TW201328984A - 海水脫鹽方法 - Google Patents

海水脫鹽方法 Download PDF

Info

Publication number
TW201328984A
TW201328984A TW101135673A TW101135673A TW201328984A TW 201328984 A TW201328984 A TW 201328984A TW 101135673 A TW101135673 A TW 101135673A TW 101135673 A TW101135673 A TW 101135673A TW 201328984 A TW201328984 A TW 201328984A
Authority
TW
Taiwan
Prior art keywords
water
salt
repellent
ion exchange
unit
Prior art date
Application number
TW101135673A
Other languages
English (en)
Other versions
TWI570064B (zh
Inventor
Neil Edwin Moe
John Barber
Original Assignee
Gen Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gen Electric filed Critical Gen Electric
Publication of TW201328984A publication Critical patent/TW201328984A/zh
Application granted granted Critical
Publication of TWI570064B publication Critical patent/TWI570064B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/042Prevention of deposits
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • C02F1/4695Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis electrodeionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/10Energy recovery
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/22Eliminating or preventing deposits, scale removal, scale prevention
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本發明係關於在脫鹽系統中(例如透過逆滲透)處理水,以生產脫鹽產物水及拒斥流。將來自拒斥流之鹽轉移至低鹽度廢水流(如來自城市廢水處理廠之流出物)。例如,可將拒斥流饋送至電透析(ED)單元之高鹽度區室。該鄰近的低鹽度區室接收低鹽度廢水。低鹽度與高鹽度區室係藉由離子交換膜隔開。將含鹽廢水排放(例如)至海洋。例如透過將該減鹽拒斥流再循環至給水進行處理,以自其中提取更多產物水。需要較少給水來產生給定體積之產物水。若將熱脫鹽單元與二價離子選擇性離子交換膜結合,則可降低積垢。

