WO2011155000A1 - Capacitor - Google Patents

Capacitor Download PDF

Info

Publication number
WO2011155000A1
WO2011155000A1 PCT/JP2010/003874 JP2010003874W WO2011155000A1 WO 2011155000 A1 WO2011155000 A1 WO 2011155000A1 JP 2010003874 W JP2010003874 W JP 2010003874W WO 2011155000 A1 WO2011155000 A1 WO 2011155000A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
material layer
electrode active
positive electrode
negative electrode
Prior art date
Application number
PCT/JP2010/003874
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木隆
Original Assignee
イノベーションエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イノベーションエネルギー株式会社 filed Critical イノベーションエネルギー株式会社
Priority to PCT/JP2010/003874 priority Critical patent/WO2011155000A1/en
Priority to PCT/JP2011/003133 priority patent/WO2011155164A1/en
Publication of WO2011155000A1 publication Critical patent/WO2011155000A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes

Definitions

  • the present invention relates to a capacitor. More specifically, the present invention relates to a capacitor including a positive electrode active material layer containing a V 3+ compound and a negative electrode active material layer containing a V 4+ compound.
  • the electric double layer capacitor uses electric energy accumulated in the electric double layer formed at the interface between the polarizable electrode and the electrolyte. Since electric double layer capacitors do not involve chemical reactions during charge and discharge, they have the advantages of superior input / output characteristics, life characteristics, and safety compared to lithium ion secondary batteries and nickel metal hydride secondary batteries. . Such an electric double layer capacitor is widely used as a capacitor that can be reduced in size and charged with a large capacity, for backup applications such as microcomputers, memories, and timers, and for assisting various power sources. In addition, in recent years, development of larger-capacity products has been promoted taking advantage of the characteristics.
  • an electric double layer capacitor Compared to a secondary battery that generates electricity by a chemical reaction, an electric double layer capacitor has a problem that the energy density is small although it has a higher output density.
  • a redox capacitor or pseudocapacitor using charge transfer at the electrode interface, a hybrid capacitor combining them, and an ionic liquid capacitor using an ionic liquid as an electrolyte Development is progressing.
  • an electric double layer capacitor using a negative electrode sheet sprayed with lithium on its surface has been proposed (see Patent Document 1).
  • the present invention provides a capacitor having a novel structure for storing electric energy by using charge transfer between a polarizable electrode and a metal compound in addition to an electric double layer formed at the interface between the polarizable electrode and the electrolyte. It is.
  • the capacitor of the present invention comprises: a positive electrode current collector; a carbon material, polylactic acid, and a V 3+ compound selected from the group consisting of V 2 O 3 , VF 3 , VCl 3 , V (acac) 3 , VSO 4 OH
  • the capacitor according to the present invention has an advantage that it can cope with rapid charging and can be manufactured at low cost.
  • the capacitor of the present invention does not generate any ignitable components or toxic gases which are problematic in lithium secondary batteries even in an overcharged state, and does not cause any problems.
  • the capacitor of the present invention has no problem even when it is overdischarged.
  • the material used for the capacitor of the present invention is inexpensive and does not use rare metal or the like, it can be supplied stably.
  • the capacitor of the present invention includes a positive electrode current collector, a positive electrode active material layer, a negative electrode active material layer, a negative electrode current collector, an electrolysis impregnated in the positive electrode active material layer, the separator, and the negative electrode active material layer. Liquid.
  • the positive electrode current collector in the present invention is formed using metal, preferably copper. In order to facilitate the formation of the capacitor and the like, it is preferable to use a copper foil having a film thickness of 40 to 50 ⁇ m as the positive electrode current collector.
  • the negative electrode current collector in the present invention is formed using a metal, preferably aluminum. Similar to the positive electrode current collector, an aluminum foil having a thickness of 40 to 50 ⁇ m is preferably used as the negative electrode current collector in order to facilitate the formation of the capacitor. Furthermore, it is desirable to roughen the surface of the negative electrode current collector in contact with the negative electrode active material layer. The irregularities on the surface of the negative electrode current collector provide an anchor effect for fixing the nanocarbon in the negative electrode active material layer that may be dissociated from the negative electrode current collector during molding of the capacitor. In the present invention, it is desirable that the surface of the negative electrode current collector is roughened, which is called “20A” processing, so that the actual surface area becomes 20 times the apparent surface area.
  • the positive electrode active material layer and the negative electrode active material layer are maintained in a non-contact state to prevent a short circuit of the capacitor, and ions in the electrolytic solution are interposed between the positive electrode active material layer and the negative electrode active material layer. It is a component for facilitating ion movement.
  • insulating paper formed using wood pulp, glass fiber, polyolefin fiber, fluorine fiber, polyimide fiber, aramid fiber, or the like can be used.
  • insulating paper formed using polylactic acid fibers may be used as a separator.
  • the separator is an insulating paper formed using glass fiber or polylactic acid fiber.
  • the separator desirably has a film thickness of 8 to 100 ⁇ m and a porosity of 30 to 95%.
  • the positive electrode active material layer in the present invention is a porous layer that contains a carbon material, polylactic acid, and a V 3+ compound, and can be impregnated with an electrolytic solution.
  • the carbon material in the present invention is a mixture of nanocarbon having dimensions on the order of nanometers and carbonaceous or graphite materials having dimensions on the order of microns.
  • the nanocarbon commercially available carbon nanotubes, fullerenes and the like can be used.
  • the carbonaceous or graphitic material having a micron-order dimension is desirably a material having an average particle diameter of 2 to 6 ⁇ m and pores having a nanometer-order dimension.
  • Preferred carbonaceous or graphitic materials include activated carbon.
  • the polylactic acid in the positive electrode active material layer functions as a binder that binds the carbonaceous or graphitic material and the nanocarbon.
  • Polylactic acid also functions as a binder for bonding the carbon material bonded with polylactic acid and the positive electrode current collector as described above.
