WO2012008352A1 - 断熱耐火物及びその製造方法 - Google Patents

断熱耐火物及びその製造方法 Download PDF

Info

Publication number
WO2012008352A1
WO2012008352A1 PCT/JP2011/065567 JP2011065567W WO2012008352A1 WO 2012008352 A1 WO2012008352 A1 WO 2012008352A1 JP 2011065567 W JP2011065567 W JP 2011065567W WO 2012008352 A1 WO2012008352 A1 WO 2012008352A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
insulating refractory
particles
refractory
pore
Prior art date
Application number
PCT/JP2011/065567
Other languages
English (en)
French (fr)
Inventor
辰己 津山
謙一郎 古賀
打田 龍彦
渡邊 浩二
光宣 村島
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to KR1020127024461A priority Critical patent/KR20130097059A/ko
Priority to CN2011800149415A priority patent/CN102811973A/zh
Publication of WO2012008352A1 publication Critical patent/WO2012008352A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0006Linings or walls formed from bricks or layers with a particular composition or specific characteristics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/482Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/04Casings; Linings; Walls; Roofs characterised by the form, e.g. shape of the bricks or blocks used
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00431Refractory materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/725Metal content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/728Silicon content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9692Acid, alkali or halogen resistance

Definitions

  • the present invention relates to a heat insulating refractory and a method for manufacturing the same.
  • a heat insulating refractory having a purity of about 70 to 99% of alumina is often used as a heat insulating member for a furnace wall or ceiling of a kiln furnace for firing a workpiece containing a large amount of alkali components.
  • the purity of alumina in the heat-insulating refractory is low, it may be necessary to apply a high-purity alumina coat to the surface of the refractory in order to suppress deterioration of the refractory due to the alkali component. It takes time to perform such alumina coating. Further, even when a refractory having a high alumina purity is used, a reaction with an alkali component is unavoidable, and it cannot be said to be sufficient for suppressing deterioration of the refractory.
  • heat insulation refractories are required to be lighter.
  • a high-alumina, high-alumina heat-insulating refractory having a bulk specific gravity after firing of 1.35 to 1.60 and an alumina content ratio of 97% by weight or more has been proposed (see Patent Document 1).
  • This refractory is fired using a raw material powder containing 35 to 60% by weight of high-purity hollow alumina and containing 2.0 to 7.0% by weight of particles having an outer diameter of 3.360 mm or more. It is a thing.
  • this refractory contains a relatively large amount of silica, and it cannot be said that the purity of alumina is sufficiently high. As a result, the reaction between the silica and the alkali component derived from the workpiece tends to proceed, and the refractory tends to deteriorate. Moreover, since it cannot be said that the porosity is high, it will become heavy. Moreover, it becomes disadvantageous also in terms of heat capacity. In other words, energy efficiency is poor. Furthermore, since heat conductivity is high, it is inferior to heat insulation.
  • An object of the present invention is to provide a heat-insulating refractory that can eliminate various drawbacks of the above-described conventional technology.
  • the present invention is made of alumina ceramics or zirconia ceramics, does not contain silica, or even if it contains 1% by weight or less, has a porosity of 65 to 85%, and has a compressive strength of 2 MPa or more. It provides the heat insulation refractory characterized by these.
  • this invention is as a suitable manufacturing method of the said heat insulation refractory, A kneaded product obtained by kneading alumina particles or zirconia particles, a water-soluble polymer material, a polysaccharide, pore-forming particles that can be lost by firing, and a liquid medium is press-molded at a pressure at which the pore-forming particles are not destroyed. A molded product is obtained, and then the molded product is fired under conditions where the pore-forming particles disappear.
  • a heat-insulating refractory having sufficient strength for actual use is provided while the reaction with the alkali component is suppressed and further weight reduction is achieved.
  • FIG. 1 (a) thru
  • FIG. 2 is a schematic diagram showing a stacked structure of the heat insulating refractories shown in FIG. 3 (a) to 3 (c) are diagrams showing another embodiment of the heat-insulating refractory according to the present invention.
  • FIG. 4 is a schematic diagram showing a stacked structure of the heat insulating refractories shown in FIG.
  • the heat-insulating refractory of the present invention is mainly composed of high-purity alumina ceramics or zirconia ceramics.
  • the heat-insulating refractory of the present invention mainly composed of these ceramics has excellent alkali resistance.
  • the ratio of alumina or zirconia in the heat insulating refractory is required to be 99% by weight or more, preferably 99.5% by weight or more from the viewpoint of suppressing the reaction with the alkali component. That is, the heat-insulating refractory of the present invention is of high purity alumina or high purity zirconia.
  • alumina or a zirconia there is no restriction
  • high-purity artificial alumina or artificial zirconia may be used as a raw material for the heat insulating refractory.
  • alumina or the like derived from natural raw materials such as clay there is a possibility that impurities are mixed.
  • the ratio of alumina or zirconia in the heat-insulating refractory can be measured, for example, by photoelectric photometric emission spectrometry.
  • the zirconia ceramics include stabilized zirconia ceramics.
  • Stabilized zirconia ceramics contain, for example, CaO, Y 2 O 3 , MgO or the like as a stabilizer. In the present invention, these stabilizers are also considered as a part of zirconia ceramics and are excluded from impurities.
  • the heat-insulating refractory according to the present invention is preferably made of high-purity alumina or high-purity zirconia. That is, it is preferable that impurities are not included as much as possible.
  • the amount of the heat-insulating refractory according to the present invention is very small even if it does not contain or contains silica. This is because silica easily reacts with an alkali component, thereby easily producing a low-melting-point substance that causes deterioration.
  • the ratio of silica in the heat insulating refractory is required to be 1% by weight or less, and preferably 0.5% by weight or less.
  • oxides of alkali metals such as sodium and potassium are substances that affect the deterioration of heat-insulating refractories.
  • Alkali metal oxides promote the vitrification of heat-insulating refractories and cause the creep performance of heat-insulating refractories to deteriorate.
  • the heat insulating refractory of the present invention does not contain an alkali metal oxide. Even if the heat-insulating refractory contains an alkali metal oxide, it is advantageous that the amount is as small as possible. Specifically, it is preferable to suppress the ratio of the alkali metal oxide (the ratio of the total amount of Na 2 O and K 2 O) in the heat insulating refractory to 0.3% by weight or less, particularly 0.2% by weight or less.
  • iron oxide is a substance that affects the deterioration of heat insulating refractories.
  • the heat-insulating refractory of the present invention does not contain iron oxide. Even if the heat-insulating refractory contains iron oxide, the amount is advantageously as small as possible. Specifically, it is preferable to keep the ratio of iron oxide in the heat insulating refractory (the ratio of the total amount of various iron oxides) to 0.5% by weight or less, particularly 0.2% by weight or less.
  • the ratio of the total of silica, alkali metal oxide and iron oxide in the heat-insulating refractory of the present invention is 1.3% by weight or less, particularly 0.7% by weight or less. It is preferable to suppress.
  • the ratio of silica, alkali metal oxide and iron oxide contained in the heat insulating refractory can be measured by, for example, photoelectric photometric emission spectroscopic analysis.
  • the adiabatic refractory of the present invention is characterized by a high porosity.
  • the heat-insulating refractory according to the present invention has a very high porosity of 65 to 85%, preferably 70 to 80%.
  • the upper limit value of the porosity of the heat-insulating refractory is determined in consideration of the weight reduction of the refractory and the balance between heat insulation and strength. From this viewpoint, in the present invention, the upper limit value of the porosity of the heat insulating refractory is set to 85%.
