WO2011160580A1 - 一种液压挖掘机的智能控制方法 - Google Patents

一种液压挖掘机的智能控制方法 Download PDF

Info

Publication number
WO2011160580A1
WO2011160580A1 PCT/CN2011/076062 CN2011076062W WO2011160580A1 WO 2011160580 A1 WO2011160580 A1 WO 2011160580A1 CN 2011076062 W CN2011076062 W CN 2011076062W WO 2011160580 A1 WO2011160580 A1 WO 2011160580A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
excavator
main controller
controller
area
Prior art date
Application number
PCT/CN2011/076062
Other languages
English (en)
French (fr)
Inventor
戴晴华
曹东辉
石向星
陈会君
龙也
唐任松
Original Assignee
湖南三一智能控制设备有限公司
三一重机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南三一智能控制设备有限公司, 三一重机有限公司 filed Critical 湖南三一智能控制设备有限公司
Publication of WO2011160580A1 publication Critical patent/WO2011160580A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/23Pc programming
    • G05B2219/23332Overide stored parameters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/23Pc programming
    • G05B2219/23348Programmed parameter values in memory, rom, function selection and entry, no cpu
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2616Earth moving, work machine

Definitions

  • the invention relates to an intelligent control method for a hydraulic excavator. Background technique
  • the electronically controlled operating system lays the foundation for the intelligentization of the excavator. Through the modification of the controller program, various performance indicators can be easily changed to achieve optimal control.
  • the system structure includes: joystick, control unit E CU, pilot control proportional valve.
  • the joystick is a resistive electronically controlled handle. Its structure is X and Y. Each axis has two coaxial connected potential sensors, which are used as position signals for positive and negative operation of each axis.
  • the handle has a total of 4 analog signal outputs, which mainly output the position command signals of the four operating positions of the joystick to the control ECU, and their output signals change with the change of the operating position;
  • Control device ECU In addition to receiving the left and right joysticks In addition to the eight operating position command signals, engine and hydraulic pump operating status information is also obtained from the power control ECU, and system control and fault information are transmitted to the display; four control, turning, boom, stick, bucket, etc. are used.
  • the eight action pilots of the action mechanism control the proportional valve;
  • the pilot control proportional valve The pilot control proportional valve is electromagnetically controlled. Under the control of the ECU current of the control device, the pilot hydraulic pressure of each action is controlled, thereby controlling each change. Opening and reversing to the valve.
  • an intelligent control method for the excavator is constructed, which is mainly used to improve the handling safety and motion accuracy of the excavator.
  • the controller receives the pressure sensor and the handle detection parameters at various positions, and feedbacks such as the distance value, the digging force value, the pilot pressure, etc., and compares the safety values pre-stored in the controller to determine whether It can allow the excavator to continue the operation that is being or is about to be executed. If the range value is exceeded, the alarm signal will be sent out, or braking and other safety measures will be taken.
  • Accuracy of operation When the excavator is shipped from the factory, various types of presets are preset in the controller. Under the working conditions, the corresponding control parameters are used for various operations. The operator only needs to select the action. The controller automatically controls the output pressure of the hydraulic valve to ensure the accuracy of the operation, and the requirements of the operator are also reduced accordingly. Experience to manipulate.
  • the customer cannot customize the settings according to the on-site working environment and personal operating habits. For example, when the site requires the handle to be pressed to the end, the revolving speed cannot exceed a certain value. At present, it can only be achieved by notifying the manufacturer, the manufacturer sending engineers to modify the program, and changing the working environment to be reset.
  • the object of the present invention is to provide an intelligent control method for a hydraulic excavator, by which the actual handling capability of the excavator can be improved, and the needs of different customers can be better met.
  • the technical solution adopted by the present invention is: an intelligent control method for a hydraulic excavator, wherein a database set in the main controller is divided into a setting area and a recovery area, and factory default data is respectively stored in the setting area. And the recovery area, the main controller is connected to the display modification interface through the CAN bus, and the operation method is:
  • the main controller detects the data, including the handle signal, the pressure sensor signal of each valve on the excavator, and the ambient temperature sensor signal. Through logic operation, the adjustment range of the excavator operating parameters and the engine output power is obtained;
  • the modified custom data is stored in the set area via the CAN bus and transmitted to the remote server via the wireless network, and the excavator starts to customize according to the set area. According to the operation;
  • the main controller calls the data in the recovery area to cover the custom data in the set area.