Description

海水脫鹽方法
本說明書係關於脫鹽及電透析。
以下論述並非承認以下討論之任何事項均可引述作為先前技術或普通常識。
海水可透過逆滲透脫鹽。經由吸入系統自海洋中取水至處理廠。預處理原海水,(例如)以移除顆粒及有機污染物。該經預處理水接著通過逆滲透系統。一部分海水滲透通過一或多級膜,然後用作(例如)城市飲用水。
另一部分海水經膜滯留或拒斥。該拒斥流(reject stream)具有增加的鹽含量及滲透壓。此滲透壓之增長限制該拒斥流可被濃縮之程度,且因此限制該方法之回收率。大部分海水逆滲透廠係經設計成於約35-50%回收率下運作。在一些情況下(例如在非常高壓力下操作或有另外的積垢控制步驟中),55-60%之更高回收率係可能的。
積垢亦會限制逆滲透及其他類型脫鹽系統中拒斥流之最大濃度。例如,主要由於積垢問題,熱脫鹽裝置(如蒸發器)之回收率通常受限於約10-40%。隨著溫度上升,硫酸鈣尤其變得更不可溶,且硫酸鈣積垢問題會決定最大操作溫度及回收率。
由於脫鹽廠之有限的回收率,因此吸入及預處理系統所處理者顯著大於飲用水輸出。例如,於40%回收率下操作之50 MGD(百萬加侖/日)海水逆滲透(SWRO)脫鹽系統需要 約125.MGD大小之吸入及預處理系統。每個吸入及預處理系統可能與逆滲透系統本身同樣昂貴。該吸入及預處理系統亦會消耗能源及化學物質。再者,取出過量海水會使由脫鹽廠引起之對海洋生物的生態破壞增加。
以下概述意欲向讀者介紹本發明但不限制任何主張之發明。
在本說明書中描述脫鹽系統及方法。該系統及方法可用於(例如)自海水(包含含鹽沿海水)生產飲用水或其他供水。不限制該系統及方法之潛在用途,該系統及方法可用於回收大百分比之供給其之水。視情況,80%或更多,或幾乎全部的供水皆可作為脫鹽水回收。
總而言之,本說明書描述一種處理水(例如透過逆滲透)以生產脫鹽產物水及拒斥流之系統及方法。將來自拒斥流之鹽轉移至低鹽度廢水流(如來自城市廢水處理廠之流出物)。例如,可將拒斥流供給至電透析(ED)(其可係逆電透析(RED))單元中之高鹽度區室。鄰近的低鹽度區室接收低鹽度廢水。該ED裝置包含許多由離子交換膜隔開之交替的高鹽度及低鹽度區室。將含鹽廢水排放(例如)至海洋。例如透過將該減鹽拒斥流再循環至脫鹽單元進行處理減鹽以自其中提取更多產物水。
若使用RED單元,則其可用於自鹽離子之自發移動至廢水中來發電。或者,可使用另一裝置(如電容式去離子裝置)來捕獲鹽度梯度能量。不管是施加能量來自拒斥流中 移除鹽,或是自拒斥流中鹽的自發移動收集能量,極少海水(若有的話)進入該拒斥流。因此,甚至使減鹽拒斥流再循環亦不會將任何先前存在於廢水流中之污染物濃縮。
若將廢水排放至海洋,則該廢水的增加鹽度係有利的。該廢水可視情況經鹽增濃至大約該廢水將排入之水源水鹽度的濃度。
該系統及方法亦可用於內陸或地下水源之含鹽水,但可能需要適當地處理排放廢水來保持供水之長期完整性。
可使用熱脫鹽單元替代逆滲透來生產脫鹽產物水。在該情況中,較佳使用二價離子選擇性膜來自拒斥流中移除鹽。在熱脫鹽過程中趨向於造成積垢之離子(尤其係鈣離子及硫酸根離子)經由二價離子選擇性膜自減鹽拒斥水中移除。該減鹽拒斥水與給水係於熱脫鹽單元之上游混合。此與減少濃度之形成積垢之離子產生組合進料,其允許熱脫鹽單元於更高回收率、更高溫度下操作,或具有更多效應。
圖1顯示水處理系統10。該水處理系統10係用於使海水脫鹽以生產城市飲用水供應。
在水處理系統10中,原海水12係透過吸入系統14自海洋吸取。該吸入系統14通常包括一或多個吸入海水之入口管,較佳通過試圖減少捲入吸入系統14中之海洋生物數量的篩網或入口裝置。如在該技術中已知,該吸入系統14通常亦具有泵及貯槽以移除及儲存原海水12。
原海水12自該吸入系統14繼續流入預處理系統16。該預處理系統16可包含多種過濾或化學處理步驟以自原海水12移除污染物。如在該技術中已知,可基於原海水12之組成選擇特定的預處理步驟。作為一實例,可通過超濾或微濾膜單元過濾該原海水12。來自該膜單元之滲透液可進一步經氯消毒或經其他化學物質處理以殺死或抑制微生物生長。經預處理的海水18自預處理系統16排出。來自預處理系統16之餘流38含有高懸浮固體且可棄置。
該經預處理之海水18經由泵34流至脫鹽系統20。該脫鹽系統可係(例如)逆滲透系統。逆滲透系統包含一或多個壓力容器,每個容器通常含有多個逆滲透元件。若需要,該容器可經組態成提供多程。
在脫鹽系統20中自一部分經預處理之海水18中移除鹽以生產飲用產物水22。鹽濃縮於另一部分經預處理之海水18中且形成拒斥流24,或者稱作鹽水或濃縮物。若該脫鹽系統20包含逆滲透系統,則該拒斥流24將係處於高壓。可自拒斥流24回收壓力能量,例如經由使拒斥流24通過與發電機相連的渦輪機。
該拒斥流24流至離子交換膜裝置26(例如電透析(ED)裝置)。該ED裝置可視情況係倒極電透析(EDR)裝置。該ED裝置可另外視情況係逆電透析裝置(RED)。該膜裝置26包括經離子交換膜隔開之交替的低鹽度區室與高鹽度區室。該拒斥流24視情況分多程或經由再循環回路流至膜裝置26之高鹽度區室。視情況分多程或經再循環回路向該等低鹽 度區室供給最初低鹽度的水28。該最初低鹽度的水28可係(例如)來自城市或工業廢水處理廠之流出物。
