WO2011152284A1 - Photoelectric conversion element, photoelectrochemical battery, dye for photoelectric conversion element, and dye solution for photoelectric conversion element - Google Patents

Photoelectric conversion element, photoelectrochemical battery, dye for photoelectric conversion element, and dye solution for photoelectric conversion element Download PDF

Info

Publication number
WO2011152284A1
WO2011152284A1 PCT/JP2011/062130 JP2011062130W WO2011152284A1 WO 2011152284 A1 WO2011152284 A1 WO 2011152284A1 JP 2011062130 W JP2011062130 W JP 2011062130W WO 2011152284 A1 WO2011152284 A1 WO 2011152284A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
dye
photoelectric conversion
conversion element
general formula
Prior art date
Application number
PCT/JP2011/062130
Other languages
French (fr)
Japanese (ja)
Inventor
寛敬 佐藤
達也 薄
小林 克
木村 桂三
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201180025484.XA priority Critical patent/CN102906935B/en
Priority to KR1020127031298A priority patent/KR101553104B1/en
Publication of WO2011152284A1 publication Critical patent/WO2011152284A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/02Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups
    • C09B23/08Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups more than three >CH- groups, e.g. polycarbocyanines
    • C09B23/083Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups more than three >CH- groups, e.g. polycarbocyanines five >CH- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/007Squaraine dyes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a photoelectric conversion element and a photoelectrochemical cell having high conversion efficiency and excellent durability.
  • the present invention also relates to a photoelectric conversion element dye and a photoelectric conversion element dye solution.
  • Photoelectric conversion elements are used in various optical sensors, copiers, solar cells and the like.
  • Various types of photoelectric conversion elements have been put to practical use, such as those using metals, semiconductors, organic pigments and dyes, or combinations thereof.
  • a solar cell using non-depleting solar energy does not require fuel, and its full-scale practical use is expected greatly as it uses inexhaustible clean energy.
  • silicon solar cells have been researched and developed for a long time. It is spreading due to the policy considerations of each country. However, silicon is an inorganic material, and its throughput and molecular modification are naturally limited.
  • Patent Document 1 describes a dye-sensitized photoelectric conversion element using semiconductor fine particles sensitized with a ruthenium complex dye by applying this technique.
  • conventional ruthenium complex dyes can be photoelectrically converted using visible light, they can hardly absorb infrared light having a wavelength longer than 700 nm, and thus have a low photoelectric conversion ability in the infrared region.
  • dye which has a specific structure is proposed (for example, refer patent document 2).
  • the photoelectric conversion element is required to have high initial conversion efficiency in a wide wavelength range, less deterioration in conversion efficiency even after use, and excellent durability.
  • the photoelectric conversion element described in Patent Document 2 is not sufficient. Therefore, a photoelectric conversion element and a photoelectrochemical cell having high conversion efficiency and excellent durability are required.
  • dye solution for photoelectric conversion elements are required.
  • An object of the present invention is to provide a photoelectric conversion element and a photoelectrochemical cell having high conversion efficiency and excellent durability. Moreover, the subject of this invention is providing the pigment
  • ⁇ 7> Any one of ⁇ 4> to ⁇ 6>, wherein V 1 is a hydrogen atom, a 5-carboxyl group, a 5-sulfonic acid group, a 5-methyl group, or a 4,5-benzene ring condensation
  • ⁇ 8> The photoelectric conversion element according to ⁇ 6> or ⁇ 7>, wherein Z and V 1 are an acidic group or a group having an acidic group.
  • the general formula (2) is represented by the following general formula (6)
  • the general formula (3) is represented by the following general formula (7).
  • a photoelectric conversion element and a photoelectrochemical cell having high conversion efficiency and excellent durability can be provided.
  • this invention can provide the pigment
  • a photoelectric conversion element comprising a photoreceptor layer having a specific dye and semiconductor fine particles and a photoelectrochemical cell using the photoelectric conversion element have high photoelectric conversion efficiency and durability. It has been found that there is little decrease in performance, particularly photoelectric conversion efficiency. The present invention has been made based on this finding.
  • the photoelectric conversion element 10 includes a conductive support 1, a photosensitive layer 2, a charge transfer layer 3, and a counter electrode 4 arranged in that order on the conductive support 1.
  • the conductive support 1 and the photoreceptor layer 2 constitute a light receiving electrode 5.
  • the photoreceptor layer 2 has semiconductor fine particles 22 and a sensitizing dye 21, and the dye 21 is adsorbed on the semiconductor fine particles 22 at least in part (the dye is in an adsorption equilibrium state, and partly It may be present in the charge transfer layer).
  • the conductive support 1 on which the photoreceptor layer 2 is formed functions as a working electrode in the photoelectric conversion element 10.
  • the photoelectric conversion element 10 can be operated as the photoelectrochemical cell 100 by causing the external circuit 6 to work.
  • (A) Dye (A1) Dye of General Formula (1) In the photoelectric conversion element of the present invention, a dye of a compound represented by the following general formula (1) is used.
  • This dye can be used for a photoelectric conversion element and has an aliphatic group having 5 to 18 carbon atoms.
  • the aliphatic group is preferably an alkyl group, an alkenyl group, or an alkynyl group. More preferably, it is an alkyl group or an alkenyl group.
  • X 1 and X 2 each independently represent a sulfur atom, an oxygen atom, or CR 1 R 2 .
  • X 1 and X 2 are preferably a sulfur atom or CR 1 R 2 , and most preferably CR 1 R 2 .
  • R 1 and R 2 each independently represent a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group bonded with a carbon atom.
  • the heterocyclic group bonded with a carbon atom include pyrrole, furan, thiophene, imidazole, oxazole, thiazole, pyrazole, isoxazole, isothiazole, pyridine, pyridazine, pyrimidine, and pyran.
  • cyanine, merocyanine, rhodacyanine, trinuclear merocyanine, allopolar, hemicyanine, styryl and the like can be mentioned.
  • alkyl group or an alkenyl group More preferably, it is an alkyl group or an alkenyl group. More preferred is an alkyl group having 5 to 18 carbon atoms (for example, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, octadecyl, cyclohexyl, 2-ethylhexyl, etc.).
  • Aromatic groups include benzene, naphthalene, anthracene and the like.
  • R 10 and R 11 represent a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group bonded by a carbon atom.
  • R 10 and R 11 may be the same or different, and may be bonded to each other to form a ring. May be formed.
  • Examples of the heterocyclic group bonded with a carbon atom include pyrrole, furan, thiophene, imidazole, oxazole, thiazole, pyrazole, isoxazole, isothiazole, pyridine, pyridazine, pyrimidine, and pyran.
  • Preferable examples of R 10 and R 11 are preferably an alkyl group, an alkenyl group or an alkynyl group as the aliphatic group. More preferably, it is an alkyl group or an alkenyl group.
  • Z represents an aliphatic group, an aromatic group, or a heterocyclic group bonded with a carbon atom, and may have a substituent.
  • substituent include an acidic group, more preferably a group having a carboxyl group.
  • R 3 to R 6 and R 8 represent a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group, and may have a substituent.
  • heterocyclic group bonded with a carbon atom include pyrrole, furan, thiophene, imidazole, oxazole, thiazole, pyrazole, isoxazole, isothiazole, pyridine, pyridazine, pyrimidine, and pyran.
  • W 1 represents a counter ion when a counter ion is necessary to neutralize the charge.
  • a dye is a cation, an anion, or has a net ionic charge depends on the auxiliary color groups and substituents in the dye.
  • the dye having the structure of the general formula (1) has a dissociable substituent, it may be dissociated and have a negative charge. In this case, the charge of the whole molecule is neutralized by W 1.
  • W 1 is a cation, for example, it is an inorganic or organic ammonium ion (for example, tetraalkylammonium ion, pyridinium ion) or an alkali metal ion.
  • W 1 is an anion
  • either an inorganic anion or an organic anion may be used.
  • a halogen anion eg, fluoride ion, chloride ion, bromide ion, iodide ion
  • substituted aryl sulfonate ion eg, p-toluene sulfonate ion, p-chlorobenzene sulfonate ion
  • aryl disulfone Acid ions for example, 1,3-benzenedisulfonate ion, 1,5-naphthalenedisulfonate ion, 2,6-naphthalenedisulfonate ion
  • alkyl sulfate ion for example, methyl sulfate ion
  • sulfate ion thiocyanate ion
  • Perchlorate ion tetrafluoroborate ion, picrate ion, acetate
  • an ionic polymer or another dye having a charge opposite to that of the dye may be used as the charge balance counter ion, or a metal complex ion (for example, bisbenzene-1,2-dithiolatonickel (III)) may be used.
  • a metal complex ion for example, bisbenzene-1,2-dithiolatonickel (III)
  • R 9 represents a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group bonded with a carbon atom.
  • R 10 and R 11 represent a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group bonded with a carbon atom, and may be the same or different, and may be bonded to each other to form a ring.
  • Z represents an aliphatic group, an aromatic group, or a heterocyclic group bonded with a carbon atom, and may have a substituent.
  • V 1 preferably has an acidic group.
  • An acidic group is a substituent having a dissociable proton.
  • V 1 only needs to have an acidic group, and the acidic group may be bonded via a linking group.
  • the acidic group is not particularly limited, and carboxyl group, phosphonic acid group, sulfo group, sulfonic acid group, hydroxyl group, hydroxamic acid group, phosphoryl group, phosphonyl group, sulfino group, sulfinyl group, phosphinyl group, phosphono group, thiol group And sulfonyl groups, and salts thereof.
  • organic salt and inorganic salt may be sufficient.
  • Typical examples include alkali metal ions (lithium, sodium, potassium, etc.), alkaline earth metal ions (magnesium, calcium, etc.), ammonium, alkylammonium (eg, diethylammonium, tetrabutylammonium, etc.), pyridinium, alkylpyridinium ( Examples thereof include salts of methylpyridinium), guanidinium, tetraalkylphosphonium and the like.
  • the general formula (1) when there are a plurality of acidic groups, they may be the same or different.
  • Z is preferably a group having an acidic group.
  • Z can be an acidic group similar to V 1 .
  • the acidic group has an action of adsorbing to the semiconductor fine particles in the dye of the present invention.
  • the number of acidic groups in the dye is preferably 1 or more, more preferably 1 to 2. Further, both V 1 and Z by an acidic group can exhibit improved durability by improving adsorption force.
  • V 12 represents an acidic group
  • E 11 to E 13 represents an electron withdrawing group
  • p is an integer of 2 or more.
  • the acidic group include the same as those described in the above V 1.
  • the electron withdrawing group are preferably a cyano group, a nitro group, a sulfonyl group, a sulfoxy group, an acyl group, an alkoxycarbonyl group, and a carbamoyl group, more preferably a cyano group, a nitro group, a sulfonyl group, and particularly preferably a cyano group. It is a group.
  • p is an integer greater than or equal to 2.
  • the general formula (2) is preferably represented by the following general formula (8), and the general formula (3) is preferably represented by the following general formula (9).
  • Y, Z, R 3 ⁇ R 8 is Y in the general formula (2) or (3), Z, and R 3 ⁇ R 8 synonymous.
  • L is represented by the formulas A to D, and m represents 0 or an integer of 1 or more. When m is 2 or more, they may be different from each other.
  • Xa represents NRe, O, and S.
  • Re represents a hydrogen atom or a substituent.
  • Ra to Rd represent substituents. Specific examples of the substituent in Ra to Re include those represented by the following substituents.
  • alkyl groups branched alkyl groups are preferable, and examples thereof include 2-ethylhexyl, 2-methylhexyl, 2-methylpentyl, 3,5,5-trimethylhexyl, 2-cyclopentaneethyl, 2-cyclohexaneethyl and the like.
  • branched alkyl groups include 2-ethylhexyl, 2-methylhexyl, 2-methylpentyl, 3,5,5-trimethylhexyl, 2-cyclopentaneethyl, 2-cyclohexaneethyl and the like.
  • an alkyl group having 5 to 18 carbon atoms degradation of the dye due to water and nucleophilic species, and deterioration in durability due to separation of the dye from the semiconductor fine particles due to water approaching the adsorption point are suppressed.
  • association between dyes and excessive adsorption can be suppressed, inefficient electron transfer can be suppressed and photoelectric conversion efficiency can be improved.
  • R 7 is preferably represented by the following general formula (14) or (15). As a result, the effect of improving the electron injection efficiency can be obtained.
  • the basic skeleton A represents any of the following A-1 to A-12
  • the basic skeleton B represents any of the following B-1 to B-11
  • the basic skeleton C is One of the following C-1 to C-4 is shown.
  • Z represents the following Z-1 to Z-5
  • the linking group L represents any of the following L-1 to L-12.
  • the basic skeleton A and the basic skeleton B are bonded to each other with a carbon-carbon double bond between * carbon atoms
  • the basic skeleton B and the basic skeleton C are bonded to each other with a carbon atom between ** They are connected by a carbon double bond.
  • T-2, T-6, T-9, T-10, T-12, T-16, T-17, T-18, T-24, T-30, T- 37, the structural formulas of T-40 to T-50 are as follows.
  • a glass or polymer material coated with a conductive metal oxide can be used as the conductive support.
  • the coating amount of the conductive metal oxide at this time is preferably 0.1 to 100 g per 1 m 2 of the support of glass or polymer material.
  • a transparent conductive support it is preferable that light is incident from the support side.
  • polymer materials examples include tetraacetyl cellulose (TAC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), syndiotactic polystyrene (SPS), polyphenylene sulfide (PPS), polycarbonate (PC), Examples include polyarylate (PAR), polysulfone (PSF), polyester sulfone (PES), polyetherimide (PEI), cyclic polyolefin, and brominated phenoxy.
  • TAC tetraacetyl cellulose
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • SPS syndiotactic polystyrene
  • PPS polyphenylene sulfide
  • PC polycarbonate
  • PAR polyarylate
  • PSF polysulfone
  • PET polyester sulfone
  • PEI polyetherimide
  • cyclic polyolefin examples include brominated phenoxy.
  • the range of the surface resistance is preferably 10 ⁇ / m 2 or less, more preferably 1 ⁇ / m 2 or less, and particularly preferably 0.1 ⁇ / m 2 or less. When this value is too high, it becomes difficult to energize and the function as a photoelectric conversion element cannot be exhibited.
  • the conductive metal support at least one selected from the group consisting of titanium, aluminum, copper, nickel, iron, stainless steel, zinc, molybdenum, tantalum, niobium, and zirconium can be preferably used. These metals may be alloys. Of these, titanium, aluminum, copper, nickel, iron, stainless steel, and zinc are more preferred, titanium, aluminum, and copper are more preferred, and titanium and aluminum are most preferred. In the case of aluminum, aluminum alloy wrought material, 1000 series to 7000 series (Light Metal Association: Aluminum Handbook, Light Metal Association, (1978), 26) and the like can be preferably used.
  • the conductive metal support Since the conductive metal support has a small surface resistance and can reduce the internal resistance of the photoelectrochemical cell, a high output battery can be obtained.
  • the support does not soften even if the conductive metal support coated with the semiconductor fine particle dispersion described below is heated and dried at a high temperature. . Therefore, a porous semiconductor fine particle layer having a large specific surface area can be formed by appropriately selecting heating conditions. Thereby, the amount of dye adsorption can be increased, and a photoelectric conversion element with high output and high conversion efficiency can be provided.
  • a porous electroconductive support body can be obtained by coating the semiconductor fine particle dispersion on the metal sheet while continuously feeding the wound metal sheet, and then heating. Thereafter, the photosensitive layer can be formed on the conductive support by continuously applying the dye of the present invention. By passing through this process, it becomes possible to manufacture a photoelectric conversion element and a photoelectrochemical cell at low cost.
  • a conductive metal layer provided on a polymer material layer can be preferably used.
  • the polymer material layer is not particularly limited, but a material that does not melt and retain its shape when heated after coating the semiconductor fine particle dispersion on the conductive layer is selected.
  • the conductive layer can be produced by laminating the polymer material layer by a conventional method such as extrusion coating.
  • polymer material layer examples include tetraacetyl cellulose (TAC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), syndiotactic polystyrene (SPS), polyphenylene sulfide (PPS), and polycarbonate (PC ), Polyarylate (PAr), polysulfone (PSF), polyester sulfone (PES), polyetherimide (PEI), cyclic polyolefin, brominated phenoxy and the like.
  • TAC tetraacetyl cellulose
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • SPS syndiotactic polystyrene
  • PPS polyphenylene sulfide
  • PC polycarbonate
  • PAr Polyarylate
  • PSF polysulfone
  • PET polyester sulfone
  • PEI polyetherimide
  • cyclic polyolefin brominated phenoxy and
  • a polymer material layer provided with a conductive layer is used so that the polymer material layer functions as a protective layer for a photoelectric conversion element or a photoelectrochemical cell.
  • the polymer material layer can function not only as a protective layer but also as an insulating layer. Thereby, the insulation of photoelectric conversion element itself can be ensured.
  • the polymer material layer is used as an insulating layer, it is preferable to use a material having a volume resistivity of 10 10 to 10 20 ⁇ ⁇ cm. More preferably, the volume resistivity is 10 11 to 10 19 ⁇ ⁇ cm.
  • the conductive metal support is preferably substantially transparent.
  • substantially transparent means that the transmittance of light having a wavelength of 400 to 1200 nm is 10% or more, preferably 50% or more, particularly preferably 80% or more.
  • a light management function may be provided on the surface of the conductive metal support.
  • an antireflection film in which high refractive films and low refractive index oxide films are alternately stacked, or a light guide function may be provided. It is preferable to provide a function of blocking ultraviolet light on the conductive support.
  • a fluorescent material capable of changing ultraviolet light into visible light is present inside or on the surface of the polymer material layer.
  • Another preferred method is a method using an ultraviolet absorber.
  • the function described in JP-A-11-250944 may be provided on the conductive support. Since the resistance value of the conductive film increases as the cell area increases, a collecting electrode may be disposed.
  • a gas barrier film and / or an ion diffusion preventing film may be disposed between the polymer material layer and the conductive layer.
  • the gas barrier layer either a resin film or an inorganic film may be used.
  • (C) Semiconductor Fine Particle As shown in FIG. 1, in the photoelectric conversion element of the present invention, a photosensitive layer 2 in which a dye 21 is adsorbed on a semiconductor fine particle 22 is formed on a conductive support 1. As will be described later, for example, a dispersion of semiconductor fine particles is applied to the conductive support and dried, and then immersed in the dye solution of the present invention to produce a photoreceptor.
  • the semiconductor fine particles metal chalcogenides (for example, oxides, sulfides, selenides, etc.) or perovskite fine particles are preferably used.
  • Preferred examples of the metal chalcogenide include titanium, tin, zinc, tungsten, zirconium, hafnium, strontium, indium, cerium, yttrium, lanthanum, vanadium, niobium, tantalum oxide, cadmium sulfide, cadmium selenide, and the like.
  • Preferred perovskites include strontium titanate and calcium titanate. Of these, titanium oxide, zinc oxide, tin oxide, and tungsten oxide are particularly preferable.
  • the n-type inorganic semiconductor preferably used in the present invention is TiO 2 , TiSrO 3 , ZnO, Nb 2 O 3 , SnO 2 , WO 3 , Si, CdS, CdSe, V 2 O 5 , ZnS, ZnSe, SnSe, KTaO. 3 , FeS 2 , PbS, InP, GaAs, CuInS 2 , CuInSe 2 and the like.
  • the most preferred n-type semiconductors are TiO 2 , ZnO, SnO 2 , WO 3 , and Nb 2 O 3 .
  • a semiconductor material in which a plurality of these semiconductors are combined is also preferably used.
  • the content of the large particles is preferably 50% or less, more preferably 20% or less of the mass of particles having an average particle size of 50 nm or less.
  • the average particle size of the large particles added and mixed for the above purpose is preferably 100 nm or more, and more preferably 250 nm or more.
  • the gel-sol method described in Sakuo Sakuo's “Science of Sol-Gel Method”, Agne Jofu Co., Ltd. (1998) is preferable.
  • a method of producing an oxide by high-temperature hydrolysis of chloride developed by Degussa in an oxyhydrogen salt is preferable.
  • the semiconductor fine particles are titanium oxide
  • the above sol-gel method, gel-sol method, and high-temperature hydrolysis method in oxyhydrogen salt of chloride are all preferred, but Kiyoshi Manabu's “Titanium oxide properties and applied technology”
  • the sulfuric acid method and the chlorine method described in Gihodo Publishing (1997) can also be used.
  • titania examples include anatase type, brookite type, and rutile type, and anatase type and brookite type are preferable. Titania nanotubes, nanowires, and nanorods may be mixed with titania fine particles.
  • a porous semiconductor fine particle coating layer can be obtained by applying a semiconductor fine particle dispersion to the conductive support and heating appropriately.
  • a method of preparing a semiconductor fine particle dispersion is a method of depositing fine particles in a solvent and using them as they are when synthesizing a semiconductor. Or a method of mechanically pulverizing and grinding using a mill or a mortar.
  • the dispersion solvent water and / or various organic solvents can be used.
  • the applied semiconductor fine particle layer is subjected to heat treatment to enhance the electronic contact between the semiconductor fine particles and to improve the adhesion to the support, and to dry the applied semiconductor fine particle dispersion. .
  • heat treatment By this heat treatment, a porous semiconductor fine particle layer can be formed.
  • light energy can also be used.
  • the surface may be activated by applying light absorbed by the semiconductor fine particles such as ultraviolet light, or only the surface of the semiconductor fine particles may be activated by laser light or the like. Can do.
  • the impurities adsorbed on the particle surface are decomposed by the activation of the particle surface, and can be brought into a preferable state for the above purpose.
  • heat treatment and ultraviolet light it is preferable to heat the semiconductor fine particles at 100 ° C. to 250 ° C. or preferably 100 ° C. to 150 ° C. while irradiating the semiconductor fine particles with light absorbed by the fine particles.
  • Techniques related to the formation of semiconductor fine particles or precursor layers thereof include corona discharge, plasma, a method of hydrophilizing by a physical method such as UV, a chemical treatment with alkali, polyethylenedioxythiophene and polystyrenesulfonic acid, polyaniline, etc. For example, formation of an interlayer film for bonding may be mentioned.
  • Examples of the dry method include vapor deposition, sputtering, and aerosol deposition method. Further, electrophoresis or electrodeposition may be used. Moreover, after producing a coating film once on a heat-resistant board
  • the film forming method may be any one of (1) a wet method, (2) a dry method, and (3) an electrophoresis method (including an electrodeposition method), preferably (1) a wet method, or ( 2) A dry method, more preferably (1) a wet method.
  • the coating amount of semiconductor fine particles per 1 m 2 of support is preferably 0.5 to 500 g, more preferably 5 to 100 g.
  • the concentration of the dye is preferably 0.01 mmol / L to 1.0 mmol / L so as to be uniformly adsorbed to the semiconductor fine particles. More preferably, it is 0.1 mmol / L to 1.0 mmol / L.
  • the dye solution for dye adsorption comprising the solution and the dye of the present invention may be heated to 50 ° C. to 100 ° C. as necessary. The adsorption of the dye may be performed before or after application of the semiconductor fine particles. Further, the semiconductor fine particles and the dye may be applied and adsorbed simultaneously. Unadsorbed dye is removed by washing. When baking a coating film, it is preferable to adsorb
  • the dye is quickly adsorbed after the baking and before water adsorbs on the coating film surface. You may mix the pigment
  • the total amount of the dye used is preferably 0.01 to 100 mmol, more preferably 0.1 to 50 mmol, and particularly preferably 0.1 to 10 mmol per 1 m 2 of the support. In this case, it is preferable that the usage-amount of the pigment
  • a colorless compound may be co-adsorbed for the purpose of reducing the interaction between dyes such as association.
  • the hydrophobic compound to be co-adsorbed include steroid compounds having a carboxyl group (for example, cholic acid and pivaloyl acid).
  • the surface of the semiconductor fine particles may be treated with amines.
  • Preferred amines include 4-tert-butylpyridine, polyvinylpyridine and the like. These may be used as they are in the case of a liquid, or may be used by dissolving in an organic solvent.
  • the counter electrode serves as the positive electrode of the photoelectrochemical cell.
  • the counter electrode is usually synonymous with the conductive support described above, but the support is not necessarily required in a configuration in which the strength is sufficiently maintained. However, having a support is advantageous in terms of hermeticity.
  • the material for the counter electrode include platinum, carbon, and conductive polymer. Preferable examples include platinum, carbon, and conductive polymer.
  • the structure of the counter electrode a structure having a high current collecting effect is preferable.
  • Preferred examples include JP-A-10-505192.
  • a composite electrode such as titanium oxide and tin oxide (TiO 2 / SnO 2 ) may be used, and examples of the mixed electrode of titania include those described in Japanese Patent Application Laid-Open No. 2000-111393. Examples of mixed electrodes other than titania include those described in JP-A Nos. 2001-185243 and 2003-282164.
  • the light receiving electrode may be a tandem type in order to increase the utilization rate of incident light.
  • Examples of preferred tandem type configurations include those described in JP-A-2002-90989.
  • a light management function for efficiently performing light scattering and reflection inside the light receiving electrode layer may be provided.
  • Preferable examples include those described in JP-A-2002-93476.
  • a short-circuit prevention layer between the conductive support and the porous semiconductor fine particle layer in order to prevent reverse current due to direct contact between the electrolyte and the electrode.
  • Preferable examples include those described in JP-A-06-507999.
  • a spacer or a separator In order to prevent contact between the light receiving electrode and the counter electrode, it is preferable to use a spacer or a separator.
  • Preferable examples include those described in JP-A No. 2001-283941.
  • Electrolyte As a typical redox couple, for example, a combination of iodine and iodide (for example, lithium iodide, tetrabutylammonium iodide, tetrapropylammonium iodide, etc.), alkyl viologen (for example, methyl viologen chloride, hexyl) A combination of viologen bromide, benzyl viologen tetrafluoroborate) and its reduced form, a combination of polyhydroxybenzenes (eg, hydroquinone, naphthohydroquinone, etc.) and its oxidant, a divalent and trivalent iron complex (eg, red blood salt) And yellow blood salt).
  • iodine and iodide for example, lithium iodide, tetrabutylammonium iodide, tetrapropylammonium iodide, etc.
  • a combination of iodine and iodide is preferred.
  • an aprotic polar solvent for example, acetonitrile, propylene carbonate, ethylene carbonate, dimethylformamide, dimethyl sulfoxide, sulfolane, 1,3-dimethylimidazolinone, 3-methyloxazolidinone, etc.
  • the polymer used for the matrix of the gel electrolyte include polyacrylonitrile and polyvinylidene fluoride.
  • molten salt examples include those imparted with fluidity at room temperature by mixing polyethylene oxide with lithium iodide and at least one other lithium salt (such as lithium acetate and lithium perchlorate). It is done. In this case, the amount of polymer added is 1 to 50% by mass.
  • ⁇ -butyrolactone may be included in the electrolytic solution, thereby increasing the diffusion efficiency of iodide ions and improving the conversion efficiency.
  • a method of controlling the water content of the electrolytic solution may be taken.
  • Preferred methods for controlling moisture include a method for controlling the concentration and a method in which a dehydrating agent is allowed to coexist.
  • an inclusion compound of iodine and cyclodextrin may be used, and conversely, a method of constantly supplying water may be used.
  • Cyclic amidine may be used, and an antioxidant, hydrolysis inhibitor, decomposition inhibitor, and zinc iodide may be added.
  • the electrolyte may be quasi-solidified by adding a gelling agent to an electrolyte solution composed of an electrolyte and a solvent for gelation.
  • a gelling agent include organic compounds having a molecular weight of 1000 or less, Si-containing compounds having a molecular weight in the range of 500 to 5000, organic salts made of specific acidic compounds and basic compounds, sorbitol derivatives, and polyvinylpyridine.
  • a method of trapping a matrix polymer, a crosslinkable polymer compound or monomer, a crosslinking agent, an electrolyte, and a solvent in the polymer may be used.
  • the matrix polymer a polymer having a nitrogen-containing heterocyclic ring in the main chain or side chain repeating unit, a crosslinked product obtained by reacting these with an electrophilic compound, a polymer having a triazine structure, or having a ureido structure
  • a system including a cross-linked polymer obtained by reacting a functional group such as a hydroxyl group, an amino group or a carboxyl group with one or more functional isocyanate as one component may be used.
  • a crosslinking method in which a crosslinked polymer composed of a hydrosilyl group and a double bond compound, polysulfonic acid, polycarboxylic acid, or the like is reacted with a divalent or higher valent metal ion compound may be used.
  • Examples of the solvent that can be preferably used in combination with the quasi-solid electrolyte include a specific phosphoric acid ester, a mixed solvent containing ethylene carbonate, and a solvent having a specific dielectric constant.
  • the liquid electrolyte solution may be held in a solid electrolyte membrane or pores, and preferred methods thereof include conductive polymer membranes, fibrous solids, and cloth solids such as filters.
  • a solid charge transport layer such as a p-type semiconductor or a hole transport material may be used.
  • An organic hole transport material may be used as the solid charge transport layer.
  • the hole transport layer is preferably a conductive polymer such as polythiophene, polyaniline, polypyrrole, or polysilane, and a spiro compound in which two rings share a central element having a tetrahedral structure such as C or Si, a triarylamine, or the like.
  • Aromatic amine derivatives, triphenylene derivatives, nitrogen-containing heterocyclic derivatives, liquid crystal cyano derivatives are exemplified.
  • Example 1 (Preparation of photoelectric conversion element)
  • the photoelectric conversion element shown in FIG. 1 was produced as follows. On the glass substrate, tin oxide doped with fluorine was formed as a transparent conductive film by sputtering, and this was scribed with a laser to divide the transparent conductive film into two parts. Among these, anatase-type titanium oxide particles were sintered on one conductive film to produce a light receiving electrode. Thereafter, a dispersion containing silica particles and rutile titanium oxide at a ratio of 40:60 (mass ratio) was applied and sintered on the light-receiving electrode to form an insulating porous body.
  • the coating amount of the semiconductor fine particles was 20 g / m 2, and then a carbon electrode was formed as a counter electrode. Next, it was immersed for 48 hours in an ethanol solution (3 ⁇ 10 ⁇ 4 mol / L each) of the dyes described in Table 1 below.
  • the glass dyed with the sensitizing dye was immersed in a 10% ethanol solution of 4-tert-butylpyridine for 30 minutes, then washed with ethanol and naturally dried.
  • the thickness of the obtained photoreceptor was 10 ⁇ m.
  • the amount of the dye was appropriately selected from the range of 0.1 to 10 mmol / m 2 depending on the kind of the dye.
  • As the electrolytic solution a methoxypropionitrile solution of dimethylpropylimidazolium iodide (0.5 mol / L) and iodine (0.1 mol / L) was used.
  • the produced photoelectric conversion element was irradiated with this light, and the photoelectric conversion characteristics were measured with a current-voltage measuring device (Keithley 238 type, trade name).
  • the results of measuring the initial value of the conversion efficiency of the photoelectrochemical cell are shown as conversion efficiency in Table 1 below. Conversion efficiency of 2.5% or more is indicated as ⁇ , 1% or more and less than 2.5% is indicated by ⁇ , 0.3% or more and less than 1% is indicated as ⁇ , and less than 0.3% is indicated as ⁇ .
  • the conversion efficiency of 0.3% or more was accepted, and the conversion efficiency of less than 0.3% was rejected. Further, a decrease in conversion efficiency after 500 hours with respect to the initial value of conversion efficiency was evaluated as durability.
  • Example 2 An ITO film was produced on a glass substrate, and an FTO film was laminated thereon to produce a transparent conductive film. Then, a transparent electrode plate was obtained by forming an oxide semiconductor porous film on the transparent conductive film. And the photoelectrochemical cell was produced using the transparent electrode plate, and conversion efficiency was measured.
  • the method is as follows (1) to (5).
  • the FTO membrane raw material compound solution obtained in (2) was sprayed for 2 minutes 30 seconds under the same conditions.
  • a transparent electrode plate was obtained in which an ITO film having a thickness of 530 nm and an FTO film having a thickness of 170 nm were sequentially formed on the heat-resistant glass plate.
  • a transparent electrode plate in which only a 530 nm thick ITO film is formed on a heat resistant glass plate having a thickness of 2 mm and a transparent electrode plate in which only a 180 nm thick FTO film is formed are similarly provided.
  • These three types of transparent electrode plates were heated in a heating furnace at 450 ° C. for 2 hours.
  • a photoelectrochemical cell having the structure shown in FIG. 2 of Japanese Patent No. 4260494 was produced using the above three types of transparent electrode plates.
  • the oxide semiconductor porous film is formed by dispersing fine particles of titanium oxide having an average particle diameter of about 230 nm in acetonitrile to form a paste, applying the paste on the transparent electrode 11 to a thickness of 15 ⁇ m by a bar coating method, and drying to 450 ° C. And baked for 1 hour. Thereafter, the dyes listed in Table 2 were supported on the oxide semiconductor porous membrane.
  • a conductive substrate in which an ITO film and an FTO film were laminated on a glass plate was used for the counter electrode, and an electrolytic solution made of a non-aqueous solution of iodine / iodide was used for the electrolyte layer.
  • the planar dimension of the photoelectrochemical cell was 25 mm ⁇ 25 mm.
  • test cell (i) A collecting electrode was arranged on the FTO film to produce a photoelectrochemical cell, and the conversion efficiency was evaluated. Evaluation was made into two types, test cell (i) and test cell (iv) as follows.
  • etching was performed using hydrofluoric acid.
  • a metal conductive layer (seed layer) was formed thereon by sputtering to enable plating formation, and a metal wiring layer was further formed by additive plating.
  • the metal wiring layer was formed in a convex lens shape from the transparent substrate surface to a height of 3 ⁇ m.
  • the circuit width was 60 ⁇ m.
  • an FTO film having a thickness of 400 nm was formed as the shielding layer 5 by the SPD method to obtain an electrode substrate (i).
  • the cross-sectional shape of the electrode substrate (i) was as shown in FIG. 2 in JP-A No. 2004-146425.
  • a platinum sputtered FTO substrate and the substrate were placed facing each other through a thermoplastic polyolefin resin sheet having a thickness of 50 ⁇ m, and the resin sheet portion was melted by heat to fix the bipolar plates.
  • a methoxyacetonitrile solution containing 0.5M iodide and 0.05M iodine as the main components was injected from the electrolyte solution inlet previously opened on the platinum sputter electrode side, and filled between the electrodes. It was. Further, the peripheral portion and the electrolyte solution injection port were sealed with an epoxy-based sealing resin, and a silver paste was applied to the current collecting terminal portion to obtain a test cell (i). In the same manner as in Experiment 1, AM1.5 simulated sunlight was irradiated to the test cell (i), and the conversion efficiency was measured. The results are shown in Table 3.
  • the conversion efficiency of 0.3% or more was accepted, and the conversion efficiency of less than 0.3% was rejected.
  • the conversion efficiency after 500 hours with respect to the initial value of the conversion efficiency is 90% or more, ⁇ , 60% or more and less than 90%, ⁇ , 40% or more and less than 60%, or less than 40%.
  • the product was evaluated as x, and the durability is shown in Table 3. When the conversion efficiency after 500 hours was 60% or more with respect to the initial value of the conversion efficiency, it was determined to be acceptable, and when the conversion efficiency was less than 60%, it was rejected.
  • the conversion efficiency of the test cell using the dye of the present invention showed a high value of 1% or more. It was also found that the conversion efficiency can be increased by appropriately selecting the solvent used in the dye solution (Comparison between Samples 3-1 and 3-2 and Samples 3-3 and 3-4).
  • the initial value of the conversion efficiency may be as high as in the present invention, but the conversion efficiency after a lapse of 500 hours is greatly reduced, whereas when the dye of the present invention is used, The durability was remarkably reduced and excellent characteristics were exhibited.
  • the obtained titania colloidal particles (A2) was concentrated to 10 wt%, the peroxotitanic acid solution were mixed, the titanium of the mixed solution TiO 2 terms, TiO 2 mass of 30 mass% As a film forming aid, hydroxypropylcellulose was added to prepare a semiconductor film forming coating solution (A1).
  • an oxide semiconductor film (C3) is formed in the same manner as the oxide semiconductor film (A3) using the peroxotitanic acid solution obtained above and titania colloidal particles (C2), and a metal oxide semiconductor film
  • the dye of the present invention was adsorbed as a spectral sensitizing dye.
  • the photoelectrochemical cell (C) was produced by the same method as the photoelectrochemical cell (A).
  • titania colloidal particles (D2) are concentrated to 10% by mass, and hydroxypropylcellulose is added as a film forming aid so as to be 30% by mass in terms of TiO 2 to form a semiconductor film.
  • a coating solution was prepared.
  • the coating solution is applied onto a transparent glass substrate on which fluorine-doped tin oxide is formed as an electrode layer, dried naturally, and subsequently irradiated with 6000 mJ / cm 2 of ultraviolet rays using a low-pressure mercury lamp to form a film. Cured. Furthermore, it heated at 300 degreeC for 30 minute (s), the hydroxypropyl cellulose was decomposed
  • the dye of the present invention was adsorbed as a spectral sensitizing dye in the same manner as the oxide semiconductor film (A3). Then, the photoelectrochemical cell (D) was produced by the method similar to a photoelectrochemical cell (A).
  • the conversion efficiency after 500 hours with respect to the initial value of conversion efficiency is 90% or more, ⁇ , 60% to less than 90% ⁇ , 40% to less than 60% ⁇ , less than 40%
  • x A thing was evaluated as x and the value is shown in Table 4 as durability.
  • the initial value of the conversion efficiency was an acceptable level, and the conversion efficiency after 500 hours passed was excellent at 60% or more of the initial value. Shows durability.
  • the comparative dye was used, it was found that the initial value of the conversion efficiency was an acceptable level, but there was a problem with durability.
  • Titanium oxide was prepared by changing the method, an oxide semiconductor film was produced from the obtained titanium oxide, and a photoelectrochemical cell was evaluated.
  • titanium oxide 1 blue kite type
  • anatase-type titanium oxide commercially available anatase-type titanium oxide (trade name ST-01, manufactured by Ishihara Sangyo Co., Ltd.)
  • this is heated to about 900 ° C. to be converted into brookite-type titanium oxide, and further heated to about 1,200 ° C.
  • Rutile type titanium oxide was used.
  • comparative titanium oxide 1 anatase type
  • titanium oxide 1 blue kite type
  • comparative titanium oxide 2 rutile type
  • the titanium tetrachloride concentration was 0.25 mol / liter (2% by mass in terms of titanium oxide).
  • the reaction liquid started to become cloudy immediately after dropping, but kept at the same temperature. After the dropping, the temperature was further raised and heated to near the boiling point (104 ° C.). The reaction was terminated.
  • the sol obtained by the reaction was filtered, and then powdered using a vacuum dryer at 60 ° C.
  • the ratio (peak intensity at the position where the three lines overlap) was 0.05.
  • the titanium oxide was crystallinity of about 70.0% by mass for the brookite type, about 1.2% by mass for the rutile type, and about 28.8% by mass for the anatase type.
  • the average particle diameter of the primary particles was 0.015 ⁇ m.
  • Ti content 28% by mass, specific gravity 1.5, purity 99.9%
  • distilled water 500 ml of this solution was put into a reaction tank equipped with a reflux condenser, and ozone gas with a purity of 80% was bubbled from the ozone gas generator at 1 L / min while heating at 85 ° C. to carry out an oxidation reaction. This state was maintained for 2 hours to complete the reaction.
  • a photoelectrochemical cell using the photoelectric conversion element having the structure shown in FIG. 1 described in JP-A No. 2000-340269 using the titanium oxides 1 to 3 prepared by the above method as a semiconductor was produced by the following method.
  • a glass substrate was coated with fluorine-doped tin oxide to form a conductive transparent electrode.
  • a paste using each titanium oxide particle as a raw material was formed on the electrode surface, applied to a thickness of 50 ⁇ m by a bar coating method, and then baked at 500 ° C. to form a thin layer having a thickness of about 20 ⁇ m.
  • a photoelectric conversion element having a configuration shown in FIG. 1 of JP-A No. 2000-340269 was produced using an iodine salt of tetrapropylammonium as an electrolyte and an acetonitrile solution of lithium iodide and using platinum as a counter electrode.
  • light from a 160 W high-pressure mercury lamp (the infrared part was cut by a filter) was irradiated to the above-described element, and the initial value of conversion efficiency was measured in the same manner as in Experiment 1. The results are shown in Table 5 as conversion efficiency.
  • Conversion efficiency of 2.5% or more is indicated as ⁇ , 1% or more and less than 2.5% is indicated by ⁇ , 0.3% or more and less than 1% is indicated as ⁇ , and less than 0.3% is indicated as ⁇ .
  • the conversion efficiency of 0.3% or more was accepted, and the conversion efficiency of less than 0.3% was rejected.
  • the conversion efficiency after 500 hours with respect to the initial value of conversion efficiency is 90% or more, ⁇ , 60% or more and less than 90%, ⁇ , 40% or more and less than 60%, or less than 40%. Things were evaluated as x. The results are shown in Table 5 as durability. When the conversion efficiency after 500 hours was 60% or more with respect to the initial value of the conversion efficiency, it was determined to be acceptable, and when the conversion efficiency was less than 60%, it was rejected.
  • Example 6 A paste in which semiconductor fine particles were dispersed was prepared using titanium oxides having different particle sizes. Using this, a photoelectrochemical cell was produced and its characteristics were evaluated.
  • a titania slurry was prepared by putting spherical TiO 2 particles (anatase type, average particle size; 25 nm, hereinafter referred to as spherical TiO 2 particles 1) into a nitric acid solution and stirring. Next, a cellulose binder as a thickener was added to the titania slurry and kneaded to prepare a paste.
  • the paste 1 is mixed with plate-like mica particles (diameter: 100 nm, aspect ratio: 6, hereinafter referred to as plate-like mica particles 1).
  • plate-like mica particles (diameter: 100 nm, aspect ratio: 6, hereinafter referred to as plate-like mica particles 1).
  • the conversion efficiency after 500 hours with respect to the initial value of conversion efficiency is 90% or more, ⁇ , 60% to less than 90% ⁇ , 40% to less than 60% ⁇ , less than 40% Those were evaluated as x, and the results are shown in Table 8 as durability.
  • Table 8 shows the results of photoelectric conversion elements using an electrolytic solution to which no benzimidazole compound was added.
  • the slurry for forming the first layer (P1 content: 15 mass%; hereinafter, “slurry” was prepared by the same preparation procedure as that of the slurry 1 except that only P25 was used without using P200. 2)) was prepared.
  • a transparent electrode (thickness: 1.1 mm) in which a fluorine-doped SnO 2 conductive film (film thickness: 700 nm) was formed on a glass substrate (transparent conductive glass) was prepared. Then, the SnO 2 conductive film, the slurry 2 described above was coated with Bakoda, then dried. Then, it baked for 30 minutes at 450 degreeC in air
  • Photoelectrochemical cell 3 Comparative photoelectrochemistry was performed in the same procedure and conditions as in the photoelectrochemical cell 1 except that lithium iodide was added instead of zinc iodide in the liquid electrolyte, and the concentration of lithium iodide in the liquid electrolyte was 20 mmol / L. Battery 1 was produced.
  • Comparative electrochemical cell 4 Comparative photoelectrochemistry in the same procedure and conditions as in the photoelectrochemical cell 1 except that lithium iodide was added instead of zinc iodide in the liquid electrolyte, and the concentration of lithium iodide in the liquid electrolyte was 100 mmol / L. Battery 4 was produced.
  • this semiconductor-coated glass plate was placed in an electric furnace (muffle furnace FP-32 manufactured by Yamato Scientific Co., Ltd.) and baked at 450 ° C. for 30 minutes. After the semiconductor-coated glass plate was taken out and cooled, it was immersed in an ethanol solution (concentration: 3 ⁇ 10 ⁇ 4 mol / L) of the dyes shown in Table 10 for 3 hours. The semiconductor-coated glass plate on which the dye was adsorbed was immersed in 4-tert-butylpyridine for 15 minutes, washed with ethanol, and naturally dried to obtain a titanium oxide fine particle layer (electrode A) on which the dye was adsorbed.
  • a photoelectrochemical cell a-1 (sample number 10-1) of the present invention in which the counter electrode 40 composed of the plate 41 was sequentially laminated was obtained. Further, by repeating the above steps except changing the combination of the composition of the dye and the electrolyte composition as shown in Table 10, a photoelectrochemical cell a-2 having a different photoconductor and / or charge transfer body (sample number 10- 4) was obtained.
  • Photoelectrochemical cell c (electrolyte described in JP-A-9-27352)
  • the electrolytic solution was applied and impregnated on the electrode A (20 mm ⁇ 20 mm) composed of the titanium oxide fine particle layer dye-sensitized with the dye of the present invention as described above.
  • the electrolyte was 1 g of hexaethylene glycol methacrylate (manufactured by Nippon Oil & Fats Chemical Co., Ltd., Bremer PE-350), 1 g of ethylene glycol, and 2-hydroxy-2-methyl-1-phenyl-propane as a polymerization initiator.
  • a photoelectrochemical cell c-1 (Sample No. 10-6) was obtained by repeating the above steps except that the dye was changed as shown in Table 10.
  • the alligator clips were connected to the conductive glass plate 10 and the platinum-deposited glass plate 40 of the photoelectrochemical cell, respectively, and each alligator clip was connected to a current-voltage measuring device (Keutley SMU238 type (trade name)). This was irradiated with simulated sunlight from the conductive glass plate 10 side, and the generated electricity was measured with a current-voltage measuring device.
  • Table 10 shows the initial value of the conversion efficiency of the photoelectrochemical cell determined in this way and the rate of decrease in conversion efficiency after 300 hours of continuous irradiation. An initial value of conversion efficiency of 2.7% or more was accepted and less than 2.7% was rejected. Moreover, the case where the reduction rate of the conversion efficiency after 300 hours passed was 20% or less was determined to be acceptable, and the case where it exceeded 20% was regarded as unacceptable.
  • the initial value of the conversion efficiency is an acceptable level, and the reduction rate of the conversion efficiency after 300 hours is excellent at 15% or less. Shows durability.
  • the comparative dye was used, it was found that the initial value of the conversion efficiency was an acceptable level, but there was a problem with durability.
  • the present application includes Japanese Patent Application No. 2010-124020 filed in Japan on May 31, 2010, Japanese Patent Application No. 2010-287040 filed in Japan on December 24, 2010, and March 17, 2011. Claiming priority based on Japanese Patent Application No. 2011-059911 filed in Japan, both of which are hereby incorporated herein by reference in their entirety.

