JP2007280803A - Hybrid laminated electrode and hybrid secondary power source using the same - Google Patents

Hybrid laminated electrode and hybrid secondary power source using the same Download PDF

Info

Publication number
JP2007280803A
JP2007280803A JP2006106406A JP2006106406A JP2007280803A JP 2007280803 A JP2007280803 A JP 2007280803A JP 2006106406 A JP2006106406 A JP 2006106406A JP 2006106406 A JP2006106406 A JP 2006106406A JP 2007280803 A JP2007280803 A JP 2007280803A
Authority
JP
Japan
Prior art keywords
electrode
hybrid
electrode layer
active material
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006106406A
Other languages
Japanese (ja)
Inventor
Kinchu Kuruma
金柱 車
Takahiro Omichi
高弘 大道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2006106406A priority Critical patent/JP2007280803A/en
Publication of JP2007280803A publication Critical patent/JP2007280803A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hybrid laminated electrode which has both the functions of a lithium ion battery and an electric double-layer capacitor on the electrode level. <P>SOLUTION: The hybrid laminated electrode 100 comprises a first electrode layer 3a, on which an electrode layer having an electrode active substance is arranged at least on one face of a current collector, and a second electrode layer 3b which is arranged on the first electrode layer 3a and has an electrode active substance of the same pole as with the first electrode layer 3a. A lithium ion battery electrode is arranged on the first electrode layer 3a and an electric double-layer capacitor electrode is arranged on the second electrode layer 3b. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、リチウム二次電池・電気二重層キャパシタ両機能を電極レベルで兼ね備えたハイブリッド型積層電極を用いる蓄電素子に関する。   The present invention relates to a power storage device using a hybrid multilayer electrode having both functions of a lithium secondary battery and an electric double layer capacitor at an electrode level.

近年、電子機器の多機能化、デジタル化などに伴って電池性能も高容量化、高出力化が求められている。リチウムイオン二次電池は、高電圧、高エネルギー密度を有し、非水電解液を用いるため作動温度範囲が広く、長期保存に優れ、小型化ができる等の多くの利点を有しているため、携帯電話、携帯用パソコン、ビデオカメラ、電気自動車等の用途に好適に用いることができる。   In recent years, with the increase in functionality and digitalization of electronic devices, battery performance is required to have higher capacity and higher output. A lithium ion secondary battery has a high voltage, a high energy density, and has many advantages such as a wide operating temperature range due to the use of a non-aqueous electrolyte, excellent long-term storage, and miniaturization. It can be suitably used for applications such as cellular phones, portable personal computers, video cameras, and electric vehicles.

例えば、携帯電話などは小型化、多機能化が進む中、省電力化によって平均的な消費電力は削減されつつあるが、通信時には大電流を必要とするパルス的な使用が多くなりつつあり、リチウムイオン二次電池のように、電池内部のインピーダンスが高く、放電出力密度が低いものは適していない。   For example, while mobile phones are becoming smaller and multifunctional, average power consumption is being reduced due to power savings, but pulse-like use that requires a large current during communication is increasing. A lithium ion secondary battery with a high impedance inside the battery and a low discharge output density is not suitable.

一方、二次電源として用いられる電気二重層キャパシタは、内部の抵抗が小さいため大電流での急速充放電が可能な素子であり、サイクル特性及び電圧印加時の繰り返しに対する安定性が高く、大電流放電出力に優れた蓄電素子でバッテリや電源に対する負荷を減らすことが可能で、エンジンとモータとを組み合わせたハイブリッド電気自動車等の用途にも有望である。しかしながら、電気二重層キャパシタだけではエネルギー密度が小さいという欠点があった。   On the other hand, an electric double layer capacitor used as a secondary power source is an element capable of rapid charge / discharge with a large current because of its low internal resistance, and has high cycle characteristics and stability against repetition during voltage application. It is possible to reduce the load on the battery and the power source with a power storage element having excellent discharge output, and it is also promising for applications such as a hybrid electric vehicle combining an engine and a motor. However, the electric double layer capacitor alone has a drawback of low energy density.

そこで、電池・キャパシタ集合素子として、それぞれ単独で構成された電池とキャパシタの各電極端子とリード線で共通外部端子に接続すると共に、全体を一体化することにより、外見的に単一素子として使用できるようにしたものが提案されている。   Therefore, as a battery / capacitor collective element, it is used as a single element in appearance by connecting to the common external terminal with each electrode terminal and lead wire of the battery and capacitor configured individually, and by integrating the whole What has been made possible is proposed.

具体的には、電池に並列に接続された電池・キャパシタ集合素子は、キャパシタ側の低い内部抵抗により、電池を単独で使用する場合よりも大幅に内部抵抗を低くすることができ、パルス放電特性、特に低温時のパルス放電特性の良好な電源を提供する集合素子である(例えば、特許文献1参照)。   Specifically, the battery / capacitor collective element connected in parallel with the battery has a low internal resistance on the capacitor side, so the internal resistance can be significantly lower than when the battery is used alone, and the pulse discharge characteristics In particular, it is a collective element that provides a power source with good pulse discharge characteristics at low temperatures (see, for example, Patent Document 1).

しかし、このような電池・キャパシタ集合素子では、外見上は単一の素子であるが、その構成要素であるリチウムイオン二次電池と電気二重層キャパシタをそれぞれ予め単体の形で別個に作製し、外部端子により接続必要があるため、電池・キャパシタ集合素子の容量が大きくなるほど、外部端子の数が増加すると共に、内部抵抗が増加しエネルギー密度が低く、これ以上の高出力を得るのは困難であった。   However, in such a battery / capacitor assembly element, although it is a single element in appearance, a lithium ion secondary battery and an electric double layer capacitor, which are constituent elements thereof, are separately separately prepared in a single unit form, As the capacity of the battery / capacitor assembly element increases, the number of external terminals increases, the internal resistance increases, the energy density is low, and it is difficult to obtain a higher output than this. there were.

また、前記のような構造のため、小型、軽量化を図る場合は、電池部品とキャパシタ部品の完成品状態を別個に小型、軽量化する必要がある。しかし個別の完成品状態がすでに限界しつつ、素子全体の大型化が避けられず、製造コストの増加に繋がるという問題点があった。   In addition, because of the structure as described above, when a reduction in size and weight is desired, it is necessary to separately reduce the size and weight of the finished battery component and capacitor component. However, there is a problem in that the state of individual finished products is already limited, and the overall size of the device cannot be increased, leading to an increase in manufacturing cost.

更に、この電池・キャパシタ複合素子は、電池とキャパシタと同一セル内で組み合わせてなる電池・キャパシタ複合素子であって、電池と電気二重層キャパシタの両機能を素子レベルで複合(ハイブリッド化)させ、各機能の構成要素を互いに共通化することによる小型化・軽量化、低コスト化などの合理化が可能になり、電池及びキャパシタがそれぞれ単独で達成可能な以上に電池とキャパシタとをそれぞれのセル要素の一部が共用されている形で複合素子が提案されている(例えば、特許文献2参照)。   Furthermore, this battery / capacitor composite element is a battery / capacitor composite element formed by combining a battery and a capacitor in the same cell, and combines both functions of the battery and the electric double layer capacitor at the element level (hybridization). By sharing the components of each function with each other, it is possible to rationalize downsizing, weight reduction, cost reduction, etc., so that the battery and capacitor can be connected to each cell element more than the battery and capacitor can each achieve independently. A composite element has been proposed in a part of which is shared (see, for example, Patent Document 2).

しかし、このような電池・キャパシタ複合素子は、その構成要素であるリチウムイオン二次電池と電気二重層キャパシタをそれぞれ個別に作製し、それぞれのセル要素の一部が共用される形で複合、各機能の構成要素を互いに共通化し、外見上は単一素子であるが、この構造では、それぞれに独立して構成された電池とキャパシタを最小構成単位にして組み立てられているため、小型、軽量化、低コスト化は個々の構成単位レベルで行うしかなく、個々の構成単位レベルでの小型、軽量化、低コスト化の限界しつつ、電池・キャパシタ複合素子の容量が大きくなるほど、素子全体の大型化が避けられず、製造コストの増加に繋がるという問題点があった。また、蓄電用電子部品は、リチウムイオン二次電池用の電解液を共用しているため、電気二重層キャパシタとしての出力が低下するという問題点があった。   However, such a battery / capacitor composite element is produced by individually manufacturing the constituent lithium ion secondary battery and electric double layer capacitor, and each cell element is shared, The components of the function are shared with each other, and it looks like a single element. However, in this structure, the battery and capacitor, which are configured independently of each other, are assembled in the smallest unit, making them smaller and lighter. The cost reduction can only be done at the individual structural unit level. The size of the battery / capacitor composite element increases as the capacity of the battery / capacitor composite element increases, while limiting the size, weight and cost of the individual structural unit level. However, there is a problem that the manufacturing cost is increased. In addition, since the power storage electronic component shares the electrolyte for the lithium ion secondary battery, there is a problem in that the output as the electric double layer capacitor is reduced.

この蓄電用電子部品では電気二重層キャパシタ用陽極材と電気二重層キャパシタ用陰極材とが対向すると共に、リチウムイオン電池用陰極材とリチウムイオン電池陽極材とが対向するように構成された内部素子にリチウムイオンを含む電解液が含浸され、内部素子では電気二重層キャパシタ用陽極材とリチウムイオン電池用陽極材とが一方面側及び他方面側にそれぞれに形成された複合陽極体及び電気二重層キャパシタ用陰極材とリチウムイオン電池用陰極材とが一方面側及び他方面側にそれぞれに形成された複合陽極体のうちの少なくとも一方の複合電極体が構成されている(例えば、特許文献3参照)。   In this electric storage electronic component, the internal element is configured such that the anode material for the electric double layer capacitor and the cathode material for the electric double layer capacitor face each other, and the cathode material for the lithium ion battery and the anode material for the lithium ion battery face each other. A composite anode body and an electric double layer in which an anode element for an electric double layer capacitor and an anode material for a lithium ion battery are respectively formed on one side and the other side of the internal element A composite electrode body of at least one of composite anode bodies in which a cathode material for a capacitor and a cathode material for a lithium ion battery are respectively formed on one side and the other side is configured (see, for example, Patent Document 3). ).

