WO2012004884A1 - Injection quantity learning device for internal combustion engine - Google Patents

Injection quantity learning device for internal combustion engine Download PDF

Info

Publication number
WO2012004884A1
WO2012004884A1 PCT/JP2010/061683 JP2010061683W WO2012004884A1 WO 2012004884 A1 WO2012004884 A1 WO 2012004884A1 JP 2010061683 W JP2010061683 W JP 2010061683W WO 2012004884 A1 WO2012004884 A1 WO 2012004884A1
Authority
WO
WIPO (PCT)
Prior art keywords
learning
injection
switching
learning value
fuel ratio
Prior art date
Application number
PCT/JP2010/061683
Other languages
French (fr)
Japanese (ja)
Inventor
宮下 茂樹
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2012523482A priority Critical patent/JP5418678B2/en
Priority to PCT/JP2010/061683 priority patent/WO2012004884A1/en
Publication of WO2012004884A1 publication Critical patent/WO2012004884A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an injection amount learning device for an internal combustion engine, and more particularly, to an injection amount learning device for an internal combustion engine that injects fuel divided into a plurality of times within one combustion cycle.
  • Patent Document 1 an internal combustion engine including a fuel injection device that injects fuel in a plurality of times in one combustion cycle is known. Further, this publication discloses that a predicted air-fuel ratio in the exhaust gas of the internal combustion engine is calculated, and a deviation amount between the required injection amount and the actual injection amount is calculated from the difference between the predicted air-fuel ratio and the detected air-fuel ratio. Has been. Furthermore, this publication discloses that the deviation value is divided by the number of divided injections to calculate a learning value corresponding to the deviation amount per injection.
  • FIG. 11 is a diagram showing output characteristics of a fuel injection valve and an air flow meter.
  • the actual value (solid line 60) includes a proportional error proportional to the injection amount and the intake air amount and a quantitative error due to a difference in offset with respect to the design value (broken line 62). Also, the actual value tends to vary on the small amount side. These deviations differ depending on individual differences of actuators and sensors, aging deterioration, and the like.
  • the cause of the deviation in the injection amount includes a proportional error in addition to the quantitative error. Therefore, it is desirable to have a learning value for each operation region (for example, a predetermined range of engine load).
  • a learning value for each operation region for example, a predetermined range of engine load.
  • the learning value increases, so the learning amount increases. If the learning amount increases, there is a concern that the learning speed will decrease.
  • both of these errors are not taken into account, the degree of contribution of the quantitative error varies depending on the difference in the number of divided injections.
  • the present invention has been made to solve the above-described problems, and even when divided injection is performed, the injection amount of an internal combustion engine that can perform learning that achieves both learning speed and learning accuracy.
  • An object is to provide a learning device.
  • a first invention is an injection amount learning apparatus for an internal combustion engine, Injection number switching means for switching the number of divided injections in one combustion cycle by the fuel injection valve in accordance with the operation region of the internal combustion engine; Learning value switching means for switching the learning value correlated with the injection correction amount individually provided for each driving region according to the driving region; Learning value updating means for updating the learning value based on a comparison value between the detected air-fuel ratio and the target air-fuel ratio so that the detected air-fuel ratio in the exhaust gas of the internal combustion engine approaches the target air-fuel ratio, It is characterized in that at least one or more operation regions for switching the number of divided injections and an operation region for switching the learning value substantially coincide with each other.
  • the second invention is characterized in that, in the first invention, all of the operation region for switching the number of divided injections and the operation region for switching the learning value substantially coincide.
  • the third invention is characterized in that, in the first or second invention, the operating region is determined according to an engine load.
  • a fourth invention is characterized in that, in any one of the first to third inventions, the learning value is provided for each engine load and the number of divided injections.
  • the learning value is provided for each engine load and fuel pressure supplied to the fuel injection valve. .
  • Storage means for storing an injection switching learning value correlated with an injection correction amount individually provided for each timing of switching the divided injection number by the injection number switching means; Reflection learning that calculates a reflection learning value that correlates with a final injection correction amount by adding the learning value to the learning value when switching both the learning value and the number of divided injections according to the operation region And a value calculating means.
  • the seventh invention is the sixth invention, wherein Determination means for determining whether or not the detected air-fuel ratio in the exhaust gas of the internal combustion engine is an air-fuel ratio that has fluctuated immediately after switching the number of divided injections; A comparison value between the detected air-fuel ratio and the target air-fuel ratio so that the detected air-fuel ratio becomes closer to the target air-fuel ratio when the detected air-fuel ratio is an air-fuel ratio that has fluctuated immediately after switching the number of divided injections. And an injection switching learning value updating means for updating the injection switching learning value based on the above.
  • At least one or more of the operation region for switching the number of divided injections and the operation region for switching the learning value are set to substantially coincide.
  • the operation region where the number of divided injections is switched and the operation region where the learning value is switched are all set to substantially coincide. For this reason, according to the present invention, it is possible to realize learning that achieves both learning speed and learning accuracy in all driving regions. As a result, it is possible to achieve suitable fuel consumption and emission.
  • the operating region is determined according to the engine load. For this reason, according to this invention, according to the fluctuation
  • the learning value is provided for each engine load and the number of divided injections. For this reason, according to the present invention, even when the number of divided injections is changed in the same range of engine load, the individual learning value corresponding to the number of divided injections is updated. Therefore, the learning value can be maintained with high accuracy.
  • the learning value is provided for each engine load and fuel pressure supplied to the fuel injection valve. For this reason, according to the present invention, even when the fuel pressure and the number of divided injections are changed in the engine load within the same range, the individual learning values corresponding to the fuel pressure and the number of divided injections are updated. Therefore, the learning value can be maintained with high accuracy.
  • the injection learning value is added to the learning value, and the reflection learning value correlated with the final injection correction amount is calculated. To do.
  • the final injection correction amount can be calculated with a small number of learning values. Further, since the number of learning values is small, the learning speed can be increased.
  • the injection switching learning value is updated based on the comparison value between the detected air-fuel ratio and the target air-fuel ratio. Therefore, according to the present invention, it is possible to learn the injection switching learning value that is strongly influenced by the quantitative error with high accuracy.
  • Embodiment 1 of this invention it is a figure which shows the learning area
  • Embodiment 1 of this invention it is a figure which shows the relationship between the driving
  • Embodiment 2 of this invention it is a figure which shows the learning area
  • Embodiment 2 of this invention it is a map for determining the frequency
  • Embodiment 3 of this invention it is a figure which shows the learning area
  • Embodiment 4 of this invention it is a figure which shows the learning area
  • Embodiment 4 of this invention it is a figure for demonstrating the method of calculating a reflective learning value from a load direction learning value and an injection switching learning value.
  • it is a flowchart of the learning routine which ECU50 performs. It is a figure showing the output characteristic of a fuel injection valve or an air flow meter.
  • FIG. 1 is a schematic configuration diagram for explaining a system configuration according to the first embodiment of the present invention.
  • the system shown in FIG. 1 includes an internal combustion engine 10.
  • the internal combustion engine 10 is mounted on a vehicle or the like and used as a power source.
  • the internal combustion engine 10 shown in FIG. 1 is an in-line four-cylinder type, in the present invention, the number of cylinders and the cylinder arrangement are not limited thereto.
  • a fuel injection valve 12 for directly injecting fuel into the cylinder is attached to each cylinder of the internal combustion engine 10.
  • a delivery pipe 14 that supplies high-pressure fuel to the fuel injection valve 12 is connected to the fuel injection valve 12.
  • the present invention is not limited to such an in-cylinder injection type internal combustion engine, but can be similarly applied to a port injection type internal combustion engine that injects fuel into an intake port.
  • an intake passage 16 and an exhaust passage 18 are connected to each cylinder.
  • An air cleaner 20 is provided near the inlet of the intake passage 16.
  • An air flow meter 22 that outputs an intake air amount GA corresponding to the flow rate of fresh air taken into the intake passage 16 is attached downstream of the air cleaner 20.
  • a supercharger 24 is provided downstream of the air flow meter 22.
  • the supercharger 24 includes a compressor 24a and a turbine 24b.
  • the compressor 24a and the turbine 24b are integrally connected by a connecting shaft.
  • the compressor 24a is rotationally driven by the exhaust energy of the exhaust gas input to the turbine 24b.
  • An intercooler 26 for cooling the fresh air compressed by the compressor 24a is provided downstream of the compressor 24a.
  • a throttle valve 28 is provided downstream of the intercooler 26.
  • the intake passage 16 downstream of the throttle valve 28 is branched and connected to each cylinder.
  • a turbine 24b of the supercharger 24 is provided in the exhaust passage 18 after joining.
  • a catalyst 30 for purifying exhaust gas is disposed downstream of the turbine 24b.
  • the catalyst for example, a three-way catalyst is used.
  • An air-fuel ratio sensor 32 for detecting the air-fuel ratio (AF) of the exhaust gas is attached upstream of the catalyst 30.
  • the system of this embodiment further includes an ECU (Electronic Control Unit) 50.
  • ECU Electronic Control Unit
  • various sensors such as a crank angle sensor 34 for detecting the crank angle CA are connected to the input portion of the ECU 50.
  • the ECU 50 can calculate the engine speed NE from the crank angle CA.
  • various actuators such as a spark plug (not shown) are connected to the output portion of the ECU 50.
  • the ECU 50 controls the operating state of the internal combustion engine 10 by operating various actuators according to a predetermined program based on the outputs of the various sensors.
  • the ECU 50 stores a basic injection amount map that defines the relationship between the engine load of the internal combustion engine 10, the engine speed NE, the intake air amount GA, and the like and the basic injection amount.
  • the ECU 50 acquires a basic injection amount corresponding to the engine load or the like from the basic injection amount map, and calculates a final injection amount based on the basic injection amount. Fuel is injected from the fuel injection valve 12 based on the final injection amount. Note that the ECU 50 can divide and inject the final injection amount into a plurality of times within one combustion cycle in order to ensure the homogeneity of the air-fuel mixture.
  • FIG. 2 is a diagram illustrating a learning area set in the ECU 50.
  • the learning area is determined corresponding to the operation area (range of engine load).
  • Each learning region is provided with an individual learning value.
  • This learning value is a value that correlates with the injection correction amount for increasing or decreasing the basic injection amount.
  • the ECU 50 switches the learning value according to the operation region (range of engine load). Although four learning areas are shown in FIG. 2, the number of learning areas is not limited to this in the present invention.
  • the ECU 50 performs feedback control that reflects the comparison value between the detected air-fuel ratio and the target air-fuel ratio in the final injection amount so that the detected air-fuel ratio detected by the air-fuel ratio sensor 32 approaches the target air-fuel ratio. Specifically, an injection correction amount for increasing / decreasing the basic injection amount is calculated based on the deviation between the detected air-fuel ratio and the target air-fuel ratio.
  • the ECU 50 stores a value corresponding to the injection correction amount as a learned value in the current operation region. Thereafter, the ECU 50 adds the learned value in the current operation region to the basic injection amount, calculates the final injection amount, and causes the fuel injection valve 12 to inject it.
  • the target air-fuel ratio is set to the stoichiometric air-fuel ratio (stoichiometric) in the following explanation, but is not limited to this.
  • FIG. 3 is a diagram illustrating a relationship between an operation region in which a learning value is switched and an operation region in which the number of divided injections is switched.
  • the operation region for switching the learning value is determined according to the range of the engine load as in FIG.
  • the operation region for switching the learning value and the operation region for switching the number of divided injections are set so as to substantially match. That is, the learning value and the number of divided injections are set to be switched at substantially the same timing.
  • the learning value and the number of divided injections can be switched in accordance with the fluctuation of the operation region. Therefore, an error due to a difference in engine load and an error due to a difference in the number of divided injections can be learned simultaneously without increasing the learning value. For this reason, according to the present invention, it is possible to realize learning in which both the learning speed and the learning accuracy are compatible even when divided injection is performed. A suitable air-fuel ratio control can be achieved by achieving both learning speed and learning accuracy. As a result, fuel consumption and emissions can be improved.
  • the operation region for switching the learning value and the operation region for switching the number of divided injections are all set to substantially coincide.
  • the setting of the operation region is not limited to this.
  • the operation region for switching the learning value and the operation region for switching the number of divided injections may be at least approximately the same.
  • the air-fuel ratio in the exhaust is detected by the air-fuel ratio sensor 32.
  • the method for acquiring the air-fuel ratio is not limited to this.
  • an in-cylinder pressure sensor may be provided, and the air-fuel ratio may be estimated based on the output value of the in-cylinder pressure sensor.
  • the supercharger 24 is provided.
  • the present invention is also applicable to an internal combustion engine that does not include a supercharger.
  • the internal combustion engine 10 is described as a spark ignition type internal combustion engine.
  • the present invention is also applicable to a compression ignition type internal combustion engine.
  • FIG. 2 System Configuration of Embodiment 2
  • FIG. 4 and 5 the learning area shown in FIGS. 4 and 5 in the ECU 50 in the configuration shown in FIG.
  • the operation region for switching the learning value and the operation region for switching the number of divided injections are set to substantially coincide.
  • This learning value is determined according to the range of the engine load, and the learning value according to the range of the engine load and the number of divided injections in the learning value have a one-to-one correspondence.
  • the learning value is determined for each engine load and the number of divided injections, and the operation region for switching the learning value and the operation region for switching the number of divided injections are set to substantially match. .
  • FIG. 4 is a diagram showing a learning area set in the ECU 50 in the system of the present embodiment.
  • the learning area is set individually for each engine load and the number of divided injections.
  • Each learning region is provided with an individual learning value.
  • This learning value is a value correlated with the injection correction amount for correcting the basic injection amount.
  • the number of learning regions is not limited to that shown in FIG.
  • FIG. 5 is a map for determining the number of divided injections.
  • the number of divided injections is determined in accordance with the operating region determined by the engine load and the engine speed NE. Specifically, since the fuel injection valve 12 has a minimum injection time limit, even in a case where the basic injection amount is set to be large with a high load, in the operating region where the engine speed NE is high, split injection is performed. The number of times cannot be increased. On the other hand, in the operating region where the engine speed NE is low, the number of divided injections can be increased. Therefore, in the map shown in FIG. 5, the number of divided injections is limited in the operation region of high load and high rotation.
  • the ECU 50 stores the map shown in FIG. 5 and determines the number of divided injections corresponding to the current operation region (engine load and engine speed NE). Thereafter, the ECU 50 selects a learning region according to the engine load and the number of divided injections (FIG. 4). Then, the ECU 50 performs feedback control similar to that in the first embodiment, and updates the learning value in the learning region.
  • the operation region for switching the learning value and the operation region for switching the number of divided injections are set so as to substantially match. Therefore, an error due to a difference in engine region and an error due to a difference in the number of divided injections can be learned simultaneously.
  • individual learning values according to the number of divided injections are updated. Can be maintained. For this reason, according to the present invention, it is possible to realize learning that achieves both learning speed and learning accuracy. As a result, the air-fuel ratio controllability can be improved.
  • Embodiment 3 FIG. [System Configuration of Embodiment 3]
  • a third embodiment of the present invention will be described with reference to FIG.
  • the system of the present embodiment can be realized by setting the learning region shown in FIG. 6 in the ECU 50 in the configuration shown in FIG.
  • a fuel pump (not shown) for controlling the fuel pressure in the delivery pipe 14 is connected to the output portion of the ECU 50.
  • the fuel pressure is controlled to increase, for example, as the load is increased and the rotation speed is increased.
  • a learning value is determined for each engine load and the number of divided injections.
  • the fuel injection amount is determined by the valve opening time of the fuel injection valve 12 and the fuel pressure. Therefore, an error occurs in the fuel injection amount even when the fuel pressure varies. Further, the above-described quantitative error is strongly influenced by the change in the fuel pressure material. Therefore, when the fuel pressure is controlled in accordance with the operating state, it is desirable to correct the fuel injection amount error caused by the change in the fuel pressure.
  • the learning value is determined for each engine load, the number of divided injections, and the fuel pressure supplied to the fuel injection valve 12, and the operation region in which the learning value is switched, and the operation region in which the number of divided injections is switched. Are set so as to substantially match.
  • FIG. 6 is a diagram showing a learning area set in the ECU 50 in the system of the present embodiment.
  • the learning area is set according to the engine load, the number of divided injections, and the fuel pressure.
  • Each learning region is provided with an individual learning value.
  • This learning value is a value correlated with the injection correction amount for correcting the basic injection amount.
  • the number of learning regions is not limited to that shown in FIG.
  • the ECU 50 stores a map corresponding to FIG. 5 described above, and determines the number of divided injections corresponding to the current operation region (engine load and engine speed NE). Thereafter, the ECU 50 selects a learning region according to the engine load, the number of divided injections, and the fuel pressure (FIG. 6). Then, the ECU 50 performs feedback control similar to that in the first embodiment, and updates the learning value in the learning region.
  • the operation region for switching the learning value and the operation region for switching the number of divided injections are set so as to substantially match. Therefore, an error due to a difference in engine region and an error due to a difference in the number of divided injections can be learned simultaneously. Further, in the system of the present embodiment, even when the fuel pressure and the number of divided injections are changed in the engine load within the same range, the individual learning values according to the fuel pressure and the number of divided injections are updated. High accuracy learning can be maintained. For this reason, according to the present invention, it is possible to realize learning that achieves both learning speed and learning accuracy. As a result, the air-fuel ratio controllability can be improved.
  • the learning value is determined for each engine load, the number of divided injections, and the fuel pressure supplied to the fuel injection valve 12.
  • the setting of the learning value is not limited to this.
  • the learning value may be determined for each engine load and fuel pressure supplied to the fuel injection valve 12.
  • Embodiment 4 FIG. [System Configuration of Embodiment 4] Next, a fourth embodiment of the present invention will be described with reference to FIGS.
  • the system of this embodiment can be realized by setting the learning area shown in FIG. 7 in the ECU 50 and causing the ECU 50 to execute a routine shown in FIG.
  • Embodiment 2 described above, a learning value is determined for each engine load and the number of divided injections. However, since the learning amount increases as the number of learning values increases, the learning speed may deteriorate. Therefore, it is desirable to keep the number of learning values small.
  • the basic injection amount is finally obtained by adding the injection switching learning value provided for each timing of switching the divided injection frequency to the load direction learning value provided for each engine load range.
  • the reflection learning value for correcting the increase / decrease is calculated.
  • learning area setting and the learning routine using the setting will be described separately.
  • learning area setting will be described with reference to FIG.
  • FIG. 7 is a diagram showing a learning area set in the ECU 50 in the system of the present embodiment.
  • the learning area is individually set for each engine load range.
  • Each learning area is provided with an individual learning value (hereinafter referred to as a load direction learning value).
  • the load direction learning value is one of the injection correction amounts for correcting the basic injection amount, and is used according to the engine load range.
  • the ECU 50 stores individually stored injection switching learning values for each timing of switching the number of divided injections.
  • the injection switching learning value is one of the injection correction amounts for correcting the basic injection amount, and is used when the number of divided injections is switched.
  • As the injection switching learning value a common value is used in switching from N injection to N + 1 injection and switching from N + 1 injection to N injection (FIG. 7).
  • the injection switching learning value is not the rate of change with respect to the engine load, but an absolute amount that correlates with the fuel injection amount.
  • the error factor when switching the number of divided injections is mainly a steady error. Therefore, learning accuracy can be improved by having the absolute amount instead of the ratio to the engine load.
  • the numbers of load direction learning values and injection switching learning values are not limited to those shown in FIG.
  • the ECU 50 calculates a reflected learning value composed of a load direction learned value and an injection switching learned value, and adds this reflected learned value to the basic injection amount to calculate a final injection amount.
  • FIG. 8 is a diagram for explaining a method of calculating a reflection learning value from the load direction learning value and the injection switching learning value.
  • a learning value indicated by a white circle in FIG. 8 is a learning value in the case of single injection.
  • a learning value indicated by a black circle is a learning value corresponding to the number of divided injections.
  • the solid line shown in each learning area is a load direction learning value corresponding to the engine load.
  • the load direction learning value has a continuous tendency with respect to the load direction, but has a large variation with respect to the number of divided injections.
  • the reflected learning value is calculated by adding the injection switching learning value to the load direction learning value at the timing at which the divided injection frequency is switched.
  • the hysteresis is provided between each operation area
  • Reflection learning value at the time of one injection load direction learning value
  • Reflection learning value at the time of two injections load direction learning value + injection switching learning value 1-2
  • Reflection learning value at the time of three injections load direction learning value + injection switching learning value 1-2 + injection switching learning value 2-3
  • Reflection learning value at the time of four injections load direction learning value + injection switching learning value 1-2 + injection switching learning value 2-3 + injection switching learning value 3-4
  • the reflection learning value can be calculated by superimposing the injection switching learning value for each divided injection number on the load direction learning value corresponding to the operation region.
  • FIG. 9 is a timing chart illustrating an example of learning of the load direction learning value and the injection switching learning value.
  • the number of divided injections is switched from once to twice.
  • an error due to the difference in the number of divided injections is added and the injection amount is increased.
  • the air-fuel ratio AF
  • the instantaneous air-fuel ratio deviation that occurs when switching the number of divided injections is stored as the injection switching learning value 1-2. In this way, the injection switching learning value is updated.
  • FIG. 10 is a flowchart of a learning routine executed by the ECU 50 in order to realize the update of the learning value described above.
  • the ECU 50 determines whether or not an air-fuel ratio learning enabling condition is satisfied (step S100).
  • the air-fuel ratio learning enabling condition is, for example, that the water temperature is equal to or higher than a predetermined value (warming-up completion state), and that the air-fuel ratio feedback control is being executed. If it is determined that the air-fuel ratio learning enabling condition is not satisfied, then the processing of this routine is terminated.
  • step S100 If it is determined in step S100 that the air-fuel ratio learning enable condition is satisfied, then the ECU 50 determines that the air-fuel ratio deviation between the detected air-fuel ratio detected by the air-fuel ratio sensor 32 and the target air-fuel ratio is greater than or equal to a predetermined value. It is determined whether or not there is (step S110).
  • This predetermined value is a predetermined value in consideration of, for example, errors due to product variations. If it is determined that the air-fuel ratio deviation is less than the predetermined value, then the processing of this routine is terminated.
  • step S110 If it is determined in step S110 that the air-fuel ratio deviation is greater than or equal to a predetermined value, the ECU 50 next determines whether or not there is a change in the number of divided injections (step S120). As described above, in the present system, the operation region for switching the load direction learning value and the operation region for switching the number of divided injections are set to substantially coincide. Whether or not the number of divided injections has been switched can be determined from the operation region (range of engine load) or the load direction learning value. When it is determined that the number of divided injections is not switched, the process of step S150 described later is performed.
  • step S120 When it is determined in step S120 that the number of divided injections has been switched, the ECU 50 next determines whether or not a predetermined time has elapsed since the previous switching of the number of divided injections (step 130). If the predetermined time has not elapsed, then this routine is terminated.
  • step S130 the ECU 50 next determines whether or not the predetermined time has elapsed since the current switching of the divided injection number (step 140).
  • This predetermined time is set to a timing at which a change in the air-fuel ratio that occurs instantaneously can be detected immediately after switching the number of divided injections.
  • step 140 when it is determined that the predetermined time has not elapsed since the switching of the divided injection number, the ECU 50 updates the value of the injection switching learning value (step S150). Specifically, first, the air-fuel ratio immediately after switching is detected by the air-fuel ratio sensor 32. The ECU 50 calculates the instantaneous fluctuation amount of the air-fuel ratio immediately after switching from the deviation between the detected air-fuel ratio and the target air-fuel ratio. The ECU 50 updates the injection switching learning value based on the instantaneous fluctuation amount. For example, when the number of divided injections is switched from once to twice, the injection switching learning value 1-2 is updated (FIG. 9).
  • the ECU 50 updates the value of the load direction learning value (step S160). Specifically, the ECU 50 performs injection that increases or decreases the basic injection amount based on the deviation between the detected air-fuel ratio and the target air-fuel ratio so that the detected air-fuel ratio detected by the air-fuel ratio sensor 32 approaches the target air-fuel ratio. A correction amount is calculated. The ECU 50 updates the load direction learning value in the current operation region based on the injection correction amount.
  • the load direction learning value and the injection switching learning value can be updated individually.
  • the reflected learning value according to the engine load and the number of divided injections can be calculated from these learning values (FIGS. 8 and 9). Therefore, the same effect as that of the system in the second embodiment can be obtained with a small number of learning values. Since the number of learning values is small, the learning speed can be increased. For this reason, according to the present invention, it is possible to realize learning that achieves both learning speed and learning accuracy. As a result, the air-fuel ratio controllability can be improved.
  • the ECU 50 calculates the reflected learning value from the load direction learning value and the injection switching learning value in the “storage means” in the sixth invention. It corresponds to “reflected learning value calculation means” in the invention.
  • the ECU 50 executes the process of step S140, so that the “determination means” in the seventh invention executes the process of step S150, and the “injection switching learning” in the seventh invention is executed.
  • "Value updating means" is realized respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Provided is an injection quantity learning device for an internal combustion engine which enables both learning speed and learning accuracy to be learned, even when split injection is performed. The number of split injections within one combustion cycle by a fuel injection valve is changed according to the operating range of the internal combustion engine. A learning value, which correlates with an injection correction amount separately provided for each operating range, is changed according to the operating range. The learning value is updated on the basis of a comparison value between a detected air-fuel ratio and a target air-fuel ratio in such manner that the detected air-fuel ratio in the exhaust of the internal combustion engine approaches the target air-fuel ratio. Furthermore, the operating range in which the number of split injections is changed and the operating range in which the learning value is changed substantially coincide.

Description

内燃機関の噴射量学習装置Injection amount learning device for internal combustion engine
 この発明は、内燃機関の噴射量学習装置に係り、特に、1燃焼サイクル内において、複数回に分割して燃料を噴射する内燃機関の噴射量学習装置に関する。 The present invention relates to an injection amount learning device for an internal combustion engine, and more particularly, to an injection amount learning device for an internal combustion engine that injects fuel divided into a plurality of times within one combustion cycle.
 従来、例えば特許文献1に開示されるように、1燃焼サイクル内において、複数回に分割して燃料を噴射する燃料噴射装置を備えた内燃機関が知られている。また、本公報には、内燃機関の排気中の予測空燃比を算出し、予測空燃比と検出空燃比との差から、要求噴射量と実際の噴射量とのずれ量を算出することが開示されている。さらに、本公報には、上記ずれ量を分割噴射回数で除算して、噴射1回当たりのずれ量に相当する学習値を算出することが開示されている。 2. Description of the Related Art Conventionally, as disclosed in, for example, Patent Document 1, an internal combustion engine including a fuel injection device that injects fuel in a plurality of times in one combustion cycle is known. Further, this publication discloses that a predicted air-fuel ratio in the exhaust gas of the internal combustion engine is calculated, and a deviation amount between the required injection amount and the actual injection amount is calculated from the difference between the predicted air-fuel ratio and the detected air-fuel ratio. Has been. Furthermore, this publication discloses that the deviation value is divided by the number of divided injections to calculate a learning value corresponding to the deviation amount per injection.
日本特開2007-278168号公報Japanese Unexamined Patent Publication No. 2007-278168 日本特開2009-97456号公報Japanese Unexamined Patent Publication No. 2009-97456
 図11は、燃料噴射弁やエアフローメータの出力特性を表す図である。図11に示すように、実値(実線60)には、設計値(破線62)に対して、噴射量や吸入空気量に比例する比例誤差と、オフセットの違いによる定量誤差とがある。また、少量側においては、実値にばらつきが生じ易い。これらのずれは、アクチュエータやセンサの個体差や経年劣化などによって異なる。 FIG. 11 is a diagram showing output characteristics of a fuel injection valve and an air flow meter. As shown in FIG. 11, the actual value (solid line 60) includes a proportional error proportional to the injection amount and the intake air amount and a quantitative error due to a difference in offset with respect to the design value (broken line 62). Also, the actual value tends to vary on the small amount side. These deviations differ depending on individual differences of actuators and sensors, aging deterioration, and the like.
 分割噴射を実施する場合には、噴射1回当たりの噴射期間が短くなり、少量側を多用することとなる(図11)。また、1燃焼サイクル当たりの分割噴射回数が増えるほど、定量誤差が重なり、実噴射量は定量誤差の影響を強く受けることとなる。そのため、上記特許文献1では、噴射1回当たりの定量誤差に相当する学習値を算出することとしている。 When carrying out split injection, the injection period per injection is shortened and the small amount side is frequently used (FIG. 11). Further, as the number of divided injections per combustion cycle increases, the quantitative errors overlap, and the actual injection amount is strongly influenced by the quantitative errors. For this reason, in Patent Document 1, a learning value corresponding to a quantitative error per injection is calculated.
 ところで、噴射量にずれが生じる要因としては、上述したとおり、定量誤差のほかに比例誤差もある。そのため、運転領域(例えば、機関負荷の所定範囲)ごとに学習値を持たせることが望ましい。しかしながら、運転領域の違いによる誤差と、分割噴射回数の違いによる誤差とを別々に学習すれば、学習値が増えるため、学習量が増大してしまう。学習量が増大すれば、学習速度の低下が懸念される。一方、これらの誤差の両方を考慮しなければ、分割噴射回数の違いによって定量誤差の寄与度が変動するため、学習精度の低下が懸念される。 Incidentally, as described above, the cause of the deviation in the injection amount includes a proportional error in addition to the quantitative error. Therefore, it is desirable to have a learning value for each operation region (for example, a predetermined range of engine load). However, if the error due to the difference in the operation region and the error due to the difference in the number of divided injections are learned separately, the learning value increases, so the learning amount increases. If the learning amount increases, there is a concern that the learning speed will decrease. On the other hand, if both of these errors are not taken into account, the degree of contribution of the quantitative error varies depending on the difference in the number of divided injections.
 この発明は、上述のような課題を解決するためになされたもので、分割噴射がなされる場合であっても、学習速度と学習精度とを両立した学習をすることのできる内燃機関の噴射量学習装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and even when divided injection is performed, the injection amount of an internal combustion engine that can perform learning that achieves both learning speed and learning accuracy. An object is to provide a learning device.
 第1の発明は、上記の目的を達成するため、内燃機関の噴射量学習装置であって、
 燃料噴射弁による1燃焼サイクル内での分割噴射回数を、内燃機関の運転領域に応じて切り替える噴射回数切り替え手段と、
 前記運転領域ごとに個別に設けられた噴射補正量に相関する学習値を、前記運転領域に応じて切り替える学習値切り替え手段と、
 前記内燃機関の排気中の検出空燃比を目標空燃比に近づけるように、前記検出空燃比と前記目標空燃比との比較値に基づいて前記学習値を更新する学習値更新手段と、を備え、
 前記分割噴射回数を切り替える運転領域と前記学習値とを切り替える運転領域とが、少なくとも1つ以上略一致していること、を特徴とする。
In order to achieve the above object, a first invention is an injection amount learning apparatus for an internal combustion engine,
Injection number switching means for switching the number of divided injections in one combustion cycle by the fuel injection valve in accordance with the operation region of the internal combustion engine;
Learning value switching means for switching the learning value correlated with the injection correction amount individually provided for each driving region according to the driving region;
Learning value updating means for updating the learning value based on a comparison value between the detected air-fuel ratio and the target air-fuel ratio so that the detected air-fuel ratio in the exhaust gas of the internal combustion engine approaches the target air-fuel ratio,
It is characterized in that at least one or more operation regions for switching the number of divided injections and an operation region for switching the learning value substantially coincide with each other.
 また、第2の発明は、第1の発明において、前記分割噴射回数を切り替える運転領域と前記学習値を切り替える運転領域との全てが略一致していることを特徴とする。 Further, the second invention is characterized in that, in the first invention, all of the operation region for switching the number of divided injections and the operation region for switching the learning value substantially coincide.
 また、第3の発明は、第1又は第2の発明において、前記運転領域は、機関負荷に応じて定められていることを特徴とする。 Further, the third invention is characterized in that, in the first or second invention, the operating region is determined according to an engine load.
 また、第4の発明は、第1乃至第3の発明のいずれか1つにおいて、前記学習値は、機関負荷及び前記分割噴射回数ごとに設けられていることを特徴とする。 Further, a fourth invention is characterized in that, in any one of the first to third inventions, the learning value is provided for each engine load and the number of divided injections.
 また、第5の発明は、第1乃至第3の発明のいずれか1つにおいて、前記学習値は、機関負荷及び燃料噴射弁に供給される燃料圧力ごとに設けられていることを特徴とする。 According to a fifth aspect of the present invention, in any one of the first to third aspects, the learning value is provided for each engine load and fuel pressure supplied to the fuel injection valve. .
 また、第6の発明は、第1乃至第3の発明のいずれか1つにおいて、
 前記噴射回数切り替え手段によって分割噴射回数を切り替えるタイミングごとに個別に設けられた噴射補正量に相関する噴射切り替え学習値を記憶する記憶手段と、
 前記運転領域に応じて前記学習値及び前記分割噴射回数を共に切り替える際に、前記学習値に前記噴射切り替え学習値を加えて、最終的な噴射補正量に相関する反映学習値を算出する反映学習値算出手段と、を更に備えることを特徴とする。
According to a sixth invention, in any one of the first to third inventions,
Storage means for storing an injection switching learning value correlated with an injection correction amount individually provided for each timing of switching the divided injection number by the injection number switching means;
Reflection learning that calculates a reflection learning value that correlates with a final injection correction amount by adding the learning value to the learning value when switching both the learning value and the number of divided injections according to the operation region And a value calculating means.
 また、第7の発明は、第6の発明において、
 前記内燃機関の排気中の検出空燃比が、前記分割噴射回数を切り替えた直後に変動した空燃比であるか否かを判定する判定手段と、
 前記検出空燃比が前記分割噴射回数を切り替えた直後に変動した空燃比である場合に、前記検出空燃比を前記目標空燃比に近づけるように、前記検出空燃比と前記目標空燃比との比較値に基づいて前記噴射切り替え学習値を更新する噴射切り替え学習値更新手段と、を更に備えることを特徴とする。
The seventh invention is the sixth invention, wherein
Determination means for determining whether or not the detected air-fuel ratio in the exhaust gas of the internal combustion engine is an air-fuel ratio that has fluctuated immediately after switching the number of divided injections;
A comparison value between the detected air-fuel ratio and the target air-fuel ratio so that the detected air-fuel ratio becomes closer to the target air-fuel ratio when the detected air-fuel ratio is an air-fuel ratio that has fluctuated immediately after switching the number of divided injections. And an injection switching learning value updating means for updating the injection switching learning value based on the above.
 第1の発明によれば、分割噴射回数を切り替える運転領域と学習値とを切り替える運転領域とが、少なくとも1つ以上略一致するように設定されている。これにより、運転領域の変動に応じて、分割噴射回数と学習値とを合わせて切り替えることができる。そのため、学習値を増やすことなく、運転領域の違いによる誤差と分割噴射回数の違いによる誤差とを同時に学習することができる。このため、本発明によれば、分割噴射がなされる場合であっても、学習速度と学習精度とを両立した学習を実現することができる。 According to the first invention, at least one or more of the operation region for switching the number of divided injections and the operation region for switching the learning value are set to substantially coincide. Thereby, according to the fluctuation | variation of a driving | running | working area | region, the division | segmentation injection frequency and a learning value can be switched together. Therefore, it is possible to simultaneously learn an error due to a difference in operation region and an error due to a difference in the number of divided injections without increasing the learning value. For this reason, according to the present invention, it is possible to realize learning in which both the learning speed and the learning accuracy are compatible even when divided injection is performed.
 第2の発明によれば、分割噴射回数を切り替える運転領域と学習値を切り替える運転領域との全てが略一致するように設定されている。このため、本発明によれば、全ての運転領域において、学習速度と学習精度とを両立した学習を実現することができる。その結果、好適な燃費やエミッションを実現することが可能となる。 According to the second aspect of the invention, the operation region where the number of divided injections is switched and the operation region where the learning value is switched are all set to substantially coincide. For this reason, according to the present invention, it is possible to realize learning that achieves both learning speed and learning accuracy in all driving regions. As a result, it is possible to achieve suitable fuel consumption and emission.
 第3の発明によれば、運転領域は機関負荷に応じて定められる。このため、本発明によれば、機関負荷の変動に応じて、分割噴射回数と学習値とを合わせて切り替えることができる。 According to the third invention, the operating region is determined according to the engine load. For this reason, according to this invention, according to the fluctuation | variation of an engine load, the division | segmentation injection frequency and a learning value can be switched collectively.
 第4の発明によれば、学習値は、機関負荷及び分割噴射回数ごとに設けられる。このため、本発明によれば、同範囲の機関負荷において分割噴射回数が変更される場合であっても、分割噴射回数に応じた個別の学習値が更新される。そのため、学習値を精度高く維持することができる。 According to the fourth invention, the learning value is provided for each engine load and the number of divided injections. For this reason, according to the present invention, even when the number of divided injections is changed in the same range of engine load, the individual learning value corresponding to the number of divided injections is updated. Therefore, the learning value can be maintained with high accuracy.
 第5の発明によれば、学習値は、機関負荷及び燃料噴射弁に供給される燃料圧力ごとに設けられる。このため、本発明によれば、同範囲の機関負荷において燃料圧力や分割噴射回数が変更される場合であっても、燃料圧力や分割噴射回数に応じた個別の学習値が更新される。そのため、学習値を精度高く維持することができる。 According to the fifth aspect, the learning value is provided for each engine load and fuel pressure supplied to the fuel injection valve. For this reason, according to the present invention, even when the fuel pressure and the number of divided injections are changed in the engine load within the same range, the individual learning values corresponding to the fuel pressure and the number of divided injections are updated. Therefore, the learning value can be maintained with high accuracy.
 第6の発明によれば、運転領域に応じて学習値及び分割噴射回数を共に切り替える際に、学習値に噴射切り替え学習値を加えて、最終的な噴射補正量に相関する反映学習値を算出する。このため、本発明によれば、少ない学習値の数で最終的な噴射補正量を算出することが可能となる。また、学習値の数が少ないため、学習速度を高めることができる。 According to the sixth aspect of the invention, when both the learning value and the number of divided injections are switched according to the operation region, the injection learning value is added to the learning value, and the reflection learning value correlated with the final injection correction amount is calculated. To do. For this reason, according to the present invention, the final injection correction amount can be calculated with a small number of learning values. Further, since the number of learning values is small, the learning speed can be increased.
 第7の発明によれば、分割噴射回数を切り替えた直後に検出空燃比が変動した場合に、検出空燃比と目標空燃比との比較値に基づいて噴射切り替え学習値が更新される。このため、本発明によれば、定量誤差の影響を強く受ける噴射切り替え学習値を、精度高く学習することができる。 According to the seventh aspect, when the detected air-fuel ratio fluctuates immediately after switching the number of divided injections, the injection switching learning value is updated based on the comparison value between the detected air-fuel ratio and the target air-fuel ratio. Therefore, according to the present invention, it is possible to learn the injection switching learning value that is strongly influenced by the quantitative error with high accuracy.
本発明の実施の形態1のシステム構成を説明するための概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram for demonstrating the system configuration | structure of Embodiment 1 of this invention. 本発明の実施の形態1において、ECU50に設定される学習領域を示す図である。In Embodiment 1 of this invention, it is a figure which shows the learning area | region set to ECU50. 本発明の実施の形態1において、学習値を切り替える運転領域と分割噴射回数を切り替える運転領域との関係を示す図である。In Embodiment 1 of this invention, it is a figure which shows the relationship between the driving | operation area | region which switches a learning value, and the driving | operation area | region which switches the division | segmentation injection frequency. 本発明の実施の形態2において、ECU50に設定される学習領域を示す図である。In Embodiment 2 of this invention, it is a figure which shows the learning area | region set to ECU50. 本発明の実施の形態2において、分割噴射回数を決定するためのマップである。In Embodiment 2 of this invention, it is a map for determining the frequency | count of division | segmentation injection. 本発明の実施の形態3において、ECU50に設定される学習領域を示す図である。In Embodiment 3 of this invention, it is a figure which shows the learning area | region set to ECU50. 本発明の実施の形態4において、ECU50に設定される学習領域を示す図である。In Embodiment 4 of this invention, it is a figure which shows the learning area | region set to ECU50. 本発明の実施の形態4において、負荷方向学習値と噴射切り替え学習値とから反映学習値を算出する方法について説明するための図である。In Embodiment 4 of this invention, it is a figure for demonstrating the method of calculating a reflective learning value from a load direction learning value and an injection switching learning value. 本発明の実施の形態4において、負荷方向学習値と噴射切り替え学習値の学習例を示すタイミングチャートである。In Embodiment 4 of this invention, it is a timing chart which shows the learning example of a load direction learning value and an injection switching learning value. 本発明の実施の形態4において、ECU50が実行する学習ルーチンのフローチャートである。In Embodiment 4 of this invention, it is a flowchart of the learning routine which ECU50 performs. 燃料噴射弁やエアフローメータの出力特性を表す図である。It is a figure showing the output characteristic of a fuel injection valve or an air flow meter.
10 内燃機関
12 燃料噴射弁
14 デリバリーパイプ
22 エアフローメータ
24、24a、24b 過給機、コンプレッサ、タービン
30 触媒
32 空燃比センサ
34 クランク角センサ
50 ECU(Electronic Control Unit)
DESCRIPTION OF SYMBOLS 10 Internal combustion engine 12 Fuel injection valve 14 Delivery pipe 22 Air flow meters 24, 24a, 24b Supercharger, compressor, turbine 30 Catalyst 32 Air-fuel ratio sensor 34 Crank angle sensor 50 ECU (Electronic Control Unit)
 以下、図面を参照して本発明の実施の形態について詳細に説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the element which is common in each figure, and the overlapping description is abbreviate | omitted.
実施の形態1.
[実施の形態1のシステム構成]
 図1は、本発明の実施の形態1のシステム構成を説明するための概略構成図である。図1に示すシステムは、内燃機関10を備えている。内燃機関10は、車両等に搭載され、その動力源とされる。図1に示す内燃機関10は、直列4気筒型であるが、本発明では、気筒数および気筒配置はこれに限定されるものではない。
Embodiment 1 FIG.
[System Configuration of Embodiment 1]
FIG. 1 is a schematic configuration diagram for explaining a system configuration according to the first embodiment of the present invention. The system shown in FIG. 1 includes an internal combustion engine 10. The internal combustion engine 10 is mounted on a vehicle or the like and used as a power source. Although the internal combustion engine 10 shown in FIG. 1 is an in-line four-cylinder type, in the present invention, the number of cylinders and the cylinder arrangement are not limited thereto.
 内燃機関10の各気筒には、燃料を筒内に直接噴射する燃料噴射弁12が取り付けられている。燃料噴射弁12には、高圧の燃料を燃料噴射弁12に供給するデリバリーパイプ14が接続されている。なお、本発明は、このような筒内噴射式の内燃機関に限らず、吸気ポート内に燃料を噴射するポート噴射式の内燃機関にも同様に適用可能である。 A fuel injection valve 12 for directly injecting fuel into the cylinder is attached to each cylinder of the internal combustion engine 10. A delivery pipe 14 that supplies high-pressure fuel to the fuel injection valve 12 is connected to the fuel injection valve 12. The present invention is not limited to such an in-cylinder injection type internal combustion engine, but can be similarly applied to a port injection type internal combustion engine that injects fuel into an intake port.
 また、各気筒には、吸気通路16および排気通路18が接続されている。吸気通路16の入口付近には、エアクリーナ20が設けられている。エアクリーナ20の下流には、吸気通路16に吸入される新気の流量に応じた吸入空気量GAを出力するエアフローメータ22が取り付けられている。 Also, an intake passage 16 and an exhaust passage 18 are connected to each cylinder. An air cleaner 20 is provided near the inlet of the intake passage 16. An air flow meter 22 that outputs an intake air amount GA corresponding to the flow rate of fresh air taken into the intake passage 16 is attached downstream of the air cleaner 20.
 エアフローメータ22の下流には、過給機24が設けられている。過給機24は、コンプレッサ24aとタービン24bを備えている。コンプレッサ24aとタービン24bとは、連結軸によって一体に連結されている。コンプレッサ24aは、タービン24bに入力される排気ガスの排気エネルギーによって回転駆動される。 A supercharger 24 is provided downstream of the air flow meter 22. The supercharger 24 includes a compressor 24a and a turbine 24b. The compressor 24a and the turbine 24b are integrally connected by a connecting shaft. The compressor 24a is rotationally driven by the exhaust energy of the exhaust gas input to the turbine 24b.
 コンプレッサ24aの下流には、コンプレッサ24aで圧縮された新気を冷却するためのインタークーラ26が設けられている。インタークーラ26の下流には、スロットルバルブ28が設けられている。スロットルバルブ28下流の吸気通路16は、分岐して各気筒に接続されている。 An intercooler 26 for cooling the fresh air compressed by the compressor 24a is provided downstream of the compressor 24a. A throttle valve 28 is provided downstream of the intercooler 26. The intake passage 16 downstream of the throttle valve 28 is branched and connected to each cylinder.
 また、合流後の排気通路18には、過給機24のタービン24bが設けられている。また、タービン24bの下流には、排気ガスを浄化するための触媒30が配置されている。触媒には、例えば三元触媒が用いられる。触媒30の上流には、排気ガスの空燃比(AF)を検出するための空燃比センサ32が取り付けられている。 Further, a turbine 24b of the supercharger 24 is provided in the exhaust passage 18 after joining. A catalyst 30 for purifying exhaust gas is disposed downstream of the turbine 24b. As the catalyst, for example, a three-way catalyst is used. An air-fuel ratio sensor 32 for detecting the air-fuel ratio (AF) of the exhaust gas is attached upstream of the catalyst 30.
 本実施形態のシステムは、ECU(Electronic Control Unit)50を更に備えている。ECU50の入力部には、上述したエアフローメータ22、空燃比センサ32の他、クランク角CAを検出するためのクランク角センサ34等の各種センサが接続されている。ECU50は、クランク角CAから機関回転数NEを計算することができる。また、ECU50の出力部には、上述した燃料噴射弁12、スロットルバルブ28の他、図示省略する点火プラグ等の各種アクチュエータが接続されている。 The system of this embodiment further includes an ECU (Electronic Control Unit) 50. In addition to the air flow meter 22 and the air-fuel ratio sensor 32 described above, various sensors such as a crank angle sensor 34 for detecting the crank angle CA are connected to the input portion of the ECU 50. The ECU 50 can calculate the engine speed NE from the crank angle CA. In addition to the fuel injection valve 12 and the throttle valve 28 described above, various actuators such as a spark plug (not shown) are connected to the output portion of the ECU 50.
 ECU50は、各種センサの出力に基づき、所定のプログラムに従って各種アクチュエータを作動させることにより、内燃機関10の運転状態を制御する。例えば、ECU50は、内燃機関10の機関負荷、機関回転数NE、吸入空気量GA等と、基本噴射量との関係を定めた基本噴射量マップを記憶している。ECU50は、基本噴射量マップから機関負荷等に応じた基本噴射量を取得し、この基本噴射量に基づいて最終噴射量を算出する。最終噴射量に基づいて燃料噴射弁12から燃料が噴射される。なお、ECU50は、混合気の均質性を確保するため、最終噴射量を1燃焼サイクル内で複数回に分割して噴射させることができる。 The ECU 50 controls the operating state of the internal combustion engine 10 by operating various actuators according to a predetermined program based on the outputs of the various sensors. For example, the ECU 50 stores a basic injection amount map that defines the relationship between the engine load of the internal combustion engine 10, the engine speed NE, the intake air amount GA, and the like and the basic injection amount. The ECU 50 acquires a basic injection amount corresponding to the engine load or the like from the basic injection amount map, and calculates a final injection amount based on the basic injection amount. Fuel is injected from the fuel injection valve 12 based on the final injection amount. Note that the ECU 50 can divide and inject the final injection amount into a plurality of times within one combustion cycle in order to ensure the homogeneity of the air-fuel mixture.
 また、ECU50には、図11で述べた運転領域の違いによる誤差を解消するために用いられる、運転領域(機関負荷の範囲)ごとに個別に設けられた学習値が記憶されている。図2は、ECU50に設定される学習領域を示す図である。学習領域は、運転領域(機関負荷の範囲)に対応して定められている。それぞれの学習領域には、個別の学習値が設けられている。この学習値は、上述の基本噴射量を増減補正する噴射補正量に相関する値である。ECU50は、運転領域(機関負荷の範囲)に応じて学習値を切り替える。なお、図2には4つの学習領域が示されているが、本発明において学習領域の数はこれに限定されるものではない。 Further, the ECU 50 stores learning values individually provided for each operation region (range of engine load) used for eliminating the error due to the difference of the operation region described in FIG. FIG. 2 is a diagram illustrating a learning area set in the ECU 50. The learning area is determined corresponding to the operation area (range of engine load). Each learning region is provided with an individual learning value. This learning value is a value that correlates with the injection correction amount for increasing or decreasing the basic injection amount. The ECU 50 switches the learning value according to the operation region (range of engine load). Although four learning areas are shown in FIG. 2, the number of learning areas is not limited to this in the present invention.
 次に、上述した学習値を算出する手法について説明する。ECU50は、空燃比センサ32により検出される検出空燃比を目標空燃比に近づけるように、検出空燃比と目標空燃比との比較値を、最終噴射量に反映するフィードバック制御を実施する。具体的には、検出空燃比と目標空燃比との偏差に基づいて、上述した基本噴射量を増減補正する噴射補正量を算出する。ECU50は、この噴射補正量に相当する値を、現運転領域における学習値として記憶する。その後、ECU50は、基本噴射量に現運転領域における学習値を加えて、最終噴射量を算出し、燃料噴射弁12に噴射させる。なお、説明容易のため、以下の説明において目標空燃比は、理論空燃比(ストイキ)に設定されているものとするが、これに限定されるものではない。 Next, a method for calculating the learning value described above will be described. The ECU 50 performs feedback control that reflects the comparison value between the detected air-fuel ratio and the target air-fuel ratio in the final injection amount so that the detected air-fuel ratio detected by the air-fuel ratio sensor 32 approaches the target air-fuel ratio. Specifically, an injection correction amount for increasing / decreasing the basic injection amount is calculated based on the deviation between the detected air-fuel ratio and the target air-fuel ratio. The ECU 50 stores a value corresponding to the injection correction amount as a learned value in the current operation region. Thereafter, the ECU 50 adds the learned value in the current operation region to the basic injection amount, calculates the final injection amount, and causes the fuel injection valve 12 to inject it. For ease of explanation, the target air-fuel ratio is set to the stoichiometric air-fuel ratio (stoichiometric) in the following explanation, but is not limited to this.
 ところで、最終噴射量を分割して噴射する場合には、図11で述べた分割噴射回数の違いによる誤差が生じる。特に、過給機24を備える本実施形態のシステムでは、使用する負荷の範囲が広い。負荷に応じて分割噴射回数を切り替える場合も多く、分割噴射回数の違いによる誤差の影響が大きい。そのため、分割噴射回数に応じて重畳する定量誤差を考慮しなければ、学習精度が低下することとなる。一方で、運転領域(機関負荷の範囲)の違いよる誤差と、分割噴射回数の違いによる誤差とを別々に学習することとすれば、学習値が増えて、学習速度が低下することとなる。 Incidentally, when the final injection amount is divided and injected, an error due to the difference in the number of divided injections described in FIG. 11 occurs. In particular, in the system of this embodiment provided with the supercharger 24, the range of the load to be used is wide. In many cases, the number of divided injections is switched according to the load, and the influence of errors due to the difference in the number of divided injections is large. For this reason, unless the quantitative error to be superimposed according to the number of divided injections is taken into account, the learning accuracy is lowered. On the other hand, if the error due to the difference in the operation region (range of engine load) and the error due to the difference in the number of divided injections are learned separately, the learning value increases and the learning speed decreases.
[実施の形態1における特徴的構成]
 このような問題を解決するための本実施形態の特徴的構成について、図3を用いて説明する。図3は、学習値を切り替える運転領域と、分割噴射回数を切り替える運転領域との関係を示す図である。学習値を切り替える運転領域は、図2と同様に機関負荷の範囲に応じて定められている。さらに、本実施形態では、学習値を切り替える運転領域と、分割噴射回数を切り替える運転領域とが略一致するように設定されている。即ち、学習値と分割噴射回数とが略同じタイミングで切り替わるように設定されている。
[Characteristic Configuration in Embodiment 1]
A characteristic configuration of this embodiment for solving such a problem will be described with reference to FIG. FIG. 3 is a diagram illustrating a relationship between an operation region in which a learning value is switched and an operation region in which the number of divided injections is switched. The operation region for switching the learning value is determined according to the range of the engine load as in FIG. Furthermore, in the present embodiment, the operation region for switching the learning value and the operation region for switching the number of divided injections are set so as to substantially match. That is, the learning value and the number of divided injections are set to be switched at substantially the same timing.
 このような特徴的構成を有する本実施形態のシステムによれば、運転領域の変動に応じて、学習値と分割噴射回数とを合わせて切り替えることができる。そのため、学習値を増やすことなく、機関負荷の違いによる誤差と分割噴射回数の違いによる誤差とを同時に学習させることができる。このため、本発明によれば、分割噴射がなされる場合であっても、学習速度と学習精度とを両立した学習を実現することができる。学習速度と学習精度との両立により、好適な空燃比制御が可能となる。その結果、燃費やエミッションの向上を図ることができる。 According to the system of the present embodiment having such a characteristic configuration, the learning value and the number of divided injections can be switched in accordance with the fluctuation of the operation region. Therefore, an error due to a difference in engine load and an error due to a difference in the number of divided injections can be learned simultaneously without increasing the learning value. For this reason, according to the present invention, it is possible to realize learning in which both the learning speed and the learning accuracy are compatible even when divided injection is performed. A suitable air-fuel ratio control can be achieved by achieving both learning speed and learning accuracy. As a result, fuel consumption and emissions can be improved.
 ところで、上述した実施の形態1のシステムにおいては、学習値を切り替える運転領域と、分割噴射回数を切り替える運転領域との全てが略一致させるように設定することとしている。しかしながら、運転領域の設定はこれに限られるものではない。学習値を切り替える運転領域と分割噴射回数を切り替える運転領域とが、少なくとも1以上略一致することとしてもよい。 By the way, in the system of the first embodiment described above, the operation region for switching the learning value and the operation region for switching the number of divided injections are all set to substantially coincide. However, the setting of the operation region is not limited to this. The operation region for switching the learning value and the operation region for switching the number of divided injections may be at least approximately the same.
 また、上述した実施の形態1のシステムにおいては、排気中の空燃比を、空燃比センサ32により検出することとしている。しかしながら、空燃比の取得手法はこれに限定されるものではない。例えば、筒内圧センサを備え、筒内圧センサの出力値に基づいて空燃比を推定することとしてもよい。 Further, in the system of the first embodiment described above, the air-fuel ratio in the exhaust is detected by the air-fuel ratio sensor 32. However, the method for acquiring the air-fuel ratio is not limited to this. For example, an in-cylinder pressure sensor may be provided, and the air-fuel ratio may be estimated based on the output value of the in-cylinder pressure sensor.
 また、上述した実施の形態1のシステムにおいては、過給機24を備えることとしているが、本発明は、過給機を備えない内燃機関にも適用可能である。また、本実施形態では、内燃機関10が、火花点火式の内燃機関であるものとして説明したが、本発明は、圧縮着火式の内燃機関にも適用可能である。 In the system according to the first embodiment described above, the supercharger 24 is provided. However, the present invention is also applicable to an internal combustion engine that does not include a supercharger. In the present embodiment, the internal combustion engine 10 is described as a spark ignition type internal combustion engine. However, the present invention is also applicable to a compression ignition type internal combustion engine.
実施の形態2.
[実施の形態2のシステム構成]
 次に、図4、図5を参照して本発明の実施の形態2について説明する。本実施形態のシステムは、図1に示す構成において、ECU50に図4、図5に示す学習領域を設定することで実現することができる。
Embodiment 2. FIG.
[System Configuration of Embodiment 2]
Next, a second embodiment of the present invention will be described with reference to FIGS. The system of the present embodiment can be realized by setting the learning area shown in FIGS. 4 and 5 in the ECU 50 in the configuration shown in FIG.
 上述した実施の形態1では、学習値を切り替える運転領域と、分割噴射回数を切り替える運転領域とが略一致するように設定されている。この学習値は、機関負荷の範囲に応じて定められており、機関負荷の範囲に応じた学習値と、その学習値における分割噴射回数とは1対1に対応している。ところで、燃費やエミッションの観点から、機関負荷の範囲が同一であっても、異なる分割噴射回数で燃料を噴射することが望まれる場合もある。 In the above-described first embodiment, the operation region for switching the learning value and the operation region for switching the number of divided injections are set to substantially coincide. This learning value is determined according to the range of the engine load, and the learning value according to the range of the engine load and the number of divided injections in the learning value have a one-to-one correspondence. By the way, from the viewpoint of fuel consumption and emission, it may be desired to inject fuel with different number of divided injections even if the engine load range is the same.
[実施の形態2における特徴的構成]
 そこで、本実施形態のシステムでは、機関負荷と分割噴射回数ごとに学習値を定めると共に、学習値を切り替える運転領域と、分割噴射回数を切り替える運転領域とが略一致するように設定することとした。
[Characteristic Configuration in Embodiment 2]
Therefore, in the system of the present embodiment, the learning value is determined for each engine load and the number of divided injections, and the operation region for switching the learning value and the operation region for switching the number of divided injections are set to substantially match. .
 図4は、本実施形態のシステムにおいて、ECU50に設定される学習領域を示す図である。学習領域は、機関負荷と分割噴射回数ごとに個別に設定されている。それぞれの学習領域には、個別の学習値が設けられている。この学習値は、上述の基本噴射量を補正する噴射補正量に相関する値である。なお、本発明において、学習領域の数は図4に示すものに限られない。 FIG. 4 is a diagram showing a learning area set in the ECU 50 in the system of the present embodiment. The learning area is set individually for each engine load and the number of divided injections. Each learning region is provided with an individual learning value. This learning value is a value correlated with the injection correction amount for correcting the basic injection amount. In the present invention, the number of learning regions is not limited to that shown in FIG.
 図4に示すいずれかの学習領域を選択するためには、機関負荷以外に、分割噴射回数を決定する必要がある。そこで、次に、分割噴射回数を決定する手法について説明する。図5は、分割噴射回数を決定するためのマップである。図5のマップに示すように、分割噴射回数は、機関負荷と機関回転数NEとで定めた運転領域に応じて定められている。具体的には、燃料噴射弁12には、最小噴射時間の制限があるため、高負荷で基本噴射量が大きく設定される場合であっても、機関回転数NEが高い運転領域では、分割噴射回数を増やすことができない。一方、機関回転数NEが低い運転領域では、分割噴射回数を増やすことができる。そのため、図5に示すマップでは、高負荷高回転の運転領域において分割噴射回数が制限されている。 In order to select one of the learning areas shown in FIG. 4, it is necessary to determine the number of divided injections in addition to the engine load. Therefore, a method for determining the number of divided injections will be described next. FIG. 5 is a map for determining the number of divided injections. As shown in the map of FIG. 5, the number of divided injections is determined in accordance with the operating region determined by the engine load and the engine speed NE. Specifically, since the fuel injection valve 12 has a minimum injection time limit, even in a case where the basic injection amount is set to be large with a high load, in the operating region where the engine speed NE is high, split injection is performed. The number of times cannot be increased. On the other hand, in the operating region where the engine speed NE is low, the number of divided injections can be increased. Therefore, in the map shown in FIG. 5, the number of divided injections is limited in the operation region of high load and high rotation.
 ECU50は、図5に示すマップを記憶しており、現在の運転領域(機関負荷及び機関回転数NE)に対応する分割噴射回数を決定する。その後、ECU50は、機関負荷と分割噴射回数とに応じた学習領域を選択する(図4)。そして、ECU50は、実施の形態1と同様のフィードバック制御を実施し、当該学習領域の学習値を更新する。 The ECU 50 stores the map shown in FIG. 5 and determines the number of divided injections corresponding to the current operation region (engine load and engine speed NE). Thereafter, the ECU 50 selects a learning region according to the engine load and the number of divided injections (FIG. 4). Then, the ECU 50 performs feedback control similar to that in the first embodiment, and updates the learning value in the learning region.
 上述した通り、本実施形態のシステムでは、学習値を切り替える運転領域と、分割噴射回数を切り替える運転領域とが略一致するように設定されている。そのため、機関領域の違いによる誤差と分割噴射回数の違いによる誤差とを同時に学習させることができる。また、本実施形態のシステムでは、同範囲の機関負荷において、分割噴射回数が変更される場合であっても、分割噴射回数に応じた個別の学習値が更新されるため、精度の高い学習を維持することができる。このため、本発明によれば、学習速度と学習精度とを両立した学習を実現することができる。その結果、空燃比制御性を向上させることができる。 As described above, in the system of the present embodiment, the operation region for switching the learning value and the operation region for switching the number of divided injections are set so as to substantially match. Therefore, an error due to a difference in engine region and an error due to a difference in the number of divided injections can be learned simultaneously. In the system of the present embodiment, even when the number of divided injections is changed in the same range of engine load, individual learning values according to the number of divided injections are updated. Can be maintained. For this reason, according to the present invention, it is possible to realize learning that achieves both learning speed and learning accuracy. As a result, the air-fuel ratio controllability can be improved.
実施の形態3.
[実施の形態3のシステム構成]
 次に、図6を参照して本発明の実施の形態3について説明する。本実施形態のシステムは、図1に示す構成において、ECU50に図6に示す学習領域を設定することで実現することができる。なお、ECU50の出力部には、デリバリーパイプ14内の燃料圧力を制御するための燃料ポンプ(図示省略)が接続されているものとする。燃料圧力は、例えば高負荷高回転ほど高まるように制御される。
Embodiment 3 FIG.
[System Configuration of Embodiment 3]
Next, a third embodiment of the present invention will be described with reference to FIG. The system of the present embodiment can be realized by setting the learning region shown in FIG. 6 in the ECU 50 in the configuration shown in FIG. Note that a fuel pump (not shown) for controlling the fuel pressure in the delivery pipe 14 is connected to the output portion of the ECU 50. The fuel pressure is controlled to increase, for example, as the load is increased and the rotation speed is increased.
 上述した実施の形態2では、機関負荷と分割噴射回数ごとに学習値を定めている。ところで、燃料噴射量は燃料噴射弁12の開弁時間と燃料圧力とによって定まる。そのため、燃料圧力のずれによっても燃料噴射量に誤差が生じる。また、上述の定量誤差は、燃料圧料の変化の影響を強く受ける。そのため、運転状態に応じて燃料圧力を制御する場合には、燃料圧力の変化に起因する燃料噴射量の誤差も補正することが望ましい。 In Embodiment 2 described above, a learning value is determined for each engine load and the number of divided injections. By the way, the fuel injection amount is determined by the valve opening time of the fuel injection valve 12 and the fuel pressure. Therefore, an error occurs in the fuel injection amount even when the fuel pressure varies. Further, the above-described quantitative error is strongly influenced by the change in the fuel pressure material. Therefore, when the fuel pressure is controlled in accordance with the operating state, it is desirable to correct the fuel injection amount error caused by the change in the fuel pressure.
[実施の形態3における特徴的構成]
 そこで、本実施形態のシステムでは、機関負荷、分割噴射回数及び燃料噴射弁12に供給される燃料圧力ごとに学習値を定めると共に、学習値を切り替える運転領域と、分割噴射回数を切り替える運転領域とが略一致するように設定することとした。
[Characteristic Configuration in Embodiment 3]
Therefore, in the system of the present embodiment, the learning value is determined for each engine load, the number of divided injections, and the fuel pressure supplied to the fuel injection valve 12, and the operation region in which the learning value is switched, and the operation region in which the number of divided injections is switched. Are set so as to substantially match.
 図6は、本実施形態のシステムにおいて、ECU50に設定される学習領域を示す図である。学習領域は、機関負荷と分割噴射回数と燃料圧力とに応じて設定されている。それぞれの学習領域には、個別の学習値が設けられている。この学習値は、上述の基本噴射量を補正する噴射補正量に相関する値である。なお、本発明において、学習領域の数は図6に示すものに限られない。 FIG. 6 is a diagram showing a learning area set in the ECU 50 in the system of the present embodiment. The learning area is set according to the engine load, the number of divided injections, and the fuel pressure. Each learning region is provided with an individual learning value. This learning value is a value correlated with the injection correction amount for correcting the basic injection amount. In the present invention, the number of learning regions is not limited to that shown in FIG.
 ECU50は、上述の図5に相当するマップを記憶しており、現在の運転領域(機関負荷及び機関回転数NE)に対応する分割噴射回数を決定する。その後、ECU50は、機関負荷と分割噴射回数と燃料圧力に応じた学習領域を選択する(図6)。そして、ECU50は、実施の形態1と同様のフィードバック制御を実施し、当該学習領域の学習値を更新する。 The ECU 50 stores a map corresponding to FIG. 5 described above, and determines the number of divided injections corresponding to the current operation region (engine load and engine speed NE). Thereafter, the ECU 50 selects a learning region according to the engine load, the number of divided injections, and the fuel pressure (FIG. 6). Then, the ECU 50 performs feedback control similar to that in the first embodiment, and updates the learning value in the learning region.
 上述した通り、本実施形態のシステムでは、学習値を切り替える運転領域と、分割噴射回数を切り替える運転領域とが略一致するように設定されている。そのため、機関領域の違いによる誤差と分割噴射回数の違いによる誤差とを同時に学習させることができる。また、本実施形態のシステムでは、同範囲の機関負荷において、燃料圧力や分割噴射回数が変更される場合であっても、燃料圧力や分割噴射回数に応じた個別の学習値が更新されるため、精度の高い学習を維持することができる。このため、本発明によれば、学習速度と学習精度とを両立した学習を実現することができる。その結果、空燃比制御性を向上させることができる。 As described above, in the system of the present embodiment, the operation region for switching the learning value and the operation region for switching the number of divided injections are set so as to substantially match. Therefore, an error due to a difference in engine region and an error due to a difference in the number of divided injections can be learned simultaneously. Further, in the system of the present embodiment, even when the fuel pressure and the number of divided injections are changed in the engine load within the same range, the individual learning values according to the fuel pressure and the number of divided injections are updated. High accuracy learning can be maintained. For this reason, according to the present invention, it is possible to realize learning that achieves both learning speed and learning accuracy. As a result, the air-fuel ratio controllability can be improved.
 ところで、上述した実施の形態3のシステムにおいては、学習値を、機関負荷、分割噴射回数及び燃料噴射弁12に供給される燃料圧力ごとに定めることとしている。しかしながら、学習値の設定はこれに限られるものではない。機関負荷と燃料噴射弁12に供給される燃料圧力ごとに学習値を定めることとしてもよい。 By the way, in the system of the third embodiment described above, the learning value is determined for each engine load, the number of divided injections, and the fuel pressure supplied to the fuel injection valve 12. However, the setting of the learning value is not limited to this. The learning value may be determined for each engine load and fuel pressure supplied to the fuel injection valve 12.
実施の形態4.
[実施の形態4のシステム構成]
 次に、図7~図10を参照して本発明の実施の形態4について説明する。本実施形態のシステムは図1に示す構成において、ECU50に図7に示す学習領域を設定し、ECU50に後述する図10のルーチンを実施させることで実現することができる。
Embodiment 4 FIG.
[System Configuration of Embodiment 4]
Next, a fourth embodiment of the present invention will be described with reference to FIGS. The system of this embodiment can be realized by setting the learning area shown in FIG. 7 in the ECU 50 and causing the ECU 50 to execute a routine shown in FIG.
 上述した実施の形態2では、機関負荷と分割噴射回数ごとに学習値を定めている。しかしながら、学習値の数が増えれば学習量が増大するため、学習速度が悪化する可能性がある。そのため、学習値の数は少なく抑えることが望ましい。 In Embodiment 2 described above, a learning value is determined for each engine load and the number of divided injections. However, since the learning amount increases as the number of learning values increases, the learning speed may deteriorate. Therefore, it is desirable to keep the number of learning values small.
[実施の形態4における特徴的構成]
 そこで、本実施形態のシステムでは、機関負荷の範囲ごとに設けられた負荷方向学習値に、分割噴射回数を切り替えるタイミングごとに設けられた噴射切り替え学習値を加えて、最終的に基本噴射量を増減補正するための反映学習値を算出することとした。
[Characteristic Configuration in Embodiment 4]
Therefore, in the system of the present embodiment, the basic injection amount is finally obtained by adding the injection switching learning value provided for each timing of switching the divided injection frequency to the load direction learning value provided for each engine load range. The reflection learning value for correcting the increase / decrease is calculated.
 本実施形態の特徴的構成について、より具体的に説明するため、学習領域の設定と、その設定を用いた学習ルーチンとに分けて説明する。まず、学習領域の設定について図7を用いて説明する。 In order to more specifically describe the characteristic configuration of the present embodiment, the learning area setting and the learning routine using the setting will be described separately. First, learning area setting will be described with reference to FIG.
 図7は、本実施形態のシステムにおいて、ECU50に設定される学習領域を示す図である。学習領域は、機関負荷の範囲ごとに個別に設定されている。それぞれの学習領域には、個別の学習値(以下、負荷方向学習値という。)が設けられている。負荷方向学習値は、基本噴射量を補正する噴射補正量の1つであり、機関負荷の範囲に応じて用いられる。 FIG. 7 is a diagram showing a learning area set in the ECU 50 in the system of the present embodiment. The learning area is individually set for each engine load range. Each learning area is provided with an individual learning value (hereinafter referred to as a load direction learning value). The load direction learning value is one of the injection correction amounts for correcting the basic injection amount, and is used according to the engine load range.
 加えて、ECU50には、分割噴射回数を切り替えるタイミングごとに、個別に設けられた噴射切り替え学習値が記憶されている。噴射切り替え学習値は、基本噴射量を補正する噴射補正量の1つであり、分割噴射回数が切り替わる際に用いられる。この噴射切り替え学習値は、N回噴射からN+1回噴射への切り替えと、N+1回噴射からN回噴射への切り替えとにおいて、共通した値が用いられる(図7)。 In addition, the ECU 50 stores individually stored injection switching learning values for each timing of switching the number of divided injections. The injection switching learning value is one of the injection correction amounts for correcting the basic injection amount, and is used when the number of divided injections is switched. As the injection switching learning value, a common value is used in switching from N injection to N + 1 injection and switching from N + 1 injection to N injection (FIG. 7).
 また、本実施形態において、噴射切り替え学習値は、機関負荷に対する変化率ではなく、燃料噴射量に相関する絶対量とする。分割噴射回数を切り替える際の誤差要因は、定常誤差が主である。そのため、機関負荷に対する比率でなく絶対量として持つことで、学習精度の向上を図ることができる。なお、本発明において、負荷方向学習値及び噴射切り替え学習値の数は図7に示すものに限られない。 In this embodiment, the injection switching learning value is not the rate of change with respect to the engine load, but an absolute amount that correlates with the fuel injection amount. The error factor when switching the number of divided injections is mainly a steady error. Therefore, learning accuracy can be improved by having the absolute amount instead of the ratio to the engine load. In the present invention, the numbers of load direction learning values and injection switching learning values are not limited to those shown in FIG.
 次に、本実施形態における、負荷方向学習値と噴射切り替え学習値との用い方について説明する。本実施形態では、ECU50は、負荷方向学習値と噴射切り替え学習値とからなる反映学習値を算出し、この反映学習値を基本噴射量に加えて最終噴射量を算出する。  Next, how to use the load direction learning value and the injection switching learning value in this embodiment will be described. In the present embodiment, the ECU 50 calculates a reflected learning value composed of a load direction learned value and an injection switching learned value, and adds this reflected learned value to the basic injection amount to calculate a final injection amount. *
 図8は、負荷方向学習値と噴射切り替え学習値とから反映学習値を算出する方法について説明するための図である。図8に白丸で示す学習値は、1回噴射の場合の学習値である。黒丸で示す学習値は、分割噴射回数に応じた学習値である。各学習領域に示す実線は、機関負荷に応じた負荷方向学習値である。図8に示すとおり、負荷方向学習値は、負荷方向に対しては連続した傾向を有するが、分割噴射回数に対しては大きな変動を生じる。この差を補間するために、本実施形態では、分割噴射回数が切り換わるタイミングで、負荷方向学習値に噴射切り替え学習値が加えて反映学習値を算出する。なお、図8に示すとおり、学習値を切り替える各運転領域の間には、ヒステリシスが設けられている。 FIG. 8 is a diagram for explaining a method of calculating a reflection learning value from the load direction learning value and the injection switching learning value. A learning value indicated by a white circle in FIG. 8 is a learning value in the case of single injection. A learning value indicated by a black circle is a learning value corresponding to the number of divided injections. The solid line shown in each learning area is a load direction learning value corresponding to the engine load. As shown in FIG. 8, the load direction learning value has a continuous tendency with respect to the load direction, but has a large variation with respect to the number of divided injections. In order to interpolate this difference, in the present embodiment, the reflected learning value is calculated by adding the injection switching learning value to the load direction learning value at the timing at which the divided injection frequency is switched. In addition, as shown in FIG. 8, the hysteresis is provided between each operation area | region which switches learning value.
 図7、図8に示す4回噴射までの反映学習値の具体例を示す。
 1回噴射時の反映学習値=負荷方向学習値
 2回噴射時の反映学習値=負荷方向学習値+噴射切り替え学習値1‐2
 3回噴射時の反映学習値=負荷方向学習値+噴射切り替え学習値1‐2+噴射切り替え学習値2‐3
 4回噴射時の反映学習値=負荷方向学習値+噴射切り替え学習値1‐2+噴射切り替え学習値2‐3+噴射切り替え学習値3‐4
 このように、運転領域に応じた負荷方向学習値に、分割噴射回数ごとの噴射切り替え学習値を重ね合わせることにより、反映学習値を算出することができる。
Specific examples of the reflection learning values up to four injections shown in FIGS. 7 and 8 are shown.
Reflection learning value at the time of one injection = load direction learning value Reflection learning value at the time of two injections = load direction learning value + injection switching learning value 1-2
Reflection learning value at the time of three injections = load direction learning value + injection switching learning value 1-2 + injection switching learning value 2-3
Reflection learning value at the time of four injections = load direction learning value + injection switching learning value 1-2 + injection switching learning value 2-3 + injection switching learning value 3-4
Thus, the reflection learning value can be calculated by superimposing the injection switching learning value for each divided injection number on the load direction learning value corresponding to the operation region.
 次に、負荷方向学習値と噴射切り替え学習値の更新方法について図9を用いて説明する。図9は、負荷方向学習値と噴射切り替え学習値の学習例を示すタイミングチャートである。図9に示す例では、時刻t1において、分割噴射回数が1回から2回に切り換わる。これにより、分割噴射回数の違いによる誤差(図11)が加わり噴射量が増大する。噴射量が増大するため、空燃比(AF)は目標空燃比から乖離することとなる。そこで、この分割噴射回数の切り替え時に生じる瞬間的な空燃比偏差を、噴射切り替え学習値1-2として記憶する。このように、噴射切り替え学習値は更新される。 Next, a method for updating the load direction learning value and the injection switching learning value will be described with reference to FIG. FIG. 9 is a timing chart illustrating an example of learning of the load direction learning value and the injection switching learning value. In the example shown in FIG. 9, at the time t1, the number of divided injections is switched from once to twice. Thereby, an error (FIG. 11) due to the difference in the number of divided injections is added and the injection amount is increased. Since the injection amount increases, the air-fuel ratio (AF) deviates from the target air-fuel ratio. Therefore, the instantaneous air-fuel ratio deviation that occurs when switching the number of divided injections is stored as the injection switching learning value 1-2. In this way, the injection switching learning value is updated.
 また、分割噴射回数が2回に切り替わり所定時間が経過した後は、実施の形態1と同様のフィードバック制御が実施され、現機関負荷の範囲に対応する負荷方向学習値が更新される。 Further, after the number of divided injections is switched to two and a predetermined time has elapsed, feedback control similar to that in the first embodiment is performed, and the load direction learning value corresponding to the range of the current engine load is updated.
(学習ルーチン)
 図10は、上述の学習値の更新を実現するために、ECU50が実行する学習ルーチンのフローチャートである。図6に示すルーチンでは、まず、ECU50は、空燃比学習可能条件が成立するか否かを判定する(ステップS100)。空燃比学習可能条件とは、例えば、水温が所定値(暖機完了状態)以上であること、空燃比フィードバック制御が実行中であることなどである。空燃比学習可能条件が成立しないと判定される場合には、その後、本ルーチンの処理は終了される。
(Learning routine)
FIG. 10 is a flowchart of a learning routine executed by the ECU 50 in order to realize the update of the learning value described above. In the routine shown in FIG. 6, first, the ECU 50 determines whether or not an air-fuel ratio learning enabling condition is satisfied (step S100). The air-fuel ratio learning enabling condition is, for example, that the water temperature is equal to or higher than a predetermined value (warming-up completion state), and that the air-fuel ratio feedback control is being executed. If it is determined that the air-fuel ratio learning enabling condition is not satisfied, then the processing of this routine is terminated.
 ステップS100において、空燃比学習可能条件が成立すると判定される場合には、次に、ECU50は、空燃比センサ32により検出される検出空燃比と目標空燃比との空燃比偏差が所定値以上であるか否かを判定する(ステップS110)。この所定値は、例えば、製品ばらつきによる誤差を考慮して予め定めた値である。空燃比偏差が所定値未満であると判定される場合には、その後、本ルーチンの処理は終了される。 If it is determined in step S100 that the air-fuel ratio learning enable condition is satisfied, then the ECU 50 determines that the air-fuel ratio deviation between the detected air-fuel ratio detected by the air-fuel ratio sensor 32 and the target air-fuel ratio is greater than or equal to a predetermined value. It is determined whether or not there is (step S110). This predetermined value is a predetermined value in consideration of, for example, errors due to product variations. If it is determined that the air-fuel ratio deviation is less than the predetermined value, then the processing of this routine is terminated.
 ステップS110において、空燃比偏差が所定値以上であると判定される場合には、次に、ECU50は、分割噴射回数の切り替えがあるか否かを判定する(ステップS120)。上述したとおり、本システムでは、負荷方向学習値を切り替える運転領域と分割噴射回数を切り替える運転領域とが略一致するように設定されている。分割噴射回数の切り替えがあったか否かは、運転領域(機関負荷の範囲)又は負荷方向学習値から判定することができる。分割噴射回数の切り替えがないと判定される場合には、後述するステップS150の処理がなされる。 If it is determined in step S110 that the air-fuel ratio deviation is greater than or equal to a predetermined value, the ECU 50 next determines whether or not there is a change in the number of divided injections (step S120). As described above, in the present system, the operation region for switching the load direction learning value and the operation region for switching the number of divided injections are set to substantially coincide. Whether or not the number of divided injections has been switched can be determined from the operation region (range of engine load) or the load direction learning value. When it is determined that the number of divided injections is not switched, the process of step S150 described later is performed.
 ステップS120において、分割噴射回数の切り替えがあると判定される場合には、次に、ECU50は、前回の分割噴射回数の切り替えから所定時間が経過しているか否かを判定する(ステップ130)。所定時間が経過していない場合には、その後、本ルーチンは終了される。 When it is determined in step S120 that the number of divided injections has been switched, the ECU 50 next determines whether or not a predetermined time has elapsed since the previous switching of the number of divided injections (step 130). If the predetermined time has not elapsed, then this routine is terminated.
 ステップS130において、所定時間が経過していると判定される場合には、次に、ECU50は、今回の分割噴射回数の切り替えから所定時間が経過しているか否かを判定する(ステップ140)。この所定時間は、分割噴射回数を切り替えた直後に、瞬間的に生じる空燃比の変動を検出できるタイミングに合わせる。 If it is determined in step S130 that the predetermined time has elapsed, the ECU 50 next determines whether or not the predetermined time has elapsed since the current switching of the divided injection number (step 140). This predetermined time is set to a timing at which a change in the air-fuel ratio that occurs instantaneously can be detected immediately after switching the number of divided injections.
 ステップ140において、分割噴射回数の切り替えから所定時間が経過していないと判定される場合には、ECU50は、噴射切り替え学習値の値を更新する(ステップS150)。具体的には、まず、空燃比センサ32により切り替え直後の空燃比が検出される。ECU50は、この検出空燃比と目標空燃比との偏差から、切り替え直後の空燃比の瞬間変動量を算出する。ECU50は、この瞬間変動量に基づいて、噴射切り替え学習値の値を更新する。例えば、分割噴射回数が1回から2回に切り替えられた場合には、噴射切り替え学習値1‐2が更新される(図9)。 In step 140, when it is determined that the predetermined time has not elapsed since the switching of the divided injection number, the ECU 50 updates the value of the injection switching learning value (step S150). Specifically, first, the air-fuel ratio immediately after switching is detected by the air-fuel ratio sensor 32. The ECU 50 calculates the instantaneous fluctuation amount of the air-fuel ratio immediately after switching from the deviation between the detected air-fuel ratio and the target air-fuel ratio. The ECU 50 updates the injection switching learning value based on the instantaneous fluctuation amount. For example, when the number of divided injections is switched from once to twice, the injection switching learning value 1-2 is updated (FIG. 9).
 一方、分割噴射回数の切り替えから所定時間が経過したと判定される場合には、ECU50は、負荷方向用学習値の値を更新する(ステップS160)。具体的には、ECU50は、空燃比センサ32により検出される検出空燃比を目標空燃比に近づけるように、検出空燃比と目標空燃比との偏差に基づいて、基本噴射量を増減補正する噴射補正量を算出する。ECU50は、この噴射補正量に基づいて、現運転領域における負荷方向学習値を更新する。 On the other hand, when it is determined that the predetermined time has elapsed since the switching of the number of divided injections, the ECU 50 updates the value of the load direction learning value (step S160). Specifically, the ECU 50 performs injection that increases or decreases the basic injection amount based on the deviation between the detected air-fuel ratio and the target air-fuel ratio so that the detected air-fuel ratio detected by the air-fuel ratio sensor 32 approaches the target air-fuel ratio. A correction amount is calculated. The ECU 50 updates the load direction learning value in the current operation region based on the injection correction amount.
 以上説明したように、図10に示す学習ルーチンによれば、負荷方向学習値と噴射切り替え学習値とを、それぞれ個別に更新することができる。また、本実施形態のシステムでは、これらの学習値から、機関負荷及び分割噴射回数に応じた反映学習値を算出することができる(図8、図9)。そのため、実施の形態2におけるシステムと同様の効果を、少ない学習値の数で得ることができる。学習値の数が少ないため、学習速度を高めることができる。このため、本発明によれば、学習速度と学習精度とを両立した学習を実現することができる。その結果、空燃比制御性を向上させることができる。 As described above, according to the learning routine shown in FIG. 10, the load direction learning value and the injection switching learning value can be updated individually. Moreover, in the system of this embodiment, the reflected learning value according to the engine load and the number of divided injections can be calculated from these learning values (FIGS. 8 and 9). Therefore, the same effect as that of the system in the second embodiment can be obtained with a small number of learning values. Since the number of learning values is small, the learning speed can be increased. For this reason, according to the present invention, it is possible to realize learning that achieves both learning speed and learning accuracy. As a result, the air-fuel ratio controllability can be improved.
 尚、上述した実施の形態4においては、ECU50が前記第6の発明における「記憶手段」に、ECU50が負荷方向学習値と噴射切り替え学習値とから反映学習値を算出することが前記第6の発明における「反映学習値算出手段」に、それぞれ相当している。また、ここでは、ECU50が、上記ステップS140の処理を実行することにより前記第7の発明における「判定手段」が、上記ステップS150の処理を実行することにより前記第7の発明における「噴射切り替え学習値更新手段」が、それぞれ実現されている。 In the fourth embodiment described above, the ECU 50 calculates the reflected learning value from the load direction learning value and the injection switching learning value in the “storage means” in the sixth invention. It corresponds to “reflected learning value calculation means” in the invention. Here, the ECU 50 executes the process of step S140, so that the “determination means” in the seventh invention executes the process of step S150, and the “injection switching learning” in the seventh invention is executed. "Value updating means" is realized respectively.

Claims (7)

  1.  燃料噴射弁による1燃焼サイクル内での分割噴射回数を、内燃機関の運転領域に応じて切り替える噴射回数切り替え手段と、
     前記運転領域ごとに個別に設けられた噴射補正量に相関する学習値を、前記運転領域に応じて切り替える学習値切り替え手段と、
     前記内燃機関の排気中の検出空燃比を目標空燃比に近づけるように、前記検出空燃比と前記目標空燃比との比較値に基づいて前記学習値を更新する学習値更新手段と、を備え、
     前記分割噴射回数を切り替える運転領域と前記学習値とを切り替える運転領域とが、少なくとも1つ以上略一致していること、
     を特徴とする内燃機関の噴射量学習装置。
    Injection number switching means for switching the number of divided injections in one combustion cycle by the fuel injection valve in accordance with the operation region of the internal combustion engine;
    Learning value switching means for switching the learning value correlated with the injection correction amount individually provided for each driving region according to the driving region;
    Learning value updating means for updating the learning value based on a comparison value between the detected air-fuel ratio and the target air-fuel ratio so that the detected air-fuel ratio in the exhaust gas of the internal combustion engine approaches the target air-fuel ratio,
    The operation region for switching the number of divided injections and the operation region for switching the learning value substantially match at least one or more,
    An injection amount learning device for an internal combustion engine characterized by the above.
  2.  前記分割噴射回数を切り替える運転領域と前記学習値を切り替える運転領域との全てが略一致していること、
     を特徴とする請求項1記載の内燃機関の噴射量学習装置。
    All of the operation region for switching the number of divided injections and the operation region for switching the learning value substantially match,
    The injection quantity learning device for an internal combustion engine according to claim 1.
  3.  前記運転領域は、機関負荷に応じて定められていること、
     を特徴とする請求項1又は2記載の内燃機関の噴射量学習装置。
    The operating region is determined according to the engine load;
    The injection quantity learning device for an internal combustion engine according to claim 1 or 2, characterized by the above.
  4.  前記学習値は、機関負荷及び前記分割噴射回数ごとに設けられていること、
     を特徴とする請求項1乃至3のいずれか1項に記載の内燃機関の噴射量学習装置。
    The learning value is provided for each engine load and the number of divided injections,
    The injection quantity learning device for an internal combustion engine according to any one of claims 1 to 3.
  5.  前記学習値は、機関負荷及び燃料噴射弁に供給される燃料圧力ごとに設けられていること、
     を特徴とする請求項1乃至3のいずれか1項に記載の内燃機関の噴射量学習装置。
    The learning value is provided for each engine pressure and fuel pressure supplied to the fuel injection valve,
    The injection quantity learning device for an internal combustion engine according to any one of claims 1 to 3.
  6.  前記噴射回数切り替え手段によって分割噴射回数を切り替えるタイミングごとに個別に設けられた噴射補正量に相関する噴射切り替え学習値を記憶する記憶手段と、
     前記運転領域に応じて前記学習値及び前記分割噴射回数を共に切り替える際に、前記学習値に前記噴射切り替え学習値を加えて、最終的な噴射補正量に相関する反映学習値を算出する反映学習値算出手段と、
     を更に備えることを特徴とする請求項1乃至3のいずれか1項に記載の内燃機関の噴射量学習装置。
    Storage means for storing an injection switching learning value correlated with an injection correction amount individually provided for each timing of switching the divided injection number by the injection number switching means;
    Reflection learning that calculates a reflection learning value that correlates with a final injection correction amount by adding the learning value to the learning value when switching both the learning value and the number of divided injections according to the operation region A value calculating means;
    The injection quantity learning device for an internal combustion engine according to any one of claims 1 to 3, further comprising:
  7.  前記内燃機関の排気中の検出空燃比が、前記分割噴射回数を切り替えた直後に変動した空燃比であるか否かを判定する判定手段と、
     前記検出空燃比が前記分割噴射回数を切り替えた直後に変動した空燃比である場合に、前記検出空燃比を前記目標空燃比に近づけるように、前記検出空燃比と前記目標空燃比との比較値に基づいて前記噴射切り替え学習値を更新する噴射切り替え学習値更新手段と、
     を更に備えることを特徴とする請求項6記載の内燃機関の噴射量学習装置。
    Determination means for determining whether or not the detected air-fuel ratio in the exhaust gas of the internal combustion engine is an air-fuel ratio that has fluctuated immediately after switching the number of divided injections;
    A comparison value between the detected air-fuel ratio and the target air-fuel ratio so that the detected air-fuel ratio becomes closer to the target air-fuel ratio when the detected air-fuel ratio is an air-fuel ratio that has fluctuated immediately after switching the number of divided injections. An injection switching learning value updating means for updating the injection switching learning value based on
    The injection quantity learning device for an internal combustion engine according to claim 6, further comprising:
PCT/JP2010/061683 2010-07-09 2010-07-09 Injection quantity learning device for internal combustion engine WO2012004884A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012523482A JP5418678B2 (en) 2010-07-09 2010-07-09 Injection amount learning device for internal combustion engine
PCT/JP2010/061683 WO2012004884A1 (en) 2010-07-09 2010-07-09 Injection quantity learning device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/061683 WO2012004884A1 (en) 2010-07-09 2010-07-09 Injection quantity learning device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2012004884A1 true WO2012004884A1 (en) 2012-01-12

Family

ID=45440883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061683 WO2012004884A1 (en) 2010-07-09 2010-07-09 Injection quantity learning device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP5418678B2 (en)
WO (1) WO2012004884A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106605057A (en) * 2014-08-29 2017-04-26 日立汽车***株式会社 Control device of internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125370A (en) * 2004-11-01 2006-05-18 Denso Corp Injection quantity self-learning controller
JP2008309085A (en) * 2007-06-15 2008-12-25 Denso Corp Fuel injection control device and fuel-injection system using it

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61277836A (en) * 1985-05-31 1986-12-08 Fuji Heavy Ind Ltd Electronic control for car engine
JPH11343911A (en) * 1998-03-31 1999-12-14 Mazda Motor Corp Fuel control device of cylinder injection engine
JP4929966B2 (en) * 2006-09-15 2012-05-09 株式会社デンソー Fuel injection control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125370A (en) * 2004-11-01 2006-05-18 Denso Corp Injection quantity self-learning controller
JP2008309085A (en) * 2007-06-15 2008-12-25 Denso Corp Fuel injection control device and fuel-injection system using it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106605057A (en) * 2014-08-29 2017-04-26 日立汽车***株式会社 Control device of internal combustion engine
EP3196449A4 (en) * 2014-08-29 2018-05-30 Hitachi Automotive Systems, Ltd. Control device of internal combustion engine
CN106605057B (en) * 2014-08-29 2020-05-15 日立汽车***株式会社 Control device for internal combustion engine
US10655557B2 (en) 2014-08-29 2020-05-19 Hitachi Automotive Systems, Ltd. Control device of internal combustion engine

Also Published As

Publication number Publication date
JP5418678B2 (en) 2014-02-19
JPWO2012004884A1 (en) 2013-09-02

Similar Documents

Publication Publication Date Title
JP4349344B2 (en) Engine control device
JP4363398B2 (en) Air-fuel ratio control device for internal combustion engine
JP4736058B2 (en) Air-fuel ratio control device for internal combustion engine
JP2009221866A (en) Cetane number estimation method
JP4766074B2 (en) Fuel injection control device for internal combustion engine
US10280881B2 (en) Air quantity calculation device for internal combustion engine
US20110213544A1 (en) Fuel injection controller for internal combustion engine
JP5867372B2 (en) Control device for internal combustion engine
JP2005320964A (en) Injection quantity control device of diesel engine
JP2008128160A (en) Control device of internal combustion engine
JP5418678B2 (en) Injection amount learning device for internal combustion engine
JP2012202209A (en) Air-fuel ratio control device of internal combustion engine
US8958973B2 (en) Fuel injection control device for engine
JP2015190397A (en) Internal combustion engine soot emission estimation device
JP6274401B2 (en) Engine fuel injection control device
JP2012117472A (en) Control unit of internal combustion engine
JP4900347B2 (en) Control device for internal combustion engine
JP2011179344A (en) Fuel injection controller for internal combustion engine
US11047332B2 (en) Controller and control method for internal combustion engine
JP4342379B2 (en) Fuel injection control device for internal combustion engine
JP2009114884A (en) Fuel injection quantity correction device
JP5177329B2 (en) Control device for internal combustion engine
JP5310413B2 (en) Fuel injection control device for internal combustion engine
JP2011220274A (en) Device for detection of failure in internal combustion engine
WO1993017232A1 (en) Method and system for controlling air-fuel ratio of internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854438

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012523482

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10854438

Country of ref document: EP

Kind code of ref document: A1