  • the polylactic acid desirably has a number average molecular weight of 30,000 to 100,000.
  • the V 3+ compound in the positive electrode active material layer is a trivalent vanadium salt.
  • the V 3+ compound is selected from the group consisting of V 2 O 3 , VF 3 , VCl 3 , V (acac) 3 (wherein acac represents acetylacetonate), and VSO 4 OH.
  • the central metal V 3+ emits one electron and becomes V 4+ during charging, and V 4+ accepts one electron and becomes V 3+ during discharging, thereby realizing a charge storage function. Contributes to increased capacity.
  • the positive electrode active material layer contains 20 to 65 parts by mass of polylactic acid and 1 to 3 parts by mass of a V 3+ compound per 100 parts by mass of the carbon material.
  • the carbon material includes 1 to 50% by mass of nanocarbon and 50 to 99% by mass of carbonaceous or graphitic material based on the total mass of the carbon material.
  • the carbon material includes 1 to 5% by mass of nanocarbon and 95 to 99% by mass of carbonaceous or graphitic material based on the total mass of the carbon material.
  • a positive electrode active material layer can be formed by apply
  • Application on the positive electrode current collector may be performed by any means known in the art such as a gravure coating method, a doctor blade method, a roll coating method and the like.
  • the positive electrode active material layer of the present invention desirably has a thickness of 100 to 200 ⁇ m.
  • a self-supporting positive electrode active material layer may be formed by applying the positive electrode composition to a temporary support and subsequently peeling the resulting coating film from the temporary support.
  • the negative electrode active material layer in the present invention is a porous layer that contains nanocarbon, polylactic acid, and a V 3+ compound, and can be impregnated with an electrolytic solution.
  • the nanocarbon and polylactic acid in the negative electrode active material layer can be the same as the nanocarbon and polylactic acid in the positive electrode active material layer.
  • the V 4+ compound in the negative electrode active material layer is a tetravalent vanadium salt.
  • the V 4+ compound is selected from the group consisting of V 2 O 4 , VOSO 4 , VF 4 , VCl 4 , VO (acac) 2 , V (SO 4 ) 2 .
  • the central metal V 4+ accepts one electron and becomes V 3+ during charging, and V 3+ emits one electron and becomes V 4+ during discharging, thereby realizing a charge storage function. Contributes to increased capacity.
  • the negative electrode active material layer contains 20 to 65 parts by mass of polylactic acid and 1 to 3 parts by mass of a V 4+ compound per 100 parts by mass of the carbon material.
  • the ratio of nanocarbon to carbonaceous or graphitic material in the carbon material is the same as that of the positive electrode active material layer.
  • the negative electrode active material layer can be formed using a procedure similar to that of the positive electrode active material layer.
  • the negative electrode active material layer of the present invention has a thickness of 100 to 200 ⁇ m.
  • the electrolytic solution of the present invention is an organic electrolytic solution containing an electrolyte and an organic solvent.
  • the electrolyte includes a quaternary ammonium salt, an imidazolium salt, a pyridinium salt, and the like as a cation component, and BF 4 ⁇ , PF 6 ⁇ , CF 3 SO 3 ⁇ , (CF 3 SO 2 ) 2 as an anion component. N- and the like are included.
  • the electrolyte of the present invention is preferably BF 4 quaternary ammonium - a salt, more preferably a (C 2 H 5) 3 ( CH 3) NBF 4.
  • the electrolyte of the present invention is present in the electrolyte solution in the range of 1 to 1.5 mol%.
  • the organic solvent used in the electrolytic solution of the present invention includes aprotic polar solvents such as propylene carbonate, sulfolane, ethylene carbonate, ⁇ -butyrolactone, N, N-dimethylformamide, dimethyl sulfoxide. Mixtures of the aforementioned solvents may be used as the organic solvent of the present invention.
  • the organic solvent is a mixture of propylene carbonate and sulfolane.
  • a positive electrode structure in which a positive electrode active material layer is first formed on both sides of a positive electrode current collector, a separator, a negative electrode laminate in which a negative electrode active material layer is formed on both sides of a negative electrode current collector, and a separator are laminated and pressed in this order, and these layers are integrated and wound into a roll shape.
  • the roll-shaped intermediate body is compressed and formed into a desired shape (for example, a substantially rectangular parallelepiped shape).
  • the electrolytic solution is impregnated in the positive electrode active material layer, the negative electrode active material layer, and the separator in the intermediate.
  • the capacitor of the present invention can be obtained by attaching terminals for external connection, packaging with an insulating sealing material, and the like.
  • an insulating sealing material any material known in the art can be used as long as leakage of the electrolytic solution can be prevented and electrical connection inside and outside the capacitor can be prevented.
  • the capacitor of the present invention can be formed in the same manner as described above.
  • the capacitor obtained as described above can be subjected to processing such as cutting, cutting, bending, drilling and molding.
  • Example 1 3.572 g of polylactic acid having a number average molecular weight of 32,000 was heated to 200 ° C. under a reduced pressure to melt. To the melted polylactic acid, 0.64 g of carbon nanotubes and 5 g of activated carbon having an average particle diameter of 1 ⁇ m were added and kneaded. Subsequently, 0.188 g of VSO 4 OH was added and kneaded to obtain a positive electrode composition. A positive electrode laminate in which a positive electrode composition is applied to both sides of a copper foil having a thickness of 40 ⁇ m using a roll coating method, and a positive electrode active material layer having a thickness of 150 ⁇ m is formed on both sides of the copper foil (positive electrode current collector). Got the body.
  • Triethylmethylammonium tetrafluoroborate was dissolved in a 1: 2.8 mass ratio mixture of sulfolane and propylene carbonate to form an electrolytic solution.
  • the concentration of triethylmethylammonium tetrafluoroborate was 1.5 mol%.
  • a positive electrode laminate, a separator (pulp separator made by NKK), a negative electrode laminate, and a separator are passed between a pair of pressure rolls so as to be laminated in this order, the constituent layers are integrated, and wound into a roll. It was.
  • the roll-shaped intermediate body was placed in a rectangular parallelepiped mold and pressed to form a substantially rectangular parallelepiped shape. Thereafter, connection of external connection terminals and packaging with an insulating sealing material were performed to obtain a capacitor.
  • the obtained capacitor had a mass of 22.9 g, an equivalent series resistance (ESR) of 400 m ⁇ , a residual voltage of 10 mV, and a capacitance of 640F.
  • ESR equivalent series resistance
  • a current of 3.7 V and 1 A could be extracted from the obtained capacitor.