しかし、リチウムイオン電池の容量と電気二重層キャパシタの容量の違いによる電池の抵抗、放電出力などの問題が多く、また、リチウム二次電池用の電解液を共用しているため、出力密度が低下すると言う問題点があった。   However, there are many problems such as battery resistance and discharge output due to the difference between the capacity of the lithium ion battery and the capacity of the electric double layer capacitor, and the output density decreases because the electrolyte solution for the lithium secondary battery is shared. Then there was a problem to say.

また、このハイブリッド型蓄電部品では、電気二重層キャパシタ用正極と電気二重層キャパシタ用負極とが対向し、かつ、二次電池用正極と二次電池用負極とが対向する構成を有する素子、または該素子を複数積層した積層体を有するハイブリッド型蓄電部品において、二次電池用正極と二次電池用負極との少なくとも一方は、電極活物質として、酸性電解液中で電気化学的に活性な高分子を含むハイブリッド型蓄電部品の素子が提案されている(特許文献4参照)。   In the hybrid power storage component, an element having a configuration in which the positive electrode for the electric double layer capacitor and the negative electrode for the electric double layer capacitor face each other, and the positive electrode for the secondary battery and the negative electrode for the secondary battery face each other, or In a hybrid power storage component having a laminate in which a plurality of the elements are stacked, at least one of a positive electrode for a secondary battery and a negative electrode for a secondary battery is a high active material that is electrochemically active in an acidic electrolyte as an electrode active material. An element of a hybrid power storage component including a molecule has been proposed (see Patent Document 4).

上述したこの素子では、それぞれに独立して構成された完成品の電池とキャパシタとを最小構成単位にして組み立てられているため、その小型、軽量化、低コスト化は個々の構成単位レベルで行うしかなく、個々の構成単位レベルでの小型、軽量化、低コスト化の限界となっていた。また、電気化学的に活性な高分子を含む電解質溶液を使用することにより電気二重層キャパシタとしての出力が低下するという問題点があった。   In the above-described element, since the assembled battery and capacitor, which are independently configured, are assembled in the minimum structural unit, the size, weight reduction, and cost reduction are performed at the individual structural unit level. However, it has been the limit of miniaturization, weight reduction, and cost reduction at the individual structural unit level. Further, there is a problem that the output as an electric double layer capacitor is reduced by using an electrolyte solution containing an electrochemically active polymer.

特開平10−294135号公報JP-A-10-294135 特開2001−351688号公報JP 2001-351688 A 特開2002−118036号公報JP 2002-118036 A 特開2004−355823号公報JP 2004-355823 A

本発明の目的は、上記従来技術では解決し得なかった問題を解決し、電気二重層キャパシタの大電流放電出力特性とリチウム二次電池の高いエネルギー密度特性と兼ね備えるハイブリッド型積層電極、並びこれを用いたハイブリッド型二次電源を提供することにある。   The object of the present invention is to solve the problems that could not be solved by the above prior art, and to combine a hybrid type multilayer electrode that combines the high current discharge output characteristics of an electric double layer capacitor and the high energy density characteristics of a lithium secondary battery, It is to provide a hybrid secondary power source used.

上記従来技術では、電気二重層キャパシタと二次電池の構成を具備した小型で高エネルギー密度と優れた出力特性を同時に発現可能なハイブリッド型蓄電部品であるが、蓄電装置の容量が大きくなるほど、配線などの増加によるエネルギー密度が低くなると共に、装置全体の大型化が避けられないため、製造コストが大きくなる問題点があり、小型化、軽量化、低コスト化が難しいという問題点があった。   In the above prior art, it is a hybrid power storage component that has a configuration of an electric double layer capacitor and a secondary battery and can simultaneously exhibit high energy density and excellent output characteristics. However, as the capacity of the power storage device increases, the wiring As the energy density due to the increase is reduced, the overall size of the apparatus is inevitably increased, so that there is a problem that the manufacturing cost is increased, and it is difficult to reduce the size, the weight, and the cost.

本発明者らは上記従来技術の問題点に留意しつつ鏡意検討を重ねた結果、ハイブリッド型積層電極に注目しリチウムイオン電池電極と電気二重層キャパシタ電極の両機能を電極レベルで備えるハイブリッド型積層電極を電極として用いることにより、大電流を必要とする高負荷の時、内部抵抗が低い電気二重層キャパシタから放電が行われ、電池への負荷を低減できること、また、電極製造及び素子の簡略化、小型化、低コスト化、高性能化等に有利であることを見出し、本発明を完成するに至った。なお、本願明細書において、第1電極層はリチウムイオン電池電極層とし、第2電極層は電気二重層キャパシタ電極層とし、集電体とを接合して一体化させたものをハイブリッド型積層電極という。負極についても同様の定義とする。   The inventors of the present invention have repeatedly studied while paying attention to the problems of the prior art, and as a result, paying attention to the hybrid type laminated electrode, the hybrid type having both functions of a lithium ion battery electrode and an electric double layer capacitor electrode at the electrode level. By using a laminated electrode as an electrode, discharge from an electric double layer capacitor with a low internal resistance can be performed at high loads that require a large current, reducing the load on the battery, and simplifying electrode manufacturing and elements As a result, the present invention has been found to be advantageous in reducing the size, size, cost, and performance. In the specification of the present application, the first electrode layer is a lithium ion battery electrode layer, the second electrode layer is an electric double layer capacitor electrode layer, and a hybrid laminated electrode is formed by joining and integrating a current collector. That's it. The same definition applies to the negative electrode.

即ち、本発明の目的は、
電極活物質を有する電極層が集電体の少なくとも一方の面に配置された第1電極層と、第1電極層上に配置され、第1電極層と同極の電極活物質を有する第2電極層とからなる積層型電極であって、第1電極層にはリチウムイオン電池電極が配置され、第2電極層には電気二重層キャパシタ電極が配置されていることを特徴とするハイブリッド型積層電極によって達成することができる。
That is, the object of the present invention is to
A second electrode having an electrode layer having an electrode active material disposed on at least one surface of the current collector, and an electrode active material having the same polarity as the first electrode layer, disposed on the first electrode layer. A hybrid type laminate comprising an electrode layer, wherein a lithium ion battery electrode is arranged on the first electrode layer, and an electric double layer capacitor electrode is arranged on the second electrode layer This can be achieved with electrodes.

更に、本発明には、電極活物質を有する第1電極層が集電体の両面に配置され、第1電極層上には、第2電極層が配置された、請求項1記載のハイブリッド型積層電極、第1電極層に含有されている電極活物質が、リチウムイオンを吸蔵/放出が可能な電極材料であり、第2電極層に含有されている電極活物質は、イオンを吸着/脱着可能なイオン分極性電極材料である請求項1に記載のハイブリッド型積層電極、リチウムイオンを吸蔵/放出が可能な電極材料が、リチウム複合コバルト酸化物、リチウム複合ニッケル酸化物、リチウム複合マンガン酸化物から選ばれる正極活物質である請求項3に記載のハイブリッド型積層電極、リチウムイオンを吸蔵/放出が可能な電極材料が、リチウムイオンが吸蔵されることにより層間化合物となる人造黒鉛、天然黒鉛、メソフェーズピッチ系炭化水素、難黒鉛性炭素材料、石油コークス、易黒鉛性炭素材料及びこれらの複合材料又は混合材料から選ばれる負極活物質である、請求項3に記載のハイブリッド型積層電極、イオンを吸着/脱着可能なイオン分極性電極材料が活性炭、ナノ炭素繊維及びこれらの複合材料又は混合材料である、請求項3に記載のハイブリッド型積層電極、正極活物質の平均粒子径は20μm以下であり、比表面積は60m/g以下である請求項4に記載のハイブリッド型積層電極、負極活物質の平均粒子径は20μm以下であり、比表面積は50m/g以下であり、X線回折による[d002]面の面間隔が0.33〜0.44nmである、請求項5に記載のハイブリッド型積層電極、第2電極層に含まれる電極活物質の平均粒子径は10μm以下であり、比表面積は800〜3000m/gであり、且つX線回折による[d002]面の面間隔が0.33〜0.44nmである、請求項1に記載のハイブリッド型積層電極、第2電極層の厚みは第1電極層の厚みより小さい、請求項1に記載のハイブリッド型積層電極、第2電極層の密度は第1電極層の密度より小さい、請求項1に記載のハイブリッド型積層電極、第1電極層用活物質材料、ポリマーバインダーおよび導電助剤を含む電極材料混練物を集電体上に直接塗布し乾燥させた後、第2電極層用活物質材料、ポリマーバインダーおよび導電助剤を含む電極材料混練物を第1電極層上に直接塗布し、乾操後プレス成形する、請求項1に記載のハイブリッド型積層電極製造方法、請求項1〜11のいずれかに記載のハイブリッド型積層電極を用いたことを特徴とするハイブリッド二次電源、請求項1〜11のいずれかに記載のハイブリッド型積層電極2枚を、セパレータを介して対向させ、リチウム塩を含む非水電解液とともに同一容器内に収納してなる、請求項13に記載のハイブリッド二次電源が包含される。 Furthermore, in the present invention, the first electrode layer having the electrode active material is disposed on both surfaces of the current collector, and the second electrode layer is disposed on the first electrode layer. The electrode active material contained in the laminated electrode and the first electrode layer is an electrode material capable of occluding / releasing lithium ions, and the electrode active material contained in the second electrode layer adsorbs / desorbs ions. The hybrid laminated electrode according to claim 1, wherein the electrode material is a lithium composite cobalt oxide, a lithium composite nickel oxide, or a lithium composite manganese oxide. The hybrid laminated electrode according to claim 3, wherein the electrode material capable of occluding / releasing lithium ions becomes an interlayer compound by occluding lithium ions. The hybrid according to claim 3, which is a negative electrode active material selected from graphite, natural graphite, mesophase pitch hydrocarbon, non-graphite carbon material, petroleum coke, graphitizable carbon material, and composite materials or mixed materials thereof. 4. The hybrid laminated electrode according to claim 3, wherein the ion polarizable electrode material capable of adsorbing / desorbing ions is activated carbon, nanocarbon fiber, and a composite material or mixed material thereof. The diameter is 20 μm or less, the specific surface area is 60 m 2 / g or less, the hybrid laminated electrode according to claim 4, the negative electrode active material has an average particle size of 20 μm or less, and the specific surface area is 50 m 2 / g or less. There, spacing of [d 002] plane by X-ray diffraction is 0.33~0.44Nm, hybrid multilayer electrode according to claim 5, included in the second electrode layer That the average particle diameter of the electrode active material is a 10μm or less and a specific surface area of 800~3000m 2 / g, and spacing of [d 002] plane by X-ray diffraction is 0.33~0.44Nm, The hybrid laminated electrode according to claim 1, wherein the thickness of the second electrode layer is smaller than the thickness of the first electrode layer, and the density of the hybrid laminated electrode according to claim 1, the density of the second electrode layer is that of the first electrode layer. After applying and drying the electrode material kneaded material including the hybrid laminated electrode according to claim 1, the active material for the first electrode layer, the polymer binder and the conductive auxiliary agent directly on the current collector, which is smaller than the density, 2. The hybrid laminated electrode production according to claim 1, wherein an electrode material kneaded material containing an active material for the second electrode layer, a polymer binder, and a conductive auxiliary agent is directly applied onto the first electrode layer, followed by drying and press molding. Method, billing A hybrid secondary power source using the hybrid multilayer electrode according to any one of claims 1 to 11, and two hybrid multilayer electrodes according to any one of claims 1 to 11 facing each other through a separator The hybrid secondary power source according to claim 13, which is housed in the same container together with a non-aqueous electrolyte containing a lithium salt.

