WO2012002201A1 - 二次電池の製造方法、二次電池及び組電池 - Google Patents

二次電池の製造方法、二次電池及び組電池 Download PDF

Info

Publication number
WO2012002201A1
WO2012002201A1 PCT/JP2011/064202 JP2011064202W WO2012002201A1 WO 2012002201 A1 WO2012002201 A1 WO 2012002201A1 JP 2011064202 W JP2011064202 W JP 2011064202W WO 2012002201 A1 WO2012002201 A1 WO 2012002201A1
Authority
WO
WIPO (PCT)
Prior art keywords
casing
secondary battery
sealing body
pressure
housing
Prior art date
Application number
PCT/JP2011/064202
Other languages
English (en)
French (fr)
Inventor
智典 加古
澄男 森
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to JP2012522565A priority Critical patent/JP6142532B2/ja
Priority to CN201180030265.0A priority patent/CN102959785B/zh
Priority to US13/806,995 priority patent/US9812686B2/en
Publication of WO2012002201A1 publication Critical patent/WO2012002201A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • H01M50/636Closing or sealing filling ports, e.g. using lids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/668Means for preventing spilling of liquid or electrolyte, e.g. when the battery is tilted or turned over
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/4911Electric battery cell making including sealing

Definitions

  • the present invention relates to a method of manufacturing a secondary battery having a gas discharging step of discharging gas from an opening formed in a casing of the secondary battery, a secondary battery manufactured by the method of manufacturing the secondary battery, and the The present invention relates to an assembled battery including a secondary battery.
  • the secondary battery such as a lithium ion battery
  • gas is generated in the casing of the secondary battery during charging in the manufacturing process of the secondary battery.
  • the secondary battery may be disposed in a reduced pressure environment to discharge the generated gas in the casing of the secondary battery.
  • the secondary battery is placed in a reduced pressure environment, degassed, and then returned to the normal pressure environment to completely open the degassing opening. The work of sealing (main sealing) was performed.
  • the secondary battery is sealed in a state in which outside air has entered the casing. become.
  • secondary batteries such as lithium ion batteries are generated little by little, but gas is generated in the case of the secondary battery even when the secondary battery is actually used. This generated gas, together with the air originally present in the casing of the secondary battery, raises the internal pressure in the casing of the secondary battery, and the battery expands to expand the casing by the internal pressure.
  • Such battery swelling can be suppressed by reducing the air originally present in the casing of the secondary battery and maintaining the pressure inside the casing at a pressure lower than atmospheric pressure.
  • a method is also conceivable in which the opening used for degassing is completely sealed while the secondary battery is placed in a reduced pressure environment.
  • such a work such as sealing under a reduced pressure environment is much easier than a work under atmospheric pressure, even if it is a simple work of installing the sealing member at the opening of the housing.
  • the present invention has been made in view of such circumstances, and an object thereof is to make it possible to suppress the occurrence of battery swelling while suppressing an increase in manufacturing cost as much as possible.
  • the gas discharge step includes: When the internal pressure in the housing is higher than the external pressure, it is pressed by the internal pressure to allow outflow of internal air from the opening, and when the internal pressure in the housing is lower than the external pressure, the external pressure is pressed
  • the first sealing body that is displaced or deformed by a pressure difference between the inside and outside of the housing is attached so as to prevent outside air from entering from the opening, and the housing to which the first sealing body is attached is attached.
  • the body is placed in a reduced pressure environment, and the gas in the casing is caused to flow out of the casing through the attachment portion of the first sealing body, and the gas in the casing is allowed to flow out.
  • the opening is sealed by returning to the normal pressure environment.
  • the first sealing body is attached to the opening formed in the casing of the secondary battery, and the gas in the secondary battery casing generated by charging in the manufacturing process, for example, is discharged.
  • the first sealing body is pressed by the internal pressure when the internal pressure in the housing is higher than the external pressure (atmospheric pressure outside the housing), and allows the inside air to flow out from the opening, and the housing
  • the gas is pressed by the external pressure and is displaced or deformed so as to prevent the outside air from entering from the opening. It functions as a one-way valve that allows only the outflow of water.
  • the gas in the casing attaches the first sealing body. It flows out of the housing through the opened opening, and the pressure in the secondary battery housing decreases to a pressure close to the surrounding decompressed environment.
  • the internal pressure in the secondary battery casing becomes lower than the external pressure (atmospheric pressure), and the above-mentioned first
  • the sealing body 1 is pressed by the external pressure and prevents the outside air from entering the secondary battery casing. In this way, the opening may be completely hermetically sealed by an appropriate means in a state where the outside air is prevented from entering.
  • the housing has a flat rectangular parallelepiped shape.
  • Rechargeable batteries with flat rectangular parallelepiped enclosures have a smaller dead space when arranged side by side compared to cylindrical ones, so that space can be arranged with good utilization efficiency, and the bottom has a rectangular parallelepiped shape Since the specific surface area is large compared to the above, the temperature can be controlled with high accuracy, so the life can be extended.
  • the present invention since the battery swelling can be suppressed, it is possible to arrange the batteries close to each other, and the shape of the space between the adjacent secondary batteries can be maintained for a long period of time. Space saving and longer life that could not be achieved in the past can be achieved.
  • the second sealing body Sealing is performed in a state of covering the existence space of the first sealing body. That is, in a state where the first sealing body is temporarily sealed while preventing the entry of outside air under an atmospheric pressure environment, the second sealing is performed so as to cover the existence space of the first sealing body.
  • the main sealing is performed with a stationary body.
  • the sealing by the second sealing body is performed by welding the second sealing body and the casing.
  • Highly reliable airtightness can be maintained for a long time by sealing using the method of welding the second sealing body and the casing.
  • the effect that an installation cost can be reduced significantly is acquired simultaneously.
  • the effect that the equipment cost can be greatly reduced is due to the fact that the apparatus for welding can be used in a normal pressure environment.
  • special equipment is required such as making the entire space including the apparatus a reduced pressure environment, which increases the equipment cost. is there.
  • the first sealing body and the second sealing body are fixed to each other. Since the first sealing body and the second sealing body can be handled simultaneously by fixing the first sealing body and the second sealing body to each other, the process can be simplified.
  • the second sealing body in addition to the configuration of any of the third to fifth inventions, is formed in a plate shape, and the casing is placed under a normal pressure environment. A part of the second sealing body is fixed to the casing before returning to step (b).
  • the second sealing body is plate-shaped, a problem has been found that the second sealing body is displaced at a high frequency in the step of returning to the normal pressure environment. This could not be improved even if the gas blowing direction for returning to normal pressure was adjusted or the blowing speed was lowered. This problem can be improved by fixing a part of the second sealing body to the housing (also referred to as temporary fixing), and at the same time, it is not necessary to adjust the gas blowing direction or lower the blowing speed. .
  • the casing is made of metal.
  • the internal pressure is pressed by the opening when the internal pressure in the housing is higher than the external pressure.
  • the casing is allowed to flow out of the inside air from the opening, and when the inner pressure in the casing is lower than the outside pressure, the casing is pressed by the outside pressure to prevent the outside air from entering from the opening.
  • a first sealing body that is displaced or deformed by a pressure difference between the inside and the outside of the housing, and the pressure inside the space surrounded by the housing and the first sealing body is set lower than the external pressure. Has been.
  • the pressure inside the case of the secondary battery is close to a reduced pressure environment due to the temporary sealing by the first sealing body, and gas is generated in the case of the secondary battery when the user actually uses the secondary battery.
  • gas is generated in the case of the secondary battery when the user actually uses the secondary battery.
  • so-called battery swelling can be suppressed as much as possible.
  • a ninth invention of the present application is provided with a second sealing body for sealing in a state of covering the existence space of the first sealing body in addition to the configuration of the eighth invention,
  • the second sealing body and the casing are welded.
  • the internal pressure in the casing becomes higher than a predetermined operating pressure
  • the internal air in the casing is discharged to the casing.
  • a safety valve for escaping is provided, and the pressure resistance of the second sealing body is set to a pressure higher than the operating pressure of the safety valve, and the first sealing body starts and starts the outflow of the inside air inside and outside the housing.
  • the pressure difference is set to a pressure difference that is smaller than the pressure difference inside and outside the housing at which the safety valve starts to flow out the inside air.
  • a safety valve for releasing the inside air to the outside of the casing.
  • the pressure resistance of the second sealed body in a hermetically sealed state is set to be higher than the operating pressure of the safety valve.
  • the safety valve is activated and the gas is discharged before the first sealing body starts discharging the gas in the casing. In such a setting, the secondary battery cannot be used in the manufacturing process of the secondary battery. Therefore, the pressure difference at which the first sealing body starts outflow of the inside air is prevented. Is set.
  • an eleventh invention of the present application includes, in addition to the configuration of the ninth or tenth invention, an electrolyte that has leaked from the mounting position of the first sealing body. Is provided between the attachment position of the second sealing body and the attachment position of the second sealing body. That is, the first sealing body is in a temporarily sealed state, and when a secondary battery is subjected to vibration or impact in a gas discharge process or the like, the first sealing body is electrolyzed through the attachment position of the first sealing body. The liquid may leak out. Even in such a case, the electrolyte solution can be retained in the retention portion provided between the mounting position of the first sealing body and the mounting position of the second sealing body. It can suppress expanding to the attachment position of a 2nd sealing body.
  • the first sealing body and the second sealing body are fixed to each other. . Since the first sealing body and the second sealing body can be handled simultaneously by fixing the first sealing body and the second sealing body to each other, the process can be simplified.
  • the second sealing body is formed in a plate shape. By forming the second sealing body in a plate shape, the weight of the second sealing body can be reduced. Furthermore, in the case where the first sealing body and the second sealing body are in contact with each other or fixed, the first sealing body is reduced by reducing the weight of the second sealing body. The operating pressure can be made as small as possible.
  • the first sealing body is in a state of being fitted in a gap with respect to the guide portion in the opening.
  • a guided portion to be fitted, and an airtight holding portion that comes into contact with the opening or the housing by pressing by an external force and is airtightly held, and the internal pressure when the internal pressure in the housing is higher than the external pressure, or
  • the opening and the airtight holding part are separated from each other, or the airtight holding part is pressed by the opening, respectively.
  • the guided portion is configured to be displaced while being guided by the guide portion of the opening.
  • the first sealing body is pressed by the internal pressure to allow outflow of internal air from the opening, and the internal pressure in the housing is external pressure.
  • the structure for preventing the entry of the outside air by being pressed by the outside pressure is used to contact the airtight holding portion and the opening of the first sealing body by utilizing the pressure difference between the inside and outside of the housing. A state is changed and ventilation
  • the first sealing body Under a reduced pressure environment in which the internal pressure in the secondary battery casing is higher than the external pressure, the first sealing body is pressed and displaced by the internal pressure in the casing, and the opening and the hermetic holding section of the first sealing body A gap is formed between the inside air and the inside air flows out of the housing through the opening.
  • the first sealing body is pressed by the external pressure (atmospheric pressure) outside the housing, and first, the hermetic holding portion of the sealing body opens the opening. It is pressed against the part to prevent the outside air from entering the housing.
  • the first sealing body penetrates through the inside and outside of the housing at the opening.
  • the inside of the housing passes through a gap that exists between the opening and the contact surface with the periphery of the through hole.
  • the internal pressure in the housing is lower than the external pressure, it is elastically deformed by being pressed by the external pressure, and is in close contact with the periphery of the through hole so as to prevent the outside air from entering. It is configured.
  • the first sealing body when the internal pressure in the housing is higher than the external pressure, the first sealing body is pressed by the internal pressure to allow outflow of internal air from the opening, and the internal pressure in the housing is external pressure.
  • the first sealing body When the pressure is lower than the first pressure, the first sealing body is elastically deformed by utilizing the pressure difference between the inside and outside of the housing as a structure for preventing the outside air from being pressed by the external pressure. Control ventilation at body attachment points.
  • the first sealing body In a reduced pressure environment in which the internal pressure in the secondary battery casing is higher than the external pressure, the first sealing body is pressed by the internal pressure in the casing, and the periphery of the through portion of the opening and the first sealing body. The gas in the housing is discharged through the gap formed between the two.
  • the first sealing body when returning from the reduced pressure environment to the normal pressure environment, the first sealing body is pressed by the external pressure (atmospheric pressure) outside the housing, and the first sealing body is placed around the penetrating portion. It is pressed and tightly contacts the periphery of the through part by elastic deformation to prevent the outside air from entering the housing.
  • the opening is formed as a liquid injection port for injecting an electrolyte into the casing.
  • the opening for discharging the generated gas in the secondary battery casing is also used as a liquid injection port for injecting an electrolytic solution. Since the injection port for the electrolytic solution is often originally installed, it is not necessary to form a new opening in order to discharge the generated gas in the secondary battery casing.