  • the porosity of the heat-insulating refractory can be calculated from, for example, a formula of (1 ⁇ bulk specific gravity / apparent specific gravity) ⁇ 100.
  • the bulk specific gravity in the above formula is calculated by measuring the weight of the heat insulating refractory and dividing by the volume obtained from the measurement of the dimensions of the heat insulating refractory.
  • the apparent specific gravity is a value obtained by dividing the mass of the heat insulating refractory by the mass of water at 4 ° C. having the same volume as the apparent volume (JIS R2001), and is measured by the Archimedes method.
  • pore-forming particles that can be lost by firing may be used as raw materials, or hollow particles may be used.
  • the porosity can be within the above-described range without using hollow particles (that is, even when solid particles are used).
  • the heat-insulating refractory of the present invention is also characterized by having sufficient strength for actual use despite its high porosity.
  • the compressive strength of the heat insulating refractory measured in accordance with JIS R2615 is 2 MPa or more, preferably 3 MPa or more. That is, the heat-insulating refractory of the present invention satisfies the contradictory requirements of high porosity and high compressive strength at the same time. If the compressive strength of the heat-insulating refractory is 2 MPa or more, when the heat-insulating refractory is stacked to form a stacked structure to be described later, it is possible to effectively prevent inconvenience such as crushing in each cut-off refractory. Can do.
  • the heat insulating refractory according to the present invention has a bending strength of the heat insulating refractory measured according to JIS R2619 of 0.5 MPa or more, particularly preferably 1 MPa or more. If the bending strength of the heat insulating refractories is 0.5 MPa or more, it is possible to effectively prevent inconveniences such as breakage of the respective heat insulating refractories in the stacked structure.
  • a method described later may be employed to manufacture the heat-insulating refractory.
  • the heat insulating refractory of the present invention generally has a predetermined three-dimensional shape.
  • the heat-insulating refractory of the present invention is used for the lining or backing of various furnaces, it is preferable to assemble a plurality of the refractories having a predetermined three-dimensional shape.
  • polyhedron shapes such as standard shape, standard horizontal edge shape, standard vertical edge shape, standard edge shape, etc., which are standard brick shapes defined in JIS R2101 shall be adopted. Can do.
  • the irregular shape used for a joint can also be employ
  • the shape for an arch structure can also be employ
  • a shape for example, a horizontal hull, a vertical hull, a drum shape (fan shape), a longitudinal hug, a forehead hug, a body hug, and the like can be mentioned. Details of the various shapes described above are described in, for example, “Kiln Furnace Engineering” (first edition, issued in April 1983) issued by the Refractory Technology Association.
  • the heat-insulating refractory 10 has a rectangular parallelepiped (cuboid) shape, and faces opposite to other heat-insulating refractories adjacent in the assembled state, for example, the upper surface 11 and the lower surface 12 in the assembled state.
  • One or two or more recessed portions 21 and 22 can be formed on the surface corresponding to.
  • This heat-insulating refractory 10 has an upper surface 11 and a lower surface 12 having a longitudinal direction X and a width direction Y orthogonal thereto, and the length in the longitudinal direction X is approximately twice the length in the width direction Y. .
  • Each recess 21 and 22 does not penetrate to the surface opposite to the surface on which it is formed.
  • the depth of each recessed part 21, 22 is less than 1 ⁇ 2 of the thickness T of the heat insulating refractory 10.
  • Each of the recessed portions 21 and 22 has the same shape and has a cylindrical shape. However, the recessed portions 21 and 22 do not need to have the same shape, and various different shapes may be employed depending on the specific use of the heat-insulating refractory and the assembly position in the furnace.
  • the recessed portion 21 formed on the upper surface 11 and the recessed portion 22 formed on the lower surface 12 are arranged so that the positions of the recessed portions 21 and 22 do not overlap in the plan view of the heat-insulating refractory 10. Yes. That is, the upper surface 11 corresponding to the position where the recessed portion 22 is formed on the lower surface 12 and the recessed portion 22 is not formed at the position of the lower surface 12 corresponding to the position where the recessed portion 21 is formed on the upper surface 11. No recess is formed at the position of.
  • the specific formation positions of the recessed portions 21 and 22 on the upper surface 11 and the lower surface 12 of the heat insulating refractory 10 are as follows. That is, as shown in FIG. 1, the upper surface 11 (lower surface 12) is virtually divided into left and right by a center line L that bisects the upper surface 11 (lower surface 12) of the heat insulating refractory 10 in the width direction Y. Considering the left half quadrangle 11a and the right half quadrangle 11b formed by equally dividing, the center of the recess 21 is located on one diagonal line (not shown) of each quadrangle 11a, 11b. The center of the recessed portion 22 is located on another diagonal line (not shown).
  • the sum of the volumes of the recessed portions 21 and 22 formed in the heat insulating refractory 10 is 10 to 40% of the apparent volume of the heat insulating refractory 10. In particular, it is preferably 20 to 30%. Further, from the same viewpoint, the volume of each of the recessed portions 21 and 22 is preferably 2 to 40%, particularly 5 to 40%, of the apparent volume of the heat insulating refractory 10.
  • a stacked structure as shown in FIG. 2 can be adopted. That is, the heat insulating refractories 10 are arranged in a row along the longitudinal direction X to form the first stage 31, and the second stage 32 is formed thereon in the same manner. In this case, the second stage 32 is arranged such that the arrangement of the heat insulating refractory 10 is shifted by 1/2 pitch with respect to the first stage 31.
  • the recessed portions 21 and 22 in each heat insulating refractory 10 are not opposed to the recessed portions 21 and 22 in the heat insulating refractory 10 adjacent in the vertical direction.
  • FIG. 3 shows another form of the heat insulating refractory 10.
  • the recessed portion 21 formed on the upper surface 11 and the recessed portion 22 formed on the lower surface 12 are arranged so that the positions of the recessed portions 21 and 22 do not overlap in the plan view of the heat-insulating refractory 10. Yes.
  • a concave portion 21 is formed on the upper surface 11 corresponding to the quadrangle 11a, and a concave portion 22 is formed on the lower surface 12 corresponding to the right half quadrilateral 11b.
  • the centers of the two recesses 21 (22) are positioned on each of the two diagonals, and one more recess at the intersection of the two diagonals.
  • the center of 21 (22) is located. That is, a total of five recessed portions 21 (22) are formed in each half quadrilateral 11a (11b).
  • FIG. 3 is stacked, for example, a stacked structure as shown in FIG. 4 can be employed.
  • This stacked structure is the same as the stacked structure shown in FIG. 2 described above.
  • the arrangement of the heat insulating refractory 10 is shifted by 1/2 pitch in the second stage 32 with respect to the first stage 31. Therefore, the recessed portions 21 and 22 in each heat insulating refractory 10 are not opposed to the recessed portions 21 and 22 in the heat insulating refractory 10 adjacent in the vertical direction.
  • This production method is roughly divided into (i) a step of obtaining a molded body using a kneaded product containing alumina particles or zirconia particles, and (b) a step of firing the molded body to obtain a target refractory.
  • a step of obtaining a molded body using a kneaded product containing alumina particles or zirconia particles and (b) a step of firing the molded body to obtain a target refractory.
  • alumina particles or zirconia particles, a water-soluble polymer material, a polysaccharide, pore-forming particles that can be lost by firing, and a liquid medium are kneaded to obtain a kneaded product.
  • high-purity alumina particles or zirconia particles as components constituting the kneaded product.
  • the purity of the zirconia particles is the total value of the zirconia particles and the stabilizer. Specifically, it is preferable to use those having a purity of 98.5% by weight or more, particularly 99.0% by weight or more.
  • Such high purity alumina particles or zirconia particles are readily available commercially.
  • alumina particles or zirconia particles it is preferable to use a particle having a relatively large particle size as an aggregate material and a particle having a relatively small particle size as a bond.