  • the pressure sensor and the ambient temperature sensor can be set by using the prior art, and the main controller calls the detection data on the sensors to determine the adjustment range by a logic operation, and the logic operation is a software program prestored in the main controller.
  • the adjustment range and adjust various parameters within the range, such as bucket excavation, unloading, stick excavation, unloading, boom raising, lowering, turning, etc.
  • the excavator is provided with a GP S controller, the main controller is connected to the GPS controller via a CAN bus, and the GPS controller is connected to the cluster monitoring center via a wireless network, and the cluster monitoring The center includes a server, a database, and a parameter optimization automatic generation system.
  • the main controller of each excavator transmits the customized data and the detection data to a database of the cluster monitoring center via a GPS controller and a wireless network.
  • the parameter optimization automatic generation system analyzes and obtains the custom data with the most use of various models under various working conditions, and sets the optimized data, and feeds the optimized data to the manufacturer, and modifies the factory default data of the corresponding model. .
  • the main controller of the excavator downloads the optimization data in the cluster monitoring center via a GPS controller and a wireless network, and modifies the customized data in the set area.
  • the main controller communicates with the GPS controller through the CAN bus, and the GPS controller transmits various detection data (including the handle signal, the pressure sensor signal of each valve on the excavator and the ambient temperature signal) to the cluster monitoring center (wirelessly).
  • Network transmission which can adopt the transmission technology in the prior art
  • the cluster monitoring center stores various sensor information and control information related to the customized data in real time to the server database, and the parameter optimization is automatic.
  • the generation system automatically analyzes a large amount of real-time data according to the working environment, excavator model, frequency of use, etc., and obtains different working environments, different excavator models, and the most used custom parameters, and obtains optimized data for the whole machine work. .
  • the manufacturer engineer in charge of the cluster monitoring center
  • the final optimization data by telephone or on-site inspection with the customer or agent. After verification, the result will be used as follows:
  • the excavator control parameters include: bucket excavation, unloading, arm excavation, unloading, boom raising, lowering, speed of rotation, and P-Q curve and handle button electrical signals.
  • the PQ curve sets the absorption power of the main pump to achieve efficiency, heavy load or fuel economy.
  • the custom setting of the handle button electric signal can realize the setting of the functions of the two handles in different directions, without changing the hydraulic circuit, by the main control.
  • the device changes the signal output of the corresponding port of the main controller according to the modified data of the operator, so as to meet the needs of different operators, such as the left-handed or the habitual action customer, the manipulation is more humanized.
  • a historical data storage interval is provided in the set area, and each of the customized data is stored in the historical data storage interval.
  • the historical setting custom data is stored in the historical data storage interval, so that the operator can call the search.
  • the data in the historical data storage interval can be directly called, and the setting is omitted.
  • the historical data storage amount depends on the capacity of the storage interval, such as optional custom data storage of nearly 10 times, or more.
  • the present invention has the following advantages over the prior art:
  • the main controller calculates the adjustment range of the excavator control parameters and the engine output power under the conditions of ensuring safety and normal operation according to the detected individual sensor signals, the handle signal and the temperature signal, and the operator can according to the scene.
  • the working condition adjusts the parameters and the output power value within the range to improve the handling performance and working ability of the excavator, and meet the operation requirements of excavating under different working conditions;
  • the main controller sets the range of the adjustment parameters in the present invention, it is pre-stored with the prior In terms of the fixed value in the main controller, the flexibility and adaptability are higher, and the selection of the limited types of working conditions can be made to meet the needs of the actual operation of the user;
  • the main controller is connected to the GP S controller via the CAN bus, and sends the customized data and related environmental data to the cluster monitoring center through the wireless network.
  • the parameter optimization automatically generates the system to count different working conditions and corresponding data of different models. , get the optimized data, on the one hand to the manufacturer, repair and supplement the factory default parameters, shorten the time for engineers to develop and simulate the working conditions, and the default parameters are more accurate and comprehensive; on the other hand, the user directly downloads information via the wireless network, and modifies Corresponding to the parameter values under the model to improve the performance of the excavator and achieve resource sharing;