  • the casing has a flat rectangular parallelepiped shape. It is possible to arrange the batteries close to each other, and the shape of the space between adjacent secondary batteries is maintained for a long period of time. As a result, it is possible to save space and extend the life that could not be achieved in the past. .
  • the housing is made of metal.
  • an assembled battery is configured by including a plurality of secondary batteries having the configuration of any one of the eighth to eighteenth aspects.
  • a plurality of the secondary batteries according to any of the eighth to eighteenth inventions battery swelling of each battery is suppressed, so that the batteries can be placed close to each other, and two adjacent batteries can be arranged.
  • the shape of the space between the secondary batteries is maintained for a long period of time, and as a result, space saving and long life that cannot be achieved conventionally can be achieved.
  • the first sealing body is attached to the opening of the secondary battery casing, and is disposed in a reduced pressure environment to discharge the generated gas in the casing.
  • the main sealing can be performed after returning to the normal pressure environment, so that it is not necessary to prepare a special manufacturing facility under a reduced pressure, and the work for the main sealing can be performed at a low cost.
  • the second aspect of the present invention in the secondary battery having a flat rectangular parallelepiped casing in which battery swelling is likely to occur due to an increase in internal pressure in the battery casing, battery swelling can be accurately suppressed.
  • the advantage of the shape of the battery casing that enables efficient arrangement can be effectively utilized.
  • the first sealing body is present in a state where the first sealing body is temporarily sealed while preventing entry of outside air under an atmospheric pressure environment. Since the main sealing is performed by the second sealing body so as to cover the space, the hermetic sealing can be performed accurately. Further, according to the fourth invention, since the second sealing body can be sealed by a welding operation under a normal pressure environment, an increase in equipment cost can be suppressed as much as possible.
  • the said 5th invention can contribute to the reduction of the manufacturing cost of a secondary battery by handling a 1st sealing body and a 2nd sealing body simultaneously, and simplifying a process.
  • the plate-like second sealing body which is likely to be displaced when returning to the normal pressure environment, is temporarily fixed in advance, so that the second sealing body is sealed. Stop workability can be improved.
  • stable shape retention property can be ensured over a long period of time.
  • the eighth aspect of the invention even if gas is generated in the case of the secondary battery during actual use of the secondary battery by the user, there is a margin due to the low pressure inside the case. While suppressing an increase in cost as much as possible, the occurrence of battery swelling can be suppressed.
  • the ninth aspect of the invention by sealing using a welding method, a highly reliable airtightness can be maintained for a long period of time, and it can be manufactured with simple equipment, thereby suppressing an increase in manufacturing cost. However, the reliability of the secondary battery can be improved.
  • the pressure resistance of the second sealed body in a hermetically sealed state is set sufficiently high to ensure airtightness, and the safety valve operates in the manufacturing process of the secondary battery.
  • the safety valve operates properly so as to ensure the safety of the secondary battery.
  • the process can be simplified by simultaneously handling the first sealing body and the second sealing body, it is possible to contribute to the reduction of the manufacturing cost of the secondary battery.
  • the second sealing body is formed in a plate shape to reduce the weight, thereby contributing to the weight reduction of the secondary battery.
  • the contact state between the hermetic holding portion and the opening of the first sealing body is changed using the pressure difference between the inside and outside of the casing, and the first sealing body Since ventilation at the attachment location is controlled, a one-way valve can be configured with a simple configuration.
  • the first sealing body is elastically deformed by utilizing the pressure difference between the inside and outside of the casing, and the ventilation at the attachment position of the first sealing body is controlled.
  • a one-way valve can be configured with a simple configuration.
  • the electrolyte injection port which is often installed originally, is also used as an opening for discharging the generated gas in the secondary battery casing. Therefore, it is not necessary to form a new opening for the device, and an increase in device cost can be suppressed.
  • the seventeenth aspect of the invention in the secondary battery having a flat rectangular parallelepiped casing that is liable to generate battery swelling due to an increase in internal pressure in the battery casing, battery swelling can be accurately suppressed.
  • the advantage of the shape of the battery casing that enables efficient arrangement can be effectively utilized. According to the eighteenth aspect, stable shape retention can be ensured over a long period of time.
  • the batteries constituting the assembled battery can be arranged close to each other, and the shape of the space between the adjacent secondary batteries can be maintained for a long time. Space and service life can be extended.
  • FIG. 1 is an external perspective view of a secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing the inside of the secondary battery according to the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of a main part of the secondary battery according to the embodiment of the present invention.
  • FIG. 4 is a front view of the secondary battery according to the embodiment of the present invention.
  • FIG. 5 is a perspective view for explaining a gas discharge process according to the embodiment of the present invention.
  • FIG. 6 is a perspective view for explaining a gas discharge process according to the embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of an essential part for explaining a gas discharge process according to the embodiment of the present invention.
  • FIG. 1 is an external perspective view of a secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing the inside of the secondary battery according to the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of a main
  • FIG. 8 is a perspective view for explaining a gas discharge process according to the embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of a main part according to another embodiment of the present invention.
  • FIG. 10 is a cross-sectional view of a main part according to another embodiment of the present invention.
  • FIG. 11 is principal part sectional drawing concerning another embodiment of this invention.
  • FIG. 12 is a cross-sectional view of a main part according to another embodiment of the present invention.
  • FIG. 13 is a plan view of the assembled battery of the present invention.
  • a nonaqueous electrolyte secondary battery (more specifically, a lithium ion battery), which is an example of a secondary battery, will be described as an example.
  • the secondary battery RB of the present embodiment constitutes a part of the assembled battery, and a plurality of secondary batteries RB, which will be described in detail below, are arranged side by side. Use as a battery.
  • the non-aqueous electrolyte secondary battery RB of the present embodiment has a bottomed cylindrical shape (more specifically, a bottomed rectangular cylindrical shape).
  • the can body 1 has a casing BC formed by covering the open surface of the can body 1 with a substantially flat lid portion 2 and welding it.
  • the lid portion 2 is formed in a strip-like rectangle, and the casing BC has a flat rectangular parallelepiped shape as a whole.
  • FIG. 2 illustrates the internal configuration of the casing BC by removing the can body 1 from the completed secondary battery RB (shown in FIG. 1).
  • the power generation element 3 is configured by applying an active material to each of a pair of electrode plates composed of a foil-like positive electrode plate and a foil-like negative electrode plate, and winding the separator with a separator interposed therebetween.
  • the active material uncoated portion of the foil-shaped positive electrode plate is laterally extended and welded to the current collector 4
  • the active material uncoated portion of the foil-shaped negative electrode plate is disposed on the opposite side. It is extended and welded to the current collector 6.
  • the lid 2 made of metal has a current collector 4 on the positive electrode side, a terminal bolt 5 which is a positive electrode terminal connected to the current collector 4, and a negative electrode side current collector 4.
  • a current collector 6 and a negative terminal bolt 7 connected to the current collector 6 are attached.
  • the terminal bolt 5 is integrally formed so as to have a rivet portion 5 a on the head side thereof, and the rivet portion 5 a penetrates the electrode mounting hole 8 formed in the lid portion 2. It is arranged in the state to do.
  • the terminal bolt 5 is fixedly attached to the lid 2 by sandwiching a pair of packings 9 and 10 arranged with the lid 2 sandwiched between the head of the terminal bolt 5 and the current collector 4 and holding the rivet portion 5a. Do it by tightening.
  • the negative electrode side has the same structure as the positive electrode side, and only the material of the metal member is different.
  • the metal member on the positive electrode side is made of aluminum, and the metal member on the negative electrode side is made of copper.
  • a safety valve 11 is attached to the lid portion 2 at the longitudinal center position, and a liquid injection port 13 sealed with a sealing plate 12 is provided on the side of the safety valve 11.
  • the safety valve 11 opens the valve body and releases the inside air when the internal pressure in the casing BC of the secondary battery RB becomes higher than a predetermined operating pressure.
  • FIG. 2 and FIG. 7 which is an enlarged view of the vicinity of the liquid injection port 13, the liquid injection port 13 is centered on the through hole 13 a that penetrates the lid portion 2 and the through hole 13 a outside the housing BC. It consists of the enlarged diameter part 13b which expanded the internal diameter.
  • the liquid injection port 13 is sealed by a resin sealing plug 14 having a shape in which a cylindrical protrusion 14a protrudes from the center of a disk-shaped pedestal 14b.
  • the function of the sealing plug 14 is not to keep the liquid injection port 13 hermetically sealed permanently, but to be temporary hermetic sealing for preventing the outside air from entering the housing BC. It is for sealing.
  • the sealing plate 12 is for hermetically sealing the liquid injection port 13 permanently.
  • the liquid injection port 13 is an opening for injecting an electrolytic solution into the housing BC. As will be described in detail later, the liquid injection port 13 is used for venting the gas generated in the housing BC to the outside of the housing BC. It also has a function as the opening AP.
  • the manufacturing process of the secondary battery RB will be schematically described.
  • the casing BC of the secondary battery RB is assembled.
  • the power generation element 3 is coated with a positive electrode active material and a negative electrode active material on a long strip-like foil-like positive electrode plate and a foil-like negative electrode plate, respectively, and wound around a separator after a drying treatment, Press to form a flat shape.
  • the foil-like positive electrode plate and the foil-like negative electrode plate are provided with an uncoated region where no active material is applied on one end side in the width direction for connection to the current collectors 4 and 6. This uncoated part is located in the edge part on the opposite side with a positive electrode and a negative electrode.
  • the lid 2 has the electrode mounting hole 8 for mounting the terminal bolts 5 and 7, the mounting hole for the safety valve 11, and the safety valve 11 mounted on a plate made of aluminum in which the liquid injection port 13 is previously formed.
  • the bodies 4 and 6 and the terminal bolts 5 and 7 are fixed by caulking the rivet portion 5a with the packings 9 and 10 sandwiched therebetween.
  • the lid 2 and the power generation element 3 are integrated by welding the uncoated part of the power generation element 3 to the current collectors 4 and 6 fixed to the lid 2 as described above.
  • the assembly of the casing BC of the secondary battery RB is completed by housing the power generation element 3 in the can 1 and welding the lid 2 and the can 1.
  • the electrolytic solution is injected into the case BC from the liquid injection port 13 formed in the lid 2, and the injection of the electrolytic solution is completed. Then, initial charging (preliminary charging) of the secondary battery RB is performed under predetermined charging conditions. Since gas is generated in the casing BC of the secondary battery RB during the initial charging, the gas in the casing BC is discharged in the next gas discharging step.
  • the gas discharging step is a step of discharging the gas generated during the initial charging in the casing BC from the opening AP formed in the casing BC of the secondary battery RB.
  • the gas discharging process is formed in the lid portion 2.
  • the liquid injection port 13 is used as an opening AP for discharging the gas.
  • a sealing plug 14 is attached to the liquid injection port 13, and the secondary battery RB that has been initially charged is placed in a sealed container.
  • the sealed container is evacuated with a vacuum pump or the like, and the pressure inside the sealed container is reduced to a predetermined pressure lower than the atmospheric pressure (normal pressure). As a result, the secondary battery RB is placed in a reduced pressure environment.
  • the through hole 13a of the liquid injection port 13 and the protrusion 14a of the sealing plug 14 are formed to have a so-called “gap fit” dimension, and between the side surface of the through hole 13a and the side surface of the protrusion 14a. There are some voids. For this reason, when the secondary battery RB that has been initially charged as described above is placed in a reduced pressure environment, the internal pressure in the housing BC becomes higher than the external pressure (atmospheric pressure outside the housing BC) and is pressed by the internal pressure. Thus, the sealing plug 14 is slightly lifted. When the sealing plug 14 is displaced due to the pressure difference between the inside and outside of the housing BC, the through hole 13a serving as the guide portion GD moves and guides the projection 14a serving as the guided portion DG. In FIG. 7, the floating amount of the sealing plug 14 is exaggerated for easy understanding of the drawing.
  • the bottom surface of the enlarged diameter portion 13b serves as an airtight holding contact surface TS.
  • the base portion 14b which is the airtight holding portion SL on the sealing plug 14 side
  • the contact surface TS is contacted.
  • ventilation at the contact point between the TS and the hermetic holding portion SL (pedestal portion 14b) is prevented and hermetically held, but as described above, the sealing plug 14 is slightly lifted and the contacting surface TS (expanded portion) is increased.
  • 13b) and the airtight holding portion SL (pedestal portion 14b) are slightly separated from each other.
  • a gas discharge passage is formed through the space between the through hole 13a and the protrusion 14a and the space between the bottom surface of the enlarged diameter portion 13b and the pedestal portion 14b, and is indicated by an arrow A in FIG.
  • the gas in the housing BC is discharged out of the housing BC through the through hole 13a.
  • a pressure difference between the inside and outside of the casing BC is required to such an extent that the gas discharge flow path can be formed.
  • the sealing plug 14 is configured to be as light as possible so that the pressure difference between the inside and outside of the casing BC necessary for forming the gas discharge channel is sufficiently small. If the internal pressure of the housing BC becomes higher than the external pressure, it becomes an operating factor of the safety valve 11 attached to the lid 2, but the pressure difference between the inside and outside of the housing BC that causes the sealing plug 14 to float and start the outflow of the inside air. Since the safety valve 11 is set to a pressure difference sufficiently smaller than the pressure difference inside and outside the casing BC where the inside air starts to flow out, the safety valve 11 does not operate in the gas discharge process.