  • Alumina particles or zirconia particles as an aggregate raw material preferably have a particle size of 30 to 500 ⁇ m, particularly 45 to 300 ⁇ m from the viewpoint of maintaining porosity and strength.
  • the alumina particles or zirconia particles as a bond preferably have a particle size of 0.1 to 30 ⁇ m, particularly 1 to 25 ⁇ m.
  • the particle size of the alumina particles or zirconia particles is measured by a microtrack or a laser type particle size distribution analyzer.
  • the ratio between the aggregate raw material and the bond in the kneaded product is 50 to 90% by weight of the aggregate / 50 to 10% by weight of the bond, particularly the aggregate 60 from the viewpoint of increasing the porosity and maintaining the strength of the heat-insulating refractory. It is preferable to set it to ⁇ 80 wt% / bond 40 to 20 wt%.
  • the shape of the alumina particles or zirconia particles is not particularly critical in the present production method, and various commercially available shapes can be used.
  • the pore-forming particles that can be eliminated by firing are used to increase the porosity of the intended heat-insulating refractory.
  • the pore-forming particles can be lost by heating in air.
  • a material that starts at least disappearing at a heating temperature of 150 ° C. or higher are composed of organic polymer compounds such as acrylic acid ester, polyimide, polystyrene, polyethylene, polypropylene, and ethylene vinyl acetate.
  • disappearance as used herein means that the residue is decomposed by oxidation by heating, and no residue remains.
  • the particle size of the pore-forming particles affects the porosity and strength of the intended heat-insulating refractory.
  • the pore-forming particles preferably have a particle size of 0.5 to 5 mm, particularly 1 to 4 mm.
  • the particle diameter of the pore-forming particles is measured by the same method as the method for measuring the particle diameter of the alumina particles or zirconia particles described above.
  • the shape of the pore-forming particles also affects the bulk specific gravity and porosity of the intended heat-insulating refractory. From this viewpoint, it is preferable to use pore-forming particles whose shape is closer to a true sphere.
  • the ratio of the pore-forming particles contained in the kneaded product is 100 to 300 cm 3, particularly 150 to 250 cm 3 with respect to 100 g of alumina particles or zirconia particles, from the viewpoint of the balance between the porosity and strength of the intended heat-insulating refractory. It is preferable.
  • the water-soluble polymer material and polysaccharide contained in the kneaded product are used to enhance the shape retention of a molded product formed from the kneaded product.
  • the ratio of the pore-forming particles is increased, the shape retention in the case of molding a molded body from the kneaded product is lowered, and it is difficult to obtain a molded body having a desired shape. Further, even when the press pressure is lowered, the shape retention of the molded body is lowered and it is difficult to obtain the desired molded body.
  • the molded body can be produced even if the ratio of the pore-forming particles contained in the kneaded product is increased. It can be molded successfully, and the molded body can be molded successfully even when the press pressure is low. Furthermore, the firing step (b) described later can be carried out successfully.
  • a water-soluble polymer material that exhibits a high binding force even when used in a small amount.
  • polyvinyl alcohol, cellulose, agar, gelatin or the like can be used.
  • a suitable material is selected from the same viewpoint as the water-soluble polymer material.
  • starch, glycogen, etc. can be used.
  • the water-soluble polymer material exhibits a necessary and sufficient binding force with a minimal amount of use.
  • the proportion of the water-soluble polymer material contained in the kneaded product is preferably 5 to 15% by weight, particularly 8 to 12% by weight.
  • the ratio of the polysaccharide contained in the kneaded product is preferably 0.1 to 3% by weight, particularly 0.5 to 2% by weight.
  • water As the liquid medium contained in the kneaded product, water is basically used.
  • the above-described components are uniformly mixed to obtain a desired kneaded product.
  • the method similar to the method used in the said technical field can be used.
  • a molded body having a predetermined shape is obtained.
  • press molding in which a kneaded product is filled in a mold having a predetermined shape and the kneaded product is pressed at a predetermined pressure can be used.
  • the press molding is preferably performed at a pressure with an upper limit that the pore-forming particles contained in the kneaded product are not destroyed. This pressure depends on the type and particle size of the pore-forming particles. As a general range, 50 to 500 kg / cm 2 is preferably employed.
  • the molded body thus obtained is taken out of the mold or from the mold and subjected to a drying process.
  • the liquid medium is removed by means such as heating or infrared irradiation. Drying is performed until the ratio of the liquid medium contained in the molded body is preferably 1% by weight, more preferably 0.5% by weight or less.
  • the dried compact is subjected to the firing step (b).
  • Firing can be performed in air. Firing is performed under conditions where pore-forming particles contained in the molded body disappear.
  • the firing conditions depend on the type and particle size of the pore-forming particles, but as a general condition, the pore-forming particles disappear by holding the temperature of 1400 to 1800 ° C. for 1 to 10 hours, and the alumina particles Alternatively, the zirconia particles are sufficiently sintered.
  • This refractory has a high purity of alumina or zirconia and has a low content of impurities such as silica and alkali metal oxides that cause deterioration of the refractory. It is particularly preferably used as an adiabatic refractory. For example, it is suitably used in a kiln for firing alkaline ion battery materials. In addition to this application, it is also suitably used in electronic component firing furnaces and the like.
  • Example 1 (1) Preparation of kneaded material As an aggregate raw material, 70 parts of solid alumina particles (purity 99.7%) having an average particle diameter of 100 ⁇ m were used. Further, 30 parts of solid alumina particles (purity 99.8%) having an average particle diameter of 5 ⁇ m were used as bonds. One part of polyvinyl alcohol was used as the water-soluble polymer material. Two parts of starch was used as the polysaccharide. Styrene beads having an average particle size of 3mm as the pore-forming particles were used 150 cm 3 with respect to the alumina particles 100 g. These were uniformly mixed with 10 parts of water to obtain a kneaded product.
  • Example 2 A heat-insulating refractory having the shape shown in FIG. 1 was obtained in the same manner as in Example 1 using the conditions shown in Table 1 below.
  • Example 3 60 parts of solid CaO-stabilized zirconia particles (purity: ZrO 2 95.6%, CaO 3.7%) as an aggregate raw material with an average particle diameter of 150 ⁇ m, and CaO-stabilized zirconia with a solid average particle diameter of 2 ⁇ m as a bond particles (purity: ZrO 2 95.6%, CaO3.7% ) 100cm 3 using 40 parts, 2 parts starch as polysaccharide, a styrene bead particles having an average particle size of 3mm as the pore-forming particles with respect to the zirconia particles 100g
  • a heat-insulating refractory having the shape shown in FIG. 1 was obtained in the same manner as in Example 1 except that press molding was performed at a pressure of 80 kg / cm 2 .
  • Comparative Example 3 Alumina refractory heat insulating brick LBK-28 (trade name) manufactured by Isolite Industry Co., Ltd. was used as Comparative Example 3.
  • Lithium carbonate Li 2 CO 3
  • Li 2 CO 3 Lithium carbonate
  • the crucible was heated at 1000 ° C. for 10 hours. Then, it cooled to room temperature and removed the heat insulation refractory from the crucible. The state of the surface of the heat-insulating refractory removed from the surface facing the lithium carbonate was observed, and the alkali resistance of the heat-insulating refractory was evaluated.
  • the evaluation criteria are as follows.
  • the heat-insulating refractories of each Example have a higher porosity than the heat-insulating refractories of Comparative Examples 1 and 2.
  • the heat-insulating refractory of each example shows a lower value than the heat-insulating refractories of Comparative Examples 1 and 2, but has strength that does not interfere with actual use.
  • the heat-insulated refractory of Comparative Example 3 has a relatively high porosity and a large compressive strength and bending strength, but the purity of alumina is low and the amount of impurities such as silica is large. Compared with the heat insulation refractory material 3, the alkali resistance was inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

