0.01を満たすこと、すなわちアモルファスであることが好ましい。これは、リチウムイオン二次電池では、負極材用粉末中の低級酸化珪素粉末がアモルファスであることが好ましいからである。
 リチウムイオン二次電池負極材用粉末の平均粒子径は、1μm以上15μm以下が好ましく、3μm以上12μm以下がより好ましい。平均粒子径が小さすぎると、電極作製時に均一なスラリーにすることができず、粉末が集電体から脱落しやすい。一方、平均粒子径が大きすぎると前記図1に示す作用極2cを構成する電極膜の作製が困難となり、粉末が集電体から剥離するおそれがある。平均粒子径は、レーザー光回折法による粒度分布測定における重量平均値D50(累積重量が全重量の50%となるときの粒子径またはメジアン径)として測定した値とする。
 リチウムイオン二次電池負極材用粉末の比抵抗は、100000Ωcm以下が好ましい。これは、比抵抗が100000Ωcmよりも大きいとリチウムイオン二次電池の電極活物質として作用しにくいからである。比抵抗は、小さければ小さいほど電気伝導が良好になり、リチウムイオン二次電池の電極活物質として好ましい状態となるため下限は特に設ける必要がない。
3.分析方法
3-1.導電性炭素皮膜の形成状態の評価方法
 本発明のリチウムイオン二次電池負極材用粉末において、「低級酸化珪素粉末の表面に導電性炭素皮膜を有する」とは、AlKα線(1486.6eV)を用いたX線光電子分光分析装置(XPS)で、導電性炭素皮膜の形成処理を施した低級酸化珪素粉末の表面分析を行った場合に、SiとCとのモル比の値Si/Cが0.02以下であることをいう。XPSの測定条件は表1に示すとおりとする。「Si/Cが0.02以下」とは、低級酸化珪素粉末の表面のほとんどがCに覆われており、Siがほとんど露出していない状態である。
Figure JPOXMLDOC01-appb-T000001
3-2.低級酸化珪素粉末の比表面積の測定方法
 低級酸化珪素粉末の比表面積は、導電性炭素皮膜を形成した状態および形成しない状態のいずれの場合でも、以下のBET法によって測定することができる。試料0.5gをガラスセルに入れて、200℃で約5時間、減圧乾燥する。そして、この試料について測定した液体窒素温度(-196℃)における窒素ガス吸着等温線から比表面積を算出する。測定条件は表2に示すとおりとする。
Figure JPOXMLDOC01-appb-T000002
3-3.炭素皮膜率の測定方法
 炭素皮膜率は、リチウムイオン二次電池負極材用粉末の質量と、炭素濃度分析装置(Leco社製、CS400)を用いて酸素気流燃焼-赤外線吸収法によってCOガスを分析することで定量評価した炭素量の結果から算出する。ルツボはセラミックルツボを、助燃剤は銅を用い、分析時間は40秒とする。
3-4.O含有率の測定方法
 リチウムイオン二次電池負極材用粉末中のO含有率は、酸素濃度分析装置(Leco社製、TC436)を用いて、試料10mgを不活性ガス融解・赤外線吸収法によって分析することで定量評価した試料中のO含有量から算出する。
3-5.Si含有率の測定方法
 リチウムイオン二次電池負極材用粉末中のSi含有率は、試料に硝酸およびフッ酸を加えて試料を溶解させ、得られた溶液をICP発光分光分析装置(株式会社島津製作所製)で分析することによって定量評価下試料中のSi含有量から算出する。この方法では、Si、SiOおよびSiOが溶解され、これらを構成するSiを検出できる。
3-6.SiOのxの算出方法
 SiOのxは、リチウムイオン二次電池負極材用粉末中のO含有率とSi含有率のモル比(O/Si)であり、上記測定方法で測定したO含有率およびSi含有率を用いて算出する。
3-7.比抵抗の測定方法
 リチウムイオン二次電池負極材用粉末の比抵抗ρ(Ωcm)は、下記(2)式を用いて算出する。
   ρ=R×A/L …(2)
  ここで、R:試料の電気抵抗(Ω)、A:試料の底面積(cm)、L:試料の厚さ(cm)である。
 試料の電気抵抗は、粉末抵抗測定用治具(治具部:内径20mmのステンレス製、枠部:ポリテトラフルオロエチレン製)に試料0.20gを充填し、20kgf/cmで60秒間加圧した後、デジタルマルチメーター(岩通計測株式会社製、VOAC7513)を用いた二端子法で測定する。試料の厚さはマイクロメーターで測定する。