  • the custom modification of the electric signal of the handle button can change the function of the handle to meet the needs of different operators, such as left-handed or habitual action customers, without changing the hydraulic pipe;
  • FIG. 1 is a schematic view of a block diagram of a hydraulic circuit in Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing the principle of remote communication according to Embodiment 1 of the present invention.
  • FIG. 3 is a flow chart of the modification of the custom data in the first embodiment of the present invention. detailed description
  • Embodiment 1 Referring to FIG. 1 to FIG. 3, an intelligent control method for a hydraulic excavator, a database set in a main controller is divided into a setting area and a recovery area, and factory default data is respectively stored in the setting area and In the recovery area, the main controller is connected to the display modification interface through the CAN bus, and the operation method is:
  • the main controller detects the data, as shown in Figure 1, including the handle signal, the pilot pressure sensor signals RV 1 to RV9 on the excavator, and the front and rear pump main pressure signals RV 10, RV 1 1 And the ambient temperature sensor signal, through logic operation, the adjustment range of the excavator control parameters and the engine output power is obtained;
  • the modified custom data is stored in the set area via the CAN bus and transmitted to the remote server via the wireless network, and the excavator starts to operate according to the customized data in the set area;
  • the main controller calls the data in the recovery area to cover the custom data in the set area.
  • the excavator control parameters include: bucket excavation, unloading, bucket excavation, unloading, boom raising, lowering, speed of rotation, and P-Q curve and handle button electrical signals.
  • (1) parameters can be set according to the working environment and operating habits; (2) According to the operator's habits, the function settings can be entered; (3) According to the needs of the options, the options are set; 4) Restore the factory default data for one-click recovery.
  • Digger hand or customer can set parameters according to the working environment and operating habits of the site. It can set bucket excavation, unloading, arm excavation, unloading, boom raising, lowering, turning and other speed and PQ curve setting.
  • the main pump absorbs power to achieve efficiency, heavy load or fuel economy.
  • set the output power of the engine According to the ambient temperature, set the output power of the engine. For example, in winter, the cooling effect is good, the output power of the engine can be improved, and the output power of the engine can be reduced in the summer.
  • the temperature change is detected by the ambient temperature sensor, and the MC can be used to set the changeable range for the customer to select.
  • the set area is provided with a historical data storage interval, and each of the customized data is stored in the historical data storage interval, and the operator can set a data query for the history, and directly invoke the selected data.
  • Digger hand or customer can customize the output of each electronic control handle, which can realize the setting of the function of two handles in different directions, so as to meet the needs of different operators, such as left-handed or Habitual action customers.
  • Optional settings For hydraulic shears, crushing tampers, quick-change devices and other options, customize the settings according to flow requirements, working environment, customer habits.
  • the user can use the one-button recovery button to drive recovery in the main controller Program, after entering the correct password, display all current parameter values, press the enter key, the main controller calls the data in the recovery area, overwrites the data in the set area, and returns to the factory default settings.
  • the excavator is provided with a GP S controller, and the main controller is connected to the GP S controller via a CAN bus, and the GP S controller is connected to the cluster monitoring center via a wireless network.
  • the cluster monitoring center includes a server, a database, a parameter optimization automatic generation system, and an automatic warning system for excavation operation.
  • the main controller of each excavator transmits the customized data and the detection data to the GP S controller and the wireless network to
  • the parameter optimization automatic generation system analyzes and obtains the custom data corresponding to the most used types under various working conditions, and sets the optimized data, and feeds the optimized data to Manufacturer or customer, for the following purposes:
  • the engineer in the cluster monitoring center will then conduct a telephone communication or on-site inspection with the customer or agent to verify the final optimization result. After verification, the result is as follows:
  • the setting data of the machine used in the field can be modified by the GP S remote download function
  • the cluster monitoring center will get more and more real-time data, and each optimization result will be re-verified by the customer, and then corrected, and the optimal correction result will be obtained and saved.
  • the design change engineer will be very aware of the working conditions of the excavator and the customer's usage habits. It can be designed according to the latest optimized machine parameters of the cluster monitoring center, matching and debugging. Development and change cycles can be shortened, development is more successful, and customer needs are better met.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Operation Control Of Excavators (AREA)