 本発明の断熱耐火物は、アルミナ又はジルコニアセラミックスからなり、シリカを含まないか、又は含んだとしても1重量%以下であり、気孔率が65~85%であり、かつ圧縮強さが2MPaであることを特徴とする。この断熱耐火物は、アルミナ粒子又はジルコニア粒子、水溶性高分子材料、多糖類、焼成によって消失可能な造孔粒子、及び液媒体を混練して得られた混練物を、該造孔粒子が破壊されない圧力でプレス成形して成形体を得;次いで該造孔粒子が消失する条件下に該成形体を焼成することで好適に製造される。

Description

断熱耐火物及びその製造方法
 本発明は、断熱耐火物及びその製造方法に関する。
 窯炉等の炉壁や天井には種々の耐火物が使用されている。例えば、アルカリ成分を多く含有するワーク焼成用の窯炉の炉壁や天井の断熱部材としては、アルミナの純度が70~99%程度の断熱耐火物が多く使用されている。断熱耐火物におけるアルミナの純度が低い場合には、アルカリ成分による耐火物の劣化を抑えるために、該耐火物の表面に高純度のアルミナコートを施す必要が生じる場合がある。このようなアルミナコートを行うには手間がかかる。また、アルミナの純度が高い耐火物を用いた場合であってもアルカリ成分との反応は避けられず、耐火物の劣化を抑えるには十分とは言えなかった。
 アルカリ成分との反応に起因する劣化の防止に加え、断熱耐火物にはその軽量化が求められている。例えば、焼成後の嵩比重が1.35~1.60であり、かつアルミナ含有比率が97重量%以上である高温用高アルミナ質断熱耐火物が提案されている(特許文献1参照)。この耐火物は、高純度中空アルミナが35~60重量%配合され、該中空アルミナの外径3.360mm以上の粒子が2.0~7.0重量%含有される原料粉末を用いて焼成されたものである。
 しかしこの耐火物は、シリカを比較的多く含み、アルミナの純度が十分に高いとは言えない。その結果、シリカと、ワークに由来するアルカリ成分との反応が進みやすく、耐火物の劣化が起こりやすい。また、気孔率が高いとは言えないので重くなってしまう。また、熱容量的にも不利になる。すなわち省エネ効率が悪い。更に、熱伝導率が高いことから断熱性にも劣る。
特開平10-072269号公報
 本発明の課題は、前述した従来技術が有する種々の欠点を解消し得る断熱耐火物を提供することにある。
 本発明は、アルミナセラミックス又はジルコニアセラミックスからなり、シリカを含まないか、又は含んだとしても1重量%以下であり、気孔率が65~85%であり、かつ圧縮強さが2MPa以上であることを特徴とする断熱耐火物を提供するものである。
 また本発明は、前記の断熱耐火物の好適な製造方法として、
 アルミナ粒子又はジルコニア粒子、水溶性高分子材料、多糖類、焼成によって消失可能な造孔粒子、及び液媒体を混練して得られた混練物を、該造孔粒子が破壊されない圧力でプレス成形して成形体を得、次いで
 該造孔粒子が消失する条件下に該成形体を焼成することを特徴とする断熱耐火物の製造方法を提供するものである。
 本発明によれば、アルカリ成分との反応が抑制され、かつ一層の軽量化が図られながら実使用に十分な強度を有する断熱耐火物が提供される。
図1(a)ないし(c)は、本発明の断熱耐火物の一実施形態を示す図である。 図2は、図1に示す断熱耐火物の積み上げ構造を示す模式図である。 図3(a)ないし(c)は、本発明の断熱耐火物の別の実施形態を示す図である。 図4は、図3に示す断熱耐火物の積み上げ構造を示す模式図である。
 以下本発明を、その好ましい実施形態に基づき説明する。本発明の断熱耐火物は、高純度のアルミナセラミックス又はジルコニアセラミックスを主成分とするものである。これらのセラミックスを主成分とする本発明の断熱耐火物は耐アルカリ性に優れたものとなる。断熱耐火物におけるアルミナ又はジルコニアの割合は、アルカリ成分との反応を抑制する観点から99重量%以上とすることが必要であり、好ましくは99.5重量%以上である。すなわち、本発明の断熱耐火物は高純度アルミナ質又は高純度ジルコニア質のものである。アルミナ又はジルコニアの割合の上限値に特に制限はなく、高ければ高いほど、断熱耐火物とアルカリ成分との反応の抑制に効果的である。本発明の断熱耐火物におけるアルミナ又はジルコニアの純度を高めるためには、例えば断熱耐火物の原料として高純度の人工アルミナ又は人工ジルコニアを用いればよい。これに対して、粘土等の天然原料由来のアルミナ等を用いると、不純物の混入の可能性がある。断熱耐火物中のアルミナ又はジルコニア割合は、例えば光電測光式発光分光分析法によって測定することができる。
 なお断熱耐火物がジルコニアセラミックスからなる場合、該ジルコニアセラミックスには安定化ジルコニアセラミックスも包含される。安定化ジルコニアセラミックスには、例えばCaO、Y23、MgO等が安定化剤として含まれている。本発明においてはこれらの安定化剤もジルコニアセラミックスの一部として考え、不純物から除かれる。
 上述のとおり、本発明の断熱耐火物は、高純度のアルミナ質又は高純度のジルコニア質のものであることが好ましい。つまり、不純物を極力含んでいないことが好ましい。特に、断熱耐火物の劣化に影響を与える観点から、本発明の断熱耐火物は、シリカを含んでいないか、又は含んでいる場合であっても、その量はごく少ないものである。シリカはアルカリ成分と反応しやすく、それによって劣化の原因となる低融点物質が生成しやすいからである。断熱耐火物がシリカを含んでいる場合、断熱耐火物におけるシリカの割合は1重量%以下とすることが必要であり、好ましくは0.5重量%以下に抑える。
 シリカと同様に、ナトリウムやカリウム等のアルカリ金属の酸化物も、断熱耐火物の劣化に影響を与える物質である。アルカリ金属酸化物は断熱耐火物のガラス化を促進し、断熱耐火物のクリープ性能の低下を招く。この観点から、本発明の断熱耐火物はアルカリ金属酸化物も含んでいないことが好ましい。また、断熱耐火物がアルカリ金属酸化物を含んでいる場合であってもその量は極力少ないことが有利である。具体的には、断熱耐火物におけるアルカリ金属酸化物の割合(Na2OやK2Oの合計量の割合)を0.3重量%以下、特に0.2重量%以下に抑えることが好ましい。
 また、シリカと同様に、酸化鉄も、断熱耐火物の劣化に影響を与える物質である。この観点から、本発明の断熱耐火物は酸化鉄も含んでいないことが好ましい。また、断熱耐火物が酸化鉄を含んでいる場合であってもその量は極力少ないことが有利である。具体的には、断熱耐火物における酸化鉄の割合(各種の酸化鉄の合計量の割合)を0.5重量%以下、特に0.2重量%以下に抑えることが好ましい。
 断熱耐火物の劣化の一層の抑制の観点から、本発明の断熱耐火物におけるシリカ、アルカリ金属酸化物及び酸化鉄の総和の割合は、1.3重量%以下、特に0.7重量%以下に抑えることが好ましい。
 断熱耐火物に含まれるシリカ、アルカリ金属酸化物及び酸化鉄の割合は、例えば光電測光式発光分光分析法によって測定することができる。
 本発明の断熱耐火物は、気孔率が高いことによって特徴付けられる。具体的には、本発明の断熱耐火物の気孔率は65~85%という非常に高いものであり、好ましくは70~80%である。断熱耐火物の気孔率が65%に満たない場合には、該耐火物が重くなってしまう。また熱容量や熱伝導率の点からも不利になってしまう。断熱耐火物の気孔率の上限値は、該耐火物の軽量化及び断熱化と強度とのバランスを考慮して決定される。この観点から、本発明においては断熱耐火物の気孔率の上限値を85%に設定している。断熱耐火物の気孔率は、例えば
(1-嵩比重/見掛比重)×100の計算式から算出することができる。
 前記の式における嵩比重は、断熱耐火物の重量を測定し、また断熱耐火物の寸法の測定から得られた体積で除すことで算出される。また、見掛比重は、断熱耐火物の質量を、その見掛容積と同じ容積を持つ4℃の水の質量で割った値であり(JIS R2001)、アルキメデス法によって測定される。
 本発明の断熱耐火物の気孔率を上述した範囲内にするためには、例えば該耐火物の製造において、原料として焼成によって消失可能な造孔粒子を用いたり、中空粒子を用いたりすればよい。特に、後述する製造方法によれば、中空粒子を用いなくても(つまり中実粒子を用いても)、気孔率を上述した範囲内にすることができる。
 本発明の断熱耐火物は、気孔率が高いにもかかわらず、実使用に十分な強度を有することによっても特徴付けられる。具体的には、JIS R2615に準じて測定された、断熱耐火物の圧縮強さが2MPa以上であり、好ましくは3MPa以上である。つまり本発明の断熱耐火物は、高気孔率と高圧縮強さという二律背反の要求を同時に満たすものである。断熱耐火物の圧縮強さが2MPa以上あれば、該断熱耐火物を積み上げて、後述する積み上げ構造を形成した場合に、各断耐火物に圧潰等の不都合が生じることを効果的に防止することができる。