Abstract

Disclosed is a capacitor which can store electric energy utilizing an electric double layer that is formed at an interface between a polarizing electrode and a electrolytic solution as well as charge transfer between the polarizing electrode and a metal compound, and which has a novel structure. The capacitor comprises: a positive electrode current collector; a positive electrode active material layer comprising a carbon material, a poly(lactic acid) and a V3+ compound; a separator; a negative electrode active material layer comprising a carbon material, a poly(lactic acid) and a V4+ compound; a negative electrode current collector; and an electrolytic solution with which the positive electrode active material layer, the separator and the negative electrode active material layer are impregnated.

Description

キャパシタCapacitors
 本発明は、キャパシタに関する。より詳細には、本発明は、V3+化合物を含む正極活物質層と、V4+化合物を含む負極活物質層とを含むキャパシタに関する。 The present invention relates to a capacitor. More specifically, the present invention relates to a capacitor including a positive electrode active material layer containing a V 3+ compound and a negative electrode active material layer containing a V 4+ compound.
 電気二重層キャパシタは、分極性電極と電解液との界面に形成される電気二重層に蓄積される電気エネルギーを利用するものである。電気二重層キャパシタは充放電時に化学反応を伴わないため、リチウムイオン二次電池、ニッケル水素二次電池などと比較し、入出力特性、寿命特性、安全性の点で優れているという特長を有する。このような電気二重層キャパシタは、小型化および大容量の充電が可能なキャパシタとして、マイクロコンピュータ、メモリ、タイマーなどのバックアップ用途、各種電源のアシスト用途などに広く用いられているものである。加えて、近年では、その特徴を生かして、より大容量の製品の開発が進められている。 The electric double layer capacitor uses electric energy accumulated in the electric double layer formed at the interface between the polarizable electrode and the electrolyte. Since electric double layer capacitors do not involve chemical reactions during charge and discharge, they have the advantages of superior input / output characteristics, life characteristics, and safety compared to lithium ion secondary batteries and nickel metal hydride secondary batteries. . Such an electric double layer capacitor is widely used as a capacitor that can be reduced in size and charged with a large capacity, for backup applications such as microcomputers, memories, and timers, and for assisting various power sources. In addition, in recent years, development of larger-capacity products has been promoted taking advantage of the characteristics.
 化学反応によって電気を発生させる二次電池に比較して、電気二重層キャパシタは、より大きな出力密度を有するものの、エネルギー密度が小さいという問題点を有している。電気二重層キャパシタのエネルギー密度を向上させることを目的として、電極界面での電荷移動を用いるレドックス容量キャパシタまたは擬似容量キャパシタ、それらを組み合わせたハイブリッドキャパシタ、電解液としてイオン性液体を用いるイオン性液体キャパシタなどの開発が進められている。たとえば、その表面にリチウムを溶射した負極シートを用いる電気二重層キャパシタなどが提案されている(特許文献1参照)。 Compared to a secondary battery that generates electricity by a chemical reaction, an electric double layer capacitor has a problem that the energy density is small although it has a higher output density. For the purpose of improving the energy density of an electric double layer capacitor, a redox capacitor or pseudocapacitor using charge transfer at the electrode interface, a hybrid capacitor combining them, and an ionic liquid capacitor using an ionic liquid as an electrolyte Development is progressing. For example, an electric double layer capacitor using a negative electrode sheet sprayed with lithium on its surface has been proposed (see Patent Document 1).
特開2010-80858号公報JP 2010-80858 A
 本発明は、分極性電極と電解液との界面に形成される電気二重層に加えて、分極性電極と金属化合物との電荷移動を用いて電気エネルギーを貯蔵する新規構造のキャパシタを提供することである。 The present invention provides a capacitor having a novel structure for storing electric energy by using charge transfer between a polarizable electrode and a metal compound in addition to an electric double layer formed at the interface between the polarizable electrode and the electrolyte. It is.
 本発明のキャパシタは:正極集電体と;カーボン材料、ポリ乳酸、およびV、VF、VCl、V(acac)、VSOOHからなる群から選択されるV3+化合物とを含む正極活物質層と;セパレータと;カーボン材料;ポリ乳酸、およびV、VOSO、VF、VCl、VO(acac)、V(SOからなる群から選択されるV4+化合物とを含む負極活物質層と;負極集電体と;前記正極活物質層、前記セパレータおよび前記負極活物質層中に含浸された電解液とを含むことを特徴とする。 The capacitor of the present invention comprises: a positive electrode current collector; a carbon material, polylactic acid, and a V 3+ compound selected from the group consisting of V 2 O 3 , VF 3 , VCl 3 , V (acac) 3 , VSO 4 OH A positive electrode active material layer containing; a separator; a carbon material; selected from the group consisting of polylactic acid and V 2 O 4 , VOSO 4 , VF 4 , VCl 4 , VO (acac) 2 , V (SO 4 ) 2 that the anode active material layer containing a V 4+ compound; a negative electrode current collector; the positive active material layer, characterized in that it comprises a said separator and the negative electrode active material layer electrolyte solution impregnated into.
 本発明のキャパシタは、急速充電に対応することができ、安価に製造することができるという利点を有する。また、本発明のキャパシタは、過充電状態になってもリチウム系二次電池で問題となる発火性成分または有毒ガスの生成などが発生せず、何の問題も起こらない。さらに、本発明のキャパシタは、リチウム系二次電池とは異なり、過放電を行っても、再度の使用に何ら問題がない。加えて、本発明のキャパシタに用いられる材料は安価であり、かつレアメタルなどを使用しないため、その供給も安定的に行うことができる。 The capacitor according to the present invention has an advantage that it can cope with rapid charging and can be manufactured at low cost. In addition, the capacitor of the present invention does not generate any ignitable components or toxic gases which are problematic in lithium secondary batteries even in an overcharged state, and does not cause any problems. Furthermore, unlike the lithium secondary battery, the capacitor of the present invention has no problem even when it is overdischarged. In addition, since the material used for the capacitor of the present invention is inexpensive and does not use rare metal or the like, it can be supplied stably.