  • the internal pressure in the housing BC becomes lower than the external pressure, and is pressed by the external pressure to the contact surface TS (the bottom surface of the enlarged diameter portion 13b).
  • the airtight holding part SL (pedestal part 14b) is pressed. That is, the pedestal portion 14b and the bottom surface of the enlarged diameter portion 13b are displaced in close contact with each other due to a pressure difference between the inside and outside of the casing BC of the secondary battery RB. Ventilation is prevented by the close contact between the pedestal portion 14b and the bottom surface of the enlarged diameter portion 13b, and air is prevented from flowing into the housing BC through the through hole 13a.
  • a sealing material is applied to the bottom surface of the enlarged diameter portion 13b, or a rubber packing or the like is arranged. Also good.
  • the sealing plug 14 covers the enlarged diameter portion 13 b, which is the space where the sealing plug 14 exists, in a state where the sealing plug 14 prevents air from entering the housing BC.
  • the sealing plate 12 By disposing the sealing plate 12 and welding the end edge portion of the sealing plate 12 and the lid portion 2 over the entire circumference of the sealing plate 12 to completely hermetically seal, the gas discharge process is completed.
  • the enlarged diameter portion 13b is a space having a larger diameter than the diameter of the pedestal portion 14b of the sealing plug 14, and there is a set volume between the sealing plug 14 and the sealing plate 12. A space is formed.
  • the main purpose of this space is to retain the leaked electrolyte when the electrolyte leaks from the sealing plug 14 in the manufacturing process of the secondary battery RB (particularly, the gas discharge process). is doing. That is, the mounting position of the sealing plug 14 is the bottom surface of the enlarged diameter portion 13b, which is stepped from the top surface of the lid portion 2 where the sealing plate 12 is mounted, and is lowered by one step.
  • the secondary battery RB Since the secondary battery RB is handled in an upright posture with the lid 2 on the upper side, even if the electrolyte leaks from the sealing plug 14, the mounting position of the sealing plug 14 and the mounting position of the sealing plate 12 The space around the sealing plug 14 between them, that is, the inside of the enlarged diameter portion 13b becomes the retention portion ST, and the electrolytic solution is retained. As a result, the leaked electrolyte does not reach the top surface of the lid portion 2 where the sealing plate 12 is attached, and the sealing plate 12 is sealed without being concerned about leakage of the electrolyte, ie, welding. Work can be done.
  • the sealing plug 14 when the internal pressure in the housing BC is higher than the external pressure, the sealing plug 14 is pressed by the internal pressure and allows the inside air to flow out from the liquid injection port 13 (gas discharge opening).
  • the seal When the internal pressure in the casing BC is lower than the external pressure, the seal is operated by the external pressure so as to prevent the outside air from entering from the liquid inlet 13 and seals the liquid inlet 13.
  • first sealing body FS referred to as “first sealing body FS” for convenience of description.
  • the sealing plate 12 is sealed in a state of covering the space where the first sealing body FS (sealing plug 14) is present (for convenience of explanation, “second sealing body SS”). Function).
  • the pressure in the casing BC is lower than the atmospheric pressure, and the low pressure becomes a margin, and the casing BC is actually used in the secondary battery RB. Even if gas is generated in the battery, it is difficult for the battery to swell due to the atmospheric pressure in the casing BC rising and becoming higher than the atmospheric pressure.
  • the sealing plate 12 is welded to the lid portion 2 in a state having sufficient strength, and the pressure resistance of the sealing plate 12 as the second sealing body SS is a predetermined operation for operating the safety valve 11. The pressure is set sufficiently higher than the pressure.
  • the secondary batteries RB manufactured in this manner have a plurality of (with a predetermined interval between the casings so that the positive terminal bolts 5 and the negative terminal bolts 7 face each other (
  • four batteries are used as a battery constituting an assembled battery accommodated in parallel. Since each secondary battery RB has a structure in which battery swelling is prevented as described above, the gap between the batteries is not narrowed, and the cooling air supplied to the gap flows smoothly. Cool properly.
  • the sealing plug 14 that prevents the atmosphere from entering the casing BC of the secondary battery RB after degassing is used as the projecting portion 14 a of the through hole 13 a of the liquid injection port 13.
  • achieving the function of this sealing plug 14 can be variously changed.
  • the manufacturing process is exactly the same as that of the above-described embodiment until the stage of initial charging of the casing BC of the secondary battery RB.
  • a disc 22 fixed to the metal disc 21 is disposed so as to cover the outside of the casing BC, and a part of the edge of the metal disc 21 is covered so that the disc 22 and the like are not detached from the lid portion 2.
  • the position of the metal disk 21 can be prevented from shifting. For this reason, it is not necessary to perform alignment in the step of welding the entire circumference of the metal disk 21 performed later to completely hermetically seal the metal disk 21 and the cover plate 2.
  • the phenomenon that the position of the metal disc 21 is shifted is caused by performing a process of introducing outside air or the like into the sealed container that houses the casing BC to return to the normal pressure, and in the diameter direction of the metal disc 21. This is caused by a large area and light weight.
  • the gas flow generated by introducing outside air or the like is also generated in the gap between the metal disk 21 and the cover plate 2 and in the space of the stay part ST. As a result, the force in the direction to lift the metal disk 21 is generated.
  • the metal disk 21 has a large area in the diameter direction and is light, the metal disk 21 is lifted even if the gas flow is small.
  • the timing for temporarily fixing the metal disk 21 may be any time as long as it is before the end of gas discharge and the return from the reduced pressure environment to the normal pressure environment.
  • the rubber disk 22 In a state where the metal disk 21 is temporarily fixed, the rubber disk 22 is lightly riding on the through hole 13a, and there is a slight gap between the disk 22 and the bottom surface of the enlarged diameter portion 13b. Gaps exist.
  • the internal pressure in the housing BC is higher than the external pressure.
  • the disk 22 is pushed outward by the pressure difference inside and outside the casing BC, and exists between the liquid injection port 13 and the contact surface of the disk 22 with the periphery of the through hole 13a.
  • the gap further expands, and the inside air is allowed to flow out from the liquid injection port 13 through the gap.
  • the gas in the casing BC is between the through hole 13a, the rubber disc 22 and the peripheral portion of the through hole 13a on the bottom surface of the enlarged diameter portion 13b.
  • the gas in the housing BC flows out to the outside through the air gap and the air gap between the metal disk 21 and the lid 2 surface.
  • the secondary battery RB After the pressure difference between the inside and outside of the casing BC becomes sufficiently small due to the outflow of gas in the casing BC, the secondary battery RB is moved from the decompressed sealed container to the normal pressure environment (that is, the atmospheric pressure environment). When returned, the internal pressure in the housing BC becomes lower than the external pressure, and a pressure difference opposite to that when the secondary battery RB is placed in a reduced pressure environment is generated inside and outside the housing BC. In this state, the rubber disk 22 is pressed against the bottom surface of the enlarged diameter portion 13b by the external pressure and is elastically deformed, and is in close contact with the periphery of the through hole 13a to prevent ventilation. That is, the outside air is prevented from entering the housing BC.
  • the normal pressure environment that is, the atmospheric pressure environment
  • the rubber disc 22 functions as the first sealing body FS similarly to the sealing plug 14 in the above-described embodiment, and supports the disc 22.
  • 21 functions as the second sealing body SS in the same manner as the sealing plate 12 in the above embodiment. Therefore, the first sealing body FS and the second sealing body SS are in a fixed relationship with each other.
  • the point that the space around the rubber disc 22 functions as a retention portion ST that retains the electrolyte that has leaked through the attachment location of the disc 22 is the same as in the above embodiment.
  • FIG. 10 the portion of the liquid inlet 13 where the metal disk 21 and the rubber disk 22 are arranged is formed as a liquid inlet unit 30 that is a separate member from the lid 2.
  • an opening 31 having a diameter slightly larger than the diameter of the metal disk 21 and a step portion 32 having a diameter larger than that of the opening 31 are formed.
  • a metal (more specifically, aluminum) sealing plate 33 is disposed on the step portion 32 as the second sealing body SS.
  • the sealing plate 33 covers the existence space of the disc 22 and the metal disc 21 which are the first sealing bodies FS, and is injected by welding the edge of the sealing plate 33 over the entire circumference.
  • the mouth 13 is completely hermetically sealed.
  • the liquid injection unit 30 is fixed to the lid 2 in advance so that the enlarged diameter portion 13b and the like are concentric with the opening 31 and the like, and the metal disk 21 and the disk are manufactured in the same manufacturing process as described with reference to FIG. 22 is attached.
  • What is different from that shown in FIG. 9 is a step after the secondary battery RB is returned from the reduced pressure environment to the normal pressure environment.
  • the edge of the metal disk 21 extends over the entire circumference.
  • the stepped portion is in a state where the disk 22 prevents entry into the outside air.
  • the sealing plate 33 is placed on 32, and the end edge of the sealing plate 33 is welded over the entire circumference to be hermetically sealed.
  • the edge of the metal disk 21 may be welded over the entire circumference so as to make the hermetic sealing more reliable.
  • FIG. 11A shows a sealing plug 41 formed in a simple cylindrical shape (or may be a prismatic shape).
  • the lid portion 2 is formed with a depressed portion 42 adapted to the outer shape of the sealing plug 41, and further, a liquid injection port 43 is formed as a through hole at the center of the bottom surface of the depressed portion 42.
  • the liquid injection port 43 constitutes an opening for discharging the gas in the casing BC.
  • the depressed portion 42 and the sealing plug 41 are fitted in a gap fitting state, and there is a ventilation gap between them, and when the sealing plug 41 is displaced by a pressure difference inside and outside the housing BC,
  • the vertical side surface of the depressed portion 42 serves as a guide portion, and moves and guides the vertical side surface of the sealing plug 41 as the guided portion.
  • the periphery of the liquid injection port 43 on the bottom surface of the depressed portion 42 is in contact with the bottom surface of the sealing plug 41 as an airtight holding contact surface TS, and the bottom surface of the sealing plug 41 functions as the airtight holding portion SL.
  • the sealing plug 44 shown in FIG. 11 (b) has a shape having a flange-like wide portion 44a at the upper end of the sealing plug 41 shown in FIG. 11 (a), and a lid that comes into contact with the wide portion 44a.
  • the surface of the part 2 can function as the contact surface TS for airtightness maintenance, and the lower surface of the wide part 44a can function as the airtightness retention part SL.
  • the sealing plug 45 shown in FIG. 11C has a conical shape on the lower end side, and the depressed portion 46 formed on the lid portion 2 has a shape that matches the shape of the sealing plug 45.
  • a liquid injection port 43 is formed at the tip (lowermost end) of a conical recess that matches the shape of the sealing plug 45 in the depressed portion 46.
  • the depressed portion 46 and the sealing plug 45 are fitted in a gap-fitted state, there is a gap for ventilation between them, and the sealing plug 45 is the housing.
  • the sealing plug 47 shown in FIG. 11 (d) is provided with a flange-like wide portion 47a at the upper end similarly to the sealing plug 44 shown in FIG. 11 (b), and its function is also shown in FIG. This is the same as the wide portion 44a described for b).
  • the sealing plugs 48 and 49 shown in FIGS. 11 (e) and 11 (f) are obtained by increasing the diameter of the liquid injection port 43 with respect to those shown in FIGS. 11 (c) and 11 (d). Yes, the lower ends of the sealing plugs 48 and 49 are cut out accordingly.
  • the sealing plug 49 is also provided with a wide portion 49a having the same shape and function as the wide portion 44a.
  • a sealing plug 50 shown in FIG. 12 (a) has a shape obtained by cutting a cylindrical part from the sealing plug 45 shown in FIG. 11 (c), and consists only of a conical part.
  • the depressed portion 51 is also depressed into a conical shape in conformity with the shape of the sealing plug 50, and the lower end serves as the liquid injection port 43.
  • the inclined surface of the depressed portion 51 is in contact with the inclined surface of the sealing plug 50 as a contact surface TS for airtightness holding, and the inclined surface of the sealing plug 50 is used as the airtight holding portion SL. Make it work.
  • the sealing plug 52 shown in FIG. 12B includes a wide portion 52a similar to the wide portion 44a and the like of the sealing plug 44 of FIG. 11B, and the function is the same as that of the wide portion 44a and the like. .
  • the sealing plug 53 shown in FIG. 12C has a shape in which a part of a spheroid is joined to the lower end side of the cylindrical portion.
  • the depressed portion 54 is formed in a shape having a vertical wall portion that fits with the cylindrical portion of the sealing plug 53 in a gap-fitting state, and a cross-section that is key-shaped and has a bottom surface.
  • the tip that is, the center of the bottom surface is used as the liquid injection port 43.
  • FIGS. 11 (a) to 11 (f) and FIGS. 12 (a) and 12 (b) the airtight holding portion SL (the pedestal portion 14b of the sealing plug 14) of the first sealing body FS is provided.
  • FIG. 11 (a) to 11 (f) and FIGS. 12 (a) and 12 (b) the airtight holding portion SL (the pedestal portion 14b of the sealing plug 14) of the first sealing body FS is provided.
  • the surface of the opening AP is in surface contact with the opening AP, whereas in the example shown in FIG.
  • the sealing plug 55 shown in FIG. 12 (d) includes a flange-shaped wide portion 55a similar to the wide portion 44a of the sealing plug 44 of FIG. 11 (b), and the function thereof is also the wide portion 44a. It is the same.
  • the sealing plug 56 shown in FIG. 12 (e) is formed in a spheroid shape, and is fitted in a recessed portion 54 having the same shape as that shown in FIG.
  • the function of preventing the entry of outside air due to the contact between the sealing plug 56 and the edge portion of the liquid injection port 43 is the same as that described in the example of FIG.
  • the sealing plug 57 shown in FIG. 12 (f) is formed in a spherical shape, and its function and action are the same as the example shown in FIG. 12 (e).
  • the case where the opening AP for discharging the gas in the housing is also used as the liquid injection port 13 is illustrated, but the opening AP is used as the liquid injection port 13. It is good also as a structure provided separately.
  • the case where the gas discharging process for discharging the gas generated in the casing BC of the secondary battery RB at the time of initial charging is performed after the completion of the initial charging is illustrated. The discharging process may be performed concurrently.
  • the lid 2 that forms the upper surface of the casing BC is provided with the liquid injection port 13 that also serves as the opening AP for discharging the gas in the casing BC of the secondary battery RB.
  • the specific installation location can be appropriately changed, such as being provided on the side surface of the casing BC (that is, the side surface of the can 1).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