本発明によれば、リチウム二次電池と電気二重層キャパシタとのそれぞれの機能を電極レベルで重ね備えたハイブリッド型積層電極を容易に構成、成型することができると共に、それを用い自由度の高いハイブリッド型二次電源が可能になる。   ADVANTAGE OF THE INVENTION According to this invention, while being able to comprise and shape | mold easily the hybrid type | mold multilayer electrode provided with each function of a lithium secondary battery and an electric double layer capacitor on an electrode level, it is highly flexible using it. A hybrid type secondary power supply becomes possible.

前記電極の第1電極層であるリチウムイオン二次電池電極とその上に第2電極層である電気二重層キャパシタ電極が積層に形成されていると共に、共通の集電体によって電極レベルでリチウム二次電池と電気二重層キャパシタが内部で並列接続されたハイブリッド二次電源を得ることができる。これにより、第1電極層にリチウム二次電極層と第2電極層に電気二重層キャパシタ層と積層型電極になるため、容量を低下させることなく、内部抵抗を低減でき、パルス的な負荷への対応を高めることができると共に、エネルギー密度及び出力密度を維持しながら、小型、軽量化、低コスト化に有利となる。   A lithium ion secondary battery electrode, which is the first electrode layer of the electrode, and an electric double layer capacitor electrode, which is the second electrode layer, are formed in a laminated manner on the electrode, and a lithium current is obtained at the electrode level by a common current collector. A hybrid secondary power source in which a secondary battery and an electric double layer capacitor are internally connected in parallel can be obtained. As a result, the first electrode layer becomes a lithium secondary electrode layer and the second electrode layer becomes an electric double layer capacitor layer and a laminated electrode, so that the internal resistance can be reduced without lowering the capacity, and a pulse-like load can be achieved. This is advantageous in reducing size, weight and cost while maintaining energy density and output density.

以下、本発明について詳細に説明する。
本発明によれば、ハイブリッド二次電源はリチウムイオン電池電極層と電気二重層キャパシタ電極層の両機能を電極レベルで備えるハイブリッド型積層電極を電極として用いることによって、瞬時大電流放電出力に優れたパルス的な負荷への対応を高めると共にバッテリや電源に対する負荷を減らすことが可能で、小型、軽量化且つ低コスト化を達成することができる。
Hereinafter, the present invention will be described in detail.
According to the present invention, the hybrid secondary power source is excellent in instantaneous large current discharge output by using a hybrid type laminated electrode having both functions of a lithium ion battery electrode layer and an electric double layer capacitor electrode layer as an electrode. It is possible to increase the response to the pulse-like load and reduce the load on the battery and the power source, thereby achieving a reduction in size, weight and cost.

また、電極活物質を有する第1電極層が集電体の両面に配置され、第1電極層上には、第2電極層が配置されたハイブリッド型積層電極であることが好ましい。   Moreover, it is preferable that the first electrode layer having the electrode active material is disposed on both surfaces of the current collector, and the second electrode layer is disposed on the first electrode layer.

更に、第1電極層に含有されている電極活物質が、リチウムイオンを吸蔵/放出が可能な電極材料であり、第2電極層に含有されている電極活物質は、イオンを吸着/脱着可能なイオン分極性電極材料であることが好ましい。下層にリチウムイオン電池の高エネルギー密度を有する電極層と最上層に電気二重層キャパシタの低内部インピーダンスを有する電極層をハイブリッド型電極とし、両機能をハイブリッド型電極として利用することによるハイブリッド二次電源を簡単かつ低コスト化が可能になる。   Furthermore, the electrode active material contained in the first electrode layer is an electrode material capable of occluding / releasing lithium ions, and the electrode active material contained in the second electrode layer can adsorb / desorb ions. It is preferable that the ion polarizable electrode material. A hybrid secondary power source by using an electrode layer having a high energy density as a lower layer and an electrode layer having a low internal impedance of an electric double layer capacitor as a hybrid electrode and using both functions as a hybrid electrode. Can be easily and cost-effectively.

ここで、リチウムイオン電池用正極活物質としては、リチウム吸蔵・放出が可能な材料であれば、特に限定されず、例えば、リチウム複合コバルト酸化物、リチウム複合ニッケル酸化物、リチウム複合マンガン酸化物、或いは上記の混合物又は複合酸化物に異種金属元素を一種類以上添加した系などのリチウム複合酸化物を用いることができる。また、ジスルフィド系化合物、ポリアセン系物質、活性炭などを用いることができるが、高電圧、高容量な電池が得るためには、リチウム複合酸化物を用いることが好ましい。   Here, the positive electrode active material for the lithium ion battery is not particularly limited as long as it is a material capable of occlusion / release of lithium. For example, lithium composite cobalt oxide, lithium composite nickel oxide, lithium composite manganese oxide, Alternatively, a lithium composite oxide such as a system in which one or more kinds of different metal elements are added to the above mixture or composite oxide can be used. Moreover, although a disulfide type compound, a polyacene type substance, activated carbon, etc. can be used, in order to obtain a battery having a high voltage and a high capacity, it is preferable to use a lithium composite oxide.

また、リチウムイオン電池用負極活物質としては、リチウム吸蔵・放出が可能な材料であれば、特に限定されず、例えば、人造黒鉛、天然黒鉛、メソフェーズピッチ系炭化水素、難黒鉛性炭素材料、石油コークス、易黒鉛性炭素材料、ポリアセン系物質、或いは上記の材料と複合材料又は混合材料などを用いることが好ましい。なお、本発明において混合材料とは、上記の材料または複合材料と、それ以外との材料とを混合したものを意味する。   Further, the negative electrode active material for lithium ion batteries is not particularly limited as long as it is a material capable of occluding and releasing lithium. For example, artificial graphite, natural graphite, mesophase pitch hydrocarbon, non-graphitizable carbon material, petroleum It is preferable to use coke, a graphitizable carbon material, a polyacene-based material, or the above-described material and a composite material or a mixed material. In the present invention, the mixed material means a mixture of the above material or composite material and other materials.

更に、電気二重層キャパシタ用電極活物質としては、イオンを吸着/脱着可能なイオン分極性電極材料が好ましく、活性炭、炭素繊維、リチウム複合チタン酸化物、金属微粒子、或いは上記の材料と複合材料又は混合材料などを用いることが好ましい。   Furthermore, as the electrode active material for the electric double layer capacitor, an ion polarizable electrode material capable of adsorbing / desorbing ions is preferable, and activated carbon, carbon fiber, lithium composite titanium oxide, metal fine particles, or the above material and composite material or It is preferable to use a mixed material or the like.