Description

一种液压挖掘机的智能控制方法 技术领域
本发明涉及一种液压挖掘机的智能控制方法。 背景技术
电控操作***为挖掘机的智能化奠定了基础,通过控制器程序的 修改, 可以方便的改变各性能指标, 达到优化控制。 ***结构包括: 操纵手柄、 控制装置 E CU、 先导控制比例阀。 (1)操纵手柄: 该操纵手 柄为电阻式电控手柄, 其结构为 X、 Y每轴各有 2个同轴相连电位式 传感器, 分别作为每轴正、 反向操作的位置信号, 每个手柄共有 4路 模拟信号输出,主要向控制 ECU输出操纵手柄 4个操作位的位置指令 信号, 它们的输出信号随操作位置的变化而变化; (2)控制装置 ECU : 除接收左、 右操纵手柄 8 个操作位置指令信号之外, 还从动力控制 ECU获取发动机和液压泵运行状态信息, 向显示器传递***控制和故 障信息; 利用各控制信息对回转、 动臂、 斗杆、 铲斗等 4个动作机构 的 8个动作先导控制比例阀进行控制; (3)先导控制比例阀: 先导控制 比例阀为电磁控制式, 在控制装置 ECU 电流的控制下, 控制各动作的 先导液压, 从而控制各换向阀的开度和换向。
基于上述电控***, 构建出挖掘机智能控制方法, 主要应用于提 高挖掘机的操控安全性及动作准确性。 具体来说, (1)安全性: 通过控 制器接收各个位置上的压力传感器及手柄检测参数, 反馈如距离数 值、 挖掘力数值、 先导压力等, 对比预存于控制器内的安全数值, 判 断是否能允许挖掘机继续正在或即将执行的操作,若已超出范围值便 出去报警信号, 或采取制动及其他安全措施; (2)动作准确性: 挖掘机 出厂时, 控制器内预设各类工况下做各类操作时对应的控制参数, 操 作人员只需选择动作, 由控制器自动控制液压阀的输出压力, 以确保 操作的准确性, 同时对操作人员的要求也相应降低, 无需凭借经验来 操控。
然而, 以目前的控制方式来说, 还不能完全满足客户个性化的需 求, 体现为:
1 ) 挖掘机在现场使用过程中, 客户不能根据现场工作环境、 个 人操作习惯等进行自定义设定, 比如现场要求手柄按到底时, 回转速 度不能超过某个值。 目前只能通过通知厂家, 厂家派工程师来修改程 序后才能实现, 换了工作环境又要重新设定;
2 ) 挖掘机在出厂时, 手柄的功能都已经设定好了, 因操作手习 惯不同, 有的操作手要求更换手柄的功能, 如更换回转和铲斗挖掘的 操作方式, 只能重新拆装先导管路;
3 ) 挖掘机开发设计、 标定调试、 试验检测时, 模拟现场的工况 有限,使得设置于控制器内的预设值不能反应现场的实际复杂运行工 况及客户的真正需求, 现场的实际需求不能及时、 有效的反馈给开发 设计人员。
因此,我们需要一种更为贴近实际操作,更为智能化的控制方法。 发明内容
本发明目的是提供一种液压挖掘机的智能控制方法,通过该控制 方法, 可提高挖掘机的实际操控能力, 更好的满足不同客户的需求。
为达到上述目的, 本发明采用的技术方案是: 一种液压挖掘机的 智能控制方法, 主控制器内设置的数据库分为设定区与恢复区, 出厂 默认数据分别存储于所述设定区与恢复区内, 所述主控制器通过 CAN 总线与显示修改界面连接, 其操作方法为:
a.数据修改:
(1) 主控制器检测数据, 包括手柄信号、 挖掘机上各个阀门的压 力传感器信号以及环境温度传感器信号, 经逻辑运算, 得出挖掘机操 控参数和发动机输出功率的调节范围;
(2) 操作人员根据现场工作环境及操作习惯, 在所述调节范围内 在所述显示修改界面上设置所述挖掘机操控参数和发动机输出功率;
(3) 修改后的自定义数据经 CAN总线存入所述设定区内, 并通过 无线网络传输到远程服务器上,挖掘机开始根据设定区内的自定义数 据进行运作;
b .数据恢复: 主控制器调用所述恢复区内的数据, 覆盖所述设定 区内的自定义数据。
上述技术方案中,压力传感器及环境温度传感器的设置可采用现 有技术,主控制器调用这些传感器上的检测数据经逻辑运算确定调节 范围, 所述逻辑运算为预存于主控制器内的软件程序, 在保证挖掘机 正常操业及安全性的前提下, 设定调节范围, 在该范围内调整各类参 数, 如铲斗挖掘、 卸载, 斗杆挖掘、 卸载, 动臂上升、 下降, 回转等 的速度以及 P-Q 曲线、 发动机输出效率, 以符合实际工况的需要, 在 更换工作装置时 (如对液压剪、 破碎捶、 快换装置等选购件), 根据 不同的执行件调整流量, 以满足工作装置的实际需求; 同时, 根据环 境温度, 设置发动机的输出功率, 比如在冬天, 冷却效果好, 可提高 发动机的输出功率, 夏天可减少发动机的输出功率。