 本発明のキャパシタは、正極集電体と、正極活物質層と、負極活物質層と、負極集電体と、前記正極活物質層、前記セパレータおよび前記負極活物質層中に含浸された電解液とを含む。 The capacitor of the present invention includes a positive electrode current collector, a positive electrode active material layer, a negative electrode active material layer, a negative electrode current collector, an electrolysis impregnated in the positive electrode active material layer, the separator, and the negative electrode active material layer. Liquid.
 本発明における正極集電体は、金属、好ましくは銅を用いて形成される。キャパシタの成形などを容易にするために、40~50μmの膜厚を有する銅箔を正極集電体として用いることが好ましい。 The positive electrode current collector in the present invention is formed using metal, preferably copper. In order to facilitate the formation of the capacitor and the like, it is preferable to use a copper foil having a film thickness of 40 to 50 μm as the positive electrode current collector.
 本発明における負極集電体は、金属、好ましくはアルミニウムを用いて形成される。正極集電体と同様に、キャパシタの成形などを容易にするために、40~50μmの膜厚を有するアルミニウム箔を負極集電体として用いることが好ましい。さらに、負極活物質層と接触する負極集電体の表面を粗面化することが望ましい。負極集電体表面の凹凸は、キャパシタの成形の際に負極集電体と解離する恐れのある負極活物質層中のナノカーボンを固定するためのアンカー効果を提供する。本発明においては、負極集電体の表面を「20A」加工と呼ばれる粗面化を施し、実表面積を見かけの表面積の20倍にすることが望ましい。 The negative electrode current collector in the present invention is formed using a metal, preferably aluminum. Similar to the positive electrode current collector, an aluminum foil having a thickness of 40 to 50 μm is preferably used as the negative electrode current collector in order to facilitate the formation of the capacitor. Furthermore, it is desirable to roughen the surface of the negative electrode current collector in contact with the negative electrode active material layer. The irregularities on the surface of the negative electrode current collector provide an anchor effect for fixing the nanocarbon in the negative electrode active material layer that may be dissociated from the negative electrode current collector during molding of the capacitor. In the present invention, it is desirable that the surface of the negative electrode current collector is roughened, which is called “20A” processing, so that the actual surface area becomes 20 times the apparent surface area.
 本発明におけるセパレータは、正極活物質層と負極活物質層とを非接触状態に維持してキャパシタの短絡を防止するとともに、電解液中のイオンが正極活物質層と負極活物質層との間のイオン移動を容易にするための構成要素である。セパレータとして、木材パルプ、ガラス繊維、ポリオレフィン系繊維、フッ素系繊維、ポリイミド系繊維、アラミド繊維などを用いて形成される絶縁紙を用いることができる。あるいはまた、ポリ乳酸の繊維を用いて形成された絶縁紙をセパレータとして用いてもよい。より好ましくは、セパレータは、ガラス繊維またはポリ乳酸繊維を用いて形成された絶縁紙である。上記の機能を提供するために、セパレータは、8~100μmの膜厚、および30~95%の空孔率を有することが望ましい。 In the separator according to the present invention, the positive electrode active material layer and the negative electrode active material layer are maintained in a non-contact state to prevent a short circuit of the capacitor, and ions in the electrolytic solution are interposed between the positive electrode active material layer and the negative electrode active material layer. It is a component for facilitating ion movement. As the separator, insulating paper formed using wood pulp, glass fiber, polyolefin fiber, fluorine fiber, polyimide fiber, aramid fiber, or the like can be used. Alternatively, insulating paper formed using polylactic acid fibers may be used as a separator. More preferably, the separator is an insulating paper formed using glass fiber or polylactic acid fiber. In order to provide the above functions, the separator desirably has a film thickness of 8 to 100 μm and a porosity of 30 to 95%.
 本発明における正極活物質層は、カーボン材料、ポリ乳酸、およびV3+化合物とを含み、電解液を含浸させ得る多孔質の層である。 The positive electrode active material layer in the present invention is a porous layer that contains a carbon material, polylactic acid, and a V 3+ compound, and can be impregnated with an electrolytic solution.
 本発明におけるカーボン材料とは、ナノメートルオーダーの寸法を有するナノカーボンと、ミクロンオーダーの寸法を有する炭素質または黒鉛質材料との混合物である。ナノカーボンとしては、市販のカーボンナノチューブ、フラーレンなどを用いることができる。ミクロンオーダーの寸法を有する炭素質または黒鉛質材料は、2~6μmの平均粒径を有し、かつナノメートルオーダーの寸法を有する細孔を有する材料であることが望ましい。好ましい炭素質または黒鉛質材料は、活性炭を含む。 The carbon material in the present invention is a mixture of nanocarbon having dimensions on the order of nanometers and carbonaceous or graphite materials having dimensions on the order of microns. As the nanocarbon, commercially available carbon nanotubes, fullerenes and the like can be used. The carbonaceous or graphitic material having a micron-order dimension is desirably a material having an average particle diameter of 2 to 6 μm and pores having a nanometer-order dimension. Preferred carbonaceous or graphitic materials include activated carbon.
 正極活物質層中のポリ乳酸は、炭素質または黒鉛質材料とナノカーボンとを結合させるバインダーとして機能する。また、ポリ乳酸は、上記のようにポリ乳酸で結合されたカーボン材料と正極集電体とを結合させるバインダーとしても機能する。本発明において、ポリ乳酸は、30000~100000の数平均分子量を有することが望ましい。 The polylactic acid in the positive electrode active material layer functions as a binder that binds the carbonaceous or graphitic material and the nanocarbon. Polylactic acid also functions as a binder for bonding the carbon material bonded with polylactic acid and the positive electrode current collector as described above. In the present invention, the polylactic acid desirably has a number average molecular weight of 30,000 to 100,000.
 正極活物質層中のV3+化合物は、3価のバナジウムの塩である。本発明において、V3+化合物は、V、VF、VCl、V(acac)(式中、acacはアセチルアセトナートを表わす)、およびVSOOHからなる群から選択される。V3+化合物は、充電時に中心金属であるV3+が一電子放出してV4+となり、放電時にはV4+が一電子受容してV3+となることによって、電荷の貯蔵機能を実現し、キャパシタの容量の増大に寄与する。 The V 3+ compound in the positive electrode active material layer is a trivalent vanadium salt. In the present invention, the V 3+ compound is selected from the group consisting of V 2 O 3 , VF 3 , VCl 3 , V (acac) 3 (wherein acac represents acetylacetonate), and VSO 4 OH. In the V 3+ compound, the central metal V 3+ emits one electron and becomes V 4+ during charging, and V 4+ accepts one electron and becomes V 3+ during discharging, thereby realizing a charge storage function. Contributes to increased capacity.
