WO2012002521A1 - Process for producing vulcanized rubber composition - Google Patents

Process for producing vulcanized rubber composition Download PDF

Info

Publication number
WO2012002521A1
WO2012002521A1 PCT/JP2011/065136 JP2011065136W WO2012002521A1 WO 2012002521 A1 WO2012002521 A1 WO 2012002521A1 JP 2011065136 W JP2011065136 W JP 2011065136W WO 2012002521 A1 WO2012002521 A1 WO 2012002521A1
Authority
WO
WIPO (PCT)
Prior art keywords
kneading
rubber
temperature
weight
kneading step
Prior art date
Application number
PCT/JP2011/065136
Other languages
French (fr)
Japanese (ja)
Inventor
泰生 上北
竹内 謙一
太田 義輝
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012002521A1 publication Critical patent/WO2012002521A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives

Definitions

  • the present invention relates to a method for producing a vulcanized rubber composition.
  • Rubber compositions are used in various fields, and in particular as raw materials for automobile tires.
  • a tire raw material a rubber composition containing various components in addition to rubber components such as natural rubber and synthetic rubber is used.
  • the component other than the rubber component include a filler such as carbon black, a sulfur component necessary for vulcanization, and a vulcanization accelerator for promoting vulcanization.
  • various substances are blended to impart predetermined characteristics to the rubber component.
  • Japanese Patent Publication No. 5-15173 discloses the use of 6-aminohexylthiosulfuric acid S-ester as a substance that promotes adhesion between rubber and metal.
  • the present invention ⁇ 1> A method for producing a vulcanized rubber composition
  • a rubber component a filler, a metal salt of S- (3-aminopropyl) thiosulfuric acid, a sulfur component and a vulcanization accelerator
  • the rubber component, filler, and S- (3-aminopropyl) thio are used under the temperature rising conditions in which the temperature at the start is 40 ° C. or higher and 100 ° C. or lower and the temperature at the end is 110 ° C. or higher and 155 ° C. or lower.
  • kneading is performed under a temperature rising condition in which the temperature at the start is 80 ° C. or more and 100 ° C.
  • the weight of the metal salt of S- (3-aminopropyl) thiosulfuric acid relative to 100 parts by weight of the rubber component is 0.05 part by weight or more and 2.5 parts by weight or less, according to ⁇ 1> or ⁇ 2>. The manufacturing method of this is provided.
  • the present invention is a method for producing a vulcanized rubber composition
  • a rubber component a filler, a metal salt of S- (3-aminopropyl) thiosulfuric acid, a sulfur component and a vulcanization accelerator
  • the rubber component, filler, and S- (3-aminopropyl) thio are used under the temperature rising conditions in which the temperature at the start is 40 ° C. or higher and 100 ° C. or lower and the temperature at the end is 110 ° C. or higher and 155 ° C. or lower.
  • Rubber components include natural rubber, epoxidized natural rubber, deproteinized natural rubber and other modified natural rubber, as well as styrene / butadiene copolymer rubber (SBR), polybutadiene rubber (BR), polyisoprene rubber (IR), acrylonitrile.
  • SBR styrene / butadiene copolymer rubber
  • BR polybutadiene rubber
  • IR polyisoprene rubber
  • IR acrylonitrile
  • NBR butadiene copolymer rubber
  • IIR isoprene / isobutylene copolymer rubber
  • EPDM ethylene / propylene-diene copolymer rubber
  • HR halogenated butyl rubber
  • highly unsaturated rubbers such as natural rubber, styrene / butadiene copolymer rubber and polybutadiene rubber are preferably used, and natural rubber is more preferable. It is also effective to use a combination of several rubber components such as a combination of natural rubber and styrene / butadiene copolymer rubber, or a combination of natural rubber and polybutadiene rubber.
  • natural rubber include natural rubber of grades such as RSS # 1, RSS # 3, TSR20, SIR20, and SMR20.
  • the epoxidized natural rubber those having an epoxidation degree of 10 to 60 mol% are preferable, and examples thereof include ENR25 and ENR50 manufactured by Kumphuran Guthrie.
  • the deproteinized natural rubber a deproteinized natural rubber having a total nitrogen content of 0.3% by weight or less is preferable.
  • a modified natural rubber a modified rubber containing a polar group obtained by reacting natural rubber with 4-vinylpyridine, N, N-dialkylaminoethyl acrylate (for example, N, N-diethylaminoethyl acrylate), 2-hydroxyacrylate, or the like in advance. Natural rubber is preferred.
  • Specific examples of the SBR include emulsion polymerization SBR and solution polymerization SBR described in pages 210 to 211 of “Rubber Industry Handbook ⁇ Fourth Edition>” edited by the Japan Rubber Association.
  • solution-polymerized SBR is preferably used as the rubber component of the tread rubber composition.
  • Solution polymerized SBR modified with 4,4′-bis- (dialkylamino) benzophenone such as “Nippol (registered trademark) NS116” manufactured by Nippon Zeon Co., Ltd., tin halide compound such as “SL574” manufactured by JSR Solution-polymerized SBR with modified molecular terminals using Asahi Kasei, commercially available silane-modified solution-polymerized SBR such as “E10” and “E15”, lactam compounds, amide compounds, urea compounds, N, N-dialkylacrylamides A compound, an isocyanate compound, an imide compound, a silane compound having an alkoxy group (trialkoxysilane compound, etc.) and an aminosilane compound, or a silane compound having a tin compound and an alkoxy group, an alkylacrylamide compound And silane compounds having alkoxy groups
  • Specific examples of BR include solution polymerization BR such as high cis BR having 90% or more of cis-1,4-bond and low cis BR having cis bond of around 35%. preferable.
  • Tin modified BR such as “Nipol (registered trademark) BR1250H” manufactured by Nippon Zeon, 4,4′-bis- (dialkylamino) benzophenone, tin halide compound, lactam compound, amide compound, urea compound, N, N— Dialkylacrylamide compound, isocyanate compound, imide compound, silane compound having alkoxy group (trialkoxysilane compound etc.) and aminosilane compound, or silane compound having tin compound and alkoxy group, alkyl
  • Two or more of the above-mentioned different compounds such as an acrylamide compound and an alkoxy group-containing silane compound are used to modify the molecular ends, respectively, and at any one of nitrogen, tin and silicon at the molecular ends, or Have these multiple elements Particularly preferred is solution polymerized BR.
  • BRs are preferable as a rubber component of a rubber composition for treads and a rubber composition for sidewalls, and are usually blended with SBR and / or natural rubber.
  • the blend ratio is preferably 60 to 100% by weight for SBR and / or natural rubber and 0 to 40% by weight for BR relative to the total rubber weight.
  • the SBR and / or natural rubber is preferably 10 to 70% by weight and the BR is 90 to 30% by weight with respect to the total rubber weight, and the natural rubber is 40 to 60% by weight and BR 60 to 40% by weight with respect to the total rubber weight.
  • % Blend is more preferred.
  • the filler is used in the pre-kneading step A.
  • the filler include fillers such as carbon black, silica, talc, clay, aluminum hydroxide, and titanium oxide that are usually used in the rubber field. Carbon black and silica are preferable, and carbon black is more preferable. Specific examples of carbon black include those described on page 494 of the “Guide to Rubber Industry ⁇ Fourth Edition>” edited by the Japan Rubber Association.
  • HAF High Abrasion Furnace
  • SAF Super Abrasion Furnace
  • ISAF Intermediate SAF
  • FEF Fluor Extraction Furnace
  • MAF MAF
  • GPF General FurSurFurS
  • a CTAB Cosmetic Tri-methyl Ammonium Bromide
  • a nitrogen adsorption specific surface area is 20 to 200 m 2 / g
  • particles Carbon black having a diameter of 10 to 50 nm is preferably used, the CTAB surface area is 70 to 180 m 2 / g, the nitrogen adsorption specific surface area is 20 to 200 m 2 / g, and the particle diameter is 10 to 50 nm. Carbon black is more preferred.
  • a surface-treated carbon black in which 0.1 to 50% by weight of silica is attached to the surface of the carbon black is also preferable. It is also effective to use a combination of several kinds of fillers such as a combination of carbon black and silica.
  • carbon black alone or both carbon black and silica In the rubber composition for carcass or sidewall, carbon black having a CTAB surface area of 20 to 60 m 2 / g and a particle diameter of 40 to 100 nm is preferably used. Specific examples thereof are as per ASTM standards.
  • the amount of the filler used is preferably in the range of 5 to 100 parts by weight per 100 parts by weight of the rubber component.
  • the amount used is more preferably in the range of 30 to 80 parts by weight, and when used in combination with silica in a tread member application, the amount used is 5 to 50.
  • a range of parts by weight is more preferred.
  • the silica include silica having a CTAB surface area of 50 to 180 m 2 / g or a nitrogen adsorption specific surface area of 50 to 300 m 2 / g.
  • silica having a pH of 6 to 8 silica containing 0.2 to 1.5% by weight of sodium, true spherical silica having a roundness of 1 to 1.3, silicone oil such as dimethyl silicone oil, and ethoxysilyl group It is also preferable to blend a silicon-containing organic silicon compound, silica surface-treated with an alcohol such as ethanol or polyethylene glycol, silica having two or more different nitrogen adsorption specific surface areas, and the like.
  • Silica is preferably used in the rubber composition for treads for passenger cars, and the amount used is preferably in the range of 10 to 120 parts by weight per 100 parts by weight of the rubber component.
  • silica When silica is blended, it is preferable to further blend 5 to 50 parts by weight of carbon black, and the blending ratio of silica / carbon black is particularly preferably 0.7 / 1 to 1 / 0.1.
  • silica When silica is used as the filler, bis (3-triethoxysilylpropyl) tetrasulfide (“Si-69” manufactured by Degussa), bis (3-triethoxysilylpropyl) disulfide (“Si-Si” manufactured by Degussa) -75 "), bis (3-diethoxymethylsilylpropyl) tetrasulfide, bis (3-diethoxymethylsilylpropyl) disulfide, octanethioic acid S- [3- (triethoxysilyl) propyl] ester (General Electronic Silicones) "NXT silane”), octanethioic acid S- [3- ⁇ (2-methyl-1,
  • These compounds are preferably blended with the rubber component at the same time as the silica, and the blending amount is preferably 2 to 10% by weight, more preferably 7 to 9% by weight, based on silica.
  • the blending temperature when blending these compounds is preferably 80 to 200 ° C, more preferably 110 to 180 ° C.
  • silica when silica is used as the filler, in addition to silica, an element such as silicon that can be bonded to silica, or a compound having a functional group such as alkoxysilane, monohydric alcohol such as ethanol, butanol, octanol, ethylene glycol, Diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, pentaerythritol, polyether polyols and other dihydric or higher alcohols, N-alkylamines, amino acids, liquid polybutadienes whose molecular ends are carboxyl-modified or amine-modified, etc. Is also preferable.
  • monohydric alcohol such as ethanol, butanol, octanol
  • ethylene glycol Diethylene glycol, triethylene glycol
  • polyethylene glycol polypropylene glycol
  • pentaerythritol polyether polyols and other dihydric or higher alcohols
  • Examples of aluminum hydroxide include aluminum hydroxide having a nitrogen adsorption specific surface area of 5 to 250 m 2 / g and a DOP oil supply amount of 50 to 100 ml / 100 g.
  • Metal salt of S- (3-aminopropyl) thiosulfuric acid is represented by the following formula (1) (H 2 N— (CH 2 ) 3 —SSO 3 ⁇ ) n ⁇ M n + (1) (In the formula, M n + represents a metal ion, and n represents its valence.) It is a compound shown by these.
  • the metal ion represented by M n + is preferably a lithium ion, sodium ion, potassium ion, cesium ion, cobalt ion, copper ion or zinc ion, and more preferably a lithium ion, sodium ion or potassium ion.
  • n represents a valence of a metal ion, and is not limited as long as the valence can be possessed by the metal ion.
  • n is 1 in the case of alkali metal ions such as lithium ion, sodium ion, potassium ion, and cesium ion
  • n is 2 or 3 in the case of cobalt ion
  • n is 1 in the case of copper ion.
  • the weight of the metal salt of S- (3-aminopropyl) thiosulfuric acid used is preferably 0.05 parts by weight or more and 2.5 parts by weight or less with respect to 100 parts by weight of the rubber component.
  • the use weight of the metal salt of S- (3-aminopropyl) thiosulfuric acid is more preferably 0.5 parts by weight or more and 1.0 part by weight or less with respect to 100 parts by weight of the rubber component.
  • the temperature of the rubber component at the start of blending is 40 ° C. or more and 100 ° C. or less, and the temperature of the rubber component at the end of blending is 110 ° C. It is 155 degreeC or more.
  • the median diameter of the metal salt of S- (3-aminopropyl) thiosulfuric acid is preferably 0.05 to 100 ⁇ m, more preferably 1 to 100 ⁇ m. Such median diameter can be measured by a laser diffraction method.
  • a metal salt of S- (3-aminopropyl) thiosulfuric acid is a method of reacting 3-halopropylamine and sodium thiosulfate; a compound obtained by reacting potassium phthalimide with 1,3-dihalopropane Can be produced by any known method such as a method of reacting sodium thiosulfate and then hydrolyzing the obtained compound.
  • the metal salt of S- (3-aminopropyl) thiosulfuric acid thus produced can be isolated by operations such as concentration and crystallization, and the isolated S- (3-aminopropyl) thiosulfuric acid is isolated.
  • the metal salt usually contains about 0.1% to 5% of water.
  • the metal salt of S- (3-aminopropyl) thiosulfuric acid can be previously blended with a support agent.
  • a carrier include the above-mentioned fillers and “inorganic fillers and reinforcing agents” described on pages 510 to 513 of “Rubber Industry Handbook ⁇ Fourth Edition>” edited by the Japan Rubber Association. Of these, carbon black, silica, calcined clay and aluminum hydroxide are preferred.
  • the amount of the carrier used is preferably in the range of 10 to 1000 parts by weight per 100 parts by weight of the metal salt of S- (3-aminopropyl) thiosulfuric acid.
  • the amount of zinc oxide used is preferably in the range of 1 to 15 parts by weight, more preferably in the range of 3 to 8 parts by weight per 100 parts by weight of the rubber component. .
  • An agent (viscoelasticity improving agent) for improving the viscoelastic properties conventionally used in the rubber field can be blended and kneaded in the pre-kneading step A. What is necessary is just to add a viscoelasticity improving agent as needed.
  • the viscoelasticity improver can be blended and kneaded in the post-kneading step B.
  • the viscoelasticity improver can be blended and kneaded in both the pre-kneading step A and the post-kneading step B.
  • examples of the viscoelasticity improver include N, N′-bis (2-methyl-2-nitropropyl) -1,6-hexanediamine (“Sumifine (registered trademark) 1162” manufactured by Sumitomo Chemical Co., Ltd.), JP-A-63. Dithiouracil compounds described in JP-A No. 233942, nitrosoquinoline compounds such as 5-nitroso-8-hydroxyquinoline (NQ-58) described in JP-A-60-82406, “Tactrol (registered trademark)” manufactured by Taoka Chemical Co., Ltd.
  • alkylphenol / sulfur chloride condensates described in JP 2009-138148 A such as“ Waltac 2, 3, 4, 5, 7, 710 ”manufactured by Penwald, etc., bis (3-tri Ethoxysilylpropyl) tetrasulfide (“De-Gussa“ Si-69 ”), bis (3-triethoxysilylpropyl) disulfide (Degussa“ Si-75 "), bis (3-diethoxymethylsilylpropyl) tetrasulfide, bis (3-diethoxymethylsilylpropyl) disulfide, octanethioic acid S- [3- (triethoxysilyl) propyl] ester, octanethioic acid S -[3- ⁇ (2-methyl-1,3-propanedialkoxy) ethoxysilyl ⁇ propyl] ester and octanethioic acid S-
  • N, N′-bis (2-methyl-2-nitropropyl) -1,6-hexanediamine (“SUMIFINE (registered trademark) 1162” manufactured by Sumitomo Chemical Co., Ltd.), 5-nitroso-8-hydroxyquinoline.
  • NQ-58 bis (3-triethoxysilylpropyl) tetrasulfide (“Si-69” manufactured by Degussa), bis (3-triethoxysilylpropyl) disulfide (“Si-75” manufactured by Degussa), 1 , 6-bis (N, N′-dibenzylthiocarbamoyldithio) -hexane (“KA9188” manufactured by Bayer), hexamethylenebisthiosulfate disodium salt dihydrate, 1,3-biscitraconimidomethylbenzene ( Such as “Parka Link 900” manufactured by Flexis Co., Ltd., “Tacchiroll (registered trademark) AP, V-200” manufactured by Taoka Chemical, etc.
  • the use weight of the viscoelasticity improver is preferably in the range of 0.1 to 10 parts by weight per 100 parts by weight of the rubber component. By being in said range, the effect which improves a viscoelastic property can be acquired efficiently. Subsequently, each component used in the post-kneading step B will be described.
  • Sulfur component The sulfur component is used in the post-kneading step B.
  • Sulfur components include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur and highly dispersible sulfur. Powdered sulfur is preferred, and insoluble sulfur is preferred when used for tire members having a large amount of sulfur such as belt members.
  • the sulfur component does not include a metal salt of S- (3-aminopropyl) thiosulfuric acid and a vulcanization accelerator.
  • the use amount of the sulfur component is preferably in the range of 0.3 to 10 parts by weight, and in the range of 0.5 to 5 parts by weight per 100 parts by weight of the rubber component. It is more preferable. By being in the above range, vulcanization can be performed efficiently.
  • Vulcanization accelerator examples include thiazole-based vulcanization accelerators and sulfenes described on pages 412 to 413 of the Rubber Industry Handbook ⁇ Fourth Edition> (issued by the Japan Rubber Association on January 20, 1994).
  • Examples thereof include amide type vulcanization accelerators and guanidine type vulcanization accelerators.
  • CBS N-cyclohexyl-2-benzothiazolylsulfenamide
  • BSS N-tert-butyl-2-benzothiazolylsulfenamide
  • DPG diphenylguanidine
  • morpholine disulfide which is a known vulcanizing agent, can be used.
  • N-cyclohexyl-2-benzothiazolylsulfenamide CBS
  • N-tert-butyl-2-benzothiazolylsulfenamide BSS
  • N, N-dicyclohexyl -2-Benzothiazolylsulfenamide DCBS
  • MBTS dibenzothiazyl disulfide
  • DPG diphenylguanidine
  • the vulcanization accelerator does not include S- (3-aminopropyl) thiosulfuric acid and its metal salt.
  • the used weight of the vulcanization accelerator is usually 0.1 parts by weight or more and 5 parts by weight or less with respect to 100 parts by weight of the rubber component, and 0.3 parts by weight or more with respect to 100 parts by weight of the rubber component.
  • the amount is preferably 3 parts by weight or less.
  • [Other ingredients] in the pre-kneading step A and / or the post-kneading step B, various compounding agents that can be blended in addition to the components described above are shown below.
  • Such compounding agents include anti-aging agents; oils; fatty acids such as stearic acid; Coumarone resin NG4 (softening point 81 to 100 ° C.) of Nippon Steel Chemical Co., Ltd., process resin AC5 (Kobe Oil Chemical Co., Ltd.) Coumarone-indene resin such as terpene resin, terpene / phenol resin, aromatic modified terpene resin, etc .; Mitsubishi Gas Chemical Co., Ltd.
  • Nekanol (registered trademark) A70 softening point 70 ⁇ Rosin derivatives such as 90 ° C.
  • hydrogenated rosin derivatives novolac alkylphenol resins; resole alkylphenol resins; C5 petroleum resins; and liquid polybutadiene.
  • the oil include process oil and vegetable oil.
  • the process oil include paraffinic process oil, naphthenic process oil, and aromatic process oil.
  • the anti-aging agent include those described in pages 436 to 443 of “Rubber Industry Handbook ⁇ Fourth Edition>” edited by the Japan Rubber Association.
  • N-phenyl-N′-1,3-dimethylbutyl-p-phenylenediamine (6PPD), reaction product of aniline and acetone (TMDQ), poly (2,2,4-trimethyl-1,2) -) Dihydroquinoline (“Antioxidant FR” manufactured by Matsubara Sangyo Co., Ltd.), synthetic wax (paraffin wax, etc.) and vegetable wax are preferred.
  • a peptizer and a retarder may be blended and kneaded, and various general rubber chemicals and softeners may be blended and kneaded as necessary.
  • Retarders include phthalic anhydride, benzoic acid, salicylic acid, N-nitrosodiphenylamine, N- (cyclohexylthio) -phthalimide (CTP), sulfonamide derivatives, diphenylurea and bis (tridecyl) pentaerythritol-diphosphite.
  • CTP Cyclohexylthio) -phthalimide
  • the retarder may be blended and kneaded in the pre-kneading step A, but is preferably blended and kneaded in the post-kneading step B.
  • the amount of the retarder used is preferably in the range of 0.01 to 1 part by weight, more preferably in the range of 0.05 to 0.5 part by weight, per 100 parts by weight of the rubber component.
  • [Combination of each component] According to the production method of the present invention, by blending and kneading predetermined components in the pre-kneading step A and the post-kneading step B, respectively, and by heat-treating the kneaded product B obtained in the post-kneading step B in the heat treatment step C, Vulcanized rubber compositions that can be used for various applications can be obtained.
  • the rubber component is natural rubber alone or a blend with SBR and / or BR containing natural rubber as a main component. Is preferred.
  • the filler carbon black alone or a blend with carbon black containing silica as a main component is preferably used.
  • N, N′-bis (2-methyl-2-nitropropyl) -1,6-hexanediamine (“Sumifine (registered trademark) 1162” manufactured by Sumitomo Chemical Co., Ltd.), 5-nitroso-8-hydroxyquinoline ( NQ-58), bis (3-triethoxysilylpropyl) tetrasulfide (Si-69), bis (3-triethoxysilylpropyl) disulfide (Si-75), 1,6-bis (N, N′-di) Benzylthiocarbamoyldithio) -hexane (“KA9188” manufactured by Bayer), hexamethylene bisthiosulfate disodium salt dihydrate, 1,3-biscitraconimidomethylbenzene (“Parkalink 900” manufactured by Flexis), Taoka Viscoelasticity of alkylphenol / sulfur chloride condensates such as chemical “Tacchirol (registered trademark) AP, V-
  • the rubber component may be a solution-polymerized SBR having a molecular terminal modified with a silicon compound alone, or a non-modified, mainly composed of the terminal-modified solution-polymerized SBR.
  • a blend with at least one rubber selected from the group consisting of solution polymerization SBR, emulsion polymerization SBR, natural rubber and BR is preferred.
  • the filler a blend with carbon black mainly composed of silica is preferably used.
  • N, N′-bis (2-methyl-2-nitropropyl) -1,6-hexanediamine (“Sumifine (registered trademark) 1162” manufactured by Sumitomo Chemical Co., Ltd.), 5-nitroso-8-hydroxyquinoline ( NQ-58), bis (3-triethoxysilylpropyl) tetrasulfide (Si-69), bis (3-triethoxysilylpropyl) disulfide (Si-75), 1,6-bis (N, N′-di) Benzylthiocarbamoyldithio) -hexane (“KA91884” manufactured by Bayer AG), hexamethylenebisthiosulfate disodium salt dihydrate, 1,3-biscitraconimidomethylbenzene (“PARKALINK 900” manufactured by Flexis), Taoka Chemical Viscoelasticity of alkylphenol / sulfur chloride condensates such as “Tacchiroll (registered trademark) AP
  • the rubber component is a blend of at least one rubber selected from the group consisting of non-modified solution-polymerized SBR, emulsion-polymerized SBR, and natural rubber containing BR as a main component.
  • the filler carbon black alone or a blend with silica containing carbon black as a main component is preferably used.
  • N, N′-bis (2-methyl-2-nitropropyl) -1,6-hexanediamine (“Sumifine (registered trademark) 1162” manufactured by Sumitomo Chemical Co., Ltd.), 5-nitroso-8-hydroxyquinoline ( NQ-58), bis (3-triethoxysilylpropyl) tetrasulfide (Si-69), bis (3-triethoxysilylpropyl) disulfide (Si-75), 1,6-bis (N, N′-di) Benzylthiocarbamoyldithio) -hexane (“KA9188” manufactured by Bayer), hexamethylene bisthiosulfate disodium salt dihydrate, 1,3-biscitraconimidomethylbenzene (“Parkalink 900” manufactured by Flexis), Taoka Viscoelasticity of alkylphenol / sulfur chloride condensates such as chemical “Tacchirol (registered trademark) AP, V-
  • the rubber component is preferably natural rubber alone or a blend with BR containing natural rubber as a main component.
  • the filler carbon black alone or a blend with silica containing carbon black as a main component is preferably used.
  • N, N′-bis (2-methyl-2-nitropropyl) -1,6-hexanediamine (“Sumifine (registered trademark) 1162” manufactured by Sumitomo Chemical Co., Ltd.), 5-nitroso-8-hydroxyquinoline ( NQ-58), bis (3-triethoxysilylpropyl) tetrasulfide (Si-69), bis (3-triethoxysilylpropyl) disulfide (Si-75), 1,6-bis (N, N′-di) Benzylthiocarbamoyldithio) -hexane (“KA9188” manufactured by Bayer), hexamethylene bisthiosulfate disodium salt dihydrate, 1,3-biscitraconimidomethylbenzene (“Parkalink 900” manufactured by Flexis), Taoka Viscoelasticity of alkylphenol / sulfur chloride condensates such as chemical “Tacchirol (registered trademark) AP, V-
  • Pre-kneading step A In the pre-kneading step A, the temperature at the start is 40 ° C. or higher and 100 ° C. or lower, and the temperature at the end is 110 ° C. or higher and 155 ° C. or lower. This is a step of kneading a metal salt of 3-aminopropyl) thiosulfuric acid, and kneaded material A is obtained.
  • the order of blending the rubber component, the filler and the metal salt of S- (3-aminopropyl) thiosulfuric acid is not limited, but for ease of blending, the rubber component is blended with the filler and S- (3-aminopropyl) thio.
  • the order of blending with the metal salt of sulfuric acid is preferred.
  • An example of an apparatus for kneading each component is a Banbury mixer. The number of rotations of the mixer during kneading varies depending on the type of rubber component used and the desired molecular weight, but is generally 10 rpm or more and 100 rpm or less.
  • mixes on the said temperature rising conditions is generally 3 minutes or more and 20 minutes or less.
  • Each component such as a rubber component is heated (or maintained at a predetermined temperature) by heat generated by kneading.
  • a rubber component, a filler, and a metal salt of S- (3-aminopropyl) thiosulfuric acid are blended, and kneading is performed under a temperature rising condition in which the temperature is raised from the starting temperature to the ending temperature. Is called.
  • the temperature at the start is 40 ° C. or more and 100 ° C. or less, and the temperature at the end is 110 ° C. or more and 155 ° C. or less.
  • the temperature at the start and the temperature at the end are specifically the temperatures of the rubber components to be kneaded.
  • the temperature at the start is the temperature of the rubber component when heating the rubber component, the filler, and the metal salt of S- (3-aminopropyl) thiosulfuric acid by the heating member.
  • the temperature at the end is the temperature of the kneaded material A when the kneading of the rubber component, the filler, and the metal salt of S- (3-aminopropyl) thiosulfuric acid is finished.
  • the temperature increase from the temperature at the start to the temperature at the end may be performed gradually as the kneading proceeds, or may be performed step by step at a predetermined temperature, for example, 5 ° C.
  • the kneaded material A is obtained by the kneading in the pre-kneading step A.
  • kneading is started under conditions where the starting temperature is 40 ° C. or higher and 100 ° C. or lower.
  • the energy required for kneading can be reduced.
  • the load on a manufacturing apparatus such as a mixer can be reduced. This has the effect of extending the life of the manufacturing apparatus.
  • a metal salt of S- (3-aminopropyl) thiosulfuric acid is used for kneading.
  • the viscoelastic properties of the finally obtained vulcanized rubber composition can be improved even when kneading at a low temperature.
  • the production method of the present invention can be carried out with low energy, can improve the viscoelastic properties of the vulcanized rubber composition, and is very useful.
  • the kneading start temperature is 80 ° C. or higher and 100 ° C. or lower, and the temperature at the end is 135 ° C.
  • the pre-kneading step A may include a step of kneading the rubber component as a pre-stage of kneading. The molecular chain of natural rubber is cut by mastication, which facilitates the processing of natural rubber.
  • the post-kneading step B is a step of kneading the kneaded product A obtained in the pre-kneading step A, the sulfur component, and the vulcanization accelerator, and the kneaded product B is obtained.
  • the post-kneading step B is preferably performed immediately after the kneading in the pre-kneading step A is completed.
  • An apparatus for kneading each component includes an open mixer and a Banbury mixer.
  • the mixer temperature condition in the post-kneading step B is preferably 60 ° C. or higher and 120 ° C. or lower.
  • the kneading time in the post-kneading step B may be appropriately set according to the type of each component such as a rubber component, but is usually 0.5 minutes or more and 10 minutes or less.
  • the kneaded product B is obtained by further kneading.
  • the production method of the present invention may include a processing step b for processing the kneaded product B obtained in the post-kneading step B into a specific state between the post-kneading step B and the heat treatment step C.
  • a pre-formed body is obtained by the processing step b, and the pre-formed body becomes a formed body by heat treatment in the heat treatment step C described later.
  • “Processing kneaded product B into a specific state” means, for example, in the field of tires, “step of coating kneaded product B on steel cord”, “step of coating kneaded product B on carcass fiber cord” , “A step of processing the kneaded material B into the shape of a tread member” and the like.
  • processing shall include the process of shape
  • Each member such as a belt, a carcass, an inner liner, a sidewall, and a tread (cap tread or under tread) obtained by these steps is usually combined with other members by a method that is usually performed in the field of tires.
  • a step of incorporating the kneaded material B into the tire a state of a green tire including the kneaded material B is obtained.
  • the heat treatment step C is performed after the post-kneading step B or the processing step b.
  • the kneaded product B obtained in the post-kneading step B or the pre-molded product obtained in the processing step b is subjected to the heat treatment in the heat treatment step C.
  • Such heat treatment is usually performed at normal pressure or under pressure.
  • the temperature condition in the heat treatment in the heat treatment step C is preferably 120 ° C. or higher and 180 ° C. or lower. If the temperature is lower than 120 ° C, the vulcanization speed may be slow, and it may be difficult to determine the degree of vulcanization. If the temperature exceeds 180 ° C, the vulcanization speed may be high, and the vulcanization speed may be difficult to control. There is.
  • a suitable heating time (vulcanization time) in the heat treatment varies depending on the specific composition of the rubber composition. By the heat treatment, a vulcanized rubber composition can be obtained from the kneaded product B obtained in the post-kneading step B.
  • a molded body is obtained from the pre-molded body.
  • the apparatus used for the heat treatment in the heat treatment step C include a vulcanizer, a vulcanization press, and a pressure press.
  • a pneumatic tire can be produced by an ordinary method. That is, the rubber composition in the stage before the heat treatment step C is extruded into a tread member, and pasted and molded by a usual method on a tire molding machine to form a green tire. A tire can be obtained by heating and pressurizing.
  • Physical properties of vulcanized rubber composition The viscoelastic properties of the vulcanized rubber composition are shown below.
  • the viscoelastic properties of the vulcanized rubber composition are determined from the loss coefficient (tan ⁇ ) calculated by changing the temperature and frequency conditions.
  • the loss factor at 60 ° C. which is a measure of rolling resistance
  • the loss factor at 0 ° C. is a measure of grip strength on wet roads Is large
  • the braking performance of the automobile is good (page 124 of Non-Patent Document 1).
  • the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to these.
  • the viscoelastic properties of the rubber compositions in Examples and Comparative Examples were evaluated by the following methods.
  • [Viscoelastic properties] Using a viscoelasticity analyzer manufactured by Ueshima Seisakusho Co., Ltd., the viscoelastic properties of the rubber composition were measured under the following measurement conditions. Measurement conditions: temperature -5 ° C to 80 ° C (temperature increase rate: 2 ° C / min), initial strain 10%, dynamic strain 2.5%, frequency 10 Hz
  • Tables 1 and 2 show loss factors (loss tangents) tan ⁇ at 0 ° C., 20 ° C., 40 ° C. and 60 ° C. of the vulcanized rubber compositions obtained in Examples and Comparative Examples.
  • the obtained sodium salt of S- (3-aminopropyl) thiosulfuric acid was pulverized so that the median diameter (50% D) was 14.6 ⁇ m and used in Example 1.
  • ⁇ Measurement operation> A mixed solution of the obtained sodium salt of S- (3-aminopropyl) thiosulfuric acid at room temperature with a dispersion solvent (toluene) and a dispersant (10% by weight sodium di-2-ethylhexyl sulfosuccinate / toluene solution) Dispersed in. While irradiating the obtained dispersion with ultrasonic waves, the dispersion was stirred for 5 minutes to obtain a test solution.
  • test solution was transferred to a batch cell and measured after 1 minute (refractive index: 1.70-0.20i).
  • the pH of an aqueous solution obtained by dissolving 10.0 g of sodium salt of S- (3-aminopropyl) thiosulfuric acid in 30 mL of water was 11-12.
  • kneaded product A The temperature of the heating member at the end of kneading was 120 ° C. The temperature of the kneaded product during kneading was 180 to 200 ° C. Further, the obtained kneaded material A was passed through an open roll having a set temperature of 50 to 60 ° C. and processed into a sheet shape.
  • the kneaded product A obtained by the pre-kneading step A 2 parts by weight of sulfur, and a vulcanization accelerator (N-cyclohexyl-2-benzothiazolesulfene) Amide (CBS) 1 part by weight and anti-aging agent (N-phenyl-N′-1,3-dimethylbutyl-p-phenylenediamine: trade name “Antigen (registered trademark) 6C” manufactured by Sumitomo Chemical Co., Ltd.) 1 A part by weight was blended and kneaded to obtain a kneaded product B. Furthermore, the kneaded material B was processed into a 2.0 mm sheet.
  • a vulcanization accelerator N-cyclohexyl-2-benzothiazolesulfene
  • anti-aging agent N-phenyl-N′-1,3-dimethylbutyl-p-phenylenediamine: trade name “Antigen (registered trademark) 6C” manufactured by Sumi
  • the sheet-like kneaded product B was aged overnight (approximately 12 hours).
  • ⁇ Heat treatment step C> Using a vulcanizing press, the kneaded product B obtained in the post-kneading step B was vulcanized at 1145 minutes at 145 ° C. to obtain a vulcanized rubber composition. The viscoelastic properties of the obtained vulcanized rubber composition were measured. The results are shown in Tables 1 and 2.
  • Example 1 In Example 1, except that the temperature at the start of kneading in the pre-kneading step A was 40 ° C., the temperature at the end was 112 ° C., and the sodium salt of S- (3-aminopropyl) thiosulfuric acid was not blended. Kneading was performed in the same manner as in Example 1 to obtain a vulcanized rubber composition. In the same manner as in Example 1, the viscoelastic properties of the obtained vulcanized rubber composition were measured. The results are shown in Tables 1 and 2.
  • Example 1 except that the temperature at the start of kneading in the pre-kneading step A was 60 ° C., the temperature at the end was 136 ° C., and the vulcanization time of the kneaded product B in the heat treatment step C was 16.0 minutes. Kneading was performed in the same manner as in Example 1 to obtain a vulcanized rubber composition. In the same manner as in Example 1, the viscoelastic properties of the obtained vulcanized rubber composition were measured. The results are shown in Tables 1 and 2.
  • Example 2 In Example 1, the temperature at the start of kneading in the pre-kneading step A is 60 ° C., the temperature at the end is 135 ° C., and the sodium salt of S- (3-aminopropyl) thiosulfuric acid is not blended, and the heat treatment step C A vulcanized rubber composition was obtained by kneading in the same manner as in Example 1 except that the vulcanization time of the kneaded product B was 17.5 minutes. In the same manner as in Example 1, the viscoelastic properties of the obtained vulcanized rubber composition were measured. The results are shown in Tables 1 and 2.
  • Example 1 except that the temperature at the start of kneading in the pre-kneading step A was 80 ° C., the temperature at the end was 142 ° C., and the vulcanization time of the kneaded product B in the heat treatment step C was 15.0 minutes, Kneading was performed in the same manner as in Example 1 to obtain a vulcanized rubber composition. In the same manner as in Example 1, the viscoelastic properties of the obtained vulcanized rubber composition were measured. The results are shown in Tables 1 and 2.
  • Example 3 In Example 1, the temperature at the start of kneading in the pre-kneading step A is 80 ° C., the temperature at the end is 137 ° C., and the sodium salt of S- (3-aminopropyl) thiosulfuric acid is not blended.
  • the vulcanized rubber composition was obtained by kneading in the same manner as in Example 1 except that the vulcanization time of the kneaded product B was 16.0 minutes. In the same manner as in Example 1, the viscoelastic properties of the obtained vulcanized rubber composition were measured. The results are shown in Tables 1 and 2.
  • Example 1 kneading was carried out in the same manner as in Example 1 except that the temperature at the start of kneading in the pre-kneading step A was 100 ° C. and the temperature at the end was 154 ° C. to obtain a vulcanized rubber composition. .
  • the viscoelastic properties of the obtained vulcanized rubber composition were measured. The results are shown in Tables 1 and 2.
  • Example 4 In Example 1, the temperature at the start of kneading in the pre-kneading step A is 100 ° C., the temperature at the end is 153 ° C., and the sodium salt of S- (3-aminopropyl) thiosulfuric acid is not blended, and the heat treatment step C A vulcanized rubber composition was obtained by kneading in the same manner as in Example 1 except that the vulcanization time of the kneaded product B was 17.5 minutes. In the same manner as in Example 1, the viscoelastic properties of the obtained vulcanized rubber composition were measured. The results are shown in Tables 1 and 2.
  • the tan ⁇ of Example 3 is 77.3% of tan ⁇ of Comparative Example 3, and the tan ⁇ of Example 4 is 85.7% of tan ⁇ of Comparative Example 4. That is, according to the production method of the present invention, the metal salt of S- (3-aminopropyl) thiosulfuric acid is used even when the pre-kneading step A is kneaded under conditions where the temperature at the start and end of kneading is low. Tan ⁇ at 60 ° C. of the obtained vulcanized rubber composition can be improved by the effect of blending. On the other hand, in Examples 1 to 4, tan ⁇ at 0 ° C. is larger than tan ⁇ at 20 ° C.
  • tan ⁇ at 0 ° C. of the vulcanized rubber composition of Example 1 is 203.2% of tan ⁇ at 80 ° C.
  • the tan ⁇ at 0 ° C. of the vulcanized rubber composition obtained by the production method of the present invention is also a good value, and when the vulcanized rubber composition is used as an automobile tire raw material, the braking performance of the automobile is improved. Can be improved.
  • the vulcanized rubber composition obtained by the production method of the present invention has improved viscoelastic properties. As shown in Examples 3 and 4, when the temperature at the start of kneading in the pre-kneading step A is 80 ° C.
  • the tan ⁇ at 60 ° C. was 77.3% and 85.7% of tan ⁇ of Comparative Examples 3 and 4, respectively, and it can be seen that tan ⁇ at 60 ° C. was further reduced. That is, the fuel efficiency improvement effect of the automobile can be further increased.
  • the present invention it is possible to provide a vulcanized rubber composition having low energy and improved viscoelastic properties. Therefore, the present invention can be used in the field of using a rubber composition, particularly in the field of tires.