 二次電池の筐体BCに形成された開口部APからガスを排出させるガス排出工程を有する二次電池の製造方法において、製造コストの上昇を可及的に抑制しながら、二次電池の電池膨れの発生を抑制するために、開口部APに、筐体BC内の内圧が外圧よりも高いときに開口部APからの内気の流出を許容し、且つ、筐体BC内の内圧が外圧よりも低いときに開口部APからの外気の進入を阻止するように、筐体BCの内外の圧力差によって変位又は変形する第1の封止体FSを取り付け、第1の封止体FSを取り付けた筐体BCを減圧環境下に配置して、筐体内のガスを第1の封止体FSの取り付け箇所を経て筐体BC外へ流出させ、その後筐体BCを常圧環境下に戻して開口部APを封止する。

Description

二次電池の製造方法、二次電池及び組電池
 本発明は、二次電池の筐体に形成された開口からガスを排出させるガス排出工程を有する二次電池の製造方法、その二次電池の製造方法にて製造した二次電池、及び、その二次電池により構成される組電池に関する。
 リチウムイオン電池等の二次電池では、二次電池の製造工程における充電の際に二次電池の筐体内でガスが発生することが良く知られている。
 このため、二次電池の製造過程では、下記特許文献1にも記載のように、二次電池を減圧環境下に配置して二次電池の筐体内の発生ガスを排出させる工程を有する場合が多い。
 この二次電池内のガス抜きのための工程としては、従来は、減圧環境下に二次電池を配置してガス抜きをした後に常圧環境下に戻して、ガス抜きのための開口を完全に封止するという作業(本封止)が行われていた。
特開2008-027741号公報
 しかしながら、上記従来構成のように、ガス抜きをした後の二次電池を常圧環境下に戻して封止する手法では、二次電池の筐体内に外気が入り込んだ状態で封止されることになる。
 リチウムイオン電池等の二次電池は、わずかずつではあるが、その二次電池の実使用時においても二次電池の筐体内でガスが発生することが知られている。
 この発生ガスが、元々二次電池の筐体内に存在する空気と共に、二次電池の筐体内の内圧を上昇させ、その内圧によって筐体を膨張させる電池膨れが発生してしまう。
 このような二次電池が所定の間隔を隔てて複数個並設された組電池では、電池膨れによって複数の電池間の隙間が狭くなり、当該隙間に供給される冷却風の流れが阻害されて適切に冷却できなくなる虞があった。
 また、電池内部で電極間にガス溜まりが生じると、その部分で充放電反応が行なわれなくなるために、電池性能が低下する虞があるという問題もあり、筐体内部の圧力を減圧状態にすることが重要であった。
 このような電池膨れは、二次電池の筐体内に元々存在する空気を減じて、筐体内部の圧力を大気圧よりも低い圧力に保つことで抑制できるので、例えば、ガス抜きのために二次電池を減圧環境下に配置したままの状態でガス抜きに使用する開口を完全に封止してしまうような手法も考えられる。
 しかしながら、このような減圧環境下での封止等の作業は、たとえ封栓部材を筐体の開口部位に設置するという簡単な作業であっても、大気圧下の作業と比較して非常に困難を伴ない、そのような作業を行えるようにするための装置設備が必要となり製造コストの上昇を招くために、現実的に量産に対応できないという問題があった。
 本発明は、かかる実情に鑑みてなされたものであって、その目的は、製造コストの上昇を可及的に抑制しながら、電池膨れの発生を抑制できるようにする点にある。
 本出願の第1の発明は、二次電池の筐体に形成された開口部からガスを排出させるガス排出工程を有する二次電池の製造方法において、前記ガス排出工程として、前記開口部に、前記筐体内の内圧が外圧よりも高いときに、前記内圧に押圧されて前記開口部からの内気の流出を許容し、且つ、前記筐体内の内圧が外圧よりも低いときに、前記外圧に押圧されて前記開口部からの外気の進入を阻止するように、前記筐体の内外の圧力差によって変位又は変形する第1の封止体を取り付け、前記第1の封止体を取り付けた前記筐体を減圧環境下に配置して、前記筐体内のガスを前記第1の封止体の取り付け箇所を経て前記筐体外へ流出させ、前記筐体内のガスを流出させた後、前記筐体を常圧環境下に戻して前記開口部を封止する。
 すなわち、二次電池の筐体に形成されている開口部に第1の封止体を取り付けて、例えば製造工程における充電等で発生した二次電池筐体内のガスを排出させる。
 この第1の封止体は、前記筐体内の内圧が外圧(筐体外の気圧)よりも高いときに、前記内圧に押圧されて前記開口部からの内気の流出を許容し、且つ、前記筐体内の内圧が外圧よりも低いときに、前記外圧に押圧されて前記開口部からの外気の進入を阻止するように変位又は変形するものであり、二次電池の筐体内から筐体外へのガスの流出のみを許容する一方向性の弁としての機能を有する。
 従って、二次電池筐体内に発生ガスが存在する状態で上記第1の封止体を取り付けた二次電池を減圧環境下に配置すると、筐体内のガスが上記第1の封止体を取り付けた開口部を経て筐体外へと流出し、二次電池筐体内の圧力は周囲の減圧環境に近い圧力まで低下する。
 このようにして減圧環境下で筐体内のガスを流出させた後に二次電池を常圧環境下に戻すと、二次電池筐体内の内圧が外圧(大気圧)よりも低い状態となり、上記第1の封止体は外圧に押圧されて外気の二次電池筐体内への進入を阻止する。
 このように外気の進入が阻止されている状態で、適宜の手段で上記開口部を完全に気密封止すれば良い。
 又、本出願の第2の発明は、上記第1の発明の構成に加えて、前記筺体は、扁平な直方体形状である。
 扁平な直方体形状の筺体を有する二次電池は、円筒形状のものと比べて複数並べて配置した場合のデッドスペースが小さいので空間の利用効率の良い配置が可能となり、底面が正方形の直方体形状のものと比べて比表面積が大きいため温度制御が精度良く行えるので長寿命化が図れる。
 その反面、筺体が扁平な直方体形状である場合、電池筐体の内圧が上昇してしまった場合には扁平面が形状変化し易く、使用期間の増大に伴う筺体の膨れが、円筒形状または底面が正方形の直方体形状のものと比べて顕著となってしまう。
 このため、長期間の使用により電池膨れが生じてしまうと、隣り合う二次電池間の空間が狭くなって冷却風の経路として機能できず温度制御の精度が著しく低下してしまう。
 従って、電池膨れを想定して隣り合う二次電池間の間隔をある程度広くしておく必要があり、筐体を扁平な直方体形状とする際の利点である空間の利用効率の良さを減殺してしまうものとなっていた。
 この点、本発明によれば、電池膨れを抑制できるので、互いの電池を近づける配置が可能となり、且つ、隣り合う二次電池間の空間の形状が長期間維持されることとなり、その結果、従来達成できなかったような省スペース化および長寿命化が図れる。
 本出願の第3の発明は、上記第1又は第2の発明の構成に加えて、前記ガス排出工程において、前記筐体を常圧環境下に戻した後、第2の封止体にて前記第1の封止体の存在空間を覆う状態で封止する。
 すなわち、上記第1の封止体が常圧環境下での外気の進入を阻止して仮封止している状態で、その第1の封止体の存在空間を覆うように第2の封止体で本封止を行うのである。
 又、本出願の第4の発明は、上記第3の発明の構成に加えて、前記第2の封止体による封止は、前記第2の封止体と前記筺体とを溶接することによって行う。
 前記第2の封止体と前記筺体とを溶接する方法を用いて封止することによって信頼性の高い気密が長期間維持できる。さらに、本発明によれば、設備コストが大幅に削減できるという効果が同時に得られる。設備コストが大幅に削減できるという効果は、溶接するための装置を常圧環境下で使用できることに起因するものである。尚、溶接するための溶接装置を減圧環境下で使用できるようにするためには、当該装置を含む空間全体を減圧環境にするなどの特別な設備が必要で有り設備コストが高くなるという問題がある。
 又、本出願の第5の発明は、上記第3又は第4の発明の構成に加えて、前記第1の封止体と前記第2の封止体とは互いに固定されている。
 第1の封止体と第2の封止体とを互いに固定することで、第1の封止体と第2の封止体とを同時に取り扱うことができるので、工程を簡略化できる。
 又、本出願の第6の発明は、上記第3~第5のいずれかの発明の構成に加えて、前記第2の封止体は板状に形成され、前記筐体を常圧環境下に戻す前に前記第2の封止体の一部を前記筺体に固定する。
 第2の封止体が板状の場合、常圧環境下に戻す工程において第2の封止体が高い頻度で位置ずれするという問題が見出された。これは、常圧に戻すための気体吹き込み方向を調整したり、吹き込み速度を低くしたりしても改善できなかった。前記第2の封止体の一部を前記筺体に固定(仮止めともいう)することによって、この問題が改善でき、同時に、気体吹き込み方向を調整したり、吹き込み速度を低くする必要も無くなった。
 又、本出願の第7の発明は、上記第1~第6のいずれかの発明の構成に加えて、前記筐体は金属製である。
 又、本出願の第8の発明は、開口部が前記筐体に備えられた二次電池において、前記開口部に、前記筐体内の内圧が外圧よりも高いときに、前記内圧に押圧されて前記開口部からの内気の流出を許容し、且つ、前記筐体内の内圧が外圧よりも低いときに、前記外圧に押圧されて前記開口部からの外気の進入を阻止するように、前記筐体の内外の圧力差によって変位又は変形する第1の封止体が備えられ、前記筺体と前記第1の封止体とで囲まれた空間の内部の圧力は、外部の圧力と比べて低く設定されている。
 二次電池の筐体内は第1の封止体による仮封止の作用により減圧環境に近い圧力となっており、ユーザによる二次電池の実使用において二次電池の筐体内でガスが発生しても、元々筐体内が低圧であることによるマージンが存在するので、いわゆる電池膨れを可及的に抑制できる。
 又、本出願の第9の発明は、上記第8の発明の構成に加えて、前記第1の封止体の存在空間を覆う状態で封止する第2の封止体が備えられ、前記第2の封止体と前記筺体とが溶接されている。
 溶接法を用いて封止することによって信頼性の高い気密が長期間維持でき、簡易な設備で製造することができる。
 又、本出願の第10の発明は、上記第9の発明の構成に加えて、前記筐体に、前記筐体内の内圧が所定の作動圧力よりも高くなったときに前記筐体内の内気を逃がす安全弁が備えられ、前記第2の封止体の耐圧は、前記安全弁の前記作動圧力よりも高い圧力に設定され、前記第1の封止体が内気の流出を開始する前記筐体内外の圧力差は、前記安全弁が内気の流出を開始する前記筐体内外の圧力差よりも小さい圧力差に設定されている。
 すなわち、リチウムイオン電池等の二次電池では、二次電池筐体内の内圧が過度に上昇したときに、内気を筐体外部へ逃がすための安全弁が備えられる。
 この安全弁にそれの本来の機能を有効に発揮させるために、気密封止した状態の第2の封止体の耐圧は、上記の安全弁の作動圧力よりも高くなるように設定している。
 更に、筐体内のガス抜きのために二次電池を減圧環境下に置いた場合、第1の封止体が電池筐体内のガスの排出を開始する前に安全弁が作動してガスが排出されてしまうような設定では二次電池の製造過程で二次電池を使用できなくしてしまうことになるので、そのようなことのないように第1の封止体が内気の流出を開始する圧力差を設定している。
 又、本出願の第11の発明は、上記第9又は第10の発明の構成に加えて、前記第1の封止体の取付位置から漏れ出た電解液を、前記第1の封止体の取付位置と前記第2の封止体の取付位置との間で滞留させる滞留部が備えられている。
 すなわち、第1の封止体はいわば仮封止の状態となっており、ガス排出工程等において二次電池に振動や衝撃が加わる等した場合には第1の封止体の取り付け箇所を通じて電解液が漏れ出してしまう可能性もある。
 このような場合でも、第1の封止体の取付位置と第2の封止体の取付位置との間に備えられる滞留部で電解液を滞留させることができるので、漏れ出た電解液が第2の封止体の取付位置まで拡がってしまうのを抑制できる。
 又、本出願の第12の発明は、上記第9~第11のいずれかの発明の構成に加えて、前記第1の封止体と前記第2の封止体とは互いに固定されている。
 第1の封止体と第2の封止体とを互いに固定することで、第1の封止体と第2の封止体とを同時に取り扱うことができるので、工程を簡略化できる。
 又、本出願の第13の発明は、上記第9~第12のいずれかの発明の構成に加えて、前記第2の封止体は板状に形成されている。
 第2の封止体を板状に形成することで、第2の封止体の重量を軽量にできる。更に、第1の封止体と第2の封止体とが互いに接触または固定されている状態とした場合においては、第2の封止体を軽量とすることによって、第1の封止体の作動圧力を極力小さくすることができる。
 又、本出願の第14の発明は、上記第8~第13のいずれかの発明の構成に加えて、前記第1の封止体は、前記開口部における案内部に対して隙間嵌め状態で嵌合する被案内部と、外力による押圧によって前記開口部又は筐体と接当して気密保持する気密保持部とが備えられ、前記筐体内の内圧が外圧よりも高いときにおける前記内圧、又は、前記筐体内の内圧が外圧よりも低いときにおける前記外圧に押圧されて、夫々、前記開口部と前記気密保持部とが離間する状態、又は、前記開口部に前記気密保持部が押圧される状態に、前記被案内部が前記開口部の前記案内部に案内される状態で変位するように構成されている。
 すなわち、上記第1の封止体を、前記筐体内の内圧が外圧よりも高いときに、前記内圧に押圧されて前記開口からの内気の流出を許容し、且つ、前記筐体内の内圧が外圧よりも低いときに、前記外圧に押圧されて外気の進入を阻止するための構成として、筐体内外の圧力差を利用して第1の封止体の気密保持部と開口部との接当状態を変化させ、第1の封止体の取付箇所での通気を制御する。
 二次電池筐体内の内圧が外圧よりも高くなる減圧環境下では、筐体内の内圧によって第1の封止体が押圧されて変位し、前記開口部と第1の封止体の気密保持部との間に空隙が形成され、内気が開口部を経て筐体外へと流出する。
 一方、減圧環境下から常圧環境下に戻したときは、筐体外部の外圧(大気圧)によって第1の封止体が押圧されて、第1に封止体の気密保持部が前記開口部に押し付けられ、外気の筐体内への進入を阻止する。
 又、本出願の第15の発明は、上記第8~第13のいずれかの発明の構成に加えて、前記第1の封止体は、前記開口部における前記筐体の内外を貫通する貫通孔の筐体外部側を覆う姿勢で配置され、前記筐体内の内圧が外圧よりも高いときに、前記貫通孔の周囲との接触面において前記開口部との間に存在する空隙を通して前記筐体内の内気の流出を許容し、且つ、前記筐体内の内圧が外圧よりも低いときに、前記外圧に押圧されて弾性変形し、前記貫通孔の周囲と密着して外気の進入を阻止するように構成されている。
 すなわち、上記第1の封止体を、前記筐体内の内圧が外圧よりも高いときに、前記内圧に押圧されて前記開口からの内気の流出を許容し、且つ、前記筐体内の内圧が外圧よりも低いときに、前記外圧に押圧されて外気の進入を阻止するための構成として、筐体内外の圧力差を利用して第1の封止体を弾性変形させて、第1の封止体の取付箇所での通気を制御する。
 二次電池筐体内の内圧が外圧よりも高くなる減圧環境下では、筐体内の内圧によって第1の封止体が押圧されて、前記開口部の前記貫通部の周囲と第1の封止体との間に形成されている空隙を通過して筐体内のガスが排出される。
 一方、減圧環境下から常圧環境下に戻したときは、筐体外部の外圧(大気圧)によって第1の封止体が押圧されて、第1の封止体が前記貫通部の周囲に押し付けられ、弾性変形によって前記貫通部の周囲に密着して外気の筐体内への進入を阻止する。