Abstract

A photoelectric conversion element involving a photosensitive material layer comprising a dye represented by general formula (1) and semiconductor microparticles, wherein the dye is a compound having a C5-18 aliphatic group and represented by general formula (1). [In general formula (1), Q represents a tetravalent aromatic group; X1 and X2 independently represent a sulfur atom, an oxygen atom, or a group CR1R2 (wherein R1 and R2 independently represent a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group which can be bound through a carbon atom contained therein); R and R' independently represent an aliphatic group, an aromatic group, or a heterocyclic group which can be bound through a carbon atom contained therein; P1 and P2 independently represent a dye residue; and W1 represents a counter ion which is required for the neutralization of an electric charge.]

Description

光電変換素子、光電気化学電池、光電変換素子用色素及び光電変換素子用色素溶液Photoelectric conversion element, photoelectrochemical cell, dye for photoelectric conversion element and dye solution for photoelectric conversion element
 本発明は、変換効率が高く、耐久性に優れた光電変換素子及び光電気化学電池に関する。また、本発明は、光電変換素子用色素及び光電変換素子用色素溶液に関する。 The present invention relates to a photoelectric conversion element and a photoelectrochemical cell having high conversion efficiency and excellent durability. The present invention also relates to a photoelectric conversion element dye and a photoelectric conversion element dye solution.
 光電変換素子は各種の光センサー、複写機、太陽電池等に用いられている。この光電変換素子には金属を用いたもの、半導体を用いたもの、有機顔料や色素を用いたもの、あるいはこれらを組み合わせたものなどの様々な方式が実用化されている。中でも、非枯渇性の太陽エネルギーを利用した太陽電池は、燃料が不要であり、無尽蔵なクリーンエネルギーを利用したものとして、その本格的な実用化が大いに期待されている。この中でも、シリコン系太陽電池は古くから研究開発が進められてきた。各国の政策的な配慮もあって普及が進んでいる。しかし、シリコンは無機材料であり、スループット及び分子修飾には自ずと限界がある。 Photoelectric conversion elements are used in various optical sensors, copiers, solar cells and the like. Various types of photoelectric conversion elements have been put to practical use, such as those using metals, semiconductors, organic pigments and dyes, or combinations thereof. Above all, a solar cell using non-depleting solar energy does not require fuel, and its full-scale practical use is expected greatly as it uses inexhaustible clean energy. Among these, silicon solar cells have been researched and developed for a long time. It is spreading due to the policy considerations of each country. However, silicon is an inorganic material, and its throughput and molecular modification are naturally limited.
 そこで色素増感型太陽電池の研究が精力的に行われている。とくに、スイスのローザンヌ工科大学のGraetzel等がポーラス酸化チタン薄膜の表面にルテニウム錯体からなる色素を固定した色素増感型太陽電池を開発し、アモルファスシリコン並の変換効率を実現した。これにより、色素増感型太陽電池が一躍世界の研究者から注目を集めるようになった。 Therefore, research on dye-sensitized solar cells has been conducted energetically. In particular, Graetzel et al., Lausanne University of Technology, Switzerland, developed a dye-sensitized solar cell in which a dye composed of a ruthenium complex was fixed on the surface of a porous titanium oxide thin film, and realized conversion efficiency comparable to amorphous silicon. As a result, dye-sensitized solar cells have attracted a great deal of attention from researchers around the world.
 特許文献1には、この技術を応用し、ルテニウム錯体色素によって増感された半導体微粒子を用いた色素増感光電変換素子が記載されている。しかしながら従来のルテニウム錯体色素は、可視光線を用いて光電変換できるものの、700nmより長波長の赤外光をほとんど吸収することができないため、赤外域での光電変換能が低い。
 そこで特定の構造を有するポリメチン色素を用いることにより、700nmより高波長の赤外域で、変換効率の高い光電変換素子を提供する提案がされている(例えば、特許文献2参照)。
 ところで、光電変換素子には、広い波長域で初期の変換効率が高く、使用後も変換効率の低下が少なく耐久性に優れることが必要とされる。しかし耐久性という点では、特許文献2記載の光電変換素子では十分とはいえない。
 そこで、変換効率が高く、耐久性に優れた光電変換素子及び光電気化学電池が必要とされている。さらに光電変換素子用色素及び光電変換素子用色素溶液が必要とされている。
Patent Document 1 describes a dye-sensitized photoelectric conversion element using semiconductor fine particles sensitized with a ruthenium complex dye by applying this technique. However, although conventional ruthenium complex dyes can be photoelectrically converted using visible light, they can hardly absorb infrared light having a wavelength longer than 700 nm, and thus have a low photoelectric conversion ability in the infrared region.
Then, the proposal which provides a photoelectric conversion element with high conversion efficiency in the infrared region higher than 700 nm by using the polymethine pigment | dye which has a specific structure is proposed (for example, refer patent document 2).
By the way, the photoelectric conversion element is required to have high initial conversion efficiency in a wide wavelength range, less deterioration in conversion efficiency even after use, and excellent durability. However, in terms of durability, the photoelectric conversion element described in Patent Document 2 is not sufficient.
Therefore, a photoelectric conversion element and a photoelectrochemical cell having high conversion efficiency and excellent durability are required. Furthermore, the pigment | dye for photoelectric conversion elements and the pigment | dye solution for photoelectric conversion elements are required.
米国特許第5463057号明細書US Pat. No. 5,463,057 特許第4217320号公報Japanese Patent No. 4217320
 本発明の課題は、変換効率が高く、さらに耐久性に優れた光電変換素子および光電気化学電池を提供することにある。また本発明の課題は、光電変換素子用色素及び光電変換素子用色素溶液を提供することにある。 An object of the present invention is to provide a photoelectric conversion element and a photoelectrochemical cell having high conversion efficiency and excellent durability. Moreover, the subject of this invention is providing the pigment | dye solution for photoelectric conversion elements, and the pigment | dye solution for photoelectric conversion elements.
 本発明者等は、鋭意検討を重ねた結果、導電性支持体上に特定の構造を有するポリメチン色素(色素化合物)を吸着させた多孔質半導体微粒子層を有する感光体、電荷移動体、及び対極を含む積層構造よりなる光電変換素子とこれを用いた光電気化学電池が、広い波長域で変換効率が高く、耐久性に優れることを見出した。本発明はこの知見に基づきなされたものである。
 本発明の課題は、以下の手段によって達成された。
As a result of intensive studies, the present inventors have made a photoconductor, a charge transfer body, and a counter electrode having a porous semiconductor fine particle layer in which a polymethine dye (dye compound) having a specific structure is adsorbed on a conductive support. It has been found that a photoelectric conversion element having a laminated structure including a photoelectrochemical cell using the photoelectric conversion element has high conversion efficiency in a wide wavelength range and excellent durability. The present invention has been made based on this finding.
The object of the present invention has been achieved by the following means.
<1>下記一般式(1)で表される色素と、半導体微粒子とを有する感光体層を具備する光電変換素子であって、前記色素が炭素数5~18の脂肪族基を有する下記一般式(1)で表される化合物の色素を含有することを特徴とする光電変換素子。
Figure JPOXMLDOC01-appb-C000014
[一般式(1)において、Qは4価の芳香族基を示し、X、Xはそれぞれ独立に硫黄原子、酸素原子、又はCRを表す。ここでR、Rはそれぞれ独立に、水素原子、脂肪族基、芳香族基、炭素原子で結合するヘテロ環基を表し、これらは置換されていてもよい。R、R’はそれぞれ独立に脂肪族基、芳香族基、炭素原子で結合するヘテロ環基を表し、これらは置換されていてもよい。P、Pはそれぞれ独立に色素残基を表す。Wは電荷を中和させるのに必要な場合の対イオンを表す。]
<2>前記炭素数5~18の脂肪族基が分岐アルキル基であることを特徴とする<1>記載の光電変換素子。
<3>前記一般式(1)中のQが、ベンゼン環又はナフタレン環を表すことを特徴とする<1>又は<2>記載の光電変換素子。
<4>前記一般式(1)中のP及びPがそれぞれ独立に、下記一般式(2)又は(3)で表されることを特徴とする<1>~<3>のいずれか1項記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
[ 一般式(2)及び(3)において、Vは水素原子又は置換基を表す。nは0~4の整数を表し、nが2以上の場合は、Vは同じでも異なっていてもよく、互いに結合して環を形成していてもよい。
 YはS、NR、またはCR1011を表す。Rは水素原子、脂肪族基、芳香族基、又は炭素原子で結合するヘテロ環基を表す。R10、R11は、水素原子、脂肪族基、芳香族基、又は炭素原子で結合するヘテロ環基を表し、同一でも異なっていてもよく、互いに結合して環を形成していてもよい。
 Zは脂肪族基、芳香族基、又は炭素原子で結合するヘテロ環基を表し、置換基を有していてもよい。
 R~R、及びRはそれぞれ独立に、水素原子、脂肪族基、芳香族基、又はヘテロ環基を表し、置換基を有していてもよい。
 Rは酸素原子、又は2つの置換基を有する炭素原子であって2つの置換基のHammett則におけるσpの和が正である。]
<5>前記一般式(1)におけるP及びPが、それぞれ独立に下記一般式(4)又は(5)で表されることを特徴とする<1>に記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
[ 一般式(4)及び(5)において、Vは水素原子又は置換基を表す。nは0~4の整数を表し、nが2以上の場合は、Vは同じでも異なっていてもよく、互いに結合して環を形成していてもよい。
 YはS、NR、またはCR1011を表す。Rは水素原子、脂肪族基、芳香族基、又は炭素原子で結合するヘテロ環基を表す。R10、R11は、水素原子、脂肪族基、芳香族基、又は炭素原子で結合するヘテロ環基を表し、同一でも異なっていてもよく、互いに結合して環を形成していてもよい。
 Zは脂肪族基、芳香族基、又は炭素原子で結合するヘテロ環基を表し、置換基を有していてもよい。]
<6>前記Vが酸性基を有することを特徴とする<4>又は<5>に記載の光電変換素子。
<7>前記Vが水素原子、5-カルボキシル基、5-スルホン酸基、5-メチル基、又は4,5-ベンゼン環縮合であることを特徴とする<4>~<6>のいずれか1項記載の光電変換素子。
<8>前記Z及びVが酸性基または酸性基を有する基であることを特徴とする<6>又は<7>記載の光電変換素子。
<9>前記一般式(2)が下記一般式(6)で表され、前記一般式(3)が下記一般式(7)で表されることを特徴とする<4>、<6>~<8>のいずれか1項記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 前記一般式(6)及び(7)において、Y、Z、R~Rは、一般式(2)又は(3)のY、Z、R~Rと同義である。V12は酸性基を表し、E11~E13のうち少なくとも1つは電子吸引基を表す。pは2以上の整数である。
<10>前記一般式(2)が下記一般式(8)で表され、前記一般式(3)が下記一般式(9)で表されることを特徴とする<4>記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 一般式(8)及び(9)において、Y、Z、R~Rは、一般式(2)又は(3)のY、Z、R~Rと同義である。Lは上記式A~Dで表され、mは0又は1以上の整数を表す。mが2以上のとき、それぞれ異なっていてもよい。式Aにおいて、Xaは、NRe、O、Sを表す。Reは水素原子又は置換基を表す。式A及び式Cにおいて、Ra~Rdは酸性基を表す。一般式(8)において、pは2以上の整数を表す。Rxは酸性基を表す。
<11>前記Yが、S、NCH、又はC(CHを表し、Zが炭素数5~18の脂肪族基を表すことを特徴とする<4>~<10>のいずれか1項記載の光電変換素子。
<12>前記Rが、下記一般式(10)~(13)のいずれかで表されることを特徴とする<4>、<6>~<11>のいずれか1項記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000024
[一般式(10)~(13)において、Rfは水素原子又は置換基を表す。]
<13>前記Rが、下記一般式(14)又は(15)で表されることを特徴とする<4>、<6>~<12>のいずれか1項記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000025
<14>一般式(1)中のQがベンゼン環を表し、X、Xはそれぞれ独立に硫黄原子、酸素原子、又はC(CHを表し、R、R’はそれぞれ独立に炭素数5~18の脂肪族基を表すことを特徴とする<1>~<13>のいずれか1項記載の光電変換素子。
<15>前記半導体微粒子が酸化チタン微粒子であることを特徴とする<1>~<14>のいずれか1項記載の光電変換素子。
<16><1>~<15>のいずれか1項に記載の光電変換素子を備えることを特徴とする光電気化学電池。
<17>炭素数5~18の脂肪族基を有する下記一般式(1)で表される化合物の光電変換素子用色素。
Figure JPOXMLDOC01-appb-C000026
[一般式(1)において、Qは4価の芳香族基を示し、X、Xはそれぞれ独立に硫黄原子、酸素原子、又はCRを表す。ここでR、Rはそれぞれ独立に、水素原子、脂肪族基、芳香族基、炭素原子で結合するヘテロ環基を表し、これらは置換されていてもよい。R、R’はそれぞれ独立に脂肪族基、芳香族基、炭素原子で結合するヘテロ環基を表し、これらは置換されていてもよい。P、Pはそれぞれ独立に色素残基を表す。Wは電荷を中和させるのに必要な場合の対イオンを表す。]
<18>有機溶媒中に、<17>記載の光電変換素子用色素を含有し溶解したことを特徴とする光電変換素子用色素溶液。
<1> A photoelectric conversion device comprising a photoreceptor layer having a dye represented by the following general formula (1) and semiconductor fine particles, wherein the dye has an aliphatic group having 5 to 18 carbon atoms. A photoelectric conversion element comprising a dye of a compound represented by formula (1).
Figure JPOXMLDOC01-appb-C000014
[In General Formula (1), Q represents a tetravalent aromatic group, and X 1 and X 2 each independently represent a sulfur atom, an oxygen atom, or CR 1 R 2 . Here, R 1 and R 2 each independently represent a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group bonded with a carbon atom, and these may be substituted. R and R ′ each independently represents an aliphatic group, an aromatic group, or a heterocyclic group bonded with a carbon atom, and these may be substituted. P 1 and P 2 each independently represent a dye residue. W 1 represents a counter ion as necessary to neutralize the charge. ]
<2> The photoelectric conversion element according to <1>, wherein the aliphatic group having 5 to 18 carbon atoms is a branched alkyl group.
<3> The photoelectric conversion element according to <1> or <2>, wherein Q in the general formula (1) represents a benzene ring or a naphthalene ring.
<4> Any one of <1> to <3>, wherein P 1 and P 2 in the general formula (1) are each independently represented by the following general formula (2) or (3) Item 1. The photoelectric conversion element according to item 1.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
[In General Formulas (2) and (3), V 1 represents a hydrogen atom or a substituent. n represents an integer of 0 to 4, and when n is 2 or more, V 1 may be the same or different, and may be bonded to each other to form a ring.
Y represents S, NR 9 , or CR 10 R 11 . R 9 represents a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group bonded with a carbon atom. R 10 and R 11 represent a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group bonded with a carbon atom, and may be the same or different, and may be bonded to each other to form a ring. .
Z represents an aliphatic group, an aromatic group, or a heterocyclic group bonded with a carbon atom, and may have a substituent.
R 3 to R 6 and R 8 each independently represents a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group, and may have a substituent.
R 7 is an oxygen atom or a carbon atom having two substituents, and the sum of σp in the Hammett rule of the two substituents is positive. ]
<5> The photoelectric conversion element according to <1>, wherein P 1 and P 2 in the general formula (1) are each independently represented by the following general formula (4) or (5).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
[In General Formulas (4) and (5), V 1 represents a hydrogen atom or a substituent. n represents an integer of 0 to 4, and when n is 2 or more, V 1 may be the same or different, and may be bonded to each other to form a ring.
Y represents S, NR 9 , or CR 10 R 11 . R 9 represents a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group bonded with a carbon atom. R 10 and R 11 represent a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group bonded with a carbon atom, and may be the same or different, and may be bonded to each other to form a ring. .
Z represents an aliphatic group, an aromatic group, or a heterocyclic group bonded with a carbon atom, and may have a substituent. ]
<6> The photoelectric conversion element according to <4> or <5>, wherein the V 1 has an acidic group.
<7> Any one of <4> to <6>, wherein V 1 is a hydrogen atom, a 5-carboxyl group, a 5-sulfonic acid group, a 5-methyl group, or a 4,5-benzene ring condensation The photoelectric conversion element of Claim 1.
<8> The photoelectric conversion element according to <6> or <7>, wherein Z and V 1 are an acidic group or a group having an acidic group.
<9> The general formula (2) is represented by the following general formula (6), and the general formula (3) is represented by the following general formula (7). <4>, <6> to The photoelectric conversion element of any one of <8>.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
In Formula (6) and (7), Y, Z, R 3 ~ R 8 is Y in the general formula (2) or (3), Z, and R 3 ~ R 8 synonymous. V 12 represents an acidic group, and at least one of E 11 to E 13 represents an electron withdrawing group. p is an integer of 2 or more.
<10> The photoelectric conversion element according to <4>, wherein the general formula (2) is represented by the following general formula (8), and the general formula (3) is represented by the following general formula (9) .
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
In the general formula (8) and (9), Y, Z, R 3 ~ R 8 is Y in the general formula (2) or (3), Z, and R 3 ~ R 8 synonymous. L is represented by the above formulas A to D, and m represents 0 or an integer of 1 or more. When m is 2 or more, they may be different from each other. In the formula A, Xa represents NRe, O, and S. Re represents a hydrogen atom or a substituent. In the formulas A and C, Ra to Rd represent an acidic group. In the general formula (8), p represents an integer of 2 or more. Rx represents an acidic group.
<11> Any one of <4> to <10>, wherein Y represents S, NCH 3 , or C (CH 3 ) 2 , and Z represents an aliphatic group having 5 to 18 carbon atoms Item 1. The photoelectric conversion element according to item 1.
<12> The photoelectric conversion according to any one of <4> and <6> to <11>, wherein R 7 is represented by any one of the following general formulas (10) to (13): element.
Figure JPOXMLDOC01-appb-C000024
[In the general formulas (10) to (13), Rf represents a hydrogen atom or a substituent. ]
<13> The photoelectric conversion device according to any one of <4> and <6> to <12>, wherein R 7 is represented by the following general formula (14) or (15).
Figure JPOXMLDOC01-appb-C000025
<14> Q in the general formula (1) represents a benzene ring, X 1 and X 2 each independently represent a sulfur atom, an oxygen atom, or C (CH 3 ) 2 , and R and R ′ each independently The photoelectric conversion element according to any one of <1> to <13>, wherein the photoelectric conversion element represents an aliphatic group having 5 to 18 carbon atoms.
<15> The photoelectric conversion element according to any one of <1> to <14>, wherein the semiconductor fine particles are titanium oxide fine particles.
<16> A photoelectrochemical cell comprising the photoelectric conversion element according to any one of <1> to <15>.
<17> A dye for a photoelectric conversion element, which is a compound represented by the following general formula (1) having an aliphatic group having 5 to 18 carbon atoms.
Figure JPOXMLDOC01-appb-C000026
[In General Formula (1), Q represents a tetravalent aromatic group, and X 1 and X 2 each independently represent a sulfur atom, an oxygen atom, or CR 1 R 2 . Here, R 1 and R 2 each independently represent a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group bonded with a carbon atom, and these may be substituted. R and R ′ each independently represents an aliphatic group, an aromatic group, or a heterocyclic group bonded with a carbon atom, and these may be substituted. P 1 and P 2 each independently represent a dye residue. W 1 represents a counter ion as necessary to neutralize the charge. ]
<18> A dye solution for a photoelectric conversion element, wherein the dye for a photoelectric conversion element according to <17> is contained and dissolved in an organic solvent.
 本発明により、変換効率が高く、耐久性に優れた光電変換素子及び光電気化学電池を提供することができる。また本発明は、光電変換素子用色素及び光電変換素子用色素溶液を提供することができる。 According to the present invention, a photoelectric conversion element and a photoelectrochemical cell having high conversion efficiency and excellent durability can be provided. Moreover, this invention can provide the pigment | dye solution for photoelectric conversion elements, and the pigment | dye solution for photoelectric conversion elements.
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。 The above and other features and advantages of the present invention will become more apparent from the following description with reference to the accompanying drawings as appropriate.
図1は、本発明の光電変換素子の一実施態様について模式的に示した断面図である。FIG. 1 is a cross-sectional view schematically showing one embodiment of the photoelectric conversion element of the present invention.
 本発明者等は、鋭意検討を重ねた結果、特定の色素と半導体微粒子とを有する感光体層を具備する光電変換素子と、これを用いた光電気化学電池が、光電変換効率が高く、耐久性、特に光電変換効率の低下が少ないことを見出した。本発明はこの知見に基づきなされたものである。 As a result of intensive studies, the present inventors have found that a photoelectric conversion element comprising a photoreceptor layer having a specific dye and semiconductor fine particles and a photoelectrochemical cell using the photoelectric conversion element have high photoelectric conversion efficiency and durability. It has been found that there is little decrease in performance, particularly photoelectric conversion efficiency. The present invention has been made based on this finding.
 本発明の光電変換素子の好ましい実施態様を、図面を参照して説明する。図1に示すように、光電変換素子10は、導電性支持体1、導電性支持体1上にその順序で配された、感光体層2、電荷移動体層3、及び対極4からなる。前記導電性支持体1と感光体層2とにより受光電極5を構成している。その感光体層2は半導体微粒子22と増感色素21とを有しており、色素21はその少なくとも一部において半導体微粒子22に吸着している(色素は吸着平衡状態になっており、一部電荷移動体層に存在していてもよい。)。感光体層2が形成された導電性支持体1は光電変換素子10において作用電極として機能する。この光電変換素子10を外部回路6で仕事をさせるようにして、光電気化学電池100として作動させることができる。 Preferred embodiments of the photoelectric conversion element of the present invention will be described with reference to the drawings. As shown in FIG. 1, the photoelectric conversion element 10 includes a conductive support 1, a photosensitive layer 2, a charge transfer layer 3, and a counter electrode 4 arranged in that order on the conductive support 1. The conductive support 1 and the photoreceptor layer 2 constitute a light receiving electrode 5. The photoreceptor layer 2 has semiconductor fine particles 22 and a sensitizing dye 21, and the dye 21 is adsorbed on the semiconductor fine particles 22 at least in part (the dye is in an adsorption equilibrium state, and partly It may be present in the charge transfer layer). The conductive support 1 on which the photoreceptor layer 2 is formed functions as a working electrode in the photoelectric conversion element 10. The photoelectric conversion element 10 can be operated as the photoelectrochemical cell 100 by causing the external circuit 6 to work.
 受光電極5は、導電性支持体1および導電性支持体上に塗設される色素21の吸着した半導体微粒子22を含む感光体層(半導体膜)2よりなる電極である。感光体層(半導体膜)2に入射した光は色素を励起する。励起色素はエネルギーの高い電子を有している。そこでこの電子が色素21から半導体微粒子22の伝導帯に渡され、さらに拡散によって導電性支持体1に到達する。このとき色素21の分子は酸化体となっている。電極上の電子が外部回路で仕事をしながら色素酸化体に戻ることにより、光電気化学電池として作用する。この際、受光電極5はこの電池の負極として働く。 The light-receiving electrode 5 is an electrode composed of a conductive support 1 and a photosensitive layer (semiconductor film) 2 including semiconductor fine particles 22 adsorbed with a dye 21 coated on the conductive support. Light incident on the photoreceptor layer (semiconductor film) 2 excites the dye. The excited dye has high energy electrons. Therefore, the electrons are transferred from the dye 21 to the conduction band of the semiconductor fine particles 22 and further reach the conductive support 1 by diffusion. At this time, the molecule of the dye 21 is an oxidant. The electrons on the electrode return to the oxidized dye while working in an external circuit, thereby acting as a photoelectrochemical cell. At this time, the light receiving electrode 5 functions as a negative electrode of the battery.
 本発明の光電変換素子は、導電性支持体上に、後述の特定の色素が吸着された多孔質半導体微粒子層を有する感光体層を有する。感光体層は目的に応じて設計され、単層構成でも多層構成でもよい。感光体層中の色素は多種類の色素が混合されたものでもよいが、少なくとも後述の色素を用いる。本発明の光電変換素子の感光体層として、この色素が吸着された半導体微粒子を含んだものを用いた場合に、広波長域の光に対して感度が高い光電変換素子を得ることができる。この光電変換素子を用いて光電気化学電池とした場合、高い変換効率を得ることができ、変換効率の低下が少なく耐久性に優れている光電変換素子を得ることができる。 The photoelectric conversion element of the present invention has a photoreceptor layer having a porous semiconductor fine particle layer on which a specific dye described later is adsorbed on a conductive support. The photoreceptor layer is designed according to the purpose, and may be a single layer structure or a multilayer structure. The dye in the photoreceptor layer may be a mixture of many kinds of dyes, but at least the dyes described below are used. When the photosensitive layer of the photoelectric conversion element of the present invention contains a semiconductor fine particle to which this dye is adsorbed, a photoelectric conversion element having high sensitivity to light in a wide wavelength region can be obtained. When this photoelectric conversion element is used as a photoelectrochemical cell, a high conversion efficiency can be obtained, and a photoelectric conversion element excellent in durability with little reduction in conversion efficiency can be obtained.
(A)色素
(A1)一般式(1)の色素
 本発明の光電変換素子においては、下記一般式(1)で表される化合物の色素が使用される。この色素は光電変換素子用として使用することができ、炭素数5~18の脂肪族基を有している。脂肪族基としては、好ましくは、アルキル基、アルケニル基又はアルキニル基である。さらに好ましくは、アルキル基又はアルケニル基である。最も好ましいのはアルキル基であり、例えば、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、オクタデシル、シクロヘキシル、2-エチルヘキシル等が挙げられる。アルキル基のなかでも分岐アルキル基が好ましく、例えば、2-エチルヘキシル、2-メチルヘキシル、2-メチルペンチル、3,5,5-トリメチルヘキシル、2-シクロペンタンエチル、2-シクロヘキサンエチルなどを挙げることができる。炭素数5~18のアルキル基を有することにより、水、求核種による色素の分解、吸着点に水が接近して半導体微粒子から色素が剥離することによる耐久性の低下を抑制する。さらに、色素同士の会合や過剰吸着を抑制することができるため、非効率な電子移動を抑制し光電変換効率を向上させることができる。また、アルキル基が分岐していることで、これらの効果、特に耐久性向上の効果がより顕著に得られる。
Figure JPOXMLDOC01-appb-C000027
 式(1)中、Qは少なくとも四官能以上の芳香族基を示す。芳香族基の例としては、芳香族炭化水素として、ベンゼン、ナフタレン、アントラセン、フェナントレンなどが挙げられ、芳香族へテロ環として、アントラキノン、カルバゾール、ピリジン、キノリン、チオフェン、フラン、キサンテン、チアントレンなどが挙げられ、これらは連結部分以外に置換基を有していてもよい。Qで表される芳香族基として、好ましくは芳香族炭化水素であり、さらに好ましくはベンゼン又はナフタレンである。ここで、QへのXとN(R’)の結合は、図示した式中で、N(R’)の位置にXが、Xの位置にN(R’)が結合するものも含むものである。
(A) Dye (A1) Dye of General Formula (1) In the photoelectric conversion element of the present invention, a dye of a compound represented by the following general formula (1) is used. This dye can be used for a photoelectric conversion element and has an aliphatic group having 5 to 18 carbon atoms. The aliphatic group is preferably an alkyl group, an alkenyl group, or an alkynyl group. More preferably, it is an alkyl group or an alkenyl group. Most preferred is an alkyl group such as pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, octadecyl, cyclohexyl, 2-ethylhexyl and the like. Among the alkyl groups, a branched alkyl group is preferable, and examples thereof include 2-ethylhexyl, 2-methylhexyl, 2-methylpentyl, 3,5,5-trimethylhexyl, 2-cyclopentaneethyl, 2-cyclohexaneethyl and the like. Can do. By having an alkyl group having 5 to 18 carbon atoms, degradation of the dye due to water and nucleophilic species, and deterioration of durability due to separation of the dye from the semiconductor fine particles due to water approaching the adsorption point are suppressed. Furthermore, since association between dyes and excessive adsorption can be suppressed, inefficient electron transfer can be suppressed and photoelectric conversion efficiency can be improved. Further, since the alkyl group is branched, these effects, particularly the effect of improving the durability, can be obtained more remarkably.
Figure JPOXMLDOC01-appb-C000027
In formula (1), Q represents at least a tetrafunctional or higher functional aromatic group. Examples of aromatic groups include aromatic hydrocarbons such as benzene, naphthalene, anthracene, phenanthrene, and aromatic heterocycles such as anthraquinone, carbazole, pyridine, quinoline, thiophene, furan, xanthene, and thianthrene. These may include a substituent other than the linking moiety. The aromatic group represented by Q is preferably an aromatic hydrocarbon, and more preferably benzene or naphthalene. Here, X 2 and N (R ') to Q bonds are in the illustrated formula, N (R' which X 2 in position of) the, N (R ') is attached to the position of X 2 Is also included.
 また、X、Xは、それぞれ独立に、硫黄原子、酸素原子、又はCRを表す。X、Xは好ましくは、硫黄原子またはCRであり、最も好ましくはCRである。ここでR及びRは、それぞれ独立に水素原子、脂肪族基、芳香族基、又は炭素原子で結合するヘテロ環基を表す。炭素原子で結合するヘテロ環基としては、例えば、ピロール、フラン、チオフェン、イミダゾール、オキサゾール、チアゾール、ピラゾール、イソオキサゾール、イソチアゾール、ピリジン、ピリダジン、ピリミジン、ピランが挙げられる。R、Rは、好ましくは、脂肪族基、芳香族基である。脂肪族基としては、好ましくは、アルキル基、アルケニル基又はアルキニル基である。さらに好ましくは、アルキル基又はアルケニル基である。アルキル基としては、直鎖又は分岐のアルキル基を挙げることができる。好ましくは、炭素数5~18のアルキル基(例えば、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、オクタデシル、シクロヘキシル、2-エチルヘキシル等)である。アルキル基のなかでも分岐アルキル基がより好ましく、例えば、2-エチルヘキシル、2-メチルヘキシル、2-メチルペンチル、3,5,5-トリメチルヘキシル、2-シクロペンタンエチル、2-シクロヘキサンエチルなどを挙げることができる。炭素数5~18のアルキル基を有することにより、水、求核種による色素の分解、吸着点に水が接近して半導体微粒子から色素が剥離することによる耐久性の低下を抑制する。さらに、色素同士の会合や過剰吸着を抑制することができるため、非効率な電子移動を抑制し光電変換効率を向上させることができる。また、アルキル基が分岐していることで、これらの効果、特に耐久性向上の効果がより顕著に得られる。芳香族基としては、好ましくは、ベンゼン、ナフタレン、アントラセン等が挙げられる。 X 1 and X 2 each independently represent a sulfur atom, an oxygen atom, or CR 1 R 2 . X 1 and X 2 are preferably a sulfur atom or CR 1 R 2 , and most preferably CR 1 R 2 . Here, R 1 and R 2 each independently represent a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group bonded with a carbon atom. Examples of the heterocyclic group bonded with a carbon atom include pyrrole, furan, thiophene, imidazole, oxazole, thiazole, pyrazole, isoxazole, isothiazole, pyridine, pyridazine, pyrimidine, and pyran. R 1 and R 2 are preferably an aliphatic group or an aromatic group. The aliphatic group is preferably an alkyl group, an alkenyl group, or an alkynyl group. More preferably, it is an alkyl group or an alkenyl group. Examples of the alkyl group include a linear or branched alkyl group. Preferably, it is an alkyl group having 5 to 18 carbon atoms (for example, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, octadecyl, cyclohexyl, 2-ethylhexyl, etc.). Among the alkyl groups, a branched alkyl group is more preferable, and examples thereof include 2-ethylhexyl, 2-methylhexyl, 2-methylpentyl, 3,5,5-trimethylhexyl, 2-cyclopentaneethyl, 2-cyclohexaneethyl and the like. be able to. By having an alkyl group having 5 to 18 carbon atoms, degradation of the dye due to water and nucleophilic species, and deterioration of durability due to separation of the dye from the semiconductor fine particles due to water approaching the adsorption point are suppressed. Furthermore, since association between dyes and excessive adsorption can be suppressed, inefficient electron transfer can be suppressed and photoelectric conversion efficiency can be improved. Further, since the alkyl group is branched, these effects, particularly the effect of improving the durability, can be obtained more remarkably. Preferred examples of the aromatic group include benzene, naphthalene, anthracene and the like.
 R、R’は、それぞれ独立に、脂肪族基、芳香族基、又は炭素原子で結合するヘテロ環基を表し、これらは置換されていてもよい。炭素原子で結合するヘテロ環基としては、例えば、ピロール、フラン、チオフェン、イミダゾール、オキサゾール、チアゾール、ピラゾール、イソオキサゾール、イソチアゾール、ピリジン、ピリダジン、ピリミジン、ピランが挙げられる。R、R’は、好ましくは、脂肪族基又は芳香族基である。芳香族基の炭素原子数は、好ましくは5~16、さらに好ましくは5又は6である。無置換の芳香族基としては、フェニル、ナフチルなどが挙げられる。脂肪族基としては、好ましくは、アルキル基、アルケニル基又はアルキニル基である。さらに好ましくは、アルキル基又はアルケニル基である。より好ましくは炭素数5~18のアルキル基(例えばペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、オクタデシル、シクロヘキシル、2-エチルヘキシル等)である。アルキル基のなかでも分岐アルキル基が好ましく、例えば、2-エチルヘキシル、2-メチルヘキシル、2-メチルペンチル、3,5,5-トリメチルヘキシル、2-シクロペンタンエチル、2-シクロヘキサンエチルなどを挙げることができる。炭素数5~18のアルキル基を有することにより、水、求核種による色素の分解、吸着点に水が接近して半導体微粒子から色素が剥離することによる耐久性の低下を抑制する。さらに、色素同士の会合や過剰吸着を抑制することができるため、非効率な電子移動を抑制し光電変換効率を向上させることができる。また、アルキル基が分岐していることで、これらの効果、特に耐久性向上の効果がより顕著に得られる。 R and R ′ each independently represents an aliphatic group, an aromatic group, or a heterocyclic group bonded with a carbon atom, and these may be substituted. Examples of the heterocyclic group bonded at a carbon atom include pyrrole, furan, thiophene, imidazole, oxazole, thiazole, pyrazole, isoxazole, isothiazole, pyridine, pyridazine, pyrimidine, and pyran. R and R 'are preferably an aliphatic group or an aromatic group. The number of carbon atoms of the aromatic group is preferably 5 to 16, more preferably 5 or 6. Examples of the unsubstituted aromatic group include phenyl and naphthyl. The aliphatic group is preferably an alkyl group, an alkenyl group, or an alkynyl group. More preferably, it is an alkyl group or an alkenyl group. More preferred is an alkyl group having 5 to 18 carbon atoms (for example, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, octadecyl, cyclohexyl, 2-ethylhexyl, etc.). Among the alkyl groups, branched alkyl groups are preferable, and examples thereof include 2-ethylhexyl, 2-methylhexyl, 2-methylpentyl, 3,5,5-trimethylhexyl, 2-cyclopentaneethyl, 2-cyclohexaneethyl and the like. Can do. By having an alkyl group having 5 to 18 carbon atoms, degradation of the dye due to water and nucleophilic species, and deterioration in durability due to separation of the dye from the semiconductor fine particles due to water approaching the adsorption point are suppressed. Furthermore, since association between dyes and excessive adsorption can be suppressed, inefficient electron transfer can be suppressed and photoelectric conversion efficiency can be improved. Further, since the alkyl group is branched, these effects, particularly the effect of improving the durability, can be obtained more remarkably.
 P、Pは色素残基を表す。色素残基とは、一般式(1)のP、P以外の構造とともに、全体として色素化合物を構成するのに必要な原子群を示す。P及びPは、直接又は連結基を介して結合し、一般式(1)の色素を構成する。P及びPによって形成される色素(色素化合物)としては、例えば、シアニン、メロシアニン、ロダシアニン、3核メロシアニン、アロポーラー、ヘミシアニン、スチリル、オキソノール、シアニンなどのポリメチン色素、アクリジン、キサンテン、チオキサンテンなどを含むジアリールメチン、トリアリールメチン、クマリン、インドアニリン、インドフェノール、ジアジン、オキサジン、チアジン、ジケトピロロピロール、インジゴ、アントラキノン、ペリレン、キナクリドン、ナフトキノン、ビピリジル、ターピリジル、テトラピリジル、フェナントロリンなどが挙げられる。
 好ましくはシアニン、メロシアニン、ロダシアニン、3核メロシアニン、アロポーラー、ヘミシアニン、スチリルなどが挙げられる。この際、シアニンには色素を形成するメチン鎖上の置換基がスクアリウム環やクロコニウム環を形成したものも含む。これらの色素の詳細については、エフ・エム・ハーマー(F.M.Harmer)著「ヘテロサイクリック・コンパウンズ-シアニンダイズ・アンド・リレィティド・コンパウンズ(Heterocyclic Compounds-Cyanine Dyes and Related Compounds)」、ジョン・ウィリー・アンド・サンズ(John Wiley & Sons)社、ニューヨーク、ロンドン、1964年刊などに記載されている。シアニン、メロシアニン、ロダシアニンの一般式は、米国特許第5,340,694号第21、22頁の(XI)、(XII)、(XIII)に示されているものが好ましい。また、P及びPによって形成される色素残基の少なくともいずれか一方のメチン鎖部分にスクアリリウム環を有するものが好ましく、両方に有するものがさらに好ましい。
P 1 and P 2 represent dye residues. The dye residue refers to an atomic group necessary for constituting the dye compound as a whole together with structures other than P 1 and P 2 in the general formula (1). P 1 and P 2 are bonded directly or via a linking group to constitute a dye of the general formula (1). Examples of the dye (dye compound) formed by P 1 and P 2 include polymethine dyes such as cyanine, merocyanine, rhodacyanine, trinuclear merocyanine, allopolar, hemicyanine, styryl, oxonol, and cyanine, acridine, xanthene, and thioxanthene. Diarylmethine, triarylmethine, coumarin, indoaniline, indophenol, diazine, oxazine, thiazine, diketopyrrolopyrrole, indigo, anthraquinone, perylene, quinacridone, naphthoquinone, bipyridyl, terpyridyl, tetrapyridyl, phenanthroline, etc. .
Preferably, cyanine, merocyanine, rhodacyanine, trinuclear merocyanine, allopolar, hemicyanine, styryl and the like can be mentioned. In this case, cyanine includes those in which the substituent on the methine chain forming the dye forms a squalium ring or a croconium ring. For more details on these dyes, see FM Hemer, “Heterocyclic Compounds-Cyanine Dies and Related Compounds”, John. It is described in, for example, John Wiley & Sons, New York, London, 1964. The general formulas of cyanine, merocyanine and rhodacyanine are preferably those shown in (XI), (XII) and (XIII) of U.S. Pat. No. 5,340,694, pages 21 and 22. Further, preferably it has a squarylium ring in at least one of the methine chain moiety of the dye residue which is formed by P 1 and P 2, which has both are more preferred.
 前記一般式(1)の構造を有する色素におけるP及びPは、それぞれ独立に、下記一般式(2)又は(3)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 一般式(2)、(3)において、Vは水素原子又は置換基を表す。nは0~4の整数を表し、nが2以上の場合は、Vは同じでも異なっていてもよく、又は互いに結合して環を形成していてもよい。nは好ましくは、0~3であり、より好ましくは0~2である。
P 1 and P 2 in the dye having the structure of the general formula (1) are preferably each independently represented by the following general formula (2) or (3).
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
In the general formulas (2) and (3), V 1 represents a hydrogen atom or a substituent. n represents an integer of 0 to 4, and when n is 2 or more, V 1 may be the same or different, or may be bonded to each other to form a ring. n is preferably 0 to 3, more preferably 0 to 2.
 Yは硫黄原子、NR、又はCR1011を表す。Rは水素原子、脂肪族基、芳香族基、炭素原子で結合するヘテロ環基を表す。炭素原子で結合するヘテロ環基としては、例えば、ピロール、フラン、チオフェン、イミダゾール、オキサゾール、チアゾール、ピラゾール、イソオキサゾール、イソチアゾール、ピリジン、ピリダジン、ピリミジン、ピランが挙げられる。Rの好ましい例としては、脂肪族基として、好ましくは、アルキル基、アルケニル基又はアルキニル基である。さらに好ましくは、アルキル基又はアルケニル基である。より好ましくは炭素数5~18のアルキル基(例えばペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、オクタデシル、シクロヘキシル、2-エチルヘキシル等)である。芳香族基としてはベンゼン、ナフタレン、アントラセン等が挙げられる。
 R10、R11は、水素原子、脂肪族基、芳香族基、炭素原子で結合するヘテロ環基を表し、R10とR11とは、同じでも異なっていてもよく、互いに結合して環を形成していてもよい。炭素原子で結合するヘテロ環基としては、例えば、ピロール、フラン、チオフェン、イミダゾール、オキサゾール、チアゾール、ピラゾール、イソオキサゾール、イソチアゾール、ピリジン、ピリダジン、ピリミジン、ピランが挙げられる。R10、R11の好ましい例は、脂肪族基としては、好ましくは、アルキル基、アルケニル基又はアルキニル基である。さらに好ましくは、アルキル基又はアルケニル基である。より好ましくは炭素数5~18のアルキル基(例えばペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、オクタデシル、シクロヘキシル、2-エチルヘキシル等)である。芳香族基としてはベンゼン、ナフタレン、アントラセン等が挙げられる。
Y represents a sulfur atom, NR 9 , or CR 10 R 11 . R 9 represents a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group bonded with a carbon atom. Examples of the heterocyclic group bonded with a carbon atom include pyrrole, furan, thiophene, imidazole, oxazole, thiazole, pyrazole, isoxazole, isothiazole, pyridine, pyridazine, pyrimidine, and pyran. Preferable examples of R 9 are an aliphatic group, preferably an alkyl group, an alkenyl group, or an alkynyl group. More preferably, it is an alkyl group or an alkenyl group. More preferred is an alkyl group having 5 to 18 carbon atoms (for example, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, octadecyl, cyclohexyl, 2-ethylhexyl, etc.). Aromatic groups include benzene, naphthalene, anthracene and the like.
R 10 and R 11 represent a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group bonded by a carbon atom. R 10 and R 11 may be the same or different, and may be bonded to each other to form a ring. May be formed. Examples of the heterocyclic group bonded with a carbon atom include pyrrole, furan, thiophene, imidazole, oxazole, thiazole, pyrazole, isoxazole, isothiazole, pyridine, pyridazine, pyrimidine, and pyran. Preferable examples of R 10 and R 11 are preferably an alkyl group, an alkenyl group or an alkynyl group as the aliphatic group. More preferably, it is an alkyl group or an alkenyl group. More preferred is an alkyl group having 5 to 18 carbon atoms (for example, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, octadecyl, cyclohexyl, 2-ethylhexyl, etc.). Aromatic groups include benzene, naphthalene, anthracene and the like.
 Zは脂肪族基、芳香族基、又は炭素原子で結合するヘテロ環基を表し、置換基を有していてもよい。置換基の好ましい例として酸性基が挙げられ、より好ましくはカルボキシル基を有する基が挙げられる。R~R、及びRは水素原子、脂肪族基、芳香族基、ヘテロ環基を表し、置換基を有していてもよい。炭素原子で結合するヘテロ環基としては、例えば、ピロール、フラン、チオフェン、イミダゾール、オキサゾール、チアゾール、ピラゾール、イソオキサゾール、イソチアゾール、ピリジン、ピリダジン、ピリミジン、ピランが挙げられる。R~R及びRは、好ましくは水素原子または脂肪族基である。脂肪族基としては、好ましくは、アルキル基、アルケニル基又はアルキニル基である。さらに好ましくは、アルキル基又はアルケニル基である。より好ましくは炭素数5~18のアルキル基(例えばペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、オクタデシル、シクロヘキシル、2-エチルヘキシル等)である。R~R及びRは、より好ましくは水素原子である。Rは酸素原子又は結合する二つの置換基のHammett則におけるσの和が正となる二価の炭素原子を表す。 Z represents an aliphatic group, an aromatic group, or a heterocyclic group bonded with a carbon atom, and may have a substituent. Preferable examples of the substituent include an acidic group, more preferably a group having a carboxyl group. R 3 to R 6 and R 8 represent a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group, and may have a substituent. Examples of the heterocyclic group bonded with a carbon atom include pyrrole, furan, thiophene, imidazole, oxazole, thiazole, pyrazole, isoxazole, isothiazole, pyridine, pyridazine, pyrimidine, and pyran. R 3 to R 6 and R 8 are preferably a hydrogen atom or an aliphatic group. The aliphatic group is preferably an alkyl group, an alkenyl group, or an alkynyl group. More preferably, it is an alkyl group or an alkenyl group. More preferred is an alkyl group having 5 to 18 carbon atoms (for example, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, octadecyl, cyclohexyl, 2-ethylhexyl, etc.). R 3 to R 6 and R 8 are more preferably a hydrogen atom. R 7 represents an oxygen atom or a divalent carbon atom in which the sum of σ p in the Hammett rule of the two substituents to be bonded is positive.
 一般式(1)は、R、R’、P、及びPの少なくともひとつに酸性基を有することが好ましい。ここで酸性基とは、解離性のプロトンを有する置換基であり、例えば、カルボキシル基、ホスホニル基、スルホニル基、ホウ酸基などまたはこれらの基を有する基が挙げられ、好ましくはカルボキシル基を有する基である。また酸性基はプロトンを放出して解離した形を採っていてもよい。 The general formula (1) preferably has an acidic group in at least one of R, R ′, P 1 , and P 2 . Here, the acidic group is a substituent having a dissociative proton, and examples thereof include a carboxyl group, a phosphonyl group, a sulfonyl group, a boric acid group, and the like, or a group having these groups, and preferably has a carboxyl group. It is a group. Further, the acidic group may take a form of releasing a proton and dissociating.
 一般式(1)において、Wは電荷を中和させるのに対イオンが必要な場合の対イオンを表す。一般に、色素が陽イオン、陰イオンであるか、あるいは正味のイオン電荷を持つかどうかは、色素中の助色団及び置換基に依存する。一般式(1)の構造を有する色素が解離性の置換基を有する場合、解離して負電荷を有していてもよい。この場合、分子全体の電荷はWによって中和される。
 Wが陽イオンの場合、例えば、無機若しくは有機のアンモニウムイオン(例えばテトラアルキルアンモニウムイオン、ピリジニウムイオン)又はアルカリ金属イオンである。Wが陰イオンの場合、無機陰イオン又は有機陰イオンのいずれであってもよい。例えば、ハロゲン陰イオン、(例えば、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン)、置換アリールスルホン酸イオン(例えば、p-トルエンスルホン酸イオン、p-クロロベンゼンスルホン酸イオン)、アリールジスルホン酸イオン(例えば、1,3-ベンゼンジスルホン酸イオン、1,5-ナフタレンジスルホン酸イオン、2,6-ナフタレンジスルホン酸イオン)、アルキル硫酸イオン(例えば、メチル硫酸イオン)、硫酸イオン、チオシアン酸イオン、過塩素酸イオン、テトラフルオロホウ酸イオン、ピクリン酸イオン、酢酸イオン、トリフルオロメタンスルホン酸イオンなどが挙げられる。さらに電荷均衡対イオンとしてイオン性ポリマーあるいは、色素と逆電荷を有する他の色素を用いてもよいし、金属錯イオン(例えば、ビスベンゼン-1,2-ジチオラトニッケル(III))でもよい。
In the general formula (1), W 1 represents a counter ion when a counter ion is necessary to neutralize the charge. In general, whether a dye is a cation, an anion, or has a net ionic charge depends on the auxiliary color groups and substituents in the dye. When the dye having the structure of the general formula (1) has a dissociable substituent, it may be dissociated and have a negative charge. In this case, the charge of the whole molecule is neutralized by W 1.
When W 1 is a cation, for example, it is an inorganic or organic ammonium ion (for example, tetraalkylammonium ion, pyridinium ion) or an alkali metal ion. When W 1 is an anion, either an inorganic anion or an organic anion may be used. For example, a halogen anion (eg, fluoride ion, chloride ion, bromide ion, iodide ion), substituted aryl sulfonate ion (eg, p-toluene sulfonate ion, p-chlorobenzene sulfonate ion), aryl disulfone Acid ions (for example, 1,3-benzenedisulfonate ion, 1,5-naphthalenedisulfonate ion, 2,6-naphthalenedisulfonate ion), alkyl sulfate ion (for example, methyl sulfate ion), sulfate ion, thiocyanate ion Perchlorate ion, tetrafluoroborate ion, picrate ion, acetate ion, trifluoromethanesulfonate ion and the like. Furthermore, an ionic polymer or another dye having a charge opposite to that of the dye may be used as the charge balance counter ion, or a metal complex ion (for example, bisbenzene-1,2-dithiolatonickel (III)) may be used.
 前記一般式(1)におけるP及びPが、それぞれ独立に下記一般式(4)又は(5)で表されることが好ましい。これにより、高いモル吸光係数を有する色素となる。
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
 V、n、Z及びYは、前記一般式(2)及び(3)におけるものと同義である。
 一般式(4)及び(5)において、Vは水素原子又は置換基を表す。nは0~4の整数を表し、nが2以上の場合は、Vは同じでも異なっていてもよく、互いに結合して環を形成していてもよい。
 YはS、NR、またはCR1011を表す。Rは水素原子、脂肪族基、芳香族基、又は炭素原子で結合するヘテロ環基を表す。R10、R11は、水素原子、脂肪族基、芳香族基、又は炭素原子で結合するヘテロ環基を表し、同一でも異なっていてもよく、互いに結合して環を形成していてもよい。
 Zは脂肪族基、芳香族基、又は炭素原子で結合するヘテロ環基を表し、置換基を有していてもよい。
It is preferable that P 1 and P 2 in the general formula (1) are each independently represented by the following general formula (4) or (5). This results in a dye having a high molar extinction coefficient.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
V 1 , n, Z and Y have the same meanings as in the general formulas (2) and (3).
In the general formulas (4) and (5), V 1 represents a hydrogen atom or a substituent. n represents an integer of 0 to 4, and when n is 2 or more, V 1 may be the same or different, and may be bonded to each other to form a ring.
Y represents S, NR 9 , or CR 10 R 11 . R 9 represents a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group bonded with a carbon atom. R 10 and R 11 represent a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group bonded with a carbon atom, and may be the same or different, and may be bonded to each other to form a ring. .
Z represents an aliphatic group, an aromatic group, or a heterocyclic group bonded with a carbon atom, and may have a substituent.
 前記一般式(4)又は(5)において、Yは硫黄原子、NCH、又はC(CHを表すことが好ましい。またZは炭素数5~18の脂肪族基を表すことが好ましい。脂肪族基としては、好ましくは、アルキル基、アルケニル基又はアルキニル基である。さらに好ましくは、アルキル基又はアルケニル基である。より好ましくは炭素数5~18のアルキル基(例えばペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、オクタデシル、シクロヘキシル、2-エチルヘキシル等)である。Zを炭素数5~18の脂肪族基とすることにより、単位面積あたりの吸着量を向上させることができる。脂肪族基は置換されていてもよい。 In the general formula (4) or (5), Y preferably represents a sulfur atom, NCH 3 , or C (CH 3 ) 2 . Z preferably represents an aliphatic group having 5 to 18 carbon atoms. The aliphatic group is preferably an alkyl group, an alkenyl group, or an alkynyl group. More preferably, it is an alkyl group or an alkenyl group. More preferred is an alkyl group having 5 to 18 carbon atoms (for example, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, octadecyl, cyclohexyl, 2-ethylhexyl, etc.). By making Z an aliphatic group having 5 to 18 carbon atoms, the amount of adsorption per unit area can be improved. Aliphatic groups may be substituted.
 前記一般式(2)~(5)において、Vは酸性基を有することが好ましい。酸性基とは、解離性のプロトンを有する置換基である。Vは酸性基を有していればよく、連結基を介して酸性基が結合していてもよい。酸性基としては特に制限はなく、カルボキシル基、ホスホン酸基、スルホ基、スルホン酸基、ヒドロキシル基、ヒドロキサム酸基、ホスホリル基、ホスホニル基、スルフィノ基、スルフィニル基、ホスフィニル基、ホスホノ基、チオール基及びスルホニル基、並びにこれらの塩等が挙げられる。前記の塩としては特に制限はなく、有機塩、無機塩のいずれでもよい。代表的な例としてはアルカリ金属イオン(リチウム、ナトリウム、カリウム等)、アルカリ土類金属イオン(マグネシウム、カルシウム等)、アンモニウム、アルキルアンモニウム(例えばジエチルアンモニウム、テトラブチルアンモニウム等)、ピリジニウム、アルキルピリジニウム(例えばメチルピリジニウム)、グアニジニウム、テトラアルキルホスホニウム等の塩が挙げられる。一般式(1)において、酸性基が複数ある場合、それぞれ同一であっても異なっていてもよい。
 本発明において、前記酸性基としては、カルボキシル基、ホスホリル基、又はホスホニル酸基が好ましく、カルボキシル基がより好ましい。
 Vは水素原子、5-カルボキシル基、5-スルホニル基、5-メチル基又は4,5-ベンゼン環縮合を有することが好ましい。ここで位置番号は、Nを1とし、反時計回りに付けるものである。
 これにより、モル吸光係数向上または電子注入効率向上の効果が得られる。
In the general formulas (2) to (5), V 1 preferably has an acidic group. An acidic group is a substituent having a dissociable proton. V 1 only needs to have an acidic group, and the acidic group may be bonded via a linking group. The acidic group is not particularly limited, and carboxyl group, phosphonic acid group, sulfo group, sulfonic acid group, hydroxyl group, hydroxamic acid group, phosphoryl group, phosphonyl group, sulfino group, sulfinyl group, phosphinyl group, phosphono group, thiol group And sulfonyl groups, and salts thereof. There is no restriction | limiting in particular as said salt, Any of organic salt and inorganic salt may be sufficient. Typical examples include alkali metal ions (lithium, sodium, potassium, etc.), alkaline earth metal ions (magnesium, calcium, etc.), ammonium, alkylammonium (eg, diethylammonium, tetrabutylammonium, etc.), pyridinium, alkylpyridinium ( Examples thereof include salts of methylpyridinium), guanidinium, tetraalkylphosphonium and the like. In the general formula (1), when there are a plurality of acidic groups, they may be the same or different.
In the present invention, the acidic group is preferably a carboxyl group, a phosphoryl group, or a phosphonylic acid group, and more preferably a carboxyl group.
V 1 preferably has a hydrogen atom, a 5-carboxyl group, a 5-sulfonyl group, a 5-methyl group, or a 4,5-benzene ring condensation. Here, the position number is given in the counterclockwise direction with N + being 1.
Thereby, the effect of improving the molar extinction coefficient or improving the electron injection efficiency is obtained.
 さらに、一般式(2)~(5)において、Vのほかに、Zも酸性基を有する基であることが好ましい。Zは、Vと同様の酸性基とすることができる。酸性基は本発明の色素において半導体微粒子に吸着するという作用を有する。色素中の酸性基の数は1個以上が好ましく、1~2個がより好ましい。また、VとZの両方を酸性基とすることにより、吸着力向上による耐久性向上を奏することができる。 Further, in the general formulas (2) to (5), in addition to V 1 , Z is preferably a group having an acidic group. Z can be an acidic group similar to V 1 . The acidic group has an action of adsorbing to the semiconductor fine particles in the dye of the present invention. The number of acidic groups in the dye is preferably 1 or more, more preferably 1 to 2. Further, both V 1 and Z by an acidic group can exhibit improved durability by improving adsorption force.
 前記一般式(2)が下記一般式(6)で表され、前記一般式(3)が下記一般式(7)で表されることができる。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
The general formula (2) may be represented by the following general formula (6), and the general formula (3) may be represented by the following general formula (7).
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
 前記一般式(6)及び(7)において、V12は酸性基を表し、E11~E13のうち少なくとも1つは電子吸引基を表す。pは2以上の整数である。酸性基としては、前記Vで挙げたものと同様のものを挙げることができる。
 電子吸引基としては、例えば、好ましくはシアノ基、ニトロ基、スルフォニル基、スルフォキシ基、アシル基、アルコキシカルボニル基、カルバモイル基であり、さらに好ましくはシアノ基、ニトロ基、スルフォニル基、特に好ましくはシアノ基である。
 一般式(6)において、pは2以上の整数である。pは2~5が好ましく、さらに好ましくは、2~3である。前記一般式(6)及び(7)において、V12が酸性基を表し、E11~E13のうち少なくとも1つが電子吸引基を表すことにより、励起された電子が半導体粒子層との吸着点の近くに強く引き寄せられることで半導体粒子層への電子の受け渡しが効率的に行われ、光電変換効率向上の効果を奏することができる。E11~E13のうち、E11、E12が電子吸引基であることがさらに好ましい。
In the general formulas (6) and (7), V 12 represents an acidic group, and at least one of E 11 to E 13 represents an electron withdrawing group. p is an integer of 2 or more. The acidic group include the same as those described in the above V 1.
Examples of the electron withdrawing group are preferably a cyano group, a nitro group, a sulfonyl group, a sulfoxy group, an acyl group, an alkoxycarbonyl group, and a carbamoyl group, more preferably a cyano group, a nitro group, a sulfonyl group, and particularly preferably a cyano group. It is a group.
In General formula (6), p is an integer greater than or equal to 2. p is preferably from 2 to 5, and more preferably from 2 to 3. In the general formulas (6) and (7), when V 12 represents an acidic group and at least one of E 11 to E 13 represents an electron withdrawing group, the excited electrons are adsorbed to the semiconductor particle layer. By being strongly attracted to the vicinity, the electrons are efficiently transferred to the semiconductor particle layer, and the effect of improving the photoelectric conversion efficiency can be achieved. Of E 11 to E 13 , E 11 and E 12 are more preferably electron withdrawing groups.
 前記一般式(2)が下記一般式(8)で表され、前記一般式(3)が下記一般式(9)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000034
The general formula (2) is preferably represented by the following general formula (8), and the general formula (3) is preferably represented by the following general formula (9).
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 一般式(8)及び(9)において、Y、Z、R~Rは、一般式(2)又は(3)のY、Z、R~Rと同義である。Lは前記式A~Dで表され、mは0又は1以上の整数を表す。mが2以上のとき、それぞれ異なっていてもよい。式Aにおいて、Xaは、NRe、O、Sを表す。Reは、水素原子又は置換基を表す。式A及び式Cにおいて、Ra~Rdは置換基を表す。Ra~Reにおける置換基としては、具体例としては下記置換基で表されるものが挙げられる。 In the general formula (8) and (9), Y, Z, R 3 ~ R 8 is Y in the general formula (2) or (3), Z, and R 3 ~ R 8 synonymous. L is represented by the formulas A to D, and m represents 0 or an integer of 1 or more. When m is 2 or more, they may be different from each other. In the formula A, Xa represents NRe, O, and S. Re represents a hydrogen atom or a substituent. In the formulas A and C, Ra to Rd represent substituents. Specific examples of the substituent in Ra to Re include those represented by the following substituents.
 置換基としては、例えば、脂肪族基、芳香族基、又は炭素原子で結合するヘテロ環基を表し、これらは置換されていてもよい。炭素原子で結合するヘテロ環基としては、例えば、ピロール、フラン、チオフェン、イミダゾール、オキサゾール、チアゾール、ピラゾール、イソオキサゾール、イソチアゾール、ピリジン、ピリダジン、ピリミジン、ピランが挙げられる。R、R’は、好ましくは、脂肪族基又は芳香族基である。芳香族基の炭素原子数は、好ましくは5~16、さらに好ましくは5又は6である。無置換の芳香族基としては、フェニル、ナフチルなどが挙げられる。脂肪族基としては、好ましくは、アルキル基、アルケニル基又はアルキニル基である。さらに好ましくは、アルキル基又はアルケニル基である。より好ましくは炭素数5~18のアルキル基(例えばペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、オクタデシル、シクロヘキシル、2-エチルヘキシル等)である。アルキル基のなかでも分岐アルキル基が好ましく、例えば、2-エチルヘキシル、2-メチルヘキシル、2-メチルペンチル、3,5,5-トリメチルヘキシル、2-シクロペンタンエチル、2-シクロヘキサンエチルなどを挙げることができる。炭素数5~18のアルキル基を有することにより、水、求核種による色素の分解、吸着点に水が接近して半導体微粒子から色素が剥離することによる耐久性の低下を抑制する。さらに、色素同士の会合や過剰吸着を抑制することができるため、非効率な電子移動を抑制し光電変換効率を向上させることができる。また、アルキル基が分岐していることで、これらの効果、特に耐久性向上の効果がより顕著に得られる。 The substituent represents, for example, an aliphatic group, an aromatic group, or a heterocyclic group bonded with a carbon atom, and these may be substituted. Examples of the heterocyclic group bonded at a carbon atom include pyrrole, furan, thiophene, imidazole, oxazole, thiazole, pyrazole, isoxazole, isothiazole, pyridine, pyridazine, pyrimidine, and pyran. R and R 'are preferably an aliphatic group or an aromatic group. The number of carbon atoms of the aromatic group is preferably 5 to 16, more preferably 5 or 6. Examples of the unsubstituted aromatic group include phenyl and naphthyl. The aliphatic group is preferably an alkyl group, an alkenyl group, or an alkynyl group. More preferably, it is an alkyl group or an alkenyl group. More preferred is an alkyl group having 5 to 18 carbon atoms (for example, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, octadecyl, cyclohexyl, 2-ethylhexyl, etc.). Among the alkyl groups, branched alkyl groups are preferable, and examples thereof include 2-ethylhexyl, 2-methylhexyl, 2-methylpentyl, 3,5,5-trimethylhexyl, 2-cyclopentaneethyl, 2-cyclohexaneethyl and the like. Can do. By having an alkyl group having 5 to 18 carbon atoms, degradation of the dye due to water and nucleophilic species, and deterioration in durability due to separation of the dye from the semiconductor fine particles due to water approaching the adsorption point are suppressed. Furthermore, since association between dyes and excessive adsorption can be suppressed, inefficient electron transfer can be suppressed and photoelectric conversion efficiency can be improved. Further, since the alkyl group is branched, these effects, particularly the effect of improving the durability, can be obtained more remarkably.
 一般式(8)において、pは2以上の整数を表す。Rxは酸性基を表す。酸性基としては、前記Vで挙げたものと同様のものを挙げることができる。Rxは式Eで表される基であることが好ましい。
 前記一般式(2)が前記一般式(8)で表され、前記一般式(3)が前記一般式(9)で表されることにより、吸収域の拡大や吸光係数向上の効果が得られ、光電変換効率向上の効果を奏することができる。
In the general formula (8), p represents an integer of 2 or more. Rx represents an acidic group. The acidic group include the same as those described in the above V 1. Rx is preferably a group represented by Formula E.
When the general formula (2) is represented by the general formula (8) and the general formula (3) is represented by the general formula (9), the effect of expanding the absorption region and improving the extinction coefficient can be obtained. The effect of improving photoelectric conversion efficiency can be obtained.
 前記一般式(3)、(5)及び(9)において、Rは下記一般式(10)~(13)のいずれかで表されることが好ましい。
Figure JPOXMLDOC01-appb-C000037
 ここで、Rfは、水素原子又は置換基である。置換基としては、脂肪族基、芳香族基、炭素原子で結合するヘテロ環基を挙げることができこれらは置換されていてもよい。好ましい置換基は、脂肪族基、芳香族基である。これにより、短波長側の吸収が強化される。
In the general formulas (3), (5) and (9), R 7 is preferably represented by any one of the following general formulas (10) to (13).
Figure JPOXMLDOC01-appb-C000037
Here, Rf is a hydrogen atom or a substituent. Examples of the substituent include an aliphatic group, an aromatic group, and a heterocyclic group bonded with a carbon atom, and these may be substituted. Preferred substituents are aliphatic groups and aromatic groups. This enhances the absorption on the short wavelength side.
 前記一般式(3)、(5)及び(9)において、Rは下記一般式(14)又は(15)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000038
 これにより、電子注入効率向上の効果が得られる。
In the general formulas (3), (5), and (9), R 7 is preferably represented by the following general formula (14) or (15).
Figure JPOXMLDOC01-appb-C000038
As a result, the effect of improving the electron injection efficiency can be obtained.
 一般式(1)で表される本発明の色素は、テトラヒドロフラン:エタノール=1:1溶液における極大吸収波長が、好ましくは670~1100nmの範囲であり、より好ましくは700~900nmの範囲である。
 以下に本発明の一般式(1)で表される化合物の好ましい具体例を示すが、本発明がこれに限定されるものではない。
The dye of the present invention represented by the general formula (1) has a maximum absorption wavelength in a tetrahydrofuran: ethanol = 1: 1 solution, preferably in the range of 670 to 1100 nm, more preferably in the range of 700 to 900 nm.
Although the preferable specific example of a compound represented by General formula (1) of this invention below is shown, this invention is not limited to this.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 さらに、以下に本発明の一般式(6)~(9)の構造を有する色素の好ましい具体例を示すが、本発明がこれに限定されるものではない。
Figure JPOXMLDOC01-appb-C000043
Furthermore, preferred specific examples of the dye having the structures of the general formulas (6) to (9) of the present invention are shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 上記具体例1~4において、基本骨格Aは下記のA-1~A-12のいずれかを示し、基本骨格Bは下記のB-1~B-11のいずれかを示し、基本骨格Cは下記のC-1~C-4のいずれかを示す。また、Zは下記のZ-1~Z-5を示し、連結基Lは、下記のL-1~L-12のいずれかを示す。
 具体例1~4において、基本骨格Aと基本骨格Bは、*同士の炭素原子で炭素-炭素二重結合で結合し、基本骨格Bと基本骨格Cは、**同士の炭素原子で炭素-炭素二重結合で結合している。
In the specific examples 1 to 4, the basic skeleton A represents any of the following A-1 to A-12, the basic skeleton B represents any of the following B-1 to B-11, and the basic skeleton C is One of the following C-1 to C-4 is shown. Z represents the following Z-1 to Z-5, and the linking group L represents any of the following L-1 to L-12.
In specific examples 1 to 4, the basic skeleton A and the basic skeleton B are bonded to each other with a carbon-carbon double bond between * carbon atoms, and the basic skeleton B and the basic skeleton C are bonded to each other with a carbon atom between ** They are connected by a carbon double bond.
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 例えば、上記具体例のうち、T-2、T-6、T-9、T-10、T-12、T-16、T-17、T-18、T-24、T-30、T-37、T-40~T-50の構造式を示すと以下のとおりとなる。 For example, among the above specific examples, T-2, T-6, T-9, T-10, T-12, T-16, T-17, T-18, T-24, T-30, T- 37, the structural formulas of T-40 to T-50 are as follows.
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
 また、以下の色素も挙げることができる。
Figure JPOXMLDOC01-appb-C000058
Moreover, the following pigment | dyes can also be mentioned.
Figure JPOXMLDOC01-appb-C000058
 上記の構造を有する色素の合成は、Ukrainskii Khimicheskii Zhurnal 第40巻3号253~258頁、Dyes and Pigments 第21巻227~234頁及びこれらの文献中に引用された文献の記載等を参考にして行うことができる。 For the synthesis of the dye having the above structure, refer to Ukrainski Kimicheskii Zhurnal, Vol. 40, No. 3, pages 253 to 258, Dies and Pigments, Vol. 21, pages 227 to 234, and descriptions of documents cited in these documents. It can be carried out.
(B)導電性支持体
 図1に示すように、本発明の光電変換素子には、導電性支持体1上には多孔質の半導体微粒子22に色素21が吸着された感光体層2が形成されている。後述する通り、例えば、半導体微粒子の分散液を導電性支持体に塗布・乾燥後、本発明の色素溶液に浸漬することにより、感光体を製造することができる。
 導電性支持体としては、金属のように支持体そのものに導電性があるものか、または表面に導電膜層を有するガラスや高分子材料を使用することができる。導電性支持体は実質的に透明であることが好ましい。実質的に透明であるとは光の透過率が10%以上であることを意味し、50%以上であることが好ましく、80%以上が特に好ましい。導電性支持体としては、ガラスや高分子材料に導電性の金属酸化物を塗設したものを使用することができる。このときの導電性の金属酸化物の塗布量は、ガラスや高分子材料の支持体1m当たり、0.1~100gが好ましい。透明導電性支持体を用いる場合、光は支持体側から入射させることが好ましい。好ましく使用される高分子材料の一例として、テトラアセチルセルロース(TAC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、シンジオタクチックポリスチレン(SPS)、ポリフェニレンスルフィド(PPS)、ポリカーボネート(PC)、ポリアリレート(PAR)、ポリスルフォン(PSF)、ポリエステルスルフォン(PES)、ポリエーテルイミド(PEI)、環状ポリオレフィン、ブロム化フェノキシ等を挙げることができる。
(B) Conductive Support As shown in FIG. 1, in the photoelectric conversion element of the present invention, a photosensitive layer 2 in which a dye 21 is adsorbed on porous semiconductor fine particles 22 is formed on a conductive support 1. Has been. As will be described later, for example, a dispersion of semiconductor fine particles is applied to a conductive support and dried, and then immersed in the dye solution of the present invention to produce a photoreceptor.
As the conductive support, a glass or a polymer material having a conductive film on the surface can be used as the support itself, such as metal. It is preferable that the conductive support is substantially transparent. Substantially transparent means that the light transmittance is 10% or more, preferably 50% or more, and particularly preferably 80% or more. As the conductive support, a glass or polymer material coated with a conductive metal oxide can be used. The coating amount of the conductive metal oxide at this time is preferably 0.1 to 100 g per 1 m 2 of the support of glass or polymer material. When using a transparent conductive support, it is preferable that light is incident from the support side. Examples of polymer materials that are preferably used include tetraacetyl cellulose (TAC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), syndiotactic polystyrene (SPS), polyphenylene sulfide (PPS), polycarbonate (PC), Examples include polyarylate (PAR), polysulfone (PSF), polyester sulfone (PES), polyetherimide (PEI), cyclic polyolefin, and brominated phenoxy.
 本発明においては、好ましい導電性支持体として、金属支持体を用いることができる。導電性金属支持体としては、導電性支持体として4族~13族に属するいずれかの元素で構成された導電性金属支持体が使用される。ここで4族~13族とは、長周期型周期表におけるものをいう。
 本発明における導電性金属支持体の厚さは10μm以上2000μm以下であることが好ましく、さらに好ましくは10μm以上1000μm以下であり、特に好ましくは50μm以上500μm以下である。この厚さが厚すぎると可撓性に欠けるため、光電変換素子として使用する場合に支障が生じることがある。また薄すぎると光電変換素子を使用中に破損することがあり好ましくない。
 本発明に用いられる導電性金属支持体の表面抵抗は低い程よい。好ましい表面抵抗の範囲としては10Ω/m以下であり、さらに好ましくは1Ω/m以下であり、特に好ましくは0.1Ω/m以下である。この値が高すぎると、通電しにくくなり光電変換素子としての機能を発揮することができない。
In the present invention, a metal support can be used as a preferable conductive support. As the conductive metal support, a conductive metal support composed of any element belonging to Group 4 to Group 13 is used as the conductive support. Here, Group 4 to Group 13 are those in the long-period periodic table.
The thickness of the conductive metal support in the present invention is preferably 10 μm or more and 2000 μm or less, more preferably 10 μm or more and 1000 μm or less, and particularly preferably 50 μm or more and 500 μm or less. When this thickness is too thick, flexibility is lacking, which may cause trouble when used as a photoelectric conversion element. Moreover, when too thin, it may be damaged during use of the photoelectric conversion element, which is not preferable.
The lower the surface resistance of the conductive metal support used in the present invention, the better. The range of the surface resistance is preferably 10 Ω / m 2 or less, more preferably 1 Ω / m 2 or less, and particularly preferably 0.1 Ω / m 2 or less. When this value is too high, it becomes difficult to energize and the function as a photoelectric conversion element cannot be exhibited.
 導電性金属支持体としては、チタン、アルミニウム、銅、ニッケル、鉄、ステンレス、亜鉛、モリブデン、タンタル、ニオブ、及びジルコニウムからなる群から選ばれる少なくとも1種を好ましく使用できる。これらの金属は合金であってもよい。これらのうち、チタン、アルミニウム、銅、ニッケル、鉄、ステンレス、および亜鉛がより好ましく、チタン、アルミニウム、および銅がさらに好ましく、チタンおよびアルミニウムがもっとも好ましい。アルミニウムの場合は、アルミニウム合金展伸材、1000系~7000系(軽金属協会:アルミニウムハンドブック、軽金属協会、(1978)、26)などを好ましく使用することができる。 As the conductive metal support, at least one selected from the group consisting of titanium, aluminum, copper, nickel, iron, stainless steel, zinc, molybdenum, tantalum, niobium, and zirconium can be preferably used. These metals may be alloys. Of these, titanium, aluminum, copper, nickel, iron, stainless steel, and zinc are more preferred, titanium, aluminum, and copper are more preferred, and titanium and aluminum are most preferred. In the case of aluminum, aluminum alloy wrought material, 1000 series to 7000 series (Light Metal Association: Aluminum Handbook, Light Metal Association, (1978), 26) and the like can be preferably used.
 導電性金属支持体は、表面抵抗が小さく光電気化学電池の内部抵抗を下げられるため高出力の電池を得ることができる。また導電性金属支持体を用いた場合には、後述の半導体微粒子分散液が塗布された導電性金属支持体を加熱乾燥させる温度を高くして焼成しても、支持体が軟化することがない。したがって加熱条件を適宜選択することにより、比表面積の大きな多孔質半導体微粒子層を形成することができる。これにより色素吸着量を増加させ、高出力で変換効率の高い光電変換素子を提供することができる。
 また巻回された金属シートを連続的に送り出しながら半導体微粒子分散液を該金属シートに塗工し、その後加熱することで、多孔質の導電性支持体を得ることができる。その後本発明の色素を連続塗布することで、導電性支持体上に感光層を形成することができる。この工程を経ることにより、廉価で光電変換素子や光電気化学電池を製造することが可能になる。
Since the conductive metal support has a small surface resistance and can reduce the internal resistance of the photoelectrochemical cell, a high output battery can be obtained. When a conductive metal support is used, the support does not soften even if the conductive metal support coated with the semiconductor fine particle dispersion described below is heated and dried at a high temperature. . Therefore, a porous semiconductor fine particle layer having a large specific surface area can be formed by appropriately selecting heating conditions. Thereby, the amount of dye adsorption can be increased, and a photoelectric conversion element with high output and high conversion efficiency can be provided.
Moreover, a porous electroconductive support body can be obtained by coating the semiconductor fine particle dispersion on the metal sheet while continuously feeding the wound metal sheet, and then heating. Thereafter, the photosensitive layer can be formed on the conductive support by continuously applying the dye of the present invention. By passing through this process, it becomes possible to manufacture a photoelectric conversion element and a photoelectrochemical cell at low cost.
 本発明の導電性金属支持体としては、高分子材料層の上に導電層を設けたものを好ましく使用することができる。高分子材料層としては、特に制限されないが、導電層上に半導体微粒子分散液を塗布後加熱した場合に溶融して形状を保持することがない材料を選択する。導電層は高分子材料層に従来の方法、例えば押出被覆等により積層して製造することができる。
 使用することが可能な高分子材料層としては、テトラアセチルセルロース(TAC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、シンジオタクチックポリスチレン(SPS)、ポリフェニレンスルフィド(PPS)、ポリカーボネート(PC)、ポリアリレート(PAr)、ポリスルフォン(PSF)、ポリエステルスルフォン(PES)、ポリエーテルイミド(PEI)、環状ポリオレフィン、ブロム化フェノキシ等を例示することができる。
 本発明の導電性金属支持体として、高分子材料層の上に導電層を設けたものを使用することにより、該高分子材料層は光電変換素子や光電気化学電池の保護層として機能することが可能となる。高分子材料として電気絶縁性の材料を使用すれば、該高分子材料層は保護層としてだけでなく、絶縁層として機能することができる。これにより、光電変換素子自体の絶縁性を確保することができる。該高分子材料層を絶縁層として使用する場合は、この体積固有抵抗は1010~1020Ω・cmのものを使用することが好ましい。さらに好ましくは、体積固有抵抗は1011~1019Ω・cmである。前記の材料を使用して、特に導電性の材料を配合しなければ、この範囲内の体積固有抵抗を有する絶縁層のものを得ることができる。導電性金属支持体は実質的に透明であることが好ましい。実質的に透明であるとは、波長400~1200nmの光の透過率が10%以上であることを意味し、50%以上であることが好ましく、80%以上が特に好ましい。
As the conductive metal support of the present invention, a conductive metal layer provided on a polymer material layer can be preferably used. The polymer material layer is not particularly limited, but a material that does not melt and retain its shape when heated after coating the semiconductor fine particle dispersion on the conductive layer is selected. The conductive layer can be produced by laminating the polymer material layer by a conventional method such as extrusion coating.
Examples of the polymer material layer that can be used include tetraacetyl cellulose (TAC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), syndiotactic polystyrene (SPS), polyphenylene sulfide (PPS), and polycarbonate (PC ), Polyarylate (PAr), polysulfone (PSF), polyester sulfone (PES), polyetherimide (PEI), cyclic polyolefin, brominated phenoxy and the like.
As the conductive metal support of the present invention, a polymer material layer provided with a conductive layer is used so that the polymer material layer functions as a protective layer for a photoelectric conversion element or a photoelectrochemical cell. Is possible. If an electrically insulating material is used as the polymer material, the polymer material layer can function not only as a protective layer but also as an insulating layer. Thereby, the insulation of photoelectric conversion element itself can be ensured. When the polymer material layer is used as an insulating layer, it is preferable to use a material having a volume resistivity of 10 10 to 10 20 Ω · cm. More preferably, the volume resistivity is 10 11 to 10 19 Ω · cm. If an electrically conductive material is not blended using the above materials, an insulating layer having a volume resistivity within this range can be obtained. The conductive metal support is preferably substantially transparent. Substantially transparent means that the transmittance of light having a wavelength of 400 to 1200 nm is 10% or more, preferably 50% or more, particularly preferably 80% or more.
 導電性金属支持体上には、表面に光マネージメント機能を施してもよい。例えば、高屈折膜及び低屈性率の酸化物膜を交互に積層した反射防止膜や、ライトガイド機能を設けてもよい。
 導電性支持体上には、紫外光を遮断する機能を持たせることが好ましい。例えば、紫外光を可視光に変えることが出来る蛍光材料を前記高分子材料層の内部または表面に存在させる方法が挙げられる。また、別の好ましい方法して、紫外線吸収剤を用いる方法も挙げられる。導電性支持体上には、特開平11-250944号公報などに記載の機能を付与してもよい。
 導電膜の抵抗値はセル面積が大きくなると大きくなる為、集電電極を配置してもよい。好ましい集電電極の形状及び材質としては、特開平11-266028号公報などに記載のものを使用することができる。高分子材料層と導電層の間にガスバリア膜及び/又はイオン拡散防止膜を配置しても良い。ガスバリア層としては、樹脂膜や無機膜のどちらでもよい。
A light management function may be provided on the surface of the conductive metal support. For example, an antireflection film in which high refractive films and low refractive index oxide films are alternately stacked, or a light guide function may be provided.
It is preferable to provide a function of blocking ultraviolet light on the conductive support. For example, there is a method in which a fluorescent material capable of changing ultraviolet light into visible light is present inside or on the surface of the polymer material layer. Another preferred method is a method using an ultraviolet absorber. The function described in JP-A-11-250944 may be provided on the conductive support.
Since the resistance value of the conductive film increases as the cell area increases, a collecting electrode may be disposed. As a preferable shape and material of the current collecting electrode, those described in JP-A No. 11-266028 can be used. A gas barrier film and / or an ion diffusion preventing film may be disposed between the polymer material layer and the conductive layer. As the gas barrier layer, either a resin film or an inorganic film may be used.
(C)半導体微粒子
 図1に示すように、本発明の光電変換素子には、導電性支持体1上には半導体微粒子22に色素21が吸着された感光体層2が形成されている。後述する通り、例えば、半導体微粒子の分散液を前記の導電性支持体に塗布・乾燥後、本発明の色素溶液に浸漬することにより、感光体を製造することができる。
 半導体微粒子としては、好ましくは金属のカルコゲニド(例えば酸化物、硫化物、セレン化物等)またはペロブスカイトの微粒子が用いられる。金属のカルコゲニドとしては、好ましくはチタン、スズ、亜鉛、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブ、もしくはタンタルの酸化物、硫化カドミウム、セレン化カドミウム等が挙げられる。ペロブスカイトとしては、好ましくはチタン酸ストロンチウム、チタン酸カルシウム等が挙げられる。これらのうち酸化チタン、酸化亜鉛、酸化スズ、酸化タングステンが特に好ましい。
(C) Semiconductor Fine Particle As shown in FIG. 1, in the photoelectric conversion element of the present invention, a photosensitive layer 2 in which a dye 21 is adsorbed on a semiconductor fine particle 22 is formed on a conductive support 1. As will be described later, for example, a dispersion of semiconductor fine particles is applied to the conductive support and dried, and then immersed in the dye solution of the present invention to produce a photoreceptor.
As the semiconductor fine particles, metal chalcogenides (for example, oxides, sulfides, selenides, etc.) or perovskite fine particles are preferably used. Preferred examples of the metal chalcogenide include titanium, tin, zinc, tungsten, zirconium, hafnium, strontium, indium, cerium, yttrium, lanthanum, vanadium, niobium, tantalum oxide, cadmium sulfide, cadmium selenide, and the like. . Preferred perovskites include strontium titanate and calcium titanate. Of these, titanium oxide, zinc oxide, tin oxide, and tungsten oxide are particularly preferable.
 半導体には伝導に関わるキャリアーが電子であるn型とキャリアーが正孔であるp型が存在するが、本発明の素子ではn型を用いることが変換効率の点で好ましい。n型半導体には、不純物準位をもたず伝導帯電子と価電子帯正孔によるキャリアーの濃度が等しい固有半導体(あるいは真性半導体)の他に、不純物に由来する構造欠陥により電子キャリアー濃度の高いn型半導体が存在する。本発明で好ましく用いられるn型の無機半導体は、TiO、TiSrO、ZnO、Nb、SnO、WO、Si、CdS、CdSe、V、ZnS、ZnSe、SnSe、KTaO、FeS、PbS、InP、GaAs、CuInS、CuInSeなどである。これらのうち最も好ましいn型半導体はTiO、ZnO、SnO、WO、ならびにNbである。また、これらの半導体の複数を複合させた半導体材料も好ましく用いられる。 In semiconductors, there are an n-type in which carriers involved in conduction are electrons and a p-type in which carriers are holes. In the element of the present invention, n-type is preferable in terms of conversion efficiency. In an n-type semiconductor, in addition to an intrinsic semiconductor (or an intrinsic semiconductor) having no impurity level and having the same carrier concentration due to conduction band electrons and valence band holes, the electron carrier concentration is reduced by structural defects derived from impurities. There are high n-type semiconductors. The n-type inorganic semiconductor preferably used in the present invention is TiO 2 , TiSrO 3 , ZnO, Nb 2 O 3 , SnO 2 , WO 3 , Si, CdS, CdSe, V 2 O 5 , ZnS, ZnSe, SnSe, KTaO. 3 , FeS 2 , PbS, InP, GaAs, CuInS 2 , CuInSe 2 and the like. Of these, the most preferred n-type semiconductors are TiO 2 , ZnO, SnO 2 , WO 3 , and Nb 2 O 3 . A semiconductor material in which a plurality of these semiconductors are combined is also preferably used.
 半導体微粒子の粒径は、半導体微粒子分散液の粘度を高く保つ目的で、一次粒子の平均粒径が2nm以上50nm以下であることが好ましく、また一次粒子の平均粒径が2nm以上30nm以下の超微粒子であることがより好ましい。粒径分布の異なる2種類以上の微粒子を混合してもよく、この場合小さい粒子の平均サイズは5nm以下であるのが好ましい。また、入射光を散乱させて光捕獲率を向上させる目的で、上記の超微粒子に対して平均粒径が50nmを越える大きな粒子を、低含率で添加することもできる。この場合、大粒子の含率は、平均粒径が50nm以下の粒子の質量の50%以下であることが好ましく、20%以下であることがより好ましい。上記の目的で添加混合する大粒子の平均粒径は、100nm以上が好ましく、250nm以上がより好ましい。 For the purpose of keeping the viscosity of the semiconductor fine particle dispersion high, it is preferable that the average particle size of the primary particles is 2 nm to 50 nm, and the average primary particle size is 2 nm to 30 nm. More preferably, it is a fine particle. Two or more kinds of fine particles having different particle size distributions may be mixed. In this case, the average size of the small particles is preferably 5 nm or less. In addition, for the purpose of improving the light capture rate by scattering incident light, large particles having an average particle size exceeding 50 nm can be added to the above ultrafine particles at a low content. In this case, the content of the large particles is preferably 50% or less, more preferably 20% or less of the mass of particles having an average particle size of 50 nm or less. The average particle size of the large particles added and mixed for the above purpose is preferably 100 nm or more, and more preferably 250 nm or more.
 半導体微粒子の作製法としては、作花済夫の「ゾル・ゲル法の科学」アグネ承風社(1998年)等に記載のゲル・ゾル法が好ましい。またDegussa社が開発した塩化物を酸水素塩中で高温加水分解により酸化物を作製する方法も好ましい。半導体微粒子が酸化チタンの場合、上記ゾル・ゲル法、ゲル・ゾル法、塩化物の酸水素塩中での高温加水分解法はいずれも好ましいが、さらに清野学の「酸化チタン 物性と応用技術」技報堂出版(1997年)に記載の硫酸法および塩素法を用いることもできる。さらにゾル・ゲル法として、バルべ等のジャーナル・オブ・アメリカン・セラミック・ソサエティー,第80巻,第12号,3157~3171頁(1997年)に記載の方法や、バーンサイドらのケミストリー・オブ・マテリアルズ,第10巻,第9号,2419~2425頁に記載の方法も好ましい。 As a method for producing semiconductor fine particles, the gel-sol method described in Sakuo Sakuo's “Science of Sol-Gel Method”, Agne Jofu Co., Ltd. (1998) is preferable. Also preferred is a method of producing an oxide by high-temperature hydrolysis of chloride developed by Degussa in an oxyhydrogen salt. When the semiconductor fine particles are titanium oxide, the above sol-gel method, gel-sol method, and high-temperature hydrolysis method in oxyhydrogen salt of chloride are all preferred, but Kiyoshi Manabu's “Titanium oxide properties and applied technology” The sulfuric acid method and the chlorine method described in Gihodo Publishing (1997) can also be used. Further, as the sol-gel method, the method described in Barbe et al., Journal of American Ceramic Society, Vol. 80, No. 12, pages 3157-3171 (1997), Burnside et al. The method described in Materials, Vol. 10, No. 9, pages 2419-2425 is also preferable.
 この他に、半導体微粒子の製造方法として、例えば、チタニアナノ粒子の製造方法として好ましくは、四塩化チタンの火炎加水分解による方法、四塩化チタンの燃焼法、安定なカルコゲナイド錯体の加水分解、オルトチタン酸の加水分解、可溶部と不溶部から半導体微粒子を形成後可溶部を溶解除去する方法、過酸化物水溶液の水熱合成、またはゾル・ゲル法によるコア/シェル構造の酸化チタン微粒子の製造方法が挙げられる。 In addition to this, as a method for producing semiconductor fine particles, for example, as a method for producing titania nanoparticles, preferably, a method by flame hydrolysis of titanium tetrachloride, a combustion method of titanium tetrachloride, hydrolysis of a stable chalcogenide complex, orthotitanic acid Of semiconductor, forming semiconductor fine particles from soluble and insoluble parts, then dissolving and removing soluble parts, hydrothermal synthesis of peroxide aqueous solution, or production of core / shell structured titanium oxide fine particles by sol-gel method A method is mentioned.
 チタニアの結晶構造としては、アナターゼ型、ブルッカイト型、または、ルチル型があげられ、アナターゼ型、ブルッカイト型が好ましい。
 チタニアナノチューブ・ナノワイヤー・ナノロッドをチタニア微粒子に混合してもよい。
Examples of the crystal structure of titania include anatase type, brookite type, and rutile type, and anatase type and brookite type are preferable.
Titania nanotubes, nanowires, and nanorods may be mixed with titania fine particles.
 チタニアは、非金属元素などによりドーピングされていても良い。チタニアへの添加剤としてドーパント以外に、ネッキングを改善する為のバインダーや逆電子移動防止の為に表面へ添加剤を用いても良い。好ましい添加剤の例としては、ITO、SnO粒子、ウイスカー、繊維状グラファイト・カーボンナノチューブ、酸化亜鉛ネッキング結合子、セルロース等の繊維状物質、金属、有機シリコン、ドデシルベンゼンスルホン酸、シラン化合物等の電荷移動結合分子、及び電位傾斜型デンドリマーなどが挙げられる。 ¡Titania may be doped with a nonmetallic element or the like. In addition to the dopant as an additive to titania, an additive may be used on the surface to improve the necking or to prevent reverse electron transfer. Examples of preferred additives include ITO, SnO particles, whiskers, fibrous graphite / carbon nanotubes, zinc oxide necking binders, fibrous materials such as cellulose, metals, organic silicon, dodecylbenzenesulfonic acid, silane compounds, etc. Examples thereof include a mobile binding molecule and a potential gradient dendrimer.
 チタニア上の表面欠陥を除去するなどの目的で、色素吸着前にチタニアを酸塩基又は酸化還元処理しても良い。エッチング、酸化処理、過酸化水素処理、脱水素処理、UV-オゾン、酸素プラズマなどで処理してもよい。 For the purpose of removing surface defects on titania, titania may be acid-base or redox treated before dye adsorption. Etching, oxidation treatment, hydrogen peroxide treatment, dehydrogenation treatment, UV-ozone, oxygen plasma, or the like may be used.
(D)半導体微粒子分散液
 本発明においては、半導体微粒子分散液を前記の導電性支持体に塗布し、適度に加熱することにより、多孔質半導体微粒子塗布層を得ることができる。
 半導体微粒子分散液を作製する方法としては、前述のゾル・ゲル法の他に、半導体を合成する際に溶媒中で微粒子として析出させそのまま使用する方法、微粒子に超音波などを照射して超微粒子に粉砕する方法、あるいはミルや乳鉢などを使って機械的に粉砕しすり潰す方法、等が挙げられる。分散溶媒としては、水および/または各種の有機溶媒を用いることができる。有機溶媒としては、メタノール,エタノール,イソプロピルアルコール,シトロネロール,ターピネオールなどのアルコール類、アセトンなどのケトン類、酢酸エチルなどのエステル類、ジクロロメタン、アセトニトリル等が挙げられる。
 分散の際、必要に応じて例えばポリエチレングリコール、ヒドロキシエチルセルロース、カルボキシメチルセルロースのようなポリマー、界面活性剤、酸、またはキレート剤等を分散助剤として少量用いてもよい。しかし、これらの分散助剤は、導電性支持体上へ製膜する工程の前に、ろ過法や分離膜を用いる方法、あるいは遠心分離法などによって大部分を除去しておくことが好ましい。
 半導体微粒子分散液の粘度が高すぎると分散液が凝集してしまい製膜することができず、逆に半導体微粒子分散液の粘度が低すぎると液が流れてしまい製膜することができないことがある。したがって分散液の粘度は、25℃で10~300N・s/mが好ましい。さらに好ましくは、25℃で50~200N・s/mである。
(D) Semiconductor Fine Particle Dispersion In the present invention, a porous semiconductor fine particle coating layer can be obtained by applying a semiconductor fine particle dispersion to the conductive support and heating appropriately.
In addition to the sol-gel method described above, a method of preparing a semiconductor fine particle dispersion is a method of depositing fine particles in a solvent and using them as they are when synthesizing a semiconductor. Or a method of mechanically pulverizing and grinding using a mill or a mortar. As the dispersion solvent, water and / or various organic solvents can be used. Examples of the organic solvent include alcohols such as methanol, ethanol, isopropyl alcohol, citronellol and terpineol, ketones such as acetone, esters such as ethyl acetate, dichloromethane, acetonitrile and the like.
At the time of dispersion, a small amount of, for example, a polymer such as polyethylene glycol, hydroxyethyl cellulose, carboxymethyl cellulose, a surfactant, an acid, or a chelating agent may be used as a dispersion aid. However, most of these dispersion aids are preferably removed by a filtration method, a method using a separation membrane, a centrifugal method or the like before the step of forming a film on a conductive support.
If the viscosity of the semiconductor fine particle dispersion is too high, the dispersion will aggregate and cannot be formed into a film. Conversely, if the viscosity of the semiconductor fine particle dispersion is too low, the liquid will flow and cannot be formed into a film. is there. Therefore, the viscosity of the dispersion is preferably 10 to 300 N · s / m 2 at 25 ° C. More preferably, it is 50 to 200 N · s / m 2 at 25 ° C.
 半導体微粒子分散液の塗布方法としては、アプリケーション系の方法としてローラ法、ディップ法等を使用することができる。またメータリング系の方法としてエアーナイフ法、ブレード法等を使用することができる。またアプリケーション系の方法とメータリング系の方法を同一部分にできるものとして、特公昭58-4589号公報に開示されているワイヤーバー法、米国特許2681294号明細書等に記載のスライドホッパー法、エクストルージョン法、カーテン法等が好ましい。また汎用機を使用してスピン法やスプレー法で塗布するのも好ましい。湿式印刷方法としては、凸版、オフセットおよびグラビアの3大印刷法をはじめ、凹版、ゴム版、スクリーン印刷等が好ましい。これらの中から、液粘度やウェット厚さに応じて、好ましい製膜方法を選択する。また本発明の半導体微粒子分散液は粘度が高く、粘稠性を有するため、凝集力が強いことがあり、塗布時に支持体とうまく馴染まない場合がある。このような場合に、UVオゾン処理で表面のクリーニングと親水化を行うことにより、塗布した半導体微粒子分散液と導電性支持体表面の結着力が増し、半導体微粒子分散液の塗布が行い易くなる。
 半導体微粒子層全体の好ましい厚さは0.1~100μmである。半導体微粒子層の厚さはさらに1~30μmが好ましく、2~25μmがより好ましい。半導体微粒子の支持体1m当りの担持量は0.5g~400gが好ましく、5~100gがより好ましい。
As a method for applying the semiconductor fine particle dispersion, a roller method, a dip method, or the like can be used as an application method. Moreover, an air knife method, a blade method, etc. can be used as a metering method. In addition, the application method and the metering method can be made the same part. The wire bar method disclosed in Japanese Patent Publication No. 58-4589, the slide hopper method described in US Pat. A rouge method, a curtain method and the like are preferable. It is also preferable to apply by a spin method or a spray method using a general-purpose machine. As the wet printing method, intaglio, rubber plate, screen printing and the like are preferred, including the three major printing methods of letterpress, offset and gravure. From these, a preferred film forming method is selected according to the liquid viscosity and the wet thickness. Further, since the semiconductor fine particle dispersion of the present invention has a high viscosity and has a viscous property, it may have a strong cohesive force and may not be well adapted to the support during coating. In such a case, by performing cleaning and hydrophilization of the surface by UV ozone treatment, the binding force between the applied semiconductor fine particle dispersion and the surface of the conductive support increases, and the semiconductor fine particle dispersion can be easily applied.
The preferred thickness of the entire semiconductor fine particle layer is 0.1 to 100 μm. The thickness of the semiconductor fine particle layer is further preferably 1 to 30 μm, and more preferably 2 to 25 μm. The amount of the semiconductor fine particles supported per 1 m 2 of the support is preferably 0.5 g to 400 g, more preferably 5 to 100 g.
 塗布した半導体微粒子の層に対し、半導体微粒子同士の電子的接触の強化と、支持体との密着性の向上のため、また塗布した半導体微粒子分散液を乾燥させるために、加熱処理が施される。この加熱処理により多孔質半導体微粒子層を形成することができる。
 また、加熱処理に加えて光のエネルギーを用いることもできる。例えば、半導体微粒子として酸化チタンを用いた場合に、紫外光のような半導体微粒子が吸収する光を与えることで表面を活性化してもよいし、レーザー光などで半導体微粒子表面のみを活性化することができる。半導体微粒子に対して該微粒子が吸収する光を照射することで、粒子表面に吸着した不純物が粒子表面の活性化によって分解され、上記の目的のために好ましい状態とすることができる。加熱処理と紫外光を組み合わせる場合は、半導体微粒子に対して該微粒子が吸収する光を照射しながら、100℃以上250℃以下あるいは好ましくは100℃以上150℃以下で加熱することが好ましい。このように、半導体微粒子を光励起することによって、微粒子層内に混入した不純物を光分解により洗浄するとともに、微粒子の間の物理的接合を強めることができる。
The applied semiconductor fine particle layer is subjected to heat treatment to enhance the electronic contact between the semiconductor fine particles and to improve the adhesion to the support, and to dry the applied semiconductor fine particle dispersion. . By this heat treatment, a porous semiconductor fine particle layer can be formed.
In addition to heat treatment, light energy can also be used. For example, when titanium oxide is used as the semiconductor fine particles, the surface may be activated by applying light absorbed by the semiconductor fine particles such as ultraviolet light, or only the surface of the semiconductor fine particles may be activated by laser light or the like. Can do. By irradiating the semiconductor fine particles with light absorbed by the fine particles, the impurities adsorbed on the particle surface are decomposed by the activation of the particle surface, and can be brought into a preferable state for the above purpose. When heat treatment and ultraviolet light are combined, it is preferable to heat the semiconductor fine particles at 100 ° C. to 250 ° C. or preferably 100 ° C. to 150 ° C. while irradiating the semiconductor fine particles with light absorbed by the fine particles. Thus, by photoexciting the semiconductor fine particles, impurities mixed in the fine particle layer can be washed by photolysis, and physical bonding between the fine particles can be strengthened.
 また、半導体微粒子分散液を前記の導電性支持体に塗布し、加熱や光を照射する以外に他の処理を行ってもよい。好ましい方法として例えば、通電、化学的処理などが挙げられる。
 塗布後に圧力をかけても良く、圧力をかける方法としては、特表2003-500857号公報等が挙げられる。光照射の例としては、特開2001-357896号公報等が挙げられる。プラズマ・マイクロ波・通電の例としては、特開2002-353453号公報等が挙げられる。化学的処理としては、例えば特開2001-357896号公報が挙げられる。
In addition, the semiconductor fine particle dispersion may be applied to the conductive support, and other treatments may be performed in addition to heating and light irradiation. Examples of preferred methods include energization and chemical treatment.
A pressure may be applied after the application, and a method for applying the pressure includes Japanese Patent Publication No. 2003-500857. Examples of light irradiation include JP-A No. 2001-357896. Examples of plasma, microwave, and energization include JP-A No. 2002-353453. Examples of the chemical treatment include Japanese Patent Application Laid-Open No. 2001-357896.
 上述の半導体微粒子を導電性支持体上に塗設する方法は、上述の半導体微粒子分散液を導電性支持体上に塗布する方法のほか、特許第2664194号公報に記載の半導体微粒子の前駆体を導電性支持体上に塗布し空気中の水分によって加水分解して半導体微粒子膜を得る方法などの方法を使用することができる。
 前駆体として例えば、(NHTiF、過酸化チタン、金属アルコキシド・金属錯体・金属有機酸塩等が挙げられる。
 また、金属有機酸化物(アルコキシドなど)を共存させたスラリーを塗布し加熱処理、光処理などで半導体膜を形成する方法、無機系前駆体を共存させたスラリー、スラリーのpHと分散させたチタニア粒子の性状を特定した方法が挙げられる。これらスラリーには、少量であればバインダーを添加しても良く、バインダーとしては、セルロース、フッ素ポリマー、架橋ゴム、ポリブチルチタネート、カルボキシメチルセルロースなどが挙げられる。
 半導体微粒子又はその前駆体層の形成に関する技術としては、コロナ放電、プラズマ、UVなどの物理的な方法で親水化する方法、アルカリやポリエチレンジオキシチオフェンとポリスチレンスルホン酸などによる化学処理、ポリアニリンなどの接合用中間膜の形成などが挙げられる。
The method for coating the above-mentioned semiconductor fine particles on the conductive support is not only the method for coating the above-mentioned semiconductor fine particle dispersion on the conductive support, but also the semiconductor fine particle precursor described in Japanese Patent No. 2664194. A method such as a method of obtaining a semiconductor fine particle film by coating on a conductive support and hydrolyzing with moisture in the air can be used.
Examples of the precursor include (NH 4 ) 2 TiF 6 , titanium peroxide, metal alkoxide / metal complex / metal organic acid salt, and the like.
In addition, a method of forming a semiconductor film by applying a slurry in which a metal organic oxide (alkoxide, etc.) coexists, and heat treatment, light treatment, etc., a slurry in which an inorganic precursor coexists, titania dispersed in the pH of the slurry The method which specified the property of particle | grains is mentioned. A binder may be added to these slurries in a small amount, and examples of the binder include cellulose, fluoropolymer, crosslinked rubber, polybutyl titanate, carboxymethyl cellulose and the like.
Techniques related to the formation of semiconductor fine particles or precursor layers thereof include corona discharge, plasma, a method of hydrophilizing by a physical method such as UV, a chemical treatment with alkali, polyethylenedioxythiophene and polystyrenesulfonic acid, polyaniline, etc. For example, formation of an interlayer film for bonding may be mentioned.
 半導体微粒子を導電性支持体上に塗設する方法として、上述の(1)湿式法とともに、(2)乾式法、(3)その他の方法を併用しても良い。(2)乾式法として好ましくは、特開2000-231943号公報等が挙げられる。(3)その他の方法として、好ましくは、特開2002-134435号公報等が挙げられる。 As a method of coating the semiconductor fine particles on the conductive support, (2) dry method and (3) other methods may be used in combination with the above (1) wet method. (2) As the dry method, JP-A No. 2000-231943 is preferable. (3) As other methods, JP-A No. 2002-134435 is preferable.
 乾式法としては、蒸着やスパッタリング、エアロゾルデポジション法などが挙げられる。また、電気泳動法・電析法を用いても良い。
 また、耐熱基板上でいったん塗膜を作製した後、プラスチック等のフィルムに転写する方法を用いても良い。好ましくは、特開2002-184475号公報記載のEVAを介して転写する方法、特開2003-98977号公報記載の紫外線、水系溶媒で除去可能な無機塩を含む犠牲基盤上に半導体層・導電層を形成後、有機基板に転写後、犠牲基板を除去する方法などが挙げられる。
Examples of the dry method include vapor deposition, sputtering, and aerosol deposition method. Further, electrophoresis or electrodeposition may be used.
Moreover, after producing a coating film once on a heat-resistant board | substrate, you may use the method of transcribe | transferring to films, such as a plastics. Preferably, a method of transferring via EVA described in JP-A No. 2002-184475, a semiconductor layer / conductive layer on a sacrificial substrate containing an inorganic salt that can be removed with ultraviolet rays and an aqueous solvent described in JP-A No. 2003-98977 And a method of removing the sacrificial substrate after transfer to an organic substrate.
 半導体微粒子は多くの色素を吸着することができるように表面積の大きいものが好ましい。例えば半導体微粒子を支持体上に塗設した状態で、その表面積が投影面積に対して10倍以上であることが好ましく、100倍以上であることがより好ましい。この上限には特に制限はないが、通常5000倍程度である。好ましい半導体微粒子の構造としては、特開2001-93591号公報等が挙げられる。 The semiconductor fine particles preferably have a large surface area so that many dyes can be adsorbed. For example, in a state where the semiconductor fine particles are coated on the support, the surface area is preferably 10 times or more, more preferably 100 times or more the projected area. Although there is no restriction | limiting in particular in this upper limit, Usually, it is about 5000 times. JP-A-2001-93591 and the like are preferable as the structure of semiconductor fine particles.
 一般に、半導体微粒子の層の厚みが大きいほど単位面積当たりに担持できる色素の量が増えるため光の吸収効率が高くなるが、発生した電子の拡散距離が増すため電荷再結合によるロスも大きくなる。半導体微粒子層の好ましい厚みは素子の用途によって異なるが、典型的には0.1~100μmである。光電気化学電池として用いる場合は1~50μmであることが好ましく、3~30μmであることがより好ましい。半導体微粒子は、支持体に塗布した後に粒子同士を密着させるために、100~800℃の温度で10分~10時間加熱してもよい。支持体としてガラスを用いる場合、製膜温度は400~600℃が好ましい。
 支持体として高分子材料を用いる場合、250℃以下で製膜後加熱することが好ましい。その場合の製膜方法としては、(1)湿式法、(2)乾式法、(3)電気泳動法(電析法を含む)の何れでも良く、好ましくは、(1)湿式法、又は(2)乾式であり、更に好ましくは、(1)湿式法である。
 なお、半導体微粒子の支持体1m当たりの塗布量は0.5~500g、さらには5~100gが好ましい。
In general, as the thickness of the semiconductor fine particle layer increases, the amount of dye that can be supported per unit area increases, so that the light absorption efficiency increases. However, the diffusion distance of the generated electrons increases, and the loss due to charge recombination also increases. The preferred thickness of the semiconductor fine particle layer varies depending on the use of the device, but is typically 0.1 to 100 μm. When used as a photoelectrochemical cell, the thickness is preferably 1 to 50 μm, more preferably 3 to 30 μm. The semiconductor fine particles may be heated at a temperature of 100 to 800 ° C. for 10 minutes to 10 hours in order to adhere the particles to each other after being applied to the support. When glass is used as the support, the film forming temperature is preferably 400 to 600 ° C.
When a polymer material is used as the support, it is preferably heated after film formation at 250 ° C. or lower. In this case, the film forming method may be any one of (1) a wet method, (2) a dry method, and (3) an electrophoresis method (including an electrodeposition method), preferably (1) a wet method, or ( 2) A dry method, more preferably (1) a wet method.
The coating amount of semiconductor fine particles per 1 m 2 of support is preferably 0.5 to 500 g, more preferably 5 to 100 g.
 半導体微粒子に色素を吸着させるには、溶液と本発明の色素よりなる色素吸着用色素溶液の中に、製膜後の半導体電極を浸漬するのが好ましい。色素吸着用色素溶液に使用される溶液は、本発明の光電変換素子用色素が溶解できる溶液なら特に制限なく使用することができる。例えば、エタノール、メタノール、イソプロパノール、トルエン、t-ブタノール、アセトニトリル、アセトン、n-ブタノールなどの有機溶媒を使用することができる。その中でも、エタノール、トルエンを好ましく使用することができる。有機溶媒は単独でも、複数のものを混合したものも使用することができる。上記色素の濃度は、半導体微粒子へ均一に吸着するように、0.01ミリモル/L~1.0ミリモル/Lとすることが好ましい。さらに好ましくは、0.1ミリモル/L~1.0ミリモル/Lである。
 溶液と本発明の色素よりなる色素吸着用色素溶液は必要に応じて50℃ないし100℃に加熱してもよい。色素の吸着は半導体微粒子の塗布前に行っても塗布後に行ってもよい。また、半導体微粒子と色素を同時に塗布して吸着させてもよい。未吸着の色素は洗浄によって除去する。塗布膜の焼成を行う場合は色素の吸着は焼成後に行うことが好ましい。焼成後、塗布膜表面に水が吸着する前にすばやく色素を吸着させるのが特に好ましい。本発明の趣旨を損なわない範囲内で、他の構造を有する色素を混合してもよい。色素を混合する場合は、すべての色素が溶解するようにして、色素吸着用色素溶液とすることが必要である。
In order to adsorb the dye to the semiconductor fine particles, it is preferable to immerse the semiconductor electrode after film formation in the dye adsorbing dye solution comprising the solution and the dye of the present invention. The solution used for the dye solution for dye adsorption can be used without particular limitation as long as it can dissolve the dye for the photoelectric conversion element of the present invention. For example, an organic solvent such as ethanol, methanol, isopropanol, toluene, t-butanol, acetonitrile, acetone, n-butanol can be used. Among these, ethanol and toluene can be preferably used. The organic solvent can be used alone or a mixture of a plurality of organic solvents. The concentration of the dye is preferably 0.01 mmol / L to 1.0 mmol / L so as to be uniformly adsorbed to the semiconductor fine particles. More preferably, it is 0.1 mmol / L to 1.0 mmol / L.
The dye solution for dye adsorption comprising the solution and the dye of the present invention may be heated to 50 ° C. to 100 ° C. as necessary. The adsorption of the dye may be performed before or after application of the semiconductor fine particles. Further, the semiconductor fine particles and the dye may be applied and adsorbed simultaneously. Unadsorbed dye is removed by washing. When baking a coating film, it is preferable to adsorb | suck a pigment | dye after baking. It is particularly preferable that the dye is quickly adsorbed after the baking and before water adsorbs on the coating film surface. You may mix the pigment | dye which has another structure in the range which does not impair the meaning of this invention. When mixing the dyes, it is necessary to prepare a dye solution for dye adsorption by dissolving all the dyes.
 色素の使用量は、全体で、支持体1m当たり0.01~100ミリモルが好ましく、より好ましくは0.1~50ミリモル、特に好ましくは0.1~10ミリモルである。この場合、本発明の色素の使用量は5モル%以上とすることが好ましい。
 また、色素の半導体微粒子に対する吸着量は半導体微粒子1gに対して0.001~1ミリモルが好ましく、より好ましくは0.1~0.5ミリモルである。
 このような色素量とすることによって、半導体における増感効果が十分に得られる。これに対し、色素量が少ないと増感効果が不十分となり、色素量が多すぎると、半導体に付着していない色素が浮遊し増感効果を低減させる原因となる。
The total amount of the dye used is preferably 0.01 to 100 mmol, more preferably 0.1 to 50 mmol, and particularly preferably 0.1 to 10 mmol per 1 m 2 of the support. In this case, it is preferable that the usage-amount of the pigment | dye of this invention shall be 5 mol% or more.
Further, the adsorption amount of the dye to the semiconductor fine particles is preferably 0.001 to 1 mmol, more preferably 0.1 to 0.5 mmol, with respect to 1 g of the semiconductor fine particles.
By using such a dye amount, a sensitizing effect in a semiconductor can be sufficiently obtained. On the other hand, when the amount of the dye is small, the sensitizing effect is insufficient, and when the amount of the dye is too large, the dye not attached to the semiconductor floats and causes the sensitizing effect to be reduced.
 また、会合など色素同士の相互作用を低減する目的で無色の化合物を共吸着させてもよい。共吸着させる疎水性化合物としてはカルボキシル基を有するステロイド化合物(例えばコール酸、ピバロイル酸)等が挙げられる。
 色素を吸着した後に、アミン類を用いて半導体微粒子の表面を処理してもよい。好ましいアミン類としては4-tert-ブチルピリジン、ポリビニルピリジン等が挙げられる。これらは液体の場合はそのまま用いてもよいし有機溶媒に溶解して用いてもよい。
Further, a colorless compound may be co-adsorbed for the purpose of reducing the interaction between dyes such as association. Examples of the hydrophobic compound to be co-adsorbed include steroid compounds having a carboxyl group (for example, cholic acid and pivaloyl acid).
After adsorbing the dye, the surface of the semiconductor fine particles may be treated with amines. Preferred amines include 4-tert-butylpyridine, polyvinylpyridine and the like. These may be used as they are in the case of a liquid, or may be used by dissolving in an organic solvent.
 対向電極は、光電気化学電池の正極として働くものである。対向電極は、通常前述の導電性支持体と同義であるが、強度が十分に保たれるような構成では支持体は必ずしも必要でない。ただし、支持体を有する方が密閉性の点で有利である。対向電極の材料としては、白金、カーボン、導電性ポリマー、などがあげられる。好ましい例としては、白金、カーボン、導電性ポリマーが挙げられる。 The counter electrode serves as the positive electrode of the photoelectrochemical cell. The counter electrode is usually synonymous with the conductive support described above, but the support is not necessarily required in a configuration in which the strength is sufficiently maintained. However, having a support is advantageous in terms of hermeticity. Examples of the material for the counter electrode include platinum, carbon, and conductive polymer. Preferable examples include platinum, carbon, and conductive polymer.
 対極の構造としては、集電効果が高い構造が好ましい。好ましい例としては、特開平10-505192号公報などが挙げられる。
 受光電極は酸化チタンと酸化スズ(TiO/SnO)などの複合電極を用いても良く、チタニアの混合電極として例えば、特開2000-113913号公報等に記載のものが挙げられる。チタニア以外の混合電極として例えば、特開2001-185243号公報、特開2003-282164号公報等に記載のものが挙げられる。
As the structure of the counter electrode, a structure having a high current collecting effect is preferable. Preferred examples include JP-A-10-505192.
As the light receiving electrode, a composite electrode such as titanium oxide and tin oxide (TiO 2 / SnO 2 ) may be used, and examples of the mixed electrode of titania include those described in Japanese Patent Application Laid-Open No. 2000-111393. Examples of mixed electrodes other than titania include those described in JP-A Nos. 2001-185243 and 2003-282164.
 受光電極は、入射光の利用率を高めるなどのためにタンデム型にしても良い。好ましいタンデム型の構成例としては、特開2002-90989号公報等に記載の例が挙げられる。
 受光電極層内部で光散乱、反射を効率的に行う光マネージメント機能を設けてもよい。好ましくは、特開2002-93476号公報に記載のものが挙げられる。
The light receiving electrode may be a tandem type in order to increase the utilization rate of incident light. Examples of preferred tandem type configurations include those described in JP-A-2002-90989.
A light management function for efficiently performing light scattering and reflection inside the light receiving electrode layer may be provided. Preferable examples include those described in JP-A-2002-93476.
 導電性支持体と多孔質半導体微粒子層の間には、電解液と電極が直接接触することによる逆電流を防止する為、短絡防止層を形成することが好ましい。好ましい例としては、特開平06-507999号公報等に記載のものが挙げられる。
 受光電極と対極の接触を防ぐ為に、スペーサーやセパレータを用いることが好ましい。好ましい例としては、特開2001-283941号公報に記載のものが挙げられる。
It is preferable to form a short-circuit prevention layer between the conductive support and the porous semiconductor fine particle layer in order to prevent reverse current due to direct contact between the electrolyte and the electrode. Preferable examples include those described in JP-A-06-507999.
In order to prevent contact between the light receiving electrode and the counter electrode, it is preferable to use a spacer or a separator. Preferable examples include those described in JP-A No. 2001-283941.
(E)電解質
 代表的な酸化還元対としては、例えばヨウ素とヨウ化物(例えばヨウ化リチウム、ヨウ化テトラブチルアンモニウム、ヨウ化テトラプロピルアンモニウム等)との組み合わせ、アルキルビオローゲン(例えばメチルビオローゲンクロリド、ヘキシルビオローゲンブロミド、ベンジルビオローゲンテトラフルオロボレート)とその還元体との組み合わせ、ポリヒドロキシベンゼン類(例えばハイドロキノン、ナフトハイドロキノン等)とその酸化体との組み合わせ、2価と3価の鉄錯体(例えば赤血塩と黄血塩)の組み合わせ等が挙げられる。これらのうちヨウ素とヨウ化物との組み合わせが好ましい。これらを溶かす有機溶媒としては、非プロトン性の極性溶媒(例えばアセトニトリル、炭酸プロピレン、炭酸エチレン、ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、1,3-ジメチルイミダゾリノン、3-メチルオキサゾリジノン等)が好ましい。ゲル電解質のマトリクスに使用されるポリマーとしては、例えばポリアクリロニトリル、ポリビニリデンフルオリド等が挙げられる。溶融塩としては、例えばヨウ化リチウムと他の少なくとも1種類のリチウム塩(例えば酢酸リチウム、過塩素酸リチウム等)にポリエチレンオキシドを混合することにより、室温での流動性を付与したもの等が挙げられる。この場合のポリマーの添加量は1~50質量%である。また、γ-ブチロラクトンを電解液に含んでいてもよく、これによりヨウ化物イオンの拡散効率が高くなり変換効率が向上する。
(E) Electrolyte As a typical redox couple, for example, a combination of iodine and iodide (for example, lithium iodide, tetrabutylammonium iodide, tetrapropylammonium iodide, etc.), alkyl viologen (for example, methyl viologen chloride, hexyl) A combination of viologen bromide, benzyl viologen tetrafluoroborate) and its reduced form, a combination of polyhydroxybenzenes (eg, hydroquinone, naphthohydroquinone, etc.) and its oxidant, a divalent and trivalent iron complex (eg, red blood salt) And yellow blood salt). Of these, a combination of iodine and iodide is preferred. As the organic solvent for dissolving them, an aprotic polar solvent (for example, acetonitrile, propylene carbonate, ethylene carbonate, dimethylformamide, dimethyl sulfoxide, sulfolane, 1,3-dimethylimidazolinone, 3-methyloxazolidinone, etc.) is preferable. Examples of the polymer used for the matrix of the gel electrolyte include polyacrylonitrile and polyvinylidene fluoride. Examples of the molten salt include those imparted with fluidity at room temperature by mixing polyethylene oxide with lithium iodide and at least one other lithium salt (such as lithium acetate and lithium perchlorate). It is done. In this case, the amount of polymer added is 1 to 50% by mass. In addition, γ-butyrolactone may be included in the electrolytic solution, thereby increasing the diffusion efficiency of iodide ions and improving the conversion efficiency.
 電解質への添加物として、前述の4-tert-ブチルピリジンのほか、アミノピリジン系化合物、ベンズイミダゾール系化合物、アミノトリアゾール系化合物及びアミノチアゾール系化合物、イミダゾール系化合物、アミノトリアジン系化合物、尿素誘導体、アミド化合物、ピリミジン系化合物及び窒素を含まない複素環を加えることができる。 As an additive to the electrolyte, in addition to the aforementioned 4-tert-butylpyridine, aminopyridine compounds, benzimidazole compounds, aminotriazole compounds and aminothiazole compounds, imidazole compounds, aminotriazine compounds, urea derivatives, Amide compounds, pyrimidine-based compounds and nitrogen-free heterocycles can be added.
 また、効率を向上する為に、電解液の水分を制御する方法をとってもよい。水分を制御する好ましい方法としては、濃度を制御する方法や脱水剤を共存させる方法を挙げることができる。ヨウ素の毒性軽減のために、ヨウ素とシクロデキストリンの包摂化合物の使用をしてもよく、逆に水分を常時補給する方法を用いてもよい。また環状アミジンを用いてもよく、酸化防止剤、加水分解防止剤、分解防止剤、ヨウ化亜鉛を加えてもよい。 Also, in order to improve efficiency, a method of controlling the water content of the electrolytic solution may be taken. Preferred methods for controlling moisture include a method for controlling the concentration and a method in which a dehydrating agent is allowed to coexist. In order to reduce the toxicity of iodine, an inclusion compound of iodine and cyclodextrin may be used, and conversely, a method of constantly supplying water may be used. Cyclic amidine may be used, and an antioxidant, hydrolysis inhibitor, decomposition inhibitor, and zinc iodide may be added.
 電解質として溶融塩を用いてもよく、好ましい溶融塩としては、イミダゾリウム又はトリアゾリウム型陽イオンを含むイオン性液体、オキサゾリウム系、ピリジニウム系、グアニジウム系およびこれらの組み合わせが挙げられる。これらカチオン系に対して特定のアニオンと組み合わせてもよい。これらの溶融塩に対しては添加物を加えてもよい。液晶性の置換基を持っていてもよい。また、四級アンモニウム塩系の溶融塩を用いてもよい。 A molten salt may be used as the electrolyte, and preferable molten salts include ionic liquids containing imidazolium or triazolium type cations, oxazolium-based, pyridinium-based, guanidinium-based, and combinations thereof. These cationic systems may be combined with specific anions. Additives may be added to these molten salts. You may have a liquid crystalline substituent. Further, a quaternary ammonium salt-based molten salt may be used.
 これら以外の溶融塩としては、例えば、ヨウ化リチウムと他の少なくとも1種類のリチウム塩(例えば酢酸リチウム、過塩素酸リチウム等)にポリエチレンオキシドを混合することにより、室温での流動性を付与したもの等が挙げられる。 As a molten salt other than these, for example, flowability at room temperature was imparted by mixing polyethylene oxide with lithium iodide and at least one other lithium salt (for example, lithium acetate, lithium perchlorate, etc.). And the like.
 電解質と溶媒からなる電解液にゲル化剤を添加してゲル化させることにより、電解質を擬固体化してもよい。ゲル化剤としては、分子量1000以下の有機化合物、分子量500-5000の範囲のSi含有化合物、特定の酸性化合物と塩基性化合物から出来る有機塩、ソルビトール誘導体、ポリビニルピリジンが挙げられる。 The electrolyte may be quasi-solidified by adding a gelling agent to an electrolyte solution composed of an electrolyte and a solvent for gelation. Examples of the gelling agent include organic compounds having a molecular weight of 1000 or less, Si-containing compounds having a molecular weight in the range of 500 to 5000, organic salts made of specific acidic compounds and basic compounds, sorbitol derivatives, and polyvinylpyridine.
 また、マトリックス高分子、架橋型高分子化合物又はモノマー、架橋剤、電解質及び溶媒を高分子中に閉じ込める方法を用いても良い。
マトリックス高分子として好ましくは、含窒素複素環を主鎖あるいは側鎖の繰り返し単位中に持つ高分子及びこれらを求電子性化合物と反応させた架橋体、トリアジン構造を持つ高分子、ウレイド構造をもつ高分子、液晶性化合物を含むもの、エーテル結合を有する高分子、ポリフッ化ビニリデン系、メタクリレート・アクリレート系、熱硬化性樹脂、架橋ポリシロキサン、PVA、ポリアルキレングリールとデキストリンなどの包摂化合物、含酸素または含硫黄高分子を添加した系、天然高分子などが挙げられる。これらにアルカリ膨潤型高分子、一つの高分子内にカチオン部位とヨウ素との電荷移動錯体を形成できる化合物を持った高分子などを添加しても良い。
Alternatively, a method of trapping a matrix polymer, a crosslinkable polymer compound or monomer, a crosslinking agent, an electrolyte, and a solvent in the polymer may be used.
As the matrix polymer, a polymer having a nitrogen-containing heterocyclic ring in the main chain or side chain repeating unit, a crosslinked product obtained by reacting these with an electrophilic compound, a polymer having a triazine structure, or having a ureido structure Polymers, liquid crystalline compounds, ether-bonded polymers, polyvinylidene fluorides, methacrylates / acrylates, thermosetting resins, crosslinked polysiloxanes, PVA, inclusion compounds such as polyalkylene glycol and dextrin, Examples include systems to which oxygen or sulfur-containing polymers are added, natural polymers, and the like. An alkali swelling polymer, a polymer having a compound capable of forming a charge transfer complex between a cation moiety and iodine in one polymer, or the like may be added to these.
 マトリックスポリマーとして2官能以上のイソシアネートを一方の成分として、ヒドロキシル基、アミノ基、カルボキシル基などの官能基と反応させた架橋ポリマーを含む系を用いても良い。また、ヒドロシリル基と二重結合性化合物による架橋高分子、ポリスルホン酸又はポリカルボン酸などを2価以上の金属イオン化合物と反応させる架橋方法などを用いても良い。 As the matrix polymer, a system including a cross-linked polymer obtained by reacting a functional group such as a hydroxyl group, an amino group or a carboxyl group with one or more functional isocyanate as one component may be used. Further, a crosslinking method in which a crosslinked polymer composed of a hydrosilyl group and a double bond compound, polysulfonic acid, polycarboxylic acid, or the like is reacted with a divalent or higher valent metal ion compound may be used.
 上記擬固体の電解質との組み合わせで好ましく用いることが出来る溶媒としては、特定のりん酸エステル、エチレンカーボネートを含む混合溶媒、特定の比誘電率を持つ溶媒などが挙げられる。固体電解質膜あるいは細孔に液体電解質溶液を保持させても良く、その方法として好ましくは、導電性高分子膜、繊維状固体、フィルタなどの布状固体が挙げられる。 Examples of the solvent that can be preferably used in combination with the quasi-solid electrolyte include a specific phosphoric acid ester, a mixed solvent containing ethylene carbonate, and a solvent having a specific dielectric constant. The liquid electrolyte solution may be held in a solid electrolyte membrane or pores, and preferred methods thereof include conductive polymer membranes, fibrous solids, and cloth solids such as filters.
 以上の液体電解質及び擬固体電解質の代わりにp型半導体あるいはホール輸送材料などの固体電荷輸送層を用いてもよい。固体電荷輸送層として有機ホール輸送材料を用いても良い。ホール輸送層として好ましくは、ポリチオフェン、ポリアニリン、ポリピロール、及びポリシランなどの導電性高分子、及び2個の環がC、Siなど四面体構造をとる中心元素を共有するスピロ化合物、トリアリールアミンなどの芳香族アミン誘導体、トリフェニレン誘導体、含窒素複素環誘導体、液晶性シアノ誘導体が挙げられる。 Instead of the above liquid electrolyte and quasi-solid electrolyte, a solid charge transport layer such as a p-type semiconductor or a hole transport material may be used. An organic hole transport material may be used as the solid charge transport layer. The hole transport layer is preferably a conductive polymer such as polythiophene, polyaniline, polypyrrole, or polysilane, and a spiro compound in which two rings share a central element having a tetrahedral structure such as C or Si, a triarylamine, or the like. Aromatic amine derivatives, triphenylene derivatives, nitrogen-containing heterocyclic derivatives, liquid crystal cyano derivatives are exemplified.
 酸化還元対は、電子のキャリアになるので、ある程度の濃度が必要である。好ましい濃度としては合計で0.01モル/L以上であり、より好ましくは0.1モル/Lであり、特に好ましくは0.3モル/L以上である。この場合の上限には特に制限はないが、通常5モル/L程度である。 Since the redox couple is an electron carrier, a certain concentration is required. The preferred concentration is 0.01 mol / L or more in total, more preferably 0.1 mol / L, and particularly preferably 0.3 mol / L or more. The upper limit in this case is not particularly limited, but is usually about 5 mol / L.
 以下、本発明を実施例に基づき更に詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.
[色素の調製]
 下記の(SA-1)0.45gと下記の(SB-1)0.26gを、1-ブタノール10mLとトルエン10mLの混合溶媒中で混合し、100℃で4時間加熱しながら攪拌した。得られた結晶を吸引ろ過によりろ別し、シリカゲルカラムクロマトグラフィーによって精製して、前述の色素S-14 0.26gを調製した。
Figure JPOXMLDOC01-appb-C000059
[Preparation of dye]
0.45 g of the following (SA-1) and 0.26 g of the following (SB-1) were mixed in a mixed solvent of 10 mL of 1-butanol and 10 mL of toluene and stirred while heating at 100 ° C. for 4 hours. The obtained crystals were separated by suction filtration and purified by silica gel column chromatography to prepare 0.26 g of the aforementioned dye S-14.
Figure JPOXMLDOC01-appb-C000059
[実験1]
(光電変換素子の作製)
 図1に示す光電変換素子を以下のようにして作製した。
 ガラス基板上に、透明導電膜としてフッ素をドープした酸化スズをスパッタリングにより形成し、これをレーザーでスクライブして、透明導電膜を2つの部分に分割した。このうち一方の導電膜上にアナターゼ型酸化チタン粒子を焼結して受光電極を作製した。その後、受光電極上にシリカ粒子とルチル型酸化チタンとを40:60(質量比)で含有する分散液を塗布及び焼結して絶縁性多孔体を形成した。半導体微粒子の塗布量を20g/mとし、次いで対極として炭素電極を形成させた。
 次に、下記の表1に記載された色素のエタノール溶液(各3×10-4モル/L)に48時間浸漬した。増感色素の染着したガラスを4-tert-ブチルピリジンの10%エタノール溶液に30分間浸漬した後、エタノールで洗浄し自然乾燥させた。得られた感光体の厚さは10μmであった。色素量は、色素の種類に応じ、適宜0.1~10ミリモル/mの範囲から選択した。
 電解液としては、ヨウ化ジメチルプロピルイミダゾリウム(0.5モル/L)、ヨウ素(0.1モル/L)のメトキシプロピオニトリル溶液を用いた。
[Experiment 1]
(Preparation of photoelectric conversion element)
The photoelectric conversion element shown in FIG. 1 was produced as follows.
On the glass substrate, tin oxide doped with fluorine was formed as a transparent conductive film by sputtering, and this was scribed with a laser to divide the transparent conductive film into two parts. Among these, anatase-type titanium oxide particles were sintered on one conductive film to produce a light receiving electrode. Thereafter, a dispersion containing silica particles and rutile titanium oxide at a ratio of 40:60 (mass ratio) was applied and sintered on the light-receiving electrode to form an insulating porous body. The coating amount of the semiconductor fine particles was 20 g / m 2, and then a carbon electrode was formed as a counter electrode.
Next, it was immersed for 48 hours in an ethanol solution (3 × 10 −4 mol / L each) of the dyes described in Table 1 below. The glass dyed with the sensitizing dye was immersed in a 10% ethanol solution of 4-tert-butylpyridine for 30 minutes, then washed with ethanol and naturally dried. The thickness of the obtained photoreceptor was 10 μm. The amount of the dye was appropriately selected from the range of 0.1 to 10 mmol / m 2 depending on the kind of the dye.
As the electrolytic solution, a methoxypropionitrile solution of dimethylpropylimidazolium iodide (0.5 mol / L) and iodine (0.1 mol / L) was used.
(色素の極大吸収波長の測定)
 用いた色素の最大吸収波長を測定した。その結果を表1に示す。最大吸収波長の測定は分光光度計(U-4100(商品名)、日立ハイテク社製)によって行い、溶液はTHF:エタノール=1:1を用い、濃度が2μMになるように調整した。
(光電変換効率の測定)
 500Wのキセノンランプ(ウシオ製)の光をAM1.5Gフィルター(Oriel社製)およびシャープカットフィルター(KenkoL-42、商品名)を通すことにより紫外線を含まない模擬太陽光を発生させた。この光の強度は89mW/cmであった。作製した光電変換素子にこの光を照射し、電流電圧測定装置(ケースレー238型、商品名)で、光電変換特性を測定した。
 光電気化学電池の変換効率の初期値を測定した結果を、下記の表1において、変換効率として示した。変換効率が2.5%以上のものを◎、1%以上2.5%未満のものを○、0.3%以上1%未満のものを△、0.3%未満のものを×として表示し、変換効率が0.3%以上のものを合格とし、0.3%未満のものを不合格とした。また、変換効率の初期値に対し500時間後の変換効率の低下を耐久性として評価した。その結果が90%以上のものを◎、60%以上90%未満のものを○、40%以上60%未満のものを△、40%未満のものを×として評価し、変換効率の初期値に対し500時間後の変換効率が60%以上のものを合格とし、60%未満のものを不合格とした。
(Measurement of maximum absorption wavelength of dye)
The maximum absorption wavelength of the dye used was measured. The results are shown in Table 1. The maximum absorption wavelength was measured with a spectrophotometer (U-4100 (trade name), manufactured by Hitachi High-Tech), and the solution was adjusted to a concentration of 2 μM using THF: ethanol = 1: 1.
(Measurement of photoelectric conversion efficiency)
Simulated sunlight containing no ultraviolet rays was generated by passing the light of a 500 W xenon lamp (manufactured by Ushio) through an AM1.5G filter (manufactured by Oriel) and a sharp cut filter (KenkoL-42, trade name). The intensity of this light was 89 mW / cm 2 . The produced photoelectric conversion element was irradiated with this light, and the photoelectric conversion characteristics were measured with a current-voltage measuring device (Keithley 238 type, trade name).
The results of measuring the initial value of the conversion efficiency of the photoelectrochemical cell are shown as conversion efficiency in Table 1 below. Conversion efficiency of 2.5% or more is indicated as ◎, 1% or more and less than 2.5% is indicated by ○, 0.3% or more and less than 1% is indicated as △, and less than 0.3% is indicated as ×. The conversion efficiency of 0.3% or more was accepted, and the conversion efficiency of less than 0.3% was rejected. Further, a decrease in conversion efficiency after 500 hours with respect to the initial value of conversion efficiency was evaluated as durability. When the result is 90% or more, ◎, 60% or more and less than 90% are evaluated as ◯, 40% or more and less than 60% are evaluated as △, and less than 40% are evaluated as ×. On the other hand, a conversion efficiency after 500 hours of 60% or more was accepted, and less than 60% was rejected.
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000060
 実験1~10において、比較色素として、以下のA-1及びA-2を用いた。
Figure JPOXMLDOC01-appb-C000061
 表1からわかるように、本発明の色素を用いた光電気化学電池は、変換効率の初期値が合格レベルであり、さらに500時間経過後の変換効率が初期値の60%以上と、優れた耐久性を示した。
 これに対して、比較色素を用いた場合には、変換効率の初期値が合格レベルであるが、耐久性に問題があることがわかった。
In Experiments 1 to 10, the following A-1 and A-2 were used as comparative dyes.
Figure JPOXMLDOC01-appb-C000061
As can be seen from Table 1, in the photoelectrochemical cell using the dye of the present invention, the initial value of the conversion efficiency is an acceptable level, and the conversion efficiency after 500 hours is excellent, being 60% or more of the initial value. Shows durability.
On the other hand, when the comparative dye was used, it was found that the initial value of the conversion efficiency was an acceptable level, but there was a problem with durability.
[実験2]
 ガラス基板上にITO膜を作製し、その上にFTO膜を積層することにより、透明導電膜を作製した。その後透明導電膜上に酸化物半導体多孔質膜を形成することにより、透明電極板を得た。そしてその透明電極板を使用して光電気化学電池を作製し、変換効率を測定した。その方法は以下の(1)~(5)のとおりである。
[Experiment 2]
An ITO film was produced on a glass substrate, and an FTO film was laminated thereon to produce a transparent conductive film. Then, a transparent electrode plate was obtained by forming an oxide semiconductor porous film on the transparent conductive film. And the photoelectrochemical cell was produced using the transparent electrode plate, and conversion efficiency was measured. The method is as follows (1) to (5).
(1)ITO(インジウム・スズ・オキサイド)膜用原料化合物溶液の調製
 塩化インジウム(III)四水和物5.58gと塩化スズ(II)二水和物0.23gとをエタノール100mLに溶解して、ITO膜用原料化合物溶液とした。
(1) Preparation of raw material solution for ITO (indium-tin-oxide) film Indium (III) tetrahydrate 5.58 g and tin (II) chloride dihydrate 0.23 g were dissolved in 100 mL of ethanol. Thus, a raw material compound solution for ITO film was obtained.
(2)FTO(フッ素ドープ酸化スズ)膜用原料化合物溶液の調製
 塩化スズ(IV)五水和物0.701gをエタノール10mLに溶解し、これにフッ化アンモニウム0.592gの飽和水溶液を加え、この混合物を超音波洗浄機に約20分間かけ、完全に溶解して、FTO膜用原料化合物溶液とした。
(2) Preparation of FTO (Fluorine Doped Tin Oxide) Film Raw Material Compound Solution 0.701 g of tin (IV) chloride pentahydrate was dissolved in 10 mL of ethanol, and 0.592 g of a saturated aqueous solution of ammonium fluoride was added thereto. This mixture was subjected to an ultrasonic cleaning machine for about 20 minutes and completely dissolved to obtain a raw material compound solution for an FTO film.
(3)ITO/FTO透明導電膜の作製
 厚さ2mmの耐熱ガラス板の表面を化学洗浄し、乾燥した後、このガラス板を反応器内に置き、ヒータで加熱した。ヒータの加熱温度が450℃になったところで、(1)で得られたITO膜用原料化合物溶液を、口径0.3mmのノズルから圧力0.06MPaで、ガラス板までの距離を400mmとして、25分間噴霧した。
 このITO膜用原料化合物溶液の噴霧後、2分間(この間ガラス基板表面にエタノールを噴霧し続け、基板表面温度の上昇を抑えるようにした。)経過し、ヒータの加熱温度が530℃になった時に、(2)で得られたFTO膜用原料化合物溶液を同様の条件で2分30秒間噴霧した。これにより、耐熱ガラス板上に厚さ530nmのITO膜、厚さ170nmのFTO膜が順次形成された透明電極板が得られた。
 比較のために、厚さ2mmの耐熱ガラス板上に同様に、厚さ530nmのITO膜のみを成膜した透明電極板と、同じく厚さ180nmのFTO膜のみを成膜した透明電極板とをそれぞれ作製した。
 これら3種の透明電極板を加熱炉にて、450℃で2時間加熱した。
(3) Production of ITO / FTO transparent conductive film The surface of a heat-resistant glass plate having a thickness of 2 mm was chemically washed and dried, and then this glass plate was placed in a reactor and heated with a heater. When the heating temperature of the heater reached 450 ° C., the raw material compound solution for ITO film obtained in (1) was adjusted from a nozzle with a diameter of 0.3 mm to a pressure of 0.06 MPa and a distance to the glass plate of 400 mm, 25 Sprayed for a minute.
After the spraying of the raw material compound solution for ITO film, 2 minutes passed (ethanol was sprayed on the glass substrate surface during this period to suppress the rise of the substrate surface temperature), and the heating temperature of the heater became 530 ° C. Occasionally, the FTO membrane raw material compound solution obtained in (2) was sprayed for 2 minutes 30 seconds under the same conditions. As a result, a transparent electrode plate was obtained in which an ITO film having a thickness of 530 nm and an FTO film having a thickness of 170 nm were sequentially formed on the heat-resistant glass plate.
For comparison, similarly, a transparent electrode plate in which only a 530 nm thick ITO film is formed on a heat resistant glass plate having a thickness of 2 mm and a transparent electrode plate in which only a 180 nm thick FTO film is formed are similarly provided. Each was produced.
These three types of transparent electrode plates were heated in a heating furnace at 450 ° C. for 2 hours.
(4)光電気化学電池の作製
 次に、上記3種の透明電極板を用いて、特許第4260494号公報の図2に示した構造の光電気化学電池を作製した。酸化物半導体多孔質膜の形成は、平均粒径約230nmの酸化チタン微粒子をアセトニトリルに分散してペーストとし、これを透明電極11上にバーコート法により厚さ15μmに塗布し、乾燥後450℃で1時間焼成して行った。その後、この酸化物半導体多孔質膜に表2記載の色素を担持した。
 さらに、対極には、ガラス板上にITO膜とFTO膜とを積層した導電性基板を使用し、電解質層には、ヨウ素/ヨウ化物の非水溶液からなる電解液を用いた。光電気化学電池の平面寸法は25mm×25mmとした。
(4) Production of photoelectrochemical cell Next, a photoelectrochemical cell having the structure shown in FIG. 2 of Japanese Patent No. 4260494 was produced using the above three types of transparent electrode plates. The oxide semiconductor porous film is formed by dispersing fine particles of titanium oxide having an average particle diameter of about 230 nm in acetonitrile to form a paste, applying the paste on the transparent electrode 11 to a thickness of 15 μm by a bar coating method, and drying to 450 ° C. And baked for 1 hour. Thereafter, the dyes listed in Table 2 were supported on the oxide semiconductor porous membrane.
Further, a conductive substrate in which an ITO film and an FTO film were laminated on a glass plate was used for the counter electrode, and an electrolytic solution made of a non-aqueous solution of iodine / iodide was used for the electrolyte layer. The planar dimension of the photoelectrochemical cell was 25 mm × 25 mm.
(5)光電気化学電池の評価
 (4)で得られた光電気化学電池について、擬似太陽光(AM1.5)を照射し、実験1と同様の方法で光電変換特性を測定し、変換効率を求めた。その結果を表2に示す。変換効率については、試料番号2-9を1としたときの相対値を示した。耐久性については、変換効率の初期値に対し500時間経過後の変換効率が90%以上のものを◎、60%以上90%未満のものを○、40%以上60%未満のものを△、40%未満のものを×とした。変換効率の初期値に対し500時間後の変換効率が60%以上のものを合格とし、60%未満のものを不合格とした。
(5) Evaluation of photoelectrochemical cell The photoelectrochemical cell obtained in (4) was irradiated with simulated sunlight (AM1.5), the photoelectric conversion characteristics were measured in the same manner as in Experiment 1, and the conversion efficiency Asked. The results are shown in Table 2. Regarding the conversion efficiency, the relative value when the sample number 2-9 is set to 1 is shown. With respect to durability, the conversion efficiency after 90 hours of conversion efficiency after 90 hours is 90% or more with respect to the initial value of the conversion efficiency, ◯ with 60% or more and less than 90%, △ with 40% or more and less than 60%, Those less than 40% were evaluated as x. When the conversion efficiency after 500 hours was 60% or more with respect to the initial value of the conversion efficiency, it was determined to be acceptable, and when the conversion efficiency was less than 60%, it was rejected.
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000062
 表2からわかるように、導電層がITO膜のみの場合やFTO膜のみの場合は、本発明の光電気化学電池でも、変換効率が低くなり、導電層がITO膜上にFTO膜が形成された場合は、変換効率が高くなる傾向を示した。その傾向は比較例の光電気化学電池の場合も同様であった。
 それにもかかわらず、本発明の光電気化学電池は、いずれも500時間経過後の変換効率が60%以上と、優れた耐久性を示すのに対し、比較例の光電気化学電池の500時間経過後の変換効率は40%未満で、耐久性に問題があることがわかった。
As can be seen from Table 2, when the conductive layer is only the ITO film or only the FTO film, the conversion efficiency is lowered even in the photoelectrochemical cell of the present invention, and the conductive layer is formed on the ITO film. In the case, the conversion efficiency tended to increase. The tendency was the same for the photoelectrochemical cell of the comparative example.
Nevertheless, all of the photoelectrochemical cells of the present invention show excellent durability with a conversion efficiency of 60% or more after the elapse of 500 hours, whereas the photoelectrochemical cells of the comparative examples have an elapse of 500 hours. Later conversion efficiency was less than 40%, and it was found that there was a problem in durability.
[実験3]
 FTO膜上に集電電極を配し、光電気化学電池を作製し、変換効率を評価した。評価は以下の通り、試験セル(i)と試験セル(iv)の2種類とした。
[Experiment 3]
A collecting electrode was arranged on the FTO film to produce a photoelectrochemical cell, and the conversion efficiency was evaluated. Evaluation was made into two types, test cell (i) and test cell (iv) as follows.
(試験セル(i))
 100mm×100mm×2mmの耐熱ガラス板の表面を化学洗浄し、乾燥した後、このガラス板を反応器内に置き、ヒータで加熱した後、上記の実験2で使用したFTO(フッ素ドープ酸化スズ)膜用原料化合物溶液を、口径0.3mmのノズルから圧力0.06MPaで、ガラス板までの距離を400mmとして、25分間噴霧し、FTO膜付きガラス基板を用意した。
 その表面に、エッチング法により深さ5μmの溝を格子回路パターン状に形成した。フォトリソグラフでパターン形成した後に、フッ酸を用いてエッチングを行った。これに、めっき形成を可能とするためにスパッタ法により金属導電層(シード層)を形成し、更にアディティブめっきにより金属配線層を形成した。金属配線層は、透明基板表面から凸レンズ状に3μm高さまで形成した。回路幅は60μmとした。この上から、遮蔽層5としてFTO膜を400nmの厚さでSPD法により形成して、電極基板(i)とした。なお、電極基板(i)の断面形状は、特開2004-146425中の図2に示すものとなっていた。
(Test cell (i))
The surface of a heat-resistant glass plate of 100 mm × 100 mm × 2 mm is chemically cleaned and dried, then this glass plate is placed in a reactor, heated with a heater, and then FTO (fluorine-doped tin oxide) used in Experiment 2 above The membrane raw material compound solution was sprayed from a nozzle having a diameter of 0.3 mm at a pressure of 0.06 MPa and a distance to the glass plate of 400 mm for 25 minutes to prepare a glass substrate with an FTO film.
On the surface, grooves having a depth of 5 μm were formed in a lattice circuit pattern by an etching method. After pattern formation by photolithography, etching was performed using hydrofluoric acid. A metal conductive layer (seed layer) was formed thereon by sputtering to enable plating formation, and a metal wiring layer was further formed by additive plating. The metal wiring layer was formed in a convex lens shape from the transparent substrate surface to a height of 3 μm. The circuit width was 60 μm. From this, an FTO film having a thickness of 400 nm was formed as the shielding layer 5 by the SPD method to obtain an electrode substrate (i). The cross-sectional shape of the electrode substrate (i) was as shown in FIG. 2 in JP-A No. 2004-146425.
 電極基板(i)上に平均粒径25nmの酸化チタン分散液を塗布・乾燥し、450℃で1時間加熱・焼結した。これを表3に示す色素のエタノール溶液中に40分間浸漬して色素担持した。また本発明に用いられる色素の各種有機溶剤への溶解性について予備検討した。その結果、トルエンに溶解できることがわかったので、表3に記載の通り、トルエン溶液中に40分間浸透させ担持させたものも用意した。
 50μm厚の熱可塑性ポリオレフィン樹脂シートを介して、白金スパッタFTO基板と上記基板を対向して配置し、樹脂シート部を熱溶融させて両極板を固定した。
 なおあらかじめ白金スパッタ極側に開けておいた電解液の注液口から、0.5Mのヨウ化塩と0.05Mのヨウ素とを主成分に含むメトキシアセトニトリル溶液を注液し、電極間に満たした。さらに周辺部及び電解液注液口をエポキシ系封止樹脂で封止し、集電端子部に銀ペーストを塗布して、試験セル(i)とした。実験1と同様の方法で、AM1.5の擬似太陽光を試験セル(i)に照射し、変換効率を測定した。その結果を表3に示す。
A titanium oxide dispersion having an average particle size of 25 nm was applied and dried on the electrode substrate (i), and heated and sintered at 450 ° C. for 1 hour. This was immersed in an ethanol solution of the dye shown in Table 3 for 40 minutes to carry the dye. Further, preliminary investigation was made on the solubility of the dye used in the present invention in various organic solvents. As a result, it was found that it could be dissolved in toluene. Therefore, as shown in Table 3, a solution infiltrated and supported in a toluene solution for 40 minutes was also prepared.
A platinum sputtered FTO substrate and the substrate were placed facing each other through a thermoplastic polyolefin resin sheet having a thickness of 50 μm, and the resin sheet portion was melted by heat to fix the bipolar plates.
A methoxyacetonitrile solution containing 0.5M iodide and 0.05M iodine as the main components was injected from the electrolyte solution inlet previously opened on the platinum sputter electrode side, and filled between the electrodes. It was. Further, the peripheral portion and the electrolyte solution injection port were sealed with an epoxy-based sealing resin, and a silver paste was applied to the current collecting terminal portion to obtain a test cell (i). In the same manner as in Experiment 1, AM1.5 simulated sunlight was irradiated to the test cell (i), and the conversion efficiency was measured. The results are shown in Table 3.
(試験セル(iv))
 試験セル(i)と同様の方法で、100×100mmのFTO膜付きガラス基板を用意した。そのFTOガラス基板上に、アディティブめっき法により金属配線層(金回路)を形成した。この金属配線層(金回路)は基板表面に格子状に形成し、回路幅50μm、回路厚5μmとした。この表面に、厚さ300nmのFTO膜を遮蔽層として、SPD法により形成して電極基板(iv)とした。電極基板(iv)の断面をSEM-EDXを用いて確認したところ、配線底部でめっきレジストの裾引きに起因すると思われる潜り込みがあり、影部分にはFTOが被覆されていなかった。
 電極基板(iv)を用い、試験セル(i)と同様に、試験セル(iv)を作製した。実験1と同様の方法でAM1.5の疑似太陽光を照射し、変換効率を測定した。その変換効率の初期値の結果を表3に、変換効率として示す。
 変換効率が2.5%以上のものを◎、1%以上2.5%未満のものを○、0.3%以上1%未満のものを△、0.3%未満のものを×として表示し、変換効率が0.3%以上のものを合格とし、0.3%未満のものを不合格とした。また、変換効率の初期値に対し500時間後の変換効率が90%以上のものを◎、60%以上90%未満のものを○、40%以上60%未満のものを△、40%未満のものを×として評価し、耐久性として表3に示す。変換効率の初期値に対し500時間後の変換効率が60%以上のものを合格とし、60%未満のものを不合格とした。
(Test cell (iv))
A glass substrate with a 100 × 100 mm FTO film was prepared in the same manner as in the test cell (i). On the FTO glass substrate, a metal wiring layer (gold circuit) was formed by additive plating. The metal wiring layer (gold circuit) was formed in a lattice shape on the substrate surface, and had a circuit width of 50 μm and a circuit thickness of 5 μm. On this surface, an FTO film having a thickness of 300 nm was formed as a shielding layer by the SPD method to obtain an electrode substrate (iv). When the cross section of the electrode substrate (iv) was confirmed using SEM-EDX, there was a sneaking in which seems to be caused by the bottom of the plating resist at the bottom of the wiring, and the shadow portion was not covered with FTO.
A test cell (iv) was produced in the same manner as the test cell (i) using the electrode substrate (iv). AM1.5 simulated sunlight was irradiated in the same manner as in Experiment 1, and the conversion efficiency was measured. The result of the initial value of the conversion efficiency is shown in Table 3 as the conversion efficiency.
Conversion efficiency of 2.5% or more is indicated as ◎, 1% or more and less than 2.5% is indicated by ○, 0.3% or more and less than 1% is indicated as △, and less than 0.3% is indicated as ×. The conversion efficiency of 0.3% or more was accepted, and the conversion efficiency of less than 0.3% was rejected. In addition, the conversion efficiency after 500 hours with respect to the initial value of the conversion efficiency is 90% or more, ◯, 60% or more and less than 90%, ◯, 40% or more and less than 60%, or less than 40%. The product was evaluated as x, and the durability is shown in Table 3. When the conversion efficiency after 500 hours was 60% or more with respect to the initial value of the conversion efficiency, it was determined to be acceptable, and when the conversion efficiency was less than 60%, it was rejected.
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000063
 表3より、本発明の色素を用いた試験セルの変換効率は1%以上と、高い値を示した。また色素溶液に用いられる溶媒を適宜選択することにより、変換効率を高くできることがわかった(試料3-1、3-2と試料3-3、3-4の対比)。比較色素を用いた場合は、変換効率の初期値が本発明と同様に高い場合があるが、500時間経過後の変換効率は大きく低下するのに対し、本発明の色素を用いた場合は、耐久性の低下が著しく少なく、優れた特性を示した。 From Table 3, the conversion efficiency of the test cell using the dye of the present invention showed a high value of 1% or more. It was also found that the conversion efficiency can be increased by appropriately selecting the solvent used in the dye solution (Comparison between Samples 3-1 and 3-2 and Samples 3-3 and 3-4). When the comparative dye is used, the initial value of the conversion efficiency may be as high as in the present invention, but the conversion efficiency after a lapse of 500 hours is greatly reduced, whereas when the dye of the present invention is used, The durability was remarkably reduced and excellent characteristics were exhibited.
[実験4]
 ペルオキソチタン酸及び酸化チタン微粒子を作製し、これを用いて酸化物半導体膜を作製した。これを用いて光電気化学電池を作製し、評価した。
(光電気化学電池(A)の作製)
(1)酸化物半導体膜形成用塗布液(A1)の調製
 5gの水素化チタンを1リットルの純水に懸濁し、5質量%の過酸化水素液400gを30分かけて添加し、ついで80℃に加熱して溶解してペルオキソチタン酸の溶液を調製した。この溶液の全量から90容積%を分取し、濃アンモニア水を添加してpH9に調整し、オートクレーブに入れ、250℃で5時間、飽和蒸気圧下で水熱処理を行ってチタニアコロイド粒子(A2)を調製した。得られたチタニアコロイド粒子は、X線回折により結晶性の高いアナターゼ型酸化チタンであった。
[Experiment 4]
Peroxotitanic acid and titanium oxide fine particles were prepared, and an oxide semiconductor film was prepared using them. Using this, a photoelectrochemical cell was produced and evaluated.
(Production of photoelectrochemical cell (A))
(1) Preparation of coating liquid (A1) for forming an oxide semiconductor film 5 g of titanium hydride is suspended in 1 liter of pure water, 400 g of a 5 mass% hydrogen peroxide solution is added over 30 minutes, and then 80 A solution of peroxotitanic acid was prepared by dissolution by heating to ° C. 90% by volume is taken from the total amount of this solution, adjusted to pH 9 by adding concentrated aqueous ammonia, placed in an autoclave, hydrothermally treated at 250 ° C. for 5 hours under saturated vapor pressure, and titania colloidal particles (A2) Was prepared. The obtained titania colloidal particles were anatase type titanium oxide having high crystallinity by X-ray diffraction.
 次に、上記で得られたチタニアコロイド粒子(A2)を10質量%まで濃縮し、前記ペルオキソチタン酸溶液を混合し、この混合液中のチタンをTiO換算し、TiO質量の30質量%となるように膜形成助剤としてヒドロキシプロピルセルロースを添加して半導体膜形成用塗布液(A1)を調製した。 Next, the obtained titania colloidal particles (A2) was concentrated to 10 wt%, the peroxotitanic acid solution were mixed, the titanium of the mixed solution TiO 2 terms, TiO 2 mass of 30 mass% As a film forming aid, hydroxypropylcellulose was added to prepare a semiconductor film forming coating solution (A1).
(2)酸化物半導体膜(A3)の作製
 次いで、フッ素ドープした酸化スズが電極層として形成された透明ガラス基板上に前記塗布液(A1)を塗布し、自然乾燥し、引き続き低圧水銀ランプを用いて6000mJ/cmの紫外線を照射してペルオキソ酸を分解させ、塗膜を硬化させた。塗膜を300℃で30分間加熱してヒドロキシプロピルセルロースの分解およびアニーリングを行って酸化物半導体膜(A3)をガラス基板に形成した。
(2) Production of Oxide Semiconductor Film (A3) Next, the coating solution (A1) is applied on a transparent glass substrate on which fluorine-doped tin oxide is formed as an electrode layer, followed by natural drying, followed by a low-pressure mercury lamp. It was used to irradiate ultraviolet rays of 6000 mJ / cm 2 to decompose the peroxo acid and harden the coating film. The coating film was heated at 300 ° C. for 30 minutes to decompose and anneal the hydroxypropyl cellulose to form an oxide semiconductor film (A3) on the glass substrate.
(3)酸化物半導体膜(A3)への色素の吸着
 次に、分光増感色素として本発明の色素の濃度3×10-4モル/Lのエタノール溶液を調製した。この色素溶液を100rpmスピナーで、金属酸化物半導体膜(A3)上へ塗布して乾燥した。この塗布および乾燥工程を5回行った。
(3) Adsorption of dye to oxide semiconductor film (A3) Next, an ethanol solution having a concentration of 3 × 10 −4 mol / L of the dye of the present invention was prepared as a spectral sensitizing dye. This dye solution was applied onto the metal oxide semiconductor film (A3) with a 100 rpm spinner and dried. This coating and drying process was performed five times.
(4)電解質溶液の調製
 アセトニトリルと炭酸エチレンとの体積比が1:5の混合溶媒に、テトラプロピルアンモニウムアイオダイドを0.46モル/L、ヨウ素を0.07モル/リットルの濃度となるように溶解して電解質溶液を調製した。
(4) Preparation of electrolyte solution In a mixed solvent having a volume ratio of acetonitrile and ethylene carbonate of 1: 5, tetrapropylammonium iodide is 0.46 mol / L and iodine is 0.07 mol / liter. To prepare an electrolyte solution.
(5)光電気化学電池(A)の作製
 (2)で作製した、色素を吸着させた酸化物半導体膜(A3)が形成されたガラス基板を一方の電極とし、他方の電極として、フッ素ドープした酸化スズを電極として形成した。その上に白金を担持した透明ガラス基板を対向して配置し、側面を樹脂にてシールし、電極間に(4)の電解質溶液を封入した。さらに電極間をリード線で接続して光電気化学電池(A)を作製した。
(5) Production of photoelectrochemical cell (A) The glass substrate on which the oxide semiconductor film (A3) adsorbed with the dye produced in (2) is formed is used as one electrode, and fluorine doped as the other electrode. The tin oxide was formed as an electrode. A transparent glass substrate carrying platinum thereon was disposed oppositely, the side surfaces were sealed with resin, and the electrolyte solution (4) was sealed between the electrodes. Further, the photoelectrochemical cell (A) was produced by connecting the electrodes with lead wires.
(光電気化学電池(B)の作製)
 紫外線を照射してペルオキソ酸を分解させ、膜を硬化させた後、Arガスのイオン照射(日新電気製:イオン注入装置、200eVで10時間照射)を行った以外は、酸化物半導体膜(A3)と同様にして酸化物半導体膜(B3)を形成した。
 酸化物半導体膜(A3)と同様に、酸化物半導体膜(B3)に色素の吸着を行った。その後、光電気化学電池(A)と同様の方法で、光電気化学電池(B)を作製した。
(Production of photoelectrochemical cell (B))
Oxide semiconductor film (except for irradiation with Ar gas (Nisshin Denki: ion implantation apparatus, irradiation at 200 eV for 10 hours)) after UV irradiation was applied to decompose the peroxo acid and harden the film. An oxide semiconductor film (B3) was formed in the same manner as in A3).
Similarly to the oxide semiconductor film (A3), the dye was adsorbed to the oxide semiconductor film (B3). Then, the photoelectrochemical cell (B) was produced by the same method as the photoelectrochemical cell (A).
(光電気化学電池(C)の作製)
 18.3gの4塩化チタンを純水で希釈して、TiO換算で1.0質量%含有する水溶液を得た。この水溶液を撹拌しながら、15質量%のアンモニア水を添加し、pH9.5の白色スラリーを得た。このスラリーを濾過洗浄し、TiO換算で、10.2質量%の水和酸化チタンゲルのケーキを得た。このケーキと5質量%過酸化水素液400gを混合し、ついで80℃に加熱して溶解してペルオキソチタン酸の溶液を調製した。この溶液全量から90体積%を分取し、これに濃アンモニア水を添加してpH9に調整し、オートクレーブに入れ、250℃で5時間、飽和蒸気圧下で水熱処理を行ってチタニアコロイド粒子(C2)を調製した。
 次に、上記で得られたペルオキソチタン酸溶液とチタニアコロイド粒子(C2)を使用して酸化物半導体膜(A3)と同様にして酸化物半導体膜(C3)を形成し、金属酸化物半導体膜(A3)と同様にして、分光増感色素として本発明の色素の吸着を行った。その後、光電気化学電池(A)と同様の方法で、光電気化学電池(C)を作製した。
(Production of photoelectrochemical cell (C))
18.3 g of titanium tetrachloride was diluted with pure water to obtain an aqueous solution containing 1.0% by mass in terms of TiO 2 . While stirring this aqueous solution, 15% by mass of aqueous ammonia was added to obtain a white slurry having a pH of 9.5. This slurry was washed by filtration to obtain a 10.2% by mass hydrated titanium oxide gel cake in terms of TiO 2 . This cake and 400 g of a 5% by mass hydrogen peroxide solution were mixed and then heated to 80 ° C. to dissolve to prepare a peroxotitanic acid solution. 90% by volume was taken from the total amount of the solution, and concentrated aqueous ammonia was added to adjust the pH to 9, and the mixture was placed in an autoclave, hydrothermally treated at 250 ° C. for 5 hours under saturated vapor pressure, and titania colloidal particles (C2 ) Was prepared.
Next, an oxide semiconductor film (C3) is formed in the same manner as the oxide semiconductor film (A3) using the peroxotitanic acid solution obtained above and titania colloidal particles (C2), and a metal oxide semiconductor film In the same manner as (A3), the dye of the present invention was adsorbed as a spectral sensitizing dye. Then, the photoelectrochemical cell (C) was produced by the same method as the photoelectrochemical cell (A).
(光電気化学電池(D)の作製)
 18.3gの4塩化チタンを純水で希釈してTiO換算で1.0質量%含有する水溶液を得た。これを撹拌しながら、15質量%のアンモニア水を添加し、pH9.5の白色スラリーを得た。このスラリーを濾過洗浄した後、純水に懸濁してTiOとして0.6質量%の水和酸化チタンゲルのスラリーとし、これに塩酸を加えてpH2とした後、オートクレーブに入れ、180℃で5時間、飽和蒸気圧下で水熱処理を行ってチタニアコロイド粒子(D2)を調製した。
(Production of photoelectrochemical cell (D))
18.3 g of titanium tetrachloride was diluted with pure water to obtain an aqueous solution containing 1.0% by mass in terms of TiO 2 . While stirring this, 15% by mass of ammonia water was added to obtain a white slurry having a pH of 9.5. This slurry was filtered and washed, suspended in pure water to obtain a slurry of 0.6% by mass hydrated titanium oxide gel as TiO 2 , hydrochloric acid was added to adjust the pH to 2, and then placed in an autoclave. The titania colloidal particles (D2) were prepared by performing hydrothermal treatment for a period of time under saturated vapor pressure.
 次に、チタニアコロイド粒子(D2)を10質量%まで濃縮し、これに、TiOに換算して、30質量%となるように膜形成助剤としてヒドロキシプロピルセルロースを添加して、半導体膜形成用塗布液を調製した。次いで、フッ素ドープした酸化スズが電極層として形成された透明ガラス基板上に、前記塗布液を塗布し、自然乾燥し、引き続き低圧水銀ランプを用いて6000mJ/cmの紫外線を照射し、膜を硬化させた。さらに、300℃で30分間加熱してヒドロキシプロピルセルロースの分解およびアニーリングを行い、酸化物半導体膜(D3)を形成した。 Next, titania colloidal particles (D2) are concentrated to 10% by mass, and hydroxypropylcellulose is added as a film forming aid so as to be 30% by mass in terms of TiO 2 to form a semiconductor film. A coating solution was prepared. Next, the coating solution is applied onto a transparent glass substrate on which fluorine-doped tin oxide is formed as an electrode layer, dried naturally, and subsequently irradiated with 6000 mJ / cm 2 of ultraviolet rays using a low-pressure mercury lamp to form a film. Cured. Furthermore, it heated at 300 degreeC for 30 minute (s), the hydroxypropyl cellulose was decomposed | disassembled and annealed, and the oxide semiconductor film (D3) was formed.
 次に、酸化物半導体膜(A3)と同様にして分光増感色素として、本発明の色素の吸着を行った。その後、光電気化学電池(A)と同様の方法で、光電気化学電池(D)を作製した。 Next, the dye of the present invention was adsorbed as a spectral sensitizing dye in the same manner as the oxide semiconductor film (A3). Then, the photoelectrochemical cell (D) was produced by the method similar to a photoelectrochemical cell (A).
 光電気化学電池(A)~(D)について、擬似太陽光(AM1.5)を照射し、実験1と同様の方法で光電変換特性を測定し、変換効率を求めた。その変換効率の初期値の結果を表4に、変換効率として示す。変換効率が2.5%以上のものを◎、1%以上2.5%未満のものを○、0.3%以上1%未満のものを△、0.3%未満のものを×として表示し、変換効率が0.3%以上のものを合格とし、0.3%未満のものを不合格とした。また、変換効率の初期値に対し500時間後の変換効率が90%以上のものを◎、60%以上90%未満のものを○、40%以上60%未満のものを△、40%未満のものを×として評価し、その値を耐久性として表4に示す。変換効率の初期値に対し500時間後の変換効率が60%以上のものを合格とし、60%未満のものを不合格とした。 For the photoelectrochemical cells (A) to (D), simulated sunlight (AM1.5) was irradiated, the photoelectric conversion characteristics were measured in the same manner as in Experiment 1, and the conversion efficiency was obtained. The result of the initial value of the conversion efficiency is shown in Table 4 as the conversion efficiency. Conversion efficiency of 2.5% or more is indicated as ◎, 1% or more and less than 2.5% is indicated as ◯, 0.3% or more and less than 1% is indicated as △, and less than 0.3% is indicated as ×. The conversion efficiency of 0.3% or more was accepted and the conversion efficiency of less than 0.3% was rejected. In addition, the conversion efficiency after 500 hours with respect to the initial value of conversion efficiency is 90% or more, ◎, 60% to less than 90% ○, 40% to less than 60% △, less than 40% A thing was evaluated as x and the value is shown in Table 4 as durability. When the conversion efficiency after 500 hours was 60% or more with respect to the initial value of the conversion efficiency, it was determined to be acceptable, and when the conversion efficiency was less than 60%, it was rejected.
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000064
 表4からわかるように、本発明の色素を用いた光電気化学電池は、変換効率の初期値が合格レベルであり、さらに500時間経過後の変換効率が初期値の60%以上と、優れた耐久性を示した。
 これに対して、比較色素を用いた場合には、変換効率の初期値が合格レベルであるが、耐久性に問題があることがわかった。
As can be seen from Table 4, in the photoelectrochemical cell using the dye of the present invention, the initial value of the conversion efficiency was an acceptable level, and the conversion efficiency after 500 hours passed was excellent at 60% or more of the initial value. Shows durability.
On the other hand, when the comparative dye was used, it was found that the initial value of the conversion efficiency was an acceptable level, but there was a problem with durability.
[実験5]
 方法を変えて酸化チタンの調製を行い、得られた酸化チタンから酸化物半導体膜を作製し、光電気化学電池とし、その評価を行った。
[Experiment 5]
Titanium oxide was prepared by changing the method, an oxide semiconductor film was produced from the obtained titanium oxide, and a photoelectrochemical cell was evaluated.
(1)熱処理法による酸化チタンの調製
(酸化チタン1(ブルーカイト型)等)
 市販のアナターゼ型酸化チタン(石原産業社製、商品名ST-01)を用い、これを約900℃に加熱してブルーカイト型の酸化チタンに変換し、さらに約1,200℃に加熱してルチル型の酸化チタンとした。それぞれ順に、比較酸化チタン1(アナターゼ型)、酸化チタン1(ブルーカイト型)、比較酸化チタン2(ルチル型)とする。
(1) Preparation of titanium oxide by heat treatment method (titanium oxide 1 (blue kite type) etc.)
Using commercially available anatase-type titanium oxide (trade name ST-01, manufactured by Ishihara Sangyo Co., Ltd.), this is heated to about 900 ° C. to be converted into brookite-type titanium oxide, and further heated to about 1,200 ° C. Rutile type titanium oxide was used. Respectively, comparative titanium oxide 1 (anatase type), titanium oxide 1 (blue kite type), and comparative titanium oxide 2 (rutile type) are used.
(2)湿式法による酸化チタンの合成
(酸化チタン2(ブルーカイト型))
 蒸留水954mlを還流冷却器付きの反応槽に装入し、95℃に加温する。撹拌速度を約200rpmに保ちながら、この蒸留水に四塩化チタン(Ti含有量:16.3質量%、比重1.59、純度99.9%)水溶液46mlを約5.0ml/minの速度で反応槽に滴下した。このとき、反応液の温度が下がらないように注意した。その結果、四塩化チタン濃度が0.25mol/リットル(酸化チタン換算2質量%)であった。反応槽中では反応液が滴下直後から、白濁し始めたがそのままの温度で保持を続け、滴下終了後さらに昇温し沸点付近(104℃)まで加熱し、この状態で60分間保持して完全に反応を終了した。
(2) Synthesis of titanium oxide by wet method (titanium oxide 2 (blue kite type))
954 ml of distilled water is charged into a reaction vessel equipped with a reflux condenser and heated to 95 ° C. While maintaining the stirring speed at about 200 rpm, 46 ml of an aqueous solution of titanium tetrachloride (Ti content: 16.3 mass%, specific gravity 1.59, purity 99.9%) was added to this distilled water at a speed of about 5.0 ml / min. It was dripped at the reaction tank. At this time, care was taken not to lower the temperature of the reaction solution. As a result, the titanium tetrachloride concentration was 0.25 mol / liter (2% by mass in terms of titanium oxide). In the reaction tank, the reaction liquid started to become cloudy immediately after dropping, but kept at the same temperature. After the dropping, the temperature was further raised and heated to near the boiling point (104 ° C.). The reaction was terminated.
 反応により、得られたゾルを濾過し、次いで60℃の真空乾燥器を用いて粉末とした。この粉末をX線回折法により定量分析した結果、(ブルーカイト型121面のピーク強度)/(三本が重なる位置でのピーク強度)比は0.38、(ルチル型のメインピーク強度)/(三本が重なる位置でのピーク強度)比は0.05であった。これらから求めると酸化チタンは、ブルーカイト型が約70.0質量%、ルチル型が約1.2質量%、アナターゼ型が約28.8質量%の結晶性であった。また、透過型電子顕微鏡でこの微粒子を観察したところ、1次粒子の平均粒径は0.015μmであった。 The sol obtained by the reaction was filtered, and then powdered using a vacuum dryer at 60 ° C. As a result of quantitative analysis of this powder by X-ray diffractometry, the ratio of (peak intensity on the surface of blue kite type 121) / (peak intensity at the position where the three overlap) is 0.38, (rutile main peak intensity) / The ratio (peak intensity at the position where the three lines overlap) was 0.05. From these, the titanium oxide was crystallinity of about 70.0% by mass for the brookite type, about 1.2% by mass for the rutile type, and about 28.8% by mass for the anatase type. Further, when the fine particles were observed with a transmission electron microscope, the average particle diameter of the primary particles was 0.015 μm.
(酸化チタン3(ブルーカイト型))
 三塩化チタン水溶液(Ti含有量:28質量%、比重1.5、純度99.9%)を蒸留水で希釈し、チタン濃度換算で0.25モル/Lの溶液とした。このとき、液温が上昇しないよう氷冷して、50℃以下に保った。次に、この溶液を還流冷却器付きの反応槽に500ml投入し、85℃に加温しながらオゾンガス発生装置から純度80%のオゾンガスを1L/minでバブリングし、酸化反応を行なった。この状態で2時間保持し、完全に反応を終了した。得られたゾルをろ過、真空乾燥し、粉末とした。この粉末をX線回折法により定量分析した結果、(ブルーカイト型121面のピーク強度)/(三本が重なる位置でのピーク強度)比は0.85、(ルチル型のメインピーク強度)/(三本が重なる位置でのピーク強度)比は0であった。これらから求めると二酸化チタンは、ブルーカイト型が約98質量%、ルチル型が0質量%、アナターゼ型が0質量%であり、約2%は無定形であった。また、透過型電子顕微鏡でこの微粒子を観察したところ、1次粒子の平均粒径は0.05μmであった。
(Titanium oxide 3 (Blue Kite type))
An aqueous solution of titanium trichloride (Ti content: 28% by mass, specific gravity 1.5, purity 99.9%) was diluted with distilled water to obtain a solution having a concentration of 0.25 mol / L in terms of titanium concentration. At this time, it was ice-cooled so as not to increase the liquid temperature and kept at 50 ° C. or lower. Next, 500 ml of this solution was put into a reaction tank equipped with a reflux condenser, and ozone gas with a purity of 80% was bubbled from the ozone gas generator at 1 L / min while heating at 85 ° C. to carry out an oxidation reaction. This state was maintained for 2 hours to complete the reaction. The obtained sol was filtered and vacuum-dried to obtain a powder. As a result of quantitative analysis of this powder by X-ray diffractometry, the ratio of (peak intensity on the surface of blue kite type 121) / (peak intensity at the position where the three overlap) is 0.85, (rutile main peak intensity) / The ratio (peak intensity at the position where the three lines overlap) was 0. From these, the titanium dioxide was about 98% by mass for the blue kite type, 0% by mass for the rutile type, 0% by mass for the anatase type, and about 2% was amorphous. Further, when the fine particles were observed with a transmission electron microscope, the average particle diameter of the primary particles was 0.05 μm.
(光電気化学電池の作製および評価)
 上記の方法で調製した酸化チタン1~3を半導体として特開2000-340269号公報記載の図1に示す構成の光電変換素子を用いた光電気化学電池を以下の方法で作製した。
 ガラス基板上にフッ素ドープの酸化スズをコートし、導電性透明電極とした。電極面上にそれぞれの酸化チタン粒子を原料としたペーストを作成し、バーコート法で厚さ50μmに塗布した後、500℃で焼成して膜厚約20μmの薄層を形成した。
(Production and evaluation of photoelectrochemical cells)
A photoelectrochemical cell using the photoelectric conversion element having the structure shown in FIG. 1 described in JP-A No. 2000-340269 using the titanium oxides 1 to 3 prepared by the above method as a semiconductor was produced by the following method.
A glass substrate was coated with fluorine-doped tin oxide to form a conductive transparent electrode. A paste using each titanium oxide particle as a raw material was formed on the electrode surface, applied to a thickness of 50 μm by a bar coating method, and then baked at 500 ° C. to form a thin layer having a thickness of about 20 μm.
 実験1で検討したように、本発明に用いられる色素は各種有機溶剤への溶解性が高いことがわかったので、溶媒としてエタノールを用いて、色素溶液の濃度を変えたものについて、評価した。本発明に用いられる色素の場合は、3×10-4Mと、6×10-4Mの2水準の色素溶液を用いた。比較色素の場合は、溶媒に対する溶解性が低く、6×10-4M溶液を調製することができなかったので、3×10-4Mの色素溶液のみを用いて評価した。
 表5に示す色素の濃度のエタノール溶液を調製し、これに上記の酸化チタンの薄層を形成したガラス基板を浸漬し、12時間室温で保持した。その結果、酸化チタンの薄層上にこれらの色素を吸着させた。
As examined in Experiment 1, since the dye used in the present invention was found to be highly soluble in various organic solvents, ethanol was used as the solvent, and the dye solution having different concentrations was evaluated. In the case of the dye used in the present invention, a two-level dye solution of 3 × 10 −4 M and 6 × 10 −4 M was used. In the case of the comparative dye, since the solubility in a solvent was low and a 6 × 10 −4 M solution could not be prepared, the evaluation was performed using only the 3 × 10 −4 M dye solution.
An ethanol solution having the dye concentrations shown in Table 5 was prepared, and the glass substrate on which the titanium oxide thin layer was formed was immersed in this solution, and kept at room temperature for 12 hours. As a result, these dyes were adsorbed onto a thin layer of titanium oxide.
 電解液としてテトラプロピルアンモニウムのヨウ素塩とヨウ化リチウムのアセトニトリル溶液を用い、白金を対極として特開2000-340269号公報の図1に示す構成を有する光電変換素子を作製した。光電変換は160Wの高圧水銀ランプの光(フィルターで赤外線部をカット)を上記の素子に照射し、実験1と同様の方法で変換効率の初期値を測定した。その結果を変換効率として表5に示す。
 変換効率が2.5%以上のものを◎、1%以上2.5%未満のものを○、0.3%以上1%未満のものを△、0.3%未満のものを×として表示し、変換効率が0.3%以上のものを合格とし、0.3%未満のものを不合格とした。また、変換効率の初期値に対し500時間後の変換効率が90%以上のものを◎、60%以上90%未満のものを○、40%以上60%未満のものを△、40%未満のものを×として評価した。その結果を耐久性として表5に示す。変換効率の初期値に対し500時間後の変換効率が60%以上のものを合格とし、60%未満のものを不合格とした。
A photoelectric conversion element having a configuration shown in FIG. 1 of JP-A No. 2000-340269 was produced using an iodine salt of tetrapropylammonium as an electrolyte and an acetonitrile solution of lithium iodide and using platinum as a counter electrode. For photoelectric conversion, light from a 160 W high-pressure mercury lamp (the infrared part was cut by a filter) was irradiated to the above-described element, and the initial value of conversion efficiency was measured in the same manner as in Experiment 1. The results are shown in Table 5 as conversion efficiency.
Conversion efficiency of 2.5% or more is indicated as ◎, 1% or more and less than 2.5% is indicated by ○, 0.3% or more and less than 1% is indicated as △, and less than 0.3% is indicated as ×. The conversion efficiency of 0.3% or more was accepted, and the conversion efficiency of less than 0.3% was rejected. Also, the conversion efficiency after 500 hours with respect to the initial value of conversion efficiency is 90% or more, ◎, 60% or more and less than 90%, ◯, 40% or more and less than 60%, or less than 40%. Things were evaluated as x. The results are shown in Table 5 as durability. When the conversion efficiency after 500 hours was 60% or more with respect to the initial value of the conversion efficiency, it was determined to be acceptable, and when the conversion efficiency was less than 60%, it was rejected.
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000065
 表5からわかるように、本発明の色素を用いた場合、色素溶液の濃度を高くすることにより、変換効率の初期値が高くなることがわかった。これは色素溶液の濃度を高くすることにより、酸化チタンへの色素の吸着を多くすることができるためと思われる。比較色素を用いた場合も、変換効率の初期値は合格レベルであった。
 しかし、耐久性に関しては、比較色素を用いた場合は、いずれも不合格なのに対し、本発明の色素を用いた場合は、優れた特性を示した。
As can be seen from Table 5, it was found that when the dye of the present invention was used, the initial value of the conversion efficiency was increased by increasing the concentration of the dye solution. This seems to be because the adsorption of the dye to titanium oxide can be increased by increasing the concentration of the dye solution. Even when the comparative dye was used, the initial value of the conversion efficiency was acceptable.
However, with respect to durability, when the comparative dye was used, all of them failed, whereas when the dye of the present invention was used, excellent characteristics were exhibited.
[実験6]
 粒径の異なる酸化チタンを用いて、半導体微粒子が分散したペーストを作製した。これを用いて光電気化学電池を作製し、その特性を評価した。
[Experiment 6]
A paste in which semiconductor fine particles were dispersed was prepared using titanium oxides having different particle sizes. Using this, a photoelectrochemical cell was produced and its characteristics were evaluated.
[ペーストの調製]
(ペースト1)
 球形のTiO粒子(アナターゼ型、平均粒径;25nm、以下、球形TiO粒子1という)とを硝酸溶液に入れて撹拌することによりチタニアスラリーを調製した。次に、チタニアスラリーに増粘剤としてセルロース系バインダーを加え、混練してペーストを調製した。
[Preparation of paste]
(Paste 1)
A titania slurry was prepared by putting spherical TiO 2 particles (anatase type, average particle size; 25 nm, hereinafter referred to as spherical TiO 2 particles 1) into a nitric acid solution and stirring. Next, a cellulose binder as a thickener was added to the titania slurry and kneaded to prepare a paste.
(ペースト2)
 球形TiO粒子1と、球形のTiO粒子(アナターゼ型、平均粒径;200nm、以下、球形TiO粒子2という)とを硝酸溶液に入れて撹拌することによりチタニアスラリーを調製した。次に、チタニアスラリーに増粘剤としてセルロース系バインダーを加え、混練してペースト(TiO粒子1の質量:TiO粒子2の質量=30:70)を調製した。
(Paste 2)
A titania slurry was prepared by placing spherical TiO 2 particles 1 and spherical TiO 2 particles (anatase type, average particle size; 200 nm, hereinafter referred to as spherical TiO 2 particles 2) in a nitric acid solution and stirring. Next, a cellulose binder as a thickener was added to the titania slurry and kneaded to prepare a paste (mass of TiO 2 particles 1: mass of TiO 2 particles 2 = 30:70).
(ペースト3)
 ペースト1に、棒状のTiO粒子(アナターゼ型、直径;100nm、アスペクト比;5、以下、棒状TiO粒子1という)を混合し、棒状TiO粒子1の質量:ペースト1の質量=10:90のペーストを調製した。
(Paste 3)
The paste 1 is mixed with rod-like TiO 2 particles (anatase type, diameter: 100 nm, aspect ratio: 5, hereinafter referred to as rod-like TiO 2 particles 1), the mass of the rod-like TiO 2 particles 1: the mass of the paste 1 = 10: Ninety pastes were prepared.
(ペースト4)
 ペースト1に、棒状TiO粒子1を混合し、棒状TiO粒子1の質量:ペースト1の質量=30:70のペーストを調製した。
(Paste 4)
The paste 1, a rod-shaped TiO 2 particles 1 were mixed, the mass rod-shaped TiO 2 particles 1: Paste 1 Mass = 30: 70 paste was prepared.
(ペースト5)
 ペースト1に、棒状TiO粒子1を混合し、棒状TiO粒子1の質量:ペースト1の質量=50:50のペーストを調製した。
(Paste 5)
The paste 1, a rod-shaped TiO 2 particles 1 were mixed, the mass rod-shaped TiO 2 particles 1: Paste 1 Mass = 50: 50 paste was prepared.
(ペースト6)
 ペースト1に、板状のマイカ粒子(直径;100nm、アスペクト比;6、以下、板状マイカ粒子1という)を混合し、板状マイカ粒子1の質量:ペースト1の質量=20:80のペーストを調製した。
(Paste 6)
The paste 1 is mixed with plate-like mica particles (diameter: 100 nm, aspect ratio: 6, hereinafter referred to as plate-like mica particles 1). Was prepared.
(ペースト7)
 ペースト1に、棒状のTiO粒子(アナターゼ、直径;30nm、アスペクト比;6.3、以下、棒状TiO粒子2という)を混合し、棒状TiO2粒子2の質量:ペースト1の質量=30:70のペーストを調製した。
(Paste 7)
The paste 1 is mixed with rod-like TiO 2 particles (anatase, diameter: 30 nm, aspect ratio: 6.3, hereinafter referred to as rod-like TiO 2 particles 2), the mass of the rod-like TiO 2 particles 2: the mass of the paste 1 = 30: 70 pastes were prepared.
(ペースト8)
 ペースト1に、棒状のTiO粒子(アナターゼ、直径;50nm、アスペクト比;6.1、以下、棒状TiO粒子3という)を混合し、棒状TiO粒子3の質量:ペースト1の質量=30:70のペーストを調製した。
(Paste 8)
The paste 1 is mixed with rod-like TiO 2 particles (anatase, diameter: 50 nm, aspect ratio: 6.1, hereinafter referred to as rod-like TiO 2 particles 3), and the mass of the rod-like TiO 2 particles 3: the mass of the paste 1 = 30. : 70 paste was prepared.
(ペースト9)
 ペースト1に、棒状のTiO粒子(アナターゼ、直径;75nm、アスペクト比;5.8、以下、棒状TiO粒子4という)を混合し、棒状TiO粒子4の質量:ペースト1の質量=30:70のペーストを調製した。
(Paste 9)
The paste 1 is mixed with rod-shaped TiO 2 particles (anatase, diameter: 75 nm, aspect ratio: 5.8, hereinafter referred to as rod-shaped TiO 2 particles 4), and the mass of the rod-shaped TiO 2 particles 4: the mass of the paste 1 = 30. : 70 paste was prepared.
(ペースト10)
 ペースト1に、棒状のTiO粒子(アナターゼ、直径;130nm、アスペクト比;5.2、以下、棒状TiO粒子5という)を混合し、棒状TiO粒子5の質量:ペースト1の質量=30:70のペーストを調製した。
(Paste 10)
The paste 1 is mixed with rod-like TiO 2 particles (anatase, diameter: 130 nm, aspect ratio: 5.2, hereinafter referred to as rod-like TiO 2 particles 5), and the mass of the rod-like TiO 2 particles 5: the mass of the paste 1 = 30. : 70 paste was prepared.
(ペースト11)
 ペースト1に、棒状のTiO粒子(アナターゼ、直径;180nm、アスペクト比;5、以下、棒状TiO粒子6という)を混合し、棒状TiO粒子6の質量:ペースト1の質量=30:70のペーストを調製した。
(Paste 11)
The paste 1 is mixed with rod-like TiO 2 particles (anatase, diameter: 180 nm, aspect ratio: 5, hereinafter referred to as rod-like TiO 2 particles 6), and the mass of the rod-like TiO 2 particles 6: the mass of the paste 1 = 30: 70. A paste of was prepared.
(ペースト12)
 ペースト1に、棒状のTiO粒子(アナターゼ、直径;240nm、アスペクト比;5、以下、棒状TiO粒子7という)を混合し、棒状TiO粒子7の質量:ペースト1の質量=30:70のペーストを調製した。
(Paste 12)
The paste 1 is mixed with rod-like TiO 2 particles (anatase, diameter: 240 nm, aspect ratio: 5, hereinafter referred to as rod-like TiO 2 particles 7), and the mass of the rod-like TiO 2 particles 7: the mass of the paste 1 = 30: 70. A paste of was prepared.
(ペースト13)
 ペースト1に、棒状のTiO粒子(アナターゼ、直径;110nm、アスペクト比;4.1、以下、棒状TiO粒子8という)を混合し、棒状TiO粒子8の質量:ペースト1の質量=30:70のペーストを調製した。
(Paste 13)
The paste 1 is mixed with rod-like TiO 2 particles (anatase, diameter: 110 nm, aspect ratio: 4.1, hereinafter referred to as rod-like TiO 2 particles 8), and the mass of the rod-like TiO 2 particles 8: the mass of the paste 1 = 30. : 70 paste was prepared.
(ペースト14)
 ペースト1に、棒状のTiO粒子(アナターゼ、直径;105nm、アスペクト比;3.4、以下、棒状TiO粒子9という)を混合し、棒状TiO粒子9の質量:ペースト1の質量=30:70のペーストを調製した。
(Paste 14)
The paste 1 is mixed with rod-like TiO 2 particles (anatase, diameter: 105 nm, aspect ratio: 3.4, hereinafter referred to as rod-like TiO 2 particles 9), and the mass of the rod-like TiO 2 particles 9: the mass of the paste 1 = 30. : 70 paste was prepared.
(光電気化学電池1)
 以下に示す手順により、特開2002-289274号公報の図5に記載の光電極12と同様の構成を有する光電極を作製し、更に、光電極を用いて、当該光電極以外は色素増感型太陽電池20と同様の構成を有する10×10mmのスケールの光電気化学電池1を作製した。
(Photoelectrochemical cell 1)
A photoelectrode having the same configuration as that of the photoelectrode 12 shown in FIG. 5 of JP-A-2002-289274 is prepared by the following procedure, and further, a dye sensitization is performed using the photoelectrode except for the photoelectrode. A 10 × 10 mm scale photoelectrochemical cell 1 having the same configuration as that of the solar cell 20 was produced.
 ガラス基板上にフッ素ドープされたSnO導電膜(膜厚;500nm)を形成した透明電極を準備した。
 このSnO導電膜上に、上記のペースト2をスクリーン印刷し、次いで乾燥させた。その後、空気中、450℃の条件のもとで焼成した。更に、ペースト4を用いてこのスクリーン印刷と焼成とを繰り返すことにより、SnO導電膜上に上記特許文献の図5に示す半導体電極2と同様の構成の半導体電極(受光面の面積;10mm×10mm、層厚;10μm、半導体層の層厚;6μm、光散乱層の層厚;4μm、光散乱層に含有される棒状TiO粒子1の含有率;30質量%)を形成し、増感色素を含有していない光電極を作製した。
A transparent electrode in which a fluorine-doped SnO 2 conductive film (film thickness: 500 nm) was formed on a glass substrate was prepared.
On the SnO 2 conductive film, the paste 2 was screen printed and then dried. Then, it baked on the conditions of 450 degreeC in the air. Furthermore, by repeating this screen printing and baking using the paste 4, a semiconductor electrode having the same configuration as the semiconductor electrode 2 shown in FIG. 5 of the above-mentioned patent document on the SnO 2 conductive film (area of light receiving surface; 10 mm × 10 mm, layer thickness: 10 μm, layer thickness of semiconductor layer: 6 μm, layer thickness of light scattering layer: 4 μm, content of rod-like TiO 2 particles 1 contained in the light scattering layer; 30% by mass) for sensitization A photoelectrode containing no dye was prepared.
 次に、半導体電極に色素を以下のようにして吸着させた。まずマグネシウムエトキシドで脱水した無水エタノールを溶媒として、これに表6記載の色素のそれぞれの濃度が3×10-4mol/Lとなるように溶解し、色素溶液を調製した。次に、この溶液に半導体電極を浸漬し、これにより、半導体電極に色素が全量で約1.5×10-7mol/cm吸着し、光電極10を完成させた。 Next, the pigment | dye was made to adsorb | suck to a semiconductor electrode as follows. First, an absolute ethanol dehydrated with magnesium ethoxide was used as a solvent, and each of the dyes listed in Table 6 was dissolved so as to have a concentration of 3 × 10 −4 mol / L to prepare a dye solution. Next, the semiconductor electrode was immersed in this solution, whereby the total amount of the dye was adsorbed to the semiconductor electrode by about 1.5 × 10 −7 mol / cm 2 to complete the photoelectrode 10.
 次に、対極として上記の光電極と同様の形状と大きさを有する白金電極(Pt薄膜の厚さ;100nm)、電解質Eとして、ヨウ素及びヨウ化リチウムを含むヨウ素系レドックス溶液を調製した。更に、半導体電極の大きさに合わせた形状を有するデュポン社製のスペーサS(商品名:「サーリン」)を準備し、特開2002-289274号公報の図3に示すように、光電極10と対極CEとスペーサSを介して対向させ、内部に上記の電解質を充填して光電気化学電池1を完成させた。 Next, an iodine-based redox solution containing iodine and lithium iodide as a platinum electrode (thickness of Pt thin film; 100 nm) having the same shape and size as the above-described photoelectrode as a counter electrode and electrolyte E was prepared. Further, a DuPont spacer S (trade name: “Surlin”) having a shape corresponding to the size of the semiconductor electrode was prepared. As shown in FIG. 3 of Japanese Patent Application Laid-Open No. 2002-289274, the photoelectrode 10 and The counter electrode CE and the spacer S were opposed to each other, and the above electrolyte was filled therein to complete the photoelectrochemical cell 1.
(光電気化学電池2)
 半導体電極の製造を以下のようにして行ったこと以外は、光電気化学電池1と同様の手順により特開2002-289274号公報記載の図1に示した光電極10を作製し、特開2002-289274号公報記載の図3に示した色素増感型太陽電池20と同様の構成を有する光電気化学電池2を作製した。
(Photoelectrochemical cell 2)
The photoelectrode 10 shown in FIG. 1 described in JP-A-2002-289274 was prepared by the same procedure as that of the photoelectrochemical cell 1 except that the semiconductor electrode was manufactured as follows. A photoelectrochemical cell 2 having the same configuration as that of the dye-sensitized solar cell 20 shown in FIG.
 ペースト2を半導体層形成用ペーストとして使用した。そして、SnO導電膜上に、ペースト2をスクリーン印刷し、次いで乾燥させた。その後、空気中、450℃の条件のもとで焼成し、半導体層を形成した。 Paste 2 was used as a semiconductor layer forming paste. Then, paste 2 was screen-printed on the SnO 2 conductive film and then dried. Then, it baked on the conditions of 450 degreeC in the air, and formed the semiconductor layer.
 ペースト3を光散乱層の最内部の層形成用ペーストとして使用した。また、ペースト5を光散乱層の最外部の層形成用ペーストとして使用した。そして、光電気化学電池1と同様にして半導体層上に光散乱層を形成した。 Paste 3 was used as the innermost layer forming paste of the light scattering layer. The paste 5 was used as the outermost layer forming paste of the light scattering layer. Then, a light scattering layer was formed on the semiconductor layer in the same manner as in the photoelectrochemical cell 1.
 そして、SnO導電膜上に、特開2002-289274号公報記載の図1に示す半導体電極2と同様の構成の半導体電極(受光面の面積;10mm×10mm、層厚;10μm、半導体層の層厚;3μm、最内部の層の層厚;4μm、最内部の層に含有される棒状TiO粒子1の含有率;10質量%、最外部の層の層厚;3μm、最内部の層に含有される棒状TiO粒子1の含有率;50質量%)を形成し、増感色素を含有していない光電極を作製した。光電気化学電池1と同様に、光電極と対極CEとスペーサSを介して対向させ、内部に上記の電解質を充填して光電気化学電池2を完成させた。 Then, on the SnO 2 conductive film, a semiconductor electrode having the same configuration as the semiconductor electrode 2 shown in FIG. 1 described in Japanese Patent Application Laid-Open No. 2002-289274 (light receiving surface area; 10 mm × 10 mm, layer thickness; 10 μm, Layer thickness: 3 μm, innermost layer thickness: 4 μm, content of rod-like TiO 2 particles 1 contained in the innermost layer; 10 mass%, outermost layer thickness: 3 μm, innermost layer The content ratio of the rod-like TiO 2 particles 1 contained in 1; 50% by mass) was formed, and a photoelectrode containing no sensitizing dye was produced. Similarly to the photoelectrochemical cell 1, the photoelectrochemical cell 2 was completed by making the photoelectrode, the counter electrode CE, and the spacer S face each other and filling the above electrolyte therein.
(光電気化学電池3)
 半導体電極の製造に際して、ペースト1を半導体層形成用ペーストとして使用し、ペースト4を光散乱層形成用ペーストとして使用したこと以外は、光電気化学電池1と同様の手順により、特開2002-289274号公報の図5に示した光電極10を作製し、特開2002-289274号公報記載の図3に示した光電気化学電池20と同様の構成を有する光電気化学電池3を作製した。
 なお、半導体電極は、受光面の面積;10mm×10mm、層厚;10μm、半導体層の層厚;5μm、光散乱層の層厚;5μm、光散乱層に含有される棒状TiO粒子1の含有率;30質量%であった。
(Photoelectrochemical cell 3)
According to the same procedure as that of the photoelectrochemical cell 1 except that the paste 1 was used as a semiconductor layer forming paste and the paste 4 was used as a light scattering layer forming paste in the production of a semiconductor electrode. 5 was produced, and a photoelectrochemical cell 3 having the same configuration as the photoelectrochemical cell 20 shown in FIG. 3 described in JP-A-2002-289274 was produced.
The semiconductor electrode has a light receiving surface area of 10 mm × 10 mm, a layer thickness of 10 μm, a semiconductor layer thickness of 5 μm, a light scattering layer thickness of 5 μm, and the rod-like TiO 2 particles 1 contained in the light scattering layer. Content rate: 30% by mass.
(光電気化学電池4)
 半導体電極の製造に際して、ペースト2を半導体層形成用ペーストとして使用し、ペースト6を光散乱層形成用ペーストとして使用したこと以外は、光電気化学電池1と同様の手順により図5に示した光電極10及び特開2002-289274記載の図3に示した光電気化学電池20と同様の構成を有する光電極及び光電気化学電池4を作製した。なお、半導体電極は、受光面の面積;10mm×10mm、層厚;10μm、半導体層の層厚;6.5μm、光散乱層の層厚;3.5μm、光散乱層に含有される板状マイカ粒子1の含有率;20質量%であった。
(Photoelectrochemical cell 4)
In the production of the semiconductor electrode, the light shown in FIG. 5 was obtained by the same procedure as that of the photoelectrochemical cell 1 except that the paste 2 was used as the semiconductor layer forming paste and the paste 6 was used as the light scattering layer forming paste. A photoelectrode and photoelectrochemical cell 4 having the same configuration as the electrode 10 and the photoelectrochemical cell 20 shown in FIG. 3 described in JP-A-2002-289274 were produced. The semiconductor electrode has a light receiving surface area: 10 mm × 10 mm, layer thickness: 10 μm, semiconductor layer thickness: 6.5 μm, light scattering layer thickness: 3.5 μm, plate-like contained in the light scattering layer The content of mica particles 1 was 20% by mass.
(光電気化学電池5)
 半導体電極の製造に際して、ペースト2を半導体層形成用ペーストとして使用し、ペースト8を光散乱層形成用ペーストとして使用したこと以外は、光電気化学電池1と同様の手順により光電気化学電池5を作製した。なお、半導体電極の光散乱層に含有される棒状TiO粒子3の含有率;30質量%であった。
(Photoelectrochemical cell 5)
In the production of the semiconductor electrode, the photoelectrochemical cell 5 was prepared by the same procedure as that of the photoelectrochemical cell 1 except that the paste 2 was used as the semiconductor layer forming paste and the paste 8 was used as the light scattering layer forming paste. Produced. The content ratio of the rod-shaped TiO 2 particles 3 contained in the light scattering layer of the semiconductor electrode; was 30 wt%.
(光電気化学電池6)
 半導体電極の製造に際して、ペースト2を半導体層形成用ペーストとして使用し、ペースト9を光散乱層形成用ペーストとして使用したこと以外は、光電気化学電池1と同様の手順により光電気化学電池6を作製した。なお、半導体電極の光散乱層に含有される棒状TiO粒子4の含有率;30質量%であった。
(Photoelectrochemical cell 6)
In the production of the semiconductor electrode, the photoelectrochemical cell 6 was prepared by the same procedure as that of the photoelectrochemical cell 1 except that the paste 2 was used as the semiconductor layer forming paste and the paste 9 was used as the light scattering layer forming paste. Produced. The content ratio of the rod-shaped TiO 2 particles 4 contained in the light scattering layer of the semiconductor electrode; was 30 wt%.
(光電気化学電池7)
 半導体電極の製造に際して、ペースト2を半導体層形成用ペーストとして使用し、ペースト10を光散乱層形成用ペーストとして使用したこと以外は、光電気化学電池1と同様の手順により光電気化学電池7を作製した。なお、半導体電極の光散乱層に含有される棒状TiO粒子5の含有率;30質量%であった。
(Photoelectrochemical cell 7)
In the production of the semiconductor electrode, the photoelectrochemical cell 7 was prepared by the same procedure as that of the photoelectrochemical cell 1 except that the paste 2 was used as the semiconductor layer forming paste and the paste 10 was used as the light scattering layer forming paste. Produced. The content ratio of the rod-shaped TiO 2 particles 5 contained in the light scattering layer of the semiconductor electrode; was 30 wt%.
(光電気化学電池8)
 半導体電極の製造に際して、ペースト2を半導体層形成用ペーストとして使用し、ペースト11を光散乱層形成用ペーストとして使用したこと以外は、光電気化学電池1と同様の手順により光電気化学電池8を作製した。なお、半導体電極の光散乱層に含有される棒状TiO粒子6の含有率;30質量%であった。
(Photoelectrochemical cell 8)
In the production of the semiconductor electrode, the photoelectrochemical cell 8 was prepared by the same procedure as the photoelectrochemical cell 1 except that the paste 2 was used as the semiconductor layer forming paste and the paste 11 was used as the light scattering layer forming paste. Produced. The content ratio of the rod-shaped TiO 2 particles 6 contained in the light scattering layer of the semiconductor electrode; was 30 wt%.
(光電気化学電池9)
 半導体電極の製造に際して、ペースト2を半導体層形成用ペーストとして使用し、ペースト13を光散乱層形成用ペーストとして使用したこと以外は、光電気化学電池1と同様の手順により光電気化学電池9を作製した。なお、半導体電極の光散乱層に含有される棒状TiO粒子8の含有率;30質量%であった。
(Photoelectrochemical cell 9)
In the production of the semiconductor electrode, the photoelectrochemical cell 9 was prepared in the same procedure as the photoelectrochemical cell 1 except that the paste 2 was used as the semiconductor layer forming paste and the paste 13 was used as the light scattering layer forming paste. Produced. The content ratio of the rod-shaped TiO 2 particles 8 contained in the light scattering layer of the semiconductor electrode; was 30 wt%.
(光電気化学電池10)
 半導体電極の製造に際して、ペースト2を半導体層形成用ペーストとして使用し、ペースト14を光散乱層形成用ペーストとして使用したこと以外は、光電気化学電池1と同様の手順により光電気化学電池10を作製した。なお、半導体電極の光散乱層に含有される棒状TiO粒子9の含有率;30質量%であった。
(Photoelectrochemical cell 10)
In the production of the semiconductor electrode, the photoelectrochemical cell 10 was prepared by the same procedure as that of the photoelectrochemical cell 1 except that the paste 2 was used as the semiconductor layer forming paste and the paste 14 was used as the light scattering layer forming paste. Produced. The content of the rod-like TiO 2 particles 9 contained in the light scattering layer of the semiconductor electrode was 30% by mass.
(光電気化学電池11)
 半導体電極の製造に際して、ペースト2のみを用いて半導体層のみからなる半導体電極(受光面の面積;10mm×10mm、層厚;10μm、)を作製したこと以外は、光電気化学電池1と同様の手順により光電気化学電池11を作製した。
(Photoelectrochemical cell 11)
Similar to the photoelectrochemical cell 1 except that a semiconductor electrode (light-receiving surface area: 10 mm × 10 mm, layer thickness: 10 μm) made of only the semiconductor layer using only the paste 2 was manufactured in the manufacture of the semiconductor electrode. The photoelectrochemical cell 11 was produced according to the procedure.
(電気化学電池12)
 半導体電極の製造に際して、ペースト2を半導体層形成用ペーストとして使用し、ペースト7を光散乱層形成用ペーストとして使用したこと以外は、光電気化学電池1と同様の手順により光電極及び比較光電気化学電池12を作製した。なお、半導体電極の光散乱層に含有される棒状TiO粒子2の含有率;30質量%であった。
(Electrochemical battery 12)
In the production of the semiconductor electrode, the photoelectrode and the comparative photoelectricity were prepared in the same procedure as in the photoelectrochemical cell 1 except that the paste 2 was used as the semiconductor layer forming paste and the paste 7 was used as the light scattering layer forming paste. A chemical battery 12 was produced. The content ratio of the rod-shaped TiO 2 particles 2 contained in the light scattering layer of the semiconductor electrode; was 30 wt%.
[特性の試験及び評価]
 光電気化学電池1~12について、ソーラーシミュレータ(WACOM製、WXS-85H(商品名))を用いて、AM1.5フィルターを通したキセノンランプから1000W/mの疑似太陽光を照射した。I-Vテスターを用いて電流-電圧特性を測定し、変換効率の初期値を求めた。その結果を表6に示す。
 変換効率が2.5%以上のものを◎、1%以上2.5%未満のものを○、0.3%以上1%未満のものを△、0.3%未満のものを×として表示し、変換効率が0.3%以上のものを合格とし、0.3%未満のものを不合格とした。また、変換効率の初期値に対し500時間後の変換効率が90%以上のものを◎、60%以上90%未満のものを○、40%以上60%未満のものを△、40%未満のものを×として評価し、その結果を表6に示す。変換効率の初期値に対し500時間後の変換効率が60%以上のものを合格とし、60%未満のものを不合格とした。
[Testing and evaluation of characteristics]
The photoelectrochemical cells 1 to 12 were irradiated with 1000 W / m 2 of pseudo-sunlight from a xenon lamp through an AM1.5 filter using a solar simulator (manufactured by WACOM, WXS-85H (trade name)). Current-voltage characteristics were measured using an IV tester to determine an initial value of conversion efficiency. The results are shown in Table 6.
Conversion efficiency of 2.5% or more is indicated as ◎, 1% or more and less than 2.5% is indicated by ○, 0.3% or more and less than 1% is indicated as △, and less than 0.3% is indicated as ×. The conversion efficiency of 0.3% or more was accepted, and the conversion efficiency of less than 0.3% was rejected. In addition, the conversion efficiency after 500 hours with respect to the initial value of conversion efficiency is 90% or more, ◎, 60% to less than 90% ○, 40% to less than 60% △, less than 40% Things were evaluated as x and the results are shown in Table 6. When the conversion efficiency after 500 hours was 60% or more with respect to the initial value of the conversion efficiency, it was determined to be acceptable, and when the conversion efficiency was less than 60%, it was rejected.
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000066
 表6からわかるように、本発明の色素を用いた光電気化学電池は、変換効率の初期値が1%以上であり、さらに500時間経過後の変換効率が初期値の60%以上と、優れた耐久性を示した。
 これに対して、比較色素を用いた場合には、変換効率の初期値が合格レベルであるが、耐久性に問題があることがわかった。
As can be seen from Table 6, in the photoelectrochemical cell using the dye of the present invention, the initial value of the conversion efficiency is 1% or more, and the conversion efficiency after 500 hours is excellent, being 60% or more of the initial value. Showed high durability.
On the other hand, when the comparative dye was used, it was found that the initial value of the conversion efficiency was an acceptable level, but there was a problem with durability.
[実験7]
 金属酸化物微粒子に金属アルコキシドを加えスラリー状としたものを導電性基板に塗布し、その後、UVオゾン照射、UV照射又は乾燥を行い、電極を作製した。その後、光電気化学電池を作製し、変換効率を測定した。
[Experiment 7]
A slurry obtained by adding metal alkoxide to metal oxide fine particles was applied to a conductive substrate, and then UV ozone irradiation, UV irradiation or drying was performed to produce an electrode. Then, the photoelectrochemical cell was produced and the conversion efficiency was measured.
(金属酸化物微粒子)
 金属酸化物微粒子としては、酸化チタンを用いた。酸化チタンは、質量比で、30%ルチル型及び70%アナターゼ型、平均粒径25nmのP25粉末(Degussa社製、商品名)を用いた。
(Metal oxide fine particles)
Titanium oxide was used as the metal oxide fine particles. As the titanium oxide, P25 powder (trade name, manufactured by Degussa) having a mass ratio of 30% rutile type and 70% anatase type and an average particle size of 25 nm was used.
(金属酸化物微粒子粉末の前処理)
 金属酸化物微粒子をあらかじめ熱処理することで表面の有機物と水分を除去した。酸化チタン微粒子の場合は450℃のオーブンで大気下、30分間加熱した。
(Pretreatment of metal oxide fine particle powder)
The metal oxide fine particles were previously heat-treated to remove surface organic substances and moisture. In the case of titanium oxide fine particles, the fine particles were heated in an oven at 450 ° C. in the atmosphere for 30 minutes.
(金属酸化物微粒子に含まれる水分量の測定)
 温度26℃、湿度72%の環境に保存しておいた酸化チタン、P25粉末(Degussa社製、商品名)に含まれる水分量を、熱重量測定における重量減少、及び300℃に加熱したときに脱着した水分量のカールフィッシャー滴定により定量した。
(Measurement of water content in metal oxide fine particles)
When the moisture content contained in titanium oxide and P25 powder (trade name, manufactured by Degussa) stored in an environment of temperature 26 ° C. and humidity 72% is reduced by thermogravimetry and heated to 300 ° C. The amount of moisture desorbed was determined by Karl Fischer titration.
 酸化チタン、P25粉末(Degussa社製、商品名)を300℃で加熱したときに脱着する水分量をカールフィッシャー滴定によって定量したところ、0.1033gの酸化チタン微粉末中に0.253mgの水が含まれていた。すなわち、酸化チタン微粉末は約2.5質量%の水分を含んでいた。30分間熱処理し、冷却後デシケーター中に保存して用いた。 When the amount of water desorbed when titanium oxide, P25 powder (trade name, manufactured by Degussa) was heated at 300 ° C. was quantified by Karl Fischer titration, 0.253 mg of water was contained in 0.1033 g of titanium oxide fine powder. It was included. That is, the fine titanium oxide powder contained about 2.5% by mass of water. It was heat-treated for 30 minutes, cooled and stored in a desiccator.
(金属アルコキシドペーストの調製)
 金属酸化物微粒子を結合する役割をする金属アルコキシドとしては、チタン原料としてはチタン(IV)テトライソプロポキシド(TTIP)、ジルコニウム原料としてはジルコニウム(IV)テトラn-プロポキシド、ニオブ原料としてはニオブ(V)ペンタエトキシド(全てAldrich社製)をそれぞれ用いた。
(Preparation of metal alkoxide paste)
The metal alkoxide that plays a role in bonding metal oxide fine particles includes titanium (IV) tetraisopropoxide (TTIP) as a titanium raw material, zirconium (IV) tetra n-propoxide as a zirconium raw material, and niobium as a niobium raw material. (V) Pentaethoxide (all manufactured by Aldrich) was used.
 金属酸化物微粒子と金属アルコキシドのモル濃度比は、金属アルコキシドの加水分解によって生じるアモルファス層が過度に厚くならず、かつ粒子同士の結合が十分行えるように、金属酸化物微粒子径に応じて適宜調節した。なお、金属アルコキシドはすべて、0.1Mのエタノール溶液とした。酸化チタン微粒子とチタン(IV)テトライソプロポキシド(TTIP)とを混合する場合には、酸化チタン微粒子1gに対し、3.55gの0.1M TTIP溶液を混合した。このとき、得られたペースト中の酸化チタン濃度は約22質量%となり、塗布に適当な粘度となった。また、このときの酸化チタンとTTIPとエタノールは、質量比で1:0.127:3.42、モル比で1:0.036:5.92であった。 The molar concentration ratio between the metal oxide fine particles and the metal alkoxide is appropriately adjusted according to the metal oxide fine particle diameter so that the amorphous layer generated by hydrolysis of the metal alkoxide is not excessively thick and the particles can be sufficiently bonded to each other. did. All metal alkoxides were 0.1M ethanol solutions. When mixing titanium oxide fine particles and titanium (IV) tetraisopropoxide (TTIP), 3.55 g of a 0.1 M TTIP solution was mixed with 1 g of titanium oxide fine particles. At this time, the titanium oxide concentration in the obtained paste was about 22% by mass, and the viscosity was appropriate for coating. Moreover, the titanium oxide, TTIP, and ethanol at this time were 1: 0.127: 3.42 by mass ratio, and 1: 0.036: 5.92 by molar ratio.
 同様に、酸化チタン微粒子とTTIP以外のアルコキシドの混合ペーストについても微粒子濃度が22質量%となるように調製した。酸化亜鉛及び酸化スズ微粒子を用いたペーストでは16質量%とした。酸化亜鉛及び酸化スズの場合は、金属酸化物微粒子1gに対して、金属アルコキシド溶液5.25gの比で混合した。 Similarly, a mixed paste of titanium oxide fine particles and alkoxide other than TTIP was prepared so that the fine particle concentration was 22% by mass. In the paste using zinc oxide and tin oxide fine particles, the content was 16% by mass. In the case of zinc oxide and tin oxide, the metal alkoxide solution was mixed at a ratio of 5.25 g to 1 g of the metal oxide fine particles.
 金属酸化物微粒子と金属アルコキシド溶液は、密閉容器中においてマグネチックスターラーによって2時間攪拌して均一なペーストを得た。導電性基板へのペーストの塗布方法は、ドクターブレード法、スクリーン印刷法、スプレー塗布法などを用いることが可能であり、適当なペースト粘度は塗布方法によって適宜選択した。ここでは簡便にガラス棒で塗布する方法(ドクターブレード法に類似)を用いた。この場合、適当なペースト粘度を与える金属酸化物微粒子の濃度は概ね5~30質量%の範囲となった。 The metal oxide fine particles and the metal alkoxide solution were stirred for 2 hours with a magnetic stirrer in a sealed container to obtain a uniform paste. As a method for applying the paste to the conductive substrate, a doctor blade method, a screen printing method, a spray coating method, or the like can be used, and an appropriate paste viscosity is appropriately selected depending on the application method. Here, a method of applying simply with a glass rod (similar to the doctor blade method) was used. In this case, the concentration of the metal oxide fine particles giving an appropriate paste viscosity was approximately in the range of 5 to 30% by mass.
 金属アルコキシドの分解によって生成するアモルファス金属酸化物の厚さは本実験では0.1~0.6nm程度の範囲にあり、適切な範囲の厚さとすることができた。 The thickness of the amorphous metal oxide formed by the decomposition of the metal alkoxide was in the range of about 0.1 to 0.6 nm in this experiment, and the thickness could be in an appropriate range.
(導電性基板上へのペーストの塗布と風乾処理)
 スズドープ酸化インジウム(ITO)導電膜付きポリエチレンテレフタレート(PET)フィルム基板(20Ω/cm)又はフッ素ドープ酸化スズ(FTO)導電膜付きガラス基板(10Ω/cm)に、スペーサとして粘着テープ2枚を一定間隔で平行に貼り付け、上記の方法に従って調製した各ペーストを、ガラス棒を用いて均一に塗布した。
 ペーストを塗布後、色素吸着前に、UVオゾン処理、UV照射処理、又は乾燥処理の有無について条件を変えて多孔質膜を作製した。
(Applying paste on conductive substrate and air-drying treatment)
Two adhesive tapes as spacers on a polyethylene terephthalate (PET) film substrate (20Ω / cm 2 ) with tin-doped indium oxide (ITO) conductive film or a glass substrate (10Ω / cm 2 ) with fluorine-doped tin oxide (FTO) conductive film The pastes were applied in parallel at regular intervals, and each paste prepared according to the above method was uniformly applied using a glass rod.
After applying the paste and before dye adsorption, a porous film was prepared by changing the conditions for the presence or absence of UV ozone treatment, UV irradiation treatment, or drying treatment.
(乾燥処理)
 導電性基板へ塗布した後の膜を大気中室温において2分程度で風乾した。この過程でペースト中の金属アルコキシドが大気中の水分によって加水分解を受け、Tiアルコキシド、Zrアルコキシド、Nbアルコキシドからそれぞれアモルファスの酸化チタン、酸化ジルコニウム、酸化ニオブが形成された。
 生成したアモルファス金属酸化物が、金属酸化物微粒子同士及び膜と導電性基板を接着する役割を果たすため、風乾するのみで機械的強度と付着性に優れた多孔質膜が得られた。
(Drying process)
The film after application to the conductive substrate was air-dried in the atmosphere at room temperature for about 2 minutes. During this process, the metal alkoxide in the paste was hydrolyzed by moisture in the atmosphere, and amorphous titanium oxide, zirconium oxide, and niobium oxide were formed from Ti alkoxide, Zr alkoxide, and Nb alkoxide, respectively.
Since the produced amorphous metal oxide plays a role of adhering metal oxide fine particles and the film to the conductive substrate, a porous film excellent in mechanical strength and adhesion was obtained only by air drying.
(UVオゾン処理)
 UVオゾン処理には日本レーザー電子社製のNL-UV253  UVオゾンクリーナーを用いた。UV光源には185nmと254nmに輝線を持つ4.5W水銀ランプ3個を備えており、試料を光源から約6.5センチの距離に水平に配置した。チャンバー中に酸素気流を導入することでオゾンが発生する。本実施例においてはこのUVオゾン処理を2時間行なった。なお、このUVオゾン処理によるITO膜及びFTO膜の導電性の低下は全く見られなかった。
(UV ozone treatment)
For UV ozone treatment, NL-UV253 UV ozone cleaner manufactured by Nippon Laser Electronics was used. The UV light source was equipped with three 4.5 W mercury lamps having emission lines at 185 nm and 254 nm, and the sample was placed horizontally at a distance of about 6.5 cm from the light source. Ozone is generated by introducing an oxygen stream into the chamber. In this example, this UV ozone treatment was performed for 2 hours. Note that no decrease in the conductivity of the ITO film and the FTO film due to this UV ozone treatment was observed.
(UV処理)
 チャンバー中を窒素置換して処理を行う以外は同様に、前記UVオゾン処理と同様に、2時間処理を行った。このUV処理によるITO膜及びFTO膜の導電性の低下はまったく見られなかった。
(UV treatment)
Similarly to the UV ozone treatment, the treatment was performed for 2 hours, except that the inside of the chamber was replaced with nitrogen. No decrease in the conductivity of the ITO film and FTO film due to the UV treatment was observed.
(色素吸着)
 色素には表7記載の色素を用いて、各色素の0.5mMのエタノール溶液を調製した。本実験では上記のプロセスで作製した多孔質膜を100℃のオーブンで1時間乾燥した後に増感色素の溶液に浸漬し、そのまま室温で50分間放置して酸化チタン表面に色素を吸着させた。色素吸着後の試料はエタノールで洗浄し、風乾した。
(Dye adsorption)
Using the dyes listed in Table 7, 0.5 mM ethanol solutions of each dye were prepared. In this experiment, the porous film produced by the above process was dried in an oven at 100 ° C. for 1 hour, then immersed in a sensitizing dye solution, and allowed to stand at room temperature for 50 minutes to adsorb the dye on the titanium oxide surface. The sample after dye adsorption was washed with ethanol and air-dried.
(光電気化学電池の作製と電池特性評価)
 色素吸着後の多孔質膜が形成された導電性基板を光電極とし、これと白金微粒子をスパッタリングにより修飾したITO/PETフィルム又はFTO/ガラス対極を対向させて、光電気化学電池を試作した。上記光電極の実効面積は約0.2cmとした。電解質溶液には0.5MのLiI,0.05MのI,0.5Mのt-ブチルピリジンを含む3-メトキシプロピオニトリルを用い、毛管現象によって両電極間のギャップに導入した。
(Production of photoelectrochemical cell and evaluation of battery characteristics)
A photoelectrochemical cell was fabricated by using a conductive substrate on which a porous film after dye adsorption was formed as a photoelectrode, and an ITO / PET film or FTO / glass counter electrode in which platinum fine particles were modified by sputtering. The effective area of the photoelectrode was about 0.2 cm 2 . As the electrolyte solution, 3-methoxypropionitrile containing 0.5 M LiI, 0.05 M I 2 and 0.5 M t-butylpyridine was introduced into the gap between both electrodes by capillary action.
 電池性能の評価は、一定フォトン数(1016cm-2)照射下での光電流作用スペクトル測定及びAM1.5擬似太陽光(100mW/cm)照射下でのI-V測定により行なった。これらの測定には分光計器社製のCEP-2000型分光感度測定装置を用いた。得られた変換効率を表7に示す。
 変換効率が2.0%以上のものを◎、0.8%以上2.0%未満のものを○、0.3%以上0.8%未満のものを△、0.3%未満のものを×として表示し、変換効率が0.3%以上のものを合格とし、0.3%未満のものを不合格とした。また、変換効率の初期値に対し500時間後の変換効率が90%以上のものを◎、60%以上90%未満のものを○、40%以上60%未満のものを△、40%未満のものを×として評価し、この結果を表7に耐久性として示す。変換効率の初期値に対し500時間後の変換効率が60%以上のものを合格とし、60%未満のものを不合格とした。
The battery performance was evaluated by photocurrent action spectrum measurement under irradiation with a constant number of photons (10 16 cm −2 ) and IV measurement under irradiation with AM1.5 simulated sunlight (100 mW / cm 2 ). A CEP-2000 type spectral sensitivity measuring device manufactured by Spectrometer Co., Ltd. was used for these measurements. The conversion efficiency obtained is shown in Table 7.
Conversion efficiency is 2.0% or more, ◎, 0.8% or more, less than 2.0%, ○, 0.3% or more, less than 0.8%, △, less than 0.3% Was displayed as x, and those with a conversion efficiency of 0.3% or more were accepted and those with less than 0.3% were rejected. In addition, the conversion efficiency after 500 hours with respect to the initial value of conversion efficiency is 90% or more, ◎, 60% to less than 90% ○, 40% to less than 60% △, less than 40% Those were evaluated as x, and the results are shown in Table 7 as durability. When the conversion efficiency after 500 hours was 60% or more with respect to the initial value of the conversion efficiency, it was determined to be acceptable, and when the conversion efficiency was less than 60%, it was rejected.
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000067
 表7において、「UVオゾン」、「UV」、「乾燥」の欄はそれぞれ、多孔質膜の形成後、増感色素吸着前における、UVオゾン処理、UV照射処理、乾燥処理の有無を表す。処理したものが「○」であり、処理なしのものが「×」である。 In Table 7, the columns of “UV ozone”, “UV”, and “dry” indicate the presence / absence of UV ozone treatment, UV irradiation treatment, and drying treatment after formation of the porous film and before sensitizing dye adsorption. The processed one is “◯”, and the unprocessed one is “×”.
 表7の「TiOの前処理の欄は、酸化チタン微粒子の前処理(450℃のオーブンで30分間熱処理)の有無を示す。試料6、14、22は、高TTIP濃度(酸化チタン:TTIPのモル比が1:0.356)のペーストを用いた試料を表す。他の試料(試料1~5,7~13,23,24)は全て酸化チタン:TTIP=1:0.0356のペーストを用いた。 The column of Pretreatment of TiO 2 ” in Table 7 indicates the presence or absence of pretreatment of titanium oxide fine particles (heat treatment in an oven at 450 ° C. for 30 minutes). Samples 6, 14, and 22 represent samples using a paste having a high TTIP concentration (titanium oxide: TTIP molar ratio of 1: 0.356). The other samples (samples 1 to 5, 7 to 13, 23, 24) were all made of titanium oxide: TTIP = 1: 0.0356.
 表7からわかるように、本発明の色素を用いた光電気化学電池は、多孔質膜の形成後、増感色素吸着前における、UVオゾン処理、UV照射処理、乾燥処理の有無にかかわらず、当該色素を単独使用した場合よりも、常に光電気化学電池の変換効率が高く、合格レベルの変換効率が得られることがわかった。さらに500時間経過後の変換効率が初期値の60%以上と、優れた耐久性を示した。
 これに対して、比較色素を用いた場合には、変換効率の初期値が合格レベルであるが、耐久性に問題があることがわかった。
As can be seen from Table 7, the photoelectrochemical cell using the dye of the present invention, after the formation of the porous film and before the sensitizing dye adsorption, regardless of the presence or absence of UV ozone treatment, UV irradiation treatment, drying treatment, It was found that the conversion efficiency of the photoelectrochemical cell was always higher than that when the dye was used alone, and a conversion efficiency at a pass level was obtained. Furthermore, the conversion efficiency after the elapse of 500 hours was 60% or more of the initial value, indicating excellent durability.
On the other hand, when the comparative dye was used, it was found that the initial value of the conversion efficiency was an acceptable level, but there was a problem with durability.
[実験8]
 溶媒としてアセトニトリルを用い、ヨウ化リチウム0.1mol/L、ヨウ素0.05mol/L、ヨウ化ジメチルプロピルイミダゾリウム0.62mol/Lを溶解した電解質溶液を調製した。ここに下記に示すNo.1~No.8のベンズイミダゾール系化合物をそれぞれ濃度0.5mol/Lになるように別々に添加し、溶解した。
[Experiment 8]
Using acetonitrile as a solvent, an electrolyte solution was prepared by dissolving 0.1 mol / L of lithium iodide, 0.05 mol / L of iodine, and 0.62 mol / L of dimethylpropylimidazolium iodide. No. shown below. 1-No. 8 benzimidazole compounds were separately added and dissolved so as to have a concentration of 0.5 mol / L.
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
 No.1~No.8のベンズイミダゾール系化合物電解液を、導電性ガラスに表8記載の色素を担持した多孔質酸化チタン半導体薄膜(厚さ15μm)に滴下した。ここにポリエチレンフィルム製のフレーム型スペーサー(厚さ25μm)をのせ、白金対電極でこれを覆い、光電変換素子を作製した。
 得られた光電変換素子に、Xeランプを光源として強度100mW/cmの光を照射した。表8に得られた開放電圧と光電変換効率を示した。
No. 1-No. No. 8 benzimidazole compound electrolyte was dropped onto a porous titanium oxide semiconductor thin film (thickness: 15 μm) in which the dyes listed in Table 8 were supported on conductive glass. A frame type spacer (thickness: 25 μm) made of a polyethylene film was placed thereon, and this was covered with a platinum counter electrode to produce a photoelectric conversion element.
The obtained photoelectric conversion element was irradiated with light having an intensity of 100 mW / cm 2 using a Xe lamp as a light source. Table 8 shows the open circuit voltage and photoelectric conversion efficiency obtained.
(結果の評価)
(i)開放電圧は、7.0V以上のものを◎、6.5V以上7.0V未満のものを○、6.0V以上6.5V未満のものを△、6.0V未満のものを×として表示し、6.5V以上を合格とした。
(ii)変換効率が2.0%以上のものを◎、0.8%以上2.0%未満のものを○、0.3%以上0.8%未満のものを△、0.3%未満のものを×として表示し、変換効率が0.3%以上のものを合格とし、0.3%未満のものを不合格とした。また、変換効率の初期値に対し500時間後の変換効率が90%以上のものを◎、60%以上90%未満のものを○、40%以上60%未満のものを△、40%未満のものを×として評価し、その結果を耐久性として表8に示す。変換効率の初期値に対し500時間後の変換効率が60%以上のものを合格とし、60%未満のものを不合格とした。
 なお、表8には、ベンズイミダゾール系化合物を加えていない電解液を用いた光電変換素子の結果も示した。
(Evaluation of results)
(I) The open circuit voltage is 7.0 V or more, ◎, 6.5 V or more and less than 7.0 V, ◯, 6.0 V or more and less than 6.5 V, Δ, or less than 6.0 V × It was displayed as 6.5V or more as the pass.
(Ii) A conversion efficiency of 2.0% or more is ◎, 0.8% or more and less than 2.0% ○, 0.3% or more and less than 0.8% Δ, 0.3% Those with a conversion efficiency of 0.3% or higher were accepted and those with less than 0.3% were rejected. In addition, the conversion efficiency after 500 hours with respect to the initial value of conversion efficiency is 90% or more, ◎, 60% to less than 90% ○, 40% to less than 60% △, less than 40% Those were evaluated as x, and the results are shown in Table 8 as durability. When the conversion efficiency after 500 hours was 60% or more with respect to the initial value of the conversion efficiency, it was determined to be acceptable, and when the conversion efficiency was less than 60%, it was rejected.
Table 8 also shows the results of photoelectric conversion elements using an electrolytic solution to which no benzimidazole compound was added.
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000069
 表8からわかるように、本発明の色素を用いた光電気化学電池は、開放電圧及び変換効率の初期値がともに合格レベルであり、さらに500時間経過後の変換効率が初期値の60%以上と、優れた耐久性を示した。
 これに対して、比較色素を用いた場合には、開放電圧と変換効率の初期値は合格レベルであるが、耐久性に問題があることがわかった。
As can be seen from Table 8, in the photoelectrochemical cell using the dye of the present invention, the initial values of the open circuit voltage and the conversion efficiency are both acceptable levels, and the conversion efficiency after the elapse of 500 hours is 60% or more of the initial value. And showed excellent durability.
On the other hand, when the comparative dye was used, the initial values of the open circuit voltage and the conversion efficiency were acceptable levels, but it was found that there was a problem in durability.
[実験9]
(光電気化学電池1)
 以下に示す手順により、特開2004-152613号公報の図1に示した光電極10と同様の構成を有する光電極(ただし、半導体電極2を2層構造とした。)を作製し、更に、この光電極を用いた以外は特開2004-152613号公報の図1に示した色素増感型太陽電池20と同様の構成を有する光電気化学電池(半導体電極2の受光面F2の面積:1cm)を作製した。なお、当該2層構造を有する半導体電極2の各層について、透明電極1に近い側に配置される層を「第1の層」、多孔体層PSに近い側に配置される層を「第2の層」という。
[Experiment 9]
(Photoelectrochemical cell 1)
According to the following procedure, a photoelectrode having the same configuration as the photoelectrode 10 shown in FIG. 1 of JP-A No. 2004-152613 (however, the semiconductor electrode 2 has a two-layer structure) is manufactured. A photoelectrochemical cell having the same structure as the dye-sensitized solar cell 20 shown in FIG. 1 of Japanese Patent Application Laid-Open No. 2004-152613 except that this photoelectrode is used (the area of the light receiving surface F2 of the semiconductor electrode 2 is 1 cm). 2 ) was produced. For each layer of the semiconductor electrode 2 having the two-layer structure, a layer disposed on the side close to the transparent electrode 1 is referred to as “first layer”, and a layer disposed on the side close to the porous body layer PS is referred to as “second layer”. The layer.
 まず、平均粒子径25nmのP25粉末(Degussa社製、商品名)と、これと粒子径の異なる酸化チタン粒子、P200粉末(平均粒子径:200nm、Degussa社製、商品名)とを用い、P25とP200の合計の含有量が15質量%で、P25とP200との質量比が、P25:P200=30:70となるように、これらにアセチルアセトン、イオン交換水、界面活性剤(東京化成社製、商品名;「Triton-X」)を加え、混練して第2の層形成用のスラリー、以下、「スラリー1」とする)を調製した。
 次に、P200を使用せず、P25のみを使用したこと以外は、前述のスラリー1と同様の調製手順により第1の層形成用のスラリー(P1の含有量;15質量%、以下、「スラリー2」とする)を調製した。
First, P25 powder having an average particle diameter of 25 nm (trade name, manufactured by Degussa), titanium oxide particles having a different particle diameter, and P200 powder (average particle diameter: 200 nm, product name, manufactured by Degussa) were used. And P200 are 15% by mass, and the mass ratio of P25 and P200 is P25: P200 = 30: 70, so that acetylacetone, ion-exchanged water, surfactant (manufactured by Tokyo Chemical Industry Co., Ltd.) (Trade name; “Triton-X”) was added and kneaded to prepare a slurry for forming a second layer (hereinafter referred to as “slurry 1”).
Next, the slurry for forming the first layer (P1 content: 15 mass%; hereinafter, “slurry” was prepared by the same preparation procedure as that of the slurry 1 except that only P25 was used without using P200. 2)) was prepared.
 一方、ガラス基板(透明導電性ガラス)上に、フッ素ドープされたSnO導電膜(膜厚:700nm)を形成した透明電極(厚さ:1.1mm)を準備した。そして、このSnO導電膜上に、上述のスラリー2をバーコーダで塗布し、次いで乾燥させた。その後、大気中、450℃で30分間焼成した。このようにして、透明電極上に、半導体電極2の第1の層を形成した。 On the other hand, a transparent electrode (thickness: 1.1 mm) in which a fluorine-doped SnO 2 conductive film (film thickness: 700 nm) was formed on a glass substrate (transparent conductive glass) was prepared. Then, the SnO 2 conductive film, the slurry 2 described above was coated with Bakoda, then dried. Then, it baked for 30 minutes at 450 degreeC in air | atmosphere. In this way, the first layer of the semiconductor electrode 2 was formed on the transparent electrode.
 更に、スラリー1を用いて、上述と同様の塗布と焼成とを繰り返すことにより、第1の層上に、第2の層を形成した。このようにして、SnO導電膜上に半導体電極2(受光面の面積;1.0cm、第1層と第2層の合計厚さ:10μm(第1の層の厚さ:3μm、第2の層の厚さ:7μm))を形成し、増感色素を含有していない状態の光電極10を作製した。 Furthermore, the second layer was formed on the first layer by repeating the same application and firing as described above using the slurry 1. In this way, the semiconductor electrode 2 (light-receiving surface area; 1.0 cm 2 , the total thickness of the first layer and the second layer: 10 μm (the thickness of the first layer: 3 μm, the first layer) on the SnO 2 conductive film No. 2 layer thickness: 7 μm)), and a photoelectrode 10 containing no sensitizing dye was prepared.
 次に、色素として表9記載の色素のエタノール溶液(各増感色素の濃度;3×10-4mol/L)を調製した。この溶液に前記光電極10を浸漬し、80℃の温度条件のもとで20時間放置した。これにより、半導体電極の内部に増感色素を合計で約1.0×10-7mol/cm吸着させた。 Next, an ethanol solution of the dyes listed in Table 9 (concentration of each sensitizing dye; 3 × 10 −4 mol / L) was prepared as the dye. The photoelectrode 10 was immersed in this solution and allowed to stand for 20 hours under a temperature condition of 80 ° C. As a result, a total of about 1.0 × 10 −7 mol / cm 2 of sensitizing dye was adsorbed inside the semiconductor electrode.
 次に、上記の光電極と同様の形状と大きさを有する対極CEを作製した。先ず、透明導電性ガラス上に、塩化白金酸六水和物のイソプロパノール溶液を滴下し、大気中で乾燥した後に450℃で30分焼成処理することにより、白金焼結対極CEを得た。なお、この対極CEには予め電解質Eの注入用の孔(直径1mm)を設けておいた。 Next, a counter electrode CE having the same shape and size as the above photoelectrode was produced. First, an isopropanol solution of chloroplatinic acid hexahydrate was dropped on a transparent conductive glass, dried in air, and then baked at 450 ° C. for 30 minutes to obtain a platinum sintered counter electrode CE. The counter electrode CE was previously provided with a hole for injection of the electrolyte E (diameter 1 mm).
 次に、溶媒となるメトキシアセトニトリルに、ヨウ化亜鉛と、ヨウ化-1,2-ジメチル-3-プロピルイミダゾリウムと、ヨウ素と、4-tert-ブチルピリジンとを溶解させて液状電解質(ヨウ化亜鉛の濃度:10mmol/L、ヨウ化ジメチルプロピルイミダゾリウムの濃度:0.6mol/L、ヨウ素の濃度:0.05mol/L、4-tert-ブチルピリジン濃度:1mol/L)を調製した。 Next, zinc iodide, 1,2-dimethyl-3-propylimidazolium iodide, iodine, and 4-tert-butylpyridine are dissolved in methoxyacetonitrile as a solvent to obtain a liquid electrolyte (iodinated). Zinc concentration: 10 mmol / L, dimethylpropylimidazolium iodide concentration: 0.6 mol / L, iodine concentration: 0.05 mol / L, 4-tert-butylpyridine concentration: 1 mol / L).
 次に、半導体電極の大きさに合わせた形状を有する三井デュポンポリケミカル社製のスペーサS(商品名:「ハイミラン」,エチレン/メタクリル酸ランダム共重合体アイオノマーフィルム)を準備し、特開2004-152613号公報の図1に示すように、光電極と対極とをスペーサを介して対向させ、それぞれを熱溶着により張り合わせて電池の筐体(電解質未充填)を得た。
 次に、液状電解質を対極の孔から筐体内に注入した後、孔をスペーサと同素材の部材で塞ぎ、更に対極の孔にこの部材を熱溶着させて孔を封止し、光電気化学電池1を完成させた。
Next, a spacer S (trade name: “HIMILAN”, ethylene / methacrylic acid random copolymer ionomer film) manufactured by Mitsui Dupont Polychemical Co., Ltd. having a shape matched to the size of the semiconductor electrode was prepared. As shown in FIG. 1 of Japanese Patent No. 152613, the photoelectrode and the counter electrode were opposed to each other via a spacer, and each was bonded by thermal welding to obtain a battery casing (no electrolyte filled).
Next, after injecting the liquid electrolyte into the housing from the hole of the counter electrode, the hole is closed with a member made of the same material as the spacer, and this member is thermally welded to the hole of the counter electrode to seal the hole. 1 was completed.
(光電気化学電池2)
 液状電解質におけるヨウ化亜鉛の濃度を50mmol/Lとしたこと以外は、光電気化学電池1と同様の手順及び条件で光電気化学電池2を作製した。
(Photoelectrochemical cell 2)
The photoelectrochemical cell 2 was produced in the same procedure and conditions as the photoelectrochemical cell 1 except that the concentration of zinc iodide in the liquid electrolyte was 50 mmol / L.
(光電気化学電池3)
 液状電解質におけるヨウ化亜鉛の代わりにヨウ化リチウムを添加し、液状電解質におけるヨウ化リチウムの濃度を20mmol/Lとしたこと以外は、光電気化学電池1と同様の手順及び条件で比較光電気化学電池1を作製した。
(Photoelectrochemical cell 3)
Comparative photoelectrochemistry was performed in the same procedure and conditions as in the photoelectrochemical cell 1 except that lithium iodide was added instead of zinc iodide in the liquid electrolyte, and the concentration of lithium iodide in the liquid electrolyte was 20 mmol / L. Battery 1 was produced.
(比較電気化学電池4)
 液状電解質におけるヨウ化亜鉛の代わりにヨウ化リチウムを添加し、液状電解質におけるヨウ化リチウムの濃度を100mmol/Lとしたこと以外は、光電気化学電池1と同様の手順及び条件で比較光電気化学電池4を作製した。
(Comparative electrochemical cell 4)
Comparative photoelectrochemistry in the same procedure and conditions as in the photoelectrochemical cell 1 except that lithium iodide was added instead of zinc iodide in the liquid electrolyte, and the concentration of lithium iodide in the liquid electrolyte was 100 mmol / L. Battery 4 was produced.
(試験と評価)
 以下の手順により、光電気化学電池1~4を用いた試料について、変換効率を測定した。
 電池特性評価試験は、ソーラーシミュレータ(ワコム製、商品名;「WXS-85-H型」)を用い、AMフィルター(AM1.5)を通したキセノンランプ光源からの疑似太陽光の照射条件を、100mW/cmとする(いわゆる「1Sun」の照射条件)測定条件の下で行った。
(Examination and evaluation)
The conversion efficiency of the samples using the photoelectrochemical cells 1 to 4 was measured by the following procedure.
The battery characteristic evaluation test was conducted using a solar simulator (trade name; “WXS-85-H type” manufactured by Wacom), and the irradiation conditions of pseudo-sunlight from a xenon lamp light source through an AM filter (AM1.5). The measurement was performed under measurement conditions of 100 mW / cm 2 (so-called “1Sun” irradiation conditions).
 各光電気化学電池について、I-Vテスターを用いて室温にて電流-電圧特性を測定し、これらから変換効率を求めた。得られた結果を表9A(1Sunの照射条件)の「初期値」として示す。また、60℃、1Sun照射で、10Ω負荷での作動条件で、変換効率の300時間経過後の変換効率の結果も表9Aに示す。変換効率の初期値が2.4%以上を合格、2.4%未満を不合格とした。また300時間経過後の変換効率の低下率が初期値に対し20%以下のものを合格、20%を越えるものを不合格とした。
 また、変換効率の500時間経過後の変換効率の結果を測定した以外は同様にして評価した。その結果を表9Bに示す
About each photoelectrochemical cell, the current-voltage characteristic was measured at room temperature using the IV tester, and conversion efficiency was calculated | required from these. The obtained results are shown as “initial values” in Table 9A (1 Sun irradiation conditions). Further, Table 9A also shows the results of conversion efficiency after 300 hours of conversion efficiency under operating conditions of 60 ° C., 1 Sun irradiation and 10Ω load. An initial value of conversion efficiency of 2.4% or more was accepted and less than 2.4% was rejected. Moreover, the rate of decrease in conversion efficiency after the elapse of 300 hours passed 20% or less with respect to the initial value, and the rate exceeding 20% was rejected.
Moreover, it evaluated similarly except having measured the result of the conversion efficiency after 500 hours progress of conversion efficiency. The results are shown in Table 9B.
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000071
 表9A、Bからわかるように、本発明の色素を用いた光電気化学電池は、変換効率の初期値がともに合格レベルであり、さらに300時間経過後の変換効率の低下率が20%以下と、優れた耐久性を示した。
 これに対して、比較色素を用いた場合には、変換効率の初期値は合格レベルであるが、耐久性に問題があることがわかった。
As can be seen from Tables 9A and 9B, in the photoelectrochemical cell using the dye of the present invention, both the initial values of the conversion efficiency are acceptable levels, and the reduction rate of the conversion efficiency after 300 hours is 20% or less. Showed excellent durability.
On the other hand, when the comparative dye was used, it was found that the initial value of the conversion efficiency was an acceptable level, but there was a problem with durability.
[実験10]
1.二酸化チタン分散液の調製
 内側をフッ素樹脂コーティングした内容積200mlのステンレス製容器に二酸化チタン微粒子(日本アエロジル(株)製,Degussa P-25)15g、水45g、分散剤(アルドリッチ社製、Triron X-100)1g、直径0.5mmのジルコニアビーズ(ニッカトー社製)30gを入れ、サンドグラインダーミル(アイメックス社製)を用いて1500rpmで2時間分散処理した。得られた分散液からジルコニアビーズを濾別した。得られた分散液中の二酸化チタン微粒子の平均粒径は2.5μmであった。なお粒径はMALVERN社製のマスターサイザー(商品名)により測定した。
[Experiment 10]
1. Preparation of Titanium Dioxide Dispersion 15 g of titanium dioxide fine particles (Nippon Aerosil Co., Ltd., Degussa P-25), 45 g of water, dispersant (Triron X, manufactured by Aldrich Co., Ltd.) -100) 1 g, 30 g of zirconia beads having a diameter of 0.5 mm (manufactured by Nikkato Co., Ltd.) were added, and dispersion treatment was performed at 1500 rpm for 2 hours using a sand grinder mill (manufactured by Imex). Zirconia beads were filtered off from the resulting dispersion. The average particle diameter of the titanium dioxide fine particles in the obtained dispersion was 2.5 μm. The particle size was measured with a master sizer (trade name) manufactured by MALVERN.
2.色素を吸着した酸化チタン微粒子層(電極A)の作製
 フッ素をドープした酸化スズを被覆した20mm×20mmの導電性ガラス板(旭ガラス(株)製,TCOガラス-U,表面抵抗:約30Ω/m)を準備し、その導電層側の両端(端から3mmの幅の部分)にスペーサー用粘着テープを張った後で、導電層上にガラス棒を用いて上記分散液を塗布した。分散液の塗布後、粘着テープを剥離し、室温で1日間風乾した。次にこの半導体塗布ガラス板を電気炉(ヤマト科学(株)製マッフル炉FP-32型)に入れ、450℃で30分間焼成した。半導体塗布ガラス板を取り出し冷却した後、表10に示す色素のエタノール溶液(濃度:3×10-4mol/L)に3時間浸漬した。色素が吸着した半導体塗布ガラス板を4-tert-ブチルピリジンに15分間浸漬した後、エタノールで洗浄し、自然乾燥させて、色素を吸着した酸化チタン微粒子層(電極A)を得た。電極Aの色素増感酸化チタン微粒子層の厚さは10μmであり、酸化チタン微粒子の塗布量は20g/mであった。また色素の吸着量は、その種類に応じて0.1~10mmol/mの範囲内であった。
2. Production of Titanium Oxide Fine Particle Layer (Electrode A) Adsorbed with Dye 20 mm × 20 mm conductive glass plate coated with fluorine-doped tin oxide (Asahi Glass Co., Ltd., TCO glass-U, surface resistance: about 30Ω / m 2 ) was prepared, and an adhesive tape for spacers was applied to both ends (a portion having a width of 3 mm from the end) on the conductive layer side, and then the dispersion was applied onto the conductive layer using a glass rod. After application of the dispersion, the adhesive tape was peeled off and air-dried at room temperature for 1 day. Next, this semiconductor-coated glass plate was placed in an electric furnace (muffle furnace FP-32 manufactured by Yamato Scientific Co., Ltd.) and baked at 450 ° C. for 30 minutes. After the semiconductor-coated glass plate was taken out and cooled, it was immersed in an ethanol solution (concentration: 3 × 10 −4 mol / L) of the dyes shown in Table 10 for 3 hours. The semiconductor-coated glass plate on which the dye was adsorbed was immersed in 4-tert-butylpyridine for 15 minutes, washed with ethanol, and naturally dried to obtain a titanium oxide fine particle layer (electrode A) on which the dye was adsorbed. The thickness of the dye-sensitized titanium oxide fine particle layer of the electrode A was 10 μm, and the coating amount of the titanium oxide fine particles was 20 g / m 2 . The amount of dye adsorbed was in the range of 0.1 to 10 mmol / m 2 depending on the type.
3.光電気化学電池aの作製
 溶媒としては、アセトニトリルと3-メチル-2-オキサゾリジノンとの体積比90/10の混合物を用いた。この溶媒に、ヨウ素と電解質塩として、1-メチル-3-ヘキシルイミダゾリウムのヨウ素塩を加えて、0.5mol/Lの電解質塩および0.05mol/Lのヨウ素を含んだ溶液を調製した。この溶液に、(溶媒+窒素含有高分子化合物+塩)100質量部に対し、窒素含有高分子化合物(α)を10質量部加えた。さらに窒素含有高分子化合物の反応性窒素原子に対する求電子剤(β)を0.1モル混合し、均一な反応溶液とした。
3. Production of photoelectrochemical cell a As a solvent, a mixture of acetonitrile and 3-methyl-2-oxazolidinone in a volume ratio of 90/10 was used. To this solvent, iodine and 1-methyl-3-hexylimidazolium iodine salt were added as an electrolyte salt to prepare a solution containing 0.5 mol / L electrolyte salt and 0.05 mol / L iodine. To this solution, 10 parts by mass of the nitrogen-containing polymer compound (α) was added to 100 parts by mass of (solvent + nitrogen-containing polymer compound + salt). Furthermore, 0.1 mol of an electrophile (β) for the reactive nitrogen atom of the nitrogen-containing polymer compound was mixed to obtain a uniform reaction solution.
 一方、前記電極Aの色素増感酸化チタン微粒子層の上にスペーサーを介して白金を蒸着したガラス板からなる対極の白金薄膜側を載置し、導電性ガラス板と白金蒸着ガラス板とを固定した。得られた組立体の開放端を上記電解質溶液に浸漬し、毛細管現象により色素増感酸化チタン微粒子層中に反応溶液を浸透させた。
 次いで80℃で30分間加熱して、架橋反応を行った。このようにして、特開2000-323190号公報の図2に示す通り、導電性ガラス板10の導電層12上に、色素増感酸化チタン微粒子層20、電解質層30、および白金薄膜42およびガラス板41からなる対極40が順に積層された本発明の光電気化学電池a-1(試料番号10-1)を得た。
 また色素と電解質組成物の組成の組み合わせを表10に示すように変更した以外上記工程を繰り返すことにより、異なる感光体および/または電荷移動体を有する光電気化学電池a-2(試料番号10-4)を得た。
On the other hand, on the dye-sensitized titanium oxide fine particle layer of electrode A, a platinum thin film side of a counter electrode made of a glass plate on which platinum is vapor-deposited through a spacer is placed, and the conductive glass plate and the platinum vapor-deposited glass plate are fixed. did. The open end of the obtained assembly was immersed in the electrolyte solution, and the reaction solution was infiltrated into the dye-sensitized titanium oxide fine particle layer by capillary action.
Subsequently, it heated at 80 degreeC for 30 minute (s), and the crosslinking reaction was performed. In this way, as shown in FIG. 2 of JP-A-2000-323190, the dye-sensitized titanium oxide fine particle layer 20, the electrolyte layer 30, the platinum thin film 42, and the glass are formed on the conductive layer 12 of the conductive glass plate 10. A photoelectrochemical cell a-1 (sample number 10-1) of the present invention in which the counter electrode 40 composed of the plate 41 was sequentially laminated was obtained.
Further, by repeating the above steps except changing the combination of the composition of the dye and the electrolyte composition as shown in Table 10, a photoelectrochemical cell a-2 having a different photoconductor and / or charge transfer body (sample number 10- 4) was obtained.
4.光電気化学電池b、cの作製
(1)光電気化学電池b
 前述のようにして本発明の色素により色素増感された酸化チタン微粒子層からなる電極A(20mm×20mm)を同じ大きさの白金蒸着ガラス板にスペーサーを介して重ねあわせた。次に両ガラス板の隙間に毛細管現象を利用して電解液(アセトニトリルと3-メチル-2-オキサゾリジノンとの体積比90/10の混合物を溶媒としたヨウ素0.05mol/L、ヨウ化リチウム0.5mol/Lの溶液)を浸透させて、光電気化学電池b-1を作製した。また色素を表10に示すように変更した以外上記工程を繰り返すことにより、光電気化学電池b-2(試料番号10-5)を得た。
4). Production of photoelectrochemical cells b and c (1) Photoelectrochemical cell b
An electrode A (20 mm × 20 mm) composed of a titanium oxide fine particle layer dye-sensitized with the dye of the present invention as described above was superimposed on a platinum-deposited glass plate of the same size via a spacer. Next, an electrolytic solution (iodine 0.05 mol / L using a mixture of acetonitrile and 3-methyl-2-oxazolidinone in a volume ratio of 90/10 as a solvent using a capillary phenomenon in the gap between the two glass plates, lithium iodide 0 .5 mol / L solution) was infiltrated to produce photoelectrochemical cell b-1. A photoelectrochemical cell b-2 (Sample No. 10-5) was obtained by repeating the above steps except that the dye was changed as shown in Table 10.
(2)光電気化学電池c(特開平9-27352号に記載の電解質)
 前述のようにして本発明の色素により色素増感された酸化チタン微粒子層からなる電極A(20mm×20mm)上に、電解液を塗布し、含浸させた。なお電解液は、ヘキサエチレングリコールメタクリル酸エステル(日本油脂化学(株)製,ブレンマーPE-350)1gと、エチレングリコール1gと、重合開始剤として2-ヒドロキシ-2-メチル-1-フェニル-プロバン-1-オン(日本チバガイギー(株)製,ダロキュア1173)20mgを含有した混合液に、ヨウ化リチウム500mgを溶解し10分間真空脱気することにより得た。次に前記混合溶液を含浸させた多孔性酸化チタン層を減圧下に置くことにより、多孔性酸化チタン層中の気泡を除き、モノマーの浸透を促した後、紫外光照射により重合して高分子化合物の均一なゲルを多孔性酸化チタン層の微細空孔内に充填した。このようにして得られたものをヨウ素雰囲気に30分間曝して、高分子化合物中にヨウ素を拡散させた後、白金蒸着ガラス板を重ね合わせ、光電気化学電池c-1を得た。また色素を表10に示すように変更した以外上記工程を繰り返すことにより、光電気化学電池c-2(試料番号10-6)を得た。
(2) Photoelectrochemical cell c (electrolyte described in JP-A-9-27352)
The electrolytic solution was applied and impregnated on the electrode A (20 mm × 20 mm) composed of the titanium oxide fine particle layer dye-sensitized with the dye of the present invention as described above. The electrolyte was 1 g of hexaethylene glycol methacrylate (manufactured by Nippon Oil & Fats Chemical Co., Ltd., Bremer PE-350), 1 g of ethylene glycol, and 2-hydroxy-2-methyl-1-phenyl-propane as a polymerization initiator. It was obtained by dissolving 500 mg of lithium iodide in a mixed solution containing 20 mg of -1-one (manufactured by Ciba Geigy Japan, Darocur 1173) and vacuum degassing for 10 minutes. Next, the porous titanium oxide layer impregnated with the mixed solution is placed under a reduced pressure to remove bubbles in the porous titanium oxide layer, promote penetration of the monomer, and then polymerize by irradiation with ultraviolet light. A uniform gel of the compound was filled into the fine pores of the porous titanium oxide layer. The product thus obtained was exposed to an iodine atmosphere for 30 minutes to diffuse iodine in the polymer compound, and then a platinum-deposited glass plate was overlaid to obtain a photoelectrochemical cell c-1. A photoelectrochemical cell c-2 (Sample No. 10-6) was obtained by repeating the above steps except that the dye was changed as shown in Table 10.
5.光電変換効率の測定
 500Wのキセノンランプ(ウシオ電機(株)製)の光をAM1.5フィルター(Oriel社製)およびシャープカットフィルター(Kenko L-42)を通すことにより、紫外線を含まない模擬太陽光とした。光強度は89mW/cmとした。
5. Measurement of photoelectric conversion efficiency Simulated sun that does not contain ultraviolet rays by passing light from a 500 W xenon lamp (USHIO INC.) Through an AM1.5 filter (Oriel) and a sharp cut filter (Kenko L-42) It was light. The light intensity was 89 mW / cm 2 .
 前述の光電気化学電池の導電性ガラス板10と白金蒸着ガラス板40にそれぞれワニ口クリップを接続し、各ワニ口クリップを電流電圧測定装置(ケースレーSMU238型(商品名))に接続した。これに導電性ガラス板10側から模擬太陽光を照射し、発生した電気を電流電圧測定装置により測定した。これにより求められた光電気化学電池の変換効率の初期値と、300時間連続照射時の変換効率の低下率を表10に示す。変換効率の初期値が2.7%以上を合格、2.7%未満を不合格とした。また300時間経過後の変換効率の低下率が20%以下の場合を合格、20%を越える場合を不合格とした。 The alligator clips were connected to the conductive glass plate 10 and the platinum-deposited glass plate 40 of the photoelectrochemical cell, respectively, and each alligator clip was connected to a current-voltage measuring device (Keutley SMU238 type (trade name)). This was irradiated with simulated sunlight from the conductive glass plate 10 side, and the generated electricity was measured with a current-voltage measuring device. Table 10 shows the initial value of the conversion efficiency of the photoelectrochemical cell determined in this way and the rate of decrease in conversion efficiency after 300 hours of continuous irradiation. An initial value of conversion efficiency of 2.7% or more was accepted and less than 2.7% was rejected. Moreover, the case where the reduction rate of the conversion efficiency after 300 hours passed was 20% or less was determined to be acceptable, and the case where it exceeded 20% was regarded as unacceptable.
Figure JPOXMLDOC01-appb-T000072
(備考)
(1)色素の記号は本文中に記載の通りである。
(2)窒素含有高分子α、求電子剤βは以下の化合物を示す。
 
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-T000072
(Remarks)
(1) Symbols of pigments are as described in the text.
(2) Nitrogen-containing polymer α and electrophile β represent the following compounds.

Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
 表10からわかるように、本発明の色素を用いた光電気化学電池は、変換効率の初期値が合格レベルであり、さらに300時間経過後の変換効率の低下率が15%以下と、優れた耐久性を示した。
 これに対して、比較色素を用いた場合には、変換効率の初期値は合格レベルであるが、耐久性に問題があることがわかった。
As can be seen from Table 10, in the photoelectrochemical cell using the dye of the present invention, the initial value of the conversion efficiency is an acceptable level, and the reduction rate of the conversion efficiency after 300 hours is excellent at 15% or less. Shows durability.
On the other hand, when the comparative dye was used, it was found that the initial value of the conversion efficiency was an acceptable level, but there was a problem with durability.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
 本願は、2010年5月31日に日本国で特許出願された特願2010-124020、2010年12月24日に日本国で特許出願された特願2010-287040、及び2011年3月17日に日本国でされた特願2011-059911に基づく優先権を主張するものであり、これらはいずれもここに参照してその内容を本明細書の記載の一部として取り込む。 The present application includes Japanese Patent Application No. 2010-124020 filed in Japan on May 31, 2010, Japanese Patent Application No. 2010-287040 filed in Japan on December 24, 2010, and March 17, 2011. Claiming priority based on Japanese Patent Application No. 2011-059911 filed in Japan, both of which are hereby incorporated herein by reference in their entirety.
1 導電性支持体
2 感光体層
 21 色素
 22 半導体微粒子
3 電荷移動体層
4 対極
5 受光電極
6 回路
10 光電変換素子
100 光電気化学電池
DESCRIPTION OF SYMBOLS 1 Conductive support body 2 Photoconductor layer 21 Dye 22 Semiconductor fine particle 3 Charge transfer body layer 4 Counter electrode 5 Photosensitive electrode 6 Circuit 10 Photoelectric conversion element 100 Photoelectrochemical cell

Claims (18)

  1.  下記一般式(1)で表される色素と、半導体微粒子とを有する感光体層を具備する光電変換素子であって、前記色素が炭素数5~18の脂肪族基を有する下記一般式(1)で表される化合物の色素を含有することを特徴とする光電変換素子。
    Figure JPOXMLDOC01-appb-C000001
    [一般式(1)において、Qは4価の芳香族基を示し、X、Xはそれぞれ独立に硫黄原子、酸素原子、又はCRを表す。ここでR、Rはそれぞれ独立に、水素原子、脂肪族基、芳香族基、炭素原子で結合するヘテロ環基を表し、これらは置換されていてもよい。R、R’はそれぞれ独立に脂肪族基、芳香族基、炭素原子で結合するヘテロ環基を表し、これらは置換されていてもよい。P、Pはそれぞれ独立に色素残基を表す。Wは電荷を中和させるのに必要な場合の対イオンを表す。]
    A photoelectric conversion element comprising a photoreceptor layer having a dye represented by the following general formula (1) and semiconductor fine particles, wherein the dye has an aliphatic group having 5 to 18 carbon atoms. The photoelectric conversion element characterized by containing the pigment | dye of the compound represented by this.
    Figure JPOXMLDOC01-appb-C000001
    [In General Formula (1), Q represents a tetravalent aromatic group, and X 1 and X 2 each independently represent a sulfur atom, an oxygen atom, or CR 1 R 2 . Here, R 1 and R 2 each independently represent a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group bonded with a carbon atom, and these may be substituted. R and R ′ each independently represents an aliphatic group, an aromatic group, or a heterocyclic group bonded with a carbon atom, and these may be substituted. P 1 and P 2 each independently represent a dye residue. W 1 represents a counter ion as necessary to neutralize the charge. ]
  2.  前記炭素数5~18の脂肪族基が分岐アルキル基であることを特徴とする請求項1記載の光電変換素子。 2. The photoelectric conversion element according to claim 1, wherein the aliphatic group having 5 to 18 carbon atoms is a branched alkyl group.
  3.  前記一般式(1)中のQが、ベンゼン環又はナフタレン環を表すことを特徴とする請求項1又は2記載の光電変換素子。 The photoelectric conversion element according to claim 1 or 2, wherein Q in the general formula (1) represents a benzene ring or a naphthalene ring.
  4.  前記一般式(1)中のP及びPがそれぞれ独立に、下記一般式(2)又は(3)で表されることを特徴とする請求項1~3のいずれか1項記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    [ 一般式(2)及び(3)において、Vは水素原子又は置換基を表す。nは0~4の整数を表し、nが2以上の場合は、Vは同じでも異なっていてもよく、互いに結合して環を形成していてもよい。
     YはS、NR、またはCR1011を表す。Rは水素原子、脂肪族基、芳香族基、又は炭素原子で結合するヘテロ環基を表す。R10、R11は、水素原子、脂肪族基、芳香族基、又は炭素原子で結合するヘテロ環基を表し、同一でも異なっていてもよく、互いに結合して環を形成していてもよい。
     Zは脂肪族基、芳香族基、又は炭素原子で結合するヘテロ環基を表し、置換基を有していてもよい。
     R~R、及びRはそれぞれ独立に、水素原子、脂肪族基、芳香族基、又はヘテロ環基を表し、置換基を有していてもよい。
     Rは酸素原子、又は2つの置換基を有する炭素原子であって2つの置換基のHammett則におけるσpの和が正である。]
    The photoelectric device according to any one of claims 1 to 3, wherein P 1 and P 2 in the general formula (1) are each independently represented by the following general formula (2) or (3). Conversion element.
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    [In General Formulas (2) and (3), V 1 represents a hydrogen atom or a substituent. n represents an integer of 0 to 4, and when n is 2 or more, V 1 may be the same or different, and may be bonded to each other to form a ring.
    Y represents S, NR 9 , or CR 10 R 11 . R 9 represents a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group bonded with a carbon atom. R 10 and R 11 represent a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group bonded with a carbon atom, and may be the same or different, and may be bonded to each other to form a ring. .
    Z represents an aliphatic group, an aromatic group, or a heterocyclic group bonded with a carbon atom, and may have a substituent.
    R 3 to R 6 and R 8 each independently represents a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group, and may have a substituent.
    R 7 is an oxygen atom or a carbon atom having two substituents, and the sum of σp in the Hammett rule of the two substituents is positive. ]
  5.  前記一般式(1)におけるP及びPが、それぞれ独立に下記一般式(4)又は(5)で表されることを特徴とする請求項1に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    [ 一般式(4)及び(5)において、Vは水素原子又は置換基を表す。nは0~4の整数を表し、nが2以上の場合は、Vは同じでも異なっていてもよく、互いに結合して環を形成していてもよい。
     YはS、NR、またはCR1011を表す。Rは水素原子、脂肪族基、芳香族基、又は炭素原子で結合するヘテロ環基を表す。R10、R11は、水素原子、脂肪族基、芳香族基、又は炭素原子で結合するヘテロ環基を表し、同一でも異なっていてもよく、互いに結合して環を形成していてもよい。
     Zは脂肪族基、芳香族基、又は炭素原子で結合するヘテロ環基を表し、置換基を有していてもよい。]
    The photoelectric conversion element according to claim 1, wherein P 1 and P 2 in the general formula (1) are each independently represented by the following general formula (4) or (5).
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    [In General Formulas (4) and (5), V 1 represents a hydrogen atom or a substituent. n represents an integer of 0 to 4, and when n is 2 or more, V 1 may be the same or different, and may be bonded to each other to form a ring.
    Y represents S, NR 9 , or CR 10 R 11 . R 9 represents a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group bonded with a carbon atom. R 10 and R 11 represent a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group bonded with a carbon atom, and may be the same or different, and may be bonded to each other to form a ring. .
    Z represents an aliphatic group, an aromatic group, or a heterocyclic group bonded with a carbon atom, and may have a substituent. ]
  6.  前記Vが酸性基を有することを特徴とする請求項4又は5に記載の光電変換素子。 The photoelectric conversion element according to claim 4, wherein the V 1 has an acidic group.
  7.  前記Vが水素原子、5-カルボキシル基、5-スルホン酸基、5-メチル基、又は4,5-ベンゼン環縮合であることを特徴とする請求項4~6のいずれか1項記載の光電変換素子。 7. The method according to claim 4, wherein V 1 is a hydrogen atom, a 5-carboxyl group, a 5-sulfonic acid group, a 5-methyl group, or a 4,5-benzene ring condensation. Photoelectric conversion element.
  8.  前記Z及びVが酸性基または酸性基を有する基であることを特徴とする請求項6又は7記載の光電変換素子。 The photoelectric conversion element according to claim 6 or 7, wherein the Z and V 1 are an acidic group or a group having an acidic group.
  9.  前記一般式(2)が下記一般式(6)で表され、前記一般式(3)が下記一般式(7)で表されることを特徴とする請求項4、6~8のいずれか1項記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
     前記一般式(6)及び(7)において、Y、Z、R~Rは、一般式(2)又は(3)のY、Z、R~Rと同義である。V12は酸性基を表し、E11~E13のうち少なくとも1つは電子吸引基を表す。pは2以上の整数である。
    The general formula (2) is represented by the following general formula (6), and the general formula (3) is represented by the following general formula (7). Item is a photoelectric conversion element.
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    In Formula (6) and (7), Y, Z, R 3 ~ R 8 is Y in the general formula (2) or (3), Z, and R 3 ~ R 8 synonymous. V 12 represents an acidic group, and at least one of E 11 to E 13 represents an electron withdrawing group. p is an integer of 2 or more.
  10.  前記一般式(2)が下記一般式(8)で表され、前記一般式(3)が下記一般式(9)で表されることを特徴とする請求項4記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
     一般式(8)及び(9)において、Y、Z、R~Rは、一般式(2)又は(3)のY、Z、R~Rと同義である。Lは上記式A~Dで表され、mは0又は1以上の整数を表す。mが2以上のとき、それぞれ異なっていてもよい。式Aにおいて、Xaは、NRe、O、Sを表す。Reは水素原子又は置換基を表す。式A及び式Cにおいて、Ra~Rdは酸性基を表す。一般式(8)において、pは2以上の整数を表す。Rxは酸性基を表す。
    The photoelectric conversion device according to claim 4, wherein the general formula (2) is represented by the following general formula (8), and the general formula (3) is represented by the following general formula (9).
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
    In the general formula (8) and (9), Y, Z, R 3 ~ R 8 is Y in the general formula (2) or (3), Z, and R 3 ~ R 8 synonymous. L is represented by the above formulas A to D, and m represents 0 or an integer of 1 or more. When m is 2 or more, they may be different from each other. In the formula A, Xa represents NRe, O, and S. Re represents a hydrogen atom or a substituent. In the formulas A and C, Ra to Rd represent an acidic group. In the general formula (8), p represents an integer of 2 or more. Rx represents an acidic group.
  11.  前記Yが、S、NCH、又はC(CHを表し、Zが炭素数5~18の脂肪族基を表すことを特徴とする請求項4~10のいずれか1項記載の光電変換素子。 11. The photoelectric device according to claim 4, wherein Y represents S, NCH 3 , or C (CH 3 ) 2 , and Z represents an aliphatic group having 5 to 18 carbon atoms. Conversion element.
  12.  前記Rが、下記一般式(10)~(13)のいずれかで表されることを特徴とする請求項4、6~11のいずれか1項記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000011
    [一般式(10)~(13)において、Rfは水素原子又は置換基を表す。]
    12. The photoelectric conversion element according to claim 4, wherein R 7 is represented by any one of the following general formulas (10) to (13).
    Figure JPOXMLDOC01-appb-C000011
    [In the general formulas (10) to (13), Rf represents a hydrogen atom or a substituent. ]
  13.  前記Rが、下記一般式(14)又は(15)で表されることを特徴とする請求項4、6~12のいずれか1項記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000012
    13. The photoelectric conversion element according to claim 4, wherein R 7 is represented by the following general formula (14) or (15).
    Figure JPOXMLDOC01-appb-C000012
  14.  一般式(1)中のQがベンゼン環を表し、X、Xはそれぞれ独立に硫黄原子、酸素原子、又はC(CHを表し、R、R’はそれぞれ独立に炭素数5~18の脂肪族基を表すことを特徴とする請求項1~13のいずれか1項記載の光電変換素子。 Q in the general formula (1) represents a benzene ring, X 1 and X 2 each independently represents a sulfur atom, an oxygen atom, or C (CH 3 ) 2 , and R and R ′ each independently represent 5 carbon atoms. 14. The photoelectric conversion element according to claim 1, wherein the photoelectric conversion element represents 18 to 18 aliphatic groups.
  15.  前記半導体微粒子が酸化チタン微粒子であることを特徴とする請求項1~14のいずれか1項記載の光電変換素子。 The photoelectric conversion element according to claim 1, wherein the semiconductor fine particles are titanium oxide fine particles.
  16.  請求項1~15のいずれか1項に記載の光電変換素子を備えることを特徴とする光電気化学電池。 A photoelectrochemical cell comprising the photoelectric conversion element according to any one of claims 1 to 15.
  17.  炭素数5~18の脂肪族基を有する下記一般式(1)で表される化合物の光電変換素子用色素。
    Figure JPOXMLDOC01-appb-C000013
    [一般式(1)において、Qは4価の芳香族基を示し、X、Xはそれぞれ独立に硫黄原子、酸素原子、又はCRを表す。ここでR、Rはそれぞれ独立に、水素原子、脂肪族基、芳香族基、炭素原子で結合するヘテロ環基を表し、これらは置換されていてもよい。R、R’はそれぞれ独立に脂肪族基、芳香族基、炭素原子で結合するヘテロ環基を表し、これらは置換されていてもよい。P、Pはそれぞれ独立に色素残基を表す。Wは電荷を中和させるのに必要な場合の対イオンを表す。]
    A dye for a photoelectric conversion element, which is a compound represented by the following general formula (1) having an aliphatic group having 5 to 18 carbon atoms.
    Figure JPOXMLDOC01-appb-C000013
    [In General Formula (1), Q represents a tetravalent aromatic group, and X 1 and X 2 each independently represent a sulfur atom, an oxygen atom, or CR 1 R 2 . Here, R 1 and R 2 each independently represent a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group bonded with a carbon atom, and these may be substituted. R and R ′ each independently represents an aliphatic group, an aromatic group, or a heterocyclic group bonded with a carbon atom, and these may be substituted. P 1 and P 2 each independently represent a dye residue. W 1 represents a counter ion as necessary to neutralize the charge. ]
  18.  有機溶媒中に、請求項17記載の光電変換素子用色素を含有し溶解したことを特徴とする光電変換素子用色素溶液。 A dye solution for a photoelectric conversion element, wherein the dye for a photoelectric conversion element according to claim 17 is contained and dissolved in an organic solvent.
PCT/JP2011/062130 2010-05-31 2011-05-26 Photoelectric conversion element, photoelectrochemical battery, dye for photoelectric conversion element, and dye solution for photoelectric conversion element WO2011152284A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180025484.XA CN102906935B (en) 2010-05-31 2011-05-26 Photo-electric conversion element, photoelectrochemical cell, pigment for use with photoelectric conversion element and pigment for use with photoelectric conversion element solution
KR1020127031298A KR101553104B1 (en) 2010-05-31 2011-05-26 Photoelectric conversion element, photoelectrochemical battery, dye for photoelectric conversion element, and dye solution for photoelectric conversion element

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010124020 2010-05-31
JP2010-124020 2010-05-31
JP2010287040 2010-12-24
JP2010-287040 2010-12-24
JP2011-059911 2011-03-17
JP2011059911A JP5620314B2 (en) 2010-05-31 2011-03-17 Photoelectric conversion element, photoelectrochemical cell, dye for photoelectric conversion element and dye solution for photoelectric conversion element

Publications (1)

Publication Number Publication Date
WO2011152284A1 true WO2011152284A1 (en) 2011-12-08

Family

ID=45066659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062130 WO2011152284A1 (en) 2010-05-31 2011-05-26 Photoelectric conversion element, photoelectrochemical battery, dye for photoelectric conversion element, and dye solution for photoelectric conversion element

Country Status (5)

Country Link
JP (1) JP5620314B2 (en)
KR (1) KR101553104B1 (en)
CN (1) CN102906935B (en)
TW (1) TWI541137B (en)
WO (1) WO2011152284A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176575A1 (en) * 2011-06-22 2012-12-27 富士フイルム株式会社 Photoelectric conversion element, photoelectrochemical cell, and dye for use therein
CN104662026A (en) * 2012-09-24 2015-05-27 柯尼卡美能达株式会社 Photoelectric conversion element and method for manufacturing same

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5434998B2 (en) * 2011-09-15 2014-03-05 トヨタ自動車株式会社 Negative electrode active material, negative electrode and battery
JP5881578B2 (en) 2011-12-15 2016-03-09 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, and dye solution
JP2014056741A (en) * 2012-09-13 2014-03-27 Kyushu Institute Of Technology Method for manufacturing dye-sensitized solar cell and dye-sensitized solar cell
JP6063359B2 (en) 2012-09-28 2017-01-18 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye and dye solution formed by dissolving metal complex dye
JP2014082187A (en) 2012-09-28 2014-05-08 Fujifilm Corp Photoelectric conversion element and dye-sensitized solar cell
JP5913223B2 (en) 2012-09-28 2016-04-27 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye solution and dye-adsorbing electrode
JP5913222B2 (en) 2012-09-28 2016-04-27 富士フイルム株式会社 Photoelectric conversion element and dye-sensitized solar cell
JP5992389B2 (en) 2012-11-16 2016-09-14 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-adsorbing electrode, and method for producing dye-sensitized solar battery
JP5944372B2 (en) 2012-12-17 2016-07-05 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-adsorbing electrode, and method for producing dye-sensitized solar battery
JP5972811B2 (en) 2013-02-22 2016-08-17 富士フイルム株式会社 Photoelectric conversion element, method for producing photoelectric conversion element, and dye-sensitized solar cell
JP6047513B2 (en) 2013-03-25 2016-12-21 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, and dye solution containing metal complex dye
EP3174076A4 (en) * 2014-08-28 2018-07-25 Fujikura Ltd. Electrolyte for dye-sensitized solar cell elements, and dye-sensitized solar cell element using same
JP5791770B1 (en) * 2014-08-28 2015-10-07 株式会社フジクラ Electrolyte for dye-sensitized solar cell element, and dye-sensitized solar cell element using the same
JP6641667B2 (en) * 2015-03-03 2020-02-05 株式会社リコー Coating liquid, structure for solar cell, solar cell, and method for manufacturing structure for solar cell
CN109698073B (en) * 2017-10-23 2020-11-24 北京工商大学 Photoelectric conversion performance of ordered hybrid film of sodium indigo disulfonate and hemicyanine derivative
CN109148696A (en) * 2018-07-16 2019-01-04 天津师范大学 Application of the metal organic hybrid perovskite ferroelectric body thin film in terms of for photovoltaic industry based on methyl viologen ligand
CN110379889A (en) * 2019-07-31 2019-10-25 浙江天地环保科技有限公司 A kind of preparation method of high efficiency high stability full-inorganic perovskite solar battery
TWI690099B (en) * 2019-08-23 2020-04-01 台灣中油股份有限公司 Method for manufacturing perovskite solar cell module and perovskite solar cell module
JP6927393B1 (en) * 2020-08-31 2021-08-25 日本ゼオン株式会社 Binder composition for electrochemical element, conductive material dispersion for electrochemical element, slurry composition for electrochemical element electrode, electrode for electrochemical element and electrochemical element
CN113421933A (en) * 2021-05-26 2021-09-21 海南聚能科技创新研究院有限公司 Semiconductor photosensitive composite material and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11144773A (en) * 1997-09-05 1999-05-28 Fuji Photo Film Co Ltd Photoelectric converting element and light regenerating type photoelectric chemical battery
JP2000036330A (en) * 1998-07-17 2000-02-02 Fuji Photo Film Co Ltd Manufacture of photoelectric converter element
JP2000195570A (en) * 1998-12-24 2000-07-14 Fuji Photo Film Co Ltd Photoelectric transfer element and photo- electrochemical battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9217811D0 (en) 1992-08-21 1992-10-07 Graetzel Michael Organic compounds
DE69939147D1 (en) * 1998-09-30 2008-09-04 Fujifilm Corp Semiconductor particles sensitized with a methine dye

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11144773A (en) * 1997-09-05 1999-05-28 Fuji Photo Film Co Ltd Photoelectric converting element and light regenerating type photoelectric chemical battery
JP2000036330A (en) * 1998-07-17 2000-02-02 Fuji Photo Film Co Ltd Manufacture of photoelectric converter element
JP2000195570A (en) * 1998-12-24 2000-07-14 Fuji Photo Film Co Ltd Photoelectric transfer element and photo- electrochemical battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176575A1 (en) * 2011-06-22 2012-12-27 富士フイルム株式会社 Photoelectric conversion element, photoelectrochemical cell, and dye for use therein
JP2013030320A (en) * 2011-06-22 2013-02-07 Fujifilm Corp Photoelectric conversion element, photoelectrochemical cell, and dye for use therein
CN104662026A (en) * 2012-09-24 2015-05-27 柯尼卡美能达株式会社 Photoelectric conversion element and method for manufacturing same
CN104662026B (en) * 2012-09-24 2017-08-25 柯尼卡美能达株式会社 Photo-electric conversion element and its manufacture method

Also Published As

Publication number Publication date
TW201210835A (en) 2012-03-16
JP5620314B2 (en) 2014-11-05
JP2012144688A (en) 2012-08-02
KR101553104B1 (en) 2015-09-14
CN102906935B (en) 2015-08-19
KR20130086943A (en) 2013-08-05
CN102906935A (en) 2013-01-30
TWI541137B (en) 2016-07-11

Similar Documents

Publication Publication Date Title
JP5620314B2 (en) Photoelectric conversion element, photoelectrochemical cell, dye for photoelectric conversion element and dye solution for photoelectric conversion element
JP5572029B2 (en) Metal complex dye, photoelectric conversion element and photoelectrochemical cell
JP5620316B2 (en) Photoelectric conversion element, photoelectrochemical cell and dye
JP5681716B2 (en) Metal complex dye, photoelectric conversion element and photoelectrochemical cell
JP2012113942A (en) Multilayer type photoelectric conversion element and manufacturing method thereof
JP5557484B2 (en) Dye, photoelectric conversion element and photoelectrochemical cell using the same
JP5869481B2 (en) Metal complex dye, photoelectric conversion element and photoelectrochemical cell
JP5689351B2 (en) Photoelectric conversion element and photoelectrochemical cell
JP5620315B2 (en) Photoelectric conversion element and photoelectrochemical cell
JP5620496B2 (en) Metal complex dye, photoelectric conversion element and photoelectrochemical cell
WO2012017874A1 (en) Metal complex dye, photoelectric conversion element, and photoelectrochemical cell
JP2012051952A (en) Pigment, photoelectric element and photoelectrochemical battery
WO2012017873A1 (en) Metal complex dye, photoelectric conversion element and photoelectrochemical cell
JP5162904B2 (en) Photoelectric conversion element and dye-sensitized solar cell
JP5749883B2 (en) Dye, photoelectric conversion element and photoelectrochemical cell using the same
JP2004238213A (en) Method of manufacturing titanium oxide particle and photoelectric conversion device using the same
JP2012036236A (en) Dye, and photoelectric conversion device and photelectric chemical battery using the same
JP5572028B2 (en) Photoelectric conversion device, photoelectrochemical cell using the same, and composition for photoelectric conversion device
JP2012036239A (en) Metal complex dye, photoelectric conversion element, and photoelectrochemical cell
WO2012017870A1 (en) Dye, photoelectric conversion element and photoelectrochemical cell
JP2004247105A (en) Dye-sensitizing photoelectric conversion element and photoelectric cell using the same
US20130118570A1 (en) Dye for photoelectric conversion, semiconductor electrode, photoelectric conversion element, solar cell, and novel pyrroline-based compound
JP5775675B2 (en) Photoelectric conversion element, photoelectrochemical cell, and dye solution for photoelectric conversion element
WO2011108613A1 (en) Photoelectric conversion element and photoelectrochemical cell
JP2012038437A (en) Photoelectric conversion element, photoelectrochemical battery using the same, and photoelectric conversion element composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180025484.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789693

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127031298

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11789693

Country of ref document: EP

Kind code of ref document: A1