Abstract

Disclosed is a process for producing a vulcanized rubber composition comprising a rubber ingredient, a filler, a metal salt of S-(3-aminopropyl)thiosulfuric acid, a sulfur ingredient, and a vulcanization accelerator. The process is characterized by comprising a pre-kneading step (A) in which a rubber ingredient, a filler, and a metal salt of S-(3-aminopropyl)thiosulfuric acid are kneaded under the heating conditions of an initial temperature of 40-100ºC and a final temperature of 110-155ºC, a post-kneading step (B) in which the mixture (A) obtained in the pre-kneading step (A), a sulfur ingredient, and a vulcanization accelerator are kneaded, and a heat treatment step (C) in which the mixture (B) obtained in the post-kneading step (B) is heat-treated to obtain a vulcanized rubber.

Description

加硫ゴム組成物の製造方法Method for producing vulcanized rubber composition
 本発明は、加硫ゴム組成物の製造方法に関する。 The present invention relates to a method for producing a vulcanized rubber composition.
 ゴム組成物は種々の分野において使用されており、特に自動車のタイヤの原料として用いられている。タイヤの原料としては、天然ゴム、合成ゴム等のゴム成分以外に、種々の成分が配合されたゴム組成物が用いられる。ゴム成分以外の成分としては、例えば、カーボンブラック等の充填剤、加硫に必要な硫黄成分、加硫を促進させる加硫促進剤等がある。また、これらに加え、ゴム成分に所定の特性を付与するために種々の物質が配合される。例えば、特公平5−15173号公報には、ゴム・金属間の接着を促進させる物質として、6−アミノヘキシルチオ硫酸S−エステルを用いることが開示されている。 Rubber compositions are used in various fields, and in particular as raw materials for automobile tires. As a tire raw material, a rubber composition containing various components in addition to rubber components such as natural rubber and synthetic rubber is used. Examples of the component other than the rubber component include a filler such as carbon black, a sulfur component necessary for vulcanization, and a vulcanization accelerator for promoting vulcanization. In addition to these, various substances are blended to impart predetermined characteristics to the rubber component. For example, Japanese Patent Publication No. 5-15173 discloses the use of 6-aminohexylthiosulfuric acid S-ester as a substance that promotes adhesion between rubber and metal.
 本発明は、
<1> ゴム成分、充填剤、S−(3−アミノプロピル)チオ硫酸の金属塩、硫黄成分および加硫促進剤を含有する加硫ゴム組成物の製造方法であり、
開始時の温度が40℃以上、100℃以下であり、終了時の温度が110℃以上、155℃以下である昇温条件下で、ゴム成分、充填剤およびS−(3−アミノプロピル)チオ硫酸の金属塩を混練する前混練工程Aと、
 前混練工程Aで得られた混練物A、硫黄成分および加硫促進剤を混練する後混練工程Bと、
 後混練工程Bで得られた混練物Bを熱処理して加硫ゴムを得る熱処理工程Cと、を含むことを特徴とする加硫ゴム組成物の製造方法;
<2> 前混練工程Aにおいて、開始時の温度が80℃以上、100℃以下であり、終了時の温度が135℃以上、155℃以下である昇温条件下で混練を行う<1>に記載の製造方法;
<3> ゴム成分100重量部に対するS−(3−アミノプロピル)チオ硫酸の金属塩の重量が、0.05重量部以上、2.5重量部以下である<1>または<2>に記載の製造方法;を提供するものである。
The present invention
<1> A method for producing a vulcanized rubber composition comprising a rubber component, a filler, a metal salt of S- (3-aminopropyl) thiosulfuric acid, a sulfur component and a vulcanization accelerator,
The rubber component, filler, and S- (3-aminopropyl) thio are used under the temperature rising conditions in which the temperature at the start is 40 ° C. or higher and 100 ° C. or lower and the temperature at the end is 110 ° C. or higher and 155 ° C. or lower. A pre-kneading step A for kneading a metal salt of sulfuric acid;
A post-kneading step B for kneading the kneaded product A obtained in the pre-kneading step A, a sulfur component and a vulcanization accelerator;
A heat treatment step C for obtaining a vulcanized rubber by heat-treating the kneaded product B obtained in the post-kneading step B; and a method for producing a vulcanized rubber composition,
<2> In the pre-kneading step A, kneading is performed under a temperature rising condition in which the temperature at the start is 80 ° C. or more and 100 ° C. or less and the temperature at the end is 135 ° C. or more and 155 ° C. or less. The manufacturing method as described;
<3> The weight of the metal salt of S- (3-aminopropyl) thiosulfuric acid relative to 100 parts by weight of the rubber component is 0.05 part by weight or more and 2.5 parts by weight or less, according to <1> or <2>. The manufacturing method of this is provided.
 本発明は、ゴム成分、充填剤、S−(3−アミノプロピル)チオ硫酸の金属塩、硫黄成分および加硫促進剤を含有する加硫ゴム組成物の製造方法であり、
開始時の温度が40℃以上、100℃以下であり、終了時の温度が110℃以上、155℃以下である昇温条件下で、ゴム成分、充填剤およびS−(3−アミノプロピル)チオ硫酸の金属塩を混練する前混練工程Aと、
 前混練工程Aで得られた混練物A、硫黄成分および加硫促進剤を混練する後混練工程Bと、
 後混練工程Bで得られた混練物Bを熱処理して加硫ゴムを得る熱処理工程Cと、を含むことを特徴とする加硫ゴム組成物の製造方法である。
 まず、前混練工程Aで用いられる各成分について説明する。
[ゴム成分]
 ゴム成分は、前混練工程Aにおいて用いられる。
 ゴム成分としては、天然ゴム、エポキシ化天然ゴム、脱蛋白天然ゴムおよびその他の変性天然ゴムのほか、スチレン・ブタジエン共重合ゴム(SBR)、ポリブタジエンゴム(BR)、ポリイソプレンゴム(IR)、アクリロニトリル・ブタジエン共重合ゴム(NBR)、イソプレン・イソブチレン共重合ゴム(IIR)、エチレン・プロピレン−ジエン共重合ゴム(EPDM)、ハロゲン化ブチルゴム(HR)等の各種の合成ゴムが挙げられる。なかでも、天然ゴム、スチレン・ブタジエン共重合ゴム、ポリブタジエンゴム等の高不飽和性ゴムが好ましく用いられ、天然ゴムがより好ましい。天然ゴムとスチレン・ブタジエン共重合ゴムとの併用、天然ゴムとポリブタジエンゴムとの併用等、数種のゴム成分を組み合わせて用いることも有効である。
 天然ゴムの具体例としては、RSS#1、RSS#3、TSR20、SIR20、SMR20等のグレードの天然ゴムが挙げられる。
 エポキシ化天然ゴムとしては、エポキシ化度10~60モル%のものが好ましく、クンプーラン ガスリー社製のENR25やENR50が挙げられる。脱蛋白天然ゴムとしては、総窒素含有率が0.3重量%以下である脱蛋白天然ゴムが好ましい。
 変性天然ゴムとしては、天然ゴムにあらかじめ4−ビニルピリジン、N,N−ジアルキルアミノエチルアクリレート(例えばN,N−ジエチルアミノエチルアクリレート)、2−ヒドロキシアクリレート等を反応させた、極性基を含有する変性天然ゴムが好ましい。
 SBRの具体例としては、日本ゴム協会編「ゴム工業便覧<第四版>」の第210~211頁に記載されている乳化重合SBRおよび溶液重合SBRが挙げられる。とりわけ、トレッド用ゴム組成物のゴム成分としては、溶液重合SBRが好ましく用いられる。日本ゼオン社製「ニッポール(登録商標)NS116」等の4,4’−ビス−(ジアルキルアミノ)ベンゾフェノンを用いて分子末端を変性した溶液重合SBR、JSR社製「SL574」等のハロゲン化スズ化合物を用いて分子末端を変性した溶液重合SBR、旭化成社製「E10」、「E15」等のシラン変性溶液重合SBRの市販品や、ラクタム化合物、アミド化合物、尿素系化合物、N,N−ジアルキルアクリルアミド化合物、イソシアネート化合物、イミド化合物、アルコキシ基を有するシラン化合物(トリアルコキシシラン化合物等)およびアミノシラン化合物のうちのいずれか一つを用いて、または、スズ化合物とアルコキシ基を有するシラン化合物、アルキルアクリルアミド化合物とアルコキシ基を有するシラン化合物等、上述した互いに異なる化合物を2種以上用いて、それぞれ分子末端を変性して得られる、当該分子末端に窒素、スズおよびケイ素のうちのいずれか、または、それら複数の元素を有する溶液重合SBRが、特に好ましく用いられる。また、乳化重合SBRおよび溶液重合SBRに重合後プロセスオイルやアロマオイル等のオイルを添加した油展SBRは、トレッド用ゴム組成物等のゴム成分として好ましい。
 BRの具体例としては、シス−1,4−結合が90%以上の高シスBRやシス結合が35%前後の低シスBR等の溶液重合BRが挙げられ、高ビニル含量の低シスBRが好ましい。日本ゼオン製「Nipol(登録商標)BR1250H」等のスズ変性BRや、4,4’−ビス−(ジアルキルアミノ)ベンゾフェノン、ハロゲン化スズ化合物、ラクタム化合物、アミド化合物、尿素系化合物、N,N−ジアルキルアクリルアミド化合物、イソシアネート化合物、イミド化合物、アルコキシ基を有するシラン化合物(トリアルコキシシラン化合物等)およびアミノシラン化合物のうちのいずれか一つを用いて、または、スズ化合物とアルコキシ基を有するシラン化合物、アルキルアクリルアミド化合物とアルコキシ基を有するシラン化合物等、上述した互いに異なる化合物を2種以上用いて、それぞれ分子末端を変性して得られる、当該分子末端に窒素、スズおよびケイ素のうちのいずれか、または、それら複数の元素を有する溶液重合BRが、特に好ましい。これらBRは、トレッド用ゴム組成物やサイドウォール用ゴム組成物のゴム成分として好ましく、通常はSBRおよび/または天然ゴムとブレンドされて使用される。ブレンド比率は、トレッド用ゴム組成物においては、総ゴム重量に対して、SBRおよび/または天然ゴムが60~100重量%、BRは0~40重量%が好ましく、サイドウォール用ゴム組成物においては、総ゴム重量に対して、SBRおよび/または天然ゴムが10~70重量%、BRは90~30重量%が好ましく、総ゴム重量に対して、天然ゴム40~60重量%、BR60~40重量%のブレンドがより好ましい。この場合、変性SBRと非変性SBRとのブレンドや、変性BRと非変性BRとのブレンドも好ましい。
[充填剤]
 充填剤は、前混練工程Aにおいて用いられる。
 充填剤としては、ゴム分野で通常使用されているカーボンブラック、シリカ、タルク、クレイ、水酸化アルミニウム、酸化チタン等の充填剤が挙げられ、カーボンブラックおよびシリカが好ましく、カーボンブラックがより好ましい。カーボンブラックの具体例としては、日本ゴム協会編「ゴム工業便覧<第四版>」の第494頁に記載されたものが挙げられる。なかでも、HAF(High Abrasion Furnace)、SAF(Super Abrasion Furnace)、ISAF(Intermediate SAF)、FEF(Fast Extrusion Furnace)、MAF、GPF(General Purpose Furnace)、SRF(Semi−Reinforcing Furnace)等のカーボンブラックが好ましい。タイヤトレッド用ゴム組成物用の充填剤としては、CTAB(Cetyl Tri−methyl Ammonium Bromide)表面積が40~250m/gであり、窒素吸着比表面積が20~200m/gであり、且つ、粒子径が10~50nmであるカーボンブラックが好ましく用いられ、CTAB表面積が70~180m/gであり、窒素吸着比表面積が20~200m/gであり、且つ、粒子径が10~50nmであるカーボンブラックがより好ましい。その具体例としては、ASTMの規格において、N110、N220、N234、N299、N326、N330、N330T、N339、N343、N351等が挙げられる。また、カーボンブラックの表面に、シリカを0.1~50重量%付着させた表面処理カーボンブラックも好ましい。カーボンブラックとシリカとの併用等、数種の充填剤を組み合わせて用いることも有効である。タイヤトレッド用ゴム組成物においては、カーボンブラック単独またはカーボンブラックとシリカとの両方を用いることが好ましい。カーカスまたはサイドウォール用ゴム組成物においては、CTAB表面積が20~60m/gであり、且つ、粒子径が40~100nmであるカーボンブラックが好ましく用いられ、その具体例としては、ASTMの規格において、N330、N339、N343、N351,N550、N568、N582、N630、N642、N660、N662、N754、N762等である。
 かかる充填剤の使用量は、ゴム成分100重量部あたり、5~100重量部の範囲が好ましい。カーボンブラックのみを充填剤として使用する場合には、その使用量は、30~80重量部の範囲がより好ましく、トレッド部材用途においてシリカと併用して用いる場合には、その使用量は5~50重量部の範囲がより好ましい。
 シリカとしては、CTAB表面積が50~180m/gまたは窒素吸着比表面積が50~300m/gのシリカが挙げられ、東ソー・シリカ(株)社製「AQ」、「AQ−N」、デグッサ社製「ウルトラジル(登録商標)VN3」、「ウルトラジル(登録商標)360」、「ウルトラジル(登録商標)7000」、ローディア社製「ゼオシル(登録商標)115GR」、「ゼオシル(登録商標)1115MP」、「ゼオシル(登録商標)1205MP」、「ゼオシル(登録商標)Z85MP」、日本シリカ社製「ニップシール(登録商標)AQ」等の市販品が好ましく用いられる。また、pHが6~8であるシリカ、ナトリウムを0.2~1.5重量%含むシリカ、真円度が1~1.3の真球状シリカ、ジメチルシリコーンオイル等のシリコーンオイルやエトキシシリル基を含有する有機ケイ素化合物、エタノールやポリエチレングリコール等のアルコールで表面処理したシリカ、二種類以上の異なった窒素吸着比表面積を有するシリカ等を配合することも好ましい。
 乗用車用トレッド用ゴム組成物においては、シリカが好ましく用いられ、その使用量は、ゴム成分100重量部あたり、10~120重量部の範囲が好ましい。シリカを配合する場合、カーボンブラック5~50重量部をさらに配合することが好ましく、シリカ/カーボンブラックの配合比率は0.7/1~1/0.1が特に好ましい。また、充填剤としてシリカを用いる場合には、ビス(3−トリエトキシシリルプロピル)テトラスルフィド(デグッサ社製「Si−69」)、ビス(3−トリエトキシシリルプロピル)ジスルフィド(デグッサ社製「Si−75」)、ビス(3−ジエトキシメチルシリルプロピル)テトラスルフィド、ビス(3−ジエトキシメチルシリルプロピル)ジスルフィド、オクタンチオ酸S−[3−(トリエトキシシリル)プロピル]エステル(ジェネラルエレクトロニックシリコンズ社製「NXTシラン」)、オクタンチオ酸S−[3−{(2−メチル−1,3−プロパンジアルコキシ)エトキシシリル}プロピル]エステルおよびオクタンチオ酸S−[3−{(2−メチル−1,3−プロパンジアルコキシ)メチルシリル}プロピル]エステルフェニルトリエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、イソブチルトリメトキシシラン、イソブチルトリエトキシシラン、n−オクチルトリメトキシシラン、n−オクチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ(メトキシエトキシ)シラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリエトキシシラン、(3−グリシドキシプロピル)トリメトキシシラン、(3−グリシドキシプロピル)トリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、3−イソシアナートプロピルトリメトキシシランおよび3−イソシアナートプロピルトリエトキシシランからなる群から選択される1種以上のシランカップリング剤等、シリカと結合可能なケイ素等の元素またはアルコシキシラン等の官能基を有する化合物を添加することが好ましく、ビス(3−トリエトキシシリルプロピル)テトラスルフィド(デグッサ社製「Si−69」)、ビス(3−トリエトキシシリルプロピル)ジスルフィド(デグッサ社製「Si−75」)、および、3−オクタノイルチオプロピルトリエトキシシラン(ジェネラルエレクトロニックシリコンズ社製「NXTシラン」)が特に好ましい。これらの化合物は、シリカと同時期にゴム成分に配合することが好ましく、その配合量は、シリカに対して、好ましくは2~10重量%、より好ましくは7~9重量%である。これらの化合物を配合する場合の配合温度は、80~200℃が好ましく、110~180℃がより好ましい。充填剤としてシリカを用いる場合には、シリカ、シリカと結合可能なケイ素等の元素またはアルコシキシラン等の官能基を有する化合物に加えて、エタノール、ブタノール、オクタノール等の1価アルコールやエチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ペンタエリスリトール、ポリエーテルポリオール等の2価以上のアルコール、N−アルキルアミン、アミノ酸、分子末端がカルボキシル変性またはアミン変性された液状ポリブタジエン等を配合することも好ましい。
 水酸化アルミニウムとしては、窒素吸着比表面積5~250m/gであり、且つ、DOP給油量50~100ml/100gの水酸化アルミニウムが挙げられる。
[S−(3−アミノプロピル)チオ硫酸の金属塩]
 前混練工程Aにおいて用いられるS−(3−アミノプロピル)チオ硫酸の金属塩は、下記式(1)
 (HN−(CH−SSO ・Mn+   (1)
(式中、Mn+は金属イオンを表わし、nはその価数を表わす。)
で示される化合物である。
 Mn+で示される金属イオンとしては、リチウムイオン、ナトリウムイオン、カリウムイオン、セシウムイオン、コバルトイオン、銅イオンまたは亜鉛イオンが好ましく、リチウムイオン、ナトリウムイオンまたはカリウムイオンがより好ましい。式(1)において、nは金属イオンの価数を表わし、当該金属イオンが有しうる価数の範囲であれば、限定されない。例えば、リチウムイオン、ナトリウムイオン、カリウムイオン、セシウムイオンのようなアルカリ金属イオンの場合、nは1であり、コバルトイオンの場合、nは2または3であり、銅イオンの場合、nは1、2または3であり、亜鉛イオンの場合、nは2である。
 S−(3−アミノプロピル)チオ硫酸の金属塩の使用重量は、ゴム成分100重量部に対して、0.05重量部以上、2.5重量部以下であることが好ましい。S−(3−アミノプロピル)チオ硫酸の金属塩の使用重量が、上記範囲内であると、粘弾性特性の改善効果を好ましく得ることができる。S−(3−アミノプロピル)チオ硫酸の金属塩の使用重量は、ゴム成分100重量部に対して、0.5重量部以上、1.0重量部以下であることがより好ましい。
 S−(3−アミノプロピル)チオ硫酸の金属塩を前混練工程Aにおいて配合する場合の配合開始時のゴム成分の温度は40℃以上、100℃以下、配合終了時のゴム成分の温度は110℃以上、155℃以下である。
 S−(3−アミノプロピル)チオ硫酸の金属塩のメディアン径は、好ましくは0.05~100μmであり、より好ましくは1~100μmである。かかるメディアン径は、レーザー回析法により測定することができる。
 S−(3−アミノプロピル)チオ硫酸の金属塩は、3−ハロプロピルアミンとチオ硫酸ナトリウムとを反応させる方法;フタルイミドカリウム塩と1,3−ジハロプロパンとを反応させ、得られた化合物とチオ硫酸ナトリウムとを反応させ、次いで、得られた化合物を加水分解する方法;等の任意の公知の方法により製造することができる。このように製造されたS−(3−アミノプロピル)チオ硫酸の金属塩は、濃縮、晶析等の操作により単離することができ、単離されたS−(3−アミノプロピル)チオ硫酸の金属塩は、通常0.1%~5%程度の水分を含む。
 S−(3−アミノプロピル)チオ硫酸の金属塩は、予め担持剤と配合しておくことも可能である。かかる担持剤としては、先に示した充填剤および日本ゴム協会編「ゴム工業便覧<第四版>」の第510~513頁に記載されている「無機充てん剤、補強剤」が挙げられる。なかでも、カーボンブラック、シリカ、焼成クレイおよび水酸化アルミニウムが好ましい。かかる担持剤の使用量は、S−(3−アミノプロピル)チオ硫酸の金属塩100重量部あたり、10重量部以上、1000重量部以下の範囲であることが好ましい。
[酸化亜鉛]
 前混練工程Aでは、ゴム成分と共に酸化亜鉛を混練することが好ましい。酸化亜鉛の使用重量は、ゴム成分100重量部あたり、1重量部以上、15重量部以下の範囲内であることが好ましく、3重量部以上、8重量部以下の範囲内であることがより好ましい。
[粘弾性改善剤]
 従来からゴム分野で用いられている粘弾性特性を改善させる剤(粘弾性改善剤)を、前混練工程Aにおいて配合し、混練することが可能である。粘弾性改善剤は必要に応じて添加すればよい。粘弾性改善剤は、後混練工程Bにおいて配合し、混練することも可能である。また、粘弾性改善剤は、前混練工程Aと後混練工程Bの両工程において配合し、混練することも可能である。
 粘弾性改善剤としては、N,N’−ビス(2−メチル−2−ニトロプロピル)−1,6−ヘキサンジアミン(住友化学社製「スミファイン(登録商標)1162」)、特開昭63−23942号公報に記載のジチオウラシル化合物、特開昭60−82406号公報に記載の5−ニトロソ−8−ヒドロキシキノリン(NQ−58)等のニトロソキノリン化合物、田岡化学製「タッキロール(登録商標)AP、V−200」、ペンウォールト社製「バルタック2、3、4、5、7、710」等の特開2009−138148号公報に記載のアルキルフェノール・塩化硫黄縮合物、ビス(3−トリエトキシシリルプロピル)テトラスルフィド(デグッサ社製「Si−69」)、ビス(3−トリエトキシシリルプロピル)ジスルフィド(デグッサ社製「Si−75」)、ビス(3−ジエトキシメチルシリルプロピル)テトラスルフィド、ビス(3−ジエトキシメチルシリルプロピル)ジスルフィド、オクタンチオ酸S−[3−(トリエトキシシリル)プロピル]エステル、オクタンチオ酸S−[3−{(2−メチル−1,3−プロパンジアルコキシ)エトキシシリル}プロピル]エステル及びオクタンチオ酸S−[3−{(2−メチル−1,3−プロパンジアルコキシ)メチルシリル}プロピル]エステルフェニルトリエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、イソブチルトリメトキシシラン、イソブチルトリエトキシシラン、n−オクチルトリメトキシシラン、n−オクチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ(メトキシエトキシ)シラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリエトキシシラン、(3−グリシドキシプロピル)トリメトキシシラン、(3−グリシドキシプロピル)トリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、3−イソシアナートプロピルトリメトキシシラン、3−イソシアナートプロピルトリエトキシシラン等のシランカップリング剤、1,6−ビス(N,N’−ジベンジルチオカルバモイルジチオ)ヘキサン(バイエル社製「KA9188」)、1,6−ヘキサメチレンジチオサルフェート2ナトリウム塩2水和物、1,3−ビスシトラコンイミドメチルベンゼン(フレキシス社製「パーカリンク900」)、1−ベンゾイル−2−フェニルヒドラジド、1−又は3−ヒドロキシ−N’−(1−メチルエチリデン)−2−ナフトエ酸ヒドラジド、特開2004−91505号公報に記載の1−又は3−ヒドロキシ−N’−(1−メチルプロピリデン)−2−ナフトエン酸ヒドラジド、1−又は3−ヒドロキシ−N’−(1,3−ジメチルブチリデン)−2−ナフトエ酸ヒドラジド及び1−又は3−ヒドロキシ−N’−(2−フリルメチレン)−2−ナフトエ酸ヒドラジド等のカルボン酸ヒドラジド誘導体、特開2000−190704号公報に記載の3−ヒドロキシ−N’−(1,3−ジメチルブチリデン)−2−ナフトエ酸ヒドラジド、3−ヒドロキシ−N’−(1,3−ジフェニルエチリデン)−2−ナフトエ酸ヒドラジド及び3−ヒドロキシ−N’−(1−メチルエチリデン)−2−ナフトエ酸ヒドラジド、特開2006−328310号公報に記載のビスメルカプトオキサジアゾール化合物、特開2009−40898号公報に記載のピリチオン塩化合物、および、特開2006−249361号公報に記載の水酸化コバルト化合物が挙げられる。
 なかでも、N,N’−ビス(2−メチル−2−ニトロプロピル)−1,6−ヘキサンジアミン(住友化学社製「スミファイン(登録商標)1162」)、5−ニトロソ−8−ヒドロキシキノリン(NQ−58)、ビス(3−トリエトキシシリルプロピル)テトラスルフィド(デグッサ社製「Si−69」)、ビス(3−トリエトキシシリルプロピル)ジスルフィド(デグッサ社製「Si−75」)、1,6−ビス(N,N’−ジベンジルチオカルバモイルジチオ)−ヘキサン(バイエル社製「KA9188」)、ヘキサメチレンビスチオサルフェート2ナトリウム塩2水和物、1,3−ビスシトラコンイミドメチルベンゼン(フレキシス社製「パーカリンク900」)、および、田岡化学製「タッキロール(登録商標)AP、V−200」等のアルキルフェノール・塩化硫黄縮合物が好ましい。
 粘弾性改善剤の使用重量は、ゴム成分100重量部あたり、0.1重量部以上、10重量部以下の範囲内であることが好ましい。上記の範囲であることにより、粘弾性特性を改善する効果を効率よく得ることができる。
 続いて、後混練工程Bで用いられる各成分について説明する。
[硫黄成分]
 硫黄成分は、後混練工程Bにおいて用いられる。
 硫黄成分としては、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄および高分散性硫黄が挙げられる。粉末硫黄が好ましく、ベルト用部材等の硫黄量が多いタイヤ部材に用いる場合には、不溶性硫黄が好ましい。なお、本明細書において、硫黄成分は、S−(3−アミノプロピル)チオ硫酸の金属塩および加硫促進剤は含まない。
 硫黄成分の使用重量は、ゴム成分100重量部あたり、0.3重量部以上、10重量部以下の範囲内であることが好ましく、0.5重量部以上、5重量部以下の範囲内であることがより好ましい。上記の範囲であることにより、加硫を効率よく行うことができる。
[加硫促進剤]
 加硫促進剤としては、ゴム工業便覧<第四版>(平成6年1月20日社団法人 日本ゴム協会発行)の第412~413頁に記載されているチアゾール系加硫促進剤、スルフェンアミド系加硫促進剤およびグアニジン系加硫促進剤が挙げられる。
 具体的には、N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(CBS)、N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド(BBS)、N,N−ジシクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(DCBS)、2−メルカプトベンゾチアゾール(MBT)、ジベンゾチアジルジスルフィド(MBTS)およびジフェニルグアニジン(DPG)が挙げられる。また、公知の加硫剤であるモルフォリンジスルフィドを用いることもできる。
 充填剤としてカーボンブラックを用いる場合には、N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(CBS)、N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド(BBS)、N,N−ジシクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(DCBS)、またはジベンゾチアジルジスルフィド(MBTS)とジフェニルグアニジン(DPG)とを併用することが好ましく、充填剤としてシリカとカーボンブラックとを併用する場合には、N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(CBS)、N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド(BBS)、N,N−ジシクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(DCBS)およびジベンゾチアジルジスルフィド(MBTS)のいずれかとジフェニルグアニジン(DPG)とを併用することが好ましい。なお、本明細書において、加硫促進剤は、S−(3−アミノプロピル)チオ硫酸およびその金属塩は含まない。
 加硫促進剤の使用重量は、ゴム成分100重量部に対して、通常、0.1重量部以上、5重量部以下であり、ゴム成分100重量部に対して、0.3重量部以上、3重量部以下であることが好ましい。
 加硫促進剤の重量を上記範囲とすることによって、S−(3−アミノプロピル)チオ硫酸の金属塩を混練に用いた場合の加硫ゴム組成物への粘弾性特性を改善する効果をより高めることができる。
[その他の配合剤]
 前混練工程Aおよび/または後混練工程Bにおいて、上記した各成分に加え、配合可能な各種の配合剤を以下に示す。かかる配合剤としては、老化防止剤;オイル;ステアリン酸等の脂肪酸類;日鉄化学(株)のクマロン樹脂NG4(軟化点81~100℃)、神戸油化学工業(株)のプロセスレジンAC5(軟化点75℃)等のクマロン・インデン樹脂;テルペン樹脂、テルペン・フェノール樹脂、芳香族変性テルペン樹脂等のテルペン系樹脂;三菱瓦斯化学(株)「ニカノール(登録商標)A70」(軟化点70~90℃)等のロジン誘導体;水素添加ロジン誘導体;ノボラック型アルキルフェノール系樹脂;レゾール型アルキルフェノール系樹脂;C5系石油樹脂;および、液状ポリブタジエンが挙げられる。
 オイルとしては、プロセスオイルおよび植物油脂が挙げられる。プロセスオイルとしては、パラフィン系プロセスオイル、ナフテン系プロセスオイルおよび芳香族系プロセスオイルが挙げられる。
 老化防止剤としては、日本ゴム協会編「ゴム工業便覧<第四版>」の第436~443頁に記載されたものが挙げられる。なかでも、N−フェニル−N’−1,3−ジメチルブチル−p−フェニレンジアミン(6PPD)、アニリンとアセトンとの反応生成物(TMDQ)、ポリ(2,2,4−トリメチル−1,2−)ジヒドロキノリン(松原産業社製「アンチオキシダントFR」)、合成ワックス(パラフィンワックス等)および植物性ワックスが好ましい。