本発明における、リチウム二次電池用正極材料のBET法による比表面積は、通常60m/g以下であり、好ましくは30m/g以下である。正極材料の粒子径は、ボールミル、ジェットミルなどの粉砕機で粉砕した後、さらに必要に応じて、分級することにより、所定の粒子径に整粒する。正極材料の粒子径は、目的とする電池の形状、特性、電極の厚み、密度などを考慮して決定されるものであるが、好ましくは20μm以下であり、より好ましくは10μm以下である。平均粒子径は電極製造時のハンドリング性を考慮して0.5μm以上とすることが好ましく、1μm以下とすることがより好ましい。ところで電極層平均粒子径の測定法は、電極の場合、電極層のSEM観察方法において、粒子1000〜100個の径を測定し、頻度が高い粒子径の領域を算出平均値として算出される個数平均粒子径として、粒子径を判定することができる。さらに粉末の場合、粒度分布測定において頻度が高い粒子径の領域を基準として、平均粒子径を判定することができる。 The specific surface area by the BET method of the positive electrode material for a lithium secondary battery in the present invention is usually 60 m 2 / g or less, preferably 30 m 2 / g or less. The particle size of the positive electrode material is pulverized by a pulverizer such as a ball mill or a jet mill, and further classified according to need to be sized to a predetermined particle size. The particle diameter of the positive electrode material is determined in consideration of the target battery shape, characteristics, electrode thickness, density, etc., but is preferably 20 μm or less, more preferably 10 μm or less. The average particle diameter is preferably 0.5 μm or more, more preferably 1 μm or less in consideration of handling properties during electrode production. By the way, in the case of an electrode, the electrode layer average particle diameter is measured by measuring the diameter of 1000 to 100 particles in the electrode layer SEM observation method, and calculating the number of particles having a high particle diameter as a calculated average value. The particle diameter can be determined as the average particle diameter. Further, in the case of powder, the average particle size can be determined based on a region having a particle size that is frequently used in the particle size distribution measurement.

本発明における、リチウム二次電池用負極材料のBET法による比表面積は、通常50m/g以下であり、好ましくは30m/g以下である。負極材料の比表面積が高くなると初回効率が悪くなるので、実用上好ましくない。X線回折法による(002)面の両面間隔[d002]が0.33nm未満であり、より好ましくは0.33〜0.44nm程度であり、さらに好ましくは0.33〜0.40nm程度である。負極材料の粒子径は形状が異なるため、ボールミル、ジェットミルなどの粉砕機で粉砕した後、さらに必要に応じて、分級することにより、所定の粒子径に整粒する。粒子径は、目的とする電池の形状、特性、電極の厚み、密度などを考慮して決定されるものであるが、好ましくは20μm以下であり、より好ましくは10μm以下であり、さらに好ましくは1μm以下である。平均粒子径は電極製造時のハンドリング性を考慮して0.5μm以上とすることが好ましく、1μm以下とすることがより好ましい。 The specific surface area by the BET method of the negative electrode material for a lithium secondary battery in the present invention is usually 50 m 2 / g or less, preferably 30 m 2 / g or less. When the specific surface area of the negative electrode material is increased, the initial efficiency is deteriorated, which is not preferable for practical use. The distance [d 002 ] between the (002) planes by the X-ray diffraction method is less than 0.33 nm, more preferably about 0.33 to 0.44 nm, and still more preferably about 0.33 to 0.40 nm. is there. Since the particle diameters of the negative electrode materials are different, after pulverization with a pulverizer such as a ball mill or a jet mill, the particles are classified according to necessity, thereby sizing to a predetermined particle diameter. The particle size is determined in consideration of the target battery shape, characteristics, electrode thickness, density, etc., but is preferably 20 μm or less, more preferably 10 μm or less, and even more preferably 1 μm. It is as follows. The average particle diameter is preferably 0.5 μm or more, more preferably 1 μm or less in consideration of handling properties during electrode production.

本発明における、電気二重層キャパシタ用電極材料のBET法による比表面積は、800〜3000m/gであることが好ましく、更に好ましくは1000m/g以上2300m/g以下である。比表面積が低い場合、充填密度は向上するが、重量あたりの容量が低下する。また、電解液の保液量が低下し、十分な出力特性が得られないので好ましくない。一方、比表面積が高い場合、充填密度が低下して十分な容量が得られないので好ましくない。X線回折法による(002)面の両面間隔[d002]が0.33nm未満であり、より好ましくは0.33〜0.44nmであることが好ましく、さらに好ましくは0.33〜0.40nm程度である。電気二重層キャパシタ用電極材料の粒子径は、ボールミル、ジェットミルなどの粉砕機で粉砕した後、さらに必要に応じて、分級することにより、所定の粒子径に整粒する。粒子径は、目的とする電池の形状、特性、電極の厚み、密度などを考慮して決定されるものであるが、好ましくは20μm以下であり、より好ましくは10μm以下であり、さらに好ましくは1μm以下ある。平均粒子径は電極製造時のハンドリング性を考慮して0.5μm以上とすることが好ましく、2μm以下とすることがより好ましい。 In the present invention, BET specific surface area of the electric double layer capacitor electrode material is preferably 800~3000m 2 / g, still more preferably not more than 1000 m 2 / g or more 2300 m 2 / g. When the specific surface area is low, the packing density is improved, but the capacity per weight is reduced. Moreover, the amount of electrolyte solution retained is reduced, and sufficient output characteristics cannot be obtained. On the other hand, when the specific surface area is high, the packing density is lowered and a sufficient capacity cannot be obtained, which is not preferable. The distance [d 002 ] between the (002) planes by X-ray diffraction is less than 0.33 nm, more preferably 0.33 to 0.44 nm, still more preferably 0.33 to 0.40 nm. Degree. The particle size of the electrode material for the electric double layer capacitor is pulverized by a pulverizer such as a ball mill or a jet mill, and further classified as necessary to adjust the particle size to a predetermined particle size. The particle size is determined in consideration of the target battery shape, characteristics, electrode thickness, density, etc., but is preferably 20 μm or less, more preferably 10 μm or less, and even more preferably 1 μm. There are: The average particle diameter is preferably 0.5 μm or more, more preferably 2 μm or less in consideration of handling properties during electrode production.

本発明における、第2電極層は大電流用途及びパワー用途の場合、ハイパワーモータの初回駆動の時には瞬時的なパワーが要求され、パルス的な負荷に対応するためには、電池内部のインピーダンスを低くする必要があるため、電極厚みを薄くすることが好ましい。電極の厚みは、好ましくは0.2mm以下であり、より好ましくは0.1mm以下であり、さらに好ましくは、0.04mm以上0.1mm以下である。厚みは目的とする電池特性、密度、電極ハンドリング性を考慮して決定されるものである。   In the present invention, the second electrode layer requires a momentary power when the high power motor is driven for the first time in the case of a large current application and a power application. In order to cope with a pulsed load, the impedance inside the battery is reduced. Since it is necessary to reduce the thickness, it is preferable to reduce the electrode thickness. The thickness of the electrode is preferably 0.2 mm or less, more preferably 0.1 mm or less, and still more preferably 0.04 mm or more and 0.1 mm or less. The thickness is determined in consideration of intended battery characteristics, density, and electrode handling properties.

前記電極が集電体に配置された第1電極層と、第1電極層上に配置された第2電極層において、第2電極層の密度は第1電極層の密度よりも相対的小さくされていることが好ましい。この場合は、密度が小さくハイレート放電出力特性を有する第二電極層密度は1g/cm以下、好ましくは0.5〜0.8g/cmの範囲内に設定することができる。一方、第一電極層の密度は、2g/cm以下であることが好ましく、特に、1g/cm以上の範囲内に設定することが好ましい。但しこれらの範囲に限定されるものではない。 In the first electrode layer in which the electrode is disposed on the current collector and the second electrode layer disposed on the first electrode layer, the density of the second electrode layer is relatively smaller than the density of the first electrode layer. It is preferable. In this case, the second electrode layer density 1 g / cm 3 or less with a high-rate discharge power characteristic small density, but can be set preferably in the range of 0.5~0.8g / cm 3. On the other hand, the density of the first electrode layer is preferably 2 g / cm 3 or less, and particularly preferably set within a range of 1 g / cm 3 or more. However, it is not limited to these ranges.

このようにして得られる本発明電気二重層キャパシタにおいて、乾操後の電極密度が小さすぎると電極の体積あたりの静電容量(F/cc)が低下してしまう。一方、密度が大きすぎるとイオンの移動を妨害するため、電極のインピーダンスが高くなってしまう。   In the electric double layer capacitor of the present invention thus obtained, if the electrode density after dry operation is too small, the electrostatic capacity (F / cc) per volume of the electrode is lowered. On the other hand, if the density is too high, the movement of ions is hindered, so that the impedance of the electrode becomes high.

本発明における、リチウム二次電池用負極においては、導電材は例えば、アセチレンブラック、ケッチェンブラック、カーボンブラック、黒鉛、金属微粒子などの公知のものを使用可能であるが、特に、アセチレンブラック、ケッチェンブラック、カーボンブラックは内部抵抗を低減する効果が大きいため好ましく用いることができる。   In the negative electrode for a lithium secondary battery in the present invention, known materials such as acetylene black, ketjen black, carbon black, graphite, and metal fine particles can be used as the conductive material. Chain black and carbon black are preferably used because they have a great effect of reducing internal resistance.

導電材の添加量は電極に使用する活物質の種類、粒子径、形状、目的とする電極の厚み、強度、電気伝導度などに応じて適宜決定すればよいが、電極の重量の1重量%以上35重量%以下が好ましい。さらに好ましくは3重量%以上、10重量%以下が好ましい。結着材の添加量は活物質に対して1重量%以上、20重量%以下が好ましい。さらに好ましくは3重量%以上10重量%以下である。添加量が多すぎると内部抵抗が大きく、充分な出力特性が得られない問題がある。結着材としては、例えば、ポリフッ化ピニリデン(PVdF)、ポリ四フッ化エチレン、フッ素樹脂系、フッ素ゴム、SBRなどのゴム系材料などが使用できる。結着材配合量は正極、負極材料の種類、粒子径、形状、目的とする電極の厚み、強度などに応じて適宜決定することができ、特に限定されるものではない。   The addition amount of the conductive material may be appropriately determined according to the type of active material used for the electrode, particle diameter, shape, target electrode thickness, strength, electrical conductivity, etc., but 1% by weight of the electrode weight The content is preferably 35% by weight or less. More preferably, the content is 3% by weight or more and 10% by weight or less. The addition amount of the binder is preferably 1% by weight or more and 20% by weight or less based on the active material. More preferably, it is 3 to 10 weight%. If the amount added is too large, the internal resistance is large and there is a problem that sufficient output characteristics cannot be obtained. As the binder, for example, polyvinylidene fluoride (PVdF), polytetrafluoroethylene, fluororesin, fluororubber, rubber material such as SBR, and the like can be used. The binder content can be appropriately determined according to the type of positive electrode and negative electrode material, particle diameter, shape, target electrode thickness, strength, and the like, and is not particularly limited.