 前記の圧縮強さと同様の観点から、本発明の断熱耐火物は、JIS R2619に準じて測定された断熱耐火物の曲げ強さが0.5MPa以上であり、特に1MPa以上であることが好ましい。断熱耐火物の曲げ強さが0.5MPa以上であれば、前記の積み上げ構造において、各断熱耐火物の破損等の不都合が生じることを効果的に防止することができる。
 前記の圧縮強さや曲げ強さを有する断熱耐火物を得るためには、例えば後述する方法を採用して断熱耐火物を製造すればよい。
 本発明の断熱耐火物は、一般に所定の三次元形状をしている。本発明の断熱耐火物を各種の炉の内張りや裏張りに用いる場合には、所定の三次元形状を有する該耐火物を複数個組み上げていくことが好ましい。具体的な形状としては、例えばJIS R2101に規定された標準形れんが形状である並形、標準横ぜり形、標準縦ぜり形、標準ばち形等を始めとする多面体形状を採用することができる。また、継ぎ手に用いられる異形の形状を採用することもできる。そのような形状としては、例えば相欠継、実継、ほぞ継、太ほぞ継、大入継などが挙げられる。更に、アーチ構造用の形状を採用することもできる。そのような形状としては、例えば横ぜり、縦ぜり、ばち形(扇形)、長手抱き、小口抱き、胴付抱きなどが挙げられる。以上の各種形状の詳細は、例えば耐火物技術協会発行の「窯炉工学」(第1版、1983年4月発行)に記載されている。
 上述の各種の形状を有する本発明の断熱耐火物を組み上げる場合、該耐火物に、へこみ、ザグリ、穴等の凹陥部を形成することが、一層の軽量化及び断熱化の観点から好ましい。例えば図1(a)に示すように、断熱耐火物10を直六面体(直方体)の形状となし、組み上げ状態において隣り合う他の断熱耐火物との対向面、例えば組み上げ状態における上面11及び下面12に相当する面に1又は2以上の凹陥部21,22を形成することができる。この断熱耐火物10は、その上面11及び下面12が長手方向Xとそれに直交する幅方向Yを有し、長手方向Xの長さが、幅方向Yの長さの概ね2倍になっている。
 各凹陥部21,22はそれが形成されている面と反対側の面までは貫通していない。各凹陥部21,22の深さは、断熱耐火物10の厚みTの1/2未満になっている。各凹陥部21,22はいずれも同形であり、円柱状の形状をしている。尤も、各凹陥部21,22は同じ形状であることを要せず、断熱耐火物の具体的な用途や、炉内での組み上げ位置に応じて種々の異なる形状を採用してもよい。
 上面11に形成されている凹陥部21と、下面12に形成されている凹陥部22とは、断熱耐火物10の平面視において、該凹陥部21,22の位置が重ならないように配置されている。つまり、上面11における凹陥部21が形成されている位置に対応する下面12の位置には凹陥部が形成されておらず、かつ下面12における凹陥部22が形成されている位置に対応する上面11の位置にも凹陥部が形成されていない。
 断熱耐火物10の上面11及び下面12における凹陥部21,22の具体的な形成位置は次のとおりである。すなわち、図1に示すように、断熱耐火物10の上面11(下面12)を幅方向Yに沿って左右に二等分する中心線Lによって仮想的に上面11(下面12)を左右に二等分して形成される左半部の四角形11aと、右半部の四角形11bを考えた場合、各四角形11a,11bの一の対角線(図示せず)上に凹陥部21の中心が位置しており、他の対角線(図示せず)上に凹陥部22の中心が位置している。
 軽量化及び断熱化と強度とのバランスの点から、断熱耐火物10においては、それに形成されている凹陥部21,22の体積の総和は、断熱耐火物10の見かけの体積の10~40%、特に20~30%であることが好ましい。また、同様の観点から、個々の凹陥部21,22の体積は、断熱耐火物10の見かけの体積の2~40%、特に5~40%であることが好ましい。
 図1に示す断熱耐火物10を積み上げる場合には、例えば図2に示すような積み上げ構造を採用することができる。すなわち、断熱耐火物10を、その長手方向Xに沿って列をなすように並べて第1段31を形成し、その上に、同様の並べ方で第2段32を形成する。この場合、第2段32は、第1段31に対して、断熱耐火物10の配置が1/2ピッチずれるようにする。本図に示す積み上げ構造においては、各断熱耐火物10における凹陥部21,22は、上下で隣り合う断熱耐火物10における凹陥部21,22と対向していない状態になっている。
 図3には、断熱耐火物10の別の形態が示されている。なお、同図に示す断熱耐火物10に関して特に説明しない点については、図1に示す断熱耐火物10に関する説明が適宜適用される。上面11に形成されている凹陥部21と、下面12に形成されている凹陥部22とは、断熱耐火物10の平面視において、該凹陥部21,22の位置が重ならないように配置されている。具体的には、中心線Lによって仮想的に上面11(下面12)を左右に二等分して形成される左半部の四角形11aと、右半部の四角形11bを考えた場合、左半部の四角形11aに対応する上面11に凹陥部21が形成されており、右半部の四角形11bに対応する下面12に凹陥部22が形成されている。各半部の四角形11a,11bにおいては、2本の対角線それぞれの上に2個の凹陥部21(22)の中心が位置しており、かつ2本の対角線の交点に更に1個の凹陥部21(22)の中心が位置している。つまり、各半部の四角形11a(11b)においては、合計5個の凹陥部21(22)が形成されている。
 図3に示す断熱耐火物10を積み上げる場合には、例えば図4に示すような積み上げ構造を採用することができる。この積み上げ構造は、先に説明した図2に示す積み上げ構造と同様である。図4に示す積み上げ構造においては、第2段32は、第1段31に対して、断熱耐火物10の配置が1/2ピッチずれている。したがって、各断熱耐火物10における凹陥部21,22は、上下で隣り合う断熱耐火物10における凹陥部21,22と対向していない状態になっている。
 次に、本発明の断熱耐火物の好ましい製造方法について説明する。本製造方法は、(イ)アルミナ粒子又はジルコニア粒子を含む混練物を用いて成形体を得る工程と、(ロ)該成形体を焼成して目的とする耐火物を得る工程とに大別される。以下、それぞれの工程について説明する。
 先ず(イ)の工程においては、アルミナ粒子又はジルコニア粒子、水溶性高分子材料、多糖類、焼成によって消失可能な造孔粒子、及び液媒体を混練して混練物を得る。この混練物を構成する成分であるアルミナ粒子又はジルコニア粒子としては高純度のものを用いることが好ましい。安定化ジルコニア粒子を用いる場合には、ジルコニア粒子の純度は、ジルコニア粒子と安定化剤との合計値とする。具体的には、純度98.5重量%以上、特に99.0重量%以上のものを用いることが好ましい。そのような高純度のアルミナ粒子又はジルコニア粒子は商業的に容易に入手可能である。
 アルミナ粒子又はジルコニア粒子としては、骨材原料としての比較的大粒径のものと、ボンドとしての比較的小粒径のものとを併用することが好ましい。骨材原料としてのアルミナ粒子又はジルコニア粒子は、その粒径が30~500μm、特に45~300μmであることが、気孔率及び強度の維持の点から好ましい。一方、ボンドとしてのアルミナ粒子又はジルコニア粒子は、その粒径が0.1~30μm、特に1~25μmであることが好ましい。アルミナ粒子又はジルコニア粒子の粒径は、マイクロトラックやレーザー式粒度分布測定器によって測定される。
 混練物中の骨材原料とボンドとの割合は、気孔率を高める観点及び断熱耐火物の強度の維持の観点から、骨材50~90重量%/ボンド50~10重量%、特に骨材60~80重量%/ボンド40~20重量%とすることが好ましい。
 アルミナ粒子又はジルコニア粒子の形状は本製造方法において特に臨界的でなく、商業的に入手可能な種々の形状のものを用いることができる。
 アルミナ粒子又はジルコニア粒子には、中実のものと中空のものがあることが知られている。一般的には、中実の粒子よりも中空のものを用いることで、気孔率の高い断熱耐火物を得ることができる。しかし、それよりも更に高い気孔率を得るためには、中空のアルミナ粒子又はジルコニア粒子の使用では、限界がある。本製造方法においては、後述する水溶性高分子材料、多糖類及び造孔粒子を用いることで、中空のアルミナ粒子又はジルコニア粒子を使用せずに、先に述べた範囲の高い気孔率を達成する断熱耐火物を得ることができる。