上述技术方案中, 所述挖掘机内设有 GP S控制器, 所述主控制器 经 CAN总线与该 GPS控制器连接,所述 GPS控制器经无线网络与机群 监控中心连接, 所述机群监控中心包括服务器、 数据库及参数优化自 动生成***,每一台挖掘机的主控制器将所述自定义数据及检测数据 经 GPS控制器、 无线网络传送至所述机群监控中心的数据库内, 经所 述参数优化自动生成***分析得到在各类工况下,各种机型对应使用 最多的自定义数据, 设定为优化数据, 将该优化数据反馈给生产商, 修改对应机型的出厂默认数据。
进一步的技术方案是, 所述挖掘机主控制器经 GPS控制器、 无线 网络下载所述机群监控中心中的所述优化数据,修改所述设定区内自 定义数据。
上文中, 主控制器通过 CAN总线与 GPS控制器相互通讯, GPS控 制器将各种检测数据 (包括手柄信号、 挖掘机上各个阀门的压力传感 器信号以及环境温度信号) 远程传到机群监控中心 (无线网络传输, 可采用现有技术中的传输技术), 机群监控中心实时存储各种与自定 义数据相关的传感器信息和控制信息到服务器数据库,参数优化自动 生成***根据工作环境、 挖机型号、 使用频率等方面的信息对大量实 时数据进行自动分析, 得到不同工作环境、 不同挖机型号、 使用最多 的自定义参数, 得到整机工作的优化数据。 经过一定工作周期, 生产 商 (机群监控中心负责工程师) 再经过与客户、 代理商电话沟通或现 场考察, 对最终优化数据进行核实, 核实后将此结果作为以下用途:
1 ) 作为此类机型, 此类工作环境下的出厂数据;
2 ) 可通过 GPS远程下载功能修改现场使用机器的默认参数;
3 ) 可建议在同种工作环境下, 使用同种机型的客户选择这一优 化数据。
上述技术方案中, 所述挖掘机操控参数包括: 铲斗挖掘、 卸载, 斗杆挖掘、 卸载, 动臂上升、 下降, 回转的速度, 以及 P-Q 曲线和手 柄按钮电信号。 P-Q 曲线设定主泵的吸收功率, 实现效率、 重负荷或 燃油经济性; 手柄按钮电信号的自定义设定, 可实现两个手柄不同方 向功能的设定, 不改变液压回路, 由主控制器根据操作人员的修改数 据来改变主控制器对应端口的信号输出,这样可满足不同操作手的需 求, 比如左撇子或有习惯性动作客户的需要, 操控更为人性化。
上述技术方案中, 所述设定区内设有历史数据存储区间, 每一所 述自定义数据存储于该历史数据存储区间内。将历史设定自定义数据 存储于历史数据存储区间内, 以便于操作人员调用查找, 在同样的工 况下, 便可直接调用历史数据存储区间内的数据, 省去了再次设置。 该历史数据存入量以存储区间的容量而定, 如可选近 10 次的自定义 数据保存, 或者更多。
由于上述技术方案运用, 本发明与现有技术相比具有下列优点:
1 . 本发明中主控制器根据检测到的各个传感器信号、 手柄信号 和温度信号计算出在保证安全和正常工作的条件下,挖掘机操控参数 和发动机输出功率的调节范围,操作人员可依据现场的工况在该范围 内调整参数及输出功率值, 以提高挖掘机的操控性能及作业能力, 满 足不同工况下挖掘的作业需求;
2 . 由于本发明中主控制器设定了调节参数的范围, 与以往预存 于主控制器内的固定值来说, 灵活性、 适应性更高, 弥补有限工况种 类的选择, 满足用户实际操控的需要;
3 . 主控制器经 CAN总线与 GP S控制器连接, 通过无线网络将自 定义数据及相关的环境数据发送给机群监控中心, 由参数优化自动生 成***统计不同工况, 不同机型的相应数据, 得到最优化数据, 一方 面提供给厂商, 修证、 补充出厂默认参数, 缩短工程师开发、 模拟工 况的时间, 且默认参数更为精确全面; 另一方面用户直接经无线网络 下载信息, 修改对应机型下的参数值, 以提高挖掘机操业性能, 做到 资源共享;
4 . 对手柄按钮电信号的自定义修改, 可改变手柄功能, 满足不 同操作人员的需求, 如左撇子或有习惯性动作客户, 无需变换液压管 路;
5 . 通过对操控参数的调整, 可满足选购件 (液压剪、 破碎捶、 快换装置等) 对流量的不同要求, 更好的适应工况及客户的需要。 附图说明