 また、しゃく解剤やリターダーを配合し、混練してもよく、さらには、一般の各種ゴム薬品や軟化剤等を必要に応じて配合し、混練してもよい。
 リターダーとしては、無水フタル酸、安息香酸、サリチル酸、N−ニトロソジフェニルアミン、N−(シクロヘキシルチオ)−フタルイミド(CTP)、スルホンアミド誘導体、ジフェニルウレアおよびビス(トリデシル)ペンタエリスリトール−ジホスファイトが挙げられ、N−(シクロヘキシルチオ)−フタルイミド(CTP)が好ましく用いられる。
 リターダーは、前混練工程Aで配合し、混練してもよいが、後混練工程Bで配合し、混練することが好ましい。リターダーの使用量は、ゴム成分100重量部あたり、0.01~1重量部の範囲内であることが好ましく、0.05~0.5重量部の範囲内がより好ましい。
[各成分の組み合わせ]
 本発明の製造方法によれば、前混練工程Aおよび後混練工程Bにおいてそれぞれ所定の成分を配合、混練し、熱処理工程Cにおいて後混練工程Bで得られた混練物Bを熱処理することによって、種々の用途に用いることのできる加硫ゴム組成物を得ることができる。
 トラック、バス、ライトトラックおよび建設用大型タイヤに適したトレッド部材に好適なゴム配合のうち、ゴム成分としては、天然ゴム単独、または、天然ゴムを主成分とするSBRおよび/またはBRとのブレンドが好ましい。充填剤としては、カーボンブラック単独、または、シリカを主成分とするカーボンブラックとのブレンドが好ましく用いられる。さらに、N,N’−ビス(2−メチル−2−ニトロプロピル)−1,6−ヘキサンジアミン(住友化学社製「スミファイン(登録商標)1162」)、5−ニトロソ−8−ヒドロキシキノリン(NQ−58)、ビス(3−トリエトキシシリルプロピル)テトラスルフィド(Si−69)、ビス(3−トリエトキシシリルプロピル)ジスルフィド(Si−75)、1,6−ビス(N,N’−ジベンジルチオカルバモイルジチオ)−ヘキサン(バイエル社製「KA9188」)、ヘキサメチレンビスチオサルフェート2ナトリウム塩2水和物、1,3−ビスシトラコンイミドメチルベンゼン(フレキシス社製「パーカリンク900」)、田岡化学製「タッキロール(登録商標)AP、V−200」等のアルキルフェノール・塩化硫黄縮合物等の粘弾性改良剤を併用することが好ましい。
 乗用車タイヤに適したトレッド部材に好適なゴム配合のうち、ゴム成分としては、ケイ素化合物で分子末端を変性した溶液重合SBR単独、または、前記末端変性の溶液重合SBRを主成分とする、非変性の溶液重合SBR、乳化重合SBR、天然ゴムおよびBRからなる群から選ばれる少なくとも1種のゴムとのブレンドが好ましい。充填剤としては、シリカを主成分とするカーボンブラックとのブレンドが好ましく用いられる。さらに、N,N’−ビス(2−メチル−2−ニトロプロピル)−1,6−ヘキサンジアミン(住友化学社製「スミファイン(登録商標)1162」)、5−ニトロソ−8−ヒドロキシキノリン(NQ−58)、ビス(3−トリエトキシシリルプロピル)テトラスルフィド(Si−69)、ビス(3−トリエトキシシリルプロピル)ジスルフィド(Si−75)、1,6−ビス(N,N’−ジベンジルチオカルバモイルジチオ)−ヘキサン(バイエル社製「KA91884)、ヘキサメチレンビスチオサルフェート2ナトリウム塩2水和物、1,3−ビスシトラコンイミドメチルベンゼン(フレキシス社製「パーカリンク900」)、田岡化学製「タッキロール(登録商標)AP、V−200」等のアルキルフェノール・塩化硫黄縮合物等の粘弾性改良剤を併用することが好ましい。
 サイドウォール部材に好適なゴム配合のうち、ゴム成分としては、BRを主成分とする、非変性の溶液重合SBR、乳化重合SBRおよび天然ゴムからなる群から選ばれる少なくとも1種のゴムとのブレンドが好ましい。充填剤としては、カーボンブラック単独、または、カーボンブラックを主成分とするシリカとのブレンドが好ましく用いられる。さらに、N,N’−ビス(2−メチル−2−ニトロプロピル)−1,6−ヘキサンジアミン(住友化学社製「スミファイン(登録商標)1162」)、5−ニトロソ−8−ヒドロキシキノリン(NQ−58)、ビス(3−トリエトキシシリルプロピル)テトラスルフィド(Si−69)、ビス(3−トリエトキシシリルプロピル)ジスルフィド(Si−75)、1,6−ビス(N,N’−ジベンジルチオカルバモイルジチオ)−ヘキサン(バイエル社製「KA9188」)、ヘキサメチレンビスチオサルフェート2ナトリウム塩2水和物、1,3−ビスシトラコンイミドメチルベンゼン(フレキシス社製「パーカリンク900」)、田岡化学製「タッキロール(登録商標)AP、V−200」等のアルキルフェノール・塩化硫黄縮合物等の粘弾性改良剤を併用することが好ましい。
 カーカスおよびベルト部材に好適なゴム配合のうち、ゴム成分としては、天然ゴム単独、または、天然ゴムを主成分とするBRとのブレンドが好ましい。充填剤としては、カーボンブラック単独、または、カーボンブラックを主成分とするシリカとのブレンドが好ましく用いられる。さらに、N,N’−ビス(2−メチル−2−ニトロプロピル)−1,6−ヘキサンジアミン(住友化学社製「スミファイン(登録商標)1162」)、5−ニトロソ−8−ヒドロキシキノリン(NQ−58)、ビス(3−トリエトキシシリルプロピル)テトラスルフィド(Si−69)、ビス(3−トリエトキシシリルプロピル)ジスルフィド(Si−75)、1,6−ビス(N,N’−ジベンジルチオカルバモイルジチオ)−ヘキサン(バイエル社製「KA9188」)、ヘキサメチレンビスチオサルフェート2ナトリウム塩2水和物、1,3−ビスシトラコンイミドメチルベンゼン(フレキシス社製「パーカリンク900」)、田岡化学製「タッキロール(登録商標)AP、V−200」等のアルキルフェノール・塩化硫黄縮合物等の粘弾性改良剤を併用することが好ましい。
 続いて、本発明の製造方法の各工程について説明する。
[前混練工程A]
 前混練工程Aは、開始時の温度が40℃以上、100℃以下であり、終了時の温度が110℃以上、155℃以下である昇温条件下で、ゴム成分、充填剤およびS−(3−アミノプロピル)チオ硫酸の金属塩を混練する工程であり、混練物Aが得られる。
 ゴム成分、充填剤およびS−(3−アミノプロピル)チオ硫酸の金属塩を配合する順序は限定されないが、配合の容易さから、ゴム成分に、充填剤とS−(3−アミノプロピル)チオ硫酸の金属塩とを配合する順序が好ましい。
 各成分を混練する装置としては、バンバリーミキサーが挙げられる。
 混練時のミキサーの回転数は、用いるゴム成分の種類や所望の分子量により異なるが、概して、10rpm以上、100rpm以下である。上記昇温条件下で混練を行う混練時間も適宜設定すればよく、概して、3分以上、20分以下である。前混練工程Aでは、ミキサーを加熱する等により、各成分を加熱しながら混練することが好ましい。ゴム成分等の各成分は、混練による発熱によって昇温する(もしくは所定の温度に維持される)。
 前混練工程Aでは、ゴム成分、充填剤およびS−(3−アミノプロピル)チオ硫酸の金属塩を配合し、開始時の温度から終了時の温度まで昇温させる昇温条件下で混練が行われる。上記開始時の温度は40℃以上、100℃以下であり、終了時の温度は110℃以上、155℃以下である。
 上記開始時の温度および終了時の温度は、具体的には、混練されるゴム成分の温度である。上記開始時の温度は、ゴム成分、充填剤およびS−(3−アミノプロピル)チオ硫酸の金属塩を加熱部材によって加熱を開始する際のゴム成分の温度である。一方、終了時の温度は、ゴム成分、充填剤およびS−(3−アミノプロピル)チオ硫酸の金属塩の混練を終了する際の混練物Aの温度である。上記開始時の温度から終了時の温度までの昇温は、混練が進行するに従って緩やかに行ってもよいし、所定の温度ずつ、例えば5℃ずつ、段階的に行ってもよい。本前混練工程Aにおける混練によって、混練物Aが得られる。
 本発明の製造方法では、開始温度が40℃以上、100℃以下の条件で混練が開始される。より低温の温度条件で混練を行うことによって、混練に必要なエネルギーを低減させることができる。このため、環境に与える負荷をより低減することが可能である。さらに、ミキサー等の製造装置に対する負荷も低減することができる。これは製造装置の長寿命化につながる効果がある。
 また、前混練工程Aでは、S−(3−アミノプロピル)チオ硫酸の金属塩を混練に用いている。当該金属塩を混練に用いることによって、低温での混練であっても、最終的に得られる加硫ゴム組成物の粘弾性特性を改善することができる。このように、本発明の製造方法は、低エネルギーで実施可能であり、加硫ゴム組成物の粘弾性特性をも改善することができ、非常に有用である。
 さらに、混練の開始温度が80℃以上、100℃以下であり、終了時の温度が135℃以上、155℃以下であることがより好ましい。上記昇温条件で前混練工程Aを行うことによって、得られる加硫ゴム組成物の粘弾性特性をより好ましく改善することができる。
 ゴム成分として天然ゴムを用いる場合、前混練工程Aには混練の前段階としてゴム成分を素練りする工程が含まれていてもよい。素練りにより天然ゴムの分子鎖が切断され、天然ゴムの加工が容易となる。
[後混練工程B]
 後混練工程Bは、前混練工程Aで得られた混練物Aと、硫黄成分と、加硫促進剤とを混練する工程であり、混練物Bが得られる。後混練工程Bは前混練工程Aにおける混練が終了した後、速やかに行うことが好ましい。
 各成分を混練する装置としては、オープンミキサーおよびバンバリーミキサーが挙げられる。
 後混練工程Bにおけるミキサーの温度条件は、60℃以上、120℃以下であることが好ましい。後混練工程Bにおける混練時間は、ゴム成分等の各成分の種類に応じて適宜設定すればよいが、通常、0.5分以上、10分以下である。後混練工程Bにおいて、さらに混練を行うことにより、混練物Bが得られる。
[混練物Bの加工工程]
 本発明の製造方法は、後混練工程Bと熱処理工程Cとの間に、後混練工程Bで得られた混練物Bを特定の状態に加工する加工工程bを含んでいてもよい。加工工程bにより、プレ成形体が得られ、プレ成形体は、後述の熱処理工程Cでの熱処理により、成形体となる。
 「混練物Bを特定の状態に加工する工程」とは、例えば、タイヤの分野においては、「混練物Bをスチールコードに被覆する工程」、「混練物Bをカーカス繊維コードに被覆する工程」、「混練物Bをトレッド用部材の形状に加工する工程」等が挙げられる。なお、加工には混練物Bを成形する工程を含むものとする。
 これらの工程によりそれぞれ得られるベルト、カーカス、インナーライナー、サイドウォール、トレッド(キャップトレッド又はアンダートレッド)等の各部材は、通常、その他の部材とともに、タイヤの分野で通常行われる方法により、さらにタイヤの形状に成形され、すなわち該混練物Bをタイヤに組み込む工程を経て、該混練物Bを含む生タイヤの状態となる。
[熱処理工程C]
 熱処理工程Cは、後混練工程Bまたは加工工程bの後に行われる。上記後混練工程Bで得られた混練物Bまたは加工工程bで得られたプレ成形体が、熱処理工程Cでの熱処理に供される。かかる熱処理は、通常、常圧または加圧下で行われる。
 熱処理工程Cの熱処理における温度条件は、120℃以上、180℃以下であることが好ましい。120℃未満であると加硫速度が遅くなり、加硫の進行度合いを判断し難くなるおそれがあり、180℃を超えると加硫速度が速くなり、加硫の進行速度を制御し難くなるおそれがある。熱処理における好適な加熱時間(加硫時間)は、ゴム組成物の具体的な組成により異なる。
 上記熱処理によって、後混練工程Bで得られた混練物Bから加硫ゴム組成物を得ることができる。一方、熱処理が加工工程bの後に行われる場合、プレ成形体から成形体が得られることとなる。
 熱処理工程Cでの熱処理に用いる装置としては、加硫機、加硫プレスおよび加圧プレスが挙げられる。
 得られた加硫ゴム組成物を用いて、通常の方法によって空気入りタイヤを製造することができる。すなわち、上記熱処理工程C前の段階のゴム組成物をトレッド用部材に押出し加工し、タイヤ成形機上で通常の方法により貼り付け成形し、生タイヤが成形され、この生タイヤを加硫機中で加熱加圧することにより、タイヤが得られる。
[加硫ゴム組成物の物性]
 加硫ゴム組成物の粘弾性物性を以下に示す。
<粘弾性特性>
 加硫ゴム組成物の粘弾性特性は、温度および周波数条件を変更して算出された損失係数(tanδ)から判定される。転がり抵抗の尺度である60℃での損失係数が小さい場合、加硫ゴム組成物から得られたタイヤを備える自動車の燃費が良く、湿潤路でのグリップ力の尺度となる0℃での損失係数が大きい場合、自動車の制動性が良いとされる(非特許文献1の124頁)。
 本発明について、実施例および比較例に基づいてより具体的に説明するが、本発明はこれらに限定されるものではない。
 実施例および比較例におけるゴム組成物の粘弾性特性は、以下に示す方法により評価した。
[粘弾性特性]
 株式会社上島製作所製の粘弾性アナライザを用いて、ゴム組成物の粘弾性特性を下記測定条件で測定した。
測定条件:温度−5℃~80℃(昇温速度:2℃/分)、初期歪10%、動的歪2.5%、周波数10Hz
 実施例および比較例で得られた加硫ゴム組成物の0℃、20℃、40℃および60℃における損失係数(損失正接)tanδを、表1および表2に示した。tanδは、tanδ=E”/E’の式から算出される。E’は貯蔵弾性率であり、E”は損失弾性率である。
[製造例1 S−(3−アミノプロピル)チオ硫酸のナトリウム塩の製造]
 反応容器を窒素置換し、反応容器中に、3−ブロモプロピルアミン臭素酸塩25g(0.11mol)、チオ硫酸ナトリウム・5水和物28.42g(0.11mol)、メタノール125mLおよび水125mLを仕込んだ。得られた混合物を70℃で4.5時間還流した。得られた反応混合物を放冷し、減圧下でメタノールを除去した。メタノールを除去した後の混合物に、水酸化ナトリウム4.56gを加えた。得られた混合物を室温で30分間攪拌した後、減圧下で溶媒を完全に除去した。残渣にエタノール200mLを加え、1時間還流した。その後、熱ろ過により副生成物である臭化ナトリウムを除去した。濾液を減圧下で、結晶が析出するまで濃縮し、その後、静置した。結晶を濾過により取り出した。取り出した結晶を、エタノール、次いでヘキサンで洗浄した後、真空乾燥して、S−(3−アミノプロピル)チオ硫酸のナトリウム塩を得た。
H−NMR(270.05MHz,CHOD)δppm:3.1(2H,t,J=6.3Hz),2.8(2H,t,J=6.2Hz),1.9−2.0(2H,m)
 島津製作所製SALD−2000J型を用い、得られたS−(3−アミノプロピル)チオ硫酸のナトリウム塩のメディアン径(50%D)を、レーザー回折法により測定したところ、該メディアン径(50%D)は66.7μmであった。得られたS−(3−アミノプロピル)チオ硫酸のナトリウム塩を、メディアン径(50%D)が14.6μmとなるように粉砕し、実施例1で使用した。
<測定操作>
 得られたS−(3−アミノプロピル)チオ硫酸のナトリウム塩を、室温で、分散溶媒(トルエン)と分散剤(10重量%スルホこはく酸ジ−2−エチルヘキシルナトリウム/トルエン溶液)との混合溶液中に分散させた。得られた分散液に超音波を照射しながら、該分散液を5分間攪拌して試験液を得た。該試験液を回分セルに移し、1分後に測定した(屈折率:1.70−0.20i)。
 S−(3−アミノプロピル)チオ硫酸のナトリウム塩10.0gを水30mLに溶解させて得られる水溶液のpHは11~12であった。
The present invention is a method for producing a vulcanized rubber composition comprising a rubber component, a filler, a metal salt of S- (3-aminopropyl) thiosulfuric acid, a sulfur component and a vulcanization accelerator,
The rubber component, filler, and S- (3-aminopropyl) thio are used under the temperature rising conditions in which the temperature at the start is 40 ° C. or higher and 100 ° C. or lower and the temperature at the end is 110 ° C. or higher and 155 ° C. or lower. A pre-kneading step A for kneading a metal salt of sulfuric acid;
A post-kneading step B for kneading the kneaded product A obtained in the pre-kneading step A, a sulfur component and a vulcanization accelerator;
And a heat treatment step C for obtaining a vulcanized rubber by heat-treating the kneaded product B obtained in the post-kneading step B.
First, each component used in the pre-kneading step A will be described.
[Rubber component]
The rubber component is used in the pre-kneading step A.
Rubber components include natural rubber, epoxidized natural rubber, deproteinized natural rubber and other modified natural rubber, as well as styrene / butadiene copolymer rubber (SBR), polybutadiene rubber (BR), polyisoprene rubber (IR), acrylonitrile. -Various synthetic rubbers such as butadiene copolymer rubber (NBR), isoprene / isobutylene copolymer rubber (IIR), ethylene / propylene-diene copolymer rubber (EPDM), and halogenated butyl rubber (HR). Among these, highly unsaturated rubbers such as natural rubber, styrene / butadiene copolymer rubber and polybutadiene rubber are preferably used, and natural rubber is more preferable. It is also effective to use a combination of several rubber components such as a combination of natural rubber and styrene / butadiene copolymer rubber, or a combination of natural rubber and polybutadiene rubber.
Specific examples of natural rubber include natural rubber of grades such as RSS # 1, RSS # 3, TSR20, SIR20, and SMR20.
As the epoxidized natural rubber, those having an epoxidation degree of 10 to 60 mol% are preferable, and examples thereof include ENR25 and ENR50 manufactured by Kumphuran Guthrie. As the deproteinized natural rubber, a deproteinized natural rubber having a total nitrogen content of 0.3% by weight or less is preferable.
As a modified natural rubber, a modified rubber containing a polar group obtained by reacting natural rubber with 4-vinylpyridine, N, N-dialkylaminoethyl acrylate (for example, N, N-diethylaminoethyl acrylate), 2-hydroxyacrylate, or the like in advance. Natural rubber is preferred.
Specific examples of the SBR include emulsion polymerization SBR and solution polymerization SBR described in pages 210 to 211 of “Rubber Industry Handbook <Fourth Edition>” edited by the Japan Rubber Association. In particular, solution-polymerized SBR is preferably used as the rubber component of the tread rubber composition. Solution polymerized SBR modified with 4,4′-bis- (dialkylamino) benzophenone such as “Nippol (registered trademark) NS116” manufactured by Nippon Zeon Co., Ltd., tin halide compound such as “SL574” manufactured by JSR Solution-polymerized SBR with modified molecular terminals using Asahi Kasei, commercially available silane-modified solution-polymerized SBR such as “E10” and “E15”, lactam compounds, amide compounds, urea compounds, N, N-dialkylacrylamides A compound, an isocyanate compound, an imide compound, a silane compound having an alkoxy group (trialkoxysilane compound, etc.) and an aminosilane compound, or a silane compound having a tin compound and an alkoxy group, an alkylacrylamide compound And silane compounds having alkoxy groups, etc. A solution polymerization SBR having at least one of nitrogen, tin and silicon at the molecular ends, or a solution polymerization SBR obtained by modifying the molecular ends using two or more different compounds described above, Particularly preferably used. Oil-extended SBR in which oil such as post-polymerization process oil and aroma oil is added to emulsion polymerization SBR and solution polymerization SBR is preferable as a rubber component of a rubber composition for treads.
Specific examples of BR include solution polymerization BR such as high cis BR having 90% or more of cis-1,4-bond and low cis BR having cis bond of around 35%. preferable. Tin modified BR such as “Nipol (registered trademark) BR1250H” manufactured by Nippon Zeon, 4,4′-bis- (dialkylamino) benzophenone, tin halide compound, lactam compound, amide compound, urea compound, N, N— Dialkylacrylamide compound, isocyanate compound, imide compound, silane compound having alkoxy group (trialkoxysilane compound etc.) and aminosilane compound, or silane compound having tin compound and alkoxy group, alkyl Two or more of the above-mentioned different compounds such as an acrylamide compound and an alkoxy group-containing silane compound are used to modify the molecular ends, respectively, and at any one of nitrogen, tin and silicon at the molecular ends, or Have these multiple elements Particularly preferred is solution polymerized BR. These BRs are preferable as a rubber component of a rubber composition for treads and a rubber composition for sidewalls, and are usually blended with SBR and / or natural rubber. In the rubber composition for treads, the blend ratio is preferably 60 to 100% by weight for SBR and / or natural rubber and 0 to 40% by weight for BR relative to the total rubber weight. In the rubber composition for sidewalls, The SBR and / or natural rubber is preferably 10 to 70% by weight and the BR is 90 to 30% by weight with respect to the total rubber weight, and the natural rubber is 40 to 60% by weight and BR 60 to 40% by weight with respect to the total rubber weight. % Blend is more preferred. In this case, a blend of modified SBR and non-modified SBR or a blend of modified BR and non-modified BR is also preferable.
[filler]
The filler is used in the pre-kneading step A.
Examples of the filler include fillers such as carbon black, silica, talc, clay, aluminum hydroxide, and titanium oxide that are usually used in the rubber field. Carbon black and silica are preferable, and carbon black is more preferable. Specific examples of carbon black include those described on page 494 of the “Guide to Rubber Industry <Fourth Edition>” edited by the Japan Rubber Association. Among them, HAF (High Abrasion Furnace), SAF (Super Abrasion Furnace), ISAF (Intermediate SAF), FEF (Fast Extraction Furnace), MAF, GPF (General FurSurFurS) Is preferred. As a filler for a rubber composition for a tire tread, a CTAB (Cetyl Tri-methyl Ammonium Bromide) surface area is 40 to 250 m 2 / g, a nitrogen adsorption specific surface area is 20 to 200 m 2 / g, and particles Carbon black having a diameter of 10 to 50 nm is preferably used, the CTAB surface area is 70 to 180 m 2 / g, the nitrogen adsorption specific surface area is 20 to 200 m 2 / g, and the particle diameter is 10 to 50 nm. Carbon black is more preferred. Specific examples thereof include N110, N220, N234, N299, N326, N330, N330T, N339, N343, and N351 in the ASTM standard. A surface-treated carbon black in which 0.1 to 50% by weight of silica is attached to the surface of the carbon black is also preferable. It is also effective to use a combination of several kinds of fillers such as a combination of carbon black and silica. In the rubber composition for a tire tread, it is preferable to use carbon black alone or both carbon black and silica. In the rubber composition for carcass or sidewall, carbon black having a CTAB surface area of 20 to 60 m 2 / g and a particle diameter of 40 to 100 nm is preferably used. Specific examples thereof are as per ASTM standards. N330, N339, N343, N351, N550, N568, N582, N630, N642, N660, N662, N754, N762, and the like.
The amount of the filler used is preferably in the range of 5 to 100 parts by weight per 100 parts by weight of the rubber component. When only carbon black is used as a filler, the amount used is more preferably in the range of 30 to 80 parts by weight, and when used in combination with silica in a tread member application, the amount used is 5 to 50. A range of parts by weight is more preferred.