 正極活物質層は、カーボン材料100質量部あたり、20~65質量部のポリ乳酸と、1~3質量部のV3+化合物とを含む。また、カーボン材料は、カーボン材料の総質量を基準として、1~50質量%のナノカーボンと、50~99質量%の炭素質または黒鉛質材料とを含む。好ましくは、カーボン材料は、カーボン材料の総質量を基準として、1~5質量%のナノカーボンと、95~99質量%の炭素質または黒鉛質材料とを含む。 The positive electrode active material layer contains 20 to 65 parts by mass of polylactic acid and 1 to 3 parts by mass of a V 3+ compound per 100 parts by mass of the carbon material. The carbon material includes 1 to 50% by mass of nanocarbon and 50 to 99% by mass of carbonaceous or graphitic material based on the total mass of the carbon material. Preferably, the carbon material includes 1 to 5% by mass of nanocarbon and 95 to 99% by mass of carbonaceous or graphitic material based on the total mass of the carbon material.
 溶媒の不存在下、加熱して軟化または溶融させたポリ乳酸に対して、カーボン材料を添加して混練し、次いでV3+化合物を添加して混練し、正極組成物を形成する。組成物中への気泡の混入を防止するために、混練を減圧下で行うことが望ましい。次いで、正極組成物を正極集電体の片面また両面に塗布することによって、正極活物質層を形成することができる。正極集電体上への塗布は、グラビアコート法、ドクターブレード法、ロールコート法などの当該技術において知られている任意の手段を用いてもよい。本発明の正極活物質層は、100~200μmの膜厚を有することが望ましい。別法として、正極組成物を一時的支持体に塗布し、続いて得られた塗膜を一時的支持体から剥離することによって、自立性の正極活物質層を形成してもよい。 In the absence of a solvent, a polylactic acid heated and softened or melted is added with a carbon material and kneaded, and then a V 3+ compound is added and kneaded to form a positive electrode composition. In order to prevent air bubbles from being mixed into the composition, it is desirable to perform the kneading under reduced pressure. Subsequently, a positive electrode active material layer can be formed by apply | coating a positive electrode composition to the single side | surface or both surfaces of a positive electrode electrical power collector. Application on the positive electrode current collector may be performed by any means known in the art such as a gravure coating method, a doctor blade method, a roll coating method and the like. The positive electrode active material layer of the present invention desirably has a thickness of 100 to 200 μm. Alternatively, a self-supporting positive electrode active material layer may be formed by applying the positive electrode composition to a temporary support and subsequently peeling the resulting coating film from the temporary support.
 本発明における負極活物質層は、ナノカーボン、ポリ乳酸、およびV3+化合物とを含み、電解液を含浸させ得る多孔質の層である。負極活物質層中のナノカーボンおよびポリ乳酸は、正極活物質層中のナノカーボンおよびポリ乳酸と同一のものを使用することができる。 The negative electrode active material layer in the present invention is a porous layer that contains nanocarbon, polylactic acid, and a V 3+ compound, and can be impregnated with an electrolytic solution. The nanocarbon and polylactic acid in the negative electrode active material layer can be the same as the nanocarbon and polylactic acid in the positive electrode active material layer.
 負極活物質層中のV4+化合物は、4価のバナジウムの塩である。本発明において、V4+化合物は、V、VOSO、VF、VCl、VO(acac)、V(SOからなる群から選択される。V4+化合物は、充電時に中心金属であるV4+が一電子受容してV3+となり、放電時にはV3+が一電子放出してV4+となることによって、電荷の貯蔵機能を実現し、キャパシタの容量の増大に寄与する。 The V 4+ compound in the negative electrode active material layer is a tetravalent vanadium salt. In the present invention, the V 4+ compound is selected from the group consisting of V 2 O 4 , VOSO 4 , VF 4 , VCl 4 , VO (acac) 2 , V (SO 4 ) 2 . In the V 4+ compound, the central metal V 4+ accepts one electron and becomes V 3+ during charging, and V 3+ emits one electron and becomes V 4+ during discharging, thereby realizing a charge storage function. Contributes to increased capacity.
 負極活物質層は、カーボン材料100質量部あたり、20~65質量部のポリ乳酸と、1~3質量部のV4+化合物とを含む。また、カーボン材料中のナノカーボンと炭素質または黒鉛質材料との比は、正極活物質層と同様である。 The negative electrode active material layer contains 20 to 65 parts by mass of polylactic acid and 1 to 3 parts by mass of a V 4+ compound per 100 parts by mass of the carbon material. The ratio of nanocarbon to carbonaceous or graphitic material in the carbon material is the same as that of the positive electrode active material layer.
 負極活物質層は、正極活物質層と同様の手順を用いて形成することができる。本発明の負極活物質層は、100~200μmの膜厚を有する。 The negative electrode active material layer can be formed using a procedure similar to that of the positive electrode active material layer. The negative electrode active material layer of the present invention has a thickness of 100 to 200 μm.
 本発明の電解液は、電解質および有機溶媒を含む有機電解液である。電解質は、陽イオン成分として、第4級アンモニウム塩、イミダゾリウム塩、ピリジニウム塩などを含み、陰イオン成分として、BF 、PF 、CFSO 、(CFSOなどを含む。本発明の電解質は、好ましくは第4級アンモニウムのBF 塩であり、より好ましくは(C(CH)NBFである。本発明の電解質は、電解液中に1~1.5モル%の範囲内で存在する。本発明の電解液中に用いられる有機溶媒は、プロピレンカーボネート、スルホラン、エチレンカーボネート、γ-ブチロラクトン、N,N-ジメチルホルムアミド、ジメチルスルホキシドなどの非プロトン性極性溶媒を含む。前述の溶媒の混合物を、本発明の有機溶媒として用いてもよい。好ましくは、有機溶媒はプロピレンカーボネートおよびスルホランの混合物である。 The electrolytic solution of the present invention is an organic electrolytic solution containing an electrolyte and an organic solvent. The electrolyte includes a quaternary ammonium salt, an imidazolium salt, a pyridinium salt, and the like as a cation component, and BF 4 , PF 6 , CF 3 SO 3 , (CF 3 SO 2 ) 2 as an anion component. N- and the like are included. The electrolyte of the present invention is preferably BF 4 quaternary ammonium - a salt, more preferably a (C 2 H 5) 3 ( CH 3) NBF 4. The electrolyte of the present invention is present in the electrolyte solution in the range of 1 to 1.5 mol%. The organic solvent used in the electrolytic solution of the present invention includes aprotic polar solvents such as propylene carbonate, sulfolane, ethylene carbonate, γ-butyrolactone, N, N-dimethylformamide, dimethyl sulfoxide. Mixtures of the aforementioned solvents may be used as the organic solvent of the present invention. Preferably, the organic solvent is a mixture of propylene carbonate and sulfolane.