图 1是本发明实施例一中液压回路框图的示意图;
图 2是本发明实施例一的远程通讯原理框图;
图 3是本发明实施例一中自定义数据修改的流程框图。 具体实施方式
下面结合附图及实施例对本发明作进一步描述:
实施例一: 参见图 1〜3所示, 一种液压挖掘机的智能控制方法, 主控制器内设置的数据库分为设定区与恢复区, 出厂默认数据分别存 储于所述设定区与恢复区内,所述主控制器通过 CAN总线与显示修改 界面连接, 其操作方法为:
a.数据修改:
(1) 主控制器检测数据, 如图 1所示, 包括手柄信号、 挖掘机上 各个先导压力传感器信号 RV 1〜RV9, 前后泵主压信号 RV 10、 RV 1 1 以 及环境温度传感器信号, 经逻辑运算, 得出挖掘机操控参数和发动机 输出功率的调节范围;
(2) 操作人员根据现场工作环境及操作习惯, 在所述调节范围内 在所述显示修改界面上设置所述挖掘机操控参数和发动机输出功率;
(3) 修改后的自定义数据经 CAN总线存入所述设定区内, 并通过 无线网络传输到远程服务器上,挖掘机开始根据设定区内的自定义数 据进行运作;
b .数据恢复: 主控制器调用所述恢复区内的数据, 覆盖所述设定 区内的自定义数据。
在本实施例中, 所述挖掘机操控参数包括: 铲斗挖掘、 卸载, 斗 杆挖掘、 卸载, 动臂上升、 下降, 回转的速度, 以及 P-Q 曲线和手柄 按钮电信号。 如图 3所示, (1)根据现场工作环境及操作习惯可进行参 数设置; (2)根据操作人员的习惯可进功能设置; (3)根据选购件的需要 进选购件设置; (4)恢复出厂默认数据进行一键恢复。
①参数设置:挖机手或客户根据现场工作环境及操作习惯可进行 参数设置, 可设置铲斗挖掘、 卸载, 斗杆挖掘、 卸载, 动臂上升、 下 降, 回转等的速度及 P-Q 曲线设定主泵的吸收功率, 实现效率、 重负 荷或燃油经济性; 根据环境温度, 设置发动机的输出功率, 比如在冬 天, 冷却效果好, 可提高发动机的输出功率, 夏天可减少发动机的输 出功率, 环境温度的变化通过环境温度传感器检测, 通过 MC运算, 设定可改变范围,供客户选择。所述设定区内设有历史数据存储区间, 每一所述自定义数据存储于该历史数据存储区间内,操作人员可对历 史设定数据查询, 选定后直接调用。
②功能设置:挖机手或客户可对电控操作手柄的每个输出进行自 定义设定, 可实现两个手柄不同方向功能的设定, 这样可满足不同操 作手的需求, 比如左撇子或有习惯性动作客户。
③选购件设置: 对液压剪、 破碎捶、 快换装置等选购件, 根据流 量要求、 工作环境、 客户习惯进行自定义设定。
④对以上设置, 用户可通过一键恢复键, 驱动主控制器内的恢复 程序, 输入正确密码后, 显示所有当前参数值, 按下确认键, 主控制 器调用恢复区内的数据,覆盖设定区内的数据,恢复到出厂默认设定。
如图 2 所示, 所述挖掘机内设有 GP S 控制器, 所述主控制器经 CAN总线与该 GP S控制器连接, 所述 GP S控制器经无线网络与机群监 控中心连接, 所述机群监控中心包括服务器、 数据库、 参数优化自动 生成***及挖机运行自动预警***,每一台挖掘机的主控制器将所述 自定义数据及检测数据经 GP S控制器、无线网络传送至所述机群监控 中心的数据库内,经所述参数优化自动生成***分析得到在各类工况 下, 各种机型对应使用最多的自定义数据, 设定为优化数据, 将该优 化数据反馈给生产商或客户, 作以下用途:
经过一定工作周期, 机群监控中心负责工程师再经过与客户、 代 理商电话沟通或现场考察, 对最终优化结果进行核实, 核实后将此结 果作为:
1 ) 作为此类机型, 此类工作环境下的出厂默认数据;
2 ) 可通过 GP S远程下载功能修改现场使用机器的设定数据;
3 ) 可建议在同种工作环境下, 使用同种机型的客户选择这一优 化数据。
通过以上流程不断反复滚动,机群监控中心会得到越来越丰富的 实时数据, 且对每一次优化结果通过客户再验证, 然后再修正, 得到 最优修正结果, 保存。 这样在开发新机型或对现有机型的变形更改开 发时, 设计更改工程师会非常清楚此类挖机的工况要求, 客户使用习 惯。 可根据机群监控中心的最新优化整机参数进行设计, 匹配调试。 可以缩短开发、 更改周期, 开发更易成功, 更能满足客户的需求。