本発明におけるセパレータは、特に限定されるものではないが、単層または複層のセパレータを用いることができる。また、セパレータ材質も、特に限定されるものではないが、ポリエチレン、ポリプロピレンなどのポリオレフリン、紙、ガラス、セルロース系などが挙げられ、電池の耐熱性、安全性設計に応じて、適宜決定することができる。   The separator in the present invention is not particularly limited, but a single-layer or multi-layer separator can be used. The material of the separator is not particularly limited, and examples thereof include polyolefins such as polyethylene and polypropylene, paper, glass, cellulose, and the like, which can be appropriately determined according to the heat resistance and safety design of the battery. it can.

本発明による非水電解質は、公知のリチウム塩などの電解質材料を公知の溶媒に溶解させた従来の非水電解質と同様である。電解質は、電極材料、負極材料などの種類、充電電圧などの使用条件などを総合的に考慮して、常法に従って適宜決定することができる。より具体的には、電解質であるリチウム塩は有機電解液に溶解した時にリチウムイオンを生成するものであれば限定されず、LiPF、LiBF、LiClO、LiN(SOCF、CFSOLi、LiC(SOCF、LiN(SO等のリチウム塩を、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジメトキシエタン、γ−ブチロラクトン、等の1種または2種以上からなる有機溶媒に溶解させた溶液が使用される。有機電解液中のリチウム塩濃度は0.5mol/l〜2.0mol/lが好ましく、より好ましいのは0.7〜1.5mol/lである。リチウム塩濃度が0.5mol/l未満であるとリチウムイオンが少なく電解液の電気伝導度が低くなり、一方、リチウム塩濃度が2.0mol/lを超えると電解液の粘性が高くなり好ましくない。 The non-aqueous electrolyte according to the present invention is the same as a conventional non-aqueous electrolyte in which an electrolyte material such as a known lithium salt is dissolved in a known solvent. The electrolyte can be appropriately determined according to a conventional method, comprehensively considering the types of electrode material, negative electrode material, etc., usage conditions such as charging voltage, and the like. More specifically, the lithium salt that is an electrolyte is not limited as long as it generates lithium ions when dissolved in an organic electrolyte, and LiPF 6 , LiBF 4 , LiClO 4 , LiN (SO 2 CF 3 ) 2 , CF 3 SO 3 Li, LiC (SO 2 CF 3 ) 3 , LiN (SO 2 C 2 F 5 ) 2 and other lithium salts such as propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, dimethoxyethane, A solution dissolved in one or more organic solvents such as γ-butyrolactone is used. The concentration of the lithium salt in the organic electrolyte is preferably 0.5 mol / l to 2.0 mol / l, more preferably 0.7 to 1.5 mol / l. When the lithium salt concentration is less than 0.5 mol / l, the lithium ion is less and the electric conductivity of the electrolyte solution is low. On the other hand, when the lithium salt concentration exceeds 2.0 mol / l, the viscosity of the electrolyte solution is increased. .

本発明におけるハイブリッド二次電源形状、大きさなどは、特に限定されるものではなく、それぞれの用途に応じて、円筒型、角型、フィルム型電池、コイン型など任意の形状及び寸法のものを選択すればよい。電池容器となる材質は、電池の用途、形状により適宜選択され、特に限定されるものではなく、ステンレス鋼、アルミニウム、アルミニウム−ラミネートフィルムなどが一般的であり、これは本発明においても適用可能である。   The shape and size of the hybrid secondary power source in the present invention are not particularly limited, and those of any shape and size such as a cylindrical shape, a square shape, a film type battery, and a coin shape are used according to each application. Just choose. The material for the battery container is appropriately selected depending on the use and shape of the battery, and is not particularly limited, and is typically stainless steel, aluminum, aluminum-laminated film, and the like, which can also be applied in the present invention. is there.

以下、本発明の実施形態について、図面に基づき更に具体的に説明する。図1および2は、本発明の実施に係るハイブリッド型積層電極及びハイブリッド二次電源の構成を模式的に示した図である。   Hereinafter, embodiments of the present invention will be described more specifically based on the drawings. 1 and 2 are diagrams schematically showing the configuration of a hybrid laminated electrode and a hybrid secondary power source according to the embodiment of the present invention.

図1には、本発明の技術が適用されたハイブリッド型積層電極の構造モデルの例を示す。図1において、ハイブリッド型積層電極(図1中100)は、積層した第1電極層と第2電極層とが集電体(図1中1)上に積層した積層電極体であって、集電体に接して配置された第1電極層(図1中3a)にリチウム二次電池電極を、第1電極層上に配置された第2電極層(図1中3b)に電気二重層キャパシタ電極を配し、一つの電極でありながら、電気二重層キャパシタとしての機能とリチウムイオン電池としての機能を備えている。   FIG. 1 shows an example of a structural model of a hybrid laminated electrode to which the technology of the present invention is applied. In FIG. 1, a hybrid laminated electrode (100 in FIG. 1) is a laminated electrode body in which a laminated first electrode layer and second electrode layer are laminated on a current collector (1 in FIG. 1). A lithium secondary battery electrode is disposed on the first electrode layer (3a in FIG. 1) disposed in contact with the electric body, and an electric double layer capacitor is disposed on the second electrode layer (3b in FIG. 1) disposed on the first electrode layer. While having an electrode, the electrode has a function as an electric double layer capacitor and a function as a lithium ion battery.

従って、本ハイブリッド型電極では正極・負極の電極間に電解質イオンとの間で電気の受け渡しができることで電気二重層キャパシタの良好な大電流放電特性とリチウムイオン二次電池の高容量密度とを有している。   Therefore, this hybrid electrode has good large current discharge characteristics of the electric double layer capacitor and high capacity density of the lithium ion secondary battery because it can transfer electricity between the positive electrode and the negative electrode with electrolyte ions. is doing.

図2には、ハイブリッド二次電源の構造モデルの例を示す。図2において、本形態に示すハイブリッド二次電源では、密閉ケース(図示せず)内に、正極集電体(図2中1)、リチウムイオン電池正極活物質を含む正極電極(図2中4a)、電気二重層キャパシタ正極活物質を含む正極電極(図2中4b)、負極集電体(図2中2)、リチウム二次電池負極活物質を含む負極電極(図2中3a)、電気二重層キャパシタ活物質を含む負極電極(図2中3b)、がセパレータ(図2中5)の両側に対向するように構成されたハイブリッド型電極にリチウムイオンを含む電解液が含浸されている。   FIG. 2 shows an example of a structural model of a hybrid secondary power source. 2, in the hybrid secondary power source shown in this embodiment, a positive electrode current collector (1 in FIG. 2) and a positive electrode (4a in FIG. 2) containing a positive electrode active material of a lithium ion battery in a sealed case (not shown). ), A positive electrode containing an electric double layer capacitor positive electrode active material (4b in FIG. 2), a negative electrode current collector (2 in FIG. 2), a negative electrode containing a lithium secondary battery negative electrode active material (3a in FIG. 2), A negative electrode (3b in FIG. 2) containing a double layer capacitor active material is impregnated with an electrolyte containing lithium ions in a hybrid electrode configured to face both sides of the separator (5 in FIG. 2).

つまり、正極集電体(図2中1)の面上にはコバルト酸リチウムを含むリチウムイオン電池用電極層が直接塗布され、その上に活性炭を含む電気二重層キャパシタ用電極層が積層され形成されている。また、負極集電体(図2中2)面上に黒鉛を含むリチウム二次電池用電極層が直接塗布され、その上に活性炭を含む電気二重層キャパシタ用電極層が積層に形成されている。この両電極間にセパレータを介してリチウムイオンを含む電解液を使用する。電解質であるリチウム塩は有機電解液に溶解した時にリチウムイオンを生成するものであれば限定されず、LiPF、LiBF、LiClO、LiN(SOCF、CFSOLi、LiC(SOCF、LiN(SO等の有機電解液が使用)が含浸されてハイブリッド二次電源のセル要素を形成している。 In other words, a lithium ion battery electrode layer containing lithium cobaltate is directly applied on the surface of the positive electrode current collector (1 in FIG. 2), and an electric double layer capacitor electrode layer containing activated carbon is laminated thereon. Has been. Moreover, the electrode layer for lithium secondary batteries containing graphite is directly apply | coated on the surface of a negative electrode collector (2 in FIG. 2), and the electrode layer for electric double layer capacitors containing activated carbon is formed on it on the lamination | stacking. . An electrolytic solution containing lithium ions is used between both electrodes through a separator. The lithium salt that is an electrolyte is not limited as long as it generates lithium ions when dissolved in an organic electrolyte, and LiPF 6 , LiBF 4 , LiClO 4 , LiN (SO 2 CF 3 ) 2 , CF 3 SO 3 Li, LiC (SO 2 CF 3 ) 3 , LiN (SO 2 C 2 F 5 ) 2 or the like is used for impregnation, and a cell element of a hybrid secondary power source is formed.