4.低級酸化珪素粉末の製造方法
 図2は、酸化珪素の製造装置の構成例を示す図である。この装置は、真空室5と、真空室5内に配置された原料室6と、原料室6の上部に配置された析出室7とを備える。
 原料室6は円筒体で構成され、その中心部には、円筒状の原料容器8と、原料容器8を囲繞する加熱源10が配置される。加熱源10としては、例えば電熱ヒーターを用いることができる。
 析出室7は、原料容器8と軸が一致するように配置された円筒体で構成される。析出室7の内周面には、原料室6で昇華して発生した気体状の酸化珪素を蒸着させるためのステンレス鋼からなる析出基体11が設けられる。
 原料室6と析出室7とを収容する真空室5には、雰囲気ガスを排出するための真空装置(図示せず)が接続されており、矢印A方向にガスが排出される。
 図2に示す製造装置を用いて低級酸化珪素を製造する場合、原料として珪素粉末と二酸化珪素粉末とを所定の割合で配合し、混合、造粒および乾燥した混合造粒原料9を用いる。この混合造粒原料9を原料容器8に充填し、不活性ガス雰囲気または真空中で加熱源10によって加熱してSiOを生成(昇華)させる。昇華により発生した気体状のSiOは、原料室6から上昇して析出室7に入り、周囲の析出基体11上に蒸着し、低級酸化珪素12として析出する。その後、析出基体11から析出した低級酸化珪素12を取り外し、ボールミル等を使用して粉砕することにより、低級酸化珪素粉末が得られる。
5.導電性炭素皮膜の形成方法
 低級酸化珪素粉末の表面への導電性炭素皮膜の形成は、CVD等により行う。具体的には、装置としてロータリーキルンを用い、ガスとして炭化水素ガスまたは有機物含有ガスと、不活性ガスとの混合ガスを用いて行う。
 導電性炭素皮膜の形成処理温度は600℃以上900℃以下とする。また、処理時間は20分以上120分以下とし、形成する導電性炭素皮膜の厚さに応じて設定する。この処理時間は、低級酸化珪素粉末の表面と炭素皮膜との界面近傍にSiCを形成しない範囲である。絶縁体である低級酸化珪素粉末に導電性炭素皮膜を形成することで、この低級酸化珪素粉末を負極材用粉末として用いたリチウムイオン二次電池の放電容量を改善することができる。
6.導電性炭素皮膜を形成した低級酸化珪素粉末の熱処理方法
 導電性炭素皮膜を形成した低級酸化珪素粉末は、800℃以上900℃以下の不活性ガス雰囲気下で、2時間以下の熱処理を施す。これにより、導電性炭素皮膜の炭素成分を黒鉛化させ、電気伝導度を向上させる。熱処理温度が上記範囲である場合には、酸化珪素と炭素皮膜との界面近傍におけるSiCの生成が抑制される。
7.リチウムイオン二次電池の構成
 本発明のリチウムイオン二次電池負極材用粉末およびリチウムイオン二次電池負極を用いた、コイン形状のリチウムイオン二次電池の構成例を、前記図1を参照して説明する。同図に示すリチウムイオン二次電池の基本的構成は、上述の通りである。
 負極2、すなわち本発明のリチウムイオン二次電池負極を構成する作用極2cに用いる負極材は、本発明のリチウムイオン二次電池負極材用粉末を用いて構成する。具体的には、活物質である本発明のリチウムイオン二次電池負極材用粉末とその他の活物質と導電助材とバインダーとで構成することができる。負極材中の構成材料のうち、バインダーを除いた構成材料の合計に対する本発明のリチウムイオン二次電池負極材用粉末の割合は20質量%以上とする。本発明のリチウムイオン二次電池負極材用粉末以外の活物質は必ずしも添加しなくてもよい。導電助材としては、例えばアセチレンブラックやカーボンブラックを使用することができ、バインダーとしては例えばポリアクリル酸(PAA)やポリフッ化ビニリデンを使用することができる。
 本発明のリチウムイオン二次電池は、上述の本発明のリチウムイオン二次電池負極材用粉末およびリチウムイオン二次電池負極を用いたため、放電容量が大きく、かつサイクル特性が良好であり、実用レベルでの使用に耐え得る。
 また、本発明の負極材用粉末およびこれを用いた負極は、キャパシタにも適用することができる。
 本発明の効果を確認するため、リチウムイオン二次電池を用いた以下の試験を行い、その結果を評価した。
1.試験条件
1-1.リチウムイオン二次電池の構成
 リチウムイオン二次電池の構成は、前記図1に示すコイン形状とした。