 焼成によって消失可能な造孔粒子は、目的とする断熱耐火物の気孔率を高くするために用いられる。この造孔粒子は、空気中で加熱することによって消失が可能なものである。例えば、加熱温度150℃以上で、少なくとも消失が始まるものを用いることが好ましい。そのような粒子は、例えばアクリル酸エステル、ポリイミド、ポリスチレン、ポリエチレン、ポリプロピレン、エチレンビニルアセテートなどの有機高分子化合物から構成されている。ここで言う「消失」とは、加熱による酸化で分解し、残存物が何も残らない状態になることである。
 造孔粒子の粒径は、目的とする断熱耐火物の気孔率や強度に影響を及ぼす。この観点から、造孔粒子の粒径は0.5~5mm、特に1~4mmであることが好ましい。造孔粒子の粒径は、上述したアルミナ粒子又はジルコニア粒子の粒径の測定方法と同様の方法で測定される。造孔粒子の形状も、目的とする断熱耐火物の嵩比重や気孔率に影響を及ぼす。この観点から、形状がより真球に近い造孔粒子を用いることが好ましい。
 混練物中に含まれる造孔粒子の割合は、目的とする断熱耐火物の気孔率と強度とのバランスの観点から、アルミナ粒子又はジルコニア粒子100gに対し100~300cm3特に150~250cm3とすることが好ましい。
 混練物中に含まれる水溶性高分子材料及び多糖類は、該混練物から成形される成形体の保形性を高めるために用いられる。詳細には、気孔率が高い断熱耐火物を得るためには、混練物中に含まれる造孔粒子の割合を高くすることが有利である。しかし、造孔粒子の割合を高くすると、混練物から成形体を成形する場合の保形性が低下して、目的とする形状の成形体が得られにくい。また、プレス圧を低くした場合においても、成形体の保形性が低下して目的の成形体が得られにくくなる。これに対して、水溶性高分子材料及び多糖類を結合剤として用いることで成形体の保形性が高まるので、混練物中に含まれる造孔粒子の割合が高くなっても、成形体を首尾良く成形することができ、また、プレス圧が低くても成形体を首尾よく成形できる。更に、後述する(ロ)の焼成工程も首尾良く行うことができる。
 前記の観点から、水溶性高分子材料としては少量の使用でも高い結合力を発現するものを用いることが好ましい。例えば、ポリビニルアルコール、セルロース、寒天、ゼラチンなどを用いることができる。
 多糖類も、水溶性高分子材料と同様の観点から好適な材料が選定される。例えば、デンプン、グリコーゲンなどを用いることができる。
 水溶性高分子材料は、極力少ない使用量で、必要かつ十分な結合力が発揮されることが好ましい。多糖類に関しても同様である。この観点から、混練物中に含まれる水溶性高分子材料の割合は、5~15重量%、特に8~12重量%とすることが好ましい。また、混練物中に含まれる多糖類の割合は、0.1~3重量%、特に0.5~2重量%とすることが好ましい。
 混練物に含まれる液媒体としては基本的には水を用いる。
 上述した各成分を均一に混合して目的とする混練物を得る。混合の方法に特に制限はなく、当該技術分野において用いられている方法と同様の方法を用いることができる。このようにして得られた混練物を用いて、所定の形状を有する成形体を得る。成形には例えば、所定形状の金型内に混練物を充填し、該混練物を所定の圧力でプレスするプレス成形を用いることができる。プレス成形は、混練物に含まれる造孔粒子が破壊されないことを上限値とする圧力で行われることが好ましい。この圧力は、造孔粒子の種類や粒径等に依存する。一般的な範囲としては50~500kg/cm2を採用することが好ましい。
 このようにして得られた成形体は、金型内で又は金型から取り出されて乾燥工程に付される。乾燥工程においては、加熱や赤外線の照射等の手段によって液媒体が除去される。乾燥は、成形体に含まれる液媒体の割合が好ましくは1重量%、より好ましくは0.5重量%以下になるまで行われる。
 乾燥された後の成形体は、(ロ)の焼成工程に付される。焼成は、空気中で行うことができる。また焼成は、成形体に含まれている造孔粒子が消失する条件下に行われる。この焼成条件は造孔粒子の種類や粒径等に依存するが、一般的な条件として、1400~1800℃の温度を1~10時間保持することで、造孔粒子が消失し、かつアルミナ粒子又はジルコニア粒子が十分に焼結する。
 このようにして目的とする断熱耐火物が得られる。この耐火物はアルミナ又はジルコニアの純度が高く、かつ耐火物の劣化の原因となるシリカやアルカリ金属酸化物等の不純物の含有量が少ないので、アルカリを含むワークを焼成するための窯炉の内張り断熱耐火物として特に好適に用いられる。例えば、アルカリイオン電池材料を焼成するための窯炉に好適に用いられる。この用途以外にも、電子部品用焼成炉等にも好適に用いられる。
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」及び「部」はそれぞれ「重量%」及び「重量部」を意味する。
  〔実施例1〕
(1)混練物の調製
 骨材原料として平均粒径100μmの中実アルミナ粒子(純度99.7%)を70部用いた。また、ボンドとして平均粒径5μmの中実アルミナ粒子(純度99.8%)を30部用いた。水溶性高分子材料としてポリビニルアルコールを1部用いた。多糖類としてデンプンを2部用いた。造孔粒子として平均粒径3mmのスチレンビーズをアルミナ粒子100gに対して150cm3用いた。これらを10部の水と均一に混合して混練物を得た。
(2)成形体の成形
 得られた混練物を金型内に充填し、100kg/cm2の圧力でプレス成形し、成形体を得た。この金型は図1に示す断熱耐火物に対応する形状を有していた。得られた成形体を100℃に加熱して水分含有率が0.5%以下になるまで乾燥を行った。成形体を観察したところ、造孔粒子の破壊は観察されなかった。
(3)成形体の焼成
 乾燥後の成形体を、空気中、1600℃で、5時間焼成し、図1に示す形状の耐火物を得た。この耐火物は、長さ230mm、幅115mm、厚さ65mmであった。
  〔実施例2〕
 以下の表1に示す条件を用いて実施例1と同様にして、図1に示す形状の断熱耐火物を得た。
  〔実施例3〕
 骨材原料として平均粒径150μmの中実のCaO安定化ジルコニア粒子(純度:ZrO295.6%、CaO3.7%)を60部、ボンドとして中実の平均粒径2μmのCaO安定化ジルコニア粒子(純度:ZrO295.6%、CaO3.7%)を40部、多糖類としてデンプンを2部、造孔粒子として平均粒径3mmのスチレンビーズ粒子をジルコニア粒子100gに対して100cm3用い、80kg/cm2の圧力でプレス成形した以外は実施例1と同様にして、図1に示す形状の断熱耐火物を得た。
  〔比較例1及び2〕
 以下の表1に示す条件を用いて実施例1と同様にして、図1に示す形状の断熱耐火物を得た。
  〔比較例3〕
 イソライト工業株式会社製のアルミナ質耐火断熱レンガLBK-28(商品名)を比較例3とした。
Figure JPOXMLDOC01-appb-T000001
  〔性能評価〕
 実施例及び比較例の断熱耐火物について、上述の方法で気孔率を測定した。また、耐熱耐火物の化学分析を行った。これらに加えて断熱耐火物の圧縮強さ及び曲げ強さをJIS R2615及びJIS R2619に準じて測定した。更に耐アルカリ性を、下記の方法により評価した。その結果を以下の表2に示す。
  〔耐アルカリ性〕
 坩堝に炭酸リチウム(Li2CO3)を入れ、実施例及び比較例で得られた断熱耐火物により蓋をした。坩堝を1000℃で10時間加熱した。その後、室温まで冷却し、断熱耐火物を坩堝から取り外した。取り外した断熱耐火物の炭酸リチウムと対向していた面の状態を観察し、該断熱耐火物の耐アルカリ性を評価した。評価基準は以下のとおりである。
  ○:断熱耐火物の表面の変化が観察されない
  △:断熱耐火物の表面にボロツキは観察されないが、変色は観察される
  ×:断熱耐火物の表面にボロツキが観察される
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果から明らかなように、各実施例の断熱耐火物は、比較例1及び2の断熱耐火物に比べて、気孔率が高いものであることが判る。強度に関しては、各実施例の断熱耐火物は、比較例1及び2の断熱耐火物よりも低い値を示しているが、実使用に差し支えのない強度は有している。比較例3の断熱耐火物は、気孔率は比較的高く、また圧縮強さや曲げ強さの値も大きいが、アルミナの純度が低く、シリカ等の不純物の量が多いことから、実施例1~3の断熱耐火物に比べて、耐アルカリ性が劣るものであった。