含鹽排放水30係自膜裝置26吸取,其視情況作為再循環回路之流出液。該含鹽排放水30可排放(例如)回至自其中取出海水之海洋。該水處理系統10可位於以其他方式將其流出物排入海洋之廢水處理廠附近。在該情況下,可有利地將通常由城市廢水處理廠產生之低鹽度廢水轉換成含鹽排放水30。此避免透過排放具有與海洋明顯不同鹽度之流出物而傷害海洋生物。可視情況配置或操作該水處理系統10以生產具有鹽度在原海水12鹽度之10%內的含鹽排放水30。
亦自膜系統26移除減鹽拒斥水32。該減鹽拒斥水32經進一步的脫鹽製程處理以生產額外的產物水。例如,可將該減鹽拒斥水32與經預處理之海水18混合或另外傳送至脫鹽單元20。可再循環該減鹽拒斥水32之全部流以與經預處理之海水18於脫鹽單元20中共同處理。此導致在系統層級上原海水12之幾近100%回收率。或者,可使用來自減鹽拒斥水32或拒斥水24之流出液36。該流出液36防止由脫鹽系統20滯留且未經膜單元26移除之少量污染物(若有的話)積累至其會由於完整的再循環而達到不期望濃度的程度。該流出液36可與含鹽排放水30混合或以其他方式自水處理系統10移除。即使有流出液36,亦可回收80%或更多之原海水12或經預處理之海水18作為產物水22。
於膜裝置26中自發地發生鹽自拒斥流24跨越離子交換膜 移動至低鹽度水28。ED裝置增加電流來提高鹽移動速率且因此容許需要較少膜材料的精簡裝置。然而,替代使用能量來驅動鹽遷移過程,該膜單元26可利用逆電透析(RED)用來發電。所產生之電可用於驅動逆滲透過程或用於其他目的。可回收能量可係約0.5 kwh/m3生產飲用水。
亦可用其他裝置來替代膜裝置26。例如,使用電容式去離子裝置(或稱為電容方法),可使用碳電極來自拒斥水吸附離子,且然後可使離子解吸至低鹽度廢水中。然而,由於目的係使鹽自拒斥水移至低鹽度廢水,因此諸如壓力延遲滲透之方法並不佳。使用壓力延遲滲透,該廢水將與拒斥水混合而可能引起產物水污染問題。
圖2至圖5描述模型實驗之結果。圖2與圖4分別代表於50%及35%回收率下操作之典型脫鹽系統。圖3與圖5分別呈現於脫鹽步驟中50%回收率及35%回收率下操作但幾乎具有100%系統層級回收率之如同圖1的水處理系統。圖2與圖3之間的對照,或圖4與圖5之間的對照,顯示通過該吸入及預處理步驟之流量大量減少。
圖2與圖3之間的對照,或圖4與圖5之間的對照,亦顯示在供給至脫鹽製程之水中各種離子之濃度大量減少。在該模型中,假定該ED單元具有等同於來自GE Water and Process Technologies之倒極式電透析單元的離子交換膜選擇性。此等單元使用多價離子選擇性膜。例如,鈣離子及硫酸根離子經移除至較鈉離子及氯離子更大之程度。該減鹽拒斥水32當與經預處理之海水18混合時,產生具有降低 濃度之二價離子的結合進料。由於脫鹽製程中二價離子經常係形成積垢之原因,因此可減少此等類型積垢之可能。特定言之,在使用蒸發器之熱脫鹽製程中,隨著溫度上升硫酸鈣變得更不可溶。減少鈣離子及硫酸根離子之濃度使熱脫鹽製程可於更高溫度、更高回收率中之一或多者下操作,或在多級閃蒸器中具有更多效應。此等變化之任一者在回收率、每個裝置之生產量、或能量效率方面改良脫鹽製程之操作。
可視情況透過熱脫鹽單元處理減鹽拒斥水以生產產物水,而不將減鹽拒斥水或來自熱脫鹽單元之鹽水再循環至處理經預處理海水之脫鹽單元(其可係逆滲透單元)。在此情況下,該熱脫鹽單元可於60%或更高之回收率下操作。該系統整體仍可回收80%或更多原海水或經預處理海水作為產物水。圖6說明基於經進一步改良系統(其中使來自熱脫鹽單元40(如蒸發器或蒸餾單元)之拒斥鹽水44於第二ED裝置42中處理)之模型實驗。該第二ED裝置42亦接收低鹽度水28且排放含鹽排放水30。使來自此第二ED裝置42之減鹽拒斥鹽水46再循環至熱脫鹽單元40。到達熱脫鹽單元40之鈣離子及硫酸根離子之濃度相對於原海水12大大地減少。此使熱脫鹽單元40可於極高回收率(例如70%或更高)下操作。該系統整體之回收率可係90%或更高。
此書面描述使用實例來揭示本發明之一或多種實施例,且亦使熟悉此項技術者能夠實施本發明。本發明之範圍係由申請專利範圍界定,且可包括其他設備或方法。
10‧‧‧水處理系統
12‧‧‧原海水
14‧‧‧吸入系統
16‧‧‧預處理系統
18‧‧‧經預處理之海水
20‧‧‧脫鹽系統
22‧‧‧產物水
24‧‧‧拒斥流
26‧‧‧離子交換膜裝置
28‧‧‧最初低鹽度的水
30‧‧‧含鹽排放水
32‧‧‧減鹽拒斥水
34‧‧‧泵
36‧‧‧流出液
38‧‧‧餘流
40‧‧‧熱脫鹽單元
42‧‧‧第二ED裝置
44‧‧‧拒斥鹽水
46‧‧‧減鹽拒斥鹽水
圖1係水處理系統之示意製程流程圖。
圖2係於50%回收率下操作之SWRO系統之示意製程流程圖,其與圖3一起用於對照實例。
圖3係在脫鹽步驟中於50%回收率下操作之圖1的水處理系統之示意製程流程圖,其與圖2一起用於對照實例。
圖4係於35%回收率下操作之SWRO系統之示意製程流程圖,其與圖5一起用於對照實例。
圖5係在脫鹽步驟中於35%回收率下操作之圖1的水處理系統之示意製程流程圖,其與圖4一起用於對照實例。
圖6係具有熱脫鹽、逆滲透及電透析之組合的水處理系統之示意製程流程圖。
10‧‧‧水處理系統
12‧‧‧原海水
14‧‧‧吸入系統
16‧‧‧預處理系統
18‧‧‧經預處理之海水
20‧‧‧脫鹽系統
22‧‧‧產物水
24‧‧‧拒斥流
26‧‧‧離子交換膜裝置
28‧‧‧最初低鹽度的水
30‧‧‧含鹽排放水
32‧‧‧減鹽拒斥水
34‧‧‧泵
36‧‧‧流出液
38‧‧‧餘流