 最初に負極2について説明する。珪素粉末と二酸化珪素粉末とを所定の割合で配合し、混合、造粒および乾燥した混合造粒原料を原料とし、前記図2に示す装置を用いて析出基板上に低級酸化珪素を析出させた。析出した低級酸化珪素は、アルミナ製ボールミルを使用して24時間粉砕して平均粒子径(D50)が5.1μmである粉末とした。この低級酸化珪素(SiO)の粉末は、BET法で測定した比表面積が3m/gであり、上述のXRDで測定したP2/P1の値がP2/P1=0.009、かつx=1であった。
 この低級酸化珪素粉末の表面に、装置としてロータリーキルン、ガスとしてCとArとの混合ガスを使用して導電性炭素皮膜を形成した。炭素皮膜率は2.4質量%であった。
 さらに、導電性炭素皮膜を形成した低級酸化珪素粉末に熱処理を施し、リチウムイオン二次電池負極材用粉末とした。熱処理条件(温度および時間)は、表3に示す条件とした。
Figure JPOXMLDOC01-appb-T000003
 試験番号1および2の実施例は、リチウムイオン二次電池負極材用粉末についてXRDで測定した結果、SiCのピークが存在しなかった、またはピークの半値幅が2°以上であった本発明例であり、試験番号3~6の実施例はSiCのピークの半値幅が2°未満であった比較例である。
 このリチウムイオン二次電池負極材用粉末を65質量%、アセチレンブラックを10質量%、PAAを25質量%とした混合物に、n‐メチルピロリドンを加えてスラリーを作成する。このスラリーを厚さ20μmの銅箔に塗布し、120℃の雰囲気下で30分乾燥した後、片面の面積が1cmとなる大きさに打ち抜いて負極2とした。
 対極1cはリチウム箔とした。電解質は、EC(エチレンカーボネート)とDEC(ジエチルカーボネート)を1:1の体積比とした混合液に、LiPF(六フッ化リンリチウム)を1モル/リットルの割合となるように溶解させた溶液とした。セパレーターには厚さ30μmのポリエチレン製多孔質フィルムを用いた。
1-2.充放電試験条件
 充放電試験には、二次電池充放電試験装置(株式会社ナガノ製)を用いた。充電は、リチウムイオン二次電池の両極間の電圧が0Vに達するまでは1mAの定電流で行い、電圧が0Vに達した後は、0Vを維持したまま充電を行った。その後、電流値が20μAを下回った時点で充電を終了した。放電は、リチウムイオン二次電池の両極間の電圧が1.5Vに達するまでは1mAの定電流で行った。
2.試験結果
 上記条件で作製したリチウムイオン二次電池について充放電試験を行い、初回放電容量を指標として評価を行った。また、リチウムイオン二次電池負極材用粉末の比抵抗も測定した。これらの値を試験条件と併せて表3に示す。
 本発明例である試験番号1では、熱処理温度が低かったため、酸化珪素と炭素皮膜との界面近傍においてSiCが生成せず、XRDチャートにおいてピークが存在しなかった。また、本発明例である試験番号2では、SiCが生成したものの少量かつ結晶性が低く、XRDチャートにおいてピークの半値幅が2°以上のSiCのピークが出現した。そのため、初回放電容量は1796mAh/g以上と、優れた値であった。また、試験番号1および2のいずれのリチウムイオン二次電池とも、サイクル特性が良好であることを確認した。
 一方、比較例である試験番号3~6では、熱処理温度が高かったため、酸化珪素と炭素皮膜との界面近傍において結晶SiCの生成が進行し、XRDチャートにおいてピークの半値幅が2°未満のSiCのピークが出現した。そのため、初回放電容量が本発明例と比較して劣っていた。
 本発明のリチウムイオン二次電池負極材用粉末、ならびにリチウムイオン二次電池負極またはキャパシタ負極を用いることにより、放電容量が大きく、かつサイクル特性が良好であり、実用レベルでの使用に耐え得るリチウムイオン二次電池およびキャパシタを得ることができる。また、本発明のリチウムイオン二次電池およびキャパシタは、放電容量が大きく、かつサイクル特性が良好である。したがって、本発明は、二次電池およびキャパシタの分野において有用な技術である。
1:正極、 1a:対極ケース、 1b:対極集電体、 1c:対極、
2:負極、 2a:作用極ケース、 2b:作用極集電体、
2c:作用極、 3:セパレーター、 4:ガスケット、 5:真空室、
6:原料室、 7:析出室、 8:原料容器、 9:混合造粒原料、
10:加熱源、 11:析出基体、 12:低級酸化珪素

Claims (6)

  1.  低級酸化珪素粉末の表面に導電性炭素皮膜を有するリチウムイオン二次電池負極材用粉末であって、
     BET法で測定した比表面積が0.3m/gを超えて大きく、40m/g以下であり、
     CuKα線を用いたX線回折装置で測定した場合に、2θ=35.6°±0.1°におけるSiCのピークが存在しないまたはピークの半値幅が2°以上であることを特徴とするリチウムイオン二次電池負極材用粉末。
  2.  前記導電性炭素皮膜の占める割合が0.2質量%以上2.5質量%以下であることを特徴とする請求項1に記載のリチウムイオン二次電池負極材用粉末。
  3.  比抵抗が100000Ωcm以下であることを特徴とする請求項1または2に記載のリチウムイオン二次電池負極材用粉末。
  4.  CuKα線を用いたX線回折装置で測定した場合に、2θ=10°~30°に現れるSiOに由来するハローの最大値P1と、2θ=28.4±0.3°に現れるSi(111)の最強線ピークの値P2が、P2/P1<0.01を満たすことを特徴とする請求項1~3のいずれかに記載のリチウムイオン二次電池負極材用粉末。
  5.  請求項1~4のいずれかに記載のリチウムイオン二次電池負極材用粉末を用いたリチウムイオン二次電池負極またはキャパシタ負極。
  6.  請求項5に記載のリチウムイオン二次電池負極またはキャパシタ負極を用いたリチウムイオン二次電池またはキャパシタ。
PCT/JP2011/003938 2010-07-20 2011-07-08 リチウムイオン二次電池負極材用粉末、リチウムイオン二次電池負極およびキャパシタ負極、ならびに、リチウムイオン二次電池およびキャパシタ WO2012011247A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137003667A KR101495451B1 (ko) 2010-07-20 2011-07-08 리튬 이온 이차 전지 음극재용 분말, 리튬 이온 이차 전지 음극 및 캐패시터 음극, 및, 리튬 이온 이차 전지 및 캐패시터
JP2012525309A JP5497177B2 (ja) 2010-07-20 2011-07-08 リチウムイオン二次電池負極材用粉末、リチウムイオン二次電池負極およびキャパシタ負極、ならびに、リチウムイオン二次電池およびキャパシタ
EP11809423.4A EP2597708A4 (en) 2010-07-20 2011-07-08 POWDER FOR LITHIUM ION SECONDARY ELECTRODE NEGATIVE ELECTRODE MATERIAL, NEGATIVE LITHIUM ION SECONDARY BATTERY ELECTRODE AND NEGATIVE CAPACITOR ELECTRODE, AND LITHIUM ION SECONDARY BATTERY AND CAPACITOR
US13/810,554 US8900749B2 (en) 2010-07-20 2011-07-08 Negative electrode material powder for lithium ion secondary battery, negative electrode for lithium ion secondary battery, negative electrode for capacitor, lithium ion secondary battery, and capacitor
CN2011800354547A CN103003986A (zh) 2010-07-20 2011-07-08 锂离子二次电池负极材料用粉末、锂离子二次电池负极及电容器负极、以及锂离子二次电池及电容器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-162721 2010-07-20
JP2010162721 2010-07-20

Publications (1)

Publication Number Publication Date
WO2012011247A1 true WO2012011247A1 (ja) 2012-01-26

Family

ID=45496681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003938 WO2012011247A1 (ja) 2010-07-20 2011-07-08 リチウムイオン二次電池負極材用粉末、リチウムイオン二次電池負極およびキャパシタ負極、ならびに、リチウムイオン二次電池およびキャパシタ

Country Status (6)

Country Link
US (1) US8900749B2 (ja)
EP (1) EP2597708A4 (ja)
JP (1) JP5497177B2 (ja)
KR (1) KR101495451B1 (ja)
CN (1) CN103003986A (ja)
WO (1) WO2012011247A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012178269A (ja) * 2011-02-25 2012-09-13 Toyota Industries Corp リチウムイオン二次電池用負極活物質、および、その負極活物質を用いたリチウムイオン二次電池
WO2014002356A1 (ja) * 2012-06-25 2014-01-03 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
CN104737337A (zh) * 2012-10-26 2015-06-24 日立化成株式会社 锂离子二次电池用负极材料、锂离子二次电池用负极和锂离子二次电池
JP2016164870A (ja) * 2015-02-26 2016-09-08 信越化学工業株式会社 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法
JP2019012646A (ja) * 2017-06-30 2019-01-24 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107004847B (zh) * 2014-12-15 2019-10-29 株式会社大阪钛技术 锂离子二次电池的负极用粉末和其制造方法
EP3142174B1 (en) 2015-09-14 2021-02-17 Toyota Jidosha Kabushiki Kaisha All-solid-state battery system and method of manufacturing the same
US20180331389A1 (en) * 2015-11-20 2018-11-15 GM Global Technology Operations LLC Lithium ion battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003096449A1 (fr) * 2002-05-08 2003-11-20 Japan Storage Battery Co., Ltd. Pile secondaire a electrolyte non aqueux
US20030215711A1 (en) * 2002-05-17 2003-11-20 Mikio Aramata Conductive silicon composite, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
JP2004063433A (ja) * 2001-12-26 2004-02-26 Shin Etsu Chem Co Ltd 導電性酸化珪素粉末、その製造方法及び該粉末を用いた非水電解質二次電池用負極材
JP2004335195A (ja) * 2003-05-02 2004-11-25 Japan Storage Battery Co Ltd 非水電解質二次電池及び非水電解質二次電池用負極の製造方法
JP2005085717A (ja) * 2003-09-11 2005-03-31 Japan Storage Battery Co Ltd 非水電解質電池
JP2007165108A (ja) * 2005-12-14 2007-06-28 Hitachi Maxell Ltd 非水電解液二次電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4454892B2 (ja) 2001-07-06 2010-04-21 本田技研工業株式会社 車両衝突試験装置
JP2004071542A (ja) * 2002-06-14 2004-03-04 Japan Storage Battery Co Ltd 負極活物質、それを用いた負極、それを用いた非水電解質電池、ならびに負極活物質の製造方法
JP4519592B2 (ja) * 2004-09-24 2010-08-04 株式会社東芝 非水電解質二次電池用負極活物質及び非水電解質二次電池
WO2006123601A1 (ja) * 2005-05-16 2006-11-23 Mitsubishi Chemical Corporation 非水電解質二次電池、その負極、及びその材料
JP5036161B2 (ja) * 2005-10-14 2012-09-26 パナソニック株式会社 リチウムイオン二次電池用負極活物質、その製造方法、およびそれを用いたリチウムイオン二次電池
WO2011057074A2 (en) * 2009-11-06 2011-05-12 Northwestern University Electrode material comprising graphene-composite materials in a graphite network
JP5430761B2 (ja) 2010-06-14 2014-03-05 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池負極材用粉末、リチウムイオン二次電池負極およびキャパシタ負極、ならびに、リチウムイオン二次電池およびキャパシタ
US8551655B2 (en) * 2010-07-07 2013-10-08 Samsung Sdi Co., Ltd. Negative active material for secondary lithium battery and secondary lithium battery
CN103168380B (zh) 2010-10-15 2016-04-20 株式会社大阪钛技术 锂离子二次电池负极材料用粉末、锂离子二次电池负极和电容器负极、以及锂离子二次电池和电容器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004063433A (ja) * 2001-12-26 2004-02-26 Shin Etsu Chem Co Ltd 導電性酸化珪素粉末、その製造方法及び該粉末を用いた非水電解質二次電池用負極材
WO2003096449A1 (fr) * 2002-05-08 2003-11-20 Japan Storage Battery Co., Ltd. Pile secondaire a electrolyte non aqueux
US20030215711A1 (en) * 2002-05-17 2003-11-20 Mikio Aramata Conductive silicon composite, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
JP2004335195A (ja) * 2003-05-02 2004-11-25 Japan Storage Battery Co Ltd 非水電解質二次電池及び非水電解質二次電池用負極の製造方法
JP2005085717A (ja) * 2003-09-11 2005-03-31 Japan Storage Battery Co Ltd 非水電解質電池
JP2007165108A (ja) * 2005-12-14 2007-06-28 Hitachi Maxell Ltd 非水電解液二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2597708A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012178269A (ja) * 2011-02-25 2012-09-13 Toyota Industries Corp リチウムイオン二次電池用負極活物質、および、その負極活物質を用いたリチウムイオン二次電池
JP5909552B2 (ja) * 2012-06-25 2016-04-26 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
WO2014002356A1 (ja) * 2012-06-25 2014-01-03 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
JPWO2014002356A1 (ja) * 2012-06-25 2016-05-30 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
EP2913871A4 (en) * 2012-10-26 2016-06-08 Hitachi Chemical Co Ltd NEGATIVE ELECTRODE MATERIAL FOR LITHIUM-ION SECONDARY BATTERY, NEGATIVE ELECTRODE FOR LITHIUM-ION SECONDARY BATTERY, AND LITHIUM-ION SECONDARY BATTERY
EP2913871A1 (en) * 2012-10-26 2015-09-02 Hitachi Chemical Company, Ltd. Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN104737337A (zh) * 2012-10-26 2015-06-24 日立化成株式会社 锂离子二次电池用负极材料、锂离子二次电池用负极和锂离子二次电池
US10693130B2 (en) 2012-10-26 2020-06-23 Hitachi Chemical Company, Ltd. Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US11251421B2 (en) 2012-10-26 2022-02-15 Showa Denko Materials Co., Ltd. Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2016164870A (ja) * 2015-02-26 2016-09-08 信越化学工業株式会社 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法
JP2019012646A (ja) * 2017-06-30 2019-01-24 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP2021193672A (ja) * 2017-06-30 2021-12-23 昭和電工マテリアルズ株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP7279757B2 (ja) 2017-06-30 2023-05-23 株式会社レゾナック リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池