同図に示すように、リチウム二次電池としての機能及び電気二重層キャパシタとしての機能の両機能を電極レベルで兼ね備えたデバイスである。従って、本形態のハイブリッド型二次電源では、リチウムイオン二次電池と電気二重層キャパシタが両方の長所を備えて、双方の欠点を互いに補完し合うため、リチウムイオン電池の高容量を有し、電気二重層キャパシタの大電流放電に良好な放電出力及びパルス的な負荷への対応を高めることができるハイブリッド二次電源が得られる。   As shown in the figure, the device has both the function as a lithium secondary battery and the function as an electric double layer capacitor at the electrode level. Therefore, in the hybrid type secondary power source of this embodiment, the lithium ion secondary battery and the electric double layer capacitor have the advantages of both, and complement each other's disadvantages. A hybrid secondary power supply capable of improving the discharge power and the response to a pulse-like load with a large current discharge of the electric double layer capacitor can be obtained.

なお、同図に示すように、ハイブリッド二次電源の場合、電気二重層キャパシタ電極が対向しているため、電極電位は常に電気二重層キャパシタ電位となる。単独で使用される電気二重層キャパシタの場合、正極電位と負極電位を比較すると負極電位が少し余裕があり、電気二重層キャパシタの使用可能電圧範囲は、正極側の電位に支配されている。しかし、本発明のハイブリッド二次電源では、電気二重層キャパシタの使用可能電圧を単独で使用する場合と比べて高くすることができるため、使用可能電圧を気にすることなく、セル内部電圧を高く、自由度の高いハイブリッド二次電源ができる。   As shown in the figure, in the case of a hybrid secondary power source, since the electric double layer capacitor electrodes face each other, the electrode potential is always the electric double layer capacitor potential. In the case of an electric double layer capacitor used alone, the negative electrode potential has a slight margin when the positive electrode potential and the negative electrode potential are compared, and the usable voltage range of the electric double layer capacitor is governed by the potential on the positive electrode side. However, in the hybrid secondary power source according to the present invention, the usable voltage of the electric double layer capacitor can be increased as compared with the case where the electric double layer capacitor is used alone. Therefore, the cell internal voltage is increased without worrying about the usable voltage. A hybrid secondary power supply with a high degree of freedom is possible.

以下、本発明を実施例に更に具体的に説明するが、本発明はこれにより何等限定を受けるものではない。
なお、実施例中の各値は、以下の方法により求めた。
(1)比表面積(m/g):
QUANTACHROME社製の比表面積/細孔分布測定装置「NOVA1200e」を用いて、BET比表面積の測定を行った。尚、サンプルの前処理として250℃で30分の熱乾操を施した。
(2)電極密度(g/cm):
作製した試料(シート電極)を円形に打ち抜き、その厚み(Acm)、面積(Scm)及び電極質量(Wg)を測定した。同じ面積で打ち抜いた集電体についてもその厚み(Acm)と質量(Wg)を測定した。これらの測定結果より下記式から電極密度を算出した。
[数1]
電極密度(g/cm
= [(W(g)−W(g))/[A(cm)−A(cm)×S(cm)]
(3)100C放電(%):
実施例及び比較例で作製した電池セルについて、20℃環境下で、1C、4.0Vの定電流・定電圧充電を2時間行い、100C定電流電圧を2.5Vまで行った。そのとき得られた放電容量からセルの放電出力(%)を算出した。
(4)R1kHz(Ω/cm):
実施例及び比較例で作製した電池セルの充電状態について、振幅10mV、測定周波数1kHzで交流インピーダンス測定を20℃にて行った。得られた交流インピーダンスを実数成分と虚数成分とに分離し、実数成分から抵抗値(R1kHz)を求めた。
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.
In addition, each value in an Example was calculated | required with the following method.
(1) Specific surface area (m 2 / g):
The BET specific surface area was measured using a specific surface area / pore distribution measuring device “NOVA1200e” manufactured by QUANTACHROME. In addition, the heat drying operation was performed for 30 minutes at 250 degreeC as pre-processing of a sample.
(2) Electrode density (g / cm 3 ):
The produced sample (sheet electrode) was punched into a circle, and the thickness (A 1 cm), area (Scm 2 ), and electrode mass (W 1 g) were measured. The thickness (A 2 cm) and mass (W 2 g) of the current collector punched out with the same area were also measured. From these measurement results, the electrode density was calculated from the following formula.
[Equation 1]
Electrode density (g / cm 3 )
= [(W 1 (g) −W 2 (g)) / [A 1 (cm) −A 2 (cm) × S (cm 2 )]
(3) 100C discharge (%):
About the battery cell produced by the Example and the comparative example, the constant current and the constant voltage charge of 1C and 4.0V were performed for 2 hours in 20 degreeC environment, and the 100C constant current voltage was performed to 2.5V. The discharge output (%) of the cell was calculated from the discharge capacity obtained at that time.
(4) R 1 kHz (Ω / cm 2 ):
For the charged state of the battery cells prepared in the examples and comparative examples, AC impedance measurement was performed at 20 ° C. with an amplitude of 10 mV and a measurement frequency of 1 kHz. The obtained AC impedance was separated into a real component and an imaginary component, and a resistance value (R 1 kHz ) was obtained from the real component.

[実施例1]
第1電極層の正極活物質として、比表面積50m/g、平均粒子径8μmのコバルト酸リチウムを使用した。正極は、厚さ20μmのアルミ箔集電体にLiCoO(C−8)を89.5重量%、アセチレンブラックを6重量%およびバインダーとしてポリフッ化ビニリデン4.5重量%を、溶剤としてのN−メチル−2−ピロリドンを含むスラリー状の混合物を形成し、このスラリー状混合物をドクターブレード法により塗布した。その後、80℃で10分間乾燥させ、さらに140℃で3時間乾燥させて、電極厚み80μm、密度1.1g/cmになるようにプレス後してリチウムイオン電池用正極シートを得た。第1電極層の負極活物質として、比表面積30m/g、平均粒子径8μmのマイクロカーボンメソビーズを使用する。負極は、厚さ16μmの銅箔集電体にMCMB(25−28)を87重量%、アセチレンブラックを10重量%およびバインダーとしてポリフッ化ビニリデン3重量%を、溶剤N−メチル−2−ピロリドンを含むスラリー状の混合物を形成し、このスラリー状混合物をドクターブレード法により塗布した。その後、電極を80℃で10分間乾燥させ、さらに140℃で3時間乾燥させて、電極厚み80μm、密度1.2g/cmになるようにプレスし、リチウムイオン電池用負極シートを作製した。
[Example 1]
As the positive electrode active material of the first electrode layer, lithium cobalt oxide having a specific surface area of 50 m 2 / g and an average particle diameter of 8 μm was used. The positive electrode was made of 20 μm thick aluminum foil current collector with 89.5 wt% LiCoO 2 (C-8), 6 wt% acetylene black, 4.5 wt% polyvinylidene fluoride as a binder, and N as a solvent. -A slurry-like mixture containing methyl-2-pyrrolidone was formed, and this slurry-like mixture was applied by a doctor blade method. Then, it was dried at 80 ° C. for 10 minutes, further dried at 140 ° C. for 3 hours, and pressed to an electrode thickness of 80 μm and a density of 1.1 g / cm 3 to obtain a positive electrode sheet for a lithium ion battery. As the negative electrode active material of the first electrode layer, microcarbon meso beads having a specific surface area of 30 m 2 / g and an average particle diameter of 8 μm are used. For the negative electrode, a copper foil current collector with a thickness of 16 μm was coated with 87% by weight of MCMB (25-28), 10% by weight of acetylene black, 3% by weight of polyvinylidene fluoride as a binder, and N-methyl-2-pyrrolidone as a solvent. A slurry-like mixture was formed, and this slurry-like mixture was applied by a doctor blade method. Thereafter, the electrode was dried at 80 ° C. for 10 minutes, further dried at 140 ° C. for 3 hours, and pressed to have an electrode thickness of 80 μm and a density of 1.2 g / cm 3 to prepare a negative electrode sheet for a lithium ion battery.

第2電極層の正・負極活物質として、比表面積2200m/g、平均粒子径0.7μmのフェノール系活性炭を使用した。正・負極の電極は、活性炭を76.9重量%、導電助剤(アセチレンブラック5.8重量%とバインダーとしてポリフッ化ビニリデン14重量部とポリビニルピロリドン(PVP)3.3重量%とを溶剤N−メチル−2−ピロリドンを含むスラリー状の混合物を形成した。 As the positive / negative electrode active material of the second electrode layer, phenol-based activated carbon having a specific surface area of 2200 m 2 / g and an average particle diameter of 0.7 μm was used. The positive and negative electrodes are composed of 76.9% by weight of activated carbon, 5.8% by weight of acetylene black, 14 parts by weight of polyvinylidene fluoride as a binder, and 3.3% by weight of polyvinylpyrrolidone (PVP) as a solvent N. -A slurry mixture containing methyl-2-pyrrolidone was formed.

このスラリー状混合物を、第1電極層の正・負極層の上にドクターブレード法により、塗布し積層形成した後、その電極を80℃で10分間乾燥して、さらに140℃で3時間乾燥して、電極厚み20μm、密度0.65g/cmになるようにプレスして第1電極層と第2電極層とを一体化し、それぞれハイブリッド型積層正・負極を作製した。得られた複数個のハイブリッド型積層正・負極を用いセパレータを挟んで対向させて一対の電極を作製し電解質溶液と共に組み込んでコイン型ハイブリッド二次電源を形成した。電解質溶液としては、1MにLiBFを溶解させたプロピレンカーボネート(PC)からなる溶液を用いた。 This slurry mixture is applied and laminated on the positive and negative electrode layers of the first electrode layer by a doctor blade method, and then the electrode is dried at 80 ° C. for 10 minutes and further dried at 140 ° C. for 3 hours. Then, the first electrode layer and the second electrode layer were integrated by pressing so that the electrode thickness was 20 μm and the density was 0.65 g / cm 3 , and hybrid type laminated positive and negative electrodes were respectively produced. A pair of electrodes were produced by using the obtained hybrid type laminated positive / negative electrodes and opposed to each other with a separator interposed therebetween, and assembled with an electrolyte solution to form a coin type hybrid secondary power source. As the electrolyte solution, a solution made of propylene carbonate (PC) in which LiBF 4 was dissolved in 1M was used.