Examples of the silica include silica having a CTAB surface area of 50 to 180 m 2 / g or a nitrogen adsorption specific surface area of 50 to 300 m 2 / g. “AQ”, “AQ-N” manufactured by Tosoh Silica Co., Ltd., Degussa "Ultrasil (registered trademark) VN3", "Ultrasil (registered trademark) 360", "Ultrasil (registered trademark) 7000", Rhodia "Zeosil (registered trademark) 115GR", "Zeosil (registered trademark)" Commercially available products such as “1115MP”, “Zeosil (registered trademark) 1205MP”, “Zeosil (registered trademark) Z85MP”, “Nippal (registered trademark) AQ” manufactured by Nippon Silica Co., Ltd. are preferably used. Further, silica having a pH of 6 to 8, silica containing 0.2 to 1.5% by weight of sodium, true spherical silica having a roundness of 1 to 1.3, silicone oil such as dimethyl silicone oil, and ethoxysilyl group It is also preferable to blend a silicon-containing organic silicon compound, silica surface-treated with an alcohol such as ethanol or polyethylene glycol, silica having two or more different nitrogen adsorption specific surface areas, and the like.
Silica is preferably used in the rubber composition for treads for passenger cars, and the amount used is preferably in the range of 10 to 120 parts by weight per 100 parts by weight of the rubber component. When silica is blended, it is preferable to further blend 5 to 50 parts by weight of carbon black, and the blending ratio of silica / carbon black is particularly preferably 0.7 / 1 to 1 / 0.1. When silica is used as the filler, bis (3-triethoxysilylpropyl) tetrasulfide (“Si-69” manufactured by Degussa), bis (3-triethoxysilylpropyl) disulfide (“Si-Si” manufactured by Degussa) -75 "), bis (3-diethoxymethylsilylpropyl) tetrasulfide, bis (3-diethoxymethylsilylpropyl) disulfide, octanethioic acid S- [3- (triethoxysilyl) propyl] ester (General Electronic Silicones) "NXT silane"), octanethioic acid S- [3-{(2-methyl-1,3-propanedialkoxy) ethoxysilyl} propyl] ester and octanethioic acid S- [3-{(2-methyl-1) , 3-Propanedialkoxy) methylsilyl} propyl] ester Nyltriethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltriacetoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, isobutyltrimethoxysilane, isobutyltriethoxysilane, n-octyltrimethoxy Silane, n-octyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltri (methoxyethoxy) silane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriacetoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- (2-amino Ethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, (3-glycidoxypropyl) trimethoxysilane, (3-glycidoxypropyl) triethoxy From silane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 3-isocyanatopropyltrimethoxysilane and 3-isocyanatopropyltriethoxysilane It is preferable to add a compound having an element such as silicon or a functional group such as alkoxysilane, which can be bonded to silica, such as one or more silane coupling agents selected from the group consisting of bis (3-triethoxysilyl) Propyl) tetrasulfide (Degussa “Si” -69 "), bis (3-triethoxysilylpropyl) disulfide (" Si-75 "manufactured by Degussa), and 3-octanoylthiopropyltriethoxysilane (" NXT silane "manufactured by General Electronic Silicons) Particularly preferred. These compounds are preferably blended with the rubber component at the same time as the silica, and the blending amount is preferably 2 to 10% by weight, more preferably 7 to 9% by weight, based on silica. The blending temperature when blending these compounds is preferably 80 to 200 ° C, more preferably 110 to 180 ° C. When silica is used as the filler, in addition to silica, an element such as silicon that can be bonded to silica, or a compound having a functional group such as alkoxysilane, monohydric alcohol such as ethanol, butanol, octanol, ethylene glycol, Diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, pentaerythritol, polyether polyols and other dihydric or higher alcohols, N-alkylamines, amino acids, liquid polybutadienes whose molecular ends are carboxyl-modified or amine-modified, etc. Is also preferable.
Examples of aluminum hydroxide include aluminum hydroxide having a nitrogen adsorption specific surface area of 5 to 250 m 2 / g and a DOP oil supply amount of 50 to 100 ml / 100 g.
[Metal salt of S- (3-aminopropyl) thiosulfuric acid]
The metal salt of S- (3-aminopropyl) thiosulfuric acid used in the pre-kneading step A is represented by the following formula (1)
(H 2 N— (CH 2 ) 3 —SSO 3 ) n · M n + (1)
(In the formula, M n + represents a metal ion, and n represents its valence.)
It is a compound shown by these.
The metal ion represented by M n + is preferably a lithium ion, sodium ion, potassium ion, cesium ion, cobalt ion, copper ion or zinc ion, and more preferably a lithium ion, sodium ion or potassium ion. In the formula (1), n represents a valence of a metal ion, and is not limited as long as the valence can be possessed by the metal ion. For example, n is 1 in the case of alkali metal ions such as lithium ion, sodium ion, potassium ion, and cesium ion, n is 2 or 3 in the case of cobalt ion, and n is 1 in the case of copper ion. 2 or 3; in the case of zinc ions, n is 2.
The weight of the metal salt of S- (3-aminopropyl) thiosulfuric acid used is preferably 0.05 parts by weight or more and 2.5 parts by weight or less with respect to 100 parts by weight of the rubber component. When the weight of the metal salt of S- (3-aminopropyl) thiosulfuric acid is within the above range, an effect of improving viscoelastic properties can be preferably obtained. The use weight of the metal salt of S- (3-aminopropyl) thiosulfuric acid is more preferably 0.5 parts by weight or more and 1.0 part by weight or less with respect to 100 parts by weight of the rubber component.
When the metal salt of S- (3-aminopropyl) thiosulfuric acid is blended in the pre-kneading step A, the temperature of the rubber component at the start of blending is 40 ° C. or more and 100 ° C. or less, and the temperature of the rubber component at the end of blending is 110 ° C. It is 155 degreeC or more.
The median diameter of the metal salt of S- (3-aminopropyl) thiosulfuric acid is preferably 0.05 to 100 μm, more preferably 1 to 100 μm. Such median diameter can be measured by a laser diffraction method.
A metal salt of S- (3-aminopropyl) thiosulfuric acid is a method of reacting 3-halopropylamine and sodium thiosulfate; a compound obtained by reacting potassium phthalimide with 1,3-dihalopropane Can be produced by any known method such as a method of reacting sodium thiosulfate and then hydrolyzing the obtained compound. The metal salt of S- (3-aminopropyl) thiosulfuric acid thus produced can be isolated by operations such as concentration and crystallization, and the isolated S- (3-aminopropyl) thiosulfuric acid is isolated. The metal salt usually contains about 0.1% to 5% of water.
The metal salt of S- (3-aminopropyl) thiosulfuric acid can be previously blended with a support agent. Examples of such a carrier include the above-mentioned fillers and “inorganic fillers and reinforcing agents” described on pages 510 to 513 of “Rubber Industry Handbook <Fourth Edition>” edited by the Japan Rubber Association. Of these, carbon black, silica, calcined clay and aluminum hydroxide are preferred. The amount of the carrier used is preferably in the range of 10 to 1000 parts by weight per 100 parts by weight of the metal salt of S- (3-aminopropyl) thiosulfuric acid.
[Zinc oxide]
In the pre-kneading step A, it is preferable to knead zinc oxide together with the rubber component. The amount of zinc oxide used is preferably in the range of 1 to 15 parts by weight, more preferably in the range of 3 to 8 parts by weight per 100 parts by weight of the rubber component. .
[Viscoelasticity improver]
An agent (viscoelasticity improving agent) for improving the viscoelastic properties conventionally used in the rubber field can be blended and kneaded in the pre-kneading step A. What is necessary is just to add a viscoelasticity improving agent as needed. The viscoelasticity improver can be blended and kneaded in the post-kneading step B. Further, the viscoelasticity improver can be blended and kneaded in both the pre-kneading step A and the post-kneading step B.
Examples of the viscoelasticity improver include N, N′-bis (2-methyl-2-nitropropyl) -1,6-hexanediamine (“Sumifine (registered trademark) 1162” manufactured by Sumitomo Chemical Co., Ltd.), JP-A-63. Dithiouracil compounds described in JP-A No. 233942, nitrosoquinoline compounds such as 5-nitroso-8-hydroxyquinoline (NQ-58) described in JP-A-60-82406, “Tactrol (registered trademark)” manufactured by Taoka Chemical Co., Ltd. AP, V-200 ”, alkylphenol / sulfur chloride condensates described in JP 2009-138148 A, such as“ Waltac 2, 3, 4, 5, 7, 710 ”manufactured by Penwald, etc., bis (3-tri Ethoxysilylpropyl) tetrasulfide (“De-Gussa“ Si-69 ”), bis (3-triethoxysilylpropyl) disulfide (Degussa“ Si-75 "), bis (3-diethoxymethylsilylpropyl) tetrasulfide, bis (3-diethoxymethylsilylpropyl) disulfide, octanethioic acid S- [3- (triethoxysilyl) propyl] ester, octanethioic acid S -[3-{(2-methyl-1,3-propanedialkoxy) ethoxysilyl} propyl] ester and octanethioic acid S- [3-{(2-methyl-1,3-propanedialkoxy) methylsilyl} propyl] Ester phenyltriethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltriacetoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, isobutyltrimethoxysilane, isobutyltriethoxysilane, n-octyl Limethoxysilane, n-octyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltri (methoxyethoxy) silane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriacetoxysilane, 3-methacryloxypropyltrimethoxy Silane, 3-methacryloxypropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-amino Ethyl) -3-aminopropyltriethoxysilane, (3-glycidoxypropyl) trimethoxysilane, (3-glycidoxypropyl) triethoxysilane, 2- (3,4-epoxycyclohexyl) ethylate Silane coupling agents such as methoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 1,6-bis (N, N'-dibenzylthiocarbamoyldithio) hexane ("KA9188" manufactured by Bayer), 1,6-hexamethylenedithiosulfate disodium salt dihydrate, 1,3-biscitraconimidomethylbenzene ("Parka" manufactured by Flexis Link 900 "), 1-benzoyl-2-phenylhydrazide, 1- or 3-hydroxy-N '-(1-methylethylidene) -2-naphthoic acid hydrazide, 1- or 3-Hydroxy-N ′-(1-methylpropylidene) -2-naphth Toenoic acid hydrazide, 1- or 3-hydroxy-N ′-(1,3-dimethylbutylidene) -2-naphthoic acid hydrazide and 1- or 3-hydroxy-N ′-(2-furylmethylene) -2-naphtho Carboxylic acid hydrazide derivatives such as acid hydrazide, 3-hydroxy-N ′-(1,3-dimethylbutylidene) -2-naphthoic acid hydrazide described in JP-A-2000-190704, 3-hydroxy-N ′-( 1,3-diphenylethylidene) -2-naphthoic acid hydrazide and 3-hydroxy-N ′-(1-methylethylidene) -2-naphthoic acid hydrazide, bismercaptooxadiazole compounds described in JP-A-2006-328310 A pyrithione salt compound described in JP-A-2009-40898, and JP-A-2006-249361 It includes cobalt hydroxide compounds described.
Among them, N, N′-bis (2-methyl-2-nitropropyl) -1,6-hexanediamine (“SUMIFINE (registered trademark) 1162” manufactured by Sumitomo Chemical Co., Ltd.), 5-nitroso-8-hydroxyquinoline. (NQ-58), bis (3-triethoxysilylpropyl) tetrasulfide (“Si-69” manufactured by Degussa), bis (3-triethoxysilylpropyl) disulfide (“Si-75” manufactured by Degussa), 1 , 6-bis (N, N′-dibenzylthiocarbamoyldithio) -hexane (“KA9188” manufactured by Bayer), hexamethylenebisthiosulfate disodium salt dihydrate, 1,3-biscitraconimidomethylbenzene ( Such as “Parka Link 900” manufactured by Flexis Co., Ltd., “Tacchiroll (registered trademark) AP, V-200” manufactured by Taoka Chemical, etc. Le Kill phenol-sulfur chloride condensate is preferred.
The use weight of the viscoelasticity improver is preferably in the range of 0.1 to 10 parts by weight per 100 parts by weight of the rubber component. By being in said range, the effect which improves a viscoelastic property can be acquired efficiently.
Subsequently, each component used in the post-kneading step B will be described.
[Sulfur component]
The sulfur component is used in the post-kneading step B.
Sulfur components include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur and highly dispersible sulfur. Powdered sulfur is preferred, and insoluble sulfur is preferred when used for tire members having a large amount of sulfur such as belt members. In the present specification, the sulfur component does not include a metal salt of S- (3-aminopropyl) thiosulfuric acid and a vulcanization accelerator.
The use amount of the sulfur component is preferably in the range of 0.3 to 10 parts by weight, and in the range of 0.5 to 5 parts by weight per 100 parts by weight of the rubber component. It is more preferable. By being in the above range, vulcanization can be performed efficiently.
[Vulcanization accelerator]
Examples of the vulcanization accelerator include thiazole-based vulcanization accelerators and sulfenes described on pages 412 to 413 of the Rubber Industry Handbook <Fourth Edition> (issued by the Japan Rubber Association on January 20, 1994). Examples thereof include amide type vulcanization accelerators and guanidine type vulcanization accelerators.
Specifically, N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N-tert-butyl-2-benzothiazolylsulfenamide (BBS), N, N-dicyclohexyl-2-benzothiazoli Examples include rusulfenamide (DCBS), 2-mercaptobenzothiazole (MBT), dibenzothiazyl disulfide (MBTS) and diphenylguanidine (DPG). Also, morpholine disulfide, which is a known vulcanizing agent, can be used.
When carbon black is used as the filler, N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N-tert-butyl-2-benzothiazolylsulfenamide (BBS), N, N-dicyclohexyl -2-Benzothiazolylsulfenamide (DCBS) or dibenzothiazyl disulfide (MBTS) and diphenylguanidine (DPG) are preferably used together, and when silica and carbon black are used in combination as fillers, N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N-tert-butyl-2-benzothiazolylsulfenamide (BBS), N, N-dicyclohexyl-2-benzothiazolylsulfenamide (DCBS) ) And dibenzothiazyldisulf It is preferred that either the de (MBTS) in combination with diphenyl guanidine (DPG). In the present specification, the vulcanization accelerator does not include S- (3-aminopropyl) thiosulfuric acid and its metal salt.
The used weight of the vulcanization accelerator is usually 0.1 parts by weight or more and 5 parts by weight or less with respect to 100 parts by weight of the rubber component, and 0.3 parts by weight or more with respect to 100 parts by weight of the rubber component. The amount is preferably 3 parts by weight or less.
By setting the weight of the vulcanization accelerator within the above range, the effect of improving the viscoelastic properties of the vulcanized rubber composition when a metal salt of S- (3-aminopropyl) thiosulfuric acid is used for kneading is further improved. Can be increased.
[Other ingredients]