 又、本出願の第16の発明は、上記第8~第15のいずれかの発明の構成に加えて、前記開口部は、前記筐体内に電解液を注液する注液口として形成されている。
 すなわち、二次電池筐体内の発生ガスを排出させるための前記開口を、電解液を注液する注液口と兼用させている。
 電解液の注液口は本来的に設置される場合が多いので、二次電池筐体内の発生ガスを排出させるために新たに開口を形成する必要がない。
 又、本出願の第17の発明は、上記第8~第16のいずれかの発明の構成に加えて、前記筺体は扁平な直方体形状である。
 互いの電池を近づける配置が可能となり、かつ、隣り合う二次電池間の空間の形状が長期間維持されることとなり、その結果、従来達成できなかったような省スペース化および長寿命化が図れる。
 又、本出願の第18の発明は、上記第8~第17のいずれかの発明の構成に加えて、前記筐体は金属製である。
 又、本出願の第19の発明は、上記第8~第18のいずれかの発明の構成を備える二次電池を複数個備えて組電池が構成される。
 上記第8~第18のいずれかの発明の二次電池を複数備えていることにより、各電池の電池膨れが抑制されているので、互いの電池を近づける配置が可能となり、かつ、隣り合う二次電池間の空間の形状が長期間維持されることとなり、その結果、従来達成できなかったような省スペース化および長寿命化が図れる。
 上記第1の発明によれば、二次電池筐体の前記開口部に第1の封止体を取り付けた状態で減圧環境下に配置して筐体内の発生ガスを排出し、その後減圧環境下から常圧環境下に戻してから本封止を行えるので、減圧下での特別な製造設備を準備する必要が無く、本封止のための作業を低コストで行える。
 このように、常圧環境下で本封止を行う構成であっても、第1の封止体によって外気の進入が阻止されているので、二次電池の筐体内は第1の封止体による仮封止の作用により減圧環境に近い圧力となっており、ユーザによる二次電池の実使用において二次電池の筐体内でガスが発生しても、元々筐体内が低圧であることによるマージンが存在するので、いわゆる電池膨れを可及的に抑制できる。
 もって、製造コストの上昇を可及的に抑制しながら、電池膨れの発生を抑制できる二次電池の製造方法を提供できるに至った。
 又、上記第2の発明によれば、電池筐体内の内圧の上昇によって電池膨れが発生し易い扁平な直方体形状の筺体を有する二次電池において、的確に電池膨れを抑制できるので、空間の利用効率の良い配置が可能となる電池筐体の形状の利点を有効に生かすことができる。
 又、上記第3の発明によれば、上記第1の封止体が常圧環境下での外気の進入を阻止して仮封止している状態で、その第1の封止体の存在空間を覆うように第2の封止体で本封止を行うので、気密封止を的確に行うことができる。
 又、上記第4の発明によれば、上記第2の封止体を常圧環境下での溶接作業で封止できるので、設備コストの増大を可及的に抑制できる。
 又、上記第5の発明によれば、第1の封止体と第2の封止体とを同時に取り扱って工程を簡略化することで、二次電池の製造コストの低減に寄与できる。
 又、上記第6の発明によれば、常圧環境下に戻す際に位置ずれし易い板状の第2の封止体を予め仮止めしておくことで、第2の封止体の封止作業性を向上させることができる。
 又、上記第7の発明によれば、長期にわたり安定した保形性を確保することができる。
 又、上記第8の発明によれば、ユーザによる二次電池の実使用において二次電池の筐体内でガスが発生しても、元々筐体内が低圧であることによるマージンが存在するので、製造コストの上昇を可及的に抑制しながら、電池膨れの発生を抑制できるものとなった。
 又、上記第9の発明によれば、溶接法を用いて封止することによって信頼性の高い気密が長期間維持でき、簡易な設備で製造することができるので、製造コストの増大を抑制しながら二次電池の信頼性を向上させることができる。
 又、上記第10の発明によれば、気密封止した状態の第2の封止体の耐圧を十分に高く設定して気密の確保を図り、更に、二次電池の製造過程で安全弁が動作してしまうようなことがないようにしながらも、安全弁が的確に動作するようにして二次電池の安全性を確保している。
 又、上記第11の発明によれば、二次電池に振動や衝撃が加わる等して第1の封止体の取り付け箇所を通じて電解液が漏れ出てしまった場合でも、漏れ出た電解液が第2の封止体の取付位置まで拡がってしまうのを抑制できるので、漏れ出た電解液に邪魔されることなく第2の封止体の気密封止作業を行うことができて、作業性を向上させることができる。
 又、上記第12の発明によれば、第1の封止体と第2の封止体とを同時に取り扱って工程を簡略化できるので、二次電池の製造コストの低減に寄与できる。
 又、上記第13の発明によれば、第2の封止体を板状に形成して軽量化することで、二次電池の軽量化に寄与できる。
 又、上記第14の発明によれば、筐体内外の圧力差を利用して第1の封止体の気密保持部と開口部との接当状態を変化させ、第1の封止体の取付箇所での通気を制御するので、簡素な構成で一方向性の弁を構成することができる。
 又、上記第15の発明によれば、筐体内外の圧力差を利用して第1の封止体を弾性変形させて、第1の封止体の取付箇所での通気を制御するので、簡素な構成で一方向性の弁を構成することができる。
 又、上記第16の発明によれば、本来的に設置される場合が多い電解液の注液口を、二次電池筐体内の発生ガスを排出させるための開口としても利用するため、ガス排出のための新たな開口を形成する必要がなく、装置コストの上昇を抑制することができる。
 又、上記第17の発明によれば、電池筐体内の内圧の上昇によって電池膨れが発生し易い扁平な直方体形状の筺体を有する二次電池において、的確に電池膨れを抑制できるので、空間の利用効率の良い配置が可能となる電池筐体の形状の利点を有効に生かすことができる。
 又、上記第18の発明によれば、長期にわたり安定した保形性を確保することができる。
 又、上記第19の発明によれば、組電池を構成する電池同士を近づける配置が可能となり、且つ、隣り合う二次電池間の空間の形状が長期間維持されることとなり、組電池の省スペース化および長寿命化が図れる。
図1は、本発明の実施の形態にかかる二次電池の外観斜視図である。 図2は、本発明の実施の形態にかかる二次電池の内部を示す斜視図である。 図3は、本発明の実施の形態にかかる二次電池の要部断面図である。 図4は、本発明の実施の形態にかかる二次電池の正面図である。 図5は、本発明の実施の形態にかかるガス排出工程を説明するための斜視図である。 図6は、本発明の実施の形態にかかるガス排出工程を説明するための斜視図である。 図7は、本発明の実施の形態にかかるガス排出工程を説明するための要部断面図である。 図8は、本発明の実施の形態にかかるガス排出工程を説明するための斜視図である。 図9は、本発明の別実施形態にかかる要部断面図である。 図10は、本発明の別実施形態にかかる要部断面図である。 図11は、本発明の別実施形態にかかる要部断面図である。 図12は、本発明の別実施形態にかかる要部断面図である。 図13は、本発明の組電池の平面図である。
 以下、本発明の二次電池の実施の形態を図面に基づいて説明する。
 本実施の形態では、二次電池の1例である非水電解液二次電池(より具体的にはリチウムイオン電池)を例示して説明する。
 尚、詳細な説明は省略するが、本実施の形態の二次電池RBは組電池の一部を構成するものであり、以下において詳細に説明する二次電池RBを複数個並べて配置して組電池として使用する。
〔非水電解液二次電池RBの構成〕
 図1及び図2の斜視図並びに図3の側面図に示すように、本実施の形態の非水電解液二次電池RBは、有底筒状(より具体的には有底矩形筒状)の缶体1の開放面に略平板状の蓋部2を被せて溶接して構成した筐体BCを有している。蓋部2は短冊状の長方形に形成されており、筐体BCは全体として扁平な直方体形状を有している。扁平な直方体形状の寸法としては、例えば、たて(底面のたて幅の寸法)47.2mm、よこ(底面のよこ幅の寸法)170.2mm、高さ(端子部含む)133.2mmとすれば良い。尚、図2は、完成した二次電池RB(図1に示すもの)から缶体1を除いて筐体BC内部の構成を図示している。
 筐体BCの内部には、図2及び図4において2点鎖線で示す発電要素3と集電体4,6が電解液に浸される状態で収納配置されている。発電要素3は、箔状正極板と箔状負極板とからなる一対の電極板の夫々に活物質を塗布し、セパレータを挟んで巻回して構成されている。
 発電要素3は、箔状正極板の活物質未塗工部分が側方に延出して集電体4に溶接され、箔状負極板の活物質未塗工部分がそれと反対側の側方に延出して集電体6に溶接されている。
 金属製(具体的には、アルミニウム製)の蓋部2には、正極側の集電体4及びその集電体4に接続されている正極の電極端子である端子ボルト5と、負極側の集電体6及びその集電体6に接続されている負極の端子ボルト7とが取り付けられている。
 端子ボルト5は、図3の断面図に示すように、それの頭部側にリベット部5aを有するように一体形成され、そのリベット部5aが蓋部2に形成された電極取付孔8を貫通する状態で配置されている。
 端子ボルト5の蓋部2への取付固定は、蓋部2を挟む状態で配置される一対のパッキン9,10を端子ボルト5の頭部と集電体4とで挟んでリベット部5aをかしめることで行う。
 図示を省略するが、負極側も正極側と同一構造であり、金属部材の材料のみが異なる。
 正極側の金属部材はアルミニウムにて構成し、負極側の金属部材は銅にて構成している
 蓋部2には、図1及び図2に示すように、長手方向中央位置に安全弁11が取り付けられ、安全弁11の側脇には、封止板12で封止した状態の注液口13が配置されている。
 安全弁11は、二次電池RBの筐体BC内の内圧が所定の作動圧力よりも高くなったときに、弁体を開放して内気を逃がすものである。
 注液口13は、図2に及び注液口13付近の拡大図である図7に示すように、蓋部2を貫通する貫通孔13aと、筐体BC外部側において貫通孔13aを中心として内径を拡大した拡径部13bとからなっている。
 この注液口13は、円板状の台座部14b中央から円柱状の突部14aが突出した形状を有する樹脂製の封止栓14によって封止される。但し、封止栓14の機能は注液口13を永久に気密封止したままとするのではなく、外気の筐体BC内への進入を防ぐための一時的な気密封止でありいわば仮封止のためのものである。
 これに対して、封止板12は、注液口13を永久に気密封止するためのものである。
 注液口13は、筐体BC内へ電解液を注入するための開口であるが、詳しくは後述するように、筐体BCで発生したガスを筐体BC外へ排出させるガス抜きのための開口部APとしての機能をも有している。
〔二次電池RBの製造工程〕
 次に、二次電池RBの製造工程について概略的に説明する。
 先ず、二次電池RBの筐体BCを組み立てる。
 発電要素3は、上述のように、長尺帯状の箔状正極板及び箔状負極板に正極活物質及び負極活物質を夫々塗布し、乾燥処理等の後にセパレータを挟んで巻回すると共に、扁平形状となるように押圧して成形する。尚、箔状正極板及び箔状負極板には、集電体4,6との接続のために、幅方向の一端側に活物質を塗布していない未塗工領域を備えている。この未塗工部は正極と負極とで反対側の端縁部に位置している。
 一方、蓋部2は、端子ボルト5,7を取り付ける電極取付孔8や安全弁11の取付孔、更には、注液口13を予め形成したアルミニウム製の板材に、安全弁11を取り付けると共に、集電体4,6と端子ボルト5,7とを、パッキン9,10を挟んだ状態でリベット部5aをかしめて固定する。
 次に、上記のように蓋部2に固定された集電体4,6に発電要素3の上記未塗工部を溶接することで、蓋部2と発電要素3とを一体化する。
 更に、発電要素3を缶体1に収納して、蓋部2と缶体1とを溶接することで、二次電池RBの筐体BCの組み立てが完了する。
 筐体BCの組み立てが完了すると、次に、図5等に示すように、蓋部2に形成されている注液口13から電解液を筐体BC内に注入し、電解液の注入が完了すると所定の充電条件で二次電池RBの初期充電(予備充電)を行う。
 この初期充電の際に、二次電池RBの筐体BC内にガスが発生するため、次のガス排出工程において筐体BC内のガスを排出させる。
 ガス排出工程は、筐体BC内で初期充電時に発生したガスを二次電池RBの筐体BCに形成された開口部APから排出する工程あるが、本実施の形態では、蓋部2に形成している注液口13をこのガス排出のための開口部APとして利用している。
 ガス排出工程では、図6に示すように、注液口13に封止栓14を取り付け、初期充電の完了した二次電池RBを密閉容器内に配置する。
 その密閉容器内を真空ポンプ等で排気して、密閉容器内の気圧が大気圧(常圧)よりも低い所定の圧力まで減圧する。これによって、二次電池RBが減圧環境下に配置されることになる。
 注液口13の貫通孔13aと封止栓14の突部14aとは、いわゆる「隙間嵌め」となる寸法に形成してあり、貫通孔13aの側面と突部14aの側面との間には若干の空隙が存在する。
 このため、上記のように初期充電が終了した二次電池RBを減圧環境下に置くと筐体BC内の内圧が外圧(筐体BC外の気圧)よりも高い状態となり、前記内圧に押圧されて封止栓14がわずかに持ち上がる。この筐体BC内外の圧力差による封止栓14の変位の際には、案内部GDである貫通孔13aが被案内部DGである突部14aを移動案内することになる。尚、図7では、図面を分かり易くするために、封止栓14の浮き上り量を誇張して図示している。
 拡径部13bの底面は気密保持用の接当面TSとなっており、封止栓14側の気密保持部SLである台座部14bが外力によって上記接当面TSに押圧されている状態では、接当面TSと気密保持部SL(台座部14b)との接当箇所における通気は阻止され気密保持されるが、上記のように、封止栓14がわずかに浮き上がって前記接当面TS(拡径部13bの底面)と前記気密保持部SL(台座部14b)とがわずかに離間する状態では通気が許容される。
 従って、貫通孔13aと突部14aとの間の空隙、及び、拡径部13bの底面と台座部14bとの間の空隙を経るガスの排出流路が形成され、図7において矢印Aで示すように、筐体BC内のガスが貫通孔13aを経て筐体BC外へ排出される。
 換言すると、上記のガス排出流路を形成できる程度に筐体BCの内外での圧力差が必要となる。封止栓14は、上記のガス排出流路の形成に必要な筐体BCの内外の圧力差が十分に小さくなるように、極力軽量に構成されている。
 尚、筐体BCの内圧が外圧よりも高くなると、蓋部2に取り付けている安全弁11の作動要因となるが、封止栓14が浮き上がって内気の流出を開始する筐体BC内外の圧力差は、安全弁11が内気の流出を開始する筐体BC内外の圧力差よりも十分小さい圧力差に設定されているので、ガス排出工程において安全弁11が作動してしまうことはない。
 ガスが貫通孔13aから流出して筐体BC内の気圧が低下し、二次電池RBの筐体BC内外の圧力差が十分小さくなると、封止栓14を持ち上げる力が弱くなり、封止栓14の台座部14bの下面と拡径部13bの底面とが密接してガスの流出が停止する。
 以上のようにして、筐体BC内のガス抜きが完了すると、封止栓14には特別の操作を加えずにそのまま密閉容器に外気等を導入して常圧(大気圧)に戻す。
 ガス抜きが完了した二次電池RBを常圧環境下に戻すと筐体BC内の内圧が外圧よりも低い状態となり、前記外圧に押圧されて前記接当面TS(拡径部13bの底面)に前記気密保持部SL(台座部14b)が押圧される。すなわち、二次電池RBの筐体BC内外の圧力差によって台座部14bと拡径部13bの底面とが密着する状態に変位する。