Claims (26)

  1. 一種生產脫鹽水之方法,其包含以下步驟:a)將給水脫鹽以產生產物水及拒斥水;b)自該拒斥水移除鹽以生產減鹽拒斥水;及c)將該減鹽拒斥水脫鹽以生產額外的產物水。
  2. 如請求項1之方法,其中步驟(b)包括將該鹽移至廢水流。
  3. 如請求項2之方法,其中該廢水流係經製成為具有在該給水鹽度之10%內的鹽度。
  4. 如請求項2之方法,其中步驟(b)包括提取至少一些可自該拒斥水與該廢水之間之鹽度差異獲得的鹽度梯度能量。
  5. 如請求項1之方法,其中步驟(b)包括自該拒斥水中移除鹽。
  6. 如請求項5之方法,其中來自該拒斥水之鹽係經由二價離子選擇性膜移除。
  7. 如請求項6之方法,其中使至少一些該減鹽拒斥水與該給水共同處理,且步驟(a)包括熱脫鹽製程。
  8. 如請求項5之方法,其中步驟(b)包含電透析。
  9. 如請求項8之方法,其中該電透析步驟包括逆電透析。
  10. 如請求項1之方法,其中步驟(a)包括逆滲透。
  11. 如請求項9之方法,其中步驟(c)包括逆滲透。
  12. 如請求項9之方法,其中步驟(c)包括熱脫鹽。
  13. 如請求項12之方法,其另外包括透過電透析處理來自該 熱脫鹽單元之拒斥鹽水之步驟,及步驟(c)另外包括透過該熱脫鹽處理至少一些該經處理之拒斥鹽水。
  14. 如請求項1之方法,其中至少一些該減鹽拒斥水係與該給水共同處理。
  15. 如請求項14之方法,其中一些該拒斥水、或一些該減鹽拒斥水係自該方法排出。
  16. 如請求項1之方法,其另外包含預處理該給水以移除懸浮固體及殺滅、或防止微生物生長。
  17. 如請求項1之方法,其中80%或更多之該給水經轉變成產物水。
  18. 一種生產脫鹽水之設備,其包括a)一脫鹽單元,其具有一連接至給水源之進口且具有一產物水出口及一拒斥水出口;及b)一離子交換膜裝置,其具有一連接至該拒斥水出口之進口,該離子交換膜裝置具有一減鹽拒斥水出口,其中該減鹽拒斥水出口係連接至該脫鹽單元之該進口。
  19. 如請求項18之設備,其中該離子交換膜裝置具有與在該離子交換膜裝置之該進口與該減鹽拒斥水出口之間相通連之區室位於離子交換膜之相對面上的運輸廢水流之一區室。
  20. 如請求項19之設備,其中該離子交換膜裝置係電透析裝置。
  21. 如請求項19之設備,其中該離子交換膜裝置係逆電透析 裝置。
  22. 如請求項19之設備,其中該離子交換膜係為二價離子選擇性。
  23. 如請求項18之設備,其另外包括一連接至該拒斥水出口或該減鹽拒斥水出口之排放管路。
  24. 如請求項18之設備,其中該脫鹽單元包括逆滲透單元。
  25. 一種生產脫鹽水之設備,其包括a)一脫鹽單元,其具有一連接至給水源之進口且具有一產物水出口及一拒斥水出口;b)一離子交換膜裝置,其具有一連接至該拒斥水出口之進口,該離子交換膜裝置具有一減鹽拒斥水出口;及c)一熱脫鹽單元,其具有一連接至該減鹽拒斥水出口之進口。
  26. 如請求項25之設備,其另外包括一第二離子交換膜裝置,該裝置具有一連接至該熱脫鹽單元之拒斥鹽水出口之進口,及一連接至該熱脫鹽單元之該進口的減鹽拒斥鹽水出口。
TW101135673A 2011-10-06 2012-09-27 海水脫鹽方法 TWI570064B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/267,553 US9382135B2 (en) 2011-10-06 2011-10-06 Seawater desalination process