In the pre-kneading step A and / or the post-kneading step B, various compounding agents that can be blended in addition to the components described above are shown below. Such compounding agents include anti-aging agents; oils; fatty acids such as stearic acid; Coumarone resin NG4 (softening point 81 to 100 ° C.) of Nippon Steel Chemical Co., Ltd., process resin AC5 (Kobe Oil Chemical Co., Ltd.) Coumarone-indene resin such as terpene resin, terpene / phenol resin, aromatic modified terpene resin, etc .; Mitsubishi Gas Chemical Co., Ltd. “Nikanol (registered trademark) A70” (softening point 70˜ Rosin derivatives such as 90 ° C.); hydrogenated rosin derivatives; novolac alkylphenol resins; resole alkylphenol resins; C5 petroleum resins; and liquid polybutadiene.
Examples of the oil include process oil and vegetable oil. Examples of the process oil include paraffinic process oil, naphthenic process oil, and aromatic process oil.
Examples of the anti-aging agent include those described in pages 436 to 443 of “Rubber Industry Handbook <Fourth Edition>” edited by the Japan Rubber Association. Among them, N-phenyl-N′-1,3-dimethylbutyl-p-phenylenediamine (6PPD), reaction product of aniline and acetone (TMDQ), poly (2,2,4-trimethyl-1,2) -) Dihydroquinoline ("Antioxidant FR" manufactured by Matsubara Sangyo Co., Ltd.), synthetic wax (paraffin wax, etc.) and vegetable wax are preferred.
Further, a peptizer and a retarder may be blended and kneaded, and various general rubber chemicals and softeners may be blended and kneaded as necessary.
Retarders include phthalic anhydride, benzoic acid, salicylic acid, N-nitrosodiphenylamine, N- (cyclohexylthio) -phthalimide (CTP), sulfonamide derivatives, diphenylurea and bis (tridecyl) pentaerythritol-diphosphite. -(Cyclohexylthio) -phthalimide (CTP) is preferably used.
The retarder may be blended and kneaded in the pre-kneading step A, but is preferably blended and kneaded in the post-kneading step B. The amount of the retarder used is preferably in the range of 0.01 to 1 part by weight, more preferably in the range of 0.05 to 0.5 part by weight, per 100 parts by weight of the rubber component.
[Combination of each component]
According to the production method of the present invention, by blending and kneading predetermined components in the pre-kneading step A and the post-kneading step B, respectively, and by heat-treating the kneaded product B obtained in the post-kneading step B in the heat treatment step C, Vulcanized rubber compositions that can be used for various applications can be obtained.
Among rubber compounding suitable for tread members suitable for trucks, buses, light trucks and large construction tires, the rubber component is natural rubber alone or a blend with SBR and / or BR containing natural rubber as a main component. Is preferred. As the filler, carbon black alone or a blend with carbon black containing silica as a main component is preferably used. Furthermore, N, N′-bis (2-methyl-2-nitropropyl) -1,6-hexanediamine (“Sumifine (registered trademark) 1162” manufactured by Sumitomo Chemical Co., Ltd.), 5-nitroso-8-hydroxyquinoline ( NQ-58), bis (3-triethoxysilylpropyl) tetrasulfide (Si-69), bis (3-triethoxysilylpropyl) disulfide (Si-75), 1,6-bis (N, N′-di) Benzylthiocarbamoyldithio) -hexane (“KA9188” manufactured by Bayer), hexamethylene bisthiosulfate disodium salt dihydrate, 1,3-biscitraconimidomethylbenzene (“Parkalink 900” manufactured by Flexis), Taoka Viscoelasticity of alkylphenol / sulfur chloride condensates such as chemical “Tacchirol (registered trademark) AP, V-200” It is preferable to use a modifier.
Among rubber blends suitable for tread members suitable for passenger car tires, the rubber component may be a solution-polymerized SBR having a molecular terminal modified with a silicon compound alone, or a non-modified, mainly composed of the terminal-modified solution-polymerized SBR. A blend with at least one rubber selected from the group consisting of solution polymerization SBR, emulsion polymerization SBR, natural rubber and BR is preferred. As the filler, a blend with carbon black mainly composed of silica is preferably used. Furthermore, N, N′-bis (2-methyl-2-nitropropyl) -1,6-hexanediamine (“Sumifine (registered trademark) 1162” manufactured by Sumitomo Chemical Co., Ltd.), 5-nitroso-8-hydroxyquinoline ( NQ-58), bis (3-triethoxysilylpropyl) tetrasulfide (Si-69), bis (3-triethoxysilylpropyl) disulfide (Si-75), 1,6-bis (N, N′-di) Benzylthiocarbamoyldithio) -hexane (“KA91884” manufactured by Bayer AG), hexamethylenebisthiosulfate disodium salt dihydrate, 1,3-biscitraconimidomethylbenzene (“PARKALINK 900” manufactured by Flexis), Taoka Chemical Viscoelasticity of alkylphenol / sulfur chloride condensates such as “Tacchiroll (registered trademark) AP, V-200” It is preferable to use a modifier.
Of the rubber blends suitable for the sidewall member, the rubber component is a blend of at least one rubber selected from the group consisting of non-modified solution-polymerized SBR, emulsion-polymerized SBR, and natural rubber containing BR as a main component. Is preferred. As the filler, carbon black alone or a blend with silica containing carbon black as a main component is preferably used. Furthermore, N, N′-bis (2-methyl-2-nitropropyl) -1,6-hexanediamine (“Sumifine (registered trademark) 1162” manufactured by Sumitomo Chemical Co., Ltd.), 5-nitroso-8-hydroxyquinoline ( NQ-58), bis (3-triethoxysilylpropyl) tetrasulfide (Si-69), bis (3-triethoxysilylpropyl) disulfide (Si-75), 1,6-bis (N, N′-di) Benzylthiocarbamoyldithio) -hexane (“KA9188” manufactured by Bayer), hexamethylene bisthiosulfate disodium salt dihydrate, 1,3-biscitraconimidomethylbenzene (“Parkalink 900” manufactured by Flexis), Taoka Viscoelasticity of alkylphenol / sulfur chloride condensates such as chemical “Tacchirol (registered trademark) AP, V-200” It is preferable to use a modifier.
Of the rubber blends suitable for the carcass and the belt member, the rubber component is preferably natural rubber alone or a blend with BR containing natural rubber as a main component. As the filler, carbon black alone or a blend with silica containing carbon black as a main component is preferably used. Furthermore, N, N′-bis (2-methyl-2-nitropropyl) -1,6-hexanediamine (“Sumifine (registered trademark) 1162” manufactured by Sumitomo Chemical Co., Ltd.), 5-nitroso-8-hydroxyquinoline ( NQ-58), bis (3-triethoxysilylpropyl) tetrasulfide (Si-69), bis (3-triethoxysilylpropyl) disulfide (Si-75), 1,6-bis (N, N′-di) Benzylthiocarbamoyldithio) -hexane (“KA9188” manufactured by Bayer), hexamethylene bisthiosulfate disodium salt dihydrate, 1,3-biscitraconimidomethylbenzene (“Parkalink 900” manufactured by Flexis), Taoka Viscoelasticity of alkylphenol / sulfur chloride condensates such as chemical “Tacchirol (registered trademark) AP, V-200” It is preferable to use a modifier.
Then, each process of the manufacturing method of this invention is demonstrated.
[Pre-kneading step A]
In the pre-kneading step A, the temperature at the start is 40 ° C. or higher and 100 ° C. or lower, and the temperature at the end is 110 ° C. or higher and 155 ° C. or lower. This is a step of kneading a metal salt of 3-aminopropyl) thiosulfuric acid, and kneaded material A is obtained.
The order of blending the rubber component, the filler and the metal salt of S- (3-aminopropyl) thiosulfuric acid is not limited, but for ease of blending, the rubber component is blended with the filler and S- (3-aminopropyl) thio. The order of blending with the metal salt of sulfuric acid is preferred.
An example of an apparatus for kneading each component is a Banbury mixer.
The number of rotations of the mixer during kneading varies depending on the type of rubber component used and the desired molecular weight, but is generally 10 rpm or more and 100 rpm or less. What is necessary is just to set suitably the kneading | mixing time which knead | mixes on the said temperature rising conditions, and is generally 3 minutes or more and 20 minutes or less. In the pre-kneading step A, it is preferable to knead each component while heating, such as by heating the mixer. Each component such as a rubber component is heated (or maintained at a predetermined temperature) by heat generated by kneading.
In the pre-kneading step A, a rubber component, a filler, and a metal salt of S- (3-aminopropyl) thiosulfuric acid are blended, and kneading is performed under a temperature rising condition in which the temperature is raised from the starting temperature to the ending temperature. Is called. The temperature at the start is 40 ° C. or more and 100 ° C. or less, and the temperature at the end is 110 ° C. or more and 155 ° C. or less.
The temperature at the start and the temperature at the end are specifically the temperatures of the rubber components to be kneaded. The temperature at the start is the temperature of the rubber component when heating the rubber component, the filler, and the metal salt of S- (3-aminopropyl) thiosulfuric acid by the heating member. On the other hand, the temperature at the end is the temperature of the kneaded material A when the kneading of the rubber component, the filler, and the metal salt of S- (3-aminopropyl) thiosulfuric acid is finished. The temperature increase from the temperature at the start to the temperature at the end may be performed gradually as the kneading proceeds, or may be performed step by step at a predetermined temperature, for example, 5 ° C. The kneaded material A is obtained by the kneading in the pre-kneading step A.
In the production method of the present invention, kneading is started under conditions where the starting temperature is 40 ° C. or higher and 100 ° C. or lower. By kneading under a lower temperature condition, the energy required for kneading can be reduced. For this reason, it is possible to further reduce the load applied to the environment. Furthermore, the load on a manufacturing apparatus such as a mixer can be reduced. This has the effect of extending the life of the manufacturing apparatus.
In the pre-kneading step A, a metal salt of S- (3-aminopropyl) thiosulfuric acid is used for kneading. By using the metal salt for kneading, the viscoelastic properties of the finally obtained vulcanized rubber composition can be improved even when kneading at a low temperature. As described above, the production method of the present invention can be carried out with low energy, can improve the viscoelastic properties of the vulcanized rubber composition, and is very useful.
Furthermore, it is more preferable that the kneading start temperature is 80 ° C. or higher and 100 ° C. or lower, and the temperature at the end is 135 ° C. or higher and 155 ° C. or lower. By performing pre-kneading process A on the said temperature rising conditions, the viscoelastic characteristic of the vulcanized rubber composition obtained can be improved more preferably.
When natural rubber is used as the rubber component, the pre-kneading step A may include a step of kneading the rubber component as a pre-stage of kneading. The molecular chain of natural rubber is cut by mastication, which facilitates the processing of natural rubber.
[Post-kneading step B]
The post-kneading step B is a step of kneading the kneaded product A obtained in the pre-kneading step A, the sulfur component, and the vulcanization accelerator, and the kneaded product B is obtained. The post-kneading step B is preferably performed immediately after the kneading in the pre-kneading step A is completed.
An apparatus for kneading each component includes an open mixer and a Banbury mixer.
The mixer temperature condition in the post-kneading step B is preferably 60 ° C. or higher and 120 ° C. or lower. The kneading time in the post-kneading step B may be appropriately set according to the type of each component such as a rubber component, but is usually 0.5 minutes or more and 10 minutes or less. In the post-kneading step B, the kneaded product B is obtained by further kneading.
[Processing of kneaded material B]
The production method of the present invention may include a processing step b for processing the kneaded product B obtained in the post-kneading step B into a specific state between the post-kneading step B and the heat treatment step C. A pre-formed body is obtained by the processing step b, and the pre-formed body becomes a formed body by heat treatment in the heat treatment step C described later.
“Processing kneaded product B into a specific state” means, for example, in the field of tires, “step of coating kneaded product B on steel cord”, “step of coating kneaded product B on carcass fiber cord” , “A step of processing the kneaded material B into the shape of a tread member” and the like. In addition, processing shall include the process of shape | molding the kneaded material B. FIG.
Each member such as a belt, a carcass, an inner liner, a sidewall, and a tread (cap tread or under tread) obtained by these steps is usually combined with other members by a method that is usually performed in the field of tires. In other words, through a step of incorporating the kneaded material B into the tire, a state of a green tire including the kneaded material B is obtained.
[Heat treatment step C]
The heat treatment step C is performed after the post-kneading step B or the processing step b. The kneaded product B obtained in the post-kneading step B or the pre-molded product obtained in the processing step b is subjected to the heat treatment in the heat treatment step C. Such heat treatment is usually performed at normal pressure or under pressure.
The temperature condition in the heat treatment in the heat treatment step C is preferably 120 ° C. or higher and 180 ° C. or lower. If the temperature is lower than 120 ° C, the vulcanization speed may be slow, and it may be difficult to determine the degree of vulcanization. If the temperature exceeds 180 ° C, the vulcanization speed may be high, and the vulcanization speed may be difficult to control. There is. A suitable heating time (vulcanization time) in the heat treatment varies depending on the specific composition of the rubber composition.
By the heat treatment, a vulcanized rubber composition can be obtained from the kneaded product B obtained in the post-kneading step B. On the other hand, when the heat treatment is performed after the processing step b, a molded body is obtained from the pre-molded body.
Examples of the apparatus used for the heat treatment in the heat treatment step C include a vulcanizer, a vulcanization press, and a pressure press.
By using the obtained vulcanized rubber composition, a pneumatic tire can be produced by an ordinary method. That is, the rubber composition in the stage before the heat treatment step C is extruded into a tread member, and pasted and molded by a usual method on a tire molding machine to form a green tire. A tire can be obtained by heating and pressurizing.
[Physical properties of vulcanized rubber composition]
The viscoelastic properties of the vulcanized rubber composition are shown below.
<Viscoelastic properties>
The viscoelastic properties of the vulcanized rubber composition are determined from the loss coefficient (tan δ) calculated by changing the temperature and frequency conditions. When the loss factor at 60 ° C., which is a measure of rolling resistance, is small, the fuel efficiency of an automobile equipped with a tire obtained from a vulcanized rubber composition is good, and the loss factor at 0 ° C. is a measure of grip strength on wet roads Is large, it is considered that the braking performance of the automobile is good (page 124 of Non-Patent Document 1).