 この台座部14bと拡径部13bの底面との密着によって通気が阻止され、貫通孔13aを経て大気が筐体BC内へ流入するのを阻止する。
 尚、この大気の流入の阻止効果をより確実なものとするために、拡径部13bの底面にシール材を塗布しておくか、あるいは、ゴム製のパッキン等を配置しておくようにしても良い。
 このようにして封止栓14が筐体BC内への大気の進入を阻止している状態で、図8に示すように、封止栓14の存在空間である拡径部13bを覆うように封止板12を配置し、封止板12の端縁部と蓋部2とを封止板12の全周に亘って溶接して完全に気密封止することで、ガス排出工程が終了する。
 拡径部13bは、図7等に示すように、封止栓14の台座部14bの径よりも大径の空間としてあり、封止栓14と封止板12との間には設定容積の空間が形成されている。 この空間の主たる目的は、二次電池RBの製造工程(特に、上記ガス排出工程)において封止栓14から電解液が漏れ出た場合に、漏れ出た電解液を保持しておく機能を有している。
 すなわち、封止栓14の取付位置は、封止板12の取付位置である蓋部2の上面から階段状に段差を設けて1段低くした拡径部13bの底面であり、上記ガス排出工程においても二次電池RBを蓋部2が上側となる正立姿勢として取り扱うため、封止栓14から電解液が漏れ出ても、封止栓14の取付位置と封止板12の取付位置との間の封止栓14の周囲の空間すなわち拡径部13b内が滞留部STとなって電解液が滞留する。
 これによって、漏れ出た電解液が封止板12の取付位置である蓋部2の上面までは至らず、電解液の漏れ出しを気にすることなく封止板12の気密封止作業すなわち溶接作業を行うことができる。
 以上のように、封止栓14は、筐体BC内の内圧が外圧よりも高いときに、前記内圧に押圧されて注液口13(ガス排出用の開口)からの内気の流出を許容し、且つ、前記筐体BC内の内圧が外圧よりも低いときに、前記外圧に押圧されて注液口13からの外気の進入を阻止するように動作し、注液口13を封止する封止体FS(説明の便宜上、「第1の封止体FS」と称する)として機能する。
 又、封止板12は、前記第1の封止体FS(封止栓14)の存在空間を覆う状態で封止する封止体SS(説明の便宜上、「第2の封止体SS」と称する)として機能する。
 この後、適宜にエージング等の処理を行い、二次電池RBとして完成させる。
 このようにして製造した二次電池RBは筐体BC内の気圧が大気圧よりも低い圧力になっており、その低い圧力がマージンとなって、二次電池RBの実使用状態において筐体BC内でガスが発生しても、筐体BC内の気圧が上昇して大気圧よりも高くなることによる電池膨れが発生しにくくなる。
 又、封止板12は蓋部2に対して十分な強度を有する状態で溶接しており、第2の封止体SSである封止板12の耐圧は、安全弁11が作動する所定の作動圧力よりも十分高い圧力に設定されている。
 図13に示すように、このようにして製造された二次電池RBは、正極の端子ボルト5同士及び負極の端子ボルト7同士が対向するように、ケーシングに所定の間隔を隔てて複数個(図13では4個)並設するように収容された組電池を構成する電池として用いられる。
 各二次電池RBは、上述した通り、電池膨れが防止された構造であるので、複数の電池間の隙間が狭くなるようなことが無く、当該隙間に供給される冷却風が円滑に流れて適切に冷却される。
〔別実施形態〕
 以下、本発明の別実施形態を列記する。
(1)上記実施の形態では、ガス抜き後の二次電池RBの筐体BC内への大気の進入を阻止する封止栓14を、それの突部14aを注液口13の貫通孔13aに挿入するように構成する場合を例示しているが、この封止栓14の機能を実現するための具体構成は種々に変更可能である。
 例えば、図9に示すように、薄板状の金属円板21(例えば、アルミニウム製の円板)にゴム製の円板22を固定したものを、上記実施の形態と同様に形成した注液口13に取り付ける構成としても良い。
 図9に示す構成では、二次電池RBの筐体BCに初期充電を行う段階までは上記実施の形態と全く同一の製造工程であり、初期充電が完了すると、注液口13の貫通孔13aの筐体BC外部側を覆う姿勢で金属円板21に固定した円板22を配置し、円板22等が蓋部2から離脱しないように、金属円板21の端縁の一部を蓋部2に溶接して仮止めする。
 仮止めすることによって、金属円板21の位置がずれるのを防ぐことができる。そのため、後に行われる金属円板21の全周を溶接して金属円板21と蓋板2とを完全に気密封止する工程において、位置あわせを行う必要がなくなる。尚、金属円板21の位置がずれるという現象は、筐体BCを収納している密閉容器内に外気等を導入して常圧に戻す工程を行い、かつ、金属円板21の直径方向の面積が広く、重量が軽いということに起因して生じるものである。外気等を導入するのに伴って生じる気体の流れは、金属円板21と蓋板2との隙間および滞留部STの空間内にも生じ、その結果、金属円板21を浮き上がらせる方向の力を生じさせる。金属円板21は、直径方向の面積は広く軽量であるため、気体の流れが小さくても金属円板21が浮き上がることとなっていた。
 このように金属円板21を仮止めするタイミングは、ガス排出を終了して減圧環境下から常圧環境下に戻すより前であれば、いつでも良い。
 金属円板21を仮止めした状態では、ゴム製の円板22は貫通孔13aの上に軽く乗っている状態となっており、円板22と拡径部13bの底面との間には微少な空隙が存在している。
 次に、金属円板21を仮止めした二次電池RBを、上記実施の形態と同様にして減圧環境下に配置すると、筐体BC内の内圧が外圧よりも高い状態となる。
 この状態では、筐体BC内外の圧力差によって円板22が筐体BC外方側へ押され、円板22における貫通孔13aの周囲との接触面において注液口13との間に存在する空隙が更に拡がり、その空隙を通して注液口13からの内気の流出を許容する状態となる。
 より具体的には、図9において矢印Bに示すように、筐体BC内のガスが貫通孔13a,ゴム製の円板22と拡径部13bの底面における貫通孔13aの周囲部分との間の空隙,及び,金属円板21と蓋部2表面との間の空隙を通過して、筐体BC内のガスが外部へ流出する。
 筐体BC内のガスの流出によって筐体BCの内外の圧力差が十分に小さくなった後に、二次電池RBを減圧状態の密閉容器から常圧環境下(すなわち、大気圧の環境下)に戻すと筐体BC内の内圧が外圧よりも低い状態となり、筐体BC内外で、二次電池RBを減圧環境下に配置したときとは逆の圧力差が発生する。
 この状態で、前記外圧によってゴム製の円板22が拡径部13bの底面に押圧されて弾性変形し、貫通孔13aの周囲と密着して通気を阻止する。すなわち、外気の筐体BC内への進入を阻止する。
 円板22が大気の進入を阻止している状態で、金属円板21の端縁部と蓋部2とを金属円板21の全周に亘って溶接して完全に気密封止する。
 これ以降の製造工程は、上記実施の形態と同一である。
 以上から、図9に示す構成では、ゴム製の円板22が、上記実施の形態における封止栓14と同様に第1の封止体FSとして機能し、円板22を支持する金属円板21が上記実施の形態における封止板12と同様に第2の封止体SSとして機能する。
 従って、第1の封止体FSと第2の封止体SSとが互いに固定されている関係にある。
 又、ゴム製の円板22の周囲の空間が、円板22の取付箇所を経て漏れ出た電解液を滞留させる滞留部STとして機能する点も上記実施の形態と同様である。
 更に、図9に示す構成では、第1の封止体FSであるゴム製の円板22を支持する金属円板21を第2の封止体SSとして利用する場合を例示しているが、金属円板21とは別個に第2の封止体SSを備える構成としても良い。
 具体的には、例えば図10に示すように、金属円板21及びゴム製の円板22を配置する注液口13の部分を蓋部2とは別部材の注液口ユニット30として形成し、蓋部2に、金属円板21の径よりも若干大径の開口31と、その開口31よりも更に大径の段差部32とを形成する。この段差部32に、上記第2の封止体SSとして金属製(より具体的にはアルミニウム製)の封止板33を配置する。封止板33は、第1の封止体FSである円板22や金属円板21の存在空間を覆っており、封止板33の端縁を全周に亘って溶接することで注液口13を完全に気密封止する。
 注液口ユニット30は拡径部13b等が開口31等と同心となるように予め蓋部2に固定しておき、図9によって説明したのと同様の製造工程で金属円板21及び円板22の取り付け等を行う。
 図9に示すものと異なるのは、二次電池RBを減圧環境下から常圧環境下に戻した後の工程であり、図9の例では金属円板21の端縁を全周に亘って溶接して気密封止する場合を説明したが、図10に示す構成では、減圧環境下から常圧環境下に戻した後、円板22が外気に進入を阻止している状態で、段差部32に封止板33を載置して、封止板33の端縁を全周に亘って溶接し、気密封止する。もちろん、封止板33の取り付けの前に、金属円板21の端縁を全周に亘って溶接して気密封止をより確実なものとするようにしても良い。
(2)上記実施の形態では、第1の封止体FSとして、円板状の台座部14b中央から円柱状の突部14aが突出した形状に形成した封止栓14を例示しているが、具体的な形状は各種に変更可能である。
 以下、第1の封止体FSの変更態様である各種形状の封止栓を列挙して説明する。
 図11(a)では、単純な円柱形状(角柱形状でも良い)に形成した封止栓41を示している。蓋部2には、封止栓41の外形形状に適合した陥没部42を形成し、更に、その陥没部42の底面中央に注液口43を貫通孔として形成しており、陥没部42と注液口43とで筐体BC内のガスを排出するための開口部を構成している。
 陥没部42と封止栓41とは隙間嵌め状態で嵌合し、両者の間には通気用の空隙が存在すると共に、封止栓41が筐体BC内外の圧力差で変位する際に、陥没部42の縦側面が案内部となり、封止栓41の縦側面を被案内部として移動案内する。
 一方、陥没部42の底面における注液口43の周囲は気密保持用の接当面TSとして封止栓41の底面と接当し、封止栓41の底面を気密保持部SLとして機能させる。
 筐体BC内の内圧が外圧よりも高いときは、前記内圧によって封止栓41がわずかに浮き上がり、それによって生じた陥没部42の底面と封止栓41の底面との間の空隙を経て内気が排出される。
 又、筐体BC内の内圧が外圧よりも低いときは、前記外圧によって封止栓41が陥没部42の底面へ押圧され、陥没部42の底面と封止栓41の底面との接当部分で外気の進入を阻止する。
 図11(b)に示す封止栓44は、図11(a)に示す封止栓41の上端にフランジ状の幅広部44aを備えた形状を有し、その幅広部44aと接当する蓋部2の表面を気密保持用の接当面TSとして機能させ、幅広部44aの下面を気密保持部SLとして機能させることができる。
 図11(c)に示す封止栓45は、下端側が円錐形状に形成されており、蓋部2に形成した陥没部46も封止栓45の形状に適合した形状としてある。陥没部46における、封止栓45の形状に適合した円錐状の凹部の先端(最下端)に注液口43が形成されている。
 図11(c)に示す例においても、陥没部46と封止栓45とは隙間嵌め状態で嵌合し、両者の間には通気用の空隙が存在すると共に、封止栓45が筐体BC内外の圧力差で変位する際に、陥没部46の縦側面が案内部となり、封止栓45の縦側面を被案内部として移動案内する。
 又、陥没部46下端側の傾斜面は気密保持用の接当面TSとして封止栓45下端の傾斜面と接当し、封止栓45下端の傾斜面を気密保持部SLとして機能させる。
 図11(d)に示す封止栓47は、図11(b)に示す封止栓44と同様に、上端にフランジ状の幅広部47aを備えたものであり、それの機能も図11(b)について説明した幅広部44aと同様である。
 図11(e)及び図11(f)に示す封止栓48,49は、図11(c)及び図11(d)に示すものに対して、注液口43の径を大きくしたものであり、それに合わせて封止栓48,49の下端を切除している。封止栓49にも、幅広部44aと同様の形状及び機能を有する幅広部49aが備えられている。
 図12(a)に示す封止栓50は、図11(c)に示す封止栓45から円柱状の部分を切除した形状を有するものであり、円錐形状の部分のみからなる。陥没部51もその封止栓50の形状に適合させて円錐形状に陥没させ、下端を注液口43としている。
 図12(a)に示す例では、陥没部51の傾斜面は気密保持用の接当面TSとして封止栓50の傾斜面と接当し、封止栓50の傾斜面を気密保持部SLとして機能させる。それと同時に、封止栓50が筐体BC内外の圧力差で変位する際に、陥没部51の傾斜面が案内部となり、封止栓50の傾斜面を被案内部として移動案内する関係にもなっている。
 図12(b)に示す封止栓52は、図11(b)の封止栓44の幅広部44a等と同様の幅広部52aを備えており、その機能も幅広部44a等と同様である。
 図12(c)に示す封止栓53は円柱状部分の下端側に回転楕円体の一部を接合した形状を有している。一方、陥没部54は、封止栓53の円柱状部分と隙間嵌め状態で嵌合する縦壁部と、断面がかぎ状に湾曲して底面とを有する形状に形成され、そのかぎ状部分の先端すなわち底面の中央部を注液口43としている。
 上記実施の形態,図11(a)~(f)及び図12(a),(b)では、第1の封止体FSの気密保持部SL(封止栓14の台座部14b等)が開口部APと面接触して、外気の進入を阻止する場合を例示しているのに対して、図12(c)に示す例では、断面がかぎ状に湾曲した陥没部54の底面における注液口43の端縁部分と封止栓53とがほぼ線接触しており、筐体BCの外気による外圧によって封止栓53が注液口43の端縁部分に押圧されるとき、その線接触によって外気の進入を阻止する。
 図12(d)に示す封止栓55は、図11(b)の封止栓44の幅広部44a等と同様のフランジ状の幅広部55aを備えており、その機能も幅広部44a等と同様である。
 図12(e)に示す封止栓56は回転楕円体形状に形成されており、図12(c)等に示すものと同一形状の陥没部54に隙間嵌め状態で嵌合する。
 封止栓56と注液口43の端縁部分との接当による外気の進入を阻止する機能は、図12(c)の例で説明したのと同様である。
 図12(f)に示す封止栓57は球体形状に形成したもので、それの機能及び作用は図12(e)に示す例と同様である。
(3)上記実施の形態及び別実施形態では、筐体内のガスを排出させるための開口部APを注液口13と兼用させる場合を例示しているが、上記開口部APを注液口13とは別個に備える構成としても良い。
(4)上記実施の形態では、初期充電時に二次電池RBの筐体BC内に発生するガスを排出するガス排出工程を初期充電の終了後に行う場合を例示しているが、初期充電とガス排出工程とを同時並行で行うようにしても良い。
(5)上記実施の形態では、二次電池RBの筐体BC内のガスを排出するための開口部APと兼用の注液口13を、筐体BCの上面を形成する蓋部2に備える場合を例示しているが、筐体BCの側面(すなわち、缶体1の側面)に備える等、具体的な設置箇所は適宜に変更可能である。
 AP  開口部
 BC  筐体
 DG  被案内部
 FS  第1の封止体
 GD  案内部
 RB  二次電池
 SL  気密保持部
 SS  第2の封止体
 ST  滞留部
 11  安全弁
 13  注液口
 13a 貫通孔