Also Published As

Publication number Publication date
JP5497177B2 (ja) 2014-05-21
KR20130054347A (ko) 2013-05-24
CN103003986A (zh) 2013-03-27
US20130164621A1 (en) 2013-06-27
JPWO2012011247A1 (ja) 2013-09-09
EP2597708A4 (en) 2014-08-06
EP2597708A1 (en) 2013-05-29
KR101495451B1 (ko) 2015-02-24
US8900749B2 (en) 2014-12-02

Similar Documents

Publication Publication Date Title
JP5584299B2 (ja) リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
KR101513820B1 (ko) 리튬 이온 이차 전지 음극재용 분말, 이것을 이용한 리튬 이온 이차 전지 음극 및 캐패시터 음극, 및 리튬 이온 이차 전지 및 캐패시터
KR101531451B1 (ko) 리튬 이온 이차 전지 음극재용 분말, 리튬 이온 이차 전지 음극 및 캐패시터 음극, 및, 리튬 이온 이차 전지 및 캐패시터
JP5497177B2 (ja) リチウムイオン二次電池負極材用粉末、リチウムイオン二次電池負極およびキャパシタ負極、ならびに、リチウムイオン二次電池およびキャパシタ
WO2010146759A1 (ja) 珪素酸化物およびリチウムイオン二次電池用負極材
WO2020003595A1 (ja) 非水電解質二次電池
JP5430761B2 (ja) リチウムイオン二次電池負極材用粉末、リチウムイオン二次電池負極およびキャパシタ負極、ならびに、リチウムイオン二次電池およびキャパシタ
JP5662485B2 (ja) リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
WO2011148569A1 (ja) リチウムイオン二次電池負極材用粉末およびその製造方法
JP5909552B2 (ja) リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
JP5584302B2 (ja) リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
US10497967B2 (en) Negative-electrode active material for non-aqueous secondary battery and non-aqueous secondary battery
US10559846B2 (en) Negative-electrode active material for non-aqueous secondary battery and non-aqueous secondary battery
JP2020149794A (ja) 非水系リチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11809423

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012525309

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13810554

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011809423

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137003667

Country of ref document: KR

Kind code of ref document: A