 本発明のキャパシタの製造においては、最初に正極集電体の両面に正極活物質層を形成した正極構造体、セパレータ、負極集電体の両面に負極活物質層を形成した負極積層体およびセパレータをこの順に積層して加圧し、これらの層を一体化させ、ロール形状に巻き取る。次いで、ロール形状の中間体を圧縮加工し、所望の形状(たとえば、略直方体形状)に成形する。続いて、中間体中の正極活物質層、負極活物質層およびセパレータ中に、電解液を含浸させる。さらに、外部接続用の端子の取り付け、絶縁性シール材による包装などを行って、本発明のキャパシタを得ることができる。絶縁性シール材としては、電解液の漏れを防止することができ、キャパシタ内外の電気的接続を阻止することができる限りにおいて、当該技術において知られている任意の材料を用いることができる。 In the production of the capacitor of the present invention, a positive electrode structure in which a positive electrode active material layer is first formed on both sides of a positive electrode current collector, a separator, a negative electrode laminate in which a negative electrode active material layer is formed on both sides of a negative electrode current collector, and a separator Are laminated and pressed in this order, and these layers are integrated and wound into a roll shape. Next, the roll-shaped intermediate body is compressed and formed into a desired shape (for example, a substantially rectangular parallelepiped shape). Subsequently, the electrolytic solution is impregnated in the positive electrode active material layer, the negative electrode active material layer, and the separator in the intermediate. Furthermore, the capacitor of the present invention can be obtained by attaching terminals for external connection, packaging with an insulating sealing material, and the like. As the insulating sealing material, any material known in the art can be used as long as leakage of the electrolytic solution can be prevented and electrical connection inside and outside the capacitor can be prevented.
 以上の説明においては、正極活物質層および負極活物質層がそれぞれ正極集電体および負極集電体の上に形成されている場合を説明したが、自立性の正極活物質層および負極活を用いて本発明のキャパシタを形成してもよい。この場合は、正極活物質層、正極集電体、正極活物質層、セパレータ、負極活物質層、負極集電体、負極活物質層、セパレータ、がこの順に積層される用にすることを除いて、上記の説明と同様にして本発明のキャパシタを形成することができる。 In the above description, the case where the positive electrode active material layer and the negative electrode active material layer are respectively formed on the positive electrode current collector and the negative electrode current collector has been described. It may be used to form the capacitor of the present invention. In this case, except that the positive electrode active material layer, the positive electrode current collector, the positive electrode active material layer, the separator, the negative electrode active material layer, the negative electrode current collector, the negative electrode active material layer, and the separator are stacked in this order. Thus, the capacitor of the present invention can be formed in the same manner as described above.
 さらに、上記のようにして得られたキャパシタに対して、切削、切断、折り曲げ、孔あけ、成形などの加工を行うことができる。 Furthermore, the capacitor obtained as described above can be subjected to processing such as cutting, cutting, bending, drilling and molding.
  (実施例1)
 数平均分子量32000のポリ乳酸3.572gを減圧下200℃に加熱して溶融させた。溶融させたポリ乳酸に対して、カーボンナノチューブ0.64g、平均粒径1μmの活性炭5gを添加して混練した。続いて、0.188gのVSOOHを添加して混練し、正極組成物を得た。ロールコート法を用いて、膜厚40μmの銅箔の両面に、正極組成物を塗布し、銅箔(正極集電体)の両面上に膜厚150μmの正極活物質層が形成された正極積層体を得た。
Example 1
3.572 g of polylactic acid having a number average molecular weight of 32,000 was heated to 200 ° C. under a reduced pressure to melt. To the melted polylactic acid, 0.64 g of carbon nanotubes and 5 g of activated carbon having an average particle diameter of 1 μm were added and kneaded. Subsequently, 0.188 g of VSO 4 OH was added and kneaded to obtain a positive electrode composition. A positive electrode laminate in which a positive electrode composition is applied to both sides of a copper foil having a thickness of 40 μm using a roll coating method, and a positive electrode active material layer having a thickness of 150 μm is formed on both sides of the copper foil (positive electrode current collector). Got the body.
 数平均分子量32000のポリ乳酸3.572gを減圧下200℃に加熱して溶融させた。溶融させたポリ乳酸に対して、カーボンナノチューブ0.64g、平均粒径1μmの活性炭5gを添加して混練した。続いて、0.188gのV(SOを添加して混練し、負極組成物を得た。ロールコート法を用いて、膜厚40μmの「A20」加工を施したアルミニウム箔の両面に、得られた負極組成物を塗布し、アルミニウム箔の両面上に膜厚150μmの正極活物質層が形成された負極積層体を得た。 3.572 g of polylactic acid having a number average molecular weight of 32,000 was heated to 200 ° C. under a reduced pressure to melt. To the melted polylactic acid, 0.64 g of carbon nanotubes and 5 g of activated carbon having an average particle diameter of 1 μm were added and kneaded. Subsequently, 0.188 g of V (SO 4 ) 2 was added and kneaded to obtain a negative electrode composition. Using the roll coat method, the obtained negative electrode composition is applied to both surfaces of an aluminum foil having a thickness of 40 μm and subjected to “A20” processing to form a positive electrode active material layer having a thickness of 150 μm on both surfaces of the aluminum foil. A negative electrode laminate was obtained.
 スルホランおよびプロピレンカーボネートの1:2.8の質量比の混合物にトリエチルメチルアンモニウムテトラフルオロボレートを溶解させて、電解液を形成した。トリエチルメチルアンモニウムテトラフルオロボレートの濃度は1.5モル%であった。 Triethylmethylammonium tetrafluoroborate was dissolved in a 1: 2.8 mass ratio mixture of sulfolane and propylene carbonate to form an electrolytic solution. The concentration of triethylmethylammonium tetrafluoroborate was 1.5 mol%.
 正極積層体、セパレータ(NKK社製パルプセパレータ)、負極積層体、およびセパレータを、この順に積層されるように一対の加圧ロール間を通過させ、構成層を一体化させ、ロール状に巻き取った。ロール状の中間体を直方体の金型内に配置して加圧し、略直方体の形状へと成形した。その後に、外部接続用端子の接続、および絶縁性シール材による包装を行い、キャパシタを得た。 A positive electrode laminate, a separator (pulp separator made by NKK), a negative electrode laminate, and a separator are passed between a pair of pressure rolls so as to be laminated in this order, the constituent layers are integrated, and wound into a roll. It was. The roll-shaped intermediate body was placed in a rectangular parallelepiped mold and pressed to form a substantially rectangular parallelepiped shape. Thereafter, connection of external connection terminals and packaging with an insulating sealing material were performed to obtain a capacitor.
 得られたキャパシタは、22.9gの質量、400mΩの等価直列抵抗(ESR)、10mVの残留電圧、640Fのキャパシタンスを有した。また、得られたキャパシタから、3.7V、1Aの電流を取り出すことができた。 The obtained capacitor had a mass of 22.9 g, an equivalent series resistance (ESR) of 400 mΩ, a residual voltage of 10 mV, and a capacitance of 640F. In addition, a current of 3.7 V and 1 A could be extracted from the obtained capacitor.