Claims (19)

  1.  二次電池の筐体に形成された開口部からガスを排出させるガス排出工程を有する二次電池の製造方法であって、
     前記ガス排出工程として、
     前記開口部に、前記筐体内の内圧が外圧よりも高いときに、前記内圧に押圧されて前記開口部からの内気の流出を許容し、且つ、前記筐体内の内圧が外圧よりも低いときに、前記外圧に押圧されて前記開口部からの外気の進入を阻止するように、前記筐体の内外の圧力差によって変位又は変形する第1の封止体を取り付け、
     前記第1の封止体を取り付けた前記筐体を減圧環境下に配置して、前記筐体内のガスを前記第1の封止体の取り付け箇所を経て前記筐体外へ流出させ、
     前記筐体内のガスを流出させた後、前記筐体を常圧環境下に戻して前記開口部を封止する二次電池の製造方法。
  2.  前記筺体は、扁平な直方体形状である請求項1記載の二次電池の製造方法。
  3.  前記ガス排出工程において、
     前記筐体を常圧環境下に戻した後、第2の封止体にて前記第1の封止体の存在空間を覆う状態で封止する請求項1又は2記載の二次電池の製造方法。
  4.  前記第2の封止体による封止は、前記第2の封止体と前記筺体とを溶接することによって行う請求項3記載の二次電池の製造方法。
  5.  前記第1の封止体と前記第2の封止体とは互いに固定されている請求項3又は4記載の二次電池の製造方法。
  6.  前記第2の封止体は板状に形成され、
     前記筐体を常圧環境下に戻す前に前記第2の封止体の一部を前記筺体に固定する請求項3~5のいずれか1項に記載の二次電池の製造方法。
  7.  前記筐体は金属製である請求項1~6のいずれか1項に記載の二次電池の製造方法。
  8.  開口部が前記筐体に備えられた二次電池であって、
     前記開口部に、前記筐体内の内圧が外圧よりも高いときに、前記内圧に押圧されて前記開口部からの内気の流出を許容し、且つ、前記筐体内の内圧が外圧よりも低いときに、前記外圧に押圧されて前記開口部からの外気の進入を阻止するように、前記筐体の内外の圧力差によって変位又は変形する第1の封止体が備えられ、
     前記筺体と前記第1の封止体とで囲まれた空間の内部の圧力は、外部の圧力と比べて低く設定されている二次電池。
  9.  前記第1の封止体の存在空間を覆う状態で封止する第2の封止体が備えられ、前記第2の封止体と前記筺体とが溶接されている請求項8記載の二次電池。
  10.  前記筐体に、前記筐体内の内圧が所定の作動圧力よりも高くなったときに前記筐体内の内気を逃がす安全弁が備えられ、
     前記第2の封止体の耐圧は、前記安全弁の前記作動圧力よりも高い圧力に設定され、
     前記第1の封止体が内気の流出を開始する前記筐体内外の圧力差は、前記安全弁が内気の流出を開始する前記筐体内外の圧力差よりも小さい圧力差に設定されている請求項9記載の二次電池。
  11.  前記第1の封止体の取付位置から漏れ出た電解液を、前記第1の封止体の取付位置と前
    記第2の封止体の取付位置との間で滞留させる滞留部が備えられている請求項9又は10記載の二次電池
  12.  前記第1の封止体と前記第2の封止体とは互いに固定されている請求項9~11のいずれか1項に記載の二次電池。
  13.  前記第2の封止体は板状に形成されている請求項9~12のいずれか1項に記載の二次電池。
  14.  前記第1の封止体は、前記開口部における案内部に対して隙間嵌め状態で嵌合する被案内部と、外力による押圧によって前記開口部又は筐体と接当して気密保持する気密保持部とが備えられ、
     前記筐体内の内圧が外圧よりも高いときにおける前記内圧、又は、前記筐体内の内圧が外圧よりも低いときにおける前記外圧に押圧されて、夫々、前記開口部と前記気密保持部とが離間する状態、又は、前記開口部に前記気密保持部が押圧される状態に、前記被案内部が前記開口部の前記案内部に案内される状態で変位するように構成されている請求項8~13のいずれか1項に記載の二次電池。
  15.  前記第1の封止体は、前記開口部における前記筐体の内外を貫通する貫通孔の筐体外部側を覆う姿勢で配置され、
     前記筐体内の内圧が外圧よりも高いときに、前記貫通孔の周囲との接触面において前記開口部との間に存在する空隙を通して前記筐体内の内気の流出を許容し、且つ、前記筐体内の内圧が外圧よりも低いときに、前記外圧に押圧されて弾性変形し、前記貫通孔の周囲と密着して外気の進入を阻止するように構成されている請求項8~13のいずれか1項に記載の二次電池。
  16.  前記開口部は、前記筐体内に電解液を注液する注液口として形成されている請求項8~15のいずれか1項に記載の二次電池。
  17.  前記筺体は扁平な直方体形状である請求項8~16のいずれか1項に記載の二次電池。
  18.  前記筐体は金属製である請求項8~17のいずれか1項に記載の二次電池。
  19.  請求項8~18のいずれか1項に記載の二次電池を複数個備えて構成される組電池。
PCT/JP2011/064202 2010-06-30 2011-06-22 二次電池の製造方法、二次電池及び組電池 WO2012002201A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012522565A JP6142532B2 (ja) 2010-06-30 2011-06-22 二次電池の製造方法、二次電池及び組電池
CN201180030265.0A CN102959785B (zh) 2010-06-30 2011-06-22 二次电池的制造方法、二次电池及电池组
US13/806,995 US9812686B2 (en) 2010-06-30 2011-06-22 Manufacturing method of secondary battery, secondary battery, and assembled battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-148475 2010-06-30
JP2010148475 2010-06-30