[比較例1]
次に、比較に供するために、第1の比較例として、第1の実施例における、正・負極のそれぞれ第2電極層の電気二重層キャパシタ用電極を除いた従来型のリチウムイオン二次電池用電極を作製した。得られた複数個のリチウムイオン二次電池用正・負極を用いセパレータを挟んで一対の電極を作製し電解質溶液と共に組み込んでコイン型リチウムイオン二次電池を形成した。電解質溶液は、1MにLiBFを溶解させたプロピレンカーボネート(PC)溶液を用いた。
[Comparative Example 1]
Next, for comparison, as a first comparative example, a conventional lithium ion secondary battery excluding the electric double layer capacitor electrode of the second electrode layer of each of the positive and negative electrodes in the first example. An electrode was prepared. A pair of electrodes were produced using a plurality of the obtained positive and negative electrodes for lithium ion secondary batteries with a separator in between, and assembled with an electrolyte solution to form a coin-type lithium ion secondary battery. As the electrolyte solution, a propylene carbonate (PC) solution in which LiBF 4 was dissolved in 1M was used.

これらの実施例、比較例について、内部抵抗(R1kHz)及び100C放電特性を評価した。表1は、実施例と比較例の測定結果をまとめて示したものである。 For these examples and comparative examples, the internal resistance (R 1 kHz ) and 100C discharge characteristics were evaluated. Table 1 summarizes the measurement results of Examples and Comparative Examples.

Figure 2007280803
Figure 2007280803

これらの結果から明らかなように、本発明の実施例では内部抵抗を低減でき、パルス的な負荷への対応を高めることが可能なハイブリッド二次電源を得ることができる。   As is clear from these results, in the embodiment of the present invention, it is possible to obtain a hybrid secondary power source that can reduce the internal resistance and increase the response to a pulse-like load.

本発明によるリチウム二次電池・電気二重層キャパシタのハイブリッド型積層電極の構造モデルを示す断面図である。It is sectional drawing which shows the structural model of the hybrid type laminated electrode of the lithium secondary battery and electric double layer capacitor by this invention. 本発明によるリチウムイオン二次電池・電気二重層キャパシタのハイブリッド型積層電極の適用例を示すハイブリッド二次電源の断面図である。It is sectional drawing of the hybrid secondary power supply which shows the application example of the hybrid type laminated electrode of the lithium ion secondary battery and electric double layer capacitor by this invention. 本発明の比較例を示すリチウムイオン二次電池の断面図である。It is sectional drawing of the lithium ion secondary battery which shows the comparative example of this invention.

符号の説明Explanation of symbols

1:集電体(+)
2:集電体(−)
3:リチウムイオン電池負極(黒鉛)
4:リチウムイオン電池正極(コバルト酸リチウム)
3a:第1電極層(リチウムイオン電池負極)
3b:第2電極層(電気二重層キャパシタ負極)
4a:第1電極層(リチウムイオン電池正極)
4b:第2電極層(電気二重層キャパシタ正極)
5:セパレータ
100:ハイブリッド型積層電極
1: Current collector (+)
2: Current collector (-)
3: Lithium ion battery negative electrode (graphite)
4: Lithium ion battery positive electrode (lithium cobaltate)
3a: 1st electrode layer (lithium ion battery negative electrode)
3b: Second electrode layer (electric double layer capacitor negative electrode)
4a: 1st electrode layer (lithium ion battery positive electrode)
4b: 2nd electrode layer (electric double layer capacitor positive electrode)
5: Separator 100: Hybrid laminated electrode

Claims (14)

電極活物質を有する電極層が集電体の少なくとも一方の面に配置された第1電極層と、第1電極層上に配置され、第1電極層と同極の電極活物質を有する第2電極層とからなる積層型電極であって、第1電極層にはリチウムイオン電池電極が配置され、第2電極層には電気二重層キャパシタ電極が配置されていることを特徴とするハイブリッド型積層電極。   A second electrode having an electrode layer having an electrode active material disposed on at least one surface of the current collector, and an electrode active material having the same polarity as the first electrode layer, disposed on the first electrode layer. A hybrid type laminate comprising an electrode layer, wherein a lithium ion battery electrode is arranged on the first electrode layer, and an electric double layer capacitor electrode is arranged on the second electrode layer electrode. 電極活物質を有する第1電極層が集電体の両面に配置され、第1電極層上には、第2電極層が配置された、請求項1記載のハイブリッド型積層電極。   The hybrid laminated electrode according to claim 1, wherein the first electrode layer having an electrode active material is disposed on both surfaces of the current collector, and the second electrode layer is disposed on the first electrode layer. 第1電極層に含有されている電極活物質が、リチウムイオンを吸蔵/放出が可能な電極材料であり、第2電極層に含有されている電極活物質は、イオンを吸着/脱着可能なイオン分極性電極材料である請求項1に記載のハイブリッド型積層電極。   The electrode active material contained in the first electrode layer is an electrode material capable of occluding / releasing lithium ions, and the electrode active material contained in the second electrode layer is an ion capable of adsorbing / desorbing ions. The hybrid laminated electrode according to claim 1, which is a polarizable electrode material. リチウムイオンを吸蔵/放出が可能な電極材料が、リチウム複合コバルト酸化物、リチウム複合ニッケル酸化物、リチウム複合マンガン酸化物から選ばれる正極活物質である請求項3に記載のハイブリッド型積層電極。   The hybrid multilayer electrode according to claim 3, wherein the electrode material capable of inserting / extracting lithium ions is a positive electrode active material selected from lithium composite cobalt oxide, lithium composite nickel oxide, and lithium composite manganese oxide. リチウムイオンを吸蔵/放出が可能な電極材料が、リチウムイオンが吸蔵されることにより層間化合物となる人造黒鉛、天然黒鉛、メソフェーズピッチ系炭化水素、難黒鉛性炭素材料、石油コークス、易黒鉛性炭素材料及びこれらの複合材料又は混合材料から選ばれる負極活物質である、請求項3に記載のハイブリッド型積層電極。   Artificial graphite, natural graphite, mesophase pitch hydrocarbons, non-graphitizable carbon materials, petroleum coke, graphitizable carbon, which can be intercalated when lithium ions are occluded. The hybrid laminated electrode according to claim 3, which is a negative electrode active material selected from materials and composite materials or mixed materials thereof. イオンを吸着/脱着可能なイオン分極性電極材料が活性炭、ナノ炭素繊維及びこれらの複合材料又は混合材料である、請求項3に記載のハイブリッド型積層電極。   The hybrid laminated electrode according to claim 3, wherein the ion polarizable electrode material capable of adsorbing / desorbing ions is activated carbon, nanocarbon fibers, and a composite material or a mixed material thereof. 正極活物質の平均粒子径は20μm以下であり、比表面積は60m/g以下である請求項4に記載のハイブリッド型積層電極。 The hybrid-type multilayer electrode according to claim 4, wherein the positive electrode active material has an average particle size of 20 μm or less and a specific surface area of 60 m 2 / g or less. 負極活物質の平均粒子径は20μm以下であり、比表面積は50m/g以下であり、X線回折による[d002]面の面間隔が0.33〜0.44nmである、請求項5に記載のハイブリッド型積層電極。 The average particle diameter of the negative electrode active material is 20 μm or less, the specific surface area is 50 m 2 / g or less, and the [d 002 ] plane spacing by X-ray diffraction is 0.33 to 0.44 nm. 2. A hybrid type laminated electrode according to 1. 第2電極層に含まれる電極活物質の平均粒子径は10μm以下であり、比表面積は800〜3000m/gであり、且つX線回折による[d002]面の面間隔が0.33〜0.44nmである、請求項1に記載のハイブリッド型積層電極。 The average particle diameter of the electrode active material contained in the second electrode layer is 10 μm or less, the specific surface area is 800 to 3000 m 2 / g, and the [d 002 ] plane spacing by X-ray diffraction is 0.33 to 0.33. The hybrid laminated electrode according to claim 1, which has a thickness of 0.44 nm. 第2電極層の厚みは第1電極層の厚みより小さい、請求項1に記載のハイブリッド型積層電極。   The hybrid laminated electrode according to claim 1, wherein the thickness of the second electrode layer is smaller than the thickness of the first electrode layer. 第2電極層の密度は第1電極層の密度より小さい、請求項1に記載のハイブリッド型積層電極。   The hybrid laminated electrode according to claim 1, wherein the density of the second electrode layer is smaller than the density of the first electrode layer. 第1電極層用活物質材料、ポリマーバインダーおよび導電助剤を含む電極材料混練物を集電体上に直接塗布し乾燥させた後、第2電極層用活物質材料、ポリマーバインダーおよび導電助剤を含む電極材料混練物を第1電極層上に直接塗布し、乾操後プレス成形する、請求項1に記載のハイブリッド型積層電極製造方法。   After the electrode material kneaded material containing the active material for the first electrode layer, the polymer binder and the conductive assistant is directly applied on the current collector and dried, the active material for the second electrode layer, the polymer binder and the conductive assistant are dried. The hybrid laminated electrode manufacturing method according to claim 1, wherein an electrode material kneaded material containing is directly applied onto the first electrode layer, and press-molded after drying. 請求項1〜11のいずれかに記載のハイブリッド型積層電極を用いたことを特徴とするハイブリッド二次電源。   A hybrid secondary power supply using the hybrid laminated electrode according to claim 1. 請求項1〜11のいずれかに記載のハイブリッド型積層電極2枚を、セパレータを介して対向させ、リチウム塩を含む非水電解液とともに同一容器内に収納してなる、請求項13に記載のハイブリッド二次電源。   The two hybrid laminated electrodes according to any one of claims 1 to 11 are opposed to each other through a separator, and are housed in the same container together with a non-aqueous electrolyte containing a lithium salt. Hybrid secondary power source.
JP2006106406A 2006-04-07 2006-04-07 Hybrid laminated electrode and hybrid secondary power source using the same Pending JP2007280803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006106406A JP2007280803A (en) 2006-04-07 2006-04-07 Hybrid laminated electrode and hybrid secondary power source using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006106406A JP2007280803A (en) 2006-04-07 2006-04-07 Hybrid laminated electrode and hybrid secondary power source using the same