Publications (2)

Publication Number Publication Date
TW201328984A true TW201328984A (zh) 2013-07-16
TWI570064B TWI570064B (zh) 2017-02-11

Family

ID=47018472

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101135673A TWI570064B (zh) 2011-10-06 2012-09-27 海水脫鹽方法

Country Status (4)

Country Link
US (1) US9382135B2 (zh)
AU (1) AU2012319064B2 (zh)
TW (1) TWI570064B (zh)
WO (1) WO2013052248A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109336305A (zh) * 2018-11-30 2019-02-15 佛山市云米电器科技有限公司 一种延时停机型家用净水装置以及家用纯水机

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8696908B2 (en) * 2009-05-13 2014-04-15 Poseidon Resources Ip Llc Desalination system and method of wastewater treatment
US20150053356A1 (en) * 2012-10-28 2015-02-26 Pioli Systems Inc. Floating salt farm
US20130318870A1 (en) * 2013-08-15 2013-12-05 Jae Hyun Lim Applications of the bittern produced using the evaporation process of the floating salt farm
US10308537B2 (en) * 2013-09-23 2019-06-04 Gradiant Corporation Desalination systems and associated methods
KR101526214B1 (ko) * 2013-10-21 2015-06-10 한국에너지기술연구원 캡믹스 장치를 이용한 개방형 염도차 발전 시스템
WO2016025109A1 (en) * 2014-08-11 2016-02-18 Krishnamohan Sharma Method, system and a process for producing fertilizers from seawater
CN104150721B (zh) * 2014-08-29 2015-09-30 北京赛科康仑环保科技有限公司 一种用于食品腌制废水的资源化处理方法
US10308526B2 (en) 2015-02-11 2019-06-04 Gradiant Corporation Methods and systems for producing treated brines for desalination
CA2993007C (en) 2015-07-29 2023-04-04 Gradiant Corporation Osmotic desalination methods and associated systems
WO2017030932A1 (en) 2015-08-14 2017-02-23 Gradiant Corporation Selective retention of multivalent ions
US10245555B2 (en) 2015-08-14 2019-04-02 Gradiant Corporation Production of multivalent ion-rich process streams using multi-stage osmotic separation
CN108883344A (zh) 2016-01-22 2018-11-23 格雷迪安特公司 在加湿器例如多级鼓泡塔加湿器中使用高气体流速形成固体盐
WO2017147113A1 (en) 2016-02-22 2017-08-31 Gradiant Corporation Hybrid desalination systems and associated methods
US20200039841A1 (en) * 2018-08-05 2020-02-06 Dariush Habibollah Zadeh Distillation and Desalination of Sea Water using Refrigeration units
US11629072B2 (en) 2018-08-22 2023-04-18 Gradiant Corporation Liquid solution concentration system comprising isolated subsystem and related methods
WO2020257282A1 (en) * 2019-06-17 2020-12-24 University Of Miami Electrohydromodulating process for recovering nutrients, mineralizing organics, and inactivating pathogens in wastewater
EP3771690A1 (en) 2019-08-02 2021-02-03 ResourSEAs S.r.l. Procedure for the extraction of minerals from sea water, plant for extraction and minerals obtained through the extraction procedure
CA3197204A1 (en) 2020-11-17 2022-05-27 Richard STOVER Osmotic methods and systems involving energy recovery
CN112723640A (zh) * 2020-12-28 2021-04-30 中国长江三峡集团有限公司 清洁能源海水淡化耦合盐差能发电装置的***及方法
WO2022142489A1 (zh) * 2020-12-28 2022-07-07 中国长江三峡集团有限公司 清洁能源海水淡化耦合盐差能发电装置的***及方法
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US12040517B2 (en) 2022-11-15 2024-07-16 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell and methods of use thereof
US11855324B1 (en) 2022-11-15 2023-12-26 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell with heat pump

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2947688A (en) 1957-01-10 1960-08-02 George W Murphy Process and apparatus for the demineralization of saline water
US3357077A (en) * 1965-09-16 1967-12-12 Hans G Rohs Means for clamping relatively slidable machine tool members to each other
IL32812A (en) 1968-08-17 1974-05-16 Asahi Chemical Ind Process for producing fresh water and concentrated brine from brine
GB1350766A (en) 1970-03-12 1974-04-24 Secr Defence Water desalination device
IL51542A (en) 1977-02-25 1980-03-31 Univ Ben Gurion Method and apparatus for generating power utilizing reverse electrodialysis
US4141879A (en) * 1977-07-28 1979-02-27 Mccarroll Glenn G Thermoplastic alloy
DE3041209A1 (de) 1980-11-03 1982-05-13 Josef van Opbergen GmbH & Co KG, 4040 Neuss Verfahren zur aufbereitung von insbesondere nitrathaltigem wasser
US5238574A (en) * 1990-06-25 1993-08-24 Kawasaki Jukogyo Kabushiki Kaisha Method and apparatus having reverse osmosis membrane for concentrating solution
EP0604968A3 (en) 1992-12-28 1994-12-14 Asahi Glass Co Ltd Process for producing salt-depleted water.
KR100283403B1 (ko) * 1999-08-19 2001-02-15 김민영 황산염환원균을 이용한 소각재 처리방법
US6783682B1 (en) 1999-08-20 2004-08-31 L.E.T., Leading Edge Technologies Limited Salt water desalination process using ion selective membranes
US6805796B2 (en) * 2001-02-13 2004-10-19 Nitto Denko Corporation Water treatment apparatus
EP2070583B1 (en) 2002-08-02 2012-07-04 University Of South Carolina Production of purified water and high value chemicals from salt water
US7198722B2 (en) 2003-11-11 2007-04-03 Mohammed Azam Hussain Process for pre-treating and desalinating sea water
ATE550090T1 (de) * 2004-09-13 2012-04-15 Univ South Carolina Wasserentsalzungsverfahren und -vorrichtung
US8083942B2 (en) 2004-12-06 2011-12-27 Board of Regents of the Nevada System of Higher Education, on Behalf of the Universary of Nevada, Reno Systems and methods for purification of liquids
US7501064B2 (en) 2005-01-06 2009-03-10 Eet Integrated electro-pressure membrane deionization system
EP1746680A1 (en) 2005-07-20 2007-01-24 Vlaamse Instelling Voor Technologisch Onderzoek (Vito) Combination of a desalination plant and a salinity gradient power reverse electrodialysis plant and use thereof
NL2000640C2 (nl) * 2007-03-05 2008-09-08 Stichting Wetsus Ct Of Excelle Werkwijze en systeem voor het zuiveren van een vloeistof.
US20080277341A1 (en) 2007-05-10 2008-11-13 Nai-Jen Huang Method for Making Reverse Osmosis Permeate Water and Mineral Water From Deep Seawater
EP2149625B1 (en) 2007-05-11 2012-06-27 M Hikari & Energy Laboratory Co., Ltd. On-site integrated production plant
US20080290033A1 (en) * 2007-05-25 2008-11-27 Camp Dresser & Mckee, Inc. Method and apparatus for recovery of water containing silica
NL2001796C2 (en) 2008-07-14 2010-01-18 Eneco New Energy B V Energy storage and production system and method using salinity gradient power generation.
US8206589B2 (en) 2008-09-24 2012-06-26 Poseidon Resources Ip Llc Desalination system and method for integrated treatment of brackish concentrate and seawater
NL1036233C2 (en) 2008-11-24 2010-05-26 Stichting Wetsus Ct Excellence Sustainable Water Technology Device and method for performing an electrodialysis or a reverse electrodialysis process.
NL1036242C2 (en) 2008-11-26 2010-05-27 Stichting Wetsus Ct Excellence Sustainable Water Technology Energy generating system and method therefor.
FR2946334B1 (fr) 2009-06-04 2011-08-26 Otv Sa Procede de traitement d'eau en vue de son dessalement, incluant un traitement des concentrats
WO2011050473A1 (en) * 2009-10-30 2011-05-05 Saltworks Technologies Inc. Method and system for desalinating saltwater while generating electricity
US8695343B2 (en) * 2009-12-04 2014-04-15 General Electric Company Economical and sustainable disposal of zero liquid discharge salt byproduct
CN102167463B (zh) * 2010-02-26 2014-05-14 通用电气公司 水处理装置及方法
US20130062207A1 (en) 2010-05-12 2013-03-14 Rongqiang Fu Method and system for disposal of brine solution
US8801934B2 (en) 2010-08-16 2014-08-12 Board of Regents of the Nevada System of Higher Education, on behalf of the Univeristy of Nevada, Reno Osmotically-assisted desalination method and system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109336305A (zh) * 2018-11-30 2019-02-15 佛山市云米电器科技有限公司 一种延时停机型家用净水装置以及家用纯水机
CN109336305B (zh) * 2018-11-30 2023-10-27 佛山市云米电器科技有限公司 一种延时停机型家用净水装置以及家用纯水机

Also Published As

Publication number Publication date
US20130087501A1 (en) 2013-04-11
WO2013052248A1 (en) 2013-04-11
AU2012319064B2 (en) 2016-09-08
US9382135B2 (en) 2016-07-05
TWI570064B (zh) 2017-02-11
AU2012319064A1 (en) 2014-04-10

Similar Documents

Publication Publication Date Title
TWI570064B (zh) 海水脫鹽方法
Amy et al. Membrane-based seawater desalination: Present and future prospects
Subramani et al. Treatment technologies for reverse osmosis concentrate volume minimization: A review
Ariono et al. Brine Effluents: Characteristics, Environmental Impacts, and Their Handling.
US8197693B2 (en) Apparatus and process for producing electricity using pressure retarded osmosis during desalination of sea water
US8187464B2 (en) Apparatus and process for desalination of brackish water using pressure retarded osmosis
Wenten et al. Integrated processes for desalination and salt production: A mini-review
CN108383315B (zh) 一种多级电驱动离子膜的废水回收装置
KR100874269B1 (ko) 전처리 공정을 포함한 고효율 해수 전해장치 및 전해방법
WO2013033841A1 (en) Hybrid desalination system
Krishna Introduction to desalination technologies
Vane Water recovery from brines and salt‐saturated solutions: operability and thermodynamic efficiency considerations for desalination technologies
TW201249756A (en) Seawater desalination system
CN203768159U (zh) 一种小型海水淡化装置
Al-Enezi et al. Design consideration of RO units: case studies
KR101344783B1 (ko) 역삼투 농축수 재생형 하이브리드 해수담수화 장치 및 방법
Jarma et al. Brine minimization in desalination of the geothermal reinjection fluid by pressure-driven membrane separation processes
Kadhim et al. Comparative study of water desalination using reverse osmosis (RO) and electro-dialysis systems (ED)
KR101305747B1 (ko) 역삼투 농축수 무방류형 하이브리드 해수담수화 장치 및 방법
CA2893345C (en) Hybrid electrochemical softening desalination system and method
JPWO2013027713A1 (ja) 造水方法
Frenkel Planning and design of membrane systems for water treatment
Nave et al. Introductory chapter: Osmotically driven membrane processes
US20240123400A1 (en) Systems and methods for integrated direct air carbon dioxide capture and desalination mineral recovery
Bharadwaj et al. Seawater desalination technologies