The present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to these.
The viscoelastic properties of the rubber compositions in Examples and Comparative Examples were evaluated by the following methods.
[Viscoelastic properties]
Using a viscoelasticity analyzer manufactured by Ueshima Seisakusho Co., Ltd., the viscoelastic properties of the rubber composition were measured under the following measurement conditions.
Measurement conditions: temperature -5 ° C to 80 ° C (temperature increase rate: 2 ° C / min), initial strain 10%, dynamic strain 2.5%, frequency 10 Hz
Tables 1 and 2 show loss factors (loss tangents) tan δ at 0 ° C., 20 ° C., 40 ° C. and 60 ° C. of the vulcanized rubber compositions obtained in Examples and Comparative Examples. tan δ is calculated from the equation tan δ = E ″ / E ′. E ′ is a storage elastic modulus and E ″ is a loss elastic modulus.
[Production Example 1 Production of sodium salt of S- (3-aminopropyl) thiosulfuric acid]
The reaction vessel was purged with nitrogen, and 25 g (0.11 mol) of 3-bromopropylamine bromate, 28.42 g (0.11 mol) of sodium thiosulfate pentahydrate, 125 mL of methanol and 125 mL of water were placed in the reaction vessel. Prepared. The resulting mixture was refluxed at 70 ° C. for 4.5 hours. The resulting reaction mixture was allowed to cool and methanol was removed under reduced pressure. To the mixture after removing methanol, 4.56 g of sodium hydroxide was added. The resulting mixture was stirred at room temperature for 30 minutes, and then the solvent was completely removed under reduced pressure. Ethanol 200mL was added to the residue, and it recirculate | refluxed for 1 hour. Thereafter, sodium bromide as a by-product was removed by hot filtration. The filtrate was concentrated under reduced pressure until crystals precipitated, and then allowed to stand. Crystals were removed by filtration. The taken-out crystal was washed with ethanol and then hexane, and then vacuum-dried to obtain a sodium salt of S- (3-aminopropyl) thiosulfuric acid.
1 H-NMR (270.05 MHz, CH 3 OD) δ ppm : 3.1 (2H, t, J = 6.3 Hz), 2.8 (2H, t, J = 6.2 Hz), 1.9- 2.0 (2H, m)
When the median diameter (50% D) of the obtained sodium salt of S- (3-aminopropyl) thiosulfuric acid was measured by a laser diffraction method using a Shimadzu SALD-2000J type, the median diameter (50% D) was 66.7 μm. The obtained sodium salt of S- (3-aminopropyl) thiosulfuric acid was pulverized so that the median diameter (50% D) was 14.6 μm and used in Example 1.
<Measurement operation>
A mixed solution of the obtained sodium salt of S- (3-aminopropyl) thiosulfuric acid at room temperature with a dispersion solvent (toluene) and a dispersant (10% by weight sodium di-2-ethylhexyl sulfosuccinate / toluene solution) Dispersed in. While irradiating the obtained dispersion with ultrasonic waves, the dispersion was stirred for 5 minutes to obtain a test solution. The test solution was transferred to a batch cell and measured after 1 minute (refractive index: 1.70-0.20i).
The pH of an aqueous solution obtained by dissolving 10.0 g of sodium salt of S- (3-aminopropyl) thiosulfuric acid in 30 mL of water was 11-12.
<前混練工程A>
 バンバリーミキサー(東洋精機製600mLラボプラストミル)に、天然ゴム(RSS#1)100重量部を1分間かけて25rpmのミキサーの回転数で投入した。バンバリーミキサーの加熱部材の温度を40℃に設定した。バンバリーミキサーに投入した天然ゴムを3分間、50rpmのミキサーの回転数で素練りを行った。その後、上記天然ゴムを10rpmのミキサーの回転数で混練しながら、カーボンブラック(旭カーボン社製、商品名「HAFブラックN330」)45重量部、ステアリン酸3重量部、亜鉛華(酸化亜鉛)5重量部および上記製造例1で得たS−(3−アミノプロピル)チオ硫酸のナトリウム塩0.4重量部を天然ゴムに投入した。
 上記カーボンブラック等を天然ゴムに投入した後、開始時の温度としてバンバリーミキサーの加熱部材の温度を40℃とし、さらに昇温しながら3分間混練し、その後、ミキサーの回転数を50rpmに増加させて5分間混練して、混練物Aを得た。混練が終了する際の上記加熱部材の温度は120℃であった。
 また、混練時の混練物の温度は180~200℃であった。さらに、得られた混練物Aを設定温度50~60℃のオープンロールに通過させ、シート状に加工した。
<後混練工程B>
 オープンロール機で、60~80℃の温度で、3分間、前混練工程Aにより得られた混練物Aと、硫黄2重量部と、加硫促進剤(N−シクロヘキシル−2−ベンゾチアゾールスルフェンアミド(CBS))1重量部と、老化防止剤(N−フェニル−N’−1,3−ジメチルブチル−p−フェニレンジアミン:商品名「アンチゲン(登録商標)6C」住友化学株式会社製)1重量部とを配合、混練し、混練物Bを得た。さらに、混練物Bを、2.0mmのシート状に加工した。その後、シート状の混練物Bを一晩(およそ12時間)熟成させた。
<熱処理工程C>
 加硫プレスを用いて、15.5分間、145℃で、後混練工程Bで得られた混練物Bの加硫処理を行い、加硫ゴム組成物を得た。得られた加硫ゴム組成物の粘弾性特性を測定した。結果を表1および表2に示す。
[比較例1]
 実施例1において、前混練工程Aにおける混練の開始時の温度を40℃、終了時の温度を112℃とし、S−(3−アミノプロピル)チオ硫酸のナトリウム塩を配合しなかった以外は、実施例1と同様に混練を行い、加硫ゴム組成物を得た。実施例1と同様に、得られた加硫ゴム組成物の粘弾性特性を測定した。結果を表1および表2に示す。
<Pre-kneading process A>
100 parts by weight of natural rubber (RSS # 1) was added to a Banbury mixer (600 mL Lab Plast Mill manufactured by Toyo Seiki Co., Ltd.) at a rpm of 25 rpm over 1 minute. The temperature of the heating member of the Banbury mixer was set to 40 ° C. Natural rubber put into the Banbury mixer was kneaded for 3 minutes at a rotation speed of a mixer of 50 rpm. Thereafter, 45 parts by weight of carbon black (manufactured by Asahi Carbon Co., Ltd., trade name “HAF Black N330”), 3 parts by weight of stearic acid, zinc white (zinc oxide) 5 while kneading the natural rubber at a rotation speed of a mixer of 10 rpm. Part by weight and 0.4 part by weight of the sodium salt of S- (3-aminopropyl) thiosulfuric acid obtained in Production Example 1 were added to natural rubber.
After charging the above carbon black or the like into natural rubber, the temperature of the heating member of the Banbury mixer is set to 40 ° C. as the starting temperature, and further kneaded for 3 minutes while increasing the temperature, and then the rotation speed of the mixer is increased to 50 rpm. And kneaded for 5 minutes to obtain a kneaded product A. The temperature of the heating member at the end of kneading was 120 ° C.
The temperature of the kneaded product during kneading was 180 to 200 ° C. Further, the obtained kneaded material A was passed through an open roll having a set temperature of 50 to 60 ° C. and processed into a sheet shape.
<Post-kneading process B>
In an open roll machine, at a temperature of 60 to 80 ° C. for 3 minutes, the kneaded product A obtained by the pre-kneading step A, 2 parts by weight of sulfur, and a vulcanization accelerator (N-cyclohexyl-2-benzothiazolesulfene) Amide (CBS) 1 part by weight and anti-aging agent (N-phenyl-N′-1,3-dimethylbutyl-p-phenylenediamine: trade name “Antigen (registered trademark) 6C” manufactured by Sumitomo Chemical Co., Ltd.) 1 A part by weight was blended and kneaded to obtain a kneaded product B. Furthermore, the kneaded material B was processed into a 2.0 mm sheet. Thereafter, the sheet-like kneaded product B was aged overnight (approximately 12 hours).
<Heat treatment step C>
Using a vulcanizing press, the kneaded product B obtained in the post-kneading step B was vulcanized at 1145 minutes at 145 ° C. to obtain a vulcanized rubber composition. The viscoelastic properties of the obtained vulcanized rubber composition were measured. The results are shown in Tables 1 and 2.
[Comparative Example 1]
In Example 1, except that the temperature at the start of kneading in the pre-kneading step A was 40 ° C., the temperature at the end was 112 ° C., and the sodium salt of S- (3-aminopropyl) thiosulfuric acid was not blended. Kneading was performed in the same manner as in Example 1 to obtain a vulcanized rubber composition. In the same manner as in Example 1, the viscoelastic properties of the obtained vulcanized rubber composition were measured. The results are shown in Tables 1 and 2.
 実施例1において、前混練工程Aにおける混練の開始時の温度を60℃、終了時の温度を136℃とし、熱処理工程Cにおける混練物Bの加硫時間を16.0分間とした以外は、実施例1と同様に混練を行い、加硫ゴム組成物を得た。実施例1と同様に、得られた加硫ゴム組成物の粘弾性特性を測定した。結果を表1および表2に示す。
[比較例2]
 実施例1において、前混練工程Aにおける混練の開始時の温度を60℃、終了時の温度を135℃とし、S−(3−アミノプロピル)チオ硫酸のナトリウム塩を配合せず、熱処理工程Cにおける混練物Bの加硫時間を17.5分間とした以外は、実施例1と同様に混練を行い、加硫ゴム組成物を得た。実施例1と同様に、得られた加硫ゴム組成物の粘弾性特性を測定した。結果を表1および表2に示す。
In Example 1, except that the temperature at the start of kneading in the pre-kneading step A was 60 ° C., the temperature at the end was 136 ° C., and the vulcanization time of the kneaded product B in the heat treatment step C was 16.0 minutes. Kneading was performed in the same manner as in Example 1 to obtain a vulcanized rubber composition. In the same manner as in Example 1, the viscoelastic properties of the obtained vulcanized rubber composition were measured. The results are shown in Tables 1 and 2.
[Comparative Example 2]
In Example 1, the temperature at the start of kneading in the pre-kneading step A is 60 ° C., the temperature at the end is 135 ° C., and the sodium salt of S- (3-aminopropyl) thiosulfuric acid is not blended, and the heat treatment step C A vulcanized rubber composition was obtained by kneading in the same manner as in Example 1 except that the vulcanization time of the kneaded product B was 17.5 minutes. In the same manner as in Example 1, the viscoelastic properties of the obtained vulcanized rubber composition were measured. The results are shown in Tables 1 and 2.
 実施例1において、前混練工程Aにおける混練の開始時の温度を80℃、終了時の温度を142℃とし、熱処理工程Cにおける混練物Bの加硫時間を15.0分間とした以外は、実施例1と同様に混練を行い、加硫ゴム組成物を得た。実施例1と同様に、得られた加硫ゴム組成物の粘弾性特性を測定した。結果を表1および表2に示す。
[比較例3]
 実施例1において、前混練工程Aにおける混練の開始時の温度を80℃、終了時の温度を137℃とし、S−(3−アミノプロピル)チオ硫酸のナトリウム塩を配合せず、熱処理工程Cにおける混練物Bの加硫時間を16.0分間とした以外は、実施例1と同様に混練を行い、加硫ゴム組成物を得た。実施例1と同様に、得られた加硫ゴム組成物の粘弾性特性を測定した。結果を表1および表2に示す。
In Example 1, except that the temperature at the start of kneading in the pre-kneading step A was 80 ° C., the temperature at the end was 142 ° C., and the vulcanization time of the kneaded product B in the heat treatment step C was 15.0 minutes, Kneading was performed in the same manner as in Example 1 to obtain a vulcanized rubber composition. In the same manner as in Example 1, the viscoelastic properties of the obtained vulcanized rubber composition were measured. The results are shown in Tables 1 and 2.
[Comparative Example 3]
In Example 1, the temperature at the start of kneading in the pre-kneading step A is 80 ° C., the temperature at the end is 137 ° C., and the sodium salt of S- (3-aminopropyl) thiosulfuric acid is not blended. The vulcanized rubber composition was obtained by kneading in the same manner as in Example 1 except that the vulcanization time of the kneaded product B was 16.0 minutes. In the same manner as in Example 1, the viscoelastic properties of the obtained vulcanized rubber composition were measured. The results are shown in Tables 1 and 2.
 実施例1において、前混練工程Aにおける混練の開始時の温度を100℃、終了時の温度を154℃とした以外は、実施例1と同様に混練を行い、加硫ゴム組成物を得た。実施例1と同様に、得られた加硫ゴム組成物の粘弾性特性を測定した。結果を表1および表2に示す。
[比較例4]
 実施例1において、前混練工程Aにおける混練の開始時の温度を100℃、終了時の温度を153℃とし、S−(3−アミノプロピル)チオ硫酸のナトリウム塩を配合せず、熱処理工程Cにおける混練物Bの加硫時間を17.5分間とした以外は、実施例1と同様に混練を行い、加硫ゴム組成物を得た。実施例1と同様に、得られた加硫ゴム組成物の粘弾性特性を測定した。結果を表1および表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1および表2に示すように、0℃~80℃の粘弾性特性(tanδ)について、実施例1~4とそれぞれ対応する比較例1~4とを比較すると、全ての温度において、実施例で得られた加硫ゴム組成物のtanδが、比較例で得られた加硫ゴム組成物のtanδより小さいことがわかる。特に、燃費の指標となる60℃におけるtanδは、実施例1のtanδが、比較例1のtanδの90.8%に、実施例2のtanδが、比較例2のtanδの94.8%に、実施例3のtanδが、比較例3のtanδの77.3%に、実施例4のtanδが、比較例4のtanδの85.7%になっている。すなわち、本発明の製造方法によれば、混練の開始時の温度および終了時の温度が低い条件で前混練工程Aの混練を行っても、S−(3−アミノプロピル)チオ硫酸の金属塩を配合した効果により、得られる加硫ゴム組成物の60℃におけるtanδを改善することができる。
 一方、実施例1~4において、0℃におけるtanδは、20℃~80℃におけるtanδよりも大きな値となっている。例えば、実施例1の加硫ゴム組成物の0℃におけるtanδは、80℃におけるtanδの203.2%である。このように、本発明の製造方法により得られる加硫ゴム組成物の0℃におけるtanδも良好な値であり、当該加硫ゴム組成物を自動車のタイヤ原料に用いた場合、自動車の制動性を向上させることができる。上記のように、本発明の製造方法によって得られた加硫ゴム組成物は、粘弾性特性が改善されていることが明らかである。
 また、実施例3および4に示すように、前混練工程Aにおける混練の開始時の温度を80℃以上、100℃以下、終了時の温度を135℃以上、155℃以下とした場合には、それぞれの60℃におけるtanδが、比較例3および4のtanδの77.3%、85.7%となっており、60℃におけるtanδがより一層低減されていることが分かる。すなわち、自動車の燃費改善効果を一層増すことができる。
In Example 1, kneading was carried out in the same manner as in Example 1 except that the temperature at the start of kneading in the pre-kneading step A was 100 ° C. and the temperature at the end was 154 ° C. to obtain a vulcanized rubber composition. . In the same manner as in Example 1, the viscoelastic properties of the obtained vulcanized rubber composition were measured. The results are shown in Tables 1 and 2.
[Comparative Example 4]
In Example 1, the temperature at the start of kneading in the pre-kneading step A is 100 ° C., the temperature at the end is 153 ° C., and the sodium salt of S- (3-aminopropyl) thiosulfuric acid is not blended, and the heat treatment step C A vulcanized rubber composition was obtained by kneading in the same manner as in Example 1 except that the vulcanization time of the kneaded product B was 17.5 minutes. In the same manner as in Example 1, the viscoelastic properties of the obtained vulcanized rubber composition were measured. The results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
As shown in Tables 1 and 2, when the viscoelastic properties (tan δ) at 0 ° C. to 80 ° C. were compared between Examples 1 to 4 and Comparative Examples 1 to 4 respectively, It can be seen that tan δ of the vulcanized rubber composition obtained in the above is smaller than tan δ of the vulcanized rubber composition obtained in the comparative example. In particular, the tan δ at 60 ° C., which is an index of fuel consumption, is 90.8% of tan δ of Example 1 is 90.8% of tan δ of Comparative Example 1, and tan δ of Example 2 is 94.8% of tan δ of Comparative Example 2. The tan δ of Example 3 is 77.3% of tan δ of Comparative Example 3, and the tan δ of Example 4 is 85.7% of tan δ of Comparative Example 4. That is, according to the production method of the present invention, the metal salt of S- (3-aminopropyl) thiosulfuric acid is used even when the pre-kneading step A is kneaded under conditions where the temperature at the start and end of kneading is low. Tan δ at 60 ° C. of the obtained vulcanized rubber composition can be improved by the effect of blending.
On the other hand, in Examples 1 to 4, tan δ at 0 ° C. is larger than tan δ at 20 ° C. to 80 ° C. For example, tan δ at 0 ° C. of the vulcanized rubber composition of Example 1 is 203.2% of tan δ at 80 ° C. Thus, the tan δ at 0 ° C. of the vulcanized rubber composition obtained by the production method of the present invention is also a good value, and when the vulcanized rubber composition is used as an automobile tire raw material, the braking performance of the automobile is improved. Can be improved. As described above, it is clear that the vulcanized rubber composition obtained by the production method of the present invention has improved viscoelastic properties.
As shown in Examples 3 and 4, when the temperature at the start of kneading in the pre-kneading step A is 80 ° C. or higher and 100 ° C. or lower, and the temperature at the end is 135 ° C. or higher and 155 ° C. or lower, The tan δ at 60 ° C. was 77.3% and 85.7% of tan δ of Comparative Examples 3 and 4, respectively, and it can be seen that tan δ at 60 ° C. was further reduced. That is, the fuel efficiency improvement effect of the automobile can be further increased.
 本発明によれば、低エネルギーで、粘弾性特性が改善された加硫ゴム組成物の提供が可能となる。したがって、本発明は、ゴム組成物を用いる分野、特にタイヤの分野において利用可能である。 According to the present invention, it is possible to provide a vulcanized rubber composition having low energy and improved viscoelastic properties. Therefore, the present invention can be used in the field of using a rubber composition, particularly in the field of tires.

Claims (3)

  1.  ゴム成分、充填剤、S−(3−アミノプロピル)チオ硫酸の金属塩、硫黄成分および加硫促進剤を含有する加硫ゴム組成物の製造方法であり、
    開始時の温度が40℃以上、100℃以下であり、終了時の温度が110℃以上、155℃以下である昇温条件下で、ゴム成分、充填剤およびS−(3−アミノプロピル)チオ硫酸の金属塩を混練する前混練工程Aと、
     前混練工程Aで得られた混練物A、硫黄成分および加硫促進剤を混練する後混練工程Bと、
     後混練工程Bで得られた混練物Bを熱処理して加硫ゴムを得る熱処理工程Cと、を含むことを特徴とする加硫ゴム組成物の製造方法。
    A method for producing a vulcanized rubber composition comprising a rubber component, a filler, a metal salt of S- (3-aminopropyl) thiosulfuric acid, a sulfur component and a vulcanization accelerator,
    The rubber component, filler, and S- (3-aminopropyl) thio are used under the temperature rising conditions in which the temperature at the start is 40 ° C. or higher and 100 ° C. or lower and the temperature at the end is 110 ° C. or higher and 155 ° C. or lower. A pre-kneading step A for kneading a metal salt of sulfuric acid;
    A post-kneading step B for kneading the kneaded product A obtained in the pre-kneading step A, a sulfur component and a vulcanization accelerator;
    And a heat treatment step C for obtaining a vulcanized rubber by heat-treating the kneaded product B obtained in the post-kneading step B, and a method for producing a vulcanized rubber composition.
  2.  前混練工程Aにおいて、開始時の温度が80℃以上、100℃以下であり、終了時の温度が135℃以上、155℃以下である昇温条件下で混練を行う請求項1に記載の製造方法。 The production according to claim 1, wherein, in the pre-kneading step A, kneading is performed under a temperature rising condition in which the temperature at the start is 80 ° C or higher and 100 ° C or lower and the temperature at the end is 135 ° C or higher and 155 ° C or lower. Method.
  3.  ゴム成分100重量部に対するS−(3−アミノプロピル)チオ硫酸の金属塩の重量が、0.05重量部以上、2.5重量部以下である請求項1または2に記載の製造方法。 The production method according to claim 1 or 2, wherein the weight of the metal salt of S- (3-aminopropyl) thiosulfuric acid relative to 100 parts by weight of the rubber component is 0.05 parts by weight or more and 2.5 parts by weight or less.
PCT/JP2011/065136 2010-06-30 2011-06-24 Process for producing vulcanized rubber composition WO2012002521A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-149036 2010-06-30
JP2010149036A JP2012012458A (en) 2010-06-30 2010-06-30 Method of manufacturing vulcanized rubber composition

Publications (1)

Publication Number Publication Date
WO2012002521A1 true WO2012002521A1 (en) 2012-01-05

Family

ID=45402223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065136 WO2012002521A1 (en) 2010-06-30 2011-06-24 Process for producing vulcanized rubber composition

Country Status (3)

Country Link
JP (1) JP2012012458A (en)
TW (1) TW201219461A (en)
WO (1) WO2012002521A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115403A1 (en) * 2012-02-03 2013-08-08 住友化学株式会社 Method for producing vulcanized rubber
JP2014005381A (en) * 2012-06-25 2014-01-16 Bridgestone Corp Production method of rubber composition
JP2014031447A (en) * 2012-08-03 2014-02-20 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10435545B2 (en) 2012-04-26 2019-10-08 The Goodyear Tire & Rubber Company Triglyceride containing solution polymerization prepared styrene/butadiene elastomer and tire with component
US20130289183A1 (en) * 2012-04-26 2013-10-31 Michael Lester Kerns Triglyceride containing solution polymerization prepared styrene/butadiene elastomer and tire with component
JP6029940B2 (en) 2012-11-07 2016-11-24 東洋ゴム工業株式会社 Tire member and tire manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3732192A (en) * 1971-05-24 1973-05-08 Universal Oil Prod Co Rubber formulations containing thiosulfonate esters
JPS5817132A (en) * 1981-07-08 1983-02-01 モンサント・ヨ−ロツプ・ソシエテ・アノニム Organic thiosulfates and thiosulfonates
JPS5991140A (en) * 1982-10-21 1984-05-25 モンサント・ヨ−ロツプ・ソシエテ・アノニム Rubber/metal composite
JPS60199643A (en) * 1984-01-20 1985-10-09 モンサント・ヨ−ロツプ・ソシエテ・アノニム Application as rubber/metal adhesion accelerator of metallicsalt of thiosulfuric acid s-ester
JPH10510861A (en) * 1994-12-15 1998-10-20 キャボット コーポレイション Carbon black and products reacted with diazonium salts
JP2009046578A (en) * 2007-08-20 2009-03-05 Sumitomo Rubber Ind Ltd Rubber composition for tire

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3732192A (en) * 1971-05-24 1973-05-08 Universal Oil Prod Co Rubber formulations containing thiosulfonate esters
JPS5817132A (en) * 1981-07-08 1983-02-01 モンサント・ヨ−ロツプ・ソシエテ・アノニム Organic thiosulfates and thiosulfonates
JPS5991140A (en) * 1982-10-21 1984-05-25 モンサント・ヨ−ロツプ・ソシエテ・アノニム Rubber/metal composite
JPS60199643A (en) * 1984-01-20 1985-10-09 モンサント・ヨ−ロツプ・ソシエテ・アノニム Application as rubber/metal adhesion accelerator of metallicsalt of thiosulfuric acid s-ester
JPH10510861A (en) * 1994-12-15 1998-10-20 キャボット コーポレイション Carbon black and products reacted with diazonium salts
JP2009046578A (en) * 2007-08-20 2009-03-05 Sumitomo Rubber Ind Ltd Rubber composition for tire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115403A1 (en) * 2012-02-03 2013-08-08 住友化学株式会社 Method for producing vulcanized rubber
JP2014005381A (en) * 2012-06-25 2014-01-16 Bridgestone Corp Production method of rubber composition
JP2014031447A (en) * 2012-08-03 2014-02-20 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire

Also Published As

Publication number Publication date
TW201219461A (en) 2012-05-16
JP2012012458A (en) 2012-01-19

Similar Documents

Publication Publication Date Title
JP5429320B2 (en) Use of S- (3-aminopropyl) thiosulfuric acid and / or a metal salt thereof for improving viscoelastic properties of vulcanized rubber
JP5589564B2 (en) Vulcanized rubber and method for producing the same
WO2012002517A1 (en) Method for using s-(3-aminopropyl)thiosulfuric acid and/or metal salt thereof
JP5667547B2 (en) Method for producing vulcanized rubber composition
WO2013018815A1 (en) Method for lowering dynamic-to-static modulus ratio of vulcanized rubber
JP2012012457A (en) Method for using s-(3-aminopropyl)thiosulfuric acid and/or metal salt thereof, and method for suppressing generation of heat in vulcanized rubber composition
WO2012002521A1 (en) Process for producing vulcanized rubber composition
JP5889017B2 (en) Method for producing vulcanized rubber
JP5889016B2 (en) Method for producing vulcanized rubber
JP2012116813A (en) Thiosulfuric acid compound or salt thereof, and rubber composition containing the same
JP2011184614A (en) Vulcanized rubber, and method for producing the same
JP5978043B2 (en) Rubber composition
JP5310609B2 (en) Use of S- (5-aminopentyl) thiosulfuric acid or a metal salt thereof for improving viscoelastic properties of vulcanized rubber
JP2012117008A (en) Using of thiosulfuric acid compound or its salt for improving viscoelastic characteristics which vulcanized rubber has, and rubber composition
JP5310608B2 (en) Use of S- (4-aminobutyl) thiosulfuric acid or a metal salt thereof for improving viscoelastic properties of vulcanized rubber
JP2011184613A (en) Vulcanized rubber and method for producing the same
WO2013115403A1 (en) Method for producing vulcanized rubber
JP2012153630A (en) Thiosulfuric acid compound or salt thereof and rubber composition including the same
JP2012207149A (en) Method for producing rubber composition
JP6013823B2 (en) Compound
JP2013194015A (en) Method for manufacturing particle
JP2012153771A (en) Thiosulfonate compound, and rubber composition containing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800983

Country of ref document: EP

Kind code of ref document: A1