Publications (1)

Publication Number Publication Date
WO2012002201A1 true WO2012002201A1 (ja) 2012-01-05

Family

ID=45401921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064202 WO2012002201A1 (ja) 2010-06-30 2011-06-22 二次電池の製造方法、二次電池及び組電池

Country Status (4)

Country Link
US (1) US9812686B2 (ja)
JP (2) JP6142532B2 (ja)
CN (1) CN102959785B (ja)
WO (1) WO2012002201A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130323574A1 (en) * 2012-05-25 2013-12-05 Hitachi Vehicle Energy, Ltd. Electric cells and assembled battery
KR101679309B1 (ko) 2015-07-14 2016-11-24 주식회사 이온스렙 전해액 유출을 최소화하는 금속 공기 전지
JP2018056084A (ja) * 2016-09-30 2018-04-05 三洋電機株式会社 角形二次電池
JP2020140763A (ja) * 2019-02-26 2020-09-03 富士通コンポーネント株式会社 電磁継電器

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6183245B2 (ja) * 2014-03-03 2017-08-23 株式会社豊田自動織機 蓄電装置の製造装置及び蓄電装置の製造方法
CN105428584B (zh) * 2014-09-11 2020-05-01 株式会社杰士汤浅国际 蓄电元件
US10446870B2 (en) * 2015-10-05 2019-10-15 Nissan Motor Co., Ltd. Pressure release mechanism for battery pack
EP3428992B1 (en) * 2016-03-10 2020-04-29 Nissan Motor Co., Ltd. Battery pack
DE102017202743A1 (de) * 2017-02-21 2018-08-23 Audi Ag Batterieanordnung für ein Kraftfahrzeug und Kraftfahrzeug
KR102174442B1 (ko) * 2017-05-24 2020-11-04 주식회사 엘지화학 이차전지의 제조방법 및 이차전지 제조용 보조 케이스
KR102217448B1 (ko) * 2017-07-13 2021-02-22 주식회사 엘지화학 이차 전지 및 이차 전지의 제조 방법
WO2019013326A1 (ja) * 2017-07-14 2019-01-17 株式会社Gsユアサ 蓄電素子
CN108962610B (zh) * 2018-06-11 2023-08-11 铜陵泽辉电子有限责任公司 一种高密封性电容器盖板
KR102323809B1 (ko) * 2018-06-18 2021-11-09 주식회사 엘지에너지솔루션 벤팅 장치 및 그의 제조 방법
JP6533333B1 (ja) * 2018-12-28 2019-06-19 株式会社ジェイ・イー・ティ 二次電池の製造方法及び二次電池の製造装置
US11411260B2 (en) * 2019-10-23 2022-08-09 Ford Global Technologies, Llc Lithium-ion cell containing solid adsorbent and method of producing the same
DE102019134427A1 (de) * 2019-12-16 2021-06-17 Bayerische Motoren Werke Aktiengesellschaft Lithium-Ionen-Batterie mit verlängerter Lebensdauer
CN113053677B (zh) * 2019-12-26 2023-12-01 佳能株式会社 电源单元和包括电源单元的放射线摄像装置
CN111933833B (zh) * 2020-09-21 2021-01-01 江苏时代新能源科技有限公司 端盖组件、电池单体、电池及用电装置
EP4276862A1 (en) * 2021-02-22 2023-11-15 GS Yuasa International Ltd. Electricity storage element
WO2022254663A1 (ja) * 2021-06-03 2022-12-08 株式会社 東芝 電池の密閉方法、電池の製造方法及び電池
CN114221016B (zh) * 2021-12-15 2023-10-20 深圳市明远自动化设备有限公司 动力电池极柱组装机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144352A (ja) * 1996-11-08 1998-05-29 Sony Corp 非水電解液電池
JP2000090974A (ja) * 1998-09-09 2000-03-31 Matsushita Electric Ind Co Ltd リチウムイオン二次電池及びその製造方法
JP2001236986A (ja) * 2000-02-22 2001-08-31 Matsushita Electric Ind Co Ltd 電池の気密検査方法
JP2001283923A (ja) * 2000-03-30 2001-10-12 Matsushita Electric Ind Co Ltd 電池の製造方法
JP2003086240A (ja) * 2001-09-07 2003-03-20 Nec Mobile Energy Kk 密閉型電池およびその製造方法
JP2006202560A (ja) * 2005-01-19 2006-08-03 Toyota Motor Corp 密閉型電池の製造方法、及び、気密検査装置
JP2008027741A (ja) * 2006-07-21 2008-02-07 Matsushita Battery Industrial Co Ltd 非水電解質二次電池の製造法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115652A (ja) 1985-11-14 1987-05-27 Japan Storage Battery Co Ltd 密閉式鉛蓄電池
JPH10255751A (ja) 1997-03-06 1998-09-25 Shin Kobe Electric Mach Co Ltd 密閉形鉛蓄電池
JP3174289B2 (ja) 1997-09-18 2001-06-11 エフ・ディ−・ケイ株式会社 リチウム二次電池における初充電時のガス抜き方法
JPH11329505A (ja) 1998-05-19 1999-11-30 Fuji Elelctrochem Co Ltd リチウムイオン二次電池の製造方法
US6524739B1 (en) * 1998-08-25 2003-02-25 Matsushita Electric Industrial Co., Ltd. Secondary battery
US6159631A (en) * 1998-08-27 2000-12-12 Polystor Corporation Overcharge safety vents on prismatic cells
JP2001185113A (ja) 1999-12-28 2001-07-06 Shin Kobe Electric Mach Co Ltd 密閉型非水電解液二次電池
JP3600107B2 (ja) * 2000-03-09 2004-12-08 松下電器産業株式会社 密閉型電池およびその封栓方法
JP2002110123A (ja) 2000-10-02 2002-04-12 Japan Storage Battery Co Ltd 制御弁式鉛蓄電池
CN2574227Y (zh) * 2002-09-09 2003-09-17 浙江南都电源动力股份有限公司 阀控密封铅酸蓄电池组内压均衡装置
KR100551885B1 (ko) * 2003-10-20 2006-02-10 삼성에스디아이 주식회사 리튬 이온 2차 전지
JP2005190776A (ja) 2003-12-25 2005-07-14 Nec Tokin Tochigi Ltd 密閉型電池
JP2007103158A (ja) 2005-10-04 2007-04-19 Nec Tokin Corp 角形密閉型電池
WO2007127245A2 (en) * 2006-04-28 2007-11-08 Johnson Controls Technology Company Battery module assembly
JP2008041548A (ja) 2006-08-09 2008-02-21 Sanyo Electric Co Ltd 非水電解液二次電池
JP2009212039A (ja) 2008-03-06 2009-09-17 Panasonic Corp 制御弁式鉛蓄電池
JP5359193B2 (ja) * 2008-10-29 2013-12-04 パナソニック株式会社 鉛蓄電池
JP5381312B2 (ja) * 2009-05-15 2014-01-08 パナソニック株式会社 鉛蓄電池
JP5716455B2 (ja) * 2011-03-01 2015-05-13 トヨタ自動車株式会社 電池の製造方法および溶接装置および溶接用治具

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144352A (ja) * 1996-11-08 1998-05-29 Sony Corp 非水電解液電池
JP2000090974A (ja) * 1998-09-09 2000-03-31 Matsushita Electric Ind Co Ltd リチウムイオン二次電池及びその製造方法
JP2001236986A (ja) * 2000-02-22 2001-08-31 Matsushita Electric Ind Co Ltd 電池の気密検査方法
JP2001283923A (ja) * 2000-03-30 2001-10-12 Matsushita Electric Ind Co Ltd 電池の製造方法
JP2003086240A (ja) * 2001-09-07 2003-03-20 Nec Mobile Energy Kk 密閉型電池およびその製造方法
JP2006202560A (ja) * 2005-01-19 2006-08-03 Toyota Motor Corp 密閉型電池の製造方法、及び、気密検査装置
JP2008027741A (ja) * 2006-07-21 2008-02-07 Matsushita Battery Industrial Co Ltd 非水電解質二次電池の製造法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130323574A1 (en) * 2012-05-25 2013-12-05 Hitachi Vehicle Energy, Ltd. Electric cells and assembled battery
KR101679309B1 (ko) 2015-07-14 2016-11-24 주식회사 이온스렙 전해액 유출을 최소화하는 금속 공기 전지
JP2018056084A (ja) * 2016-09-30 2018-04-05 三洋電機株式会社 角形二次電池
JP2020140763A (ja) * 2019-02-26 2020-09-03 富士通コンポーネント株式会社 電磁継電器
JP7233247B2 (ja) 2019-02-26 2023-03-06 富士通コンポーネント株式会社 電磁継電器

Also Published As

Publication number Publication date
JPWO2012002201A1 (ja) 2013-08-22
US20130130079A1 (en) 2013-05-23
US9812686B2 (en) 2017-11-07
JP6142532B2 (ja) 2017-06-07
JP2017188465A (ja) 2017-10-12
CN102959785A (zh) 2013-03-06
JP6428847B2 (ja) 2018-11-28
CN102959785B (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
JP6428847B2 (ja) 二次電池の製造方法、二次電池及び組電池
KR100878701B1 (ko) 고율 충방전 원통형 이차전지
US11114716B1 (en) Secondary battery, battery pack and device using battery
KR101062685B1 (ko) 이중 실링된 캡 어셈블리, 및 이를 구비하는 원통형 이차전지
KR100599754B1 (ko) 이차 전지와 이차 전지의 캡 조립체 및 캡 조립체의 단자조립 방법
CN112820987B (zh) 电池单体及其制造方法和制造***、电池以及用电装置
WO2022099932A1 (zh) 端盖组件、电池单体及排气方法、电池及用电装置
JP5224324B2 (ja) 密閉型電池
CN105932193B (zh) 可再充电电池
US20110076527A1 (en) Dual sealing cap assembly and cylindrical secondary battery including the same
JP4339923B1 (ja) 密閉型電池
KR101573488B1 (ko) 전극 어셈블리
CN115411470A (zh) 电池注液口密封结构、密封组件及电池单体
KR20150051467A (ko) 자가 밀봉성의 밀봉부재를 포함하는 이차전지
KR100624968B1 (ko) 캡 조립체와 이를 구비하는 리튬이온 이차전지
JP6364752B2 (ja) 封止部材キャップ、蓄電素子、蓄電素子の製造方法
JPH02288063A (ja) 電池の安全装置
JP2014130726A (ja) 蓄電素子の製造方法
JP6052071B2 (ja) 鉛蓄電池
CN219575901U (zh) 一种电池注液结构及其应用的电池
JP2013191450A (ja) 角形二次電池の製造方法および装置
CN219917473U (zh) 气体调节阀及电池
CN213401340U (zh) 二次电池顶盖及其二次电池
JP2004172012A (ja) 電池用安全機構の製造方法
CN116134670A (zh) 端盖组件、电池单体、电池以及用电装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180030265.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800666

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012522565

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13806995

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11800666

Country of ref document: EP

Kind code of ref document: A1