Publications (1)

Publication Number Publication Date
JP2007280803A true JP2007280803A (en) 2007-10-25

Family

ID=38682029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006106406A Pending JP2007280803A (en) 2006-04-07 2006-04-07 Hybrid laminated electrode and hybrid secondary power source using the same

Country Status (1)

Country Link
JP (1) JP2007280803A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009252683A (en) * 2008-04-10 2009-10-29 Sumitomo Chemical Co Ltd Manufacturing method of positive electrode body for nonaqueous electrolyte secondary battery
JP2013030275A (en) * 2011-07-26 2013-02-07 Sumitomo Heavy Ind Ltd Electricity storage device and work machine mounted with electricity storage device
WO2014073221A1 (en) * 2012-11-09 2014-05-15 エス・イー・アイ株式会社 Electrodes for lithium secondary battery and lithium secondary battery
US9203116B2 (en) 2006-12-12 2015-12-01 Commonwealth Scientific And Industrial Research Organisation Energy storage device
US9401508B2 (en) 2009-08-27 2016-07-26 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
US9450232B2 (en) 2009-04-23 2016-09-20 Commonwealth Scientific And Industrial Research Organisation Process for producing negative plate for lead storage battery, and lead storage battery
US9508493B2 (en) 2009-08-27 2016-11-29 The Furukawa Battery Co., Ltd. Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
WO2016200992A1 (en) * 2015-06-09 2016-12-15 America Lithium Energy Corporation Battery and supercapacitor hybrid
US9524831B2 (en) 2009-08-27 2016-12-20 The Furukawa Battery Co., Ltd. Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9666860B2 (en) 2007-03-20 2017-05-30 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device having capacitor material on lead based negative electrode
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system
US10224565B2 (en) 2012-10-12 2019-03-05 Ut-Battelle, Llc High energy density secondary lithium batteries
US10734633B2 (en) 2014-11-25 2020-08-04 American Lithium Energy Corporation Rechargeable battery with voltage activated current interrupter
CN111755664A (en) * 2020-06-30 2020-10-09 蜂巢能源科技有限公司 Electrode of lithium ion battery and lithium ion battery
US10818906B2 (en) 2017-05-01 2020-10-27 American Lithium Energy Corporation Negative thermal expansion current interrupter
US10840560B2 (en) 2014-11-25 2020-11-17 American Lithium Energy Corporation Rechargeable battery with resistive layer for enhanced safety
US10923727B2 (en) 2017-07-28 2021-02-16 American Lithium Energy Corporation Anti-corrosion for battery current collector
CN112397793A (en) * 2019-08-15 2021-02-23 通用汽车环球科技运作有限责任公司 Mixed electrode material for bipolar capacitor-assisted solid state batteries
US11056726B2 (en) 2013-09-16 2021-07-06 American Lithium Energy Corporation Positive temperature coefficient film, positive temperature coefficient electrode, positive temperature coefficient separator, and battery comprising the same
US11121438B2 (en) 2014-11-25 2021-09-14 American Lithium Energy Corporation Rechargeable battery with internal current limiter and interrupter
US11916257B2 (en) 2014-11-25 2024-02-27 American Lithium Energy Corporation Rechargeable battery with internal current limiter and interrupter

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9203116B2 (en) 2006-12-12 2015-12-01 Commonwealth Scientific And Industrial Research Organisation Energy storage device
US9666860B2 (en) 2007-03-20 2017-05-30 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device having capacitor material on lead based negative electrode
JP2009252683A (en) * 2008-04-10 2009-10-29 Sumitomo Chemical Co Ltd Manufacturing method of positive electrode body for nonaqueous electrolyte secondary battery
US9450232B2 (en) 2009-04-23 2016-09-20 Commonwealth Scientific And Industrial Research Organisation Process for producing negative plate for lead storage battery, and lead storage battery
US9524831B2 (en) 2009-08-27 2016-12-20 The Furukawa Battery Co., Ltd. Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9401508B2 (en) 2009-08-27 2016-07-26 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
US9508493B2 (en) 2009-08-27 2016-11-29 The Furukawa Battery Co., Ltd. Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system
JP2013030275A (en) * 2011-07-26 2013-02-07 Sumitomo Heavy Ind Ltd Electricity storage device and work machine mounted with electricity storage device
US10224565B2 (en) 2012-10-12 2019-03-05 Ut-Battelle, Llc High energy density secondary lithium batteries
US10930969B2 (en) 2012-10-12 2021-02-23 Ut-Battelle, Llc High energy density secondary lithium batteries
US9660269B2 (en) 2012-11-09 2017-05-23 Sei Corporation Electrode for lithium secondary battery and lithium secondary battery
US20150295240A1 (en) * 2012-11-09 2015-10-15 Sei Corporation Electrode for lithium secondary battery and lithium secondary battery
JP2014096268A (en) * 2012-11-09 2014-05-22 Sei Kk Electrode for lithium secondary battery and lithium secondary battery
WO2014073221A1 (en) * 2012-11-09 2014-05-15 エス・イー・アイ株式会社 Electrodes for lithium secondary battery and lithium secondary battery
US11056726B2 (en) 2013-09-16 2021-07-06 American Lithium Energy Corporation Positive temperature coefficient film, positive temperature coefficient electrode, positive temperature coefficient separator, and battery comprising the same
US11605837B2 (en) 2013-09-16 2023-03-14 American Lithium Energy Corporation Positive temperature coefficient film, positive temperature coefficient electrode, positive temperature coefficient separator, and battery comprising the same
US11728523B2 (en) 2014-11-25 2023-08-15 American Lithium Energy Corporation Rechargeable battery with resistive layer for enhanced safety
US10840560B2 (en) 2014-11-25 2020-11-17 American Lithium Energy Corporation Rechargeable battery with resistive layer for enhanced safety
US11916257B2 (en) 2014-11-25 2024-02-27 American Lithium Energy Corporation Rechargeable battery with internal current limiter and interrupter
US10734633B2 (en) 2014-11-25 2020-08-04 American Lithium Energy Corporation Rechargeable battery with voltage activated current interrupter
US11121438B2 (en) 2014-11-25 2021-09-14 American Lithium Energy Corporation Rechargeable battery with internal current limiter and interrupter
WO2016200992A1 (en) * 2015-06-09 2016-12-15 America Lithium Energy Corporation Battery and supercapacitor hybrid
US10818906B2 (en) 2017-05-01 2020-10-27 American Lithium Energy Corporation Negative thermal expansion current interrupter
US11842868B2 (en) 2017-05-01 2023-12-12 American Lithium Energy Corporation Negative thermal expansion current interrupter
US10923727B2 (en) 2017-07-28 2021-02-16 American Lithium Energy Corporation Anti-corrosion for battery current collector
US11688857B2 (en) 2017-07-28 2023-06-27 American Lithium Energy Corporation Anti-corrosion for battery current collector
CN112397793A (en) * 2019-08-15 2021-02-23 通用汽车环球科技运作有限责任公司 Mixed electrode material for bipolar capacitor-assisted solid state batteries
CN111755664A (en) * 2020-06-30 2020-10-09 蜂巢能源科技有限公司 Electrode of lithium ion battery and lithium ion battery

Similar Documents

Publication Publication Date Title
Muzaffar et al. A review on recent advances in hybrid supercapacitors: Design, fabrication and applications
JP2007280803A (en) Hybrid laminated electrode and hybrid secondary power source using the same
JP6161328B2 (en) Electrode active material, electrode and power storage device
JP4705566B2 (en) Electrode material and manufacturing method thereof
JP5322435B2 (en) Negative electrode active material for electricity storage devices
JP4833504B2 (en) Electrochemical capacitor and hybrid power supply comprising the same
JP5228531B2 (en) Electricity storage device
JP4738042B2 (en) Non-aqueous lithium storage element and method for manufacturing the same
JP7461877B2 (en) Compositions and methods for multilayer electrode films
JP5365260B2 (en) Electrode film and electrode containing ionic liquid, manufacturing method thereof, and electricity storage device
WO2013073526A1 (en) Electrode for electricity storage devices, electricity storage device, and method for producing electrode for electricity storage devices
CN103680972B (en) The lithium ion super capacitor of a kind of high-energy high-power density and assemble method thereof
JP6223466B2 (en) Lithium ion capacitor
TWI504039B (en) Power storage device and method for producing the same and power storage apparatus
JP2006338963A (en) Lithium ion capacitor
JP5681351B2 (en) Electrode current collector and method for producing the same, electrode and power storage device
JP7462066B2 (en) Nonaqueous alkali metal storage element and positive electrode coating fluid
WO2012127991A1 (en) Power storage device
US20140315084A1 (en) Method and apparatus for energy storage
JP2006303118A (en) Lithium ion capacitor
JP4705404B2 (en) Lithium ion capacitor
KR101102654B1 (en) The Composite Electrode Materials Showing Higher Power and Higher Energy
US20220393148A1 (en) Negative electrode and nonaqueous electrolyte secondary battery including the same
JP2006128049A (en) Electronic component for storage of electricity
JP2007180434A (en) Lithium ion capacitor