Claims (4)

  1.  正極集電体と;
     カーボン材料、ポリ乳酸、およびV3+化合物とを含む正極活物質層と;
     セパレータと;
     カーボン材料;ポリ乳酸、およびV4+化合物とを含む負極活物質層と;
     負極集電体と;
     前記正極活物質層、前記セパレータおよび前記負極活物質層中に含浸された電解液
    とを含むことを特徴とするキャパシタ。
    A positive electrode current collector;
    A positive electrode active material layer comprising a carbon material, polylactic acid, and a V 3+ compound;
    With a separator;
    A carbon material; a negative electrode active material layer containing polylactic acid and a V 4+ compound;
    A negative electrode current collector;
    A capacitor comprising: the positive electrode active material layer; the separator; and an electrolytic solution impregnated in the negative electrode active material layer.
  2.  前記正極活物質層および前記負極活物質層中のカーボン材料は、活性炭と、カーボンナノチューブまたはフラーレンとの混合物であることを特徴とする請求項1に記載のキャパシタ。 2. The capacitor according to claim 1, wherein the carbon material in the positive electrode active material layer and the negative electrode active material layer is a mixture of activated carbon and carbon nanotubes or fullerenes.
  3.  前記V3+化合物は、V、VF、VCl、V(acac)、VSOOHからなる群から選択されることを特徴とする請求項1に記載のキャパシタ。 The capacitor according to claim 1, wherein the V 3+ compound is selected from the group consisting of V 2 O 3 , VF 3 , VCl 3 , V (acac) 3 , and VSO 4 OH.
  4.  前記V4+化合物は、V、VOSO、VF、VCl、VO(acac)、V(SOからなる群から選択されることを特徴とする請求項1に記載のキャパシタ。 The V 4+ compound is selected from the group consisting of V 2 O 4 , VOSO 4 , VF 4 , VCl 4 , VO (acac) 2 , V (SO 4 ) 2 . Capacitor.
PCT/JP2010/003874 2010-06-10 2010-06-10 Capacitor WO2011155000A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2010/003874 WO2011155000A1 (en) 2010-06-10 2010-06-10 Capacitor
PCT/JP2011/003133 WO2011155164A1 (en) 2010-06-10 2011-06-02 Capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/003874 WO2011155000A1 (en) 2010-06-10 2010-06-10 Capacitor