Claims (9)

  1.  アルミナセラミックス又はジルコニアセラミックスからなり、シリカを含まないか、又は含んだとしても1重量%以下であり、気孔率が65~85%であり、かつ圧縮強さが2MPa以上であることを特徴とする断熱耐火物。
  2.  アルカリ金属酸化物を含まないか又は含んだとしても0.3重量%以下である請求項1記載の断熱耐火物。
  3.  セラミックス粒子として中実のもののみが用いられている請求項1又は2に記載の断熱耐火物。
  4.  アルカリイオン電池材料焼成用窯炉の内張り断熱耐火物として用いられる請求項1ないし3のいずれか一項に記載の断熱耐火物。
  5.  複数個が組み上げられて使用され、組み上げ状態における隣り合う耐火物の対向面に、1又は2以上の凹陥部を有する請求項1ないし4のいずれか一項に記載の断熱耐火物。
  6.  組み上げ状態において上下に隣り合う前記耐火物における上面及び下面の双方に凹陥部を有し、
     上面における凹陥部が形成されている位置に対応する下面の位置には凹陥部が形成されておらず、かつ下面における凹陥部が形成されている位置に対応する上面の位置にも凹陥部が形成されていない請求項5記載の断熱耐火物。
  7.  請求項1記載の断熱耐火物の製造方法であって、
     アルミナ粒子又はジルコニア粒子、水溶性高分子材料、多糖類、焼成によって消失可能な造孔粒子、及び液媒体を混練して得られた混練物を、該造孔粒子が破壊されない圧力でプレス成形して成形体を得、次いで
     該造孔粒子が消失する条件下に該成形体を焼成することを特徴とする断熱耐火物の製造方法。
  8.  前記造孔粒子を、アルミナ粒子又はジルコニア粒子100gに対して100~300cm3用いる請求項7記載の製造方法。
  9.  前記造孔粒子の粒径が0.5~5mmである請求項7又は8記載の製造方法。
PCT/JP2011/065567 2010-07-13 2011-07-07 断熱耐火物及びその製造方法 WO2012008352A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020127024461A KR20130097059A (ko) 2010-07-13 2011-07-07 단열 내화물 및 그 제조방법
CN2011800149415A CN102811973A (zh) 2010-07-13 2011-07-07 绝热耐火物及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-159206 2010-07-13
JP2010159206A JP5694695B2 (ja) 2010-07-13 2010-07-13 断熱耐火物及びその製造方法

Publications (1)

Publication Number Publication Date
WO2012008352A1 true WO2012008352A1 (ja) 2012-01-19

Family

ID=45469355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065567 WO2012008352A1 (ja) 2010-07-13 2011-07-07 断熱耐火物及びその製造方法

Country Status (4)

Country Link
JP (1) JP5694695B2 (ja)
KR (1) KR20130097059A (ja)
CN (1) CN102811973A (ja)
WO (1) WO2012008352A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103206862A (zh) * 2013-04-22 2013-07-17 五力机电科技(昆山)有限公司 下部耐火板
JP6207423B2 (ja) * 2014-02-24 2017-10-04 イソライト工業株式会社 軽量耐アルカリ耐火断熱れんが及びその製造方法
EP3670477B1 (en) * 2017-08-14 2021-05-19 Nissan Motor Co., Ltd. Heat shield component and manufacturing method thereof
CN107540355B (zh) * 2017-09-16 2020-07-24 长沙恒安工程技术有限公司 一种轻质耐火材料的制备方法
US11874679B2 (en) 2019-01-09 2024-01-16 Mitsubishi Electric Corporation Using an imaging device to correct positioning errors
CN115947597B (zh) * 2022-09-30 2023-08-04 武汉科技大学 一种微闭孔轻量氧化锆耐火材料及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125148U (ja) * 1987-02-10 1988-08-16
JPS63270368A (ja) * 1987-04-30 1988-11-08 Okura Ind Co Ltd セラミツクス多孔体の製造方法
JPH0383858A (ja) * 1989-06-03 1991-04-09 Tioxide Group Plc セラミック材料の製造用組成物及びその製法
JPH03223184A (ja) * 1989-12-28 1991-10-02 Toshiba Ceramics Co Ltd セラミックス多孔体
JPH0513158A (ja) * 1991-07-03 1993-01-22 Matsushita Electric Ind Co Ltd 面状採暖具
JPH10152327A (ja) * 1996-11-19 1998-06-09 Seimi Chem Co Ltd リチウム含有複合酸化物の製造方法及びそれを実施するための焼成炉
JP2002068854A (ja) * 2000-08-30 2002-03-08 National Institute Of Advanced Industrial & Technology アルミナ多孔体及びその製造方法
JP2003073180A (ja) * 1991-08-12 2003-03-12 Dytech Corp Ltd 多孔体
JP2004250307A (ja) * 2002-12-25 2004-09-09 National Institute Of Advanced Industrial & Technology アルミナ多孔質セラミックス及びその製造方法
JP2006327927A (ja) * 2005-04-28 2006-12-07 Toto Ltd アルミナ多孔体
JP2006342054A (ja) * 2006-06-19 2006-12-21 National Institute For Materials Science セラミックス多孔体
JP2007076984A (ja) * 2005-09-16 2007-03-29 Ngk Insulators Ltd 多孔質体の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1072269A (ja) * 1996-08-30 1998-03-17 Toshiba Ceramics Co Ltd 高温用高アルミナ質断熱耐火物
CN101050131A (zh) * 2007-04-04 2007-10-10 山东慧敏科技开发有限公司 一种提高耐火材料性能的表面气孔充填方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125148U (ja) * 1987-02-10 1988-08-16
JPS63270368A (ja) * 1987-04-30 1988-11-08 Okura Ind Co Ltd セラミツクス多孔体の製造方法
JPH0383858A (ja) * 1989-06-03 1991-04-09 Tioxide Group Plc セラミック材料の製造用組成物及びその製法
JPH03223184A (ja) * 1989-12-28 1991-10-02 Toshiba Ceramics Co Ltd セラミックス多孔体
JPH0513158A (ja) * 1991-07-03 1993-01-22 Matsushita Electric Ind Co Ltd 面状採暖具
JP2003073180A (ja) * 1991-08-12 2003-03-12 Dytech Corp Ltd 多孔体
JPH10152327A (ja) * 1996-11-19 1998-06-09 Seimi Chem Co Ltd リチウム含有複合酸化物の製造方法及びそれを実施するための焼成炉
JP2002068854A (ja) * 2000-08-30 2002-03-08 National Institute Of Advanced Industrial & Technology アルミナ多孔体及びその製造方法
JP2004250307A (ja) * 2002-12-25 2004-09-09 National Institute Of Advanced Industrial & Technology アルミナ多孔質セラミックス及びその製造方法
JP2006327927A (ja) * 2005-04-28 2006-12-07 Toto Ltd アルミナ多孔体
JP2007076984A (ja) * 2005-09-16 2007-03-29 Ngk Insulators Ltd 多孔質体の製造方法
JP2006342054A (ja) * 2006-06-19 2006-12-21 National Institute For Materials Science セラミックス多孔体

Also Published As

Publication number Publication date
JP2012020895A (ja) 2012-02-02
KR20130097059A (ko) 2013-09-02
CN102811973A (zh) 2012-12-05
JP5694695B2 (ja) 2015-04-01

Similar Documents

Publication Publication Date Title
WO2012008352A1 (ja) 断熱耐火物及びその製造方法
JP5039640B2 (ja) リチウムイオン電池の正極活物質製造用匣鉢及びその製造方法
JP2021502941A (ja) 多孔質焼結マグネシアを製造する方法、焼結マグネシアからなる造粒物(Koernung)を有する粗セラミックの(grobkeramisch)耐火性生産物を製造するためのバッチ、このような生産物、および生産物を製造する方法、工業炉の裏張り(Zustellung)、ならびに工業炉
CN104446564B (zh) 一种含氧化铬的锆刚玉砖的制备方法
JP6754653B2 (ja) 熱風炉用チェッカーれんがの製造方法
CN100393656C (zh) 一种莫来石质高强防腐烟囱内衬砖及其制造方法
WO1995015932A1 (fr) Brique exempte de chrome
JPH1160240A (ja) チタン酸アルミニウム粉体及びチタン酸アルミニウム焼結体の製造方法
JP5943032B2 (ja) 軽量断熱アルミナ・マグネシア質耐火物の製造方法
JP2003165767A (ja) スピネル質耐火物およびその利用
CN107954700A (zh) 耐腐蚀刚玉耐火砖及其制备方法
CN103771878B (zh) 一种红柱石砖的制法
JP2006206338A (ja) 高耐食性耐火物
JPH09100171A (ja) βアルミナ質電鋳耐火物
JP5436498B2 (ja) 熱処理炉用不定形耐火物およびその炉の内張り構造
JP4612331B2 (ja) フロートバス用耐火材及びフロートバス
CN104692628B (zh) 一种azc格子砖及其制法与利用该格子砖布置的蓄热室
CN211668272U (zh) 一种快速烧制砖
JP2008044814A (ja) セラミックス複合材料及び焼成用敷板
JP2014227327A (ja) 熱処理容器
JP2005314170A (ja) ロータリーキルン
JPH0383849A (ja) アルミナ緻密焼結体及びその製造方法
CN107235718A (zh) 一种用于浇注料的新型骨料及其制备方法
JP2012106899A (ja) 炉材および炉材の製造方法
CN105016747B (zh) 一种抗热震耐火锆刚玉砖

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180014941.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806682

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127024461

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806682

Country of ref document: EP

Kind code of ref document: A1