Claims

权利要求书
1 . 一种液压挖掘机的智能控制方法, 其特征在于: 主控制器内 设置的数据库分为设定区与恢复区, 出厂默认数据分别存储于所述设 定区与恢复区内, 所述主控制器通过 CAN总线与显示修改界面连接, 其操作方法为:
a.数据修改:
(1) 主控制器检测数据, 包括手柄信号、 挖掘机上各个阀门的压 力传感器信号以及环境温度传感器信号, 经逻辑运算, 得出挖掘机操 控参数和发动机输出功率的调节范围;
(2) 操作人员根据现场工作环境及操作习惯, 在所述调节范围内 在所述显示修改界面上设置所述挖掘机操控参数和发动机输出功率;
(3) 修改后的自定义数据经 CAN总线存入所述设定区内, 并通过 无线网络传输到远程服务器上,挖掘机开始根据设定区内的自定义数 据进行运作;
b .数据恢复: 主控制器调用所述恢复区内的数据, 覆盖所述设定 区内的自定义数据。
2 . 根据权利要求 1 所示的液压挖掘机的智能控制方法, 其特征 在于: 所述挖掘机内设有 GP S控制器, 所述主控制器经 CAN总线与该 GP S控制器连接, 所述 GP S控制器经无线网络与机群监控中心连接, 所述机群监控中心包括服务器、 数据库及参数优化自动生成***, 每 一台挖掘机的主控制器将所述自定义数据及检测数据经 GP S控制器、 无线网络传送至所述机群监控中心的数据库内,经所述参数优化自动 生成***分析得到在各类工况下,各种机型对应使用最多的自定义数 据, 设定为优化数据, 将该优化数据反馈给生产商, 修改对应机型的 出厂默认数据。
3 . 根据权利要求 2 所示的液压挖掘机的智能控制方法, 其特征 在于: 所述挖掘机主控制器经 GP S控制器、 无线网络下载所述机群监 控中心中的所述优化数据, 修改所述设定区内自定义数据。
4 . 根据权利要求 1 所示的液压挖掘机的智能控制方法, 其特征 在于: 所述挖掘机操控参数包括: 铲斗挖掘、 卸载, 斗杆挖掘、 卸载, 动臂上升、 下降, 回转的速度, 以及 P-Q 曲线和手柄按钮电信号。
5 . 根据权利要求 1 所示的液压挖掘机的智能控制方法, 其特征 在于: 所述设定区内设有历史数据存储区间, 每一所述自定义数据存 储于该历史数据存储区间内。
PCT/CN2011/076062 2010-06-22 2011-06-21 一种液压挖掘机的智能控制方法 WO2011160580A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010102051813A CN101864780B (zh) 2010-06-22 2010-06-22 一种液压挖掘机的智能控制方法
CN201010205181.3 2010-06-22

Publications (1)

Publication Number Publication Date
WO2011160580A1 true WO2011160580A1 (zh) 2011-12-29

Family

ID=42956692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076062 WO2011160580A1 (zh) 2010-06-22 2011-06-21 一种液压挖掘机的智能控制方法

Country Status (2)

Country Link
CN (1) CN101864780B (zh)
WO (1) WO2011160580A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10689831B2 (en) 2018-03-27 2020-06-23 Deere & Company Converting mobile machines into high precision robots
US11162241B2 (en) 2018-03-27 2021-11-02 Deere & Company Controlling mobile machines with a robotic attachment

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101864780B (zh) * 2010-06-22 2011-10-12 三一重机有限公司 一种液压挖掘机的智能控制方法
US8498787B2 (en) * 2011-05-27 2013-07-30 Caterpillar Trimble Control Technologies Llc Method and system for monitoring the operation of a cable shovel machine
CN102587443A (zh) * 2012-02-23 2012-07-18 上海三一重机有限公司 一种履带式挖掘机多路阀液压控制***
CN103587140A (zh) * 2013-11-04 2014-02-19 索特传动设备有限公司 液压***的故障监测***、方法及液压机
JP6665412B2 (ja) * 2015-03-23 2020-03-13 株式会社タダノ 作業機械の調整装置
CN105332399B (zh) * 2015-10-23 2017-12-01 徐州徐工挖掘机械有限公司 一种基于权限机制的挖掘机控制装置及控制方法
CN106013314B (zh) * 2016-08-02 2018-05-04 福州大学 装载机智能辅助方法
CN109358549B (zh) * 2018-11-01 2020-11-03 三一重机有限公司 一种挖掘机的智能控制方法及装置
CN111930089B (zh) * 2020-09-11 2021-01-01 湖南三一中型起重机械有限公司 工程机械设备的控制方法、装置、计算机设备及存储介质
CN112431252A (zh) * 2020-12-15 2021-03-02 徐州徐工挖掘机械有限公司 一种挖掘机可定制作业报警控制***
CN113188822A (zh) * 2021-04-29 2021-07-30 山重建机有限公司 一种挖掘机自动检测装置
CN114482170B (zh) * 2022-03-28 2023-09-12 上海华兴数字科技有限公司 一种双轮铣槽机控制方法、***、电子设备和存储介质
CN114960823A (zh) * 2022-06-21 2022-08-30 徐州徐工矿业机械有限公司 一种挖掘机多功能电子监控***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6076030A (en) * 1998-10-14 2000-06-13 Carnegie Mellon University Learning system and method for optimizing control of autonomous earthmoving machinery
CN1651666A (zh) * 2005-03-28 2005-08-10 广西柳工机械股份有限公司 用于液压挖掘机工作装置的轨迹控制***及方法
CN101481918A (zh) * 2009-01-08 2009-07-15 三一重机有限公司 一种液压挖掘机铲斗运动的控制方法及控制装置
JP2009179968A (ja) * 2008-01-29 2009-08-13 Hitachi Constr Mach Co Ltd 油圧ショベルのフロント制御装置
CN101666105A (zh) * 2009-07-08 2010-03-10 北汽福田汽车股份有限公司 控制挖掘机动臂上升速度的方法、控制***及一种挖掘机
CN201459784U (zh) * 2009-07-08 2010-05-12 北汽福田汽车股份有限公司 控制挖掘机动臂上升速度的控制***及一种挖掘机
CN101864780A (zh) * 2010-06-22 2010-10-20 三一重机有限公司 一种液压挖掘机的智能控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100433186B1 (ko) * 2001-07-27 2004-05-27 현대중공업 주식회사 굴삭기의 엔진과 펌프의 출력 자동 제어 시스템

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6076030A (en) * 1998-10-14 2000-06-13 Carnegie Mellon University Learning system and method for optimizing control of autonomous earthmoving machinery
CN1651666A (zh) * 2005-03-28 2005-08-10 广西柳工机械股份有限公司 用于液压挖掘机工作装置的轨迹控制***及方法
JP2009179968A (ja) * 2008-01-29 2009-08-13 Hitachi Constr Mach Co Ltd 油圧ショベルのフロント制御装置
CN101481918A (zh) * 2009-01-08 2009-07-15 三一重机有限公司 一种液压挖掘机铲斗运动的控制方法及控制装置
CN101666105A (zh) * 2009-07-08 2010-03-10 北汽福田汽车股份有限公司 控制挖掘机动臂上升速度的方法、控制***及一种挖掘机
CN201459784U (zh) * 2009-07-08 2010-05-12 北汽福田汽车股份有限公司 控制挖掘机动臂上升速度的控制***及一种挖掘机
CN101864780A (zh) * 2010-06-22 2010-10-20 三一重机有限公司 一种液压挖掘机的智能控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10689831B2 (en) 2018-03-27 2020-06-23 Deere & Company Converting mobile machines into high precision robots
US11162241B2 (en) 2018-03-27 2021-11-02 Deere & Company Controlling mobile machines with a robotic attachment

Also Published As

Publication number Publication date
CN101864780B (zh) 2011-10-12
CN101864780A (zh) 2010-10-20

Similar Documents

Publication Publication Date Title
WO2011160580A1 (zh) 一种液压挖掘机的智能控制方法
KR101298883B1 (ko) 작업 기계의 원격 관리 시스템
CN101413279B (zh) 机电一体化挖掘装载机及控制方法
CA2716175C (en) Carrier and backhoe control system and method
CN104487681B (zh) 工作车辆
JP6397135B2 (ja) 建設機械の出力特性変更システム
US20160032949A1 (en) Slewing drive apparatus for construction machine
CN107989085A (zh) 一种装载机自动铲装的控制***
JP6605291B2 (ja) 建設機械の制御パラメータ変更システム
KR20140048114A (ko) 건설 기계의 제어 시스템
CN102912817A (zh) 挖掘机及其控制方法和控制装置
CN201134037Y (zh) 无线阀门远程控制装置
WO2021084886A1 (ja) 油圧作業機及び遠隔操縦システム
CN208056139U (zh) 一种装载机自动铲装的控制***
JP2021143509A (ja) 作業機械
CN105544642A (zh) 一种小型挖掘机远程控制***及方法
CN201317946Y (zh) 一种挖掘装载组合机
US11314223B2 (en) Work tool data system and method thereof
CN207672651U (zh) 控制松土器工作装置速度的***
JP2019047442A (ja) 建設機械の遠隔操作システム
CN111335392B (zh) 一种挖掘机辅助装置的控制***和方法
EP4159929A1 (en) Excavator
JP2023013028A (ja) 建設機械及び作業現場適応システム
CN115387426B (zh) 作业机械的控制方法、装置、设备及作业机械
JP3923189B2 (ja) 建設機械の電子制御システム及び制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11797611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11797611

Country of ref document: EP

Kind code of ref document: A1