Publications (1)

Publication Number Publication Date
WO2011155000A1 true WO2011155000A1 (en) 2011-12-15

Family

ID=45097634

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2010/003874 WO2011155000A1 (en) 2010-06-10 2010-06-10 Capacitor
PCT/JP2011/003133 WO2011155164A1 (en) 2010-06-10 2011-06-02 Capacitor

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003133 WO2011155164A1 (en) 2010-06-10 2011-06-02 Capacitor

Country Status (1)

Country Link
WO (2) WO2011155000A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013076762A1 (en) * 2011-11-22 2013-05-30 イノベーションエネルギー株式会社 Capacitor
CN110892574A (en) * 2017-07-04 2020-03-17 优化公司 Secondary battery and method for manufacturing secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032633A (en) * 2003-07-08 2005-02-03 Tdk Corp Electrode and electrochemical element
JP2005166459A (en) * 2003-12-03 2005-06-23 Yuasa Corp Electrochemical device, electrode for electrochemical device, electrode material for electrochemical device and manufacturing method of the same
JP2009519565A (en) * 2005-12-14 2009-05-14 アヴェスター リミティッド パートナーシップ Electrochemical battery and manufacturing method thereof
JP2010034300A (en) * 2008-07-29 2010-02-12 Jfe Chemical Corp Carbon material for use of polarizable electrode of electric double-layer capacitor, its manufacturing method, and the electric double-layer capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032633A (en) * 2003-07-08 2005-02-03 Tdk Corp Electrode and electrochemical element
JP2005166459A (en) * 2003-12-03 2005-06-23 Yuasa Corp Electrochemical device, electrode for electrochemical device, electrode material for electrochemical device and manufacturing method of the same
JP2009519565A (en) * 2005-12-14 2009-05-14 アヴェスター リミティッド パートナーシップ Electrochemical battery and manufacturing method thereof
JP2010034300A (en) * 2008-07-29 2010-02-12 Jfe Chemical Corp Carbon material for use of polarizable electrode of electric double-layer capacitor, its manufacturing method, and the electric double-layer capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013076762A1 (en) * 2011-11-22 2013-05-30 イノベーションエネルギー株式会社 Capacitor
CN110892574A (en) * 2017-07-04 2020-03-17 优化公司 Secondary battery and method for manufacturing secondary battery
EP3651259A4 (en) * 2017-07-04 2021-04-14 Optimizer Inc. Secondary battery and manufacturing method of secondary battery

Also Published As

Publication number Publication date
WO2011155164A1 (en) 2011-12-15

Similar Documents

Publication Publication Date Title
Muzaffar et al. A review on recent advances in hybrid supercapacitors: Design, fabrication and applications
JP5363818B2 (en) Coating electrode and organic electrolyte capacitor
JP5276001B2 (en) Electrode for energy storage device
JP5365260B2 (en) Electrode film and electrode containing ionic liquid, manufacturing method thereof, and electricity storage device
KR100836524B1 (en) Active Material Having High Capacitance For An Electrode, Manufacturing Method thereof, Electrode And Energy Storage Apparatus Comprising The Same
US7623339B2 (en) Electrochemical device
KR101138502B1 (en) Method of manufacturing lithium ion capacitor
JP2007280803A (en) Hybrid laminated electrode and hybrid secondary power source using the same
KR101793040B1 (en) Manufacturing method of electrode active material for ultracapacitor, manufacturing method of ultracapacitor electrode using the electrode active material and ultracapacitorusing the electrode active material
WO2017057603A1 (en) Composition for gel electrolytes
JP5548837B1 (en) Carbon material for polarizable electrode and method for producing the same
WO2020080521A1 (en) Capacitor, and capacitor electrode
WO2020080520A1 (en) Capacitor, and capacitor electrode
WO2011155000A1 (en) Capacitor
WO2013076762A1 (en) Capacitor
JP2010245086A (en) Method for manufacturing lithium ion capacitor
JP2013065851A (en) Electrode active material, method for preparing the same, and electrochemical capacitor including the same
KR20140068896A (en) Carbon Electrodes and Electrochemical Capacitors
EP3109877A1 (en) Capacitor and method for charging and discharging same
KR101936044B1 (en) Supercapacitor electrode for high temperature, manufactureing method of the electrode, and Supercapacitor for high temperature using the electrode
TW201322289A (en) Capacitor
KR101409178B1 (en) Composite for supercapacitor electrode and manufacturing method of supercapacitor electrode using the composite
TWI471881B (en) Supercapacitor with a core-shell electrode
JP2010239085A (en) Electric double layer capacitor
JP2010123766A (en) Electrode sheet, and electric double-layer capacitor and lithium ion capacitor using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10852841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP