WO2012017874A1 - Metal complex dye, photoelectric conversion element, and photoelectrochemical cell - Google Patents

Metal complex dye, photoelectric conversion element, and photoelectrochemical cell Download PDF

Info

Publication number
WO2012017874A1
WO2012017874A1 PCT/JP2011/067011 JP2011067011W WO2012017874A1 WO 2012017874 A1 WO2012017874 A1 WO 2012017874A1 JP 2011067011 W JP2011067011 W JP 2011067011W WO 2012017874 A1 WO2012017874 A1 WO 2012017874A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
dye
ring
general formula
layer
Prior art date
Application number
PCT/JP2011/067011
Other languages
French (fr)
Japanese (ja)
Inventor
小林 克
達也 薄
木村 桂三
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012017874A1 publication Critical patent/WO2012017874A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/06Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide
    • C09B47/067Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide from phthalodinitriles naphthalenedinitriles, aromatic dinitriles prepared in situ, hydrogenated phthalodinitrile
    • C09B47/0673Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide from phthalodinitriles naphthalenedinitriles, aromatic dinitriles prepared in situ, hydrogenated phthalodinitrile having alkyl radicals linked directly to the Pc skeleton; having carbocyclic groups linked directly to the skeleton
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/06Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide
    • C09B47/067Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide from phthalodinitriles naphthalenedinitriles, aromatic dinitriles prepared in situ, hydrogenated phthalodinitrile
    • C09B47/0678Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide from phthalodinitriles naphthalenedinitriles, aromatic dinitriles prepared in situ, hydrogenated phthalodinitrile having-COOH or -SO3H radicals or derivatives thereof directly linked to the skeleton
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/08Preparation from other phthalocyanine compounds, e.g. cobaltphthalocyanineamine complex
    • C09B47/24Obtaining compounds having —COOH or —SO3H radicals, or derivatives thereof, directly bound to the phthalocyanine radical
    • C09B47/26Amide radicals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/371Metal complexes comprising a group IB metal element, e.g. comprising copper, gold or silver
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/381Metal complexes comprising a group IIB metal element, e.g. comprising cadmium, mercury or zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a metal complex dye, a photoelectric conversion element, and a photoelectrochemical cell that have high conversion efficiency and excellent durability.
  • Photoelectric conversion elements are used in various optical sensors, copiers, solar cells and the like.
  • Various types of photoelectric conversion elements have been put to practical use, such as those using metals, semiconductors, organic pigments and dyes, or combinations thereof.
  • a solar cell using non-depleting solar energy does not require fuel, and its full-scale practical use is expected greatly as it uses inexhaustible clean energy.
  • silicon solar cells have been researched and developed for a long time. It is spreading due to the policy considerations of each country. However, silicon is an inorganic material, and its throughput and molecular modification are naturally limited.
  • Patent Document 1 describes a dye-sensitized photoelectric conversion element using semiconductor fine particles sensitized with a ruthenium complex dye by applying this technique.
  • ruthenium complex dyes are very expensive.
  • ruthenium has concerns about supply, and it is not yet enough to respond in earnest as a technology that supports the next generation of clean energy. Therefore, it is desired to develop a photoelectric conversion element having sufficient conversion efficiency using an inexpensive organic dye as a sensitizer, and a report using an organic dye as a sensitizer has been reported.
  • Patent Document 2 The photoelectric conversion element is required to have high initial conversion efficiency, low decrease in conversion efficiency even after use, and excellent durability. However, in terms of durability, the photoelectric conversion element described in Patent Document 2 is not yet satisfactory.
  • An object of the present invention is to provide a metal complex dye, a photoelectric conversion element, and a photoelectrochemical cell having high conversion efficiency and excellent durability.
  • a metal complex dye formed by binding at least one acidic group to a phthalocyanine-like compound and providing a conjugated group on the outer surface side of the phthalocyanine-like compound has the following effects. I found out that One of them is that it is less likely to be attacked by water or a nucleophilic species that decomposes the dye that causes the dye to peel off by closely adsorbing and adsorbing to the porous semiconductor fine particles. Second, since the movement and concentration of electrons excited by light absorbed by the dye are promoted, a photoelectric conversion element and a photoelectrochemical cell having high photoelectric conversion efficiency and excellent durability can be provided. . The present invention has been made based on this finding. According to the present invention, the following means are provided.
  • Z 1 , Z 2 , Z 3 , and Z 4 represent an aromatic ring structure or a heterocyclic structure.
  • R 1 , R 2 , R 3 , and R 4 each independently represent a substituent.
  • m1 to m4 represent an integer of 0 to 4, and when m1 to m4 is 2 or more, the plurality of R 1 to R 4 may be the same or different.
  • At least one of R 1 to R 4 includes a linking group Y, and the linking group Y is directly connected to at least one of Z 1 to Z 4 and is conjugated. Further, at least one of R 1 , R 2 , R 3 and R 4 has an acidic group.
  • M represents a hydrogen atom, a metal atom, or a substituted metal atom.
  • n1 to n8 represent 1 to 10.
  • m7 and m9 represent 0-4.
  • m8, m11, m12, m14, and m15 each represents 0-2.
  • R 5 and R 6 represent a hydrogen atom or a substituent.
  • R 7 to R 15 represent a substituent.
  • X 1 to X 4 are CH or N.
  • ⁇ 4> The dye compound according to any one of ⁇ 1> to ⁇ 3>, wherein a group other than the group containing an acidic group of R 1 to R 4 in the general formula (1) has a hydrophobic group.
  • a photoelectric conversion device comprising a photoreceptor layer, wherein the photoreceptor layer is sensitized with at least one dye compound according to any one of ⁇ 1> to ⁇ 4> and thereby A photoelectric conversion element containing semiconductor fine particles.
  • ⁇ 6> The photoelectric conversion element according to ⁇ 5>, wherein the photosensitive layer further contains a dye represented by the following general formula (14).
  • Mz represents a metal atom
  • LL 1 is a bidentate or tridentate ligand represented by the following general formula (15)
  • LL 2 is the following general formula (16).
  • X represents a ligand of monodentate or bidentate non-LL 1 and LL 2.
  • m1 represents an integer of 0 to 3, and when m1 is 2 or more, LL 1 may be the same or different.
  • m2 represents an integer of 0 to 3, and when m2 is 2, LL 2 may be the same or different. However, at least one of m1 and m2 is an integer of 1 or more.
  • n3 represents an integer of 0 to 2, and when m3 is 2, Xs may be the same or different, and Xs may be linked together.
  • CI represents a counter ion in the general formula (14) when a counter ion is necessary to neutralize the charge.
  • R 101 and R 102 each independently represent a carboxyl group, a sulfonic acid group, a hydroxyl group, a hydroxamic acid group, a phosphoryl group, or a phosphonyl group.
  • R 103 and R 104 each independently represent a substituent, and R 105 and R 106 each independently represent an alkyl group, an aryl group, or a heterocyclic group.
  • d1 and d2 each represents an integer of 0 or more.
  • L 1 and L 2 each independently represent a conjugated chain.
  • a1 and a2 each independently represent an integer of 0 to 3, and when a1 is 2 or more, R 101 may be the same or different, and when a2 is 2 or more, R 102 may be the same or different, b1 And b2 each independently represents an integer of 0 to 3.
  • R 103 may be the same or different, R 103 may be linked to each other to form a ring, and when b2 is 2 or more, R 4 may be the same or different.
  • 104 may be connected to each other to form a ring. When b1 and b2 are both 1 or more, may be linked to form a ring R 103 and R 104 are.
  • d3 represents 0 or 1.
  • Za, Zb and Zc each independently represent a non-metallic atom group capable of forming a 5- or 6-membered ring, and may each independently have an acidic group.
  • c represents 0 or 1;
  • the metal complex dye of the present invention By using the metal complex dye of the present invention, a photoelectric conversion element and a photoelectrochemical cell having high conversion efficiency and excellent durability can be provided.
  • the metal complex dye of the present invention has a long absorption range and a high ⁇ , and can obtain high conversion efficiency when used in a photoelectric conversion element or a photoelectrochemical cell.
  • the metal complex dye of the present invention since the metal complex dye of the present invention has a phthalocyanine compound nucleus structure and has an acidic group in the molecule and a conjugated group, it is closely aligned with the porous semiconductor fine particles formed on the conductive support. Adsorption increases the electron injection efficiency, and the electrons excited by light in the metal complex dye easily move to the semiconductor fine particles due to the conjugated structure and suppress reverse electron transfer. It is thought that an electrochemical cell can be obtained.
  • the semiconductor fine particle layer to which the metal complex dye of the present invention is adsorbed is more preferably subjected to an attack by water or a nucleophilic species that decomposes the dye, which causes the dye to peel off, by having a hydrophobic group. Therefore, it is considered that a photoelectric conversion element and a photoelectrochemical cell having excellent durability can be provided.
  • the photoelectric conversion element 10 includes a conductive support 1, a photosensitive layer 2, a charge transfer layer 3, and a counter electrode 4 arranged in that order on the conductive support 1.
  • the conductive support 1 and the photoreceptor 2 constitute a light receiving electrode 5.
  • the photoreceptor 2 has conductive fine particles 22 and a sensitizing dye 21, and the dye 21 is adsorbed on the conductive fine particles 22 at least in part (the dye is in an adsorption equilibrium state, It may be present in the partial charge transfer layer.)
  • the conductive support 1 on which the photoreceptor 2 is formed functions as a working electrode in the photoelectric conversion element 10.
  • the photoelectric conversion element 10 can be operated as the photoelectrochemical cell 100 by causing the external circuit 6 to work.
  • the upper and lower sides of the photoelectric conversion element do not need to be defined in particular, but in this specification, based on what is illustrated, the side of the counter electrode 4 serving as the light receiving side is the upper (top) direction, and the support The side of 1 is the lower (bottom) direction.
  • the light-receiving electrode 5 is an electrode composed of a conductive support 1 and a photosensitive layer (semiconductor film) 2 of semiconductor fine particles 22 adsorbed with a dye 21 coated on the conductive support.
  • the light incident on the photoreceptor (semiconductor film) 2 excites the dye.
  • the excited dye has high energy electrons. Therefore, the electrons are transferred from the dye 21 to the conduction band of the semiconductor fine particles 22 and further reach the conductive support 1 by diffusion.
  • the molecule of the dye 21 is an oxidant.
  • the electrons on the electrode return to the oxidized dye while working in an external circuit, thereby acting as a photoelectrochemical cell.
  • the light receiving electrode 5 functions as a negative electrode of the battery.
  • the photoelectric conversion element of the present invention has a photoreceptor having a porous semiconductor fine particle layer on which a dye described later is adsorbed on a conductive support.
  • the photoreceptor is designed according to the purpose, and may have a single layer structure or a multilayer structure.
  • the dye in the photoreceptor may be one kind or a mixture of many kinds, but at least one of them uses a metal complex dye described later.
  • the photoconductor of the photoelectric conversion element of the present invention contains semiconductor fine particles adsorbed with the dye, has high sensitivity, and can be used as a photoelectrochemical cell, and high conversion efficiency can be obtained.
  • Z 1 , Z 2 , Z 3 and Z 4 in the general formula (1) represent an aromatic ring structure or a heterocyclic structure.
  • the aromatic ring is preferably a monocyclic or bicyclic aromatic hydrocarbon ring having 6 to 30 carbon atoms, more preferably a monocyclic or bicyclic aromatic hydrocarbon ring having 6 to 20 carbon atoms, and a carbon number of 6 More preferred are ⁇ 12 monocyclic or bicyclic aromatic hydrocarbon rings, and particularly preferred are a benzene ring and a naphthalene ring.
  • benzene ring biphenyl ring, 1,3-diphenylbenzene ring, anthracene ring, naphthalene ring, 1-phenylnaphthalene ring, 2-phenylnaphthalene ring, anthracene ring, phenanthrene ring, naphthacene ring, chrysene ring, triphenylene ring , Tetraphen ring, pyrene ring, pentacene ring, picene ring, perylene ring and the like.
  • a benzene ring and a naphthalene ring are particularly preferred.
  • Z 1 , Z 2 , Z 3 , and Z 4 preferably represent at least one naphthalene ring. More preferably, at least two of Z 1 , Z 2 , Z 3 and Z 4 represent a naphthalene ring, and more preferably at least 3 of Z 1 , Z 2 , Z 3 and Z 4. Is the case of representing a naphthalene ring.
  • the aromatic hydrocarbon ring may have a substituent, and examples of the substituent include the substituent T described below.
  • the heterocycle may have a substituent, and examples of the substituent include the substituent T described later.
  • the aromatic heterocyclic ring containing an oxygen atom, a nitrogen atom, a sulfur atom, and / or a selenium atom as a hetero atom is preferable.
  • the aromatic heterocycle is preferably a 5- to 7-membered ring, and more preferably a 5- to 6-membered ring.
  • furan ring pyrrole ring, thiophene ring, imidazole ring, pyrazole ring, pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, triazole ring, triazine ring, indole ring, indazole ring, purine ring, thiazoline ring.
  • Heterocycle is preferably furan ring, pyrrole ring, thiophene ring, imidazole ring, pyrazole ring, pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, triazole ring, triazine ring, indole ring, indazole ring, purine ring, thiazoline ring , Thiazole ring, thiadiazole ring, benzothiophene ring, thienothiophene ring, bithiophene ring, oxazoline ring, oxazole ring, oxadiazole ring, quinoline ring, isoquinoline ring, phthalazine ring, naphthyridine ring, quinoxaline ring, quinazoline ring, cinnoline ring, Pteridine ring, acribidazine ring, pyridine
  • R 1 , R 2 , R 3 , and R 4 each independently represent a substituent, and specific examples thereof include a substituent represented by the following substituent T.
  • m1 to m4 represent an integer of 0 to 4, preferably 1 to 4.
  • At least one of R 1 to R 4 includes a linking group Y.
  • the linking group Y is conjugated with Z 1 ⁇ Z 4 bonded directly to Z 1 ⁇ Z 4.
  • At least one of R 1 to R 4 has an acidic group.
  • the acidic group may be substituted via a linking group within a range that exhibits a desired effect, and this linking group is referred to as an acidic group.
  • R 1 to R 4 include a linking group Y directly connected to Z 1 to Z 4, and three of the R 1 to R 4 include a linking group Y. More preferably, it is a group.
  • R 1 to R 4 are not a group containing a linking group Y or an acidic group or a group having an acidic group, it is preferably represented by a substituent T.
  • Preferred substituents T include an alkyl group, an alkoxy group, Examples thereof include an alkoxycarbonyl group, an aryloxycarbonyl group, a monoalkylcarbamoyl group, a dialkylcarbamoyl group, a monoalkylsulfamoyl group, a dialkylsulfamoyl group, an acylamino group, and an acyloxy group. More preferred are an alkyl group, an alkoxy group, an alkoxycarbonyl group, and an aryloxycarbonyl group.
  • Y represents a conjugated group conjugated with the above Z 1 to Z 4 , preferably a site represented by the following general formulas (2) to (9) or a site comprising a combination of one or more of these units Preferred units are those represented by the general formulas (4) to (6).
  • Y being a conjugated group means that the group itself has a conjugated structure, but there is also a conjugated relationship with the group Z 1 , Z 2 , Z 3 or Z 4 to which Y is bonded. Is preferred. Electrons excited by light absorbed by the dye due to the presence of the conjugated group Y move toward the conductive fine particles by the conjugated structure.
  • Groups that can be further substituted on the linking group Y include an alkyl group (preferably having 1 to 30 carbon atoms), an alkoxy group (preferably having 1 to 30 carbon atoms), an amino group, an alkoxycarbonyl group.
  • the hydrophobic group including an aliphatic group having 5 or more carbon atoms, a case where the hydrophobic group is substituted at a plurality of positions of the conjugated group, the total number of carbon atoms of the hydrophobic group is 5 or more, More preferably, the total carbon number is 15 or more.
  • the upper limit is not particularly limited but is 200 or less. By introducing this hydrophobic group, the action is further enhanced.
  • the number of substituents on Y is not limited and may be introduced into all of Z 1 , Z 2 , Z 3 or Z 4 other than those having an acidic group.
  • the terminal group of the linking group Y is not particularly limited, and examples thereof include a hydrogen atom or a group that can be further substituted.
  • the site constituting Y is preferably the general formulas (2) to (7), and more preferably the general formulas (2) to (5).
  • Y is preferably a case having at least one site represented by the general formulas (2) to (7), more preferably the general formula (2), (4), (6), or (7).
  • n1 to n8 represent 1 to 10, preferably 1 to 5, m7 and m9 represent 0 to 4, and m8, m11, m12, m14, and m15 represent 0 to 2, preferably 0 or 1.
  • R 5 to R 15 are substituents, and are an alkyl group (preferably having 1 to 30 carbon atoms), an alkoxy group (preferably having 1 to 30 carbon atoms), an amino group, an alkoxycarbonyl group, an alkylthio group, a carbamoyl group.
  • X 1 to X 4 are CH or N.
  • M represents two atoms selected from the group consisting of a hydrogen atom and a monovalent metal atom, a divalent metal atom, or a substituted metal atom in which the coordination position containing a trivalent or tetravalent metal atom is divalent.
  • Eg -AlCl- is preferred.
  • M is preferably a metal capable of tetracoordinate or hexacoordinate, and more preferably Ru, Fe, Os, Cu, W, Cr, Mo, Ni, Pd, Pt, Co, Ir, Rh, Re, Mn Or it is Zn. Particularly preferred is Ru, Os, Zn or Cu.
  • At least one of the R 1 to R 4 has at least one acidic group (group having a dissociable proton), but preferable acidic groups are COOH, PO 3 H 2 , PO 4 H 2 , A group selected from SO 3 H 2 , SO 3 H, and CONHOH, and more preferably COOH and SO 3 H.
  • the number of acidic groups in the metal complex dye is preferably 1 to 8, more preferably 1 to 4.
  • the acidic group includes those used in the form of a salt.
  • R 1 to R 4 may contain Y and an acidic group at the same time, but it is preferable that the substituent containing Y is different from the substituent having an acidic group.
  • the substituent T is, for example, an alkyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 12, particularly preferably 1 to 8, such as a methyl group, an ethyl group, an isopropyl group, or tert-butyl.
  • an alkyl group preferably having 1 to 20 carbon atoms, more preferably 1 to 12, particularly preferably 1 to 8, such as a methyl group, an ethyl group, an isopropyl group, or tert-butyl.
  • alkenyl group preferably 2-20 carbon atoms, more preferably 2-20 carbon atoms.
  • alkynyl group preferably 2 to 20 carbon atoms, more preferably 2 To 12, particularly preferably 2 to 8, and examples thereof include a propargyl group and a 3-pentynyl group
  • an aryl group preferably 6 to 30, more preferably 6 to 20, particularly preferably 6 to 12, and examples thereof include a phenyl group, a biphenyl group, and a naphthyl group.
  • a substituted or unsubstituted amino group (preferably carbon The number of atoms is 0 to 20, more preferably 0 to 10, particularly preferably 0 to 6, and examples thereof include an amino group, a methylamino group, a dimethylamino group, a diethylamino group, and a dibenzylamino group.
  • An alkoxy group (preferably having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms such as a methoxy group, an ethoxy group, and a butoxy group), an aryloxy group (preferably The number of carbon atoms is 6 to 20, more preferably 6 to 16, and particularly preferably 6 to 12, and examples thereof include phenyloxy group and 2-naphthyloxy group.)
  • Acyl group (preferably having 1 to 1 carbon atom) 20, more preferably 1 to 16, particularly preferably 1 to 12, and examples thereof include an acetyl group, a benzoyl group, a formyl group, and a pivaloyl group), an alkoxycarbonyl group (preferably having 2 to 20 carbon atoms, More preferably, it is 2 to 16, particularly preferably 2 to 12, and examples thereof include a methoxycarbonyl group and an ethoxycarbonyl group.
  • An aryloxycarbonyl group (preferably having 7 to 20 carbon atoms, more preferably 7 to 16 carbon atoms, particularly preferably 7 to 10 carbon atoms such as a phenyloxycarbonyl group), an acyloxy group (preferably ) Has 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 10 carbon atoms, and examples thereof include an acetoxy group and a benzoyloxy group.
  • An acylamino group (preferably having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 10 carbon atoms such as an acetylamino group and a benzoylamino group), an alkoxycarbonylamino group (preferably 2-20 carbon atoms, more preferably 2-16 carbon atoms, particularly preferably 2-12 carbon atoms, such as a methoxycarbonylamino group), an aryloxycarbonylamino group (preferably having 7-20 carbon atoms, More preferably, it is 7 to 16, particularly preferably 7 to 12, and examples thereof include a phenyloxycarbonylamino group, etc.), a sulfonylamino group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16, especially Preferably, it is 1 to 12, for example, methanesulfonylamino group, benzenesulfonyla ), Sulfamoyl groups (preferably having 0 to 20, more
  • a carbamoyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms such as a carbamoyl group and a methylcarbamoyl group). , Diethylcarbamoyl group, phenylcarbamoyl group, etc.),
  • alkylthio group preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms such as a methylthio group and an ethylthio group
  • arylthio group preferably having 6 carbon atoms
  • a sulfonyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12, for example, mesyl group, tosyl group, etc.), sulfinyl group (preferably 1 to 20, more preferably 1 to 16, particularly preferably 1 to 12, such as methane Sulfinyl group, benzenesulfinyl group, etc.), ureido group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16, particularly preferably 1 to 12, for example, ureido group, methylureido group, phenylureido group, etc.), phosphoric acid amide group (preferably having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms) 16, particularly preferably 1 to 12, such as diethyl phosphate amide, phenyl phosphate amide,
  • those having a hydrogen atom may be substituted with the above groups after removing this.
  • Such functional groups include an alkylcarbonylaminosulfonyl group, an arylcarbonylaminosulfonyl group, an alkylsulfonylaminocarbonyl group, and an arylsulfonylaminocarbonyl group.
  • Examples thereof include a methylsulfonylaminocarbonyl group, a p-methylphenylsulfonylaminocarbonyl group, an acetylaminosulfonyl group, and a benzoylaminosulfonyl group.
  • substituents when there are two or more substituents, they may be the same or different. If possible, they may be linked together to form a ring.
  • the metal complex dye represented by the general formula (1) has a maximum absorption wavelength in a solution of 500 to 800 nm, more preferably 500 to 750 nm.
  • Specific preferred examples (A-1 to A-20) of the metal complex dye represented by the general formula (1) are shown below, but the present invention is not limited to the following specific examples.
  • the metal complex dye represented by the general formula (1) can be prepared by a method in which a phthalonitrile substituted with a conjugated group is closed by a usual method to form a phthalocyanine ring and coordinate the metal.
  • a phthalonitrile substituted with a conjugated group is closed by a usual method to form a phthalocyanine ring and coordinate the metal.
  • it can be carried out with reference to the method described in Ryo Takahashi, Keiichi Sakamoto, Eiko Okumura, “Phthalocyanine as a functional pigment” published by IPC 2004.
  • the salt, complex when it is other than a complex
  • a substituent that does not specify substitution / non-substitution means that the group may have an arbitrary substituent. This is also synonymous for compounds that do not specify substitution / non-substitution.
  • the above-mentioned substituent T can be mentioned.
  • the photoelectric conversion element may contain at least one dye compound and semiconductor fine particles sensitized by at least one compound represented by the following general formula (14).
  • the photoelectric conversion layers containing the semiconductor fine particles sensitized by the two kinds of sensitizing dyes can be formed as separate layers.
  • Mz represents a metal atom
  • LL 1 is a bidentate or tridentate ligand represented by the following general formula (15)
  • LL 2 is the following general formula (16). The bidentate or tridentate ligand represented.
  • X is a monodentate or bidentate ligand other than LL 1 and LL 2 and is preferably an acyloxy group, acylthio group, thioacyloxy group, thioacylthio group, acylaminooxy group, thiocarbamate group, dithiocarbamate group , Thiocarbonate group, dithiocarbonate group, trithiocarbonate group, acyl group, thiocyanate group, isothiocyanate group, cyanate group, isocyanate group, cyano group, alkylthio group, arylthio group, alkoxy group and aryloxy group
  • a monodentate or bidentate ligand coordinated by a group selected from the group, or a monodentate or bidentate comprising a halogen atom, carbonyl, dialkyl ketone, 1,3-diketone, carbonamide, thiocarbonamide or thiourea Represents a ligand.
  • m1 represents an integer of 0 to 3, and when m1 is 2 or more, LL 1 may be the same or different.
  • m2 represents an integer of 0 to 3, and when m2 is 2, LL 2 may be the same or different. However, at least one of m1 and m2 is an integer of 1 or more.
  • m3 represents an integer of 0 to 2, and when m3 is 2, Xs may be the same or different, and Xs may be linked together.
  • CI represents a counter ion in the general formula (14) when a counter ion is necessary to neutralize the charge.
  • Preferable pigments that can be used in combination include those having a structure represented by the general formula (14). As a result, the inefficient association was suppressed, and there was an unexpected effect that the absorption light conversion efficiency (APCE) was higher than that of the single substance.
  • Metal atom Mz Mz represents a metal atom.
  • M is preferably a metal capable of tetracoordinate or hexacoordinate, and more preferably Ru, Fe, Os, Cu, W, Cr, Mo, Ni, Pd, Pt, Co, Ir, Rh, Re, Mn Or it is Zn. Particularly preferred is Ru, Os, Zn or Cu, and most preferred is Ru.
  • the ligand LL 1 is a bidentate or tridentate ligand represented by the bidentate or tridentate ligand represented by the following general formula (15), preferably a bidentate ligand. is there.
  • M1 representing the number of the ligand LL 1 is an integer of 0 to 3, preferably 1 to 3, and more preferably 1.
  • LL 1 may be the same or different.
  • the m1, at least one of m2 representing the number of ligands LL 2 below is an integer of 1 or more.
  • the metal atom, the ligand LL 1 and / or ligand LL 2 is coordinated.
  • R 101 and R 102 in the general formula (15) each independently represent an acidic group, for example, a carboxyl group, a sulfonic acid group, a hydroxyl group, a hydroxamic acid group (preferably a hydroxamic acid group having 1 to 20 carbon atoms, such as , —CONHOH, —CONCH 3 OH, etc.), phosphoryl groups (eg —OP (O) (OH) 2 etc.) and phosphonyl groups (eg —P (O) (OH) 2 etc.), preferably carboxyl groups A phosphonyl group, more preferably a carboxyl group.
  • R 101 and R 102 may be substituted on any carbon atom on the pyridine ring. Further, these acidic groups may be introduced into the pyridine ring via a linking group.
  • R 103 and R 104 each independently represent a substituent, preferably an alkyl group (preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1 -Ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.), alkenyl groups (preferably alkenyl groups having 2 to 20 carbon atoms such as vinyl, allyl, oleyl, etc.), alkynyl groups (preferably carbon atoms) Alkynyl groups having 2 to 20 carbon atoms such as ethynyl, butadiynyl, phenylethynyl, etc., cycloalkyl groups (preferably cycloalkyl groups having 3 to 20 carbon atoms such as cyclopropyl, cyclopentyl, cyclohexyl,
  • acylamino groups such as acetylamino, benzoylamino, etc.
  • a cyano group, or a halogen atom for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.
  • a halogen atom for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.
  • an alkyl group an alkenyl group, an aryl group, a heterocyclic group, an alkoxy group, an aryloxy group, an alkoxy group.
  • a carbonyl group, an amino group, an acylamino group, a cyano group or a halogen atom particularly preferably an alkyl group, an alkenyl group, a heterocyclic group, an alkoxy group, an alkoxycarbonyl group, an amino group, an acylamino group or a cyano group.
  • the ligand LL 1 contains an alkyl group, an alkenyl group or the like, these may be linear or branched, and may be substituted or unsubstituted. Further, when the ligand LL 1 contains an aryl group, a heterocyclic group or the like, they may be monocyclic or condensed and may be substituted or unsubstituted.
  • R 105 and R 106 are each independently an alkyl group or an aromatic group (preferably an aromatic group having 6 to 30 carbon atoms, such as phenyl, substituted phenyl, naphthyl, substituted naphthyl, etc.) Or a heterocyclic group (preferably a heterocyclic group having 1 to 30 carbon atoms, such as 2-thienyl, 2-pyrrolyl, 2-imidazolyl, 1-imidazolyl, 4-pyridyl, 3-indolyl), preferably 1 A heterocyclic group having ⁇ 3 electron donating groups, more preferably thienyl.
  • an aromatic group having 6 to 30 carbon atoms such as phenyl, substituted phenyl, naphthyl, substituted naphthyl, etc.
  • a heterocyclic group preferably a heterocyclic group having 1 to 30 carbon atoms, such as 2-thienyl, 2-pyrrolyl, 2-imidazolyl, 1-imidazolyl, 4-pyr
  • the electron donating group is an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, an alkoxy group, an aryloxy group, an amino group, an acylamino group (preferred examples are the same as those for R 103 and R 104 ) or a hydroxyl group. And more preferably an alkyl group, an alkoxy group, an amino group or a hydroxyl group, and particularly preferably an alkyl group.
  • R 105 and R 106 may be the same or different, but are preferably the same.
  • R 105 and R 106 may be directly bonded to the benzene ring.
  • R 105 and R 106 may be bonded to the benzene ring via L 1 and / or L 2 .
  • L 1 and L 2 each independently represent a conjugated chain.
  • the substituent is preferably an alkyl group, and more preferably methyl.
  • L 1 and L 2 are each independently preferably a conjugated chain having 2 to 6 carbon atoms, and a substituted or unsubstituted thiophenediyl group, ethenylene, butadienylene, ethynylene, butadienylene, methylethenylene, or dimethylethenyl It is more preferred to have lenth, groups having ethenylene or butadienylene are particularly preferred, and most preferred to have ethenylene.
  • L 1 and L 2 may be the same or different, but are preferably the same.
  • each double bond may be a trans isomer, a cis isomer, or a mixture thereof.
  • d1 and d2 are each an integer of 0 or more, preferably an integer of 1 to 3.
  • d3 is 0 or 1
  • a1 and a2 each independently represent an integer of 0 to 3.
  • a1 is R 101 when 2 or more may be the same or different
  • a2 is 2 or more when R 102 may be the same or different.
  • a1 is preferably 0 or 1
  • a2 is preferably an integer of 0-2.
  • a2 is preferably 1 or 2
  • d3 is 1, a2 is preferably 0 or 1.
  • the sum of a1 and a2 is preferably an integer of 0-2.
  • b1 and b2 each independently represents an integer of 0 to 3, preferably an integer of 0 to 2.
  • R 103 may be the same or different and may be connected to each other to form a ring.
  • R 104 may be the same or different, and may be connected to each other to form a ring.
  • R 103 and R 104 may be linked to form a ring.
  • the ring to be formed include a benzene ring, a pyridine ring, a thiophene ring, a pyrrole ring, a cyclohexane ring, a cyclopentane ring and the like.
  • A is the sum of a1 and a2 is 1 or more, when the ligand LL 1 is having at least one acidic group, m1 in formula (14) is preferably 2 or 3, the two Is more preferable.
  • the ligand LL 1 in the general formula (14) is preferably represented by the following general formula (17-1), (17-2) or (17-3).
  • R 101 to R 104 , a1, a2, b1, b2, d1, d2, and d3 have the same meanings as in the general formula (15).
  • b3 represents an integer of 0 to 3, preferably an integer of 0 to 2.
  • R 107 represents an acidic group, preferably a carboxyl group, a sulfonic acid group, a hydroxyl group, a hydroxamic acid group, a phosphoryl group, or a phosphonyl group, more preferably a carboxyl group or a phosphoryl group. Yes, particularly preferably a carboxyl group.
  • R 108 represents a substituent, preferably an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, an alkoxy group, an aryloxy group, an amino group or an acylamino group (above preferred examples are R 103 and R 104 in general formula (15)), and more preferably an alkyl group, an alkoxy group, an amino group, or an acylamino group.
  • R 121 to R 124 each independently represents hydrogen, an alkyl group, an alkenyl group, or an aryl group. Preferred examples of R 121 to R 124 are the same as the preferred examples of R 103 and R 104 in formula (15). R 121 to R 124 are more preferably an alkyl group or an aryl group, and more preferably an alkyl group. When R 121 to R 124 are alkyl groups, they may further have a substituent, and the substituent is preferably an alkoxy group, a cyano group, an alkoxycarbonyl group or a carbonamido group, particularly preferably an alkoxy group.
  • R 121 and R 122 and R 123 and R 124 may be connected to each other to form a ring.
  • a pyrrolidine ring, a piperidine ring, a piperazine ring, a morpholine ring or the like is preferable.
  • R 125 , R 126 , R 127 and R 128 each independently represent a substituent, preferably an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, An alkoxy group, an aryloxy group, an amino group, an acylamino group (preferred examples are the same as those for R 101 in the general formula (14)) or a hydroxyl group, more preferably an alkyl group, an alkoxy group, an amino group, or an acylamino group. Group, particularly preferably an alkyl group.
  • a3 represents an integer of 0 to 3, preferably an integer of 0 to 2.
  • a3 is preferably 1 or 2
  • a3 is preferably 0 or 1.
  • a3 is the R 107 when two or more may be the same or different.
  • d1 and d2 each independently represents an integer of 0 to 4.
  • R 125 may be linked to R 121 and / or R 122 to form a ring.
  • the ring formed is preferably a piperidine ring or a pyrrolidine ring.
  • R 125 may be the same or different, and may be linked to each other to form a ring.
  • R 126 may be linked to R 123 and / or R 124 to form a ring.
  • the ring formed is preferably a piperidine ring or a pyrrolidine ring.
  • R 126 may be the same or different, and may be linked to each other to form a ring.
  • LL 2 represents a bidentate or tridentate ligand.
  • M2 representing the number of the ligand LL 2 is an integer of 0 to 2, and is preferably 0 or 1.
  • m2 is LL 2 when the two may be the same or different. However, the m2, at least one of which is an integer of 1 or more of the m1 representing the number of ligands LL 1 above.
  • Ligand LL 2 is a bidentate or tridentate ligand represented by the following general formula (16).
  • Za, Zb, and Zc each independently represent a nonmetallic atom group that can form a 5-membered ring or a 6-membered ring.
  • the formed 5-membered or 6-membered ring may be substituted or unsubstituted, and may be monocyclic or condensed.
  • Za, Zb and Zc are preferably composed of a carbon atom, a hydrogen atom, a nitrogen atom, an oxygen atom, a sulfur atom, a phosphorus atom and / or a halogen atom, and preferably form an aromatic ring.
  • an imidazole ring, an oxazole ring, a thiazole ring or a triazole ring is preferably formed.
  • a 6-membered ring a pyridine ring, a pyrimidine ring, a pyridazine ring or a pyrazine ring is preferably formed.
  • an imidazole ring or a pyridine ring is more preferable.
  • c represents 0 or 1.
  • c is preferably 0, and LL 2 is preferably a bidentate ligand.
  • the ligand LL 2 is preferably represented by any one of the following general formulas (18-1) to (18-8), and the general formulas (18-1), (18-2), (18-4) ) Or (18-6), more preferably represented by formula (18-1) or (18-2), and represented by formula (18-1). Is most preferred.
  • R 151 to R 166 are described as substituted on one ring for the sake of illustration, but even on the ring, Or you may substitute on the ring different from what was illustrated.
  • R 151 to R 158 each independently represent an acidic group.
  • R 151 to R 158 are, for example, a carboxyl group, a sulfonic acid group, a hydroxyl group, a hydroxamic acid group (preferably a hydroxamic acid group having 1 to 20 carbon atoms, such as —CONHOH, —CONCH 3 OH, etc.), a phosphoryl group ( For example, —OP (O) (OH) 2 etc.) or a phosphonyl group (eg —P (O) (OH) 2 etc.) is represented.
  • R 151 to R 158 are preferably a carboxyl group, a phosphoryl group, or a phosphonyl group, more preferably a carboxyl group or a phosphonyl group, and more preferably a carboxyl group.
  • the acidic group may be accompanied by any linking group.
  • R 159 to R 166 each independently represent a substituent, preferably an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, a heterocyclic group, or an alkoxy group.
  • An aryloxy group, an alkoxycarbonyl group, an amino group, an acyl group, a sulfonamido group, an acyloxy group, a carbamoyl group, an acylamino group, a cyano group, or a halogen atom the preferred examples are R 103 and R 104 in the general formula (15)).
  • R 167 to R 171 each independently represent a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group bonded with a carbon atom, An aliphatic group, and more preferably an aliphatic group having a carboxyl group.
  • the ligand LL 2 contains an alkyl group, an alkenyl group or the like, they may be linear or branched and may be unsubstituted substituted.
  • LL 2 is an aryl group, when containing heterocyclic group, they may be a condensed ring may be monocyclic or unsubstituted substituted.
  • R 151 to R 166 may be bonded to any position on the ring.
  • E1 to e6 each independently represents an integer of 0 to 4, preferably an integer of 0 to 2.
  • e7 and e8 each independently represents an integer of 0 to 4, preferably an integer of 0 to 3.
  • e9 to e12 and e15 each independently represents an integer of 0 to 6, and e13, e14 and e16 each independently represents an integer of 0 to 4. It is preferable that e9 to e16 are each independently an integer of 0 to 3.
  • R 151 to R 158 may be the same or different.
  • R 159 to R 166 may be the same or different and are connected to each other. To form a ring.
  • X represents a monodentate or bidentate ligand.
  • M3 representing the number of ligands X represents an integer of 0 to 2, and m3 is preferably 1 or 2.
  • m3 is preferably 2.
  • X is a bidentate ligand, m3 is preferably 1.
  • Xs may be the same or different, and Xs may be linked together.
  • the ligand X is preferably an acyloxy group (preferably an acyloxy group having 1 to 20 carbon atoms, such as acetyloxy, benzoyloxy, salicylic acid, glycyloxy, N, N-dimethylglycyloxy, oxalylene (—OC ( O) C (O) O—)), acylthio groups (preferably acylthio groups having 1 to 20 carbon atoms, such as acetylthio, benzoylthio, etc.), thioacyloxy groups (preferably thios having 1 to 20 carbon atoms).
  • acyloxy group preferably an acyloxy group having 1 to 20 carbon atoms, such as acetyloxy, benzoyloxy, salicylic acid, glycyloxy, N, N-dimethylglycyloxy, oxalylene (—OC ( O) C (O) O—)
  • acylthio groups preferably
  • thioacylthio groups such as thioacetyloxy groups (CH 3 C (S) O—), etc.)
  • thioacylthio groups preferably thioacylthio groups having 1 to 20 carbon atoms, such as thioacetylthio (CH 3 C (S)) S-), thiobenzoylthio (PhC (S) S-) etc.
  • acylaminooxy group preferably the number of carbon atoms 1-20 acylaminooxy groups such as N-methylbenzoylaminooxy (PhC (O) N (CH 3 ) O—), acetylaminooxy (CH 3 C (O) NHO—), etc.)
  • thiocarbamate A group preferably a thiocarbamate group having 1 to 20 carbon atoms such as N, N-diethylthiocarbamate
  • a dithiocarbamate group preferably a dithiocarbamate group having 1 to 20 carbon atom
  • the ligand X is preferably an acyloxy group, a thioacylthio group, an acylaminooxy group, a dithiocarbamate group, a dithiocarbonate group, a trithiocarbonate group, a thiocyanate group, an isothiocyanate group, a cyanate group, an isocyanate group, a cyano group, A ligand coordinated by a group selected from the group consisting of an alkylthio group, an arylthio group, an alkoxy group and an aryloxy group, or a ligand consisting of a halogen atom, carbonyl, 1,3-diketone or thiourea, More preferably, a ligand coordinated by a group selected from the group consisting of acyloxy group, acylaminooxy group, dithiocarbamate group, thiocyanate group, isothiocyanate group, cyanate group, isocyanate group, cyano
  • the ligand X contains an alkyl group, an alkenyl group, an alkynyl group, an alkylene group or the like, these may be linear or branched, and may be substituted or unsubstituted.
  • an aryl group, a heterocyclic group, a cycloalkyl group, etc. may be substituted or unsubstituted, and may be monocyclic or condensed.
  • X is a bidentate ligand
  • X is an acyloxy group, acylthio group, thioacyloxy group, thioacylthio group, acylaminooxy group, thiocarbamate group, dithiocarbamate group, thiocarbonate group, dithiocarbonate group, trithio
  • a ligand composed of urea is preferable.
  • X is a monodentate ligand
  • X is a ligand coordinated by a group selected from the group consisting of a thiocyanate group, an isothiocyanate group, a cyanate group, an isocyanate group, a cyano group, an alkylthio group, and an arylthio group, or A ligand composed of a halogen atom, carbonyl, dialkyl ketone, or thiourea is preferred.
  • Counter ion CI CI in the general formula (14) represents a counter ion when a counter ion is necessary to neutralize the charge.
  • a dye is a cation or an anion or has a net ionic charge depends on the metal, ligand and substituent in the dye.
  • the dye of the general formula (14) may be dissociated and have a negative charge because the substituent has a dissociable group. In this case, the charge of the whole dye of the general formula (14) is electrically neutralized by CI.
  • the counter ion CI is a positive counter ion
  • the counter ion CI is an inorganic or organic ammonium ion (for example, tetraalkylammonium ion, pyridinium ion, etc.), an alkali metal ion, or a proton.
  • the counter ion CI is a negative counter ion
  • the counter ion CI may be an inorganic anion or an organic anion.
  • halogen anions eg, fluoride ions, chloride ions, bromide ions, iodide ions, etc.
  • substituted aryl sulfonate ions eg, p-toluene sulfonate ions, p-chlorobenzene sulfonate ions, etc.
  • aryl disulfones Acid ions for example, 1,3-benzenedisulfonate ion, 1,5-naphthalenedisulfonate ion, 2,6-naphthalenedisulfonate ion, etc.
  • alkyl sulfate ions for example, methyl sulfate ion
  • sulfate ions thiocyanate ions
  • an ionic polymer or another dye having a charge opposite to that of the dye may be used, and a metal complex ion (for example, bisbenzene-1,2-dithiolatonickel (III)) can also be used. is there.
  • the dye having the structure represented by the general formula (14) preferably has at least one suitable bonding group (interlocking group) for the surface of the semiconductor fine particles. It is more preferable that the bonding group has 1 to 6 bonding groups, and it is particularly preferable that the bonding group has 1 to 4 bonding groups. Carboxyl group, sulfonic acid group, hydroxyl group, hydroxamic acid group (for example, —CONHOH), phosphoryl group (for example, —OP (O) (OH) 2, etc.), phosphonyl group (for example, —P (O) (OH) 2, etc.) It is preferable that the dye has an acidic group (substituent having a dissociable proton).
  • the dye having the structure represented by the general formula (14) used in the present invention is shown below, but the present invention is not limited thereto.
  • dye in the following specific example contains the ligand which has a proton dissociable group, this ligand may dissociate as needed and may discharge
  • the dye represented by the general formula (14) can be synthesized with reference to Japanese Patent Application Laid-Open No. 2001-291534 and the methods cited in the publication.
  • the maximum absorption wavelength in the solution is preferably in the range of 300 to 1000 nm, more preferably in the range of 350 to 950 nm, and particularly preferably in the range of 370 to 900 nm.
  • the dye having the structure of the general formula (1) has a maximum absorption wavelength in the solution of preferably 500 to 800 nm, more preferably 500 to 750 nm.
  • a dye containing (A1) a metal complex dye having the structure of the general formula (1) as an essential component is used. More preferably, by using a dye having a structure of the general formula (14), high conversion efficiency can be ensured by utilizing light having a wide range of wavelengths. Furthermore, the combined use of these dyes can reduce the decrease in conversion efficiency.
  • a preferable blending ratio of the metal complex dye having the structure represented by the general formula (14) and the dye having the structure represented by the general formula (1) is R in the former and S in the latter.
  • iodine and iodide for example, lithium iodide, tetrabutylammonium iodide, tetrapropylammonium iodide, etc.
  • alkyl viologen for example, methyl viologen chloride, hexyl viologen bromide, benzyl viologen tetrafluoroborate
  • polyhydroxybenzenes for example, hydroquinone, naphthohydroquinone, etc.
  • divalent and trivalent iron complexes for example, red blood salt and yellow blood salt
  • the cation of the iodine salt is preferably a 5-membered or 6-membered nitrogen-containing aromatic cation.
  • the compound represented by the general formula (2) is not an iodine salt, it is described in WO95 / 18456, JP-A-8-259543, Electrochemistry, Vol. 65, No. 11, page 923 (1997), etc. It is preferable to use iodine salts such as pyridinium salts, imidazolium salts, and triazolium salts.
  • the electrolyte composition used for the photoelectric conversion element of the present invention preferably contains iodine together with the heterocyclic quaternary salt compound.
  • the iodine content is preferably from 0.1 to 20% by mass, more preferably from 0.5 to 5% by mass, based on the entire electrolyte composition.
  • the electrolyte composition used for the photoelectric conversion element of the present invention may contain a solvent.
  • the solvent content in the electrolyte composition is preferably 50% by mass or less, more preferably 30% by mass or less, and particularly preferably 10% by mass or less of the entire composition.
  • a solvent having a low viscosity and high ion mobility, a high dielectric constant and capable of increasing the effective carrier concentration, or both is preferable because it exhibits excellent ion conductivity.
  • Such solvents include carbonate compounds (ethylene carbonate, propylene carbonate, etc.), heterocyclic compounds (3-methyl-2-oxazolidinone, etc.), ether compounds (dioxane, diethyl ether, etc.), chain ethers (ethylene glycol dialkyl ether, Propylene glycol dialkyl ether, polyethylene glycol dialkyl ether, polypropylene glycol dialkyl ether, etc.), alcohols (methanol, ethanol, ethylene glycol monoalkyl ether, propylene glycol monoalkyl ether, polyethylene glycol monoalkyl ether, polypropylene glycol monoalkyl ether, etc.), Polyhydric alcohols (ethylene glycol, propylene glycol, polyethylene glycol , Polypropylene glycol, glycerol, etc.), nitrile compounds (acetonitrile, glutarodinitrile, methoxyacetonitrile, propionitrile, benzonitrile, biscyanoethyl
  • an electrochemically inert salt that is in a liquid state at room temperature and / or has a melting point lower than room temperature may be used as the electrolyte solvent.
  • the electrolyte solvent For example, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, etc., nitrogen-containing heterocyclic quaternary salt compounds such as imidazolium salts and pyridinium salts, or tetraalkylammonium salts Is mentioned.
  • the electrolyte composition used in the photoelectric conversion element of the present invention may be added with a polymer or an oil gelling agent, or may be gelled (solidified) by a technique such as polymerization of polyfunctional monomers or polymer crosslinking reaction. .
  • the blending amount of the polyfunctional monomer is preferably 0.5 to 70% by mass, and more preferably 1.0 to 50% by mass with respect to the whole monomer.
  • the above-mentioned monomers are commonly used in Takayuki Otsu and Masato Kinoshita “Experimental Methods for Polymer Synthesis” (Chemical Doujin) and Takatsu Otsu “Lecture Polymerization Reaction Theory 1 Radical Polymerization (I)” (Chemical Doujin).
  • Polymerization can be performed by radical polymerization which is a polymer synthesis method.
  • the monomer for gel electrolyte used in the present invention can be radically polymerized by heating, light or electron beam, or electrochemically, and is particularly preferably radically polymerized by heating.
  • polymerization initiators are 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), dimethyl 2,2′-azobis (2-methylpropyl). Pionate), azo initiators such as dimethyl 2,2′-azobisisobutyrate, peroxide initiators such as lauryl peroxide, benzoyl peroxide, and t-butyl peroctoate.
  • a preferable addition amount of the polymerization initiator is 0.01 to 20% by mass, and more preferably 0.1 to 10% by mass with respect to the total amount of monomers.
  • the weight composition range of the monomer in the gel electrolyte is preferably 0.5 to 70% by mass.
  • the content is 1.0 to 50% by mass.
  • a polymer having a crosslinkable reactive group and a crosslinking agent is added to the composition.
  • Preferred reactive groups are nitrogen-containing heterocycles such as pyridine ring, imidazole ring, thiazole ring, oxazole ring, triazole ring, morpholine ring, piperidine ring, piperazine ring, and the preferred crosslinking agent is a functional group capable of nucleophilic attack by the nitrogen atom.
  • the electrolyte composition of the present invention metal iodides (LiI, NaI, KI, CsI , CaI 2 , etc.), a metal bromide (LiBr, NaBr, KBr, CsBr , CaBr 2 , etc.), quaternary ammonium bromine salt (tetraalkylammonium Ammonium bromide, pyridinium bromide, etc.), metal complexes (ferrocyanate-ferricyanate, ferrocene-ferricinium ion, etc.), sulfur compounds (sodium polysulfide, alkylthiol-alkyl disulfides, etc.), viologen dye, hydroquinone-quinone Etc. may be added. These may be used as a mixture.
  • J.P. Am. Ceram. Soc. 80, (12), 3157-3171 (1997), or basic compounds such as 2-picoline and 2,6-lutidine may be added.
  • a preferred concentration range is 0.05 to 2M.
  • a charge transport layer containing a hole conductor material may be used as the hole conductor material.
  • 9,9′-spirobifluorene derivatives and the like can be used.
  • an electrode layer, a photoelectric conversion layer, a hole transport layer, a conductive layer, and a counter electrode layer can be sequentially stacked.
  • a hole transport material that functions as a p-type semiconductor can be used as a hole transport layer.
  • an inorganic or organic hole transport material can be used as a preferred hole transport layer.
  • the inorganic hole transport material include CuI, CuO, and NiO.
  • the organic hole transport material include high molecular weight materials and low molecular weight materials. Examples of the high molecular weight material include polyvinyl carbazole, polyamine, and organic polysilane.
  • the organic polysilane is a polymer having a main chain Si chain unlike the conventional carbon-based polymer. And since ⁇ electrons delocalized along the main chain Si contribute to photoconduction, it has high hole mobility [Phys. Rev. B, 35, 2818 (1987)].
  • the conductive layer in the present invention is not particularly limited as long as it has good conductivity, and examples thereof include inorganic conductive materials, organic conductive materials, conductive polymers, and intermolecular charge transfer complexes. Of these, intermolecular charge transfer complexes are preferred.
  • the intermolecular charge transfer complex is formed from a donor material and an acceptor material.
  • an organic donor and an organic acceptor can be used preferably.
  • a photosensitive member 2 in which a dye 21 is adsorbed on porous semiconductor fine particles 22 is formed on a conductive support 1.
  • the photosensitive layer can be produced by immersing the dispersion of semiconductor fine particles in the dye solution of the present invention after coating and drying on a conductive support.
  • the conductive support there can be used a glass or a polymer material having a conductive film layer on the surface, such as a metal that is conductive in the support itself. It is preferable that the conductive support is substantially transparent. Substantially transparent means that the light transmittance is 10% or more, preferably 50% or more, particularly preferably 80% or more.
  • a glass or polymer material coated with a conductive metal oxide can be used as the conductive support.
  • the coating amount of the conductive metal oxide at this time is preferably 0.1 to 100 g per 1 m 2 of glass or polymer material support.
  • light is preferably incident from the support side.
  • polymer materials examples include tetraacetyl cellulose (TAC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), syndiotactic polystyrene (SPS), polyphenylene sulfide (PPS), polycarbonate (PC), Examples include polyarylate (PAR), polysulfone (PSF), polyester sulfone (PES), polyetherimide (PEI), cyclic polyolefin, and brominated phenoxy.
  • TAC tetraacetyl cellulose
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • SPS syndiotactic polystyrene
  • PPS polyphenylene sulfide
  • PC polycarbonate
  • Examples include polyarylate (PAR), polysulfone (PSF), polyester sulfone (PES), polyetherimide (PEI), cyclic polyolefin, and brominated phenoxy
  • an antireflection film in which a high refractive film and a low refractive index oxide film described in JP-A-2003-123859 are alternately laminated The light guide function described in 2002-260746 is raised.
  • a metal support can also be preferably used. Examples thereof include titanium, aluminum, copper, nickel, iron, stainless steel, and copper. These metals may be alloys. More preferably, titanium, aluminum, and copper are preferable, and titanium and aluminum are particularly preferable.
  • the conductive support has a function of blocking ultraviolet light.
  • a method of allowing a fluorescent material capable of changing ultraviolet light to visible light in the transparent support or on the surface of the transparent support, or a method using an ultraviolet absorber is also included.
  • a function described in JP-A-11-250944 may be further provided on the conductive support.
  • Preferred conductive films include metals (eg, platinum, gold, silver, copper, aluminum, rhodium, indium, etc.), carbon, or conductive metal oxides (indium-tin composite oxide, tin oxide doped with fluorine, etc.) ).
  • the thickness of the conductive film layer is preferably 0.01 to 30 ⁇ m, more preferably 0.03 to 25 ⁇ m, and particularly preferably 0.05 to 20 ⁇ m.
  • the range of the surface resistance is preferably 50 ⁇ / cm 2 or less, more preferably 10 ⁇ / cm 2 or less. Although there is no restriction
  • a collecting electrode may be disposed.
  • a gas barrier film and / or an ion diffusion prevention film may be disposed between the support and the transparent conductive film.
  • the gas barrier layer a resin film or an inorganic film can be used.
  • the transparent conductive layer may have a laminated structure, and as a preferable method, for example, FTO can be laminated on ITO.
  • (D) Semiconductor Fine Particles As shown in FIG. 1, in the photoelectric conversion element 10 of the present invention, a photosensitive layer 2 in which a sensitizing dye 21 is adsorbed on porous semiconductor fine particles 22 is formed on a conductive support 1. Has been. As will be described later, for example, a dispersion of semiconductor fine particles is applied to the conductive support and dried, and then immersed in the dye solution of the present invention to produce a photoreceptor.
  • the semiconductor fine particles metal chalcogenides (for example, oxides, sulfides, selenides, etc.) or perovskite fine particles are preferably used.
  • Preferred examples of the metal chalcogenide include titanium, tin, zinc, tungsten, zirconium, hafnium, strontium, indium, cerium, yttrium, lanthanum, vanadium, niobium, tantalum oxide, cadmium sulfide, cadmium selenide, and the like.
  • Preferred perovskites include strontium titanate and calcium titanate. Of these, titanium oxide, zinc oxide, tin oxide, and tungsten oxide are particularly preferable.
  • n-type In semiconductors, there are an n-type in which carriers involved in conduction are electrons and a p-type in which carriers are holes. In the element of the present invention, n-type is preferable in terms of conversion efficiency. In an n-type semiconductor, in addition to an intrinsic semiconductor (or an intrinsic semiconductor) having no impurity level and having the same carrier concentration due to conduction band electrons and valence band holes, the electron carrier concentration is reduced by structural defects derived from impurities. There are high n-type semiconductors.
  • the n-type inorganic semiconductor preferably used in the present invention is TiO 2 , TiSrO 3 , ZnO, Nb 2 O 3 , SnO 2 , WO 3 , Si, CdS, CdSe, V 2 O 5 , ZnS, ZnSe, SnSe, KTaO. 3 , FeS 2 , PbS, InP, GaAs, CuInS 2 , CuInSe 2 and the like.
  • the most preferred n-type semiconductors are TiO 2 , ZnO, SnO 2 , WO 3 , and Nb 2 O 3 .
  • a semiconductor material in which a plurality of these semiconductors are combined is also preferably used.
  • the average particle size of the primary particles is 2 nm to 50 nm, and the average primary particle size is 2 nm to 30 nm. More preferably, it is a fine particle. Two or more kinds of fine particles having different particle size distributions may be mixed. In this case, the average size of the small particles is preferably 5 nm or less.
  • large particles having an average particle size exceeding 50 nm can be added to the ultrafine particles at a low content, or another layer can be applied.
  • the content of the large particles is preferably 50% or less, more preferably 20% or less of the mass of particles having an average particle size of 50 nm or less.
  • the average particle size of the large particles added and mixed for the above purpose is preferably 100 nm or more, and more preferably 250 nm or more.
  • the haze ratio is preferably 60% or more.
  • the haze ratio is expressed by (diffuse transmittance) / (total light transmittance).
  • the gel-sol method described in Sakuo Sakuo's “Science of Sol-Gel Method”, Agne Jofu Co., Ltd. (1998) and the like is preferable. Also preferred is a method of producing an oxide by high-temperature hydrolysis of a chloride developed by Degussa in an oxyhydrogen salt.
  • the above sol-gel method, gel-sol method, and high-temperature hydrolysis method in oxyhydrogen salt of chloride are preferred, but Kiyoshi Manabu's “Titanium oxide properties and applied technology”
  • the sulfuric acid method and the chlorine method described in Gihodo Publishing (1997) can also be used.
  • the sol-gel method the method described in Journal of American Ceramic Society, Vol. 80, No. 12, 3157-3171 (1997), or the chemistry of Burnside et al. -The method described in Materials, Vol. 10, No. 9, pages 2419-2425 is also preferable.
  • a method for producing semiconductor fine particles for example, as a method for producing titania nanoparticles, preferably, a method by flame hydrolysis of titanium tetrachloride, a combustion method of titanium tetrachloride, hydrolysis of a stable chalcogenide complex, orthotitanic acid Of semiconductor, forming semiconductor fine particles from soluble and insoluble parts, then dissolving and removing soluble parts, hydrothermal synthesis of peroxide aqueous solution, or production of core / shell structured titanium oxide fine particles by sol-gel method A method is mentioned.
  • titania examples include anatase type, brookite type, and rutile type, and anatase type and brookite type are preferable. Titania nanotubes, nanowires, and nanorods may be mixed with titania fine particles.
  • ⁇ Titania may be doped with a nonmetallic element or the like.
  • an additive may be used on the surface to improve the necking or to prevent reverse electron transfer.
  • preferred additives include ITO, SnO particles, whiskers, fibrous graphite / carbon nanotubes, zinc oxide necking binders, fibrous materials such as cellulose, metals, organic silicon, dodecylbenzenesulfonic acid, silane compounds, etc. Examples thereof include a mobile binding molecule and a potential gradient dendrimer.
  • titania may be acid-base or redox treated before dye adsorption. Etching, oxidation treatment, hydrogen peroxide treatment, dehydrogenation treatment, UV-ozone, oxygen plasma, or the like may be used.
  • a semiconductor fine particle dispersion in which the solid content other than the semiconductor fine particles is 10% by mass or less of the entire semiconductor fine particle dispersion is applied to the conductive support.
  • a porous semiconductor fine particle coating layer can be obtained by heating to a high temperature.
  • a method of preparing a semiconductor fine particle dispersion is a method of depositing fine particles in a solvent and using them as they are when synthesizing a semiconductor. Ultrafine particles are irradiated with ultrasonic waves. Or a method of mechanically pulverizing and grinding using a mill or a mortar.
  • the dispersion solvent water and / or various organic solvents can be used.
  • organic solvent examples include alcohols such as methanol, ethanol, isopropyl alcohol, citronellol and terpineol, ketones such as acetone, esters such as ethyl acetate, dichloromethane, acetonitrile and the like.
  • alcohols such as methanol, ethanol, isopropyl alcohol, citronellol and terpineol
  • ketones such as acetone
  • esters such as ethyl acetate, dichloromethane, acetonitrile and the like.
  • a small amount of, for example, a polymer such as polyethylene glycol, hydroxyethyl cellulose, carboxymethyl cellulose, a surfactant, an acid, or a chelating agent may be used as a dispersion aid.
  • the solid content other than the semiconductor fine particles can be 10% by mass or less of the total dispersion. This concentration is preferably 5% or less, more preferably 3% or less, and particularly preferably 1% or less. More preferably, it is 0.5% or less, and particularly preferably 0.2%. That is, in the semiconductor fine particle dispersion, the solid content other than the solvent and the semiconductor fine particles can be 10% by mass or less of the entire semiconductor fine particle dispersion.
  • the viscosity of the semiconductor fine particle dispersion is preferably 10 to 300 N ⁇ s / m 2 at 25 ° C. More preferably, it is 50 to 200 N ⁇ s / m 2 at 25 ° C.
  • a roller method, a dip method, or the like can be used as an application method.
  • an air knife method, a blade method, etc. can be used as a metering method.
  • the application method and the metering method can be made the same part.
  • the wire bar method disclosed in Japanese Patent Publication No. 58-4589, the slide hopper method described in US Pat. No. 2,681,294, etc., the extrusion The method and the curtain method are preferable. It is also preferable to apply by a spin method or a spray method using a general-purpose machine.
  • the wet printing method intaglio, rubber plate, screen printing and the like are preferred, including the three major printing methods of letterpress, offset and gravure. From these, a preferred film forming method is selected according to the liquid viscosity and the wet thickness. Further, since the semiconductor fine particle dispersion of the present invention has a high viscosity and has a viscous property, it may have a strong cohesive force and may not be well adapted to the support during coating. In such a case, by performing cleaning and hydrophilization of the surface by UV ozone treatment, the binding force between the applied semiconductor fine particle dispersion and the surface of the conductive support increases, and the semiconductor fine particle dispersion can be easily applied.
  • the preferred thickness of the entire semiconductor fine particle layer is 0.1 to 100 ⁇ m.
  • the thickness of the semiconductor fine particle layer is further preferably 1 to 30 ⁇ m, and more preferably 2 to 25 ⁇ m.
  • the amount of the semiconductor fine particles supported per 1 m 2 of the support is preferably 0.5 g to 400 g, more preferably 5 to 100 g.
  • the applied semiconductor fine particle layer is subjected to heat treatment to enhance the electronic contact between the semiconductor fine particles and to improve the adhesion to the support, and to dry the applied semiconductor fine particle dispersion. .
  • heat treatment By this heat treatment, a porous semiconductor fine particle layer can be formed.
  • light energy can also be used.
  • the surface may be activated by applying light absorbed by the semiconductor fine particles such as ultraviolet light, or only the surface of the semiconductor fine particles may be activated by laser light or the like. Can do.
  • the impurities adsorbed on the particle surface are decomposed by the activation of the particle surface, and can be brought into a preferable state for the above purpose.
  • heat treatment and ultraviolet light it is preferable that heating be performed at 100 ° C. or higher and 250 ° C. or lower, or preferably 100 ° C. or higher and 150 ° C. or lower, while irradiating the semiconductor fine particles with light absorbed by the fine particles.
  • the semiconductor fine particle dispersion may be applied to the conductive support, and other treatments may be performed in addition to heating and light irradiation.
  • Examples of preferred methods include energization and chemical treatment.
  • a pressure may be applied after the application, and a method for applying the pressure includes Japanese Patent Publication No. 2003-500857.
  • Examples of light irradiation include JP-A No. 2001-357896.
  • Examples of plasma, microwave, and energization include JP-A No. 2002-353453.
  • Examples of the chemical treatment include JP-A-2001-357896.
  • the method for coating the above-mentioned semiconductor fine particles on the conductive support is not only the method for applying the above-mentioned semiconductor fine particle dispersion on the conductive support, but also the semiconductor fine particle precursor described in Japanese Patent No. 2664194.
  • a method such as a method of obtaining a semiconductor fine particle film by applying on a conductive support and hydrolyzing with moisture in the air can be used.
  • the precursor include (NH 4 ) 2 TiF 6 , titanium peroxide, metal alkoxide / metal complex / metal organic acid salt, and the like.
  • a method of forming a semiconductor film by applying a slurry in which a metal organic oxide (alkoxide, etc.) coexists, and heat treatment, light treatment, etc., a slurry in which an inorganic precursor coexists, titania dispersed in the pH of the slurry The method which specified the property of particle
  • a binder may be added in a small amount, and examples of the binder include cellulose, fluoropolymer, crosslinked rubber, polybutyl titanate, carboxymethyl cellulose and the like.
  • Techniques related to the formation of semiconductor fine particles or precursor layers thereof include corona discharge, plasma, a method of hydrophilizing by a physical method such as UV, a chemical treatment with alkali, polyethylenedioxythiophene and polystyrenesulfonic acid, polyaniline, etc. For example, formation of an interlayer film for bonding may be mentioned.
  • Examples of the dry method include vapor deposition, sputtering, and aerosol deposition method. Further, electrophoresis or electrodeposition may be used. Moreover, after producing a coating film once on a heat-resistant board
  • the semiconductor fine particles preferably have a large surface area so that many dyes can be adsorbed.
  • the surface area is preferably 10 times or more, more preferably 100 times or more the projected area.
  • limiting in particular in this upper limit Usually, it is about 5000 times. JP-A-2001-93591 and the like are preferable as the structure of semiconductor fine particles.
  • the thickness of the semiconductor fine particle layer increases, the amount of dye that can be supported per unit area increases, so that the light absorption efficiency increases.
  • the preferred thickness of the semiconductor fine particle layer varies depending on the use of the device, but is typically 0.1 to 100 ⁇ m. When used as a photoelectrochemical cell, the thickness is preferably 1 to 50 ⁇ m, more preferably 3 to 30 ⁇ m.
  • the semiconductor fine particles may be heated at a temperature of 100 to 800 ° C. for 10 minutes to 10 hours in order to adhere the particles to each other after being applied to the support.
  • the film forming temperature is preferably 400 to 600 ° C.
  • a polymer material is used as the support, it is preferably heated after film formation at 250 ° C.
  • the film forming method may be any of (1) a wet method, (2) a dry method, and (3) an electrophoresis method (including an electrodeposition method), and preferably (1) a wet method or ( 2) A dry method, more preferably (1) a wet method.
  • the coating amount of semiconductor fine particles per 1 m 2 of support is preferably 0.5 to 500 g, more preferably 5 to 100 g.
  • the well-dried semiconductor fine particles are placed in a dye adsorption dye solution comprising the solution and the dye of the present invention for a long time (a sufficient time for the adsorption reaction to reach equilibrium).
  • a dye adsorption dye solution comprising the solution and the dye of the present invention for a long time (a sufficient time for the adsorption reaction to reach equilibrium).
  • it is preferably immersed at 0 to 150 ° C. for 5 seconds or more and 72 hours or less, preferably 10 ° C. to 80 ° C. for 1 minute or more and 48 hours or less.
  • any solution that can dissolve the dye of the present invention can be used without any particular limitation, for example, ethanol, methanol, isopropanol, toluene, t-butanol, acetonitrile, acetone, n-butanol, etc.
  • Ethanol and toluene can be preferably used.
  • the dye solution for dye adsorption comprising the solution and the sensitizing dye of the present invention may be heated to 50 ° C. to 100 ° C. as necessary. The adsorption of the dye may be performed before or after application of the semiconductor fine particles. Further, the semiconductor fine particles and the dye may be applied and adsorbed simultaneously. Unadsorbed dye is removed by washing.
  • suck a pigment
  • One kind of adsorbing dye may be used, or several kinds may be mixed and used. When mixing, 2 or more types of the pigment
  • the dye to be mixed is selected so as to make the wavelength range of photoelectric conversion as wide as possible. When mixing the dyes, it is necessary to prepare a dye solution for dye adsorption by dissolving all the dyes.
  • the total amount of the dye used is preferably 0.01 to 100 mmol, more preferably 0.1 to 50 mmol, and particularly preferably 0.1 to 10 mmol per 1 m 2 of the support.
  • the amount of the dye of the present invention is preferably 5 mol% or more.
  • the adsorption amount of the dye to the semiconductor fine particles is preferably 0.001 to 1 mmol, more preferably 0.1 to 0.5 mmol, with respect to 1 g of the semiconductor fine particles.
  • a colorless compound may be co-adsorbed for the purpose of reducing the interaction between dyes such as association.
  • the hydrophobic compound to be co-adsorbed include steroid compounds having a carboxyl group (for example, cholic acid, pivalic acid) and the like.
  • the surface of the semiconductor fine particles may be treated with amines.
  • Preferred amines include 4-tert-butylpyridine, polyvinylpyridine and the like. These may be used as they are in the case of a liquid, or may be used by dissolving in an organic solvent.
  • the counter electrode serves as the positive electrode of the photoelectrochemical cell.
  • the counter electrode is usually synonymous with the conductive support described above, but the support is not necessarily required in a configuration in which the strength is sufficiently maintained. However, having a support is advantageous in terms of hermeticity.
  • the material for the counter electrode include platinum, carbon, conductive polymer, and the like. Preferable examples include platinum, carbon, and conductive polymer.
  • the structure of the counter electrode a structure having a high current collecting effect is preferable.
  • Preferred examples include JP-A-10-505192.
  • a composite electrode such as titanium oxide and tin oxide (TiO 2 / SnO 2 ) may be used.
  • TiO 2 / SnO 2 titanium oxide and tin oxide
  • a mixed electrode of titania for example, Japanese Patent Application Laid-Open No. 2000-11913 is cited.
  • Examples of mixed electrodes other than titania include Japanese Patent Application Laid-Open Nos. 2001-185243 and 2003-282164.
  • the structure of the element may have a structure in which a first electrode layer, a first photoelectric conversion layer, a conductive layer, a second photoelectric conversion layer, and a second electrode layer are sequentially stacked.
  • the dyes used for the first photoelectric conversion layer and the second photoelectric conversion layer may be the same or different, and when they are different, it is preferable that the absorption spectra are different.
  • the light receiving electrode may be a tandem type in order to increase the utilization rate of incident light.
  • Examples of preferred tandem type configurations include those described in JP-A Nos. 2000-90989 and 2002-90989.
  • a light management function for efficiently performing light scattering and reflection inside the light receiving electrode layer may be provided.
  • Preferable examples include those described in JP-A-2002-93476.
  • a short-circuit prevention layer between the conductive support and the porous semiconductor fine particle layer in order to prevent reverse current due to direct contact between the electrolyte and the electrode.
  • Preferable examples include Japanese Patent Application Laid-Open No. 06-507999.
  • a spacer or a separator In order to prevent contact between the light receiving electrode and the counter electrode, it is preferable to use a spacer or a separator.
  • a preferable example is JP-A-2001-283941.
  • Cell and module sealing methods include polyisobutylene thermosetting resin, novolak resin, photo-curing (meth) acrylate resin, epoxy resin, ionomer resin, glass frit, method using aluminum alkoxide for alumina, low melting point glass paste It is preferable to use a laser melting method. When glass frit is used, powder glass mixed with acrylic resin as a binder may be used.
  • the photoelectric conversion element 10 shown in FIG. 1 was produced as follows. On the glass substrate, tin oxide doped with fluorine was formed as a transparent conductive film by sputtering, and this was scribed with a laser to divide the transparent conductive film into two parts. Next, 32 g of anatase-type titanium oxide (P-25 (trade name) manufactured by Nippon Aerosil Co., Ltd.) is mixed with 100 ml of a mixed solvent having a volume ratio of water and acetonitrile of 4: 1, and a rotating / revolving mixing conditioner is prepared. The resulting mixture was uniformly dispersed and mixed to obtain a semiconductor fine particle dispersion.
  • P-25 trade name
  • a mixed solvent having a volume ratio of water and acetonitrile of 4: 1
  • This dispersion was applied to a transparent conductive film and heated at 500 ° C. to produce a light receiving electrode. Thereafter, similarly, a dispersion containing 40:60 (mass ratio) of silica particles and rutile-type titanium oxide is prepared, and this dispersion is applied to the light receiving electrode and heated at 500 ° C. to form an insulating porous material. Formed body. Next, a carbon electrode was formed as a counter electrode. Next, the glass substrate on which the insulating porous material was formed was immersed in an ethanol solution (3 ⁇ 10 ⁇ 4 mol / l) of a sensitizing dye described in Table 1 below at 40 ° C. for 48 hours.
  • the glass dyed with the sensitizing dye was immersed in a 10% ethanol solution of 4-tert-butylpyridine for 30 minutes, then washed with ethanol and naturally dried.
  • the thickness of the photosensitive layer thus obtained was 10 ⁇ m, and the coating amount of semiconductor fine particles was 20 g / m 2 .
  • As the electrolytic solution a methoxypropionitrile solution of dimethylpropylimidazolium iodide (0.5 mol / l) and iodine (0.1 mol / l) was used.
  • a comparative dye having the following structure was used.
  • the evaluation criteria of the experimental results are ⁇ for conversion efficiency of 3.5% or more, ⁇ for 2.5% or more and less than 3.5%, ⁇ for 2.0% or more and less than 2.5%, Those with less than 2.0% were evaluated as x.
  • the reduction rate of the conversion efficiency after 300-hour dark storage at 70 degreeC and the reduction rate of the conversion efficiency after 500-hour continuous light irradiation were measured.
  • the conversion efficiency decrease rate was less than 3% of fresh, ⁇ , 3% to less than 5%, ⁇ , 5% to less than 10%, ⁇ , 10% or more to x.
  • the results are shown in the column of wet heat durability (darkness storage durability) in Table 8-2.
  • the following sensitizing dye S-1 was used.
  • the electrochemical cell produced using the dye of the present invention particularly when A2 to A4, A11 to A13, A-15, and A-16 are used as the dye Shows a high conversion efficiency of 3.5% or more. Even when other dyes of the present invention were used, the conversion efficiency was at a relatively high level of 2.5% or more and less than 3.5%. On the other hand, the experimental result of Sample No. 17 was insufficient with a conversion efficiency of less than 2.0%.
  • Example 2 An ITO film was produced on a glass substrate, and an FTO film was laminated thereon to produce a transparent conductive film. Then, a transparent electrode plate was obtained by forming an oxide semiconductor porous film on the transparent conductive film. And the photoelectrochemical cell 100 was produced using the transparent electrode plate, and the conversion efficiency was measured.
  • the detailed method is as follows (1) to (5).
  • the FTO membrane raw material compound solution obtained in (2) was sprayed for 2 minutes 30 seconds under the same conditions.
  • a transparent electrode plate was obtained in which an ITO film having a thickness of 530 nm and an FTO film having a thickness of 170 nm were sequentially formed on the heat-resistant glass plate.
  • a transparent electrode plate in which only a 530 nm thick ITO film is formed on a heat resistant glass plate having a thickness of 2 mm and a transparent electrode plate in which only a 180 nm thick FTO film is similarly formed are formed.
  • These three kinds of transparent electrode plates were heated in a heating furnace at 450 ° C. for 2 hours.
  • the oxide semiconductor porous film 15 is formed by dispersing fine particles of titanium oxide having an average particle size of about 230 nm in 100 ml of acetonitrile to form a paste, applying this to the transparent electrode 11 to a thickness of 15 ⁇ m by a bar coating method, and drying.
  • the oxide semiconductor porous film 15 was loaded with the dyes listed in Table 2 by baking at 450 ° C. for 1 hour.
  • the immersion conditions in the dye solution were the same as in Experiment 1.
  • a conductive substrate in which an ITO film and an FTO film were laminated on a glass plate was used for the counter electrode 16, and an electrolytic solution made of a non-aqueous solution of iodine / iodide was used for the electrolyte layer 17.
  • the planar dimension of the photoelectrochemical cell was 25 mm ⁇ 25 mm.
  • the conversion efficiency decrease rate was less than 3% of the fresh, ⁇ , 3% to less than 5%, ⁇ , 5% to less than 10%, and 10% or more to x.
  • Sample No. using sensitizing dye A 11 to 13 the conversion efficiency is low, whereas sample No. From 1 to 9, it was found that both the initial value of the conversion efficiency and the durability were excellent.
  • the conversion efficiency is particularly high as compared with the case where only an ITO film or only an FTO film is used. It was found that those using these dyes were highly effective.
  • test cell (i) A collecting electrode was arranged on the FTO film to produce a photoelectrochemical cell, and the conversion efficiency was evaluated. Evaluation was made into two types, test cell (i) and test cell (iv) as follows.
  • etching was performed using hydrofluoric acid.
  • a metal conductive layer (seed layer) was formed thereon by sputtering to enable plating formation, and a metal wiring layer 3 was further formed by additive plating.
  • the metal wiring layer 3 was formed in a convex lens shape from the surface of the transparent substrate 2 to a height of 3 ⁇ m.
  • the circuit width was 60 ⁇ m.
  • an FTO film having a thickness of 400 nm was formed as the shielding layer 5 by the SPD method to obtain an electrode substrate (i).
  • the cross-sectional shape of the electrode substrate (i) was as shown in FIG. 2 in JP-A No. 2004-146425.
  • a dispersion obtained by dispersing titanium oxide having an average particle diameter of 25 nm in 100 ml of acetonitrile was applied and dried, and heated and sintered at 450 ° C. for 1 hour.
  • a methoxyacetonitrile solution containing 0.5M iodide and 0.05M iodine as the main components was injected from the electrolyte solution inlet previously opened on the platinum sputter electrode side, and filled between the electrodes. It was. Further, the peripheral part and the electrolyte solution injection port were finally sealed with an epoxy-based sealing resin, and a silver paste was applied to the current collecting terminal part to obtain a test cell (i). The photoelectric conversion characteristics of the test cell (i) were evaluated using pseudo sunlight of AM1.5. The results are shown in Table 3.
  • Test cell (iv) A glass substrate with a 100 ⁇ 100 mm FTO film was prepared in the same manner as in the test cell (i).
  • a metal wiring layer 3 (gold circuit) was formed on the FTO glass substrate by additive plating.
  • the metal wiring layer 3 (gold circuit) was formed in a lattice shape on the substrate surface, and had a circuit width of 50 ⁇ m and a circuit thickness of 5 ⁇ m.
  • an FTO film having a thickness of 300 nm was formed as a shielding layer 5 by the SPD method to obtain a test cell (iv).
  • a test cell (iv) was produced in the same manner as the test cell (i) using the electrode substrate (iv).
  • the photoelectric conversion characteristics of the test cell (iv) were evaluated by AM1.5 artificial sunlight, and the results are shown in Table 3. As a result, conversion efficiency of 3.5% or more is ⁇ , 2.5% or more and less than 3.5% is ⁇ , 2.0% or more and less than 2.5% is ⁇ , 2.0% Those less than were evaluated as x.
  • the reduction rate of the conversion efficiency after 300-hour dark storage at 80 degreeC and the reduction rate of the conversion efficiency after 500-hour continuous light irradiation were measured.
  • the conversion efficiency decrease rate was less than 3% of the fresh, ⁇ , 3% to less than 5%, ⁇ , 5% to less than 10%, and 10% or more to x.
  • Example 4 Tests were conducted on a method for producing peroxotitanic acid and titanium oxide fine particles and a method for producing an oxide semiconductor film using the peroxotitanic acid and titanium oxide fine particles, and a photoelectrochemical cell was produced and evaluated.
  • Photovoltaic cell (A) (1) Preparation of coating liquid (A) for forming an oxide semiconductor film 5 g of titanium hydride is suspended in 1 liter of pure water, 400 g of a 5 mass% hydrogen peroxide solution is added over 30 minutes, and then 80 A solution of peroxotitanic acid was prepared by heating to ° C and dissolution. 90% by volume was taken from the total amount of this solution, adjusted to pH 9 by adding concentrated aqueous ammonia, placed in an autoclave, hydrothermally treated at 250 ° C. for 5 hours under saturated vapor pressure, and titania colloidal particles (A) Was prepared. The obtained titania colloidal particles were anatase type titanium oxide having high crystallinity by X-ray diffraction.
  • the obtained titania colloidal particles (A) was concentrated to 10 wt%, the peroxotitanic acid solution were mixed, the titanium of the mixed solution TiO 2 terms, TiO 2 mass of 30 mass% Then, hydroxypropylcellulose was added as a film formation aid so that a coating solution for forming a semiconductor film was prepared.
  • oxide semiconductor film (A) Next, the coating solution was applied on a transparent glass substrate on which fluorine-doped tin oxide was formed as an electrode layer, dried naturally, and subsequently 6000 mJ using a low-pressure mercury lamp. The peroxoacid was decomposed by irradiating with / cm 2 of ultraviolet rays, and the coating film was cured. The coating film was heated at 300 ° C. for 30 minutes to decompose and anneal the hydroxypropyl cellulose to form an oxide semiconductor film (A) on the glass substrate.
  • photoelectric cell (A) The glass substrate on which the oxide semiconductor film (A) adsorbed with the dye produced in (2) was formed was used as one electrode, and the other electrode was fluorine-doped. A transparent glass substrate carrying tin oxide as an electrode and carrying platinum on it is placed facing it, the sides are sealed with resin, the electrolyte solution (4) is sealed between the electrodes, and the electrodes are lead between them. Photoelectric cells (A) were prepared by connecting with wires.
  • Photoelectric cell (A) was irradiated with light of 100 W / m 2 with a solar simulator, measured ⁇ (conversion efficiency), and the results are shown in Table 4. Indicated.
  • titania colloidal particles (D) are concentrated to 10% by mass, and hydroxypropyl cellulose is added as a film forming aid so as to be 30% by mass in terms of TiO 2 to form a semiconductor film.
  • a coating solution was prepared.
  • the coating solution is applied onto a transparent glass substrate on which fluorine-doped tin oxide is formed as an electrode layer, dried naturally, and subsequently irradiated with 6000 mJ / cm 2 of ultraviolet rays using a low-pressure mercury lamp to form a film. Cured. Furthermore, it heated at 300 degreeC for 30 minute (s), decomposed
  • the dye of the present invention was adsorbed as a spectral sensitizing dye in the same manner as the oxide semiconductor film (A). Then, the photoelectric cell (D) was created by the method similar to a photoelectric cell (A), and (eta) was measured.
  • the experimental results are shown in Table 4. As a result, conversion efficiency of 3.5% or more is ⁇ , 2.5% or more and less than 3.5% is ⁇ , 2.0% or more and less than 2.5% is ⁇ , 2.0% Less than were shown as x.
  • the reduction rate of the conversion efficiency after 300-hour dark storage at 80 degreeC and the reduction rate of the conversion efficiency after 600 hours continuous light irradiation were measured. As a result of evaluating the durability, the conversion efficiency decrease rate was less than 3% of the fresh, ⁇ , 3% to less than 5%, ⁇ , 5% to less than 10%, and 10% or more to x.
  • Titanium oxide was prepared or synthesized by changing the method, an oxide semiconductor film was prepared from the obtained titanium oxide, and a photoelectrochemical cell was evaluated.
  • titanium oxide by heat treatment Using commercially available anatase-type titanium oxide (trade name ST-01, manufactured by Ishihara Sangyo Co., Ltd.), this is heated to about 900 ° C and converted to blue-kite type titanium oxide. Further, it was heated to about 1,200 ° C. to obtain a rutile type titanium oxide. Respectively, comparative titanium oxide 1 (anatase type), titanium oxide 1 (blue kite type), and comparative titanium oxide 2 (rutile type) are used.
  • the titanium tetrachloride concentration was 0.25 mol / liter (2% by mass in terms of titanium oxide).
  • the reaction solution started to become cloudy immediately after dropping, but kept at the same temperature. After the dropping was completed, the temperature was further raised and heated to the vicinity of the boiling point (104 ° C.). The reaction was terminated. The sol obtained by the reaction was filtered, and then powdered using a vacuum dryer at 60 ° C.
  • Ti content 28% by mass, specific gravity 1.5, purity 99.9%
  • distilled water 500 ml of this solution was put into a reaction tank equipped with a reflux condenser, and ozone gas with a purity of 80% was bubbled from the ozone gas generator at 1 L / min while heating at 85 ° C. to carry out an oxidation reaction. This state was maintained for 2 hours to complete the reaction.
  • the obtained sol was filtered and vacuum-dried to obtain a powder.
  • the ratio of (peak intensity on the surface of blue kite type 121) / (peak intensity at the position where the three overlap) is 0.85, (rutile main peak intensity) /
  • the ratio (peak intensity at the position where the three lines overlap) was 0.
  • the titanium dioxide was about 98% by mass for the blue kite type, 0% by mass for the rutile type, 0% by mass for the anatase type, and about 2% was amorphous.
  • the average particle diameter of the primary particles was 0.05 ⁇ m.
  • a photoelectric conversion element having the structure shown in FIG. 1 of JP-A No. 2000-340269 was produced as follows using titanium oxide prepared by the above titanium oxides 1 to 3 as a semiconductor.
  • a glass substrate was coated with fluorine-doped tin oxide to form a conductive transparent electrode.
  • a paste using each titanium oxide particle as a raw material was formed on the electrode surface, applied to a thickness of 50 ⁇ m by a bar coating method, and then baked at 500 ° C. to form a thin layer having a thickness of about 20 ⁇ m.
  • a 3 ⁇ 10 ⁇ 4 molar ethanol solution of the dye was prepared, and the glass substrate on which the above-mentioned titanium oxide thin layer was formed was immersed therein and kept at room temperature for 12 hours.
  • a photoelectric conversion element having the configuration shown in FIG. 1 of JP-A No. 2000-340269 was prepared using an iodine salt of tetrapropylammonium and an acetonitrile solution of lithium iodide as an electrolytic solution and using platinum as a counter electrode.
  • For photoelectric conversion light from a 160-w high-pressure mercury lamp (the infrared part was cut by a filter) was applied to the above-mentioned element, and the conversion efficiency at that time was measured.
  • the results are shown in Table 5. The results are: conversion efficiency of 3.5% or more ⁇ , 2.5% or more of less than 3.5% ⁇ , 2.0% or more of less than 2.5% ⁇ , 2.0% Less than were shown as x.
  • the reduction rate of the conversion efficiency after 300-hour dark storage at 80 degreeC and the reduction rate of the conversion efficiency after 600 hours continuous light irradiation were measured.
  • the conversion efficiency decrease rate was less than 3% of the fresh, ⁇ , 3% to less than 5%, ⁇ , 5% to less than 10%, and 10% or more to x.
  • a titania slurry was prepared by placing spherical TiO 2 particles (anatase type, average particle size: 25 nm, hereinafter referred to as spherical TiO 2 particles 1) in a nitric acid solution and stirring. Next, a cellulose binder as a thickener was added to the titania slurry and kneaded to prepare a paste.
  • a paste was prepared.
  • a paste was prepared.
  • Photoelectrochemical cell 1 A photoelectrode having the same configuration as that of the photoelectrode 12 shown in FIG. 5 described in JP-A-2002-289274 is prepared by the following procedure, and further a dye-sensitized type using the photoelectrode except for the photoelectrode. A 10 ⁇ 10 mm scale photoelectrochemical cell 1 having the same configuration as that of the solar cell 20 was produced.
  • a transparent electrode in which a fluorine-doped SnO 2 conductive film (film thickness: 500 nm) was formed on a glass substrate was prepared. Then, the paste 2 was screen-printed on the SnO 2 conductive film and then dried. Then, it baked on the conditions of 450 degreeC in the air. Further, by repeating this screen printing and baking using the paste 4, a semiconductor electrode having the same configuration as the semiconductor electrode 2 shown in FIG.
  • dye was made to adsorb
  • an iodine-based redox solution containing iodine and lithium iodide as a platinum electrode (thickness of Pt thin film; 100 nm) having the same shape and size as the above-described photoelectrode as a counter electrode and electrolyte E was prepared. Furthermore, a spacer S (trade name: “Surlin”) manufactured by DuPont having a shape corresponding to the size of the semiconductor electrode was prepared. As shown in FIG. 3 described in JP-A-2002-289274, the photoelectrode 10 and the counter electrode were prepared. The photoelectrochemical cell 1 was completed by facing the CE through the spacer S and filling the above electrolyte therein.
  • Photoelectrochemical cell 2 The photoelectrode 10 shown in FIG. 1 described in JP-A No. 2002-289274 and the diagram described in JP-A No. 2002-289274 are the same as those of the photoelectrochemical cell 1 except that the semiconductor electrode is manufactured as follows.
  • Paste 2 was used as a semiconductor layer forming paste. Then, paste 2 was screen-printed on the SnO 2 conductive film and then dried. Then, it baked on the conditions of 450 degreeC in the air, and formed the semiconductor layer.
  • Paste 3 was used as the innermost layer forming paste of the light scattering layer.
  • the paste 5 was used as the outermost layer forming paste of the light scattering layer. Then, a light scattering layer was formed on the semiconductor layer in the same manner as in the dye-sensitized solar cell 1.
  • a semiconductor electrode having the same configuration as the semiconductor electrode 2 shown in FIG. 1 described in JP-A No. 2002-289274 (light receiving surface area: 10 mm ⁇ 10 mm, layer thickness: 10 ⁇ m, layer thickness of the semiconductor layer) 3 ⁇ m, the thickness of the innermost layer; 4 ⁇ m, the content of rod-like TiO 2 particles 1 contained in the innermost layer; 10% by mass, the thickness of the outermost layer; 3 ⁇ m, contained in the innermost layer
  • the content ratio of the rod-like TiO 2 particles 1 to be formed; 50% by mass) was formed, and a photoelectrode containing no sensitizing dye was produced.
  • the photoelectrochemical cell 2 was completed by making the photoelectrode, the counter electrode CE, and the spacer S face each other and filling the above electrolyte therein.
  • Photoelectrochemical cell 3 The light shown in FIG. 5 was prepared by the same procedure as that of the photoelectrochemical cell 1 except that the paste 1 was used as the semiconductor layer forming paste and the paste 4 was used as the light scattering layer forming paste when the semiconductor electrode was manufactured.
  • a photoelectrode and photoelectrochemical cell 3 having the same configuration as that of the electrode 10 and the photoelectrochemical cell 20 shown in FIG. 3 described in JP-A-2002-289274 were produced.
  • the semiconductor electrode has a light receiving surface area of 10 mm ⁇ 10 mm, a layer thickness of 10 ⁇ m, a semiconductor layer thickness of 5 ⁇ m, a light scattering layer thickness of 5 ⁇ m, and the rod-like TiO 2 particles 1 contained in the light scattering layer. Content rate: 30% by mass.
  • Photoelectrochemical cell 4 In the production of the semiconductor electrode, the light shown in FIG. 5 was obtained by the same procedure as that of the photoelectrochemical cell 1 except that the paste 2 was used as the semiconductor layer forming paste and the paste 6 was used as the light scattering layer forming paste. A photoelectrode and photoelectrochemical cell 4 having the same configuration as the electrode 10 and the photoelectrochemical cell 20 shown in FIG. 3 described in JP-A-2002-289274 were produced.
  • the semiconductor electrode has a light receiving surface area: 10 mm ⁇ 10 mm, layer thickness: 10 ⁇ m, semiconductor layer thickness: 6.5 ⁇ m, light scattering layer thickness: 3.5 ⁇ m, plate-like contained in the light scattering layer
  • the content of mica particles 1 was 20% by mass.
  • Photoelectrochemical cell 5 In the production of the semiconductor electrode, the photoelectrode and the photoelectrochemistry were prepared in the same procedure as in the photoelectrochemical cell 1 except that the paste 2 was used as the semiconductor layer forming paste and the paste 8 was used as the light scattering layer forming paste. Battery 5 was produced. The content ratio of the rod-shaped TiO 2 particles 3 contained in the light scattering layer of the semiconductor electrode; was 30 wt%.
  • Photoelectrochemical cell 6 In the production of the semiconductor electrode, the photoelectrode and the photoelectrochemical process were performed in the same manner as in the photoelectrochemical cell 1 except that the paste 2 was used as the semiconductor layer forming paste and the paste 9 was used as the light scattering layer forming paste. A battery 6 was produced. The content ratio of the rod-shaped TiO 2 particles 4 contained in the light scattering layer of the semiconductor electrode; was 30 wt%.
  • Photoelectrochemical cell 7 In the production of the semiconductor electrode, the photoelectrode and the photoelectrochemistry were prepared in the same procedure as in the photoelectrochemical cell 1 except that the paste 2 was used as the semiconductor layer forming paste and the paste 10 was used as the light scattering layer forming paste. Battery 7 was produced. The content ratio of the rod-shaped TiO 2 particles 5 contained in the light scattering layer of the semiconductor electrode; was 30 wt%.
  • Photoelectrochemical cell 8 In the production of the semiconductor electrode, the photoelectrode and the photoelectrochemistry were prepared in the same procedure as in the photoelectrochemical cell 1 except that the paste 2 was used as the semiconductor layer forming paste and the paste 11 was used as the light scattering layer forming paste. Battery 8 was produced. The content ratio of the rod-shaped TiO 2 particles 6 contained in the light scattering layer of the semiconductor electrode; was 30 wt%.
  • Photoelectrochemical cell 9 In the production of the semiconductor electrode, the photoelectrode and the photoelectrochemistry were prepared in the same procedure as in the photoelectrochemical cell 1 except that the paste 2 was used as the semiconductor layer forming paste and the paste 13 was used as the light scattering layer forming paste. A battery 9 was produced. The content ratio of the rod-shaped TiO 2 particles 8 contained in the light scattering layer of the semiconductor electrode; was 30 wt%.
  • Photoelectrochemical cell 10 In the production of the semiconductor electrode, the photoelectrode and the photoelectrochemical process were performed in the same manner as in the photoelectrochemical cell 1 except that the paste 2 was used as the semiconductor layer forming paste and the paste 14 was used as the light scattering layer forming paste. Battery 10 was produced. The content of the rod-like TiO 2 particles 9 contained in the light scattering layer of the semiconductor electrode was 30% by mass.
  • Photoelectrochemical cell 11 Similar to the photoelectrochemical cell 1 except that a semiconductor electrode (light-receiving surface area: 10 mm ⁇ 10 mm, layer thickness: 10 ⁇ m) made of only the semiconductor layer using only the paste 2 was manufactured in the manufacture of the semiconductor electrode.
  • a photoelectrode and a comparative photoelectrochemical cell 1 were prepared according to the procedure.
  • Electrochemical battery 12 In the production of the semiconductor electrode, the photoelectrode and the comparative photoelectricity were prepared in the same procedure as in the photoelectrochemical cell 1 except that the paste 2 was used as the semiconductor layer forming paste and the paste 7 was used as the light scattering layer forming paste. A chemical battery 2 was produced. The content ratio of the rod-shaped TiO 2 particles 2 contained in the light scattering layer of the semiconductor electrode; was 30 wt%.
  • the reduction rate of the conversion efficiency after 300-hour dark storage at 80 degreeC and the reduction rate of the conversion efficiency after 600 hours continuous light irradiation were measured.
  • the conversion efficiency decrease rate was less than 3% of the fresh, ⁇ , 3% to less than 5%, ⁇ , 5% to less than 10%, and 10% or more to x.
  • the dye of the present invention has high conversion efficiency and excellent durability.
  • Example 7 A slurry obtained by adding metal alkoxide to metal oxide fine particles was applied to a conductive substrate, and then UV ozone irradiation, UV irradiation or drying was performed to produce an electrode. Then, the photoelectrochemical cell was produced and the conversion efficiency was measured.
  • Titanium oxide was used as the metal oxide fine particles.
  • P25 powder (trade name, manufactured by Degussa) having a mass ratio of 30% rutile type and 70% anatase type and an average particle size of 25 nm was used.
  • metal oxide fine particle powder Pretreatment of metal oxide fine particle powder
  • the metal oxide fine particles were previously heat-treated to remove surface organic substances and moisture.
  • the fine particles were heated in an oven at 450 ° C. in the atmosphere for 30 minutes.
  • the metal alkoxide that plays a role in bonding metal oxide fine particles includes titanium (IV) tetraisopropoxide (TTIP) as a titanium raw material, zirconium (IV) tetra n-propoxide as a zirconium raw material, and niobium as a niobium raw material.
  • TTIP titanium
  • IV tetraisopropoxide
  • V Pentaethoxide (all manufactured by Aldrich) was used.
  • the molar concentration ratio between the metal oxide fine particles and the metal alkoxide is appropriately adjusted according to the metal oxide fine particle diameter so that the amorphous layer generated by hydrolysis of the metal alkoxide is not excessively thick and the particles can be sufficiently bonded to each other. did. All metal alkoxides were 0.1M ethanol solutions. When mixing titanium oxide fine particles and titanium (IV) tetraisopropoxide (TTIP), 3.55 g of 0.1M TTIP solution was mixed with 1 g of titanium oxide fine particles. At this time, the titanium oxide concentration in the obtained paste was about 22% by mass, and the viscosity was appropriate for coating.
  • TTIP titanium (IV) tetraisopropoxide
  • the titanium oxide, TTIP, and ethanol at this time were 1: 0.127: 3.42 by mass ratio, and 1: 0.036: 5.92 by molar ratio.
  • a mixed paste of titanium oxide fine particles and an alkoxide other than TTIP was prepared so that the fine particle concentration was 22% by mass.
  • the content was 16% by mass.
  • the metal alkoxide solution was mixed at a ratio of 5.25 g to 1 g of the metal oxide fine particles.
  • the metal oxide fine particles and the metal alkoxide solution were stirred for 2 hours with a magnetic stirrer in a sealed container to obtain a uniform paste.
  • a doctor blade method, a screen printing method, a spray coating method, or the like can be used, and an appropriate paste viscosity is appropriately selected depending on the application method.
  • a method of applying simply with a glass rod similar to the doctor blade method was used.
  • the concentration of the metal oxide fine particles giving an appropriate paste viscosity was approximately in the range of 5 to 30% by mass.
  • the layer thickness of the amorphous metal oxide generated by the decomposition of the metal alkoxide is in the range of about 0.1 to 0.6 nm in this embodiment. A range of about 0.05 to 1.3 nm was appropriate for room temperature film formation by this method.
  • a porous film was prepared by changing the conditions for the presence or absence of UV ozone treatment, UV irradiation treatment, or drying treatment.
  • the film after application to the conductive substrate was air-dried at room temperature in the atmosphere for about 2 minutes.
  • the metal alkoxide in the paste was hydrolyzed by moisture in the atmosphere, and amorphous titanium oxide, zirconium oxide, and niobium oxide were formed from Ti alkoxide, Zr alkoxide, and Nb alkoxide, respectively. Since the produced amorphous metal oxide plays a role of adhering metal oxide fine particles and the film to the conductive substrate, a porous film excellent in mechanical strength and adhesion was obtained only by air drying.
  • UV ozone treatment For UV ozone treatment, NL-UV253 UV ozone cleaner manufactured by Nippon Laser Electronics was used. The UV light source was equipped with three 4.5 W mercury lamps having emission lines at 185 nm and 254 nm, and the sample was placed horizontally at a distance of about 6.5 cm from the light source. Ozone is generated by introducing an oxygen stream into the chamber. In this example, this UV ozone treatment was performed for 2 hours. Note that no decrease in the conductivity of the ITO film and the FTO film due to this UV ozone treatment was observed.
  • UV treatment Similarly to the UV ozone treatment, the treatment was performed for 2 hours, except that the inside of the chamber was replaced with nitrogen. No decrease in the conductivity of the ITO film and FTO film due to the UV treatment was observed.
  • the dye of the present invention was used as a sensitizing dye, and a 0.5 mM ethanol solution was prepared.
  • the porous film produced by the above process was dried in an oven at 100 ° C. for 1 hour, then immersed in a sensitizing dye solution, and allowed to stand at room temperature for 50 minutes to adsorb the sensitizing dye on the titanium oxide surface. did.
  • the sample after adsorption of the sensitizing dye was washed with ethanol and air-dried.
  • a photoelectrochemical cell was fabricated by using a conductive substrate on which a porous film after dye adsorption was formed as a photoelectrode, and an ITO / PET film or FTO / glass counter electrode in which platinum fine particles were modified by sputtering.
  • the effective area of the photoelectrode was about 0.2 cm 2 .
  • 3-methoxypropionitrile containing 0.5 M LiI, 0.05 M I 2 and 0.5 M t-butylpyridine was introduced into the gap between both electrodes by capillary action.
  • the battery performance was evaluated by measuring the photocurrent action spectrum under irradiation with a constant number of photons (1016 cm ⁇ 2 ) and IV measurement under irradiation with AM1.5 simulated sunlight (100 mW / cm 2 ).
  • a CEP-2000 type spectral sensitivity measuring device manufactured by Spectrometer Co., Ltd. was used for these measurements.
  • the obtained output characteristic values are summarized in Table 7. The results are: conversion efficiency of 2.5% or more ⁇ , 2.0% or more and less than 2.5% ⁇ , 1.5% or more and less than 2.0% ⁇ , 1.5% Less than were shown as x.
  • the columns of “UV ozone”, “UV”, and “dry” indicate the presence / absence of UV ozone treatment, UV irradiation treatment, and drying treatment after formation of the porous film and before sensitizing dye adsorption, respectively.
  • the processed one is “ ⁇ ”, and the unprocessed one is “ ⁇ ”.
  • the column of “ Pretreatment of TiO 2 ” in Table 7 indicates the presence or absence of pretreatment of titanium oxide fine particles (heat treatment in an oven at 450 ° C. for 30 minutes).
  • Samples 6, 14, and 22 represent samples using a paste having a high TTIP concentration (titanium oxide: TTIP molar ratio of 1: 0.356).
  • a conductive film was formed on a glass substrate by sputtering tin oxide doped with fluorine as a transparent conductive film.
  • a dispersion containing anatase-type titanium oxide particles on this conductive film (anatase-type titanium oxide (P-25 (trade name) manufactured by Nippon Aerosil Co., Ltd.)) was added to 100 ml of a mixed solvent having a volume ratio of water and acetonitrile of 4: 1. 32 g of the mixture, and using a rotating / revolving mixing conditioner, uniformly dispersed and mixed to obtain a semiconductor fine particle dispersion), and then sintered at 500 ° C. to form a photosensitive layer having a thickness of 15 ⁇ m. Formed.
  • the conversion efficiency is ⁇ for those with 3.5% or more, ⁇ for 2.5% or more and less than 3.5%, ⁇ for 2.0% or more and less than 2.5%, and less than 2.0%. Things were displayed as x. Table 8 also shows the results of photoelectric conversion elements using an electrolytic solution to which no benzimidazole compound was added.
  • Example 8-2 ⁇ Experiment 8> No.
  • a sealing agent for the photoelectric conversion element using the compound No. 5 as a sealant, a glass sphere having a diameter of 25 ⁇ m is almost uniform in a resin composition comprising Epicoat 828 (trade name, manufactured by Japan Epoxy Resin Co., Ltd.), a curing agent and a plastic paste.
  • Epicoat 828 trade name, manufactured by Japan Epoxy Resin Co., Ltd.
  • a dye-sensitized solar cell was prepared in the same manner except that the sealant paste dispersed in was used, and the photoelectric conversion efficiency was measured.
  • the conversion efficiency ( ⁇ ) of each dye-sensitized solar cell obtained by this, the reduction rate of the conversion efficiency after 1000 hours of dark storage at 85 ° C., and the reduction rate of the conversion efficiency after 500 hours of continuous light irradiation were measured. .
  • the conversion efficiency is 7.5% or more for ⁇ , 7.3% to less than 7.5% for ⁇ , 7.1% to less than 7.3% for ⁇ , 7. Those less than 1% were evaluated as x.
  • the conversion efficiency decrease rate was less than 3% of fresh, ⁇ , 3% to less than 5%, ⁇ , 5% to less than 10%, ⁇ , 10% or more to x.
  • the results are shown in the dark storage durability column and continuous light irradiation durability column of Table 8-2.
  • the initial value of the conversion efficiency of the dye-sensitized solar cell of the present invention showed a high value of 7.0% or more. Moreover, it turned out that durability is excellent compared with a comparative example with the reduction rate of 9.0% or less after storage in a dark place and after continuous light irradiation.
  • first layer the layer disposed on the side close to the transparent electrode 1
  • second layer the layer disposed on the side close to the porous body layer PS
  • slurry 1 a slurry for forming a second layer
  • a slurry for forming a first layer (P1 content; 15 mass%; hereinafter, “slurry 2” is prepared by the same preparation procedure as that of the slurry 1 except that only P25 is used without using P200. Was prepared).
  • a transparent electrode (thickness: 1.1 mm) in which a fluorine-doped SnO 2 conductive film (film thickness: 700 nm) was formed on a glass substrate (transparent conductive glass) was prepared. Then, the SnO 2 conductive film, the slurry 2 described above was coated with Bakoda, then dried. Then, it baked for 30 minutes at 450 degreeC in air
  • the second layer was formed on the first layer by repeating the same application and firing as described above using the slurry 1.
  • the semiconductor electrode 2 (light-receiving surface area; 1.0 cm 2 , the total thickness of the first layer and the second layer: 10 ⁇ m (the thickness of the first layer: 3 ⁇ m, the first layer) on the SnO 2 conductive film No. 2 layer thickness: 7 ⁇ m)
  • a photoelectrode 10 containing no sensitizing dye was prepared.
  • an ethanol solution of the dye of the present invention (sensitizing dye concentration; 3 ⁇ 10 ⁇ 4 mol / L) was prepared as a sensitizing dye.
  • the photoelectrode 10 was immersed in this solution and allowed to stand for 20 hours under a temperature condition of 80 ° C. to adsorb the sensitizing dye. Thereafter, in order to improve the open circuit voltage Voc, the dye-adsorbed semiconductor electrode was immersed in an acetonitrile solution of 4-tert-butylpyridine for 15 minutes and then dried in a nitrogen stream maintained at 25 ° C. Was completed.
  • a counter electrode CE having the same shape and size as the above photoelectrode was produced.
  • an isopropanol solution of chloroplatinic acid hexahydrate was dropped on a transparent conductive glass, dried in air, and then baked at 450 ° C. for 30 minutes to obtain a platinum sintered counter electrode CE.
  • the counter electrode CE was previously provided with a hole for injection of the electrolyte E (diameter 1 mm).
  • a spacer S (trade name: “HIMILAN”, ethylene / methacrylic acid random copolymer ionomer film) manufactured by Mitsui Dupont Polychemical Co., Ltd. having a shape matched to the size of the semiconductor electrode was prepared.
  • the photoelectrode and the counter electrode were opposed to each other through a spacer, and each was bonded by thermal welding to obtain a battery casing (no electrolyte filled).
  • the hole is closed with a member made of the same material as the spacer, and this member is thermally welded to the hole of the counter electrode to seal the hole. 1 was completed.
  • Photoelectrochemical cell 2 The photoelectrochemical cell 2 was produced in the same procedure and conditions as the photoelectrochemical cell 1 except that the concentration of zinc iodide in the liquid electrolyte was 50 mmol / L.
  • Photoelectrochemical cell 3 Comparative photoelectrochemistry was performed in the same procedure and conditions as in the photoelectrochemical cell 1 except that lithium iodide was added instead of zinc iodide in the liquid electrolyte, and the concentration of lithium iodide in the liquid electrolyte was 20 mmol / L. A battery 1 was produced.
  • Electrochemical battery 4 Comparative photoelectrochemistry in the same procedure and conditions as in the photoelectrochemical cell 1 except that lithium iodide was added instead of zinc iodide in the liquid electrolyte, and the concentration of lithium iodide in the liquid electrolyte was 100 mmol / L. Battery 2 was produced.
  • the battery characteristic evaluation test was conducted using a solar simulator (trade name; “WXS-85-H type” manufactured by Wacom), and the irradiation conditions of pseudo-sunlight from a xenon lamp light source through an AM filter (AM1.5). The measurement was performed under measurement conditions of 100 mW / cm 2 (so-called “1Sun” irradiation conditions).
  • the current-voltage characteristics were measured at room temperature using an IV tester, and the photoelectric conversion efficiency ⁇ [%] was determined from these.
  • the obtained results are shown as “fresh” in Table 9 (1 Sun irradiation conditions).
  • the photoelectric conversion efficiency ⁇ [%] of the dye-sensitized solar cells 1 and 2 and the comparative dye-sensitized solar cells 1 and 2 is 300 hours at 60 ° C. and 1 Sun irradiation under the operating condition of 10 ⁇ load.
  • Table 9 also shows the results of the durability evaluation test examined after the elapse of time.
  • the conversion efficiency of Fresh is ⁇ for those with 3.5% or more, ⁇ for those with 2.5% to less than 3.5%, ⁇ , 2.0% for those with 2.0% or more but less than 2.5% Less than were shown as x.
  • Example 10 Preparation of Titanium Dioxide Dispersion 15 g of titanium dioxide fine particles (Nippon Aerosil Co., Ltd., Degussa P-25), 45 g of water, dispersant (Triron X, manufactured by Aldrich Co., Ltd.) -100) 1 g, 30 g of zirconia beads having a diameter of 0.5 mm (manufactured by Nikkato Co., Ltd.) were added, and dispersion treatment was performed at 1500 rpm for 2 hours using a sand grinder mill (manufactured by Imex). Zirconia beads were filtered off from the resulting dispersion. The average particle diameter of the titanium dioxide fine particles in the obtained dispersion was 2.5 ⁇ m. The particle size was measured with a master sizer manufactured by MALVERN.
  • Titanium Oxide Fine Particle Layer Adsorbed with Dye 20 mm long and 20 mm wide conductive glass plate coated with fluorine-doped tin oxide (Asahi Glass Co., Ltd., TCO glass-U, surface resistance: (Approx. 30 ⁇ / m 2 ), apply adhesive tape for spacers to both ends of the conductive layer side (3 mm wide from the end), and then apply the dispersion using a glass rod on the conductive layer did. After application of the dispersion, the adhesive tape was peeled off and air-dried at room temperature for 1 day.
  • this semiconductor-coated glass plate was placed in an electric furnace (muffle furnace FP-32 manufactured by Yamato Scientific Co., Ltd.) and baked at 450 ° C. for 30 minutes. After the semiconductor-coated glass plate was taken out and cooled, it was immersed in an ethanol solution of the dyes shown in Table 10 (concentration: 3 ⁇ 10 ⁇ 4 mol / L) for 1 hour. The semiconductor-coated glass plate on which the dye was adsorbed was immersed in 4-tert-butylpyridine for 15 minutes, washed with ethanol, and naturally dried. The thickness of the dye-sensitized titanium oxide fine particle layer thus obtained was 10 ⁇ m, and the coating amount of the titanium oxide fine particles was 20 g / m 2 . The amount of dye adsorbed was in the range of 0.1 to 10 mmol / m 2 depending on the type.
  • Photoelectrochemical Battery 1 Three types of photoelectrochemical batteries 1, A and B were produced by the following method.
  • the photoelectrochemical cells of Sample Nos. 1 to 9 were obtained using the dyes shown in Table 15, the nitrogen-containing polymer compound ⁇ , and the electrophile ⁇ .
  • a photoelectrochemical cell 1-1 (sample number 1) in which the counter electrode 40 composed of 41 was sequentially laminated was obtained.
  • photoelectrochemical cells 1-2 to 1-3 were obtained in the same manner as in the above step except that the dye was changed as shown in the table.
  • Electrode A (20 mm ⁇ 20 mm) composed of a titanium oxide fine particle layer adsorbed with a dye as described above was superimposed on a platinum-deposited glass plate of the same size via a spacer. .
  • an electrolyte (0.05 mol / L of iodine using a mixture of acetonitrile and 3-methyl-2-oxazolidinone in a volume ratio of 90/10 as a solvent, lithium iodide 0 .5 mol / L solution) was infiltrated to produce Photoelectrochemical Cell A-1 (Sample No. 2).
  • Photoelectrochemical cells A-2 to A-3 were obtained in the same manner as in the above step except that the sensitizing dye was changed as shown in the table.
  • the alligator clips were connected to the conductive glass plate 10 and the platinum-deposited glass plate 40 of the photoelectrochemical cell described above, and each alligator clip was connected to a current-voltage measuring device (Keutley SMU238 type). This was irradiated with simulated sunlight from the conductive glass plate 10 side, and the generated electricity was measured with a current-voltage measuring device.
  • Table 10 summarizes the initial value (fresh) of the conversion efficiency ( ⁇ ) of the photoelectrochemical cell determined in this way and the rate of decrease in conversion efficiency after 300 hours of continuous irradiation.
  • the conversion efficiency of Fresh is ⁇ for those with 3.5% or more, ⁇ for those with 2.5% to less than 3.5%, ⁇ , 2.0% for those with 2.0% or more but less than 2.5% Less than were shown as x.
  • the coated support was then attached to a vapor deposition apparatus and further 2,2 ′, 7,7′-tetrakis (diphenylamino) -9,9′-spiro having a thickness of 100 nm by thermal vapor deposition under a vacuum of about 10-5 mbar. A layer of bifluorene was applied. Furthermore, a gold layer having a thickness of 200 nm was coated on the coated support as a counter electrode in a vapor deposition apparatus.
  • the sample thus prepared was attached to an optical device including a high-pressure lamp, an optical filter, a lens and a mounting. The intensity could be changed by using a filter and moving the lens.
  • the gold layer and the SnO 2 layer were contacted and attached to the device shown in the current measuring device while the sample was irradiated.
  • light having a wavelength of less than 430 nm was blocked using an appropriate optical filter.
  • the apparatus was adjusted so that the intensity of the radiation was approximately equal to about 1000 W / m 2 ).
  • Contacts were made on the gold layer and the SnO 2 layer, and both contacts were connected to a potentiostat while the sample was irradiated.
  • the sample using the sensitizing dye S-1 without applying an external voltage produced a current of about 90 nA, whereas the sample using the dye compound A-2 of the present invention produced a current of about 190 nA. In both samples, the current disappeared if not irradiated.
  • Example 13 125 ml of titanium isopropoxide was added dropwise to 750 ml of 0.1M nitric acid aqueous solution (manufactured by Kishida Chemical Co., Ltd.) and heated at 80 ° C. for 8 hours to cause a hydrolysis reaction, thereby preparing a sol solution.
  • the obtained sol solution is kept in a titanium autoclave at 250 ° C. for 15 hours to grow particles, and then subjected to ultrasonic dispersion for 30 minutes to obtain a colloidal solution containing titanium oxide particles having an average primary particle size of 20 nm. It was.
  • the resulting colloidal solution containing titanium oxide particles was slowly concentrated with an evaporator until the titanium oxide concentration reached 10 wt%, and then polyethylene glycol (made by Kishida Chemical Co., Ltd., weight average molecular weight: 200000) was oxidized.
  • a suspension in which titanium oxide particles were dispersed was obtained by adding 40% by weight to titanium and stirring.
  • the prepared titanium oxide suspension was applied by the doctor blade method to the transparent conductive film 2 side of the glass substrate 1 on which the SnO 2 film was formed as the transparent conductive film 2 to obtain a coating film having an area of about 10 mm ⁇ 10 mm.
  • This coating film is pre-dried at 120 ° C. for 30 minutes, and further baked at 500 ° C. for 30 minutes in an oxygen atmosphere to become the first porous semiconductor layer of the first porous photoelectric conversion layer 4.
  • the film thickness is 10 ⁇ m.
  • About a titanium oxide film was formed.
  • the glass substrate 1 provided with the transparent conductive film 2 and the porous semiconductor layer 3 is immersed in a dye solution for adsorption of the first dye heated to about 50 ° C. for 10 minutes, and the first dye is applied to the porous semiconductor layer 3. Adsorbed. Thereafter, the glass substrate 1 was washed several times with absolute ethanol and dried at about 60 ° C. for about 20 minutes. Next, the glass substrate 1 was immersed in 0.5N hydrochloric acid for about 10 minutes and then washed with ethanol to desorb the first dye adsorbed on the second porous semiconductor layer. Further, the glass substrate 1 was dried at about 60 ° C. for about 20 minutes.
  • the comparative dye S-1 and the dye A-2 of the present invention are dissolved in ethanol, and the concentration is 3 ⁇ 10.
  • a dye solution for adsorption of ⁇ 4 mol / liter of the second dye was prepared.
  • dimethylpropylimidazolium iodide has a concentration of 0.5 mol / liter
  • lithium iodide has a concentration of 0.1 mol / liter
  • iodine has a concentration of 0.05 mol / liter.
  • a redox electrolyte solution was prepared.
  • the porous semiconductor layer 3 side of the glass substrate 1 provided with the porous semiconductor layer 3 on which the first dye and the second dye are adsorbed, and the counter electrode side support 20 made of ITO glass provided with platinum as the counter electrode layer 8. It was installed so as to face the platinum side, and the prepared redox electrolyte solution was injected therebetween, and the periphery was sealed with an epoxy resin sealing material 9 to complete a dye-sensitized solar cell.
  • the second porous semiconductor layer is made the same layer as the first porous semiconductor layer, that is, the second porous semiconductor layer is formed using a titanium oxide suspension that forms the first porous semiconductor layer. Except for this, a titanium oxide film 2 was prepared in the same manner as the titanium oxide film 1, and a solar cell was similarly manufactured and evaluated using the titanium oxide film 2. The haze ratio of the porous photoelectric conversion layer was 15% (when S-1 was used) and 16% (when the dye of the present invention was used).
  • Table 11 shows the results of evaluating the obtained solar cell under measurement conditions: AM-1.5 (100 mW / cm 2).
  • the conversion efficiency is ⁇ for those with 3.5% or more, ⁇ for 2.5% or more and less than 3.5%, ⁇ for 2.0% or more and less than 2.5%, and less than 2.0%. Things were displayed as x.
  • Titanium oxide suspension was prepared by dispersing 4.0 g of commercially available titanium oxide particles (manufactured by Teika Co., Ltd., average particle size 20 nm) and 20 ml of diethylene glycol monomethyl ether for 6 hours with a paint shaker using hard glass beads. . Next, this titanium oxide suspension was applied to a glass plate (electrode layer) to which a tin oxide conductive layer had been previously attached using a doctor blade, pre-dried at 100 ° C. for 30 minutes, and then heated to 500 ° C. in an electric furnace.
  • the sensitizing dye and the comparative dye of the present invention were dissolved in ethanol to obtain a photosensitizing dye solution.
  • This photosensitizing dye solution was 5 ⁇ 10 ⁇ 4 mol / liter.
  • the glass plate on which the film-like titanium oxide is formed is placed in this solution, dye adsorption is performed at 60 ° C. for 60 minutes, and drying is performed.
  • a photoelectric conversion layer made of a dye-sensitive dye was formed (Sample A).
  • a toluene solution (1%) of polyvinylcarbazole (weight average molecular weight 3,000) as a hole transport material was applied and dried under reduced pressure to form a hole transport layer (Sample B). ).
  • first photoelectric conversion layer 4.0 g of commercially available titanium oxide particles (manufactured by Teika Co., Ltd., average particle size 30 nm) and 20 ml of diethylene glycol monomethyl ether were dispersed with a paint shaker for 6 hours using hard glass beads, and titanium oxide. A suspension was made. Next, this titanium oxide suspension was applied to a glass plate to which a tin oxide conductive layer had been previously attached using a doctor blade, preliminarily dried at 100 ° C. for 30 minutes, and then baked at 500 ° C. for 40 minutes. A titanium oxide film was obtained.
  • the dye represented by S-6 below [cis-dithiocyline-N-bis (2,2'-bipyrylyl-4,4'-dicarboxylic acid) ruthenium] was dissolved in ethanol.
  • the concentration of this dye was 3 ⁇ 10 ⁇ 4 mol.
  • the glass plate on which film-like titanium oxide is formed is put in this solution, and after dye adsorption at 720 minutes at 60 ° C., drying is performed to obtain the first photoelectric conversion layer (sample A) of the present invention. It was.
  • the dye of the present invention and the comparative dye S-1 were dissolved in dimethyl sulfoxide.
  • the concentration of this dye was 1 ⁇ 10 ⁇ 4 mol.
  • the glass plate on which film-like titanium oxide is formed is placed in this solution, and after dye adsorption at 70 ° C. for 60 minutes, drying is performed to obtain the second photoelectric conversion layer (sample B) of the present invention. It was.
  • the sample B is positioned on the sample A.
  • a liquid electrolyte was put between these two electrodes, and this side surface was sealed with resin, and then a lead wire was attached to produce a photoelectric conversion element (element configuration C) of the present invention.
  • the liquid electrolyte is a mixed solvent of acetonitrile / ethylene carbonate (volume ratio is 1: 4), tetrapropylammonium iodide and iodine, with respective concentrations of 0.46 mol / l and 0.06 mol / l. What was melt
  • a transparent conductive glass plate provided with the sample A as one electrode and carrying platinum as a counter electrode was used.
  • a liquid electrolyte was placed between the two electrodes, and this side surface was sealed with resin, and then a lead wire was attached to produce a photoelectric conversion element (element configuration D) of the present invention.
  • the obtained photoelectric conversion elements (samples C and D) were irradiated with light having an intensity of 1000 W / m 2 using a solar simulator. Conversion efficiency is 6.5% or more for ⁇ , 6.0% or more but less than 6.5% ⁇ , 5.0% or more but less than 6.0% ⁇ , less than 5.0% Things were displayed as x.
  • the photoelectric conversion element of this invention is excellent in photoelectric conversion efficiency, and it turns out that it is effective also in this type
  • the coating liquid for producing the titanium oxide film was 4.0 g of commercially available titanium oxide particles (manufactured by Teika Co., Ltd., trade name AMT-600, anatase type crystal, average particle size 30 nm, specific surface area 50 m 2 / g) and diethylene glycol monomethyl.
  • 20 ml of ether was dispersed with a paint shaker for 7 hours using glass beads to prepare a titanium oxide suspension.
  • this titanium oxide suspension is formed on a glass substrate 1 having a film thickness of about 11 ⁇ m and an area of about 10 mm ⁇ 10 mm and SnO 2 as a transparent conductive film. And preliminarily dried at 100 ° C. for 30 minutes and then baked under oxygen at 460 ° C. for 40 minutes.
  • a titanium oxide film A having a thickness of about 8 ⁇ m was produced.
  • the dye of the present invention and the comparative dye S-1 were dissolved in absolute ethanol at a concentration of 3 ⁇ 10 ⁇ 4 mol / liter to prepare an adsorption dye solution.
  • the dye solution for adsorption was adsorbed by putting the transparent substrate provided with the titanium oxide film and the transparent conductive film obtained above into a container and allowing it to penetrate for about 4 hours. Thereafter, it was washed several times with absolute ethanol and dried at about 60 ° C. for about 20 minutes.
  • a monomer composed of R as a methyl group, A as eight polyethylene oxide groups, two polypropylene oxide groups, and a butanetetrayl group as a central core Units were used.
  • R is a hydrogen atom or a methyl group
  • A is a residue bonded to an ester group with a carbon atom
  • n is 2 to 4.
  • This monomer unit is dissolved in propylene carbonate (hereinafter referred to as PC) at a concentration of 20 wt%, and azobisisobutyronitrile (AIBN) is used as a thermal polymerization initiator at a concentration of 1 wt% with respect to the monomer unit. Dissolve to make a monomer solution. The procedure for impregnating the above-described titanium oxide film with the monomer solution is described below.
  • a container such as a beaker is placed in the vacuum container, and the titanium oxide film A on the transparent substrate provided with the transparent conductive film is placed therein, and is evacuated by a rotary pump for about 10 minutes.
  • the monomer solution is poured into the beaker while keeping the vacuum container in a vacuum state, and the monomer solution is sufficiently soaked in the titanium oxide 3 by impregnation for about 15 minutes.
  • a polyethylene separator, a PET film and a pressing plate are installed and fixed with a jig. Then, it heat-polymerizes by heating at about 85 degreeC for 30 minutes, and produces a high molecular compound.
  • a redox electrolyte solution to be impregnated into the polymer compound is prepared.
  • the redox electrolyte was prepared by dissolving 0.5 mol / liter of lithium iodide and 0.05 mol / liter of iodine using PC as a solvent.
  • the polymer compound prepared on the above-described titanium oxide film A was immersed in this solution for about 2 hours, so that the polymer compound was impregnated with the redox electrolyte solution to prepare a polymer electrolyte.
  • membrane was installed, the periphery was sealed with the epoxy-type sealing agent, and the element A was created. Further, after the dye adsorption of the titanium oxide film A, the oxidation was performed by dissolving lithium iodide at a concentration of 0.5 mol / liter and iodine at a concentration of 0.05 mol / liter using PC as a solvent without performing monomer treatment. The reduced electrolyte was injected as it was between the counter electrode and sealed to prepare an element B. Using the elements A and B, light having an intensity of 1000 W / m 2 was irradiated with a solar simulator. The results are shown in Table 14. The conversion efficiency is ⁇ for those with 3.5% or more, ⁇ for 2.5% or more and less than 3.5%, ⁇ for 2.0% or more and less than 2.5%, and less than 2.0%. Things were displayed as x.
  • the photoelectric conversion element shown in FIG. 1 was produced as follows. On the glass substrate, tin oxide doped with fluorine was formed as a transparent conductive film by sputtering, and this was scribed with a laser to divide the transparent conductive film into two parts. Next, 32 g of anatase-type titanium oxide (P-25 (trade name) manufactured by Nippon Aerosil Co., Ltd.) is mixed with 100 ml of a mixed solvent having a volume ratio of water and acetonitrile of 4: 1, and a rotating / revolving mixing conditioner is prepared.
  • P-25 trade name
  • the resulting mixture was uniformly dispersed and mixed to obtain a semiconductor fine particle dispersion.
  • This dispersion was applied to a transparent conductive film and heated at 500 ° C. to produce a light receiving electrode.
  • a dispersion containing 40:60 (mass ratio) of silica particles and rutile-type titanium oxide is prepared, and this dispersion is applied to the light receiving electrode and heated at 500 ° C. to form an insulating porous material. Formed body.
  • a carbon electrode was formed as a counter electrode.
  • the glass substrate on which the insulating porous body was formed was immersed in an ethanol solution of a sensitizing dye (mixed or single) described in Table 15 below for 5 hours.
  • the glass dyed with the sensitizing dye was immersed in a 10% ethanol solution of 4-tert-butylpyridine for 30 minutes, then washed with ethanol and naturally dried.
  • the thickness of the photosensitive layer thus obtained was 10 ⁇ m, and the coating amount of semiconductor fine particles was 20 g / m 2 .
  • As the electrolytic solution a methoxypropionitrile solution of dimethylpropylimidazolium iodide (0.5 mol / l) and iodine (0.1 mol / l) was used.
  • sensitizing dyes S-4 and S-5 are shown below.
  • the electrochemical cell produced using the dye of the present invention showed high conversion efficiency when the sensitizing dye of the present invention was used.
  • the conversion efficiency of the photoelectrochemical cell of the comparative example was insufficient at less than 7.1%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hybrid Cells (AREA)

Abstract

A dye compound represented by general formula (1). In general formula (1), Z1, Z2, Z3, and Z4 represent an aromatic ring structure or a hetero ring structure. R1, R2, R3, and R4 respectively and individually represent a substituent. An integer between 0 and 4 is represented by m1 to m4 and when m1 to m4 is equal to or greater than two, R1 to R4 may be the same or different from one another. At least one of R1 to R4 contains a linking group (Y), and said linking group (Y) is directly linked to and conjugates with at least one of Z1 to Z4. Moreover, at least one of R1, R2, R3, and R4 has an acidic group. M represents a hydrogen atom, a metal atom, or a substituted metal atom.

Description

金属錯体色素、光電変換素子及び光電気化学電池Metal complex dye, photoelectric conversion element and photoelectrochemical cell
 本発明は、変換効率が高く、耐久性に優れた金属錯体色素、光電変換素子及び光電気化学電池に関する。 The present invention relates to a metal complex dye, a photoelectric conversion element, and a photoelectrochemical cell that have high conversion efficiency and excellent durability.
 光電変換素子は各種の光センサー、複写機、太陽電池等に用いられている。この光電変換素子には金属を用いたもの、半導体を用いたもの、有機顔料や色素を用いたもの、あるいはこれらを組み合わせたものなどの様々な方式が実用化されている。中でも、非枯渇性の太陽エネルギーを利用した太陽電池は、燃料が不要であり、無尽蔵なクリーンエネルギーを利用したものとして、その本格的な実用化が大いに期待されている。この中でも、シリコン系太陽電池は古くから研究開発が進められてきた。各国の政策的な配慮もあって普及が進んでいる。しかし、シリコンは無機材料であり、スループット及び分子修飾には自ずと限界がある。 Photoelectric conversion elements are used in various optical sensors, copiers, solar cells and the like. Various types of photoelectric conversion elements have been put to practical use, such as those using metals, semiconductors, organic pigments and dyes, or combinations thereof. Above all, a solar cell using non-depleting solar energy does not require fuel, and its full-scale practical use is expected greatly as it uses inexhaustible clean energy. Among these, silicon solar cells have been researched and developed for a long time. It is spreading due to the policy considerations of each country. However, silicon is an inorganic material, and its throughput and molecular modification are naturally limited.
 そこで色素増感型太陽電池の研究が精力的に行われている。とくに、スイスのローザンヌ工科大学のGraetzel等がポーラス酸化チタン薄膜の表面にルテニウム錯体からなる色素を固定した色素増感型太陽電池を開発し、アモルファスシリコン並の変換効率を実現した。これにより、色素増感型太陽電池が一躍世界の研究者から注目を集めるようになった。 Therefore, research on dye-sensitized solar cells has been conducted energetically. In particular, Graetzel et al. Of Lausanne University of Technology in Switzerland developed a dye-sensitized solar cell in which a dye composed of a ruthenium complex was fixed on the surface of a porous titanium oxide thin film, and realized conversion efficiency comparable to amorphous silicon. As a result, dye-sensitized solar cells have attracted a great deal of attention from researchers around the world.
 特許文献1には、この技術を応用し、ルテニウム錯体色素によって増感された半導体微粒子を用いた色素増感光電変換素子が記載されている。
 しかしながら、ルテニウム錯体色素は極めて高価である。その上、ルテニウムは供給性に懸念があり、次世代のクリーンエネルギーを支える技術として本格的に対応するにはまだ十分といえない。そこで、資源的制約が小さく廉価な有機色素を増感剤として用い、十分な変換効率を有する光電変換素子の開発が望まれており、有機色素を増感剤として用いたものが報告されている(特許文献2参照)。
 初期の変換効率が高く、使用後も変換効率の低下が少なく耐久性に優れることが光電変換素子には必要とされる。しかし耐久性の点では、特許文献2記載の光電変換素子はまだ満足すべきものではない。
Patent Document 1 describes a dye-sensitized photoelectric conversion element using semiconductor fine particles sensitized with a ruthenium complex dye by applying this technique.
However, ruthenium complex dyes are very expensive. In addition, ruthenium has concerns about supply, and it is not yet enough to respond in earnest as a technology that supports the next generation of clean energy. Therefore, it is desired to develop a photoelectric conversion element having sufficient conversion efficiency using an inexpensive organic dye as a sensitizer, and a report using an organic dye as a sensitizer has been reported. (See Patent Document 2).
The photoelectric conversion element is required to have high initial conversion efficiency, low decrease in conversion efficiency even after use, and excellent durability. However, in terms of durability, the photoelectric conversion element described in Patent Document 2 is not yet satisfactory.
米国特許第5463057号明細書US Pat. No. 5,463,057 特開2000-353553号公報JP 2000-353553 A
 本発明の課題は、変換効率が高く、さらに耐久性に優れた金属錯体色素、光電変換素子及び光電気化学電池を提供することにある。 An object of the present invention is to provide a metal complex dye, a photoelectric conversion element, and a photoelectrochemical cell having high conversion efficiency and excellent durability.
 本発明者等は、鋭意検討を重ねた結果、少なくとも1個の酸性基をフタロシアニン様化合物に結合させる一方、該フタロシアニン様化合物の外面側に共役基を設けてなる金属錯体色素が、下記の効果を奏することを見出した。その1つは、多孔質半導体微粒子に密に配向吸着して、色素を剥離する原因となる水や色素を分解する求核種などの攻撃を受けにくくなることである。その2つめは、色素の吸収した光によって励起した電子の移動、集中が促進されるため、光電変換効率が高く、耐久性に優れる光電変換素子及び光電気化学電池を提供することができることである。本発明はこの知見に基づきなされたものである。
 本発明によれば、以下の手段が提供される。
As a result of intensive studies, the present inventors have found that a metal complex dye formed by binding at least one acidic group to a phthalocyanine-like compound and providing a conjugated group on the outer surface side of the phthalocyanine-like compound has the following effects. I found out that One of them is that it is less likely to be attacked by water or a nucleophilic species that decomposes the dye that causes the dye to peel off by closely adsorbing and adsorbing to the porous semiconductor fine particles. Second, since the movement and concentration of electrons excited by light absorbed by the dye are promoted, a photoelectric conversion element and a photoelectrochemical cell having high photoelectric conversion efficiency and excellent durability can be provided. . The present invention has been made based on this finding.
According to the present invention, the following means are provided.
<1>下記一般式(1)で表される色素化合物。 <1> A dye compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000005
 一般式(1)中、Z、Z、Z、及びZは、芳香族環構造またはヘテロ環構造を表す。R、R、R、及びRは、それぞれ独立に、置換基を表す。m1~m4は、0~4の整数を表し、m1~m4が2以上の時、複数のR~Rは、同一でも異なっていても良い。前記R~Rの少なくとも一つは連結基Yを含み、当該連結基YはZ~Zの少なくとも1つに直結して共役している。またR、R、R及びRの少なくとも1つは酸性基を有する。Mは、水素原子、金属原子、又は置換金属原子を表す。
<2><1>中、Yが下記一般式(2)~(9)で表される部位又はこれらの組み合わせからなる<1>記載の色素化合物。
Figure JPOXMLDOC01-appb-C000005
In General Formula (1), Z 1 , Z 2 , Z 3 , and Z 4 represent an aromatic ring structure or a heterocyclic structure. R 1 , R 2 , R 3 , and R 4 each independently represent a substituent. m1 to m4 represent an integer of 0 to 4, and when m1 to m4 is 2 or more, the plurality of R 1 to R 4 may be the same or different. At least one of R 1 to R 4 includes a linking group Y, and the linking group Y is directly connected to at least one of Z 1 to Z 4 and is conjugated. Further, at least one of R 1 , R 2 , R 3 and R 4 has an acidic group. M represents a hydrogen atom, a metal atom, or a substituted metal atom.
<2> The coloring matter compound according to <1>, wherein, in <1>, Y is a moiety represented by the following general formulas (2) to (9) or a combination thereof.
Figure JPOXMLDOC01-appb-C000006
 式中、n1~n8は1~10を表す。m7、m9は0~4を表す。m8、m11、m12、m14、及びm15は0~2を表す。R、Rは水素原子又は置換基を表す。R~R15は置換基を表す。X~XはCHまたはNである。
<3>酸性基がCOOH、PO、PO,SO、SOH、及びCONHOHから選ばれる基である<1>又は<2>記載の色素化合物。
<4>前記一般式(1)においてR~Rの酸性基を含む基以外の基が疎水性基を有する<1>~<3>のいずれか1項に記載の色素化合物。
<5>感光体層を具備する光電変換素子であって、前記感光体層に<1>~<4>のいずれか1項に記載の色素化合物を少なくとも1種と、これによって増感される半導体微粒子とを含有する光電変換素子。
<6>前記感光体層に、さらに下記一般式(14)で表される色素を含有する<5>記載の光電変換素子。
 
Mz(LLm1(LLm2(X)m3・CI  一般式(14)
 
 [一般式(14)において、Mzは金属原子を表し、LLは下記一般式(15)で表される2座又は3座の配位子であり、LLは下記一般式(16)で表される2座又は3座の配位子である。
 XはLL及びLL以外の1座または2座の配位子を表す。
 m1は0~3の整数を表し、m1が2以上のとき、LLは同じでも異なっていてもよい。m2は0~3の整数を表し、m2が2のとき、LLは同じでも異なっていてもよい。ただし、m1とm2のうち少なくとも一方は1以上の整数である。
Figure JPOXMLDOC01-appb-C000006
In the formula, n1 to n8 represent 1 to 10. m7 and m9 represent 0-4. m8, m11, m12, m14, and m15 each represents 0-2. R 5 and R 6 represent a hydrogen atom or a substituent. R 7 to R 15 represent a substituent. X 1 to X 4 are CH or N.
<3> The dye compound according to <1> or <2>, wherein the acidic group is a group selected from COOH, PO 3 H 2 , PO 4 H 2 , SO 3 H 2 , SO 4 H, and CONHOH.
<4> The dye compound according to any one of <1> to <3>, wherein a group other than the group containing an acidic group of R 1 to R 4 in the general formula (1) has a hydrophobic group.
<5> A photoelectric conversion device comprising a photoreceptor layer, wherein the photoreceptor layer is sensitized with at least one dye compound according to any one of <1> to <4> and thereby A photoelectric conversion element containing semiconductor fine particles.
<6> The photoelectric conversion element according to <5>, wherein the photosensitive layer further contains a dye represented by the following general formula (14).

Mz (LL 1 ) m1 (LL 2 ) m2 (X) m3 · CI General formula (14)

[In the general formula (14), Mz represents a metal atom, LL 1 is a bidentate or tridentate ligand represented by the following general formula (15), and LL 2 is the following general formula (16). The bidentate or tridentate ligand represented.
X represents a ligand of monodentate or bidentate non-LL 1 and LL 2.
m1 represents an integer of 0 to 3, and when m1 is 2 or more, LL 1 may be the same or different. m2 represents an integer of 0 to 3, and when m2 is 2, LL 2 may be the same or different. However, at least one of m1 and m2 is an integer of 1 or more.
 m3は0~2の整数を表し、m3が2のとき、Xは同じでも異なっていてもよく、X同士が連結していてもよい。
 CIは一般式(14)において、電荷を中和させるのに対イオンが必要な場合の対イオンを表す。]
m3 represents an integer of 0 to 2, and when m3 is 2, Xs may be the same or different, and Xs may be linked together.
CI represents a counter ion in the general formula (14) when a counter ion is necessary to neutralize the charge. ]
Figure JPOXMLDOC01-appb-C000007
[一般式(15)において、R101及びR102はそれぞれ独立に、カルボキシル基、スルホン酸基、ヒドロキシル基、ヒドロキサム酸基、ホスホリル基またはホスホニル基を表す。R103及びR104はそれぞれ独立に置換基を表し、R105及びR106はそれぞれ独立にアルキル基、アリール基又はヘテロ環基を表す。d1及びd2はそれぞれ0以上の整数を表す。
 L及びLはそれぞれ独立に共役鎖を表す。
 a1及びa2はそれぞれ独立に0~3の整数を表し、a1が2以上のときR101は同じでも異なっていてもよく、a2が2以上のときR102は同じでも異なっていてもよく、b1及びb2はそれぞれ独立に0~3の整数を表す。b1が2以上のときR103は同じでも異なっていてもよく、R103は互いに連結して環を形成してもよく、b2が2以上のときRは同じでも異なっていてもよく、R104は互いに連結して環を形成してもよい。b1及びb2が共に1以上のとき、R103とR104が連結して環を形成してもよい。
 d3は0又は1を表す。]
Figure JPOXMLDOC01-appb-C000007
[In General Formula (15), R 101 and R 102 each independently represent a carboxyl group, a sulfonic acid group, a hydroxyl group, a hydroxamic acid group, a phosphoryl group, or a phosphonyl group. R 103 and R 104 each independently represent a substituent, and R 105 and R 106 each independently represent an alkyl group, an aryl group, or a heterocyclic group. d1 and d2 each represents an integer of 0 or more.
L 1 and L 2 each independently represent a conjugated chain.
a1 and a2 each independently represent an integer of 0 to 3, and when a1 is 2 or more, R 101 may be the same or different, and when a2 is 2 or more, R 102 may be the same or different, b1 And b2 each independently represents an integer of 0 to 3. When b1 is 2 or more, R 103 may be the same or different, R 103 may be linked to each other to form a ring, and when b2 is 2 or more, R 4 may be the same or different. 104 may be connected to each other to form a ring. When b1 and b2 are both 1 or more, may be linked to form a ring R 103 and R 104 are.
d3 represents 0 or 1. ]
Figure JPOXMLDOC01-appb-C000008
[一般式(16)において、Za、Zb及びZcはそれぞれ独立に、5又は6員環を形成しうる非金属原子群を表し、それぞれ独立に酸性基を有していてもよい。cは0又は1を表す。]
<7><5>又は<6>に記載の光電変換素子を用いる光電気化学電池。
Figure JPOXMLDOC01-appb-C000008
[In the general formula (16), Za, Zb and Zc each independently represent a non-metallic atom group capable of forming a 5- or 6-membered ring, and may each independently have an acidic group. c represents 0 or 1; ]
<7> A photoelectrochemical cell using the photoelectric conversion element according to <5> or <6>.
 本発明の金属錯体色素を用いることにより、変換効率が高く、耐久性に優れた光電変換素子および光電気化学電池を提供することができる。 By using the metal complex dye of the present invention, a photoelectric conversion element and a photoelectrochemical cell having high conversion efficiency and excellent durability can be provided.
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。 The above and other features and advantages of the present invention will become more apparent from the following description with reference to the accompanying drawings as appropriate.
本発明によって製造される光電変換素子の一実施態様について模式的に示した断面図である。It is sectional drawing shown typically about one embodiment of the photoelectric conversion element manufactured by this invention.
 本発明の金属錯体色素は、吸収域が長波長で、εが高く、光電変換素子や光電気化学電池に使用したときに、高い変換効率を得ることができる。また、本発明の金属錯体色素は、フタロシアニン化合物核構造を有するとともに、分子内に酸性基を有する一方で共役基を有するため、導電性支持体上に形成された多孔質半導体微粒子に密に配向吸着して、電子注入効率を向上させるとともに、金属錯体色素において光によって励起した電子が共役構造によって半導体微粒子へ移動しやすくなり逆電子移動を抑制するため、高い変換効率を有する光電変換素子や光電気化学電池を得ることができると考えられる。さらに、本発明の金属錯体色素が吸着された半導体微粒子層は、さらに好ましくは、疎水性の基を有することにより、色素を剥離する原因となる水や色素を分解する求核種などの攻撃を受けにくく、そのため耐久性に優れる光電変換素子及び光電気化学電池を提供することができると考えられる。 The metal complex dye of the present invention has a long absorption range and a high ε, and can obtain high conversion efficiency when used in a photoelectric conversion element or a photoelectrochemical cell. In addition, since the metal complex dye of the present invention has a phthalocyanine compound nucleus structure and has an acidic group in the molecule and a conjugated group, it is closely aligned with the porous semiconductor fine particles formed on the conductive support. Adsorption increases the electron injection efficiency, and the electrons excited by light in the metal complex dye easily move to the semiconductor fine particles due to the conjugated structure and suppress reverse electron transfer. It is thought that an electrochemical cell can be obtained. Furthermore, the semiconductor fine particle layer to which the metal complex dye of the present invention is adsorbed is more preferably subjected to an attack by water or a nucleophilic species that decomposes the dye, which causes the dye to peel off, by having a hydrophobic group. Therefore, it is considered that a photoelectric conversion element and a photoelectrochemical cell having excellent durability can be provided.
 本発明の光電変換素子の好ましい実施態様を、図面を参照して説明する。図1に示すように、光電変換素子10は、導電性支持体1、導電性支持体1上にその順序で配された、感光体層2、電荷移動体層3、及び対極4からなる。前記導電性支持体1と感光体2とにより受光電極5を構成している。その感光体2は導電性微粒子22と増感色素21とを有しており、色素21はその少なくとも一部において導電性微粒子22に吸着している(色素は吸着平衡状態になっており、一部電荷移動体層に存在していてもよい。)。感光体2が形成された導電性支持体1は光電変換素子10において作用電極として機能する。この光電変換素子10を外部回路6で仕事をさせるようにして、光電気化学電池100として作動させることができる。
 なお、光電変換素子の上下は特に定めなくてもよいが、本明細書において、図示したものに基づいて言えば、受光側となる対極4の側を上部(天部)の方向とし、支持体1の側を下部(底部)の方向とする。
A preferred embodiment of the photoelectric conversion element of the present invention will be described with reference to the drawings. As shown in FIG. 1, the photoelectric conversion element 10 includes a conductive support 1, a photosensitive layer 2, a charge transfer layer 3, and a counter electrode 4 arranged in that order on the conductive support 1. The conductive support 1 and the photoreceptor 2 constitute a light receiving electrode 5. The photoreceptor 2 has conductive fine particles 22 and a sensitizing dye 21, and the dye 21 is adsorbed on the conductive fine particles 22 at least in part (the dye is in an adsorption equilibrium state, It may be present in the partial charge transfer layer.) The conductive support 1 on which the photoreceptor 2 is formed functions as a working electrode in the photoelectric conversion element 10. The photoelectric conversion element 10 can be operated as the photoelectrochemical cell 100 by causing the external circuit 6 to work.
The upper and lower sides of the photoelectric conversion element do not need to be defined in particular, but in this specification, based on what is illustrated, the side of the counter electrode 4 serving as the light receiving side is the upper (top) direction, and the support The side of 1 is the lower (bottom) direction.
 受光電極5は、導電性支持体1および導電性支持体上に塗設される色素21の吸着した半導体微粒子22の感光層(半導体膜)2よりなる電極である。感光体(半導体膜)2に入射した光は色素を励起する。励起色素はエネルギーの高い電子を有している。そこでこの電子が色素21から半導体微粒子22の伝導帯に渡され、さらに拡散によって導電性支持体1に到達する。このとき色素21の分子は酸化体となっている。電極上の電子が外部回路で仕事をしながら色素酸化体に戻ることにより、光電気化学電池として作用する。この際、受光電極5はこの電池の負極として働く。 The light-receiving electrode 5 is an electrode composed of a conductive support 1 and a photosensitive layer (semiconductor film) 2 of semiconductor fine particles 22 adsorbed with a dye 21 coated on the conductive support. The light incident on the photoreceptor (semiconductor film) 2 excites the dye. The excited dye has high energy electrons. Therefore, the electrons are transferred from the dye 21 to the conduction band of the semiconductor fine particles 22 and further reach the conductive support 1 by diffusion. At this time, the molecule of the dye 21 is an oxidant. The electrons on the electrode return to the oxidized dye while working in an external circuit, thereby acting as a photoelectrochemical cell. At this time, the light receiving electrode 5 functions as a negative electrode of the battery.
 本発明の光電変換素子は、導電性支持体上に後述の色素が吸着された多孔質半導体微粒子層を有する感光体を有する。感光体は目的に応じて設計され、単層構成でも多層構成でもよい。感光体中の色素は一種類でも多種類の色素が混合されたものでもよいが、このうちの少なくとも1種は、後述の金属錯体色素を用いる。本発明の光電変換素子の感光体には、この色素が吸着した半導体微粒子を含み、感度が高く、光電気化学電池として使用する場合に、高い変換効率を得ることができる。 The photoelectric conversion element of the present invention has a photoreceptor having a porous semiconductor fine particle layer on which a dye described later is adsorbed on a conductive support. The photoreceptor is designed according to the purpose, and may have a single layer structure or a multilayer structure. The dye in the photoreceptor may be one kind or a mixture of many kinds, but at least one of them uses a metal complex dye described later. The photoconductor of the photoelectric conversion element of the present invention contains semiconductor fine particles adsorbed with the dye, has high sensitivity, and can be used as a photoelectrochemical cell, and high conversion efficiency can be obtained.
(色素化合物)
 本発明には下記一般式(1)で表される色素化合物を用いる。
(Dye compound)
In the present invention, a dye compound represented by the following general formula (1) is used.
Figure JPOXMLDOC01-appb-C000009
 一般式(1)のZ、Z、Z、及びZは芳香族環構造またはヘテロ環構造を表す。芳香族環としては、炭素数6~30の単環又は二環の芳香族炭化水素環が好ましく、炭素数6~20の単環又は二環の芳香族炭化水素環がより好ましく、炭素数6~12の単環又は二環の芳香族炭化水素環がさらに好ましく、ベンゼン環、ナフタレン環が特に好ましい。具体的にはベンゼン環、ビフェニル環、1,3-ジフェニルベンゼン環、アントラセン環、ナフタレン環、1-フェニルナフタレン環、2-フェニルナフタレン環、アントラセン環、フェナントレン環、ナフタセン環、クリセン環、トリフェニレン環、テトラフェン環、ピレン環、ペンタセン環、ピセン環、ペリレン環等が挙げられる。ベンゼン環、およびナフタレン環が特に好ましい。
Figure JPOXMLDOC01-appb-C000009
Z 1 , Z 2 , Z 3 and Z 4 in the general formula (1) represent an aromatic ring structure or a heterocyclic structure. The aromatic ring is preferably a monocyclic or bicyclic aromatic hydrocarbon ring having 6 to 30 carbon atoms, more preferably a monocyclic or bicyclic aromatic hydrocarbon ring having 6 to 20 carbon atoms, and a carbon number of 6 More preferred are ˜12 monocyclic or bicyclic aromatic hydrocarbon rings, and particularly preferred are a benzene ring and a naphthalene ring. Specifically, benzene ring, biphenyl ring, 1,3-diphenylbenzene ring, anthracene ring, naphthalene ring, 1-phenylnaphthalene ring, 2-phenylnaphthalene ring, anthracene ring, phenanthrene ring, naphthacene ring, chrysene ring, triphenylene ring , Tetraphen ring, pyrene ring, pentacene ring, picene ring, perylene ring and the like. A benzene ring and a naphthalene ring are particularly preferred.
 Z、Z、Z、及びZは、少なくとも一つナフタレン環を表すことが好ましい。更に好ましくは、Z、Z、Z、及びZのうち少なくとも2つが、ナフタレン環を表す場合であり、更に好ましくは、Z、Z、Z、及びZのうち少なくとも3つが、ナフタレン環を表す場合である。 Z 1 , Z 2 , Z 3 , and Z 4 preferably represent at least one naphthalene ring. More preferably, at least two of Z 1 , Z 2 , Z 3 and Z 4 represent a naphthalene ring, and more preferably at least 3 of Z 1 , Z 2 , Z 3 and Z 4. Is the case of representing a naphthalene ring.
 前記芳香族炭化水素環は置換基を有してもよく、置換基としては後述の置換基Tが挙げられる。 The aromatic hydrocarbon ring may have a substituent, and examples of the substituent include the substituent T described below.
 ヘテロ環は置換基を有してもよく、置換基としては後述の置換基Tが挙げられる。
 上記ヘテロ環構造としては、ヘテロ原子として酸素原子、窒素原子、硫黄原子及び/又はセレン原子を含む芳香族ヘテロ環が好ましい。芳香族ヘテロ環は5~7員環が好ましく、5~6員環が好ましい。その具体例としては、フラン環、ピロール環、チオフェン環、イミダゾール環、ピラゾール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアゾール環、トリアジン環、インドール環、インダゾール環、プリン環、チアゾリン環、チアゾール環、チアジアゾール環、ベンゾチオフェン環、チエノチオフェン環、ビチオフェン環、オキサゾリン環、オキサゾール環、オキサジアゾール環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、キノキサリン環、キナゾリン環、シンノリン環、プテリジン環、アクリジン環、フェナントロリン環、フェナジン環、テトラゾール環、ベンズイミダゾール環、ベンズオキサゾール環、ベンズチアゾール環、ベンゾトリアゾール環、テトラザインデン環などが挙げられる。このヘテロ環はさらに別の環と縮環してもよい。ヘテロ環としては好ましくはフラン環、ピロール環、チオフェン環、イミダゾール環、ピラゾール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアゾール環、トリアジン環、インドール環、インダゾール環、プリン環、チアゾリン環、チアゾール環、チアジアゾール環、ベンゾチオフェン環、チエノチオフェン環、ビチオフェン環、オキサゾリン環、オキサゾール環、オキサジアゾール環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、キノキサリン環、キナゾリン環、シンノリン環、プテリジン環、アクリジン環、フェナントロリン環、フェナジン環、テトラゾール環、ベンズイミダゾール環、ベンズオキサゾール環、ベンズチアゾール環、ベンゾトリアゾール環であり、より好ましくはフラン環、ピロール環、チオフェン環、イミダゾール環、ピラゾール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、インドール環、インダゾール環、プリン環、チアゾリン環、チアゾール環、チアジアゾール環、ベンゾチオフェン環、チエノチオフェン環、ビチオフェン環、キノリン環、イソキノリン環、ベンズイミダゾール環、ベンズオキサゾール環、ベンズチアゾール環、ベンゾトリアゾール環、テトラザインデン環である。ヘテロ環は置換基を有してもよく、置換基としては後述の置換基Tが挙げられる。
The heterocycle may have a substituent, and examples of the substituent include the substituent T described later.
As said heterocyclic structure, the aromatic heterocyclic ring containing an oxygen atom, a nitrogen atom, a sulfur atom, and / or a selenium atom as a hetero atom is preferable. The aromatic heterocycle is preferably a 5- to 7-membered ring, and more preferably a 5- to 6-membered ring. Specific examples thereof include furan ring, pyrrole ring, thiophene ring, imidazole ring, pyrazole ring, pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, triazole ring, triazine ring, indole ring, indazole ring, purine ring, thiazoline ring. , Thiazole ring, thiadiazole ring, benzothiophene ring, thienothiophene ring, bithiophene ring, oxazoline ring, oxazole ring, oxadiazole ring, quinoline ring, isoquinoline ring, phthalazine ring, naphthyridine ring, quinoxaline ring, quinazoline ring, cinnoline ring, Examples include a pteridine ring, an acridine ring, a phenanthroline ring, a phenazine ring, a tetrazole ring, a benzimidazole ring, a benzoxazole ring, a benzthiazole ring, a benzotriazole ring, and a tetrazaindene ring. This heterocycle may be further condensed with another ring. Heterocycle is preferably furan ring, pyrrole ring, thiophene ring, imidazole ring, pyrazole ring, pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, triazole ring, triazine ring, indole ring, indazole ring, purine ring, thiazoline ring , Thiazole ring, thiadiazole ring, benzothiophene ring, thienothiophene ring, bithiophene ring, oxazoline ring, oxazole ring, oxadiazole ring, quinoline ring, isoquinoline ring, phthalazine ring, naphthyridine ring, quinoxaline ring, quinazoline ring, cinnoline ring, Pteridine ring, acridine ring, phenanthroline ring, phenazine ring, tetrazole ring, benzimidazole ring, benzoxazole ring, benzthiazole ring, benzotriazole ring, more preferably furan ring, Ring, thiophene ring, imidazole ring, pyrazole ring, pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, indole ring, indazole ring, purine ring, thiazoline ring, thiazole ring, thiadiazole ring, benzothiophene ring, thienothiophene ring , Bithiophene ring, quinoline ring, isoquinoline ring, benzimidazole ring, benzoxazole ring, benzthiazole ring, benzotriazole ring, and tetrazaindene ring. The heterocycle may have a substituent, and examples of the substituent include the substituent T described later.
 R、R、R、及びRは、それぞれ独立に、置換基を表すが、その具体例としては下記置換基Tで表される置換基が挙げられる。m1~m4は、0~4の整数を表し、好ましくは1~4である。
 前記R~Rの少なくとも一つは連結基Yを含む。当該連結基YはZ~Zに直接結合してZ~Zと共役している。またR~Rの少なくとも1つは酸性基を有する。酸性基とは、カルボキシ基等の酸性基そのもののほか、所望の効果を奏する範囲で連結基を介して置換したものでもよく、この連結基を含めて酸性基と称する。
 前記R~Rのうち2個または3個がZ~Zに直結する連結基Yを含む基であることが好ましく、前記R~Rのうち3個が連結基Yを含む基であることがより好ましい。
 前記R~Rが連結基Yを含む基でも、酸性基又は酸性基を有する基でもないとき、置換基Tで表させることが好ましく、好ましい置換基Tとしては、アルキル基、アルコキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、モノアルキルカルバモイル基、ジアルキルカルバモイル基、モノアルキルスルファモイル基、ジアルキルスルファモイル基、アシルアミノ基、アシルオキシ基が挙げられる。更に好ましくは、アルキル基、アルコキシ基、アルコキシカルボニル基、アリールオキシカルボニル基である。
 Yは、上記Z~Zと共役する共役基を表し、好ましくは下記一般式(2)~(9)で表される部位又はこれらの1種または2種以上の単位の組み合わせからなる部位を含み、好ましい単位は一般式(4)~(6)である。ここでYが共役基であるとは基自体が共役構造をとることを意味するが、Yが結合する基Z、Z、ZまたはZとの間にも共役関係が存在するのが好ましい。共役基Yの存在により色素が吸収した光によって励起した電子が共役構造によって、導電性微粒子のほうへ移動する。
 共役基である連結基Y上にさらに置換しうる基としてはアルキル基(好ましくは炭素数1~30のもの)、アルコキシ基(好ましくは炭素数1~30のもの)、アミノ基、アルコキシカルボニル基、アルキルチオ基、カルバモイル基、ジアルキルカルバモイル基、アシルアミノ基、アリール基、アリールオキシ基、アリールチオ基などが挙げられる。好ましくは疎水性基を有するものであり、炭素数5以上の脂肪族基、疎水性基が共役基の複数の位置に置換されている場合を含み、疎水性基の総炭素数が5以上、より好ましくは総炭素数が15以上である。上限は特に制限はないが200以下である。この疎水性基を導入することにより作用が一層高まる。またこのY上の置換基の数は制限がなくZ、Z、ZまたはZのうち酸性基を有するもの以外の全てに導入されていてもよい。連結基Yの末端基は特に制限されないが、水素原子又は上記さらに置換しうる基が挙げられる。
R 1 , R 2 , R 3 , and R 4 each independently represent a substituent, and specific examples thereof include a substituent represented by the following substituent T. m1 to m4 represent an integer of 0 to 4, preferably 1 to 4.
At least one of R 1 to R 4 includes a linking group Y. The linking group Y is conjugated with Z 1 ~ Z 4 bonded directly to Z 1 ~ Z 4. At least one of R 1 to R 4 has an acidic group. In addition to the acidic group itself such as a carboxy group, the acidic group may be substituted via a linking group within a range that exhibits a desired effect, and this linking group is referred to as an acidic group.
It is preferable that two or three of R 1 to R 4 include a linking group Y directly connected to Z 1 to Z 4, and three of the R 1 to R 4 include a linking group Y. More preferably, it is a group.
When R 1 to R 4 are not a group containing a linking group Y or an acidic group or a group having an acidic group, it is preferably represented by a substituent T. Preferred substituents T include an alkyl group, an alkoxy group, Examples thereof include an alkoxycarbonyl group, an aryloxycarbonyl group, a monoalkylcarbamoyl group, a dialkylcarbamoyl group, a monoalkylsulfamoyl group, a dialkylsulfamoyl group, an acylamino group, and an acyloxy group. More preferred are an alkyl group, an alkoxy group, an alkoxycarbonyl group, and an aryloxycarbonyl group.
Y represents a conjugated group conjugated with the above Z 1 to Z 4 , preferably a site represented by the following general formulas (2) to (9) or a site comprising a combination of one or more of these units Preferred units are those represented by the general formulas (4) to (6). Here, Y being a conjugated group means that the group itself has a conjugated structure, but there is also a conjugated relationship with the group Z 1 , Z 2 , Z 3 or Z 4 to which Y is bonded. Is preferred. Electrons excited by light absorbed by the dye due to the presence of the conjugated group Y move toward the conductive fine particles by the conjugated structure.
Groups that can be further substituted on the linking group Y, which is a conjugated group, include an alkyl group (preferably having 1 to 30 carbon atoms), an alkoxy group (preferably having 1 to 30 carbon atoms), an amino group, an alkoxycarbonyl group. Alkylthio group, carbamoyl group, dialkylcarbamoyl group, acylamino group, aryl group, aryloxy group, arylthio group and the like. Preferably, it has a hydrophobic group, including an aliphatic group having 5 or more carbon atoms, a case where the hydrophobic group is substituted at a plurality of positions of the conjugated group, the total number of carbon atoms of the hydrophobic group is 5 or more, More preferably, the total carbon number is 15 or more. The upper limit is not particularly limited but is 200 or less. By introducing this hydrophobic group, the action is further enhanced. The number of substituents on Y is not limited and may be introduced into all of Z 1 , Z 2 , Z 3 or Z 4 other than those having an acidic group. The terminal group of the linking group Y is not particularly limited, and examples thereof include a hydrogen atom or a group that can be further substituted.
Figure JPOXMLDOC01-appb-C000010
(式中*はその結合単位の繰り返し結合の結合位であるか、または金属錯体色素の中心金属原子方向への結合部位と、Y上にさらに置換した置換基の結合位を示す。)
 Yを構成する部位として、一般式(2)~(9)のうち好ましくは、一般式(2)~(7)であり、更に好ましくは、一般式(2)~(5)である。
 Yとして好ましくは、一般式(2)~(7)で表される部位を少なくとも1つ有する場合であり、更に好ましくは、一般式(2)、(4)、(6)、又は(7)で表される部位を少なくとも1つ有する場合であり、更に好ましくは、一般式(4)、(6)、又は(7)で表される部位を少なくとも1つ有する場合であり、特に好ましくは、一般式(4)で表される部位を少なくとも1つ有する場合である。
Figure JPOXMLDOC01-appb-C000010
(In the formula, * is the bonding position of the repeating bond of the bonding unit, or the bonding site in the direction of the central metal atom of the metal complex dye and the bonding position of the substituent further substituted on Y.)
Of the general formulas (2) to (9), the site constituting Y is preferably the general formulas (2) to (7), and more preferably the general formulas (2) to (5).
Y is preferably a case having at least one site represented by the general formulas (2) to (7), more preferably the general formula (2), (4), (6), or (7). It is a case where it has at least one site | part represented by these, More preferably, it is a case where it has at least 1 site | part represented by general formula (4), (6), or (7), Especially preferably, This is a case having at least one site represented by the general formula (4).
 式中、n1~n8は1~10好ましくは1~5を表し、m7、m9は0~4を表し、m8、m11、m12、m14、及びm15は0~2、好ましくは0又は1を表す。R~R15は置換基であり、アルキル基(好ましくは炭素数1~30のもの)、アルコキシ基(好ましくは炭素数1~30のもの)、アミノ基、アルコキシカルボニル基、アルキルチオ基、カルバモイル基、ジアルキルカルバモイル基、アシルアミノ基、アリール基、アリールオキシ基、アリールチオ基、などが挙げられ、好ましくは疎水性基を有するものであり、炭素数5以上の脂肪族基、疎水性基が共役基の複数の位置に置換されている場合を含み、疎水性基の総炭素数が10以上、より好ましくは総炭素数が15以上を表す。X~XはCH、またはNである。 In the formula, n1 to n8 represent 1 to 10, preferably 1 to 5, m7 and m9 represent 0 to 4, and m8, m11, m12, m14, and m15 represent 0 to 2, preferably 0 or 1. . R 5 to R 15 are substituents, and are an alkyl group (preferably having 1 to 30 carbon atoms), an alkoxy group (preferably having 1 to 30 carbon atoms), an amino group, an alkoxycarbonyl group, an alkylthio group, a carbamoyl group. Group, dialkylcarbamoyl group, acylamino group, aryl group, aryloxy group, arylthio group, etc., preferably having a hydrophobic group, an aliphatic group having 5 or more carbon atoms, or a hydrophobic group being a conjugated group And the hydrophobic group has a total carbon number of 10 or more, more preferably a total carbon number of 15 or more. X 1 to X 4 are CH or N.
 Mは、水素原子及び1価の金属原子からなる群より選択される2個の原子、2価の金属原子、又は3価もしくは4価の金属原子を含む配位座が2価の置換金属原子(例えば-AlCl-)が好ましい。Mは好ましくは4配位または6配位が可能な金属であり、より好ましくはRu、Fe、Os、Cu、W、Cr、Mo、Ni、Pd、Pt、Co、Ir、Rh、Re、Mn又はZnである。特に好ましくは、Ru、Os、Zn又はCuである。 M represents two atoms selected from the group consisting of a hydrogen atom and a monovalent metal atom, a divalent metal atom, or a substituted metal atom in which the coordination position containing a trivalent or tetravalent metal atom is divalent. (Eg -AlCl-) is preferred. M is preferably a metal capable of tetracoordinate or hexacoordinate, and more preferably Ru, Fe, Os, Cu, W, Cr, Mo, Ni, Pd, Pt, Co, Ir, Rh, Re, Mn Or it is Zn. Particularly preferred is Ru, Os, Zn or Cu.
 前記のように、前記R~Rの少なくひとつは、少なくともひとつの酸性基(解離性のプロトンを有する基)を持つが、好ましい酸性基はCOOH、PO、PO、SO、SOH、CONHOHから選ばれる基であり、より好ましくはCOOH、SOH、である。前記金属錯体色素中の酸性基の数は、好ましくは、1~8、より好ましくは1~4である。本発明において酸性基は塩の形で用いるものも含む。
 R~RはYと酸性基とを同時に含んでもよいが、Yを含む置換基と、酸性基を持つ置換基とは異なることが好ましい。
As described above, at least one of the R 1 to R 4 has at least one acidic group (group having a dissociable proton), but preferable acidic groups are COOH, PO 3 H 2 , PO 4 H 2 , A group selected from SO 3 H 2 , SO 3 H, and CONHOH, and more preferably COOH and SO 3 H. The number of acidic groups in the metal complex dye is preferably 1 to 8, more preferably 1 to 4. In the present invention, the acidic group includes those used in the form of a salt.
R 1 to R 4 may contain Y and an acidic group at the same time, but it is preferable that the substituent containing Y is different from the substituent having an acidic group.
 連結基Yを含む置換基の例を以下に示す。但し、これらに限定する趣旨ではない。*はZ~Zとの結合位置を示す。 Examples of the substituent containing the linking group Y are shown below. However, it is not the meaning limited to these. * Indicates a bonding position with Z 1 to Z 4 .
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000013
 
 置換基Tとしては、例えばアルキル基(好ましくは炭素原子数1~20、より好ましくは1~12、特に好ましくは1~8のものであり、例えばメチル基、エチル基、イソプロピル基、tert-ブチル基、n-オクチル基、n-デシル基、n-ヘキサデシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられる。)、アルケニル基(好ましくは炭素原子数2~20、より好ましくは2~12、特に好ましくは2~8であり、例えばビニル基、アリル基、2-ブテニル基、3-ペンテニル基などが挙げられる。)、アルキニル基(好ましくは炭素原子数2~20、より好ましくは2~12、特に好ましくは2~8であり、例えばプロパルギル基、3-ペンチニル基などが挙げられる。)、アリール基(好ましくは炭素原子数6~30、より好ましくは6~20、特に好ましくは6~12であり、例えばフェニル基、ビフェニル基、ナフチル基などが挙げられる。)、置換又は未置換のアミノ基(好ましくは炭素原子数0~20、より好ましくは0~10、特に好ましくは0~6であり、例えばアミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基などが挙げられる。)、 The substituent T is, for example, an alkyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 12, particularly preferably 1 to 8, such as a methyl group, an ethyl group, an isopropyl group, or tert-butyl. Group, n-octyl group, n-decyl group, n-hexadecyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (preferably 2-20 carbon atoms, more preferably 2-20 carbon atoms). 12, particularly preferably 2 to 8, for example, vinyl group, allyl group, 2-butenyl group, 3-pentenyl group, etc.), alkynyl group (preferably 2 to 20 carbon atoms, more preferably 2 To 12, particularly preferably 2 to 8, and examples thereof include a propargyl group and a 3-pentynyl group), an aryl group (preferably 6 to 30, more preferably 6 to 20, particularly preferably 6 to 12, and examples thereof include a phenyl group, a biphenyl group, and a naphthyl group.), A substituted or unsubstituted amino group (preferably carbon The number of atoms is 0 to 20, more preferably 0 to 10, particularly preferably 0 to 6, and examples thereof include an amino group, a methylamino group, a dimethylamino group, a diethylamino group, and a dibenzylamino group.
アルコキシ基(好ましくは炭素原子数1~20、より好ましくは1~12、特に好ましくは1~8であり、例えばメトキシ基、エトキシ基、ブトキシ基などが挙げられる。)、アリールオキシ基(好ましくは炭素原子数6~20、より好ましくは6~16、特に好ましくは6~12であり、例えばフェニルオキシ基、2-ナフチルオキシ基などが挙げられる。)、アシル基(好ましくは炭素原子数1~20、より好ましくは1~16、特に好ましくは1~12であり、例えばアセチル基、ベンゾイル基、ホルミル基、ピバロイル基などが挙げられる。)、アルコキシカルボニル基(好ましくは炭素原子数2~20、より好ましくは2~16、特に好ましくは2~12であり、例えばメトキシカルボニル基、エトキシカルボニル基などが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素原子数7~20、より好ましくは7~16、特に好ましくは7~10であり、例えばフェニルオキシカルボニル基などが挙げられる。)、アシルオキシ基(好ましくは炭素原子数2~20、より好ましくは2~16、特に好ましくは2~10であり、例えばアセトキシ基、ベンゾイルオキシ基などが挙げられる。)、 An alkoxy group (preferably having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms such as a methoxy group, an ethoxy group, and a butoxy group), an aryloxy group (preferably The number of carbon atoms is 6 to 20, more preferably 6 to 16, and particularly preferably 6 to 12, and examples thereof include phenyloxy group and 2-naphthyloxy group.) Acyl group (preferably having 1 to 1 carbon atom) 20, more preferably 1 to 16, particularly preferably 1 to 12, and examples thereof include an acetyl group, a benzoyl group, a formyl group, and a pivaloyl group), an alkoxycarbonyl group (preferably having 2 to 20 carbon atoms, More preferably, it is 2 to 16, particularly preferably 2 to 12, and examples thereof include a methoxycarbonyl group and an ethoxycarbonyl group. ), An aryloxycarbonyl group (preferably having 7 to 20 carbon atoms, more preferably 7 to 16 carbon atoms, particularly preferably 7 to 10 carbon atoms such as a phenyloxycarbonyl group), an acyloxy group (preferably ) Has 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 10 carbon atoms, and examples thereof include an acetoxy group and a benzoyloxy group.
アシルアミノ基(好ましくは炭素原子数2~20、より好ましくは2~16、特に好ましくは2~10であり、例えばアセチルアミノ基、ベンゾイルアミノ基などが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素原子数2~20、より好ましくは2~16、特に好ましくは2~12であり、例えばメトキシカルボニルアミノ基などが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素原子数7~20、より好ましくは7~16、特に好ましくは7~12であり、例えばフェニルオキシカルボニルアミノ基などが挙げられる。)、スルホニルアミノ基(好ましくは炭素原子数1~20、より好ましくは1~16、特に好ましくは1~12であり、例えばメタンスルホニルアミノ基、ベンゼンスルホニルアミノ基などが挙げられる。)、スルファモイル基(好ましくは炭素原子数0~20、より好ましくは0~16、特に好ましくは0~12であり、例えばスルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、フェニルスルファモイル基などが挙げられる。)、カルバモイル基(好ましくは炭素原子数1~20、より好ましくは1~16、特に好ましくは1~12であり、例えばカルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、フェニルカルバモイル基などが挙げられる。)、 An acylamino group (preferably having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 10 carbon atoms such as an acetylamino group and a benzoylamino group), an alkoxycarbonylamino group (preferably 2-20 carbon atoms, more preferably 2-16 carbon atoms, particularly preferably 2-12 carbon atoms, such as a methoxycarbonylamino group), an aryloxycarbonylamino group (preferably having 7-20 carbon atoms, More preferably, it is 7 to 16, particularly preferably 7 to 12, and examples thereof include a phenyloxycarbonylamino group, etc.), a sulfonylamino group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16, especially Preferably, it is 1 to 12, for example, methanesulfonylamino group, benzenesulfonyla ), Sulfamoyl groups (preferably having 0 to 20, more preferably 0 to 16, particularly preferably 0 to 12 carbon atoms such as sulfamoyl group, methylsulfamoyl group, dimethylsulfayl group). And a carbamoyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms such as a carbamoyl group and a methylcarbamoyl group). , Diethylcarbamoyl group, phenylcarbamoyl group, etc.),
アルキルチオ基(好ましくは炭素原子数1~20、より好ましくは1~16、特に好ましくは1~12であり、例えばメチルチオ基、エチルチオ基などが挙げられる。)、アリールチオ基(好ましくは炭素原子数6~20、より好ましくは6~16、特に好ましくは6~12であり、例えばフェニルチオ基などが挙げられる。)、スルホニル基(好ましくは炭素原子数1~20、より好ましくは1~16、特に好ましくは1~12であり、例えばメシル基、トシル基などが挙げられる。)、スルフィニル基(好ましくは炭素原子数1~20、より好ましくは1~16、特に好ましくは1~12であり、例えばメタンスルフィニル基、ベンゼンスルフィニル基などが挙げられる。)、ウレイド基(好ましくは炭素原子数1~20、より好ましくは1~16、特に好ましくは1~12であり、例えばウレイド基、メチルウレイド基、フェニルウレイド基などが挙げられる。)、リン酸アミド基(好ましくは炭素原子数1~20、より好ましくは1~16、特に好ましくは1~12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素原子数1~30、より好ましくは1~12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、ベンゾオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基などが挙げられる。)、シリル基(好ましくは、炭素原子数3~40、より好ましくは3~30、特に好ましくは3~24であり、例えば、トリメチルシリル基、トリフェニルシリル基などが挙げられる)などが挙げられる。 An alkylthio group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms such as a methylthio group and an ethylthio group), an arylthio group (preferably having 6 carbon atoms). To 20, more preferably 6 to 16, particularly preferably 6 to 12, and examples thereof include a phenylthio group.), A sulfonyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12, for example, mesyl group, tosyl group, etc.), sulfinyl group (preferably 1 to 20, more preferably 1 to 16, particularly preferably 1 to 12, such as methane Sulfinyl group, benzenesulfinyl group, etc.), ureido group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16, particularly preferably 1 to 12, for example, ureido group, methylureido group, phenylureido group, etc.), phosphoric acid amide group (preferably having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms) 16, particularly preferably 1 to 12, such as diethyl phosphate amide, phenyl phosphate amide, etc.), hydroxy group, mercapto group, halogen atom (eg fluorine atom, chlorine atom, bromine atom, iodine atom) , Cyano group, sulfo group, carboxyl group, nitro group, hydroxamic acid group, sulfino group, hydrazino group, imino group, heterocyclic group (preferably having 1 to 30 carbon atoms, more preferably 1 to 12 carbon atoms, heteroatoms As, for example, a nitrogen atom, an oxygen atom, a sulfur atom, specifically, for example, an imidazolyl group, a pyridyl group, a quinolyl group A furyl group, a piperidyl group, a morpholino group, a benzoxazolyl group, a benzimidazolyl group, a benzthiazolyl group, etc.), a silyl group (preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably). Is 3 to 24, and examples thereof include a trimethylsilyl group and a triphenylsilyl group).
 上記の置換基の中で、水素原子を有するものは、これを取り去りさらに上記の基で置換されていてもよい。そのような官能基の例としては、アルキルカルボニルアミノスルホニル基、アリールカルボニルアミノスルホニル基、アルキルスルホニルアミノカルボニル基、アリールスルホニルアミノカルボニル基が挙げられる。その例としては、メチルスルホニルアミノカルボニル基、p-メチルフェニルスルホニルアミノカルボニル基、アセチルアミノスルホニル基、ベンゾイルアミノスルホニル基が挙げられる。
 また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
Among the above substituents, those having a hydrogen atom may be substituted with the above groups after removing this. Examples of such functional groups include an alkylcarbonylaminosulfonyl group, an arylcarbonylaminosulfonyl group, an alkylsulfonylaminocarbonyl group, and an arylsulfonylaminocarbonyl group. Examples thereof include a methylsulfonylaminocarbonyl group, a p-methylphenylsulfonylaminocarbonyl group, an acetylaminosulfonyl group, and a benzoylaminosulfonyl group.
Moreover, when there are two or more substituents, they may be the same or different. If possible, they may be linked together to form a ring.
 一般式(1)で表される金属錯体色素は、溶液中における極大吸収波長が、500~800nmの範囲であり、より好ましくは500~750nmの範囲である。
 以下に、一般式(1)で表される金属錯体色素の好ましい具体例(A-1~A-20)を示すが、本発明が以下の具体例に限定されるものではない。
The metal complex dye represented by the general formula (1) has a maximum absorption wavelength in a solution of 500 to 800 nm, more preferably 500 to 750 nm.
Specific preferred examples (A-1 to A-20) of the metal complex dye represented by the general formula (1) are shown below, but the present invention is not limited to the following specific examples.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 一般式(1)で表される金属錯体色素は、共役基が置換したフタロニトリルを通常の方法で閉環し、フタロシアニン環を形成し、金属を配位させる方法により調製することができる。例えば、廣橋亮、坂本恵一、奥村英子編、「機能性色素としてのフタロシアニン」株式会社アイピーシー2004年刊などに記載の方法を参照して実施できる。
 なお、本明細書において化合物(錯体、色素を含む)の表示については、当該化合物そのもののほか、その塩、錯体(錯体以外のとき)、そのイオンを含む意味に用いる。また、所望の効果を奏する範囲で、所定の形態で修飾された化合物を含む意味である。また、本明細書において置換・無置換を明記していない置換基については、その基に任意の置換基を有していてもよい意味である。これは置換・無置換を明記していない化合物についても同義である。好ましい置換基としては、上記置換基Tが挙げられる。
The metal complex dye represented by the general formula (1) can be prepared by a method in which a phthalonitrile substituted with a conjugated group is closed by a usual method to form a phthalocyanine ring and coordinate the metal. For example, it can be carried out with reference to the method described in Ryo Takahashi, Keiichi Sakamoto, Eiko Okumura, “Phthalocyanine as a functional pigment” published by IPC 2004.
In addition, in this specification, about the display of a compound (a complex and a pigment | dye are included), in addition to the said compound itself, the salt, complex (when it is other than a complex), and the meaning containing the ion are used. Moreover, it is the meaning including the compound modified with the predetermined form in the range with the desired effect. In addition, in the present specification, a substituent that does not specify substitution / non-substitution means that the group may have an arbitrary substituent. This is also synonymous for compounds that do not specify substitution / non-substitution. As the preferred substituent, the above-mentioned substituent T can be mentioned.
(A2)一般式(14)で表される色素など
(A2-1)
 光電変換素子及び光電気化学電池に使用される色素としては、上記の(A1)金属錯体色素に加えてほかの色素を併用することができる。好ましくは、これらの色素を含む色素溶液を調製して使用することが好ましい。
 本発明においては、光電変換素子は上記の色素化合物を少なくとも1種と同時に下記一般式(14)で表される化合物を少なくとも一種によって増感される半導体微粒子を含有させることもできる。この場合上記2種の増感色素によって増感された半導体微粒子を含む光電変換層を、それぞれ、別の層にすることもできる。
(A2) Dye represented by general formula (14), etc. (A2-1)
In addition to the above (A1) metal complex dye, other dyes can be used in combination as the dye used for the photoelectric conversion element and the photoelectrochemical cell. It is preferable to prepare and use a dye solution containing these dyes.
In the present invention, the photoelectric conversion element may contain at least one dye compound and semiconductor fine particles sensitized by at least one compound represented by the following general formula (14). In this case, the photoelectric conversion layers containing the semiconductor fine particles sensitized by the two kinds of sensitizing dyes can be formed as separate layers.
 
Mz(LLm1(LLm2(X)m3・CI  一般式(14)
 
 [一般式(14)において、Mzは金属原子を表し、LLは下記一般式(15)で表される2座又は3座の配位子であり、LLは下記一般式(16)で表される2座又は3座の配位子である。
 Xは前記LL及びLL以外の1座又は2座の配位子であり、好ましくは、アシルオキシ基、アシルチオ基、チオアシルオキシ基、チオアシルチオ基、アシルアミノオキシ基、チオカルバメート基、ジチオカルバメート基、チオカルボネート基、ジチオカルボネート基、トリチオカルボネート基、アシル基、チオシアネート基、イソチオシアネート基、シアネート基、イソシアネート基、シアノ基、アルキルチオ基、アリールチオ基、アルコキシ基およびアリールオキシ基からなる群から選ばれた基で配位する1座又は2座の配位子、あるいはハロゲン原子、カルボニル、ジアルキルケトン、1,3-ジケトン、カルボンアミド、チオカルボンアミドまたはチオ尿素からなる1座または2座の配位子を表す。
 m1は0~3の整数を表し、m1が2以上のとき、LLは同じでも異なっていてもよい。m2は0~3の整数を表し、m2が2のとき、LLは同じでも異なっていてもよい。ただし、m1とm2のうち少なくとも一方は1以上の整数である。
 m3は0~2の整数を表し、m3が2のとき、Xは同じでも異なっていてもよく、X同士が連結していてもよい。
 CIは一般式(14)において、電荷を中和させるのに対イオンが必要な場合の対イオンを表す。]
 併用しうる好ましい色素としては、前記一般式(14)で表される構造を有するものを挙げることができる。これにより非効率会合が抑制される為か、単独よりも吸収光変換効率(APCE)が高いという予期せぬ効果があった。

Mz (LL 1 ) m1 (LL 2 ) m2 (X) m3 · CI General formula (14)

[In the general formula (14), Mz represents a metal atom, LL 1 is a bidentate or tridentate ligand represented by the following general formula (15), and LL 2 is the following general formula (16). The bidentate or tridentate ligand represented.
X is a monodentate or bidentate ligand other than LL 1 and LL 2 and is preferably an acyloxy group, acylthio group, thioacyloxy group, thioacylthio group, acylaminooxy group, thiocarbamate group, dithiocarbamate group , Thiocarbonate group, dithiocarbonate group, trithiocarbonate group, acyl group, thiocyanate group, isothiocyanate group, cyanate group, isocyanate group, cyano group, alkylthio group, arylthio group, alkoxy group and aryloxy group A monodentate or bidentate ligand coordinated by a group selected from the group, or a monodentate or bidentate comprising a halogen atom, carbonyl, dialkyl ketone, 1,3-diketone, carbonamide, thiocarbonamide or thiourea Represents a ligand.
m1 represents an integer of 0 to 3, and when m1 is 2 or more, LL 1 may be the same or different. m2 represents an integer of 0 to 3, and when m2 is 2, LL 2 may be the same or different. However, at least one of m1 and m2 is an integer of 1 or more.
m3 represents an integer of 0 to 2, and when m3 is 2, Xs may be the same or different, and Xs may be linked together.
CI represents a counter ion in the general formula (14) when a counter ion is necessary to neutralize the charge. ]
Preferable pigments that can be used in combination include those having a structure represented by the general formula (14). As a result, the inefficient association was suppressed, and there was an unexpected effect that the absorption light conversion efficiency (APCE) was higher than that of the single substance.
 一般式(14)の構造を有する色素は、金属原子に、配位子LL及び/又は配位子LLと、場合により特定の官能基Xが配位しており、必要な場合はCIにより電気的に中性に保たれている。
(A2-1)金属原子Mz
 Mzは金属原子を表す。Mは好ましくは4配位または6配位が可能な金属であり、より好ましくはRu、Fe、Os、Cu、W、Cr、Mo、Ni、Pd、Pt、Co、Ir、Rh、Re、Mn又はZnである。特に好ましくは、Ru、Os、Zn又はCuであり、最も好ましくはRuである。
In the dye having the structure of the general formula (14), the ligand LL 1 and / or the ligand LL 2 and optionally a specific functional group X are coordinated to a metal atom, and if necessary, CI Therefore, it is kept electrically neutral.
(A2-1) Metal atom Mz
Mz represents a metal atom. M is preferably a metal capable of tetracoordinate or hexacoordinate, and more preferably Ru, Fe, Os, Cu, W, Cr, Mo, Ni, Pd, Pt, Co, Ir, Rh, Re, Mn Or it is Zn. Particularly preferred is Ru, Os, Zn or Cu, and most preferred is Ru.
(A2-2)配位子LL
 配位子LLは、下記一般式(15)により表される2座または3座の配位子により表される2座または3座の配位子であり、好ましくは2座配位子である。配位子LLの数を表すm1は0~3の整数であり、1~3であるのが好ましく、1であるのがより好ましい。m1が2以上のとき、LLは同じでも異なっていてもよい。ただし、m1と、後述の配位子LLの数を表すm2のうち少なくとも一方は1以上の整数である。したがって金属原子に、配位子LL及び/又は配位子LLが配位している。
(A2-2) Ligand LL 1
The ligand LL 1 is a bidentate or tridentate ligand represented by the bidentate or tridentate ligand represented by the following general formula (15), preferably a bidentate ligand. is there. M1 representing the number of the ligand LL 1 is an integer of 0 to 3, preferably 1 to 3, and more preferably 1. When m1 is 2 or more, LL 1 may be the same or different. However, the m1, at least one of m2 representing the number of ligands LL 2 below is an integer of 1 or more. Thus the metal atom, the ligand LL 1 and / or ligand LL 2 is coordinated.
Figure JPOXMLDOC01-appb-C000019
 一般式(15)中のR101及びR102はそれぞれ独立に酸性基を表し、例えばカルボキシル基、スルホン酸基、ヒドロキシル基、ヒドロキサム酸基(好ましくは炭素原子数1~20のヒドロキサム酸基、例えば、―CONHOH、―CONCHOH等)、ホスホリル基(例えば―OP(O)(OH)等)及びホスホニル基(例えば―P(O)(OH)等)が挙げられ、好ましくはカルボキシル基、ホスホニル基であり、より好ましくはカルボキシル基が挙げられる。R101およびR102はピリジン環上のどの炭素原子に置換してもよい。また、これらの酸性基は連結基を介してピリジン環に導入されているものであってもよい。
Figure JPOXMLDOC01-appb-C000019
R 101 and R 102 in the general formula (15) each independently represent an acidic group, for example, a carboxyl group, a sulfonic acid group, a hydroxyl group, a hydroxamic acid group (preferably a hydroxamic acid group having 1 to 20 carbon atoms, such as , —CONHOH, —CONCH 3 OH, etc.), phosphoryl groups (eg —OP (O) (OH) 2 etc.) and phosphonyl groups (eg —P (O) (OH) 2 etc.), preferably carboxyl groups A phosphonyl group, more preferably a carboxyl group. R 101 and R 102 may be substituted on any carbon atom on the pyridine ring. Further, these acidic groups may be introduced into the pyridine ring via a linking group.
 式中、R103、R104はそれぞれ独立に置換基を表し、好ましくはアルキル基(好ましくは炭素原子数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素原子数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素原子数2~20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素原子数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等)、アリール基(好ましくは炭素原子数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、ヘテロ環基(好ましくは炭素原子数2~20のヘテロ環基、例えば、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル等)、アルコキシ基(好ましくは炭素原子数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素原子数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等)、アルコキシカルボニル基(好ましくは炭素原子数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、アミノ基(好ましくは炭素原子数0~20のアミノ基、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルホンアミド基(好ましくは炭素原子数0~20のスルホンアミド基、例えば、N,N-ジメチルスルホンアミド、N-フェニルスルホンアミド等)、アシルオキシ基(好ましくは炭素原子数1~20のアシルオキシ基、例えば、アセチルオキシ、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素原子数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素原子数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、シアノ基、又はハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)であり、より好ましくはアルキル基、アルケニル基、アリール基、ヘテロ環基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基、シアノ基又はハロゲン原子であり、特に好ましくはアルキル基、アルケニル基、ヘテロ環基、アルコキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基又はシアノ基である。 In the formula, R 103 and R 104 each independently represent a substituent, preferably an alkyl group (preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1 -Ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.), alkenyl groups (preferably alkenyl groups having 2 to 20 carbon atoms such as vinyl, allyl, oleyl, etc.), alkynyl groups (preferably carbon atoms) Alkynyl groups having 2 to 20 carbon atoms such as ethynyl, butadiynyl, phenylethynyl, etc., cycloalkyl groups (preferably cycloalkyl groups having 3 to 20 carbon atoms such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc.) ), An aryl group (preferably having 6 to 26 carbon atoms) A reel group such as phenyl, 1-naphthyl, 4-methoxyphenyl, 2-chlorophenyl, 3-methylphenyl and the like, a heterocyclic group (preferably a heterocyclic group having 2 to 20 carbon atoms, such as 2-pyridyl, 4-pyridyl, 2-imidazolyl, 2-benzimidazolyl, 2-thiazolyl, 2-oxazolyl, etc.), an alkoxy group (preferably an alkoxy group having 1 to 20 carbon atoms, such as methoxy, ethoxy, isopropyloxy, benzyloxy, etc.) An aryloxy group (preferably an aryloxy group having 6 to 26 carbon atoms, such as phenoxy, 1-naphthyloxy, 3-methylphenoxy, 4-methoxyphenoxy, etc.), an alkoxycarbonyl group (preferably having 2 to 2 carbon atoms) 20 alkoxycarbonyl groups such as ethoxycarbonyl 2-ethylhexyloxycarbonyl, etc.), amino group (preferably an amino group having 0 to 20 carbon atoms, such as amino, N, N-dimethylamino, N, N-diethylamino, N-ethylamino, anilino, etc.), sulfone Amido groups (preferably sulfonamido groups having 0 to 20 carbon atoms, such as N, N-dimethylsulfonamide, N-phenylsulfonamide, etc.), acyloxy groups (preferably acyloxy groups having 1 to 20 carbon atoms, such as , Acetyloxy, benzoyloxy, etc.), a carbamoyl group (preferably a carbamoyl group having 1 to 20 carbon atoms, such as N, N-dimethylcarbamoyl, N-phenylcarbamoyl, etc.), an acylamino group (preferably 1 to 1 carbon atom). 20 acylamino groups such as acetylamino, benzoylamino, etc. ), A cyano group, or a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.), more preferably an alkyl group, an alkenyl group, an aryl group, a heterocyclic group, an alkoxy group, an aryloxy group, an alkoxy group. A carbonyl group, an amino group, an acylamino group, a cyano group or a halogen atom, particularly preferably an alkyl group, an alkenyl group, a heterocyclic group, an alkoxy group, an alkoxycarbonyl group, an amino group, an acylamino group or a cyano group.
 配位子LLがアルキル基、アルケニル基等を含むとき、これらは直鎖状でも分岐状でもよく、置換されていても無置換でもよい。また配位子LLがアリール基、ヘテロ環基等を含むとき、それらは単環でも縮環でもよく、置換されていても無置換でもよい。 When the ligand LL 1 contains an alkyl group, an alkenyl group or the like, these may be linear or branched, and may be substituted or unsubstituted. Further, when the ligand LL 1 contains an aryl group, a heterocyclic group or the like, they may be monocyclic or condensed and may be substituted or unsubstituted.
 一般式(15)中、R105及びR106はそれぞれ独立に、アルキル基、芳香族基(好ましくは炭素原子数6~30の芳香族基、例えば、フェニル、置換フェニル、ナフチル、置換ナフチル等)又はヘテロ環基(好ましくは炭素原子数1~30のヘテロ環基、例えば、2-チエニル、2-ピロリル、2-イミダゾリル、1-イミダゾリル、4-ピリジル、3-インドリル)であり、好ましくは1~3個の電子供与基を有するヘテロ環基であり、より好ましくはチエニルが挙げられる。該電子供与基はアルキル基、アルケニル基、アルキニル基、シクロアルキル基、アルコキシ基、アリールオキシ基、アミノ基、アシルアミノ基(以上好ましい例はR103及びR104の場合と同様)またはヒドロキシル基であるのが好ましく、アルキル基、アルコキシ基、アミノ基またはヒドロキシル基であるのがより好ましく、アルキル基であるのが特に好ましい。R105とR106は同じであっても異なっていてもよいが、同じであるのが好ましい。 In general formula (15), R 105 and R 106 are each independently an alkyl group or an aromatic group (preferably an aromatic group having 6 to 30 carbon atoms, such as phenyl, substituted phenyl, naphthyl, substituted naphthyl, etc.) Or a heterocyclic group (preferably a heterocyclic group having 1 to 30 carbon atoms, such as 2-thienyl, 2-pyrrolyl, 2-imidazolyl, 1-imidazolyl, 4-pyridyl, 3-indolyl), preferably 1 A heterocyclic group having ˜3 electron donating groups, more preferably thienyl. The electron donating group is an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, an alkoxy group, an aryloxy group, an amino group, an acylamino group (preferred examples are the same as those for R 103 and R 104 ) or a hydroxyl group. And more preferably an alkyl group, an alkoxy group, an amino group or a hydroxyl group, and particularly preferably an alkyl group. R 105 and R 106 may be the same or different, but are preferably the same.
 R105とR106は、直接ベンゼン環に結合していてもよい。R105とR106は、L及び/又はLを介してベンゼン環に結合していてもよい。
 ここでL及びLはそれぞれ独立に、共役鎖を表す。エテニレン基が置換基を有する場合、該置換基はアルキル基であるのが好ましく、メチルであるのがより好ましい。L及びLはそれぞれ独立に、炭素原子数2~6個の共役鎖であるのが好ましく、置換もしくは無置換の、チオフェンジイル基、エテニレン、ブタジエニレン、エチニレン、ブタジイニレン、メチルエテニレン又はジメチルエテニレンを有することがより好ましく、エテニレン又はブタジエニレンを有する基が特に好ましく、エテニレンを有することが最も好ましい。LとLは同じであっても異なっていてもよいが、同じであるのが好ましい。なお、共役鎖が炭素―炭素二重結合を含む場合、各二重結合はトランス体であってもシス体であってもよく、これらの混合物であってもよい。
R 105 and R 106 may be directly bonded to the benzene ring. R 105 and R 106 may be bonded to the benzene ring via L 1 and / or L 2 .
Here, L 1 and L 2 each independently represent a conjugated chain. When the ethenylene group has a substituent, the substituent is preferably an alkyl group, and more preferably methyl. L 1 and L 2 are each independently preferably a conjugated chain having 2 to 6 carbon atoms, and a substituted or unsubstituted thiophenediyl group, ethenylene, butadienylene, ethynylene, butadienylene, methylethenylene, or dimethylethenyl It is more preferred to have lenth, groups having ethenylene or butadienylene are particularly preferred, and most preferred to have ethenylene. L 1 and L 2 may be the same or different, but are preferably the same. When the conjugated chain contains a carbon-carbon double bond, each double bond may be a trans isomer, a cis isomer, or a mixture thereof.
 d1、d2はそれぞれ0以上の整数であり、好ましくは1~3の整数である。
 d3は0または1であり、a1及びa2はそれぞれ独立に0~3の整数を表す。a1が2以上のときR101は同じでも異なっていてもよく、a2が2以上のときR102は同じでも異なっていてもよい。a1は0又は1であるのが好ましく、a2は0~2の整数であるのが好ましい。特に、d3が0のときa2は1又は2であるのが好ましく、d3が1のときa2は0又は1であるのが好ましい。a1とa2の和は0~2の整数であるのが好ましい。
d1 and d2 are each an integer of 0 or more, preferably an integer of 1 to 3.
d3 is 0 or 1, and a1 and a2 each independently represent an integer of 0 to 3. a1 is R 101 when 2 or more may be the same or different, a2 is 2 or more when R 102 may be the same or different. a1 is preferably 0 or 1, and a2 is preferably an integer of 0-2. In particular, when d3 is 0, a2 is preferably 1 or 2, and when d3 is 1, a2 is preferably 0 or 1. The sum of a1 and a2 is preferably an integer of 0-2.
 b1及びb2はそれぞれ独立に0~3の整数を表し、0~2の整数であるのが好ましい。b1が2以上のとき、R103は同じでも異なっていてもよく、互いに連結して環を形成していてもよい。b2が2以上のとき、R104は同じでも異なっていてもよく、互いに連結して環を形成していてもよい。またb1及びb2がともに1以上のとき、R103とR104が連結して環を形成していてもよい。形成する環の好ましい例としては、ベンゼン環、ピリジン環、チオフェン環、ピロール環、シクロヘキサン環、シクロペンタン環等が挙げられる。
 a1とa2の和が1以上であって、配位子LLが酸性基を少なくとも1個有するときは、一般式(14)中のm1は2または3であるのが好ましく、2であるのがより好ましい。
b1 and b2 each independently represents an integer of 0 to 3, preferably an integer of 0 to 2. When b1 is 2 or more, R 103 may be the same or different and may be connected to each other to form a ring. When b2 is 2 or more, R 104 may be the same or different, and may be connected to each other to form a ring. When b1 and b2 are both 1 or more, R 103 and R 104 may be linked to form a ring. Preferable examples of the ring to be formed include a benzene ring, a pyridine ring, a thiophene ring, a pyrrole ring, a cyclohexane ring, a cyclopentane ring and the like.
A is the sum of a1 and a2 is 1 or more, when the ligand LL 1 is having at least one acidic group, m1 in formula (14) is preferably 2 or 3, the two Is more preferable.
 一般式(14)における配位子LLは、下記一般式(17-1)、(17-2)又は(17-3)で表されるものが好ましい。 The ligand LL 1 in the general formula (14) is preferably represented by the following general formula (17-1), (17-2) or (17-3).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 上記一般式(17-1)~(17-3)中、R101~R104、a1、a2、b1、b2、d1、d2及びd3は一般式(15)におけるものと同義である。一般式(17-2)中、b3は0~3の整数を表し、好ましくは0~2の整数を表す。
 一般式(17-2)中、R107は酸性基を表し、好ましくはカルボキシル基、スルホン酸基、ヒドロキシル基、ヒドロキサム酸基、ホスホリル基およびホスホニル基であり、より好ましくはカルボキシル基またはホスホリル基であり、特に好ましくはカルボキシル基である。
In the general formulas (17-1) to (17-3), R 101 to R 104 , a1, a2, b1, b2, d1, d2, and d3 have the same meanings as in the general formula (15). In general formula (17-2), b3 represents an integer of 0 to 3, preferably an integer of 0 to 2.
In the general formula (17-2), R 107 represents an acidic group, preferably a carboxyl group, a sulfonic acid group, a hydroxyl group, a hydroxamic acid group, a phosphoryl group, or a phosphonyl group, more preferably a carboxyl group or a phosphoryl group. Yes, particularly preferably a carboxyl group.
 一般式(17-2)中、R108は置換基を表し、好ましくはアルキル基、アルケニル基、アルキニル基、シクロアルキル基、アルコキシ基、アリールオキシ基、アミノ基又はアシルアミノ基(以上好ましい例は、一般式(15)における上記R103およびR104の場合と同様)であり、より好ましくはアルキル基、アルコキシ基、アミノ基またはアシルアミノ基である。 In the general formula (17-2), R 108 represents a substituent, preferably an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, an alkoxy group, an aryloxy group, an amino group or an acylamino group (above preferred examples are R 103 and R 104 in general formula (15)), and more preferably an alkyl group, an alkoxy group, an amino group, or an acylamino group.
 一般式(17-1)及び(17-2)中、R121~R124はそれぞれ独立に、水素、アルキル基、アルケニル基又はアリール基を表す。R121~R124の好ましい例は、一般式(15)における上記R103及びR104の好ましい例と同様である。R121~R124はさらに好ましくは、アルキル基又はアリール基であり、より好ましくはアルキル基である。R121~R124がアルキル基である場合はさらに置換基を有していてもよく、該置換基としてはアルコキシ基、シアノ基、アルコキシカルボニル基またはカルボンアミド基が好ましく、アルコキシ基が特に好ましい。R121とR122並びにR123とR124はそれぞれ互いに連結して環を形成していてもよい。形成する環としてはピロリジン環、ピペリジン環、ピペラジン環、又はモルホリン環等が好ましい。 In formulas (17-1) and (17-2), R 121 to R 124 each independently represents hydrogen, an alkyl group, an alkenyl group, or an aryl group. Preferred examples of R 121 to R 124 are the same as the preferred examples of R 103 and R 104 in formula (15). R 121 to R 124 are more preferably an alkyl group or an aryl group, and more preferably an alkyl group. When R 121 to R 124 are alkyl groups, they may further have a substituent, and the substituent is preferably an alkoxy group, a cyano group, an alkoxycarbonyl group or a carbonamido group, particularly preferably an alkoxy group. R 121 and R 122 and R 123 and R 124 may be connected to each other to form a ring. As the ring to be formed, a pyrrolidine ring, a piperidine ring, a piperazine ring, a morpholine ring or the like is preferable.
 一般式(17-1)~(17-3)中、R125、R126、R127及びR128はそれぞれ独立に置換基を表し、好ましくはアルキル基、アルケニル基、アルキニル基、シクロアルキル基、アルコキシ基、アリールオキシ基、アミノ基、アシルアミノ基(以上好ましい例は上記一般式(14)におけるR101の場合と同様)又はヒドロキシル基であり、より好ましくはアルキル基、アルコキシ基、アミノ基またはアシルアミノ基であり、特に好ましくはアルキル基である。 In general formulas (17-1) to (17-3), R 125 , R 126 , R 127 and R 128 each independently represent a substituent, preferably an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, An alkoxy group, an aryloxy group, an amino group, an acylamino group (preferred examples are the same as those for R 101 in the general formula (14)) or a hydroxyl group, more preferably an alkyl group, an alkoxy group, an amino group, or an acylamino group. Group, particularly preferably an alkyl group.
 一般式(17-2)中、a3は0~3の整数を表し、好ましくは0~2の整数を表す。d3が0のときa3は1又は2であるのが好ましく、d3が1のときa3は0または1であるのが好ましい。a3が2以上のときR107は同じでも異なっていてもよい。 In general formula (17-2), a3 represents an integer of 0 to 3, preferably an integer of 0 to 2. When d3 is 0, a3 is preferably 1 or 2, and when d3 is 1, a3 is preferably 0 or 1. a3 is the R 107 when two or more may be the same or different.
 一般式(17-1)及び(17-2)中、d1及びd2はそれぞれ独立に0~4の整数を表す。d1が1以上のときR125は、R121及び/又はR122と連結して環を形成していてもよい。形成される環はピペリジン環又はピロリジン環であるのが好ましい。d1が2以上のときR125は同じでも異なっていてもよく、互いに連結して環を形成していてもよい。d2が1以上のときR126は、R123及び/又はR124と連結して環を形成していてもよい
 形成される環はピペリジン環又はピロリジン環であるのが好ましい。d2が2以上のときR126は同じでも異なっていてもよく、互いに連結して環を形成していてもよい。
In general formulas (17-1) and (17-2), d1 and d2 each independently represents an integer of 0 to 4. When d1 is 1 or more, R 125 may be linked to R 121 and / or R 122 to form a ring. The ring formed is preferably a piperidine ring or a pyrrolidine ring. When d1 is 2 or more, R 125 may be the same or different, and may be linked to each other to form a ring. When d2 is 1 or more, R 126 may be linked to R 123 and / or R 124 to form a ring. The ring formed is preferably a piperidine ring or a pyrrolidine ring. When d2 is 2 or more, R 126 may be the same or different, and may be linked to each other to form a ring.
(A2-3)配位子LL
 一般式(14)中、LLは2座又は3座の配位子を表す。配位子LLの数を表すm2は0~2の整数であり、0又は1であるのが好ましい。m2が2のときLLは同じでも異なっていてもよい。ただし、m2と、前述の配位子LLの数を表すm1のうち少なくとも一方は1以上の整数である。
 配位子LLは、下記一般式(16)で表される2座又は3座の配位子である。
(A2-3) Ligand LL 2
In the general formula (14), LL 2 represents a bidentate or tridentate ligand. M2 representing the number of the ligand LL 2 is an integer of 0 to 2, and is preferably 0 or 1. m2 is LL 2 when the two may be the same or different. However, the m2, at least one of which is an integer of 1 or more of the m1 representing the number of ligands LL 1 above.
Ligand LL 2 is a bidentate or tridentate ligand represented by the following general formula (16).
Figure JPOXMLDOC01-appb-C000021
 一般式(16)中、Za、Zb及びZcはそれぞれ独立に、5員環又は6員環を形成しうる非金属原子群を表す。形成される5員環又は6員環は置換されていても無置換でもよく、単環でも縮環していてもよい。Za、Zb及びZcは炭素原子、水素原子、窒素原子、酸素原子、硫黄原子、リン原子及び/又はハロゲン原子で構成されることが好ましく、芳香族環を形成するのが好ましい。5員環の場合はイミダゾール環、オキサゾール環、チアゾール環又はトリアゾール環を形成するのが好ましく、6員環の場合はピリジン環、ピリミジン環、ピリダジン環又はピラジン環を形成するのが好ましい。なかでもイミダゾール環又はピリジン環がより好ましい。
 一般式(16)中、cは0または1を表す。cは0であるのが好ましく、LLは2座配位子であるのが好ましい。
Figure JPOXMLDOC01-appb-C000021
In General Formula (16), Za, Zb, and Zc each independently represent a nonmetallic atom group that can form a 5-membered ring or a 6-membered ring. The formed 5-membered or 6-membered ring may be substituted or unsubstituted, and may be monocyclic or condensed. Za, Zb and Zc are preferably composed of a carbon atom, a hydrogen atom, a nitrogen atom, an oxygen atom, a sulfur atom, a phosphorus atom and / or a halogen atom, and preferably form an aromatic ring. In the case of a 5-membered ring, an imidazole ring, an oxazole ring, a thiazole ring or a triazole ring is preferably formed. In the case of a 6-membered ring, a pyridine ring, a pyrimidine ring, a pyridazine ring or a pyrazine ring is preferably formed. Of these, an imidazole ring or a pyridine ring is more preferable.
In general formula (16), c represents 0 or 1. c is preferably 0, and LL 2 is preferably a bidentate ligand.
 配位子LLは、下記一般式(18-1)~(18-8)のいずれかにより表されるのが好ましく、一般式(18-1)、(18-2)、(18-4)又は(18-6)により表されるのがより好ましく、一般式(18-1)又は(18-2)により表されるのが特に好ましく、一般式(18-1)により表されるのが最も好ましい。 The ligand LL 2 is preferably represented by any one of the following general formulas (18-1) to (18-8), and the general formulas (18-1), (18-2), (18-4) ) Or (18-6), more preferably represented by formula (18-1) or (18-2), and represented by formula (18-1). Is most preferred.
Figure JPOXMLDOC01-appb-C000022
 なお、一般式(18-1)~(18-8)中のR151~R166は図示の都合上1つの環上に置換したように記載しているが、その環上にあっても、あるいは図示されたものとは異なる環上に置換してもよい。
Figure JPOXMLDOC01-appb-C000022
In the general formulas (18-1) to (18-8), R 151 to R 166 are described as substituted on one ring for the sake of illustration, but even on the ring, Or you may substitute on the ring different from what was illustrated.
 一般式(18-1)~(18-8)中、R151~R158はそれぞれ独立に酸性基を表す。R151~R158は、例えば、カルボキシル基、スルホン酸基、ヒドロキシル基、ヒドロキサム酸基(好ましくは炭素原子数1~20のヒドロキサム酸基、例えば―CONHOH、―CONCHOH等)、ホスホリル基(例えば―OP(O)(OH)等)又はホスホニル基(例えば―P(O)(OH)等)を表す。R151~R158は、好ましくはカルボキシル基、ホスホリル基又はホスホニル基等、さらに好ましくはカルボキシル基又はホスホニル基であり、より好ましくはカルボキシル基である。上述のとおり酸性基は任意の連結基を伴ってもよい。 In formulas (18-1) to (18-8), R 151 to R 158 each independently represent an acidic group. R 151 to R 158 are, for example, a carboxyl group, a sulfonic acid group, a hydroxyl group, a hydroxamic acid group (preferably a hydroxamic acid group having 1 to 20 carbon atoms, such as —CONHOH, —CONCH 3 OH, etc.), a phosphoryl group ( For example, —OP (O) (OH) 2 etc.) or a phosphonyl group (eg —P (O) (OH) 2 etc.) is represented. R 151 to R 158 are preferably a carboxyl group, a phosphoryl group, or a phosphonyl group, more preferably a carboxyl group or a phosphonyl group, and more preferably a carboxyl group. As described above, the acidic group may be accompanied by any linking group.
 一般式(18-1)~(18-8)中、R159~R166はそれぞれ独立に置換基を表し、好ましくはアルキル基、アルケニル基、シクロアルキル基、アリール基、ヘテロ環基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アミノ基、アシル基、スルホンアミド基、アシルオキシ基、カルバモイル基、アシルアミノ基、シアノ基またはハロゲン原子(以上好ましい例は、一般式(15)におけるR103及びR104の場合と同様)であり、より好ましくはアルキル基、アルケニル基、アリール基、ヘテロ環基、アルコキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基またはハロゲン原子であり、特に好ましくはアルキル基、アルケニル基、アルコキシ基、アルコキシカルボニル基、アミノ基またはアシルアミノ基である。 In general formulas (18-1) to (18-8), R 159 to R 166 each independently represent a substituent, preferably an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, a heterocyclic group, or an alkoxy group. , An aryloxy group, an alkoxycarbonyl group, an amino group, an acyl group, a sulfonamido group, an acyloxy group, a carbamoyl group, an acylamino group, a cyano group, or a halogen atom (the preferred examples are R 103 and R 104 in the general formula (15)). More preferably an alkyl group, an alkenyl group, an aryl group, a heterocyclic group, an alkoxy group, an alkoxycarbonyl group, an amino group, an acylamino group or a halogen atom, particularly preferably an alkyl group or an alkenyl group. , Alkoxy group, alkoxycarbonyl group, amino group or An amino group.
 一般式(18-1)~(18-8)中、R167~R171はそれぞれ独立に水素原子、脂肪族基、芳香族基、炭素原子で結合するヘテロ環基を表し、好ましくは、脂肪族基、芳香族基であり、より好ましくはカルボキシル基を有する脂肪族基である。配位子LLがアルキル基、アルケニル基等を含むとき、それらは直鎖状でも分岐状でもよく、置換されていても無置換でもよい。また、LLがアリール基、ヘテロ環基等を含むとき、それらは単環でも縮環でもよく、置換されていても無置換でもよい。 In the general formulas (18-1) to (18-8), R 167 to R 171 each independently represent a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group bonded with a carbon atom, An aliphatic group, and more preferably an aliphatic group having a carboxyl group. When the ligand LL 2 contains an alkyl group, an alkenyl group or the like, they may be linear or branched and may be unsubstituted substituted. Further, LL 2 is an aryl group, when containing heterocyclic group, they may be a condensed ring may be monocyclic or unsubstituted substituted.
 一般式(18-1)~(18-8)中、R151~R166は環上のどの位置に結合していてもよい。またe1~e6はそれぞれ独立に0~4の整数を表し、好ましくは0~2の整数を表す。e7及びe8はそれぞれ独立に0~4の整数を表し、好ましくは0~3の整数を表す。e9~e12及びe15はそれぞれ独立に0~6の整数を表し、e13、e14及びe16はそれぞれ独立に0~4の整数を表す。e9~e16はそれぞれ独立に0~3の整数であるのが好ましい。 In the general formulas (18-1) to (18-8), R 151 to R 166 may be bonded to any position on the ring. E1 to e6 each independently represents an integer of 0 to 4, preferably an integer of 0 to 2. e7 and e8 each independently represents an integer of 0 to 4, preferably an integer of 0 to 3. e9 to e12 and e15 each independently represents an integer of 0 to 6, and e13, e14 and e16 each independently represents an integer of 0 to 4. It is preferable that e9 to e16 are each independently an integer of 0 to 3.
 e1~e8が2以上のとき、R151~R158はそれぞれ同じでも異なっていてもよく、e9~e16が2以上のとき、R159~R166はそれぞれ同じでも異なっていてもよく、互いに連結して環を形成していてもよい。 When e1 to e8 is 2 or more, R 151 to R 158 may be the same or different. When e9 to e16 is 2 or more, R 159 to R 166 may be the same or different and are connected to each other. To form a ring.
(A2-4)配位子X
 一般式(14)中、Xは1座又は2座の配位子を表す。配位子Xの数を表すm3は0~2の整数を表し、m3は好ましくは1又は2である。Xが1座配位子のとき、m3は2であるのが好ましく、Xが2座配位子のとき、m3は1であるのが好ましい。m3が2のとき、Xは同じでも異なっていてもよく、X同士が連結していてもよい。
(A2-4) Ligand X
In general formula (14), X represents a monodentate or bidentate ligand. M3 representing the number of ligands X represents an integer of 0 to 2, and m3 is preferably 1 or 2. When X is a monodentate ligand, m3 is preferably 2. When X is a bidentate ligand, m3 is preferably 1. When m3 is 2, Xs may be the same or different, and Xs may be linked together.
 配位子Xは、好ましくは、アシルオキシ基(好ましくは炭素原子数1~20のアシルオキシ基、例えば、アセチルオキシ、ベンゾイルオキシ、サリチル酸、グリシルオキシ、N,N-ジメチルグリシルオキシ、オキザリレン(―OC(O)C(O)O―)等)、アシルチオ基(好ましくは炭素原子数1~20のアシルチオ基、例えば、アセチルチオ、ベンゾイルチオ等)、チオアシルオキシ基(好ましくは炭素原子数1~20のチオアシルオキシ基、例えば、チオアセチルオキシ基(CHC(S)O―)等))、チオアシルチオ基(好ましくは炭素原子数1~20のチオアシルチオ基、例えば、チオアセチルチオ(CHC(S)S―)、チオベンゾイルチオ(PhC(S)S―)等))、アシルアミノオキシ基(好ましくは炭素原子数1~20のアシルアミノオキシ基、例えば、N-メチルベンゾイルアミノオキシ(PhC(O)N(CH)O―)、アセチルアミノオキシ(CHC(O)NHO―)等))、チオカルバメート基(好ましくは炭素原子数1~20のチオカルバメート基、例えば、N,N-ジエチルチオカルバメート等)、ジチオカルバメート基(好ましくは炭素原子数1~20のジチオカルバメート基、例えば、N-フェニルジチオカルバメート、N,N-ジメチルジチオカルバメート、N,N-ジエチルジチオカルバメート、N,N-ジベンジルジチオカルバメート等)、チオカルボネート基(好ましくは炭素原子数1~20のチオカルボネート基、例えば、エチルチオカルボネート等)、ジチオカルボネート(好ましくは炭素原子数1~20のジチオカルボネート、例えば、エチルジチオカルボネート(COC(S)S―)等)、トリチオカルボネート基(好ましくは炭素原子数1~20のトリチオカルボネート基、例えば、エチルトリチオカルボネート(CSC(S)S-)等)、アシル基(好ましくは炭素原子数1~20のアシル基、例えば、アセチル、ベンゾイル等)、チオシアネート基、イソチオシアネート基、シアネート基、イソシアネート基、シアノ基、アルキルチオ基(好ましくは炭素原子数1~20のアルキルチオ基、例えばメタンチオ、エチレンジチオ等)、アリールチオ基(好ましくは炭素原子数6~20のアリールチオ基、例えば、ベンゼンチオ、1,2-フェニレンジチオ等)、アルコキシ基(好ましくは炭素原子数1~20のアルコキシ基、例えばメトキシ等)及びアリールオキシ基(好ましくは炭素原子数6~20のアリールオキシ基、例えばフェノキシ、キノリン-8-ヒドロキシル等)からなる群から選ばれた基で配位された1座又は2座の配位子、若しくはハロゲン原子(好ましくは塩素原子、臭素原子、ヨウ素原子等)、カルボニル(…CO)、ジアルキルケトン(好ましくは炭素原子数3~20のジアルキルケトン、例えばアセトン((CHCO…)等)、1,3-ジケトン(好ましくは炭素原子数3~20の1,3-ジケトン、例えば、アセチルアセトン(CHC(O…)CH=C(O―)CH)、トリフルオロアセチルアセトン(CFC(O…)CH=C(O―)CH)、ジピバロイルメタン(tCC(O…)CH=C(O―)t-C)、ジベンゾイルメタン(PhC(O…)CH=C(O―)Ph)、3-クロロアセチルアセトン(CHC(O…)CCl=C(O―)CH)等)、カルボンアミド(好ましくは炭素原子数1~20のカルボンアミド、例えば、CHN=C(CH)O―、―OC(=NH)―C(=NH)O―等)、チオカルボンアミド(好ましくは炭素原子数1~20のチオカルボンアミド、例えば、CHN=C(CH)S―等)、またはチオ尿素(好ましくは炭素原子数1~20のチオ尿素、例えば、NH(…)=C(S―)NH、CHN(…)=C(S―)NHCH、(CHN―C(S…)N(CH等)からなる配位子を表す。なお、「…」は配位結合を示す。 The ligand X is preferably an acyloxy group (preferably an acyloxy group having 1 to 20 carbon atoms, such as acetyloxy, benzoyloxy, salicylic acid, glycyloxy, N, N-dimethylglycyloxy, oxalylene (—OC ( O) C (O) O—)), acylthio groups (preferably acylthio groups having 1 to 20 carbon atoms, such as acetylthio, benzoylthio, etc.), thioacyloxy groups (preferably thios having 1 to 20 carbon atoms). Acyloxy groups such as thioacetyloxy groups (CH 3 C (S) O—), etc.)), thioacylthio groups (preferably thioacylthio groups having 1 to 20 carbon atoms, such as thioacetylthio (CH 3 C (S)) S-), thiobenzoylthio (PhC (S) S-) etc.)), acylaminooxy group (preferably the number of carbon atoms 1-20 acylaminooxy groups such as N-methylbenzoylaminooxy (PhC (O) N (CH 3 ) O—), acetylaminooxy (CH 3 C (O) NHO—), etc.)), thiocarbamate A group (preferably a thiocarbamate group having 1 to 20 carbon atoms such as N, N-diethylthiocarbamate), a dithiocarbamate group (preferably a dithiocarbamate group having 1 to 20 carbon atoms such as N-phenyldithio Carbamate, N, N-dimethyldithiocarbamate, N, N-diethyldithiocarbamate, N, N-dibenzyldithiocarbamate, etc.), thiocarbonate group (preferably a thiocarbonate group having 1 to 20 carbon atoms, for example, Ethylthiocarbonate, etc.), dithiocarbonate (preferably a dithio having 1 to 20 carbon atoms) Ocarbonates such as ethyl dithiocarbonate (C 2 H 5 OC (S) S—) and the like, trithiocarbonate groups (preferably trithiocarbonate groups having 1 to 20 carbon atoms such as ethyl trithiocarbonate) Nate (C 2 H 5 SC (S) S—), etc.), acyl group (preferably acyl group having 1 to 20 carbon atoms, such as acetyl, benzoyl, etc.), thiocyanate group, isothiocyanate group, cyanate group, isocyanate Group, a cyano group, an alkylthio group (preferably an alkylthio group having 1 to 20 carbon atoms, such as methanethio, ethylenedithio, etc.), an arylthio group (preferably an arylthio group having 6 to 20 carbon atoms, such as benzenethio, 1, 2 -Phenylenedithio, etc.), an alkoxy group (preferably an alkoxy group having 1 to 20 carbon atoms) A monodentate or a bidentate coordinated by a group selected from the group consisting of an aryloxy group (preferably an aryloxy group having 6 to 20 carbon atoms, such as phenoxy, quinoline-8-hydroxyl, etc.) Or a halogen atom (preferably a chlorine atom, a bromine atom, an iodine atom, etc.), a carbonyl (... CO), a dialkyl ketone (preferably a dialkyl ketone having 3 to 20 carbon atoms, such as acetone ((CH 3 )) 2 CO ...)), 1,3-diketone (preferably 1,3-diketone having 3 to 20 carbon atoms, such as acetylacetone (CH 3 C (O ...) CH = C (O-) CH 3 ), trifluoroacetylacetone (CF 3 C (O ...) CH = C (O-) CH 3), dipivaloylmethane (tC 4 H 9 C (O ...) CH = C (O-) -C 4 H 9), dibenzoylmethane (PhC (O ...) CH = C (O-) Ph), 3- chloro-acetylacetone (CH 3 C (O ...) CCl = C (O-) CH 3) , etc.) Carbonamide (preferably a carbonamide having 1 to 20 carbon atoms, such as CH 3 N═C (CH 3 ) O—, —OC (═NH) —C (═NH) O— etc.), thiocarbonamide ( Preferably a thiocarbonamide having 1 to 20 carbon atoms, such as CH 3 N═C (CH 3 ) S—, or thiourea (preferably a thiourea having 1 to 20 carbon atoms, such as NH (...) = C (S-) NH 2 , CH 3 N (...) = C (S-) NHCH 3 , (CH 3 ) 2 N-C (S ...) N (CH 3 ) 2 etc.) To express. "..." indicates a coordination bond.
 配位子Xは、好ましくはアシルオキシ基、チオアシルチオ基、アシルアミノオキシ基、ジチオカルバメート基、ジチオカルボネート基、トリチオカルボネート基、チオシアネート基、イソチオシアネート基、シアネート基、イソシアネート基、シアノ基、アルキルチオ基、アリールチオ基、アルコキシ基およびアリールオキシ基からなる群から選ばれた基で配位する配位子、あるいはハロゲン原子、カルボニル、1,3-ジケトンまたはチオ尿素からなる配位子であり、より好ましくはアシルオキシ基、アシルアミノオキシ基、ジチオカルバメート基、チオシアネート基、イソチオシアネート基、シアネート基、イソシアネート基、シアノ基またはアリールチオ基からなる群から選ばれた基で配位する配位子、あるいはハロゲン原子、1,3-ジケトンまたはチオ尿素からなる配位子であり、特に好ましくはジチオカルバメート基、チオシアネート基、イソチオシアネート基、シアネート基およびイソシアネート基からなる群から選ばれた基で配位する配位子、あるいはハロゲン原子または1,3-ジケトンからなる配位子であり、最も好ましくは、ジチオカルバメート基、チオシアネート基およびイソチオシアネート基からなる群から選ばれた基で配位する配位子、あるいは1,3-ジケトンからなる配位子である。なお配位子Xがアルキル基、アルケニル基、アルキニル基、アルキレン基等を含む場合、それらは直鎖状でも分岐状でもよく、置換されていても無置換でもよい。またアリール基、ヘテロ環基、シクロアルキル基等を含む場合、それらは置換されていても無置換でもよく、単環でも縮環していてもよい。 The ligand X is preferably an acyloxy group, a thioacylthio group, an acylaminooxy group, a dithiocarbamate group, a dithiocarbonate group, a trithiocarbonate group, a thiocyanate group, an isothiocyanate group, a cyanate group, an isocyanate group, a cyano group, A ligand coordinated by a group selected from the group consisting of an alkylthio group, an arylthio group, an alkoxy group and an aryloxy group, or a ligand consisting of a halogen atom, carbonyl, 1,3-diketone or thiourea, More preferably, a ligand coordinated by a group selected from the group consisting of acyloxy group, acylaminooxy group, dithiocarbamate group, thiocyanate group, isothiocyanate group, cyanate group, isocyanate group, cyano group or arylthio group, or Halogen atom, 1, A ligand comprising a diketone or thiourea, particularly preferably a ligand coordinated by a group selected from the group consisting of a dithiocarbamate group, a thiocyanate group, an isothiocyanate group, a cyanate group and an isocyanate group, or a halogen A ligand consisting of an atom or a 1,3-diketone, most preferably a ligand coordinated with a group selected from the group consisting of a dithiocarbamate group, a thiocyanate group and an isothiocyanate group, It is a ligand composed of a diketone. In addition, when the ligand X contains an alkyl group, an alkenyl group, an alkynyl group, an alkylene group or the like, these may be linear or branched, and may be substituted or unsubstituted. Moreover, when an aryl group, a heterocyclic group, a cycloalkyl group, etc. are included, they may be substituted or unsubstituted, and may be monocyclic or condensed.
 Xが2座配位子のとき、Xはアシルオキシ基、アシルチオ基、チオアシルオキシ基、チオアシルチオ基、アシルアミノオキシ基、チオカルバメート基、ジチオカルバメート基、チオカルボネート基、ジチオカルボネート基、トリチオカルボネート基、アシル基、アルキルチオ基、アリールチオ基、アルコキシ基およびアリールオキシ基からなる群から選ばれた基で配位する配位子、あるいは1,3-ジケトン、カルボンアミド、チオカルボンアミド、またはチオ尿素からなる配位子であるのが好ましい。Xが1座配位子のとき、Xはチオシアネート基、イソチオシアネート基、シアネート基、イソシアネート基、シアノ基、アルキルチオ基、アリールチオ基からなる群から選ばれた基で配位する配位子、あるいはハロゲン原子、カルボニル、ジアルキルケトン、チオ尿素からなる配位子であるのが好ましい。 When X is a bidentate ligand, X is an acyloxy group, acylthio group, thioacyloxy group, thioacylthio group, acylaminooxy group, thiocarbamate group, dithiocarbamate group, thiocarbonate group, dithiocarbonate group, trithio A ligand coordinated by a group selected from the group consisting of a carbonate group, an acyl group, an alkylthio group, an arylthio group, an alkoxy group and an aryloxy group, or a 1,3-diketone, carbonamide, thiocarbonamide, or thio A ligand composed of urea is preferable. When X is a monodentate ligand, X is a ligand coordinated by a group selected from the group consisting of a thiocyanate group, an isothiocyanate group, a cyanate group, an isocyanate group, a cyano group, an alkylthio group, and an arylthio group, or A ligand composed of a halogen atom, carbonyl, dialkyl ketone, or thiourea is preferred.
(A2-5)対イオンCI
 一般式(14)中のCIは電荷を中和させるのに対イオンが必要な場合の対イオンを表す。一般に、色素が陽イオン又は陰イオンであるか、あるいは正味のイオン電荷を有するかどうかは、色素中の金属、配位子および置換基に依存する。
 置換基が解離性基を有することなどにより、一般式(14)の色素は解離して負電荷を持ってもよい。この場合、一般式(14)の色素全体の電荷はCIにより電気的に中性とされる。
(A2-5) Counter ion CI
CI in the general formula (14) represents a counter ion when a counter ion is necessary to neutralize the charge. In general, whether a dye is a cation or an anion or has a net ionic charge depends on the metal, ligand and substituent in the dye.
The dye of the general formula (14) may be dissociated and have a negative charge because the substituent has a dissociable group. In this case, the charge of the whole dye of the general formula (14) is electrically neutralized by CI.
 対イオンCIが正の対イオンの場合、例えば、対イオンCIは、無機又は有機のアンモニウムイオン(例えばテトラアルキルアンモニウムイオン、ピリジニウムイオン等)、アルカリ金属イオン又はプロトンである。
 対イオンCIが負の対イオンの場合、例えば、対イオンCIは、無機陰イオンでも有機陰イオンでもよい。例えば、ハロゲン陰イオン(例えば、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン等)、置換アリールスルホン酸イオン(例えばp-トルエンスルホン酸イオン、p-クロロベンゼンスルホン酸イオン等)、アリールジスルホン酸イオン(例えば1,3-ベンゼンジスルホン酸イオン、1,5-ナフタレンジスルホン酸イオン、2,6-ナフタレンジスルホン酸イオン等)、アルキル硫酸イオン(例えばメチル硫酸イオン等)、硫酸イオン、チオシアン酸イオン、過塩素酸イオン、テトラフルオロホウ酸イオン、ヘキサフルオロホスフェートイオン、ピクリン酸イオン、酢酸イオン、トリフルオロメタンスルホン酸イオン等が挙げられる。さらに電荷均衡対イオンとして、イオン性ポリマーあるいは色素と逆電荷を有する他の色素を用いてもよく、金属錯イオン(例えばビスベンゼン-1,2-ジチオラトニッケル(III)等)も使用可能である。
When the counter ion CI is a positive counter ion, for example, the counter ion CI is an inorganic or organic ammonium ion (for example, tetraalkylammonium ion, pyridinium ion, etc.), an alkali metal ion, or a proton.
When the counter ion CI is a negative counter ion, for example, the counter ion CI may be an inorganic anion or an organic anion. For example, halogen anions (eg, fluoride ions, chloride ions, bromide ions, iodide ions, etc.), substituted aryl sulfonate ions (eg, p-toluene sulfonate ions, p-chlorobenzene sulfonate ions, etc.), aryl disulfones Acid ions (for example, 1,3-benzenedisulfonate ion, 1,5-naphthalenedisulfonate ion, 2,6-naphthalenedisulfonate ion, etc.), alkyl sulfate ions (for example, methyl sulfate ion), sulfate ions, thiocyanate ions Perchlorate ion, tetrafluoroborate ion, hexafluorophosphate ion, picrate ion, acetate ion, trifluoromethanesulfonate ion and the like. Further, as the charge balance counter ion, an ionic polymer or another dye having a charge opposite to that of the dye may be used, and a metal complex ion (for example, bisbenzene-1,2-dithiolatonickel (III)) can also be used. is there.
(A2-6)結合基
 一般式(14)で表される構造を有する色素は、半導体微粒子の表面に対する適当な結合基(interlocking group)を少なくとも1つ以上有するのが好ましい。この結合基を色素中に1~6個有するのがより好ましく、1~4個有するのが特に好ましい。カルボキシル基、スルホン酸基、ヒドロキシル基、ヒドロキサム酸基(例えば―CONHOH等)、ホスホリル基(例えば―OP(O)(OH)等)、ホスホニル基(例えば―P(O)(OH)等)等の酸性基(解離性のプロトンを有する置換基)を色素中に有することが好ましい。
(A2-6) Bonding Group The dye having the structure represented by the general formula (14) preferably has at least one suitable bonding group (interlocking group) for the surface of the semiconductor fine particles. It is more preferable that the bonding group has 1 to 6 bonding groups, and it is particularly preferable that the bonding group has 1 to 4 bonding groups. Carboxyl group, sulfonic acid group, hydroxyl group, hydroxamic acid group (for example, —CONHOH), phosphoryl group (for example, —OP (O) (OH) 2, etc.), phosphonyl group (for example, —P (O) (OH) 2, etc.) It is preferable that the dye has an acidic group (substituent having a dissociable proton).
 本発明で用いる一般式(14)で表される構造を有する色素の具体例を以下に示すが、本発明はこれらに限定されるものではない。なお、下記具体例における色素がプロトン解離性基を有する配位子を含む場合、該配位子は必要に応じて解離しプロトンを放出してもよい。 Specific examples of the dye having the structure represented by the general formula (14) used in the present invention are shown below, but the present invention is not limited thereto. In addition, when the pigment | dye in the following specific example contains the ligand which has a proton dissociable group, this ligand may dissociate as needed and may discharge | release a proton.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 前記の一般式(14)により表される色素は、特開2001-291534号公報や当該公報に引用された方法を参考にして合成することができる。
 一般式(14)の構造を有する色素は、溶液における極大吸収波長が、好ましくは300~1000nmの範囲であり、より好ましくは350~950nmの範囲であり、特に好ましくは370~900nmの範囲である。
 また一般式(1)の構造を有する色素は、溶液中における極大吸収波長が、好ましくは500~800nmの範囲であり、より好ましくは500~750nmの範囲である。
 本発明の光電変換素子及び光電気化学電池においては、(A1)一般式(1)の構造を有する金属錯体色素を必須成分とする色素を用いる。さらに好ましくは、一般式(14)の構造を有する色素を用いることにより、広範囲の波長の光を利用することにより、高い変換効率を確保することができる。さらにこれらの色素を併用することにより、変換効率の低下を低減することできる。
The dye represented by the general formula (14) can be synthesized with reference to Japanese Patent Application Laid-Open No. 2001-291534 and the methods cited in the publication.
In the dye having the structure of the general formula (14), the maximum absorption wavelength in the solution is preferably in the range of 300 to 1000 nm, more preferably in the range of 350 to 950 nm, and particularly preferably in the range of 370 to 900 nm. .
The dye having the structure of the general formula (1) has a maximum absorption wavelength in the solution of preferably 500 to 800 nm, more preferably 500 to 750 nm.
In the photoelectric conversion element and the photoelectrochemical cell of the present invention, a dye containing (A1) a metal complex dye having the structure of the general formula (1) as an essential component is used. More preferably, by using a dye having a structure of the general formula (14), high conversion efficiency can be ensured by utilizing light having a wide range of wavelengths. Furthermore, the combined use of these dyes can reduce the decrease in conversion efficiency.
 一般式(14)で示される構造を有する金属錯体色素と、一般式(1)で表わされる構造を有する色素の好ましい配合割合は、前者をR、後者をSとすると、モル%の比で、R/S=90/10~10/90、好ましくはR/S=80/20~20/80、さらに好ましくはR/S=70/30~30/70、より一層好ましくはR/S=60/40~40/60、最も好ましくはR/S=55/45~45/55であり、通常は両者を等モル使用する。 A preferable blending ratio of the metal complex dye having the structure represented by the general formula (14) and the dye having the structure represented by the general formula (1) is R in the former and S in the latter. R / S = 90/10 to 10/90, preferably R / S = 80/20 to 20/80, more preferably R / S = 70/30 to 30/70, even more preferably R / S = 60 / 40 to 40/60, most preferably R / S = 55/45 to 45/55, and usually equimolar amounts of both.
(B)電荷移動体
 本発明の光電変換素子に用いられる電解質組成物には、酸化還元対として、例えばヨウ素とヨウ化物(例えばヨウ化リチウム、ヨウ化テトラブチルアンモニウム、ヨウ化テトラプロピルアンモニウム等)との組み合わせ、アルキルビオローゲン(例えばメチルビオローゲンクロリド、ヘキシルビオローゲンブロミド、ベンジルビオローゲンテトラフルオロボレート)とその還元体との組み合わせ、ポリヒドロキシベンゼン類(例えばハイドロキノン、ナフトハイドロキノン等)とその酸化体との組み合わせ、2価と3価の鉄錯体(例えば赤血塩と黄血塩)の組み合わせ等が挙げられる。これらのうちヨウ素とヨウ化物との組み合わせが好ましい。
 ヨウ素塩のカチオンは5員環又は6員環の含窒素芳香族カチオンであるのが好ましい。特に、一般式(2)により表される化合物がヨウ素塩でない場合は、WO95/18456号、特開平8-259543号、電気化学,第65巻,11号,923頁(1997年)等に記載されているピリジニウム塩、イミダゾリウム塩、トリアゾリウム塩等のヨウ素塩を併用するのが好ましい。
 本発明の光電変換素子に使用される電解質組成物中には、ヘテロ環4級塩化合物と共にヨウ素を含有するのが好ましい。ヨウ素の含有量は電解質組成物全体に対して0.1~20質量%であるのが好ましく、0.5~5質量%であるのがより好ましい。
(B) Charge transfer body In the electrolyte composition used in the photoelectric conversion device of the present invention, as an oxidation-reduction pair, for example, iodine and iodide (for example, lithium iodide, tetrabutylammonium iodide, tetrapropylammonium iodide, etc.) A combination of alkyl viologen (for example, methyl viologen chloride, hexyl viologen bromide, benzyl viologen tetrafluoroborate) and its reduced form, a combination of polyhydroxybenzenes (for example, hydroquinone, naphthohydroquinone, etc.) and its oxidized form, A combination of divalent and trivalent iron complexes (for example, red blood salt and yellow blood salt) can be used. Of these, a combination of iodine and iodide is preferred.
The cation of the iodine salt is preferably a 5-membered or 6-membered nitrogen-containing aromatic cation. In particular, when the compound represented by the general formula (2) is not an iodine salt, it is described in WO95 / 18456, JP-A-8-259543, Electrochemistry, Vol. 65, No. 11, page 923 (1997), etc. It is preferable to use iodine salts such as pyridinium salts, imidazolium salts, and triazolium salts.
The electrolyte composition used for the photoelectric conversion element of the present invention preferably contains iodine together with the heterocyclic quaternary salt compound. The iodine content is preferably from 0.1 to 20% by mass, more preferably from 0.5 to 5% by mass, based on the entire electrolyte composition.
 本発明の光電変換素子に用いられる電解質組成物は溶媒を含んでいてもよい。電解質組成物中の溶媒含有量は組成物全体の50質量%以下であるのが好ましく、30質量%以下であるのがより好ましく、10質量%以下であるのが特に好ましい。
 溶媒としては低粘度でイオン移動度が高いか、高誘電率で有効キャリアー濃度を高めることができるか、あるいはその両方であるために優れたイオン伝導性を発現できるものが好ましい。このような溶媒としてカーボネート化合物(エチレンカーボネート、プロピレンカーボネート等)、複素環化合物(3-メチル-2-オキサゾリジノン等)、エーテル化合物(ジオキサン、ジエチルエーテル等)、鎖状エーテル類(エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテル等)、アルコール類(メタノール、エタノール、エチレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテル、ポリエチレングリコールモノアルキルエーテル、ポリプロピレングリコールモノアルキルエーテル等)、多価アルコール類(エチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリン等)、ニトリル化合物(アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリル、ビスシアノエチルエーテル等)、エステル類(カルボン酸エステル、リン酸エステル、ホスホン酸エステル等)、非プロトン性極性溶媒(ジメチルスルホキシド(DMSO)、スルフォラン等)、水、特開2002-110262記載の含水電解液、特開2000-36332号公報、特開2000-243134号公報、及び再公表WO/00-54361号公報記載の電解質溶媒などが挙げられる。これらの溶媒は二種以上を混合して用いてもよい。
The electrolyte composition used for the photoelectric conversion element of the present invention may contain a solvent. The solvent content in the electrolyte composition is preferably 50% by mass or less, more preferably 30% by mass or less, and particularly preferably 10% by mass or less of the entire composition.
As the solvent, a solvent having a low viscosity and high ion mobility, a high dielectric constant and capable of increasing the effective carrier concentration, or both is preferable because it exhibits excellent ion conductivity. Such solvents include carbonate compounds (ethylene carbonate, propylene carbonate, etc.), heterocyclic compounds (3-methyl-2-oxazolidinone, etc.), ether compounds (dioxane, diethyl ether, etc.), chain ethers (ethylene glycol dialkyl ether, Propylene glycol dialkyl ether, polyethylene glycol dialkyl ether, polypropylene glycol dialkyl ether, etc.), alcohols (methanol, ethanol, ethylene glycol monoalkyl ether, propylene glycol monoalkyl ether, polyethylene glycol monoalkyl ether, polypropylene glycol monoalkyl ether, etc.), Polyhydric alcohols (ethylene glycol, propylene glycol, polyethylene glycol , Polypropylene glycol, glycerol, etc.), nitrile compounds (acetonitrile, glutarodinitrile, methoxyacetonitrile, propionitrile, benzonitrile, biscyanoethyl ether, etc.), esters (carboxylic esters, phosphate esters, phosphonate esters, etc.) ), Aprotic polar solvent (dimethyl sulfoxide (DMSO), sulfolane, etc.), water, hydrous electrolyte described in JP-A No. 2002-110262, JP-A No. 2000-36332, JP-A No. 2000-243134, and republication Examples include electrolyte solvents described in WO / 00-54361. Two or more of these solvents may be mixed and used.
 また、電解質溶媒として、室温において液体状態であり、及び/又は室温よりも低い融点を有する電気化学的に不活性な塩を用いても良い。例えば、1-エチルー3-メチルイミダゾリウムトリフルオロメタンスルホネート、1-ブチルー3-メチルイミダゾリウムトリフルオロメタンスルホネート等にイミダゾリウム塩、ピリジニウム塩などの含窒素ヘテロ環四級塩化合物、又はテトラアルキルアンモニウム塩などが挙げられる。 Alternatively, an electrochemically inert salt that is in a liquid state at room temperature and / or has a melting point lower than room temperature may be used as the electrolyte solvent. For example, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, etc., nitrogen-containing heterocyclic quaternary salt compounds such as imidazolium salts and pyridinium salts, or tetraalkylammonium salts Is mentioned.
 本発明の光電変換素子に用いられる電解質組成物には、ポリマーやオイルゲル化剤を添加したり、多官能モノマー類の重合やポリマーの架橋反応等の手法によりゲル化(固体化)してもよい。 The electrolyte composition used in the photoelectric conversion element of the present invention may be added with a polymer or an oil gelling agent, or may be gelled (solidified) by a technique such as polymerization of polyfunctional monomers or polymer crosslinking reaction. .
 ポリマーを添加することにより電解質組成物をゲル化させる場合、Polymer Electrolyte Reviews-1及び2(J. R. MacCallumとC. A. Vincentの共編、ELSEVIER APPLIED SCIENCE)に記載された化合物等を添加することができる。この場合、ポリアクリロニトリル又はポリフッ化ビニリデンを用いるのが好ましい。 When gelling an electrolyte composition by adding a polymer, a compound described in Polymer Electrolyte Reviews-1 and 2 (J.R. MacCallum and C.A. Vincent co-edited, ELSEVIER APPLIED SCIENCE) is added. be able to. In this case, it is preferable to use polyacrylonitrile or polyvinylidene fluoride.
 オイルゲル化剤を添加することにより電解質組成物をゲル化させる場合は、オイルゲル化剤としてJ. Chem. Soc. Japan, Ind. Chem. Soc., 46779 (1943)、J. Am. Chem. Soc., 111, 5542 (1989)、J. Chem. Soc., Chem. Commun., 390 (1993)、Angew. Chem. Int.Ed. Engl., 35, 1949 (1996)、Chem. Lett., 885, (1996)、J. Chem. Soc., Chem. Commun., 545, (1997)等に記載された化合物を使用することができ、アミド構造を有する化合物を用いるのが好ましい。 In the case where the electrolyte composition is gelled by adding an oil gelling agent, J.I. Chem. Soc. Japan, Ind. Chem. Soc. , 46779 (1943); Am. Chem. Soc. 111, 5542 (1989); Chem. Soc. , Chem. Commun. , 390 (1993), Angew. Chem. Int. Ed. Engl. , 35, 1949 (1996), Chem. Lett. , 885 (1996), J.A. Chem. Soc. , Chem. Commun. , 545, (1997), and the like, and it is preferable to use a compound having an amide structure.
 多官能モノマーの配合量は、モノマー全体に対して0.5~70質量%とすることが好ましく、1.0~50質量%であるのがより好ましい。上述のモノマーは、大津隆行・木下雅悦共著「高分子合成の実験法」(化学同人)や大津隆行「講座重合反応論1ラジカル重合(I)」(化学同人)に記載された一般的な高分子合成法であるラジカル重合によって重合することができる。本発明で使用するゲル電解質用モノマーは加熱、光又は電子線によって、或いは電気化学的にラジカル重合させることができるが、特に加熱によってラジカル重合させるのが好ましい。この場合、好ましく使用できる重合開始剤は2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、ジメチル2,2’-アゾビス(2-メチルプロピオネート)、ジメチル2,2’-アゾビスイソブチレート等のアゾ系開始剤、ラウリルパーオキシド、ベンゾイルパーオキシド、t-ブチルパーオクトエート等の過酸化物系開始剤等である。重合開始剤の好ましい添加量はモノマー総量に対し0.01~20質量%であり、より好ましくは0.1~10質量%である。
 ゲル電解質に占めるモノマーの重量組成範囲は0.5~70質量%であるのが好ましい。より好ましくは1.0~50質量%である。ポリマーの架橋反応により電解質組成物をゲル化させる場合は、組成物に架橋可能な反応性基を有するポリマー及び架橋剤を添加するのが好ましい。好ましい反応性基はピリジン環、イミダゾール環、チアゾール環、オキサゾール環、トリアゾール環、モルホリン環、ピペリジン環、ピペラジン環等の含窒素複素環であり、好ましい架橋剤は窒素原子が求核攻撃できる官能基を2つ以上有する化合物(求電子剤)であり、例えば2官能以上のハロゲン化アルキル、ハロゲン化アラルキル、スルホン酸エステル、酸無水物、酸クロライド、イソシアネート等である。
The blending amount of the polyfunctional monomer is preferably 0.5 to 70% by mass, and more preferably 1.0 to 50% by mass with respect to the whole monomer. The above-mentioned monomers are commonly used in Takayuki Otsu and Masato Kinoshita “Experimental Methods for Polymer Synthesis” (Chemical Doujin) and Takatsu Otsu “Lecture Polymerization Reaction Theory 1 Radical Polymerization (I)” (Chemical Doujin). Polymerization can be performed by radical polymerization which is a polymer synthesis method. The monomer for gel electrolyte used in the present invention can be radically polymerized by heating, light or electron beam, or electrochemically, and is particularly preferably radically polymerized by heating. In this case, preferably used polymerization initiators are 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), dimethyl 2,2′-azobis (2-methylpropyl). Pionate), azo initiators such as dimethyl 2,2′-azobisisobutyrate, peroxide initiators such as lauryl peroxide, benzoyl peroxide, and t-butyl peroctoate. A preferable addition amount of the polymerization initiator is 0.01 to 20% by mass, and more preferably 0.1 to 10% by mass with respect to the total amount of monomers.
The weight composition range of the monomer in the gel electrolyte is preferably 0.5 to 70% by mass. More preferably, the content is 1.0 to 50% by mass. When the electrolyte composition is gelled by a polymer crosslinking reaction, it is preferable to add a polymer having a crosslinkable reactive group and a crosslinking agent to the composition. Preferred reactive groups are nitrogen-containing heterocycles such as pyridine ring, imidazole ring, thiazole ring, oxazole ring, triazole ring, morpholine ring, piperidine ring, piperazine ring, and the preferred crosslinking agent is a functional group capable of nucleophilic attack by the nitrogen atom. Is a compound (electrophile) having two or more, for example, bifunctional or higher functional alkyl halide, halogenated aralkyl, sulfonic acid ester, acid anhydride, acid chloride, isocyanate and the like.
 本発明の電解質組成物には、金属ヨウ化物(LiI、NaI、KI、CsI、CaI等)、金属臭化物(LiBr、NaBr、KBr、CsBr、CaBr 2等)、4級アンモニウム臭素塩(テトラアルキルアンモニウムブロマイド、ピリジニウムブロマイド等)、金属錯体(フェロシアン酸塩-フェリシアン酸塩、フェロセン-フェリシニウムイオン等)、イオウ化合物(ポリ硫化ナトリウム、アルキルチオール-アルキルジスルフィド等)、ビオロゲン色素、ヒドロキノン-キノン等を添加してよい。これらは混合して用いてもよい。 The electrolyte composition of the present invention, metal iodides (LiI, NaI, KI, CsI , CaI 2 , etc.), a metal bromide (LiBr, NaBr, KBr, CsBr , CaBr 2 , etc.), quaternary ammonium bromine salt (tetraalkylammonium Ammonium bromide, pyridinium bromide, etc.), metal complexes (ferrocyanate-ferricyanate, ferrocene-ferricinium ion, etc.), sulfur compounds (sodium polysulfide, alkylthiol-alkyl disulfides, etc.), viologen dye, hydroquinone-quinone Etc. may be added. These may be used as a mixture.
 また、本発明ではJ. Am. Ceram. Soc., 80, (12), 3157-3171 (1997)に記載のt-ブチルピリジンや、2-ピコリン、2,6-ルチジン等の塩基性化合物を添加してもよい。塩基性化合物を添加する場合の好ましい濃度範囲は0.05~2Mである。
 また、本発明の電解質としては、正孔導体物質を含む電荷輸送層を用いても良い。正孔導体物質として、9,9’-スピロビフルオレン誘導体などを用いることができる。
Further, in the present invention, J.P. Am. Ceram. Soc. 80, (12), 3157-3171 (1997), or basic compounds such as 2-picoline and 2,6-lutidine may be added. When adding a basic compound, a preferred concentration range is 0.05 to 2M.
Further, as the electrolyte of the present invention, a charge transport layer containing a hole conductor material may be used. As the hole conductor material, 9,9′-spirobifluorene derivatives and the like can be used.
 また、電極層、光電変換層、ホール輸送層、伝導層、対極層を順次に積層することができる。p型半導体として機能するホール輸送材料をホール輸送層としてもちいることができる。好ましいホール輸送層としては、例えば無機系又は有機系のホール輸送材料を用いることができる。無機系ホール輸送材料としては、CuI、CuO,NiO等が挙げられる。また、有機系ホール輸送材料としては、高分子系と低分子系のものが挙げられ、高分子系のものとしては、例えばポリビニルカルバゾール、ポリアミン、有機ポリシラン等が挙げられる。また、低分子系のものとしては、例えばトリフェニルアミン誘導体、スチルベン誘導体、ヒドラゾン誘導体、フェナミン誘導体等が挙げられる。この中でも有機ポリシランは、従来の炭素系高分子と異なり、主鎖Si連鎖を有する高分子である。そして主鎖Siに沿って非局化されたσ電子が光伝導に寄与するため、高いホール移動度を有する[Phys. Rev. B, 35, 2818(1987)]ので好ましい。
 本発明における伝導層は、導電性のよいものであれば特に限定されないが、例えば無機導電性材料、有機導電性材料、導電性ポリマー、分子間電荷移動錯体等が挙げられる。中でも分子間電荷移動錯体が好ましい。ここで、分子間電荷移動錯体は、ドナー材料とアクセプター材料とから形成されるものである。また、有機ドナーと有機アクセプターを好ましく用いることができる。
In addition, an electrode layer, a photoelectric conversion layer, a hole transport layer, a conductive layer, and a counter electrode layer can be sequentially stacked. A hole transport material that functions as a p-type semiconductor can be used as a hole transport layer. As a preferred hole transport layer, for example, an inorganic or organic hole transport material can be used. Examples of the inorganic hole transport material include CuI, CuO, and NiO. Examples of the organic hole transport material include high molecular weight materials and low molecular weight materials. Examples of the high molecular weight material include polyvinyl carbazole, polyamine, and organic polysilane. Moreover, as a low molecular weight thing, a triphenylamine derivative, a stilbene derivative, a hydrazone derivative, a phenamine derivative etc. are mentioned, for example. Among these, the organic polysilane is a polymer having a main chain Si chain unlike the conventional carbon-based polymer. And since σ electrons delocalized along the main chain Si contribute to photoconduction, it has high hole mobility [Phys. Rev. B, 35, 2818 (1987)].
The conductive layer in the present invention is not particularly limited as long as it has good conductivity, and examples thereof include inorganic conductive materials, organic conductive materials, conductive polymers, and intermolecular charge transfer complexes. Of these, intermolecular charge transfer complexes are preferred. Here, the intermolecular charge transfer complex is formed from a donor material and an acceptor material. Moreover, an organic donor and an organic acceptor can be used preferably.
(C)導電性支持体
 図1に示すように、本発明の光電変換素子には、導電性支持体1上には多孔質の半導体微粒子22に色素21が吸着された感光体2が形成されている。後述する通り、例えば、半導体微粒子の分散液を導電性支持体に塗布・乾燥後、本発明の色素溶液に浸漬することにより、感光層を製造することができる。
 導電性支持体としては、金属のように支持体そのものに導電性があるものか、または表面に導電膜層を有するガラスや高分子材料を使用することができる。導電性支持体は実質的に透明であることが好ましい。実質的に透明であるとは光の透過率が10%以上であることを意味し、50%以上であることが好ましく、80%以上が特に好ましい。導電性支持体としては、ガラスや高分子材料に導電性の金属酸化物を塗設したものを使用することができる。このときの導電性の金属酸化物の塗布量は、ガラスや高分子材料の支持体1m当たり、0.1~100gが好ましい。透明導電性支持体を用いる場合、光は支持体側から入射させることが好ましい。好ましく使用される高分子材料の一例として、テトラアセチルセルロース(TAC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、シンジオタクチックポリスチレン(SPS)、ポリフェニレンスルフィド(PPS)、ポリカーボネート(PC)、ポリアリレート(PAR)、ポリスルフォン(PSF)、ポリエステルスルフォン(PES)、ポリエーテルイミド(PEI)、環状ポリオレフィン、ブロム化フェノキシ等を挙げることができる。導電性支持体上には、表面に光マネージメント機能を施してもよく、例えば、特開2003-123859記載の高屈折膜及び低屈折率の酸化物膜を交互に積層した反射防止膜、特開2002-260746記載のライトガイド機能が上げられる。
 この他にも、金属支持体も好ましく使用することができる。その一例としては、チタン、アルミニウム、銅、ニッケル、鉄、ステンレス、銅を挙げることができる。これらの金属は合金であってもよい。さらに好ましくは、チタン、アルミニウム、銅が好ましく、特に好ましくは、チタンやアルミニウムである。
(C) Conductive Support As shown in FIG. 1, in the photoelectric conversion element of the present invention, a photosensitive member 2 in which a dye 21 is adsorbed on porous semiconductor fine particles 22 is formed on a conductive support 1. ing. As described later, for example, the photosensitive layer can be produced by immersing the dispersion of semiconductor fine particles in the dye solution of the present invention after coating and drying on a conductive support.
As the conductive support, there can be used a glass or a polymer material having a conductive film layer on the surface, such as a metal that is conductive in the support itself. It is preferable that the conductive support is substantially transparent. Substantially transparent means that the light transmittance is 10% or more, preferably 50% or more, particularly preferably 80% or more. As the conductive support, a glass or polymer material coated with a conductive metal oxide can be used. The coating amount of the conductive metal oxide at this time is preferably 0.1 to 100 g per 1 m 2 of glass or polymer material support. When a transparent conductive support is used, light is preferably incident from the support side. Examples of polymer materials that are preferably used include tetraacetyl cellulose (TAC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), syndiotactic polystyrene (SPS), polyphenylene sulfide (PPS), polycarbonate (PC), Examples include polyarylate (PAR), polysulfone (PSF), polyester sulfone (PES), polyetherimide (PEI), cyclic polyolefin, and brominated phenoxy. On the conductive support, a surface may be provided with a light management function. For example, an antireflection film in which a high refractive film and a low refractive index oxide film described in JP-A-2003-123859 are alternately laminated, The light guide function described in 2002-260746 is raised.
In addition to this, a metal support can also be preferably used. Examples thereof include titanium, aluminum, copper, nickel, iron, stainless steel, and copper. These metals may be alloys. More preferably, titanium, aluminum, and copper are preferable, and titanium and aluminum are particularly preferable.
 導電性支持体上には、紫外光を遮断する機能を持たせることが好ましい。例えば、紫外光を可視光に変えることが出来る蛍光材料を透明支持体中または、透明支持体表面に存在させる方法や紫外線吸収剤を用いる方法も挙げられる。
 導電性支持体上には、さらに特開平11-250944号公報等に記載の機能を付与してもよい。
It is preferable that the conductive support has a function of blocking ultraviolet light. For example, a method of allowing a fluorescent material capable of changing ultraviolet light to visible light in the transparent support or on the surface of the transparent support, or a method using an ultraviolet absorber is also included.
A function described in JP-A-11-250944 may be further provided on the conductive support.
 好ましい導電膜としては金属(例えば白金、金、銀、銅、アルミニウム、ロジウム、インジウム等)、炭素、もしくは導電性の金属酸化物(インジウム-スズ複合酸化物、酸化スズにフッ素をドープしたもの等)が挙げられる。
 導電膜層の厚さは0.01~30μmであることが好ましく、0.03~25μmであることが更に好ましく、特に好ましくは0.05~20μmである。
 導電性支持体は表面抵抗が低い程よい。好ましい表面抵抗の範囲としては50Ω/cm以下であり、さらに好ましくは10Ω/cm以下である。この下限に特に制限はないが、通常0.1Ω/cm程度である。
Preferred conductive films include metals (eg, platinum, gold, silver, copper, aluminum, rhodium, indium, etc.), carbon, or conductive metal oxides (indium-tin composite oxide, tin oxide doped with fluorine, etc.) ).
The thickness of the conductive film layer is preferably 0.01 to 30 μm, more preferably 0.03 to 25 μm, and particularly preferably 0.05 to 20 μm.
The lower the surface resistance of the conductive support, the better. The range of the surface resistance is preferably 50 Ω / cm 2 or less, more preferably 10 Ω / cm 2 or less. Although there is no restriction | limiting in particular in this lower limit, Usually, it is about 0.1 ohm / cm < 2 >.
 導電膜の抵抗値はセル面積が大きくなると大きくなる為、集電電極を配置してもよい。支持体と透明導電膜の間にガスバリア膜及び/又はイオン拡散防止膜を配置しても良い。ガスバリア層としては、樹脂膜や無機膜を使用することができる。
 また、透明電極と多孔質半導体電極光触媒含有層を設けてもよい。透明導電層は積層構造でも良く、好ましい方法としてたとえば、ITO上にFTOを積層することができる。
Since the resistance value of the conductive film increases as the cell area increases, a collecting electrode may be disposed. A gas barrier film and / or an ion diffusion prevention film may be disposed between the support and the transparent conductive film. As the gas barrier layer, a resin film or an inorganic film can be used.
Moreover, you may provide a transparent electrode and a porous semiconductor electrode photocatalyst content layer. The transparent conductive layer may have a laminated structure, and as a preferable method, for example, FTO can be laminated on ITO.
(D)半導体微粒子
 図1に示すように、本発明の光電変換素子10には、導電性支持体1上には多孔質の半導体微粒子22に増感色素21が吸着された感光層2が形成されている。後述する通り、例えば、半導体微粒子の分散液を前記の導電性支持体に塗布・乾燥後、本発明の色素溶液に浸漬することにより、感光体を製造することができる。
 半導体微粒子としては、好ましくは金属のカルコゲニド(例えば酸化物、硫化物、セレン化物等)またはペロブスカイトの微粒子が用いられる。金属のカルコゲニドとしては、好ましくはチタン、スズ、亜鉛、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブ、もしくはタンタルの酸化物、硫化カドミウム、セレン化カドミウム等が挙げられる。ペロブスカイトとしては、好ましくはチタン酸ストロンチウム、チタン酸カルシウム等が挙げられる。これらのうち酸化チタン、酸化亜鉛、酸化スズ、酸化タングステンが特に好ましい。
(D) Semiconductor Fine Particles As shown in FIG. 1, in the photoelectric conversion element 10 of the present invention, a photosensitive layer 2 in which a sensitizing dye 21 is adsorbed on porous semiconductor fine particles 22 is formed on a conductive support 1. Has been. As will be described later, for example, a dispersion of semiconductor fine particles is applied to the conductive support and dried, and then immersed in the dye solution of the present invention to produce a photoreceptor.
As the semiconductor fine particles, metal chalcogenides (for example, oxides, sulfides, selenides, etc.) or perovskite fine particles are preferably used. Preferred examples of the metal chalcogenide include titanium, tin, zinc, tungsten, zirconium, hafnium, strontium, indium, cerium, yttrium, lanthanum, vanadium, niobium, tantalum oxide, cadmium sulfide, cadmium selenide, and the like. . Preferred perovskites include strontium titanate and calcium titanate. Of these, titanium oxide, zinc oxide, tin oxide, and tungsten oxide are particularly preferable.
 半導体には伝導に関わるキャリアーが電子であるn型とキャリアーが正孔であるp型が存在するが、本発明の素子ではn型を用いることが変換効率の点で好ましい。n型半導体には、不純物準位をもたず伝導帯電子と価電子帯正孔によるキャリアーの濃度が等しい固有半導体(あるいは真性半導体)の他に、不純物に由来する構造欠陥により電子キャリアー濃度の高いn型半導体が存在する。本発明で好ましく用いられるn型の無機半導体は、TiO、TiSrO、ZnO、Nb、SnO、WO、Si、CdS、CdSe、V、ZnS、ZnSe、SnSe、KTaO、FeS、PbS、InP、GaAs、CuInS、CuInSeなどである。これらのうち最も好ましいn型半導体はTiO、ZnO、SnO、WO、ならびにNbである。また、これらの半導体の複数を複合させた半導体材料も好ましく用いられる。 In semiconductors, there are an n-type in which carriers involved in conduction are electrons and a p-type in which carriers are holes. In the element of the present invention, n-type is preferable in terms of conversion efficiency. In an n-type semiconductor, in addition to an intrinsic semiconductor (or an intrinsic semiconductor) having no impurity level and having the same carrier concentration due to conduction band electrons and valence band holes, the electron carrier concentration is reduced by structural defects derived from impurities. There are high n-type semiconductors. The n-type inorganic semiconductor preferably used in the present invention is TiO 2 , TiSrO 3 , ZnO, Nb 2 O 3 , SnO 2 , WO 3 , Si, CdS, CdSe, V 2 O 5 , ZnS, ZnSe, SnSe, KTaO. 3 , FeS 2 , PbS, InP, GaAs, CuInS 2 , CuInSe 2 and the like. Of these, the most preferred n-type semiconductors are TiO 2 , ZnO, SnO 2 , WO 3 , and Nb 2 O 3 . A semiconductor material in which a plurality of these semiconductors are combined is also preferably used.
 半導体微粒子の粒径は、半導体微粒子分散液の粘度を高く保つ目的で、一次粒子の平均粒径が2nm以上50nm以下であることが好ましく、また一次粒子の平均粒径が2nm以上30nm以下の超微粒子であることがより好ましい。粒径分布の異なる2種類以上の微粒子を混合してもよく、この場合小さい粒子の平均サイズは5nm以下であるのが好ましい。また、入射光を散乱させて光捕獲率を向上させる目的で、上記の超微粒子に対して平均粒径が50nmを越える大きな粒子を、低含率で添加、又は別層塗布することもできる。この場合、大粒子の含率は、平均粒径が50nm以下の粒子の質量の50%以下であることが好ましく、20%以下であることがより好ましい。上記の目的で添加混合する大粒子の平均粒径は、100nm以上が好ましく、250nm以上がより好ましい。 For the purpose of keeping the viscosity of the semiconductor fine particle dispersion high, it is preferable that the average particle size of the primary particles is 2 nm to 50 nm, and the average primary particle size is 2 nm to 30 nm. More preferably, it is a fine particle. Two or more kinds of fine particles having different particle size distributions may be mixed. In this case, the average size of the small particles is preferably 5 nm or less. In addition, for the purpose of scattering incident light and improving the light capture rate, large particles having an average particle size exceeding 50 nm can be added to the ultrafine particles at a low content, or another layer can be applied. In this case, the content of the large particles is preferably 50% or less, more preferably 20% or less of the mass of particles having an average particle size of 50 nm or less. The average particle size of the large particles added and mixed for the above purpose is preferably 100 nm or more, and more preferably 250 nm or more.
 光散乱用の大粒子を用いることで、ヘイズ率60%以上となることが好ましい。ヘイズ率とは(拡散透過率)÷(全光透過率)で表される。
 半導体微粒子の作製法としては、作花済夫の「ゾル・ゲル法の科学」アグネ承風社(1998年)等に記載のゲル・ゾル法が好ましい。またDegussa社が開発した塩化物を酸水素塩中で高温加水分解により酸化物を作製する方法も好ましい。半導体微粒子が酸化チタンの場合、上記ゾル・ゲル法、ゲル・ゾル法、塩化物の酸水素塩中での高温加水分解法はいずれも好ましいが、さらに清野学の「酸化チタン 物性と応用技術」技報堂出版(1997年)に記載の硫酸法および塩素法を用いることもできる。さらにゾル・ゲル法として、バルべ等のジャーナル・オブ・アメリカン・セラミック・ソサエティー,第80巻,第12号,3157~3171頁(1997年)に記載の方法や、バーンサイドらのケミストリー・オブ・マテリアルズ,第10巻,第9号,2419~2425頁に記載の方法も好ましい。
By using large particles for light scattering, the haze ratio is preferably 60% or more. The haze ratio is expressed by (diffuse transmittance) / (total light transmittance).
As a method for producing the semiconductor fine particles, the gel-sol method described in Sakuo Sakuo's “Science of Sol-Gel Method”, Agne Jofu Co., Ltd. (1998) and the like is preferable. Also preferred is a method of producing an oxide by high-temperature hydrolysis of a chloride developed by Degussa in an oxyhydrogen salt. When the semiconductor fine particles are titanium oxide, the above sol-gel method, gel-sol method, and high-temperature hydrolysis method in oxyhydrogen salt of chloride are preferred, but Kiyoshi Manabu's “Titanium oxide properties and applied technology” The sulfuric acid method and the chlorine method described in Gihodo Publishing (1997) can also be used. Furthermore, as the sol-gel method, the method described in Journal of American Ceramic Society, Vol. 80, No. 12, 3157-3171 (1997), or the chemistry of Burnside et al. -The method described in Materials, Vol. 10, No. 9, pages 2419-2425 is also preferable.
 この他に、半導体微粒子の製造方法として、例えば、チタニアナノ粒子の製造方法として好ましくは、四塩化チタンの火炎加水分解による方法、四塩化チタンの燃焼法、安定なカルコゲナイド錯体の加水分解、オルトチタン酸の加水分解、可溶部と不溶部から半導体微粒子を形成後可溶部を溶解除去する方法、過酸化物水溶液の水熱合成、またはゾル・ゲル法によるコア/シェル構造の酸化チタン微粒子の製造方法が挙げられる。 In addition to this, as a method for producing semiconductor fine particles, for example, as a method for producing titania nanoparticles, preferably, a method by flame hydrolysis of titanium tetrachloride, a combustion method of titanium tetrachloride, hydrolysis of a stable chalcogenide complex, orthotitanic acid Of semiconductor, forming semiconductor fine particles from soluble and insoluble parts, then dissolving and removing soluble parts, hydrothermal synthesis of peroxide aqueous solution, or production of core / shell structured titanium oxide fine particles by sol-gel method A method is mentioned.
 チタニアの結晶構造としては、アナターゼ型、ブルッカイト型、または、ルチル型があげられ、アナターゼ型、ブルッカイト型が好ましい。
 チタニアナノチューブ・ナノワイヤー・ナノロッドをチタニア微粒子に混合してもよい。
Examples of the crystal structure of titania include anatase type, brookite type, and rutile type, and anatase type and brookite type are preferable.
Titania nanotubes, nanowires, and nanorods may be mixed with titania fine particles.
 チタニアは、非金属元素などによりドーピングされていても良い。チタニアへの添加剤としてドーパント以外に、ネッキングを改善する為のバインダーや逆電子移動防止の為に表面へ添加剤を用いても良い。好ましい添加剤の例としては、ITO、SnO粒子、ウイスカー、繊維状グラファイト・カーボンナノチューブ、酸化亜鉛ネッキング結合子、セルロース等の繊維状物質、金属、有機シリコン、ドデシルベンゼンスルホン酸、シラン化合物等の電荷移動結合分子、及び電位傾斜型デンドリマーなどが挙げられる。 ¡Titania may be doped with a nonmetallic element or the like. In addition to the dopant as an additive to titania, an additive may be used on the surface to improve the necking or to prevent reverse electron transfer. Examples of preferred additives include ITO, SnO particles, whiskers, fibrous graphite / carbon nanotubes, zinc oxide necking binders, fibrous materials such as cellulose, metals, organic silicon, dodecylbenzenesulfonic acid, silane compounds, etc. Examples thereof include a mobile binding molecule and a potential gradient dendrimer.
 チタニア上の表面欠陥を除去するなどの目的で、色素吸着前にチタニアを酸塩基又は酸化還元処理しても良い。エッチング、酸化処理、過酸化水素処理、脱水素処理、UV-オゾン、酸素プラズマなどで処理してもよい。 For the purpose of removing surface defects on titania, titania may be acid-base or redox treated before dye adsorption. Etching, oxidation treatment, hydrogen peroxide treatment, dehydrogenation treatment, UV-ozone, oxygen plasma, or the like may be used.
(E)半導体微粒子分散液
 本発明においては、半導体微粒子以外の固形分の含量が、半導体微粒子分散液全体の10質量%以下よりなる半導体微粒子分散液を前記の導電性支持体に塗布し、適度に加熱することにより、多孔質半導体微粒子塗布層を得ることができる。
 半導体微粒子分散液を作製する方法としては、前述のゾル・ゲル法の他に、半導体を合成する際に溶媒中で微粒子として析出させそのまま使用する方法、微粒子に超音波などを照射して超微粒子に粉砕する方法、あるいはミルや乳鉢などを使って機械的に粉砕しすり潰す方法、等が挙げられる。分散溶媒としては、水および/または各種の有機溶媒を用いることができる。有機溶媒としては、メタノール,エタノール,イソプロピルアルコール,シトロネロール,ターピネオールなどのアルコール類、アセトンなどのケトン類、酢酸エチルなどのエステル類、ジクロロメタン、アセトニトリル等が挙げられる。
 分散の際、必要に応じて例えばポリエチレングリコール、ヒドロキシエチルセルロース、カルボキシメチルセルロースのようなポリマー、界面活性剤、酸、またはキレート剤等を分散助剤として少量用いてもよい。しかし、これらの分散助剤は、導電性支持体上へ製膜する工程の前に、ろ過法や分離膜を用いる方法、あるいは遠心分離法などによって大部分を除去しておくことが好ましい。半導体微粒子分散液は、半導体微粒子以外の固形分の含量が分散液全体の10質量%以下とすることができる。この濃度は好ましくは5%以下であり、さらに好ましくは3%以下であり、特に好ましくは1%以下である。さらに好ましくは0.5%以下であり、特に好ましくは0.2%である。すなわち、半導体微粒子分散液中に、溶媒と半導体微粒子以外の固形分を半導体微粒子分散液全体の10質量%以下とすることができる。実質的に半導体微粒子と分散溶媒のみからなることが好ましい。
 半導体微粒子分散液の粘度が高すぎると分散液が凝集してしまい製膜することができず、逆に半導体微粒子分散液の粘度が低すぎると液が流れてしまい製膜することができないことがある。したがって分散液の粘度は、25℃で10~300N・s/mが好ましい。さらに好ましくは、25℃で50~200N・s/mである。
(E) Semiconductor fine particle dispersion In the present invention, a semiconductor fine particle dispersion in which the solid content other than the semiconductor fine particles is 10% by mass or less of the entire semiconductor fine particle dispersion is applied to the conductive support. A porous semiconductor fine particle coating layer can be obtained by heating to a high temperature.
In addition to the sol-gel method described above, a method of preparing a semiconductor fine particle dispersion is a method of depositing fine particles in a solvent and using them as they are when synthesizing a semiconductor. Ultrafine particles are irradiated with ultrasonic waves. Or a method of mechanically pulverizing and grinding using a mill or a mortar. As the dispersion solvent, water and / or various organic solvents can be used. Examples of the organic solvent include alcohols such as methanol, ethanol, isopropyl alcohol, citronellol and terpineol, ketones such as acetone, esters such as ethyl acetate, dichloromethane, acetonitrile and the like.
At the time of dispersion, a small amount of, for example, a polymer such as polyethylene glycol, hydroxyethyl cellulose, carboxymethyl cellulose, a surfactant, an acid, or a chelating agent may be used as a dispersion aid. However, most of these dispersing aids are preferably removed by a filtration method, a method using a separation membrane, a centrifugal method or the like before the step of forming a film on a conductive support. In the semiconductor fine particle dispersion, the solid content other than the semiconductor fine particles can be 10% by mass or less of the total dispersion. This concentration is preferably 5% or less, more preferably 3% or less, and particularly preferably 1% or less. More preferably, it is 0.5% or less, and particularly preferably 0.2%. That is, in the semiconductor fine particle dispersion, the solid content other than the solvent and the semiconductor fine particles can be 10% by mass or less of the entire semiconductor fine particle dispersion. It is preferable to consist essentially of semiconductor fine particles and a dispersion solvent.
If the viscosity of the semiconductor fine particle dispersion is too high, the dispersion will aggregate and cannot be formed into a film. Conversely, if the viscosity of the semiconductor fine particle dispersion is too low, the liquid will flow and cannot be formed into a film. is there. Therefore, the viscosity of the dispersion is preferably 10 to 300 N · s / m 2 at 25 ° C. More preferably, it is 50 to 200 N · s / m 2 at 25 ° C.
 半導体微粒子分散液の塗布方法としては、アプリケーション系の方法としてローラ法、ディップ法等を使用することができる。またメータリング系の方法としてエアーナイフ法、ブレード法等を使用することができる。またアプリケーション系の方法とメータリング系の方法を同一部分にできるものとして、特公昭58-4589号に開示されているワイヤーバー法、米国特許2681294号明細書等に記載のスライドホッパー法、エクストルージョン法、カーテン法等が好ましい。また汎用機を使用してスピン法やスプレー法で塗布するのも好ましい。湿式印刷方法としては、凸版、オフセットおよびグラビアの3大印刷法をはじめ、凹版、ゴム版、スクリーン印刷等が好ましい。これらの中から、液粘度やウェット厚さに応じて、好ましい製膜方法を選択する。また本発明の半導体微粒子分散液は粘度が高く、粘稠性を有するため、凝集力が強いことがあり、塗布時に支持体とうまく馴染まない場合がある。このような場合に、UVオゾン処理で表面のクリーニングと親水化を行うことにより、塗布した半導体微粒子分散液と導電性支持体表面の結着力が増し、半導体微粒子分散液の塗布が行い易くなる。
 半導体微粒子層全体の好ましい厚さは0.1~100μmである。半導体微粒子層の厚さはさらに1~30μmが好ましく、2~25μmがより好ましい。半導体微粒子の支持体1m当りの担持量は0.5g~400gが好ましく、5~100gがより好ましい。
As a method for applying the semiconductor fine particle dispersion, a roller method, a dip method, or the like can be used as an application method. Moreover, an air knife method, a blade method, etc. can be used as a metering method. In addition, the application method and the metering method can be made the same part. The wire bar method disclosed in Japanese Patent Publication No. 58-4589, the slide hopper method described in US Pat. No. 2,681,294, etc., the extrusion The method and the curtain method are preferable. It is also preferable to apply by a spin method or a spray method using a general-purpose machine. As the wet printing method, intaglio, rubber plate, screen printing and the like are preferred, including the three major printing methods of letterpress, offset and gravure. From these, a preferred film forming method is selected according to the liquid viscosity and the wet thickness. Further, since the semiconductor fine particle dispersion of the present invention has a high viscosity and has a viscous property, it may have a strong cohesive force and may not be well adapted to the support during coating. In such a case, by performing cleaning and hydrophilization of the surface by UV ozone treatment, the binding force between the applied semiconductor fine particle dispersion and the surface of the conductive support increases, and the semiconductor fine particle dispersion can be easily applied.
The preferred thickness of the entire semiconductor fine particle layer is 0.1 to 100 μm. The thickness of the semiconductor fine particle layer is further preferably 1 to 30 μm, and more preferably 2 to 25 μm. The amount of the semiconductor fine particles supported per 1 m 2 of the support is preferably 0.5 g to 400 g, more preferably 5 to 100 g.
 塗布した半導体微粒子の層に対し、半導体微粒子同士の電子的接触の強化と、支持体との密着性の向上のため、また塗布した半導体微粒子分散液を乾燥させるために、加熱処理が施される。この加熱処理により多孔質半導体微粒子層を形成することができる。
 また、加熱処理に加えて光のエネルギーを用いることもできる。例えば、半導体微粒子として酸化チタンを用いた場合に、紫外光のような半導体微粒子が吸収する光を与えることで表面を活性化してもよいし、レーザー光などで半導体微粒子表面のみを活性化することができる。半導体微粒子に対して該微粒子が吸収する光を照射することで、粒子表面に吸着した不純物が粒子表面の活性化によって分解され、上記の目的のために好ましい状態とすることができる。加熱処理と紫外光を組み合わせる場合は、半導体微粒子に対して該微粒子が吸収する光を照射しながら、加熱が100℃以上250℃以下あるいは好ましくは100℃以上150℃以下で行われることが好ましい。このように、半導体微粒子を光励起することによって、微粒子層内に混入した不純物を光分解により洗浄するとともに、微粒子の間の物理的接合を強めることができる。
The applied semiconductor fine particle layer is subjected to heat treatment to enhance the electronic contact between the semiconductor fine particles and to improve the adhesion to the support, and to dry the applied semiconductor fine particle dispersion. . By this heat treatment, a porous semiconductor fine particle layer can be formed.
In addition to heat treatment, light energy can also be used. For example, when titanium oxide is used as the semiconductor fine particles, the surface may be activated by applying light absorbed by the semiconductor fine particles such as ultraviolet light, or only the surface of the semiconductor fine particles may be activated by laser light or the like. Can do. By irradiating the semiconductor fine particles with light absorbed by the fine particles, the impurities adsorbed on the particle surface are decomposed by the activation of the particle surface, and can be brought into a preferable state for the above purpose. When heat treatment and ultraviolet light are combined, it is preferable that heating be performed at 100 ° C. or higher and 250 ° C. or lower, or preferably 100 ° C. or higher and 150 ° C. or lower, while irradiating the semiconductor fine particles with light absorbed by the fine particles. Thus, by photoexciting the semiconductor fine particles, impurities mixed in the fine particle layer can be washed by photolysis, and physical bonding between the fine particles can be strengthened.
 また、半導体微粒子分散液を前記の導電性支持体に塗布し、加熱や光を照射する以外に他の処理を行ってもよい。好ましい方法として例えば、通電、化学的処理などが挙げられる。
 塗布後に圧力をかけても良く、圧力をかける方法としては、特表2003-500857号公報等が挙げられる。光照射の例としては、特開2001-357896号公報等が挙げられる。プラズマ・マイクロ波・通電の例としては、特開2002-353453号公報等が挙げられる。化学的処理としては、例えば特開2001-357896号公報が挙げられる。
In addition, the semiconductor fine particle dispersion may be applied to the conductive support, and other treatments may be performed in addition to heating and light irradiation. Examples of preferred methods include energization and chemical treatment.
A pressure may be applied after the application, and a method for applying the pressure includes Japanese Patent Publication No. 2003-500857. Examples of light irradiation include JP-A No. 2001-357896. Examples of plasma, microwave, and energization include JP-A No. 2002-353453. Examples of the chemical treatment include JP-A-2001-357896.
 上述の半導体微粒子を導電性支持体上に塗設する方法は、上述の半導体微粒子分散液を導電性支持体上に塗布する方法のほか、特許第2664194号公報に記載の半導体微粒子の前駆体を導電性支持体上に塗布し空気中の水分によって加水分解して半導体微粒子膜を得る方法などの方法を使用することができる。
 前駆体として例えば、(NHTiF、過酸化チタン、金属アルコキシド・金属錯体・金属有機酸塩等が挙げられる。
 また、金属有機酸化物(アルコキシドなど)を共存させたスラリーを塗布し加熱処理、光処理などで半導体膜を形成する方法、無機系前駆体を共存させたスラリー、スラリーのpHと分散させたチタニア粒子の性状を特定した方法が挙げられる。これらスラリーには、少量であればバインダーを添加しても良く、バインダーとしては、セルロース、フッ素ポリマー、架橋ゴム、ポリブチルチタネート、カルボキシメチルセルロースなどが挙げられる。
 半導体微粒子又はその前駆体層の形成に関する技術としては、コロナ放電、プラズマ、UVなどの物理的な方法で親水化する方法、アルカリやポリエチレンジオキシチオフェンとポリスチレンスルホン酸などによる化学処理、ポリアニリンなどの接合用中間膜の形成などが挙げられる。
The method for coating the above-mentioned semiconductor fine particles on the conductive support is not only the method for applying the above-mentioned semiconductor fine particle dispersion on the conductive support, but also the semiconductor fine particle precursor described in Japanese Patent No. 2664194. A method such as a method of obtaining a semiconductor fine particle film by applying on a conductive support and hydrolyzing with moisture in the air can be used.
Examples of the precursor include (NH 4 ) 2 TiF 6 , titanium peroxide, metal alkoxide / metal complex / metal organic acid salt, and the like.
In addition, a method of forming a semiconductor film by applying a slurry in which a metal organic oxide (alkoxide, etc.) coexists, and heat treatment, light treatment, etc., a slurry in which an inorganic precursor coexists, titania dispersed in the pH of the slurry The method which specified the property of particle | grains is mentioned. In these slurries, a binder may be added in a small amount, and examples of the binder include cellulose, fluoropolymer, crosslinked rubber, polybutyl titanate, carboxymethyl cellulose and the like.
Techniques related to the formation of semiconductor fine particles or precursor layers thereof include corona discharge, plasma, a method of hydrophilizing by a physical method such as UV, a chemical treatment with alkali, polyethylenedioxythiophene and polystyrenesulfonic acid, polyaniline, etc. For example, formation of an interlayer film for bonding may be mentioned.
 半導体微粒子を導電性支持体上に塗設する方法として、上述の(1)湿式法とともに、(2)乾式法、(3)その他の方法を併用しても良い。
 (2)乾式法として好ましくは、特開2000-231943号公報等が挙げられる。
 (3)その他の方法として、好ましくは、特開2002-134435号公報等が挙げられる。
As a method of coating the semiconductor fine particles on the conductive support, (2) dry method and (3) other methods may be used in combination with the above (1) wet method.
(2) As a dry method, JP-A No. 2000-231943 is preferable.
(3) As other methods, JP-A No. 2002-134435 is preferable.
 乾式法としては、蒸着やスパッタリング、エアロゾルデポジション法などが挙げられる。また、電気泳動法・電析法を用いても良い。
 また、耐熱基板上でいったん塗膜を作製した後、プラスチック等のフィルムに転写する方法を用いても良い。好ましくは、特開2002-184475号公報記載のEVAを介して転写する方法、特開2003-98977号公報記載の紫外線、水系溶媒で除去可能な無機塩を含む犠牲基盤上に半導体層・導電層を形成後、有機基板に転写後、犠牲基板を除去する方法などが挙げられる。
Examples of the dry method include vapor deposition, sputtering, and aerosol deposition method. Further, electrophoresis or electrodeposition may be used.
Moreover, after producing a coating film once on a heat-resistant board | substrate, you may use the method of transcribe | transferring to films, such as a plastics. Preferably, a method of transferring via EVA described in JP-A No. 2002-184475, a semiconductor layer / conductive layer on a sacrificial substrate containing an inorganic salt that can be removed by ultraviolet rays and an aqueous solvent described in JP-A No. 2003-98977 And a method of removing the sacrificial substrate after transfer to the organic substrate.
 半導体微粒子は多くの色素を吸着することができるように表面積の大きいものが好ましい。例えば半導体微粒子を支持体上に塗設した状態で、その表面積が投影面積に対して10倍以上であることが好ましく、100倍以上であることがより好ましい。この上限には特に制限はないが、通常5000倍程度である。好ましい半導体微粒子の構造としては、特開2001-93591号公報等が挙げられる。 The semiconductor fine particles preferably have a large surface area so that many dyes can be adsorbed. For example, in a state where the semiconductor fine particles are coated on the support, the surface area is preferably 10 times or more, more preferably 100 times or more the projected area. Although there is no restriction | limiting in particular in this upper limit, Usually, it is about 5000 times. JP-A-2001-93591 and the like are preferable as the structure of semiconductor fine particles.
 一般に、半導体微粒子の層の厚みが大きいほど単位面積当たりに担持できる色素の量が増えるため光の吸収効率が高くなるが、発生した電子の拡散距離が増すため電荷再結合によるロスも大きくなる。半導体微粒子層の好ましい厚みは素子の用途によって異なるが、典型的には0.1~100μmである。光電気化学電池として用いる場合は1~50μmであることが好ましく、3~30μmであることがより好ましい。半導体微粒子は、支持体に塗布した後に粒子同士を密着させるために、100~800℃の温度で10分~10時間加熱してもよい。支持体としてガラスを用いる場合、製膜温度は400~600℃が好ましい。
 支持体として高分子材料を用いる場合、250℃以下で製膜後加熱することが好ましい。その場合の製膜方法としては、(1)湿式法、(2)乾式法、(3)電気泳動法(電析法を含む)の何れでも良く、好ましくは、(1)湿式法、又は(2)乾式法であり、更に好ましくは、(1)湿式法である。
 なお、半導体微粒子の支持体1m当たりの塗布量は0.5~500g、さらには5~100gが好ましい。
In general, as the thickness of the semiconductor fine particle layer increases, the amount of dye that can be supported per unit area increases, so that the light absorption efficiency increases. The preferred thickness of the semiconductor fine particle layer varies depending on the use of the device, but is typically 0.1 to 100 μm. When used as a photoelectrochemical cell, the thickness is preferably 1 to 50 μm, more preferably 3 to 30 μm. The semiconductor fine particles may be heated at a temperature of 100 to 800 ° C. for 10 minutes to 10 hours in order to adhere the particles to each other after being applied to the support. When glass is used as the support, the film forming temperature is preferably 400 to 600 ° C.
When a polymer material is used as the support, it is preferably heated after film formation at 250 ° C. or lower. In this case, the film forming method may be any of (1) a wet method, (2) a dry method, and (3) an electrophoresis method (including an electrodeposition method), and preferably (1) a wet method or ( 2) A dry method, more preferably (1) a wet method.
The coating amount of semiconductor fine particles per 1 m 2 of support is preferably 0.5 to 500 g, more preferably 5 to 100 g.
 半導体微粒子に増感色素を吸着させるには、溶液と本発明の色素よりなる色素吸着用色素溶液の中に、よく乾燥した半導体微粒子を長時間(吸着反応が平衡に達するのに十分な時間。通常、0~150℃で5秒間以上72時間以内、好ましくは10℃~80℃で、1分以上48時間以内の条件で浸漬するのが好ましい。色素吸着用色素溶液に使用される溶液は、本発明の色素が溶解できる溶液なら特に制限なく使用することができる。例えば、エタノール、メタノール、イソプロパノール、トルエン、t-ブタノール、アセトニトリル、アセトン、n-ブタノールなどを使用することができる。その中でも、エタノール、トルエンを好ましく使用することができる。
 溶液と本発明の増感色素よりなる色素吸着用色素溶液は必要に応じて50℃ないし100℃に加熱してもよい。色素の吸着は半導体微粒子の塗布前に行っても塗布後に行ってもよい。また、半導体微粒子と色素を同時に塗布して吸着させてもよい。未吸着の色素は洗浄によって除去する。塗布膜の焼成を行う場合は色素の吸着は焼成後に行うことが好ましい。焼成後、塗布膜表面に水が吸着する前にすばやく色素を吸着させるのが特に好ましい。吸着する色素は1種類でもよいし、数種混合して用いてもよい。混合する場合、本発明の色素を2種以上混合してもよいし、本発明の趣旨を損なわない範囲内で錯体色素と本発明の色素を混合してもよい。光電変換の波長域をできるだけ広くするように、混合する色素が選ばれる。色素を混合する場合は、すべての色素が溶解するようにして、色素吸着用色素溶液とすることが必要である。
In order to adsorb the sensitizing dye to the semiconductor fine particles, the well-dried semiconductor fine particles are placed in a dye adsorption dye solution comprising the solution and the dye of the present invention for a long time (a sufficient time for the adsorption reaction to reach equilibrium). Usually, it is preferably immersed at 0 to 150 ° C. for 5 seconds or more and 72 hours or less, preferably 10 ° C. to 80 ° C. for 1 minute or more and 48 hours or less. Any solution that can dissolve the dye of the present invention can be used without any particular limitation, for example, ethanol, methanol, isopropanol, toluene, t-butanol, acetonitrile, acetone, n-butanol, etc. Among them, Ethanol and toluene can be preferably used.
The dye solution for dye adsorption comprising the solution and the sensitizing dye of the present invention may be heated to 50 ° C. to 100 ° C. as necessary. The adsorption of the dye may be performed before or after application of the semiconductor fine particles. Further, the semiconductor fine particles and the dye may be applied and adsorbed simultaneously. Unadsorbed dye is removed by washing. When baking a coating film, it is preferable to adsorb | suck a pigment | dye after baking. It is particularly preferable that the dye is quickly adsorbed after the baking and before water adsorbs on the coating film surface. One kind of adsorbing dye may be used, or several kinds may be mixed and used. When mixing, 2 or more types of the pigment | dye of this invention may be mixed, and the complex pigment | dye and the pigment | dye of this invention may be mixed within the range which does not impair the meaning of this invention. The dye to be mixed is selected so as to make the wavelength range of photoelectric conversion as wide as possible. When mixing the dyes, it is necessary to prepare a dye solution for dye adsorption by dissolving all the dyes.
 色素の使用量は、全体で、支持体1m当たり0.01~100ミリモルが好ましく、より好ましくは0.1~50ミリモル、特に好ましくは0.1~10ミリモルである。この場合、本発明の色素の使用量は5モル%以上とすることが好ましい。
 また、色素の半導体微粒子に対する吸着量は半導体微粒子1gに対して0.001~1ミリモルが好ましく、より好ましくは0.1~0.5ミリモルである。
 このような色素量とすることによって、半導体における増感効果が十分に得られる。これに対し、色素量が少ないと増感効果が不十分となり、色素量が多すぎると、半導体に付着していない色素が浮遊し増感効果を低減させる原因となる。
The total amount of the dye used is preferably 0.01 to 100 mmol, more preferably 0.1 to 50 mmol, and particularly preferably 0.1 to 10 mmol per 1 m 2 of the support. In this case, the amount of the dye of the present invention is preferably 5 mol% or more.
Further, the adsorption amount of the dye to the semiconductor fine particles is preferably 0.001 to 1 mmol, more preferably 0.1 to 0.5 mmol, with respect to 1 g of the semiconductor fine particles.
By using such a dye amount, a sensitizing effect in a semiconductor can be sufficiently obtained. On the other hand, when the amount of the dye is small, the sensitizing effect becomes insufficient, and when the amount of the dye is too large, the dye not attached to the semiconductor floats and causes the sensitizing effect to be reduced.
 また、会合など色素同士の相互作用を低減する目的で無色の化合物を共吸着させてもよい。共吸着させる疎水性化合物としてはカルボキシル基を有するステロイド化合物(例えばコール酸、ピバル酸(pivalic acid))等が挙げられる。
 色素を吸着した後に、アミン類を用いて半導体微粒子の表面を処理してもよい。好ましいアミン類としては4-tert-ブチルピリジン、ポリビニルピリジン等が挙げられる。これらは液体の場合はそのまま用いてもよいし有機溶媒に溶解して用いてもよい。
Further, a colorless compound may be co-adsorbed for the purpose of reducing the interaction between dyes such as association. Examples of the hydrophobic compound to be co-adsorbed include steroid compounds having a carboxyl group (for example, cholic acid, pivalic acid) and the like.
After adsorbing the dye, the surface of the semiconductor fine particles may be treated with amines. Preferred amines include 4-tert-butylpyridine, polyvinylpyridine and the like. These may be used as they are in the case of a liquid, or may be used by dissolving in an organic solvent.
 対向電極は、光電気化学電池の正極として働くものである。対向電極は、通常前述の導電性支持体と同義であるが、強度が十分に保たれるような構成では支持体は必ずしも必要でない。ただし、支持体を有する方が密閉性の点で有利である。対向電極の材料としては、白金、カーボン、導電性ポリマー、などがあげられる。好ましい例としては、白金、カーボン、導電性ポリマーが挙げられる。 The counter electrode serves as the positive electrode of the photoelectrochemical cell. The counter electrode is usually synonymous with the conductive support described above, but the support is not necessarily required in a configuration in which the strength is sufficiently maintained. However, having a support is advantageous in terms of hermeticity. Examples of the material for the counter electrode include platinum, carbon, conductive polymer, and the like. Preferable examples include platinum, carbon, and conductive polymer.
 対極の構造としては、集電効果が高い構造が好ましい。好ましい例としては、特開平10-505192号公報などが挙げられる。
 受光電極は酸化チタンと酸化スズ(TiO/SnO)などの複合電極を用いても良く、チタニアの混合電極として例えば、特開2000-113913号公報等が挙げられる。チタニア以外の混合電極として例えば、特開2001-185243号公報、特開2003-282164号公報等が挙げられる。
As the structure of the counter electrode, a structure having a high current collecting effect is preferable. Preferred examples include JP-A-10-505192.
As the light receiving electrode, a composite electrode such as titanium oxide and tin oxide (TiO 2 / SnO 2 ) may be used. As a mixed electrode of titania, for example, Japanese Patent Application Laid-Open No. 2000-11913 is cited. Examples of mixed electrodes other than titania include Japanese Patent Application Laid-Open Nos. 2001-185243 and 2003-282164.
 また、素子の構成としては、第1電極層、第1光電変換層、導電層、第2光電変換層、第2電極層を順次積層した構造を有していても良い。この場合、第1光電変換層と第2光電変換層に用いる色素は同一または異なっていてもよく、異なっている場合には、吸収スペクトルが異なっていることが好ましいい。 In addition, the structure of the element may have a structure in which a first electrode layer, a first photoelectric conversion layer, a conductive layer, a second photoelectric conversion layer, and a second electrode layer are sequentially stacked. In this case, the dyes used for the first photoelectric conversion layer and the second photoelectric conversion layer may be the same or different, and when they are different, it is preferable that the absorption spectra are different.
 受光電極は、入射光の利用率を高めるなどのためにタンデム型にしても良い。好ましいタンデム型の構成例としては、特開2000-90989、特開2002-90989号公報等に記載の例が挙げられる。
 受光電極層内部で光散乱、反射を効率的に行う光マネージメント機能を設けてもよい。好ましくは、特開2002-93476号公報に記載のものが挙げられる。
The light receiving electrode may be a tandem type in order to increase the utilization rate of incident light. Examples of preferred tandem type configurations include those described in JP-A Nos. 2000-90989 and 2002-90989.
A light management function for efficiently performing light scattering and reflection inside the light receiving electrode layer may be provided. Preferable examples include those described in JP-A-2002-93476.
 導電性支持体と多孔質半導体微粒子層の間には、電解液と電極が直接接触することによる逆電流を防止する為、短絡防止層を形成することが好ましい。好ましい例としては、特開平06-507999号公報等が挙げられる。
 受光電極と対極の接触を防ぐ為に、スペーサーやセパレータを用いることが好ましい。好ましい例としては、特開2001-283941号公報が挙げられる。
It is preferable to form a short-circuit prevention layer between the conductive support and the porous semiconductor fine particle layer in order to prevent reverse current due to direct contact between the electrolyte and the electrode. Preferable examples include Japanese Patent Application Laid-Open No. 06-507999.
In order to prevent contact between the light receiving electrode and the counter electrode, it is preferable to use a spacer or a separator. A preferable example is JP-A-2001-283941.
セル、モジュールの封止法としては、ポリイソブチレン系熱硬化樹脂、ノボラック樹脂、光硬化性(メタ)アクリレート樹脂、エポキシ樹脂、アイオノマー樹脂、ガラスフリット、アルミナにアルミニウムアルコキシドを用いる方法、低融点ガラスペーストをレーザー溶融する方法などが好ましい。ガラスフリットを用いる場合、粉末ガラスをバインダーとなるアクリル樹脂に混合したものでもよい。 Cell and module sealing methods include polyisobutylene thermosetting resin, novolak resin, photo-curing (meth) acrylate resin, epoxy resin, ionomer resin, glass frit, method using aluminum alkoxide for alumina, low melting point glass paste It is preferable to use a laser melting method. When glass frit is used, powder glass mixed with acrylic resin as a binder may be used.
 以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.
(色素の調製)
スキーム1で示した方法で化合物A-2-9を合成し、スキーム2で示した方法で化合物A-2-12を合成した。得られたA-2-9とA-2-12を用いてスキーム3の方法で例示化合物A-2を合成した。
(Preparation of dye)
Compound A-2-9 was synthesized by the method shown in Scheme 1, and Compound A-2-12 was synthesized by the method shown in Scheme 2. Exemplified compound A-2 was synthesized by the method of Scheme 3 using the obtained A-2-9 and A-2-12.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
[同定データ]MeOH溶液吸収λmax = 802nm
Figure JPOXMLDOC01-appb-C000028
[Identification data] MeOH solution absorption λmax = 802 nm
[実験1]
(光電変換素子の作製)
 図1に示す光電変換素子10を以下のようにして作製した。
 ガラス基板上に、透明導電膜としてフッ素をドープした酸化スズをスパッタリングにより形成し、これをレーザーでスクライブして、透明導電膜を2つの部分に分割した。
 次に、水とアセトニトリルの容量比4:1からなる混合溶媒100mlにアナターゼ型酸化チタン(日本アエロジル社製のP-25(商品名))を32g配合し、自転/公転併用式のミキシングコンディショナーを使用して均一に分散、混合し、半導体微粒子分散液を得た。この分散液を透明導電膜に塗布し、500℃で加熱して受光電極を作製した。
 その後、同様にシリカ粒子とルチル型酸化チタンとを40:60(質量比)で含有する分散液を作製し、この分散液を前記の受光電極に塗布し、500℃で加熱して絶縁性多孔体を形成した。次いで対極として炭素電極を形成した。
 次に、下記表1に記載された増感色素のエタノール溶液(3×10-4モル/l)に40℃で上記の絶縁性多孔体が形成されたガラス基板を48時間浸漬した。増感色素の染着したガラスを4-tert-ブチルピリジンの10%エタノール溶液に30分間浸漬した後、エタノールで洗浄し自然乾燥させた。このようにして得られる感光層の厚さは10μmであり、半導体微粒子の塗布量は20g/mであった。電解液は、ヨウ化ジメチルプロピルイミダゾリウム(0.5モル/l)、ヨウ素(0.1モル/l)のメトキシプロピオニトリル溶液を用いた。
[Experiment 1]
(Preparation of photoelectric conversion element)
The photoelectric conversion element 10 shown in FIG. 1 was produced as follows.
On the glass substrate, tin oxide doped with fluorine was formed as a transparent conductive film by sputtering, and this was scribed with a laser to divide the transparent conductive film into two parts.
Next, 32 g of anatase-type titanium oxide (P-25 (trade name) manufactured by Nippon Aerosil Co., Ltd.) is mixed with 100 ml of a mixed solvent having a volume ratio of water and acetonitrile of 4: 1, and a rotating / revolving mixing conditioner is prepared. The resulting mixture was uniformly dispersed and mixed to obtain a semiconductor fine particle dispersion. This dispersion was applied to a transparent conductive film and heated at 500 ° C. to produce a light receiving electrode.
Thereafter, similarly, a dispersion containing 40:60 (mass ratio) of silica particles and rutile-type titanium oxide is prepared, and this dispersion is applied to the light receiving electrode and heated at 500 ° C. to form an insulating porous material. Formed body. Next, a carbon electrode was formed as a counter electrode.
Next, the glass substrate on which the insulating porous material was formed was immersed in an ethanol solution (3 × 10 −4 mol / l) of a sensitizing dye described in Table 1 below at 40 ° C. for 48 hours. The glass dyed with the sensitizing dye was immersed in a 10% ethanol solution of 4-tert-butylpyridine for 30 minutes, then washed with ethanol and naturally dried. The thickness of the photosensitive layer thus obtained was 10 μm, and the coating amount of semiconductor fine particles was 20 g / m 2 . As the electrolytic solution, a methoxypropionitrile solution of dimethylpropylimidazolium iodide (0.5 mol / l) and iodine (0.1 mol / l) was used.
(増感色素の極大吸収波長の測定)
 用いた色素の最大吸収波長を測定した。その結果を表Aに示す。測定は、分光光度計(U-4100(商品名)、日立ハイテク社製)によって行い、溶液はTHF:エタノール=1:1を用い、濃度が2μMになるように調整した。
(Measurement of maximum absorption wavelength of sensitizing dye)
The maximum absorption wavelength of the dye used was measured. The results are shown in Table A. The measurement was performed with a spectrophotometer (U-4100 (trade name), manufactured by Hitachi High-Tech), and the solution was adjusted to a concentration of 2 μM using THF: ethanol = 1: 1.
Figure JPOXMLDOC01-appb-T000029
 比較色素として以下の構造のものを用いた。
Figure JPOXMLDOC01-appb-T000029
A comparative dye having the following structure was used.
Figure JPOXMLDOC01-appb-C000030
(Angew.Chem.Int.Ed., 46, 8358(2007)に記載の化合物)、
Figure JPOXMLDOC01-appb-C000030
(A compound described in Angew. Chem. Int. Ed., 46, 8358 (2007)),
Figure JPOXMLDOC01-appb-C000031
(Angew.Chem.Int.Ed., 46, 373(2007)および
(J.Am.Chem.Soc., 124, 4922(2002)に記載の化合物)
Figure JPOXMLDOC01-appb-C000031
(A compound described in Angew. Chem. Int. Ed., 46, 373 (2007) and (J. Am. Chem. Soc., 124, 4922 (2002))
(光電変換効率の測定)
 500Wのキセノンランプ(ウシオ電機(株)製)の光をAM1.5Gフィルター(Oriel社製)およびシャープカットフィルター(KenkoL-42、商品名)を通すことにより紫外線を含まない模擬太陽光を発生させた。この光の強度は89mW/cmであった。作製した光電変換素子にこの光を照射し、発生した電気を電流電圧測定装置(ケースレー238型、商品名)にて測定した。これにより求められた光電気化学電池の変換効率を測定した結果を下記表1に示した。実験結果の評価基準は、変換効率が3.5%以上のものを◎、2.5%以上3.5%未満のものを○、2.0%以上2.5%未満のものを△、2.0%未満のものを×とした。
 また、70℃で300時間暗所保存後の変換効率の低下率、及び500時間連続光照射後の変換効率の低下率を測定した。
 また、耐久性の評価結果は、変換効率の低下率がフレシュの3%未満を◎、3%以上5%未満を○、5%以上10%未満を△、10%以上を×とした。結果を表8-2中の湿熱耐久性(暗所保存耐久性)の欄に示した。
(Measurement of photoelectric conversion efficiency)
Light from a 500 W xenon lamp (USHIO INC.) Is passed through an AM1.5G filter (Oriel) and a sharp cut filter (KenkoL-42, trade name) to generate simulated sunlight that does not contain ultraviolet rays. It was. The intensity of this light was 89 mW / cm 2 . The produced photoelectric conversion element was irradiated with this light, and the generated electricity was measured with a current-voltage measuring device (Caseley 238 type, trade name). The results of measuring the conversion efficiency of the photoelectrochemical cell thus obtained are shown in Table 1 below. The evaluation criteria of the experimental results are ◎ for conversion efficiency of 3.5% or more, ○ for 2.5% or more and less than 3.5%, △ for 2.0% or more and less than 2.5%, Those with less than 2.0% were evaluated as x.
Moreover, the reduction rate of the conversion efficiency after 300-hour dark storage at 70 degreeC and the reduction rate of the conversion efficiency after 500-hour continuous light irradiation were measured.
In addition, as a result of evaluating durability, the conversion efficiency decrease rate was less than 3% of fresh, ◎, 3% to less than 5%, ◯, 5% to less than 10%, △, 10% or more to x. The results are shown in the column of wet heat durability (darkness storage durability) in Table 8-2.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
 下記の増感色素S-1を用いた。 The following sensitizing dye S-1 was used.
Figure JPOXMLDOC01-appb-C000033
(Angew.Chem.Int.Ed., 46, 8358(2007)に記載の化合物)
Figure JPOXMLDOC01-appb-C000033
(Compound described in Angew. Chem. Int. Ed., 46, 8358 (2007))
 本発明の色素を用いて作製された電気化学電池は、表1の実験結果に示されているように、特に色素としてA2~A4、A11~A13、A-15、A-16を使用した場合は、変換効率は3.5%以上と高い値を示した。その他の本発明の色素を使用した場合でも、変換効率は2.5%以上3.5%未満と比較的高いレベルであった。
 それに対して、試料番号17の実験結果は、変換効率は2.0%未満と不十分であった。
As shown in the experimental results in Table 1, the electrochemical cell produced using the dye of the present invention, particularly when A2 to A4, A11 to A13, A-15, and A-16 are used as the dye Shows a high conversion efficiency of 3.5% or more. Even when other dyes of the present invention were used, the conversion efficiency was at a relatively high level of 2.5% or more and less than 3.5%.
On the other hand, the experimental result of Sample No. 17 was insufficient with a conversion efficiency of less than 2.0%.
(実験2)
 ガラス基板上にITO膜を作製し、その上にFTO膜を積層することにより、透明導電膜を作製した。その後透明導電膜上に酸化物半導体多孔質膜を形成することにより、透明電極板を得た。そしてその透明電極板を使用して光電気化学電池100を作製し、変換効率を測定した。その詳しい方法は以下の(1)~(5)の通りである。
(Experiment 2)
An ITO film was produced on a glass substrate, and an FTO film was laminated thereon to produce a transparent conductive film. Then, a transparent electrode plate was obtained by forming an oxide semiconductor porous film on the transparent conductive film. And the photoelectrochemical cell 100 was produced using the transparent electrode plate, and the conversion efficiency was measured. The detailed method is as follows (1) to (5).
(1)ITO(インジウム・スズ・オキサイド)膜用原料化合物溶液の調製
 塩化インジウム(III)四水和物5.58gと塩化スズ(II)二水和物0.23gとをエタノール100mlに溶解して、ITO膜用原料化合物溶液とした。
(1) Preparation of raw material compound solution for ITO (indium / tin / oxide) film Indium (III) tetrahydrate 5.58 g and tin (II) chloride dihydrate 0.23 g were dissolved in 100 ml of ethanol. Thus, a raw material compound solution for ITO film was obtained.
(2)FTO(フッ素ドープ酸化スズ)膜用原料化合物溶液の調製
 塩化スズ(IV)五水和物0.701gをエタノール10mlに溶解し、これにフッ化アンモニウム0.592gの飽和水溶液を加え、この混合物を超音波洗浄機に約20分間かけ、完全に溶解して、FTO膜用原料化合物溶液とした。
(2) Preparation of FTO (Fluorine Doped Tin Oxide) Film Raw Material Compound Solution 0.701 g of tin (IV) chloride pentahydrate was dissolved in 10 ml of ethanol, and 0.592 g of a saturated aqueous solution of ammonium fluoride was added thereto. This mixture was subjected to an ultrasonic cleaning machine for about 20 minutes and completely dissolved to obtain a raw material compound solution for an FTO film.
(3)ITO/FTO透明導電膜の作製
 厚さ2mmの耐熱ガラス板の表面を化学洗浄し、乾燥した後、このガラス板を反応器内に置き、ヒータで加熱した。ヒータの加熱温度が450℃になったところで、(1)で得られたITO膜用原料化合物溶液を、口径0.3mmのノズルから圧力0.06MPaで、ガラス板までの距離を400mmとして、25分間噴霧した。
 このITO膜用原料化合物溶液の噴霧後、2分間(この間ガラス基板表面にエタノールを噴霧し続け、基板表面温度の上昇を抑えるようにした。)経過し、ヒータの加熱温度が530℃になった時に、(2)で得られたFTO膜用原料化合物溶液を同様の条件で2分30秒間噴霧した。これにより、耐熱ガラス板上に厚さ530nmのITO膜、厚さ170nmのFTO膜が順次形成された透明電極板が得られた。
 比較のために、厚さ2mmの耐熱ガラス板上に同様に、厚さ530nmのITO膜のみを成膜した透明電極板と、同じく厚さ180nmのFTO膜のみを成膜した透明電極板とをそれぞれ作製した。
 これら3種の透明電極板を加熱炉にて、450℃で2時間加熱した。
(3) Preparation of ITO / FTO transparent conductive film The surface of a heat-resistant glass plate having a thickness of 2 mm was chemically washed and dried, and then this glass plate was placed in a reactor and heated with a heater. When the heating temperature of the heater reached 450 ° C., the raw material compound solution for ITO film obtained in (1) was adjusted from a nozzle having a diameter of 0.3 mm to a pressure of 0.06 MPa and a distance to the glass plate of 400 mm, 25 Sprayed for a minute.
After spraying the raw material compound solution for ITO film, 2 minutes passed (ethanol was sprayed on the glass substrate surface during this period to suppress the rise of the substrate surface temperature), and the heating temperature of the heater became 530 ° C. Occasionally, the FTO membrane raw material compound solution obtained in (2) was sprayed for 2 minutes 30 seconds under the same conditions. As a result, a transparent electrode plate was obtained in which an ITO film having a thickness of 530 nm and an FTO film having a thickness of 170 nm were sequentially formed on the heat-resistant glass plate.
For comparison, similarly, a transparent electrode plate in which only a 530 nm thick ITO film is formed on a heat resistant glass plate having a thickness of 2 mm and a transparent electrode plate in which only a 180 nm thick FTO film is similarly formed are formed. Each was produced.
These three kinds of transparent electrode plates were heated in a heating furnace at 450 ° C. for 2 hours.
(4)光電気化学電池の作製
 次に、上記3種の透明電極板を用いて、特許第4260494号中の図2に示した構造の光電気化学電池を作製した。酸化物半導体多孔質膜15の形成は、平均粒径約230nmの酸化チタン微粒子をアセトニトリル100mlに分散してペーストとし、これを透明電極11上にバーコート法により厚さ15μmに塗布し、乾燥後450℃で1時間焼成して行い、この酸化物半導体多孔質膜15に表2記載の色素を担持した。色素溶液への浸漬条件は実験1と同じとした。
 さらに、対極16には、ガラス板上にITO膜とFTO膜とを積層した導電性基板を使用し、電解質層17には、ヨウ素/ヨウ化物の非水溶液からなる電解液を用いた。光電気化学電池の平面寸法は25mm×25mmとした。
(4) Production of photoelectrochemical cell Next, a photoelectrochemical cell having the structure shown in FIG. 2 of Japanese Patent No. 4260494 was produced using the above three types of transparent electrode plates. The oxide semiconductor porous film 15 is formed by dispersing fine particles of titanium oxide having an average particle size of about 230 nm in 100 ml of acetonitrile to form a paste, applying this to the transparent electrode 11 to a thickness of 15 μm by a bar coating method, and drying. The oxide semiconductor porous film 15 was loaded with the dyes listed in Table 2 by baking at 450 ° C. for 1 hour. The immersion conditions in the dye solution were the same as in Experiment 1.
Further, a conductive substrate in which an ITO film and an FTO film were laminated on a glass plate was used for the counter electrode 16, and an electrolytic solution made of a non-aqueous solution of iodine / iodide was used for the electrolyte layer 17. The planar dimension of the photoelectrochemical cell was 25 mm × 25 mm.
(5)光電気化学電池の評価
 この光電気化学電池について、人工太陽光(AM1.5)を照射し、その発電効率を求めた。その実験結果を表2に示す。変換効率が3.5%以上のものを◎、2.5%以上3.5%未満のものを○、2.0%以上2.5%未満のものを△、2.0%未満のものを×として評価した。
 また、80℃で250時間暗所保存後の変換効率の低下率、及び500時間連続光照射後の変換効率の低下率を測定した。これらの耐久性の評価結果は、変換効率の低下率がフレシュの3%未満を◎、3%以上5%未満を○、5%以上10%未満を△、10%以上を×とした。
 増感色素Aを用いた試料No.11~13では変換効率が低いのに対し、本発明の例示色素を使用した試料No.1~9では、変換効率の初期値も、耐久性もともに優れた結果を示すことがわかった。透明電極板として、ITO膜とFTO膜とを積層したものを用いた光電気化学電池では、ITO膜のみもしくはFTO膜のみを成膜したものを用いた場合に比べ特に変換効率が高く、本発明の色素を用いたものはその効果が高いことがわかった。
(5) Evaluation of photoelectrochemical cell About this photoelectrochemical cell, artificial sunlight (AM1.5) was irradiated and the electric power generation efficiency was calculated | required. The experimental results are shown in Table 2. Conversion efficiency is 3.5% or more, ◎, 2.5% or more, less than 3.5%, ○, 2.0% or more, less than 2.5%, △, less than 2.0% Was evaluated as x.
Moreover, the reduction rate of the conversion efficiency after 250-hour dark storage at 80 degreeC and the reduction rate of the conversion efficiency after 500-hour continuous light irradiation were measured. As a result of evaluating the durability, the conversion efficiency decrease rate was less than 3% of the fresh, ◎, 3% to less than 5%, ◯, 5% to less than 10%, and 10% or more to x.
Sample No. using sensitizing dye A 11 to 13, the conversion efficiency is low, whereas sample No. From 1 to 9, it was found that both the initial value of the conversion efficiency and the durability were excellent. In a photoelectrochemical cell using a laminate of an ITO film and an FTO film as a transparent electrode plate, the conversion efficiency is particularly high as compared with the case where only an ITO film or only an FTO film is used. It was found that those using these dyes were highly effective.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
(実験3)
 FTO膜上に集電電極を配し、光電気化学電池を作製し、変換効率を評価した。評価は以下の通り、試験セル(i)と試験セル(iv)の2種類とした。
(Experiment 3)
A collecting electrode was arranged on the FTO film to produce a photoelectrochemical cell, and the conversion efficiency was evaluated. Evaluation was made into two types, test cell (i) and test cell (iv) as follows.
(試験セル(i))
 100mm×100mm×2mmの耐熱ガラス板の表面を化学洗浄し、乾燥した後、このガラス板を反応器内に置き、ヒータで加熱した後、実験2で使用したFTO(フッ素ドープ酸化スズ)膜用原料化合物溶液を、口径0.3mmのノズルから圧力0.06MPaで、ガラス板までの距離を400mmとして、25分間噴霧し、FTO膜付きガラス基板を用意した。その表面に、エッチング法により深さ5μmの溝を格子回路パターン状に形成した。フォトリソグラフでパターン形成した後に、フッ酸を用いてエッチングを行った。これに、めっき形成を可能とするためにスパッタ法により金属導電層(シード層)を形成し、更にアディティブめっきにより金属配線層3を形成した。金属配線層3は、透明基板2表面から凸レンズ状に3μm高さまで形成した。回路幅は60μmとした。この上から、遮蔽層5としてFTO膜を400nmの厚さでSPD法により形成して、電極基板(i)とした。なお、電極基板(i)の断面形状は、特開2004-146425中の図2に示すものとなっていた。
 電極基板(i)上に、平均粒径25nmの酸化チタンをアセトニトリル 100mlに分散して得た分散液を塗布・乾燥し、450℃で1時間加熱・焼結した。これを表3に示す色素のエタノール溶液へ浸漬して色素を吸着させた。浸漬条件は実験1と同じとした。50μm厚の熱可塑性ポリオレフィン樹脂シートを介して白金スパッタFTO基板と対向して配置し、樹脂シート部を熱溶融させて両極板を固定した。
 なおあらかじめ白金スパッタ極側に開けておいた電解液の注液口から、0.5Mのヨウ化塩と0.05Mのヨウ素とを主成分に含むメトキシアセトニトリル溶液を注液し、電極間に満たした。さらに周辺部及び電解液注液口をエポキシ系封止樹脂を用いて本封止し、集電端子部に銀ペーストを塗布して試験セル(i)とした。AM1.5の疑似太陽光により、試験セル(i)の光電変換特性を評価した。その結果を表3に示した。
(Test cell (i))
After chemically cleaning and drying the surface of a heat-resistant glass plate of 100 mm × 100 mm × 2 mm, this glass plate is placed in a reactor, heated with a heater, and then used for the FTO (fluorine-doped tin oxide) film used in Experiment 2 The raw material compound solution was sprayed from a nozzle having a diameter of 0.3 mm at a pressure of 0.06 MPa and a distance to the glass plate of 400 mm for 25 minutes to prepare a glass substrate with an FTO film. On the surface, grooves having a depth of 5 μm were formed in a lattice circuit pattern by an etching method. After pattern formation by photolithography, etching was performed using hydrofluoric acid. A metal conductive layer (seed layer) was formed thereon by sputtering to enable plating formation, and a metal wiring layer 3 was further formed by additive plating. The metal wiring layer 3 was formed in a convex lens shape from the surface of the transparent substrate 2 to a height of 3 μm. The circuit width was 60 μm. From this, an FTO film having a thickness of 400 nm was formed as the shielding layer 5 by the SPD method to obtain an electrode substrate (i). The cross-sectional shape of the electrode substrate (i) was as shown in FIG. 2 in JP-A No. 2004-146425.
On the electrode substrate (i), a dispersion obtained by dispersing titanium oxide having an average particle diameter of 25 nm in 100 ml of acetonitrile was applied and dried, and heated and sintered at 450 ° C. for 1 hour. This was immersed in an ethanol solution of the dye shown in Table 3 to adsorb the dye. The immersion conditions were the same as in Experiment 1. It arrange | positioned facing a platinum sputter | spatter FTO board | substrate through the 50-micrometer-thick thermoplastic polyolefin resin sheet, the resin sheet part was heat-melted, and the bipolar plate was fixed.
A methoxyacetonitrile solution containing 0.5M iodide and 0.05M iodine as the main components was injected from the electrolyte solution inlet previously opened on the platinum sputter electrode side, and filled between the electrodes. It was. Further, the peripheral part and the electrolyte solution injection port were finally sealed with an epoxy-based sealing resin, and a silver paste was applied to the current collecting terminal part to obtain a test cell (i). The photoelectric conversion characteristics of the test cell (i) were evaluated using pseudo sunlight of AM1.5. The results are shown in Table 3.
(試験セル(iv))
 試験セル(i)と同様の方法で100×100mmのFTO膜付きガラス基板を用意した。そのFTOガラス基板上に、アディティブめっき法により金属配線層3(金回路)を形成した。金属配線層3(金回路)は基板表面に格子状に形成し、回路幅50μm、回路厚5μmとした。この表面に厚さ300nmのFTO膜を遮蔽層5としてSPD法により形成して試験セル(iv)とした。電極基板(iv)の断面をSEM-EDXを用いて確認したところ、配線底部でめっきレジストの裾引きに起因すると思われる潜り込みがあり、影部分にはFTOが被覆されていなかった。
 電極基板(iv)を用い、試験セル(i)と同様に、試験セル(iv)を作製した。AM1.5の疑似太陽光により試験セル(iv)の光電変換特性を評価し、結果を表3に示した。結果は、変換効率が3.5%以上のものを◎、2.5%以上3.5%未満のものを○、2.0%以上2.5%未満のものを△、2.0%未満のものを×として評価した。
 また、80℃で300時間暗所保存後の変換効率の低下率、及び500時間連続光照射後の変換効率の低下率を測定した。これらの耐久性の評価結果は、変換効率の低下率がフレシュの3%未満を◎、3%以上5%未満を○、5%以上10%未満を△、10%以上を×とした。
(Test cell (iv))
A glass substrate with a 100 × 100 mm FTO film was prepared in the same manner as in the test cell (i). A metal wiring layer 3 (gold circuit) was formed on the FTO glass substrate by additive plating. The metal wiring layer 3 (gold circuit) was formed in a lattice shape on the substrate surface, and had a circuit width of 50 μm and a circuit thickness of 5 μm. On this surface, an FTO film having a thickness of 300 nm was formed as a shielding layer 5 by the SPD method to obtain a test cell (iv). When the cross section of the electrode substrate (iv) was confirmed using SEM-EDX, there was a sneaking in which seems to be caused by the bottom of the plating resist at the bottom of the wiring, and the shadow portion was not covered with FTO.
A test cell (iv) was produced in the same manner as the test cell (i) using the electrode substrate (iv). The photoelectric conversion characteristics of the test cell (iv) were evaluated by AM1.5 artificial sunlight, and the results are shown in Table 3. As a result, conversion efficiency of 3.5% or more is ◎, 2.5% or more and less than 3.5% is ◯, 2.0% or more and less than 2.5% is △, 2.0% Those less than were evaluated as x.
Moreover, the reduction rate of the conversion efficiency after 300-hour dark storage at 80 degreeC and the reduction rate of the conversion efficiency after 500-hour continuous light irradiation were measured. As a result of evaluating the durability, the conversion efficiency decrease rate was less than 3% of the fresh, ◎, 3% to less than 5%, ◯, 5% to less than 10%, and 10% or more to x.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
 表3の実験結果より、本発明の色素を用いた場合は、試験セル(i)の場合の変換効率は3.5%以上と、高い値を示した。一方、試験セル(iv)を用いた場合についてみると、比較例の色素を用いた場合と比較して、本発明の色素を用いた場合は、変換効率が高くなった。このため本発明の色素を用いることにより、試験セル選択の自由度が上がることがわかった(試料番号11と試料番号13との比較)。また、本発明の色素を用いた場合は、耐久性の結果は優れた結果を示した。 From the experimental results in Table 3, when the dye of the present invention was used, the conversion efficiency in the test cell (i) was a high value of 3.5% or more. On the other hand, when the test cell (iv) was used, the conversion efficiency was higher when the dye of the present invention was used as compared with the case where the dye of the comparative example was used. For this reason, it was found that the degree of freedom of test cell selection was increased by using the dye of the present invention (comparison between sample number 11 and sample number 13). Moreover, when the pigment | dye of this invention was used, the result of durability showed the outstanding result.
(実験4)
 ペルオキソチタン酸及び酸化チタン微粒子を生成する方法、並びにそれを用いて酸化物半導体膜を作製する方法について試験を行い、光電気化学電池を作製し、評価した。
(Experiment 4)
Tests were conducted on a method for producing peroxotitanic acid and titanium oxide fine particles and a method for producing an oxide semiconductor film using the peroxotitanic acid and titanium oxide fine particles, and a photoelectrochemical cell was produced and evaluated.
(光電池セル(A))
(1)酸化物半導体膜形成用塗布液(A)の調製
 5gの水素化チタンを1リットルの純水に懸濁し、5質量%の過酸化水素液400gを30分かけて添加し、ついで80℃に加熱して溶解してペルオキソチタン酸の溶液を調製した。この溶液の全量から90容積%を分取し、濃アンモニア水を添加してpH9に調整し、オートクレーブに入れ、250℃で5時間、飽和蒸気圧下で水熱処理を行ってチタニアコロイド粒子(A)を調製した。得られたチタニアコロイド粒子は、X線回折により結晶性の高いアナターゼ型酸化チタンであった。
 次に、上記で得られたチタニアコロイド粒子(A)を10質量%まで濃縮し、前記ペルオキソチタン酸溶液を混合し、この混合液中のチタンをTiO換算し、TiO質量の30質量%となるように膜形成助剤としてヒドロキシプロピルセルロースを添加して半導体膜形成用塗布液を調製した。
(Photovoltaic cell (A))
(1) Preparation of coating liquid (A) for forming an oxide semiconductor film 5 g of titanium hydride is suspended in 1 liter of pure water, 400 g of a 5 mass% hydrogen peroxide solution is added over 30 minutes, and then 80 A solution of peroxotitanic acid was prepared by heating to ° C and dissolution. 90% by volume was taken from the total amount of this solution, adjusted to pH 9 by adding concentrated aqueous ammonia, placed in an autoclave, hydrothermally treated at 250 ° C. for 5 hours under saturated vapor pressure, and titania colloidal particles (A) Was prepared. The obtained titania colloidal particles were anatase type titanium oxide having high crystallinity by X-ray diffraction.
Next, the obtained titania colloidal particles (A) was concentrated to 10 wt%, the peroxotitanic acid solution were mixed, the titanium of the mixed solution TiO 2 terms, TiO 2 mass of 30 mass% Then, hydroxypropylcellulose was added as a film formation aid so that a coating solution for forming a semiconductor film was prepared.
(2)酸化物半導体膜(A)の作製
 次いで、フッ素ドープした酸化スズが電極層として形成された透明ガラス基板上に前記塗布液を塗布し、自然乾燥し、引き続き低圧水銀ランプを用いて6000mJ/cmの紫外線を照射してペルオキソ酸を分解させ、塗膜を硬化させた。塗膜を300℃で30分間加熱してヒドロキシプロピルセルロースの分解およびアニーリングを行って酸化物半導体膜(A)をガラス基板に形成した。
(2) Production of oxide semiconductor film (A) Next, the coating solution was applied on a transparent glass substrate on which fluorine-doped tin oxide was formed as an electrode layer, dried naturally, and subsequently 6000 mJ using a low-pressure mercury lamp. The peroxoacid was decomposed by irradiating with / cm 2 of ultraviolet rays, and the coating film was cured. The coating film was heated at 300 ° C. for 30 minutes to decompose and anneal the hydroxypropyl cellulose to form an oxide semiconductor film (A) on the glass substrate.
(3)酸化物半導体膜(A)への色素の吸着
 次に、分光増感色素として本発明の色素の濃度3×10-4モル/リットルのエタノール溶液を調製した。この色素溶液を100rpmスピナーで、金属酸化物半導体膜(A)上へ塗布して乾燥した。この塗布および乾燥工程を5回行った。
(3) Adsorption of Dye to Oxide Semiconductor Film (A) Next, an ethanol solution having a concentration of 3 × 10 −4 mol / liter of the dye of the present invention was prepared as a spectral sensitizing dye. This dye solution was applied onto the metal oxide semiconductor film (A) with a 100 rpm spinner and dried. This coating and drying process was performed five times.
(4)電解質溶液の調製
 アセトニトリルと炭酸エチレンとの体積比が1:5の混合溶媒に、テトラプロピルアンモニウムアイオダイドを0.46モル/リットル、ヨウ素を0.07モル/リットルの濃度となるように溶解して電解質溶液を調製した。
(4) Preparation of electrolyte solution In a mixed solvent having a volume ratio of acetonitrile and ethylene carbonate of 1: 5, tetrapropylammonium iodide is adjusted to a concentration of 0.46 mol / liter and iodine to a concentration of 0.07 mol / liter. To prepare an electrolyte solution.
(5)光電気セル(A)の作製
 (2)で作製した、色素を吸着させた酸化物半導体膜(A)が形成されたガラス基板を一方の電極とし、他方の電極として、フッ素ドープした酸化スズを電極として形成しその上に白金を担持した透明ガラス基板を対向して配置し、側面を樹脂にてシールし、電極間に(4)の電解質溶液を封入し、さらに電極間をリード線で接続して光電気セル(A)を作製した。
(5) Production of photoelectric cell (A) The glass substrate on which the oxide semiconductor film (A) adsorbed with the dye produced in (2) was formed was used as one electrode, and the other electrode was fluorine-doped. A transparent glass substrate carrying tin oxide as an electrode and carrying platinum on it is placed facing it, the sides are sealed with resin, the electrolyte solution (4) is sealed between the electrodes, and the electrodes are lead between them. Photoelectric cells (A) were prepared by connecting with wires.
(6)光電気セル(A)の評価
 光電気セル(A)は、ソーラーシュミレーターで100W/mの強度の光を照射して、η(変換効率)を測定し、その結果を表4に示した。
(6) Evaluation of Photoelectric Cell (A) Photoelectric cell (A) was irradiated with light of 100 W / m 2 with a solar simulator, measured η (conversion efficiency), and the results are shown in Table 4. Indicated.
(光電池セル(B))
 紫外線を照射してペルオキソ酸を分解させ、膜を硬化させた後、Arガスのイオン照射(日新電気製:イオン注入装置、200eVで10時間照射)を行った以外は酸化物半導体膜(A)と同様にして酸化物半導体膜(B)を形成した。
 酸化物半導体膜(A)と同様に、酸化物半導体膜(B)に色素の吸着を行った。
 その後実験1と同様の方法で光電気セル(B)を作成し、ηを測定した。測定結果を表4に示した。
(Photovoltaic cell (B))
Oxide semiconductor film (A) except that after irradiation with ultraviolet light, peroxo acid was decomposed and the film was cured, Ar gas ion irradiation (Nisshin Electric Co., Ltd .: ion implantation apparatus, irradiation at 200 eV for 10 hours) was performed. ), An oxide semiconductor film (B) was formed.
Similarly to the oxide semiconductor film (A), the dye was adsorbed to the oxide semiconductor film (B).
Thereafter, a photoelectric cell (B) was prepared in the same manner as in Experiment 1, and η was measured. The measurement results are shown in Table 4.
(光電池セル(C))
 18.3gの4塩化チタンを純水で希釈して、TiO換算で1.0質量%含有する水溶液を得た。この水溶液を撹拌しながら、15質量%のアンモニア水を添加し、pH9.5の白色スラリーを得た。このスラリーを濾過洗浄し、TiO換算で、10.2質量%の水和酸化チタンゲルのケーキを得た。このケーキと5質量%過酸化水素液400gを混合し、ついで80℃に加熱して溶解してペルオキソチタン酸の溶液を調製した。この溶液全量から90体積%を分取し、これに濃アンモニア水を添加してpH9に調整し、オートクレーブに入れ、250℃で5時間、飽和蒸気圧下で水熱処理を行ってチタニアコロイド粒子(C)を調製した。
 次に、上記で得られたペルオキソチタン酸溶液とチタニアコロイド粒子(C)を使用して酸化物半導体膜(A)と同様にして酸化物半導体膜(C)を形成し、金属酸化物半導体膜(A)と同様にして、分光増感色素として本発明の色素の吸着を行った。
 その後光電気セル(A)と同様の方法で光電気セル(C)を作製し、ηを測定した。その結果を表4に示した。
(Photovoltaic cell (C))
18.3 g of titanium tetrachloride was diluted with pure water to obtain an aqueous solution containing 1.0% by mass in terms of TiO 2 . While stirring this aqueous solution, 15% by mass of aqueous ammonia was added to obtain a white slurry having a pH of 9.5. This slurry was washed by filtration to obtain a 10.2% by mass hydrated titanium oxide gel cake in terms of TiO 2 . This cake was mixed with 400 g of a 5 mass% hydrogen peroxide solution, and then heated to 80 ° C. to dissolve to prepare a peroxotitanic acid solution. 90% by volume is taken from the total amount of this solution, and concentrated ammonia water is added to adjust the pH to 9, and the mixture is placed in an autoclave, hydrothermally treated at 250 ° C. for 5 hours under saturated vapor pressure, and titania colloidal particles (C ) Was prepared.
Next, using the peroxotitanic acid solution obtained above and titania colloidal particles (C), an oxide semiconductor film (C) is formed in the same manner as the oxide semiconductor film (A), and the metal oxide semiconductor film In the same manner as (A), the dye of the present invention was adsorbed as a spectral sensitizing dye.
Thereafter, a photoelectric cell (C) was prepared by the same method as that for the photoelectric cell (A), and η was measured. The results are shown in Table 4.
(光電池セル(D))
 18.3gの4塩化チタンを純水で希釈してTiO換算で1.0質量%含有する水溶液を得た。これを撹拌しながら、15質量%のアンモニア水を添加し、pH9.5の白色スラリーを得た。このスラリーを濾過洗浄した後、純水に懸濁してTiOとして0.6質量%の水和酸化チタンゲルのスラリーとし、これに塩酸を加えてpH2とした後、オートクレーブに入れ、180℃で5時間、飽和蒸気圧下で水熱処理を行ってチタニアコロイド粒子(D)を調製した。
 次に、チタニアコロイド粒子(D)を10質量%まで濃縮し、これに、TiOに換算して、30質量%となるように膜形成助剤としてヒドロキシプロピルセルロースを添加して、半導体膜形成用塗布液を調製した。次いで、フッ素ドープした酸化スズが電極層として形成された透明ガラス基板上に、前記塗布液を塗布し、自然乾燥し、引き続き低圧水銀ランプを用いて6000mJ/cmの紫外線を照射し、膜を硬化させた。さらに、300℃で30分間加熱してヒドロキシプロピルセルロースの分解およびアニーリングを行い、酸化物半導体膜(D)を形成した。
 次に、酸化物半導体膜(A)と同様にして分光増感色素として、本発明の色素の吸着を行った。
 その後、光電気セル(A)と同様の方法で光電気セル(D)を作成し、ηを測定した。実験結果を表4に示した。結果は、変換効率が3.5%以上のものを◎、2.5%以上3.5%未満のものを○、2.0%以上2.5%未満のものを△、2.0%未満のものを×として表示した。
 また、80℃で300時間暗所保存後の変換効率の低下率、及び600時間連続光照射後の変換効率の低下率を測定した。これらの耐久性の評価結果は、変換効率の低下率がフレシュの3%未満を◎、3%以上5%未満を○、5%以上10%未満を△、10%以上を×とした。
(Photovoltaic cell (D))
18.3 g of titanium tetrachloride was diluted with pure water to obtain an aqueous solution containing 1.0% by mass in terms of TiO 2 . While stirring this, 15% by mass of ammonia water was added to obtain a white slurry having a pH of 9.5. This slurry was filtered and washed, suspended in pure water to obtain a 0.6 mass% hydrated titanium oxide gel slurry as TiO 2 , adjusted to pH 2 by adding hydrochloric acid thereto, put in an autoclave, and stirred at 180 ° C. for 5 hours. The titania colloidal particles (D) were prepared by performing hydrothermal treatment for a period of time under saturated vapor pressure.
Next, titania colloidal particles (D) are concentrated to 10% by mass, and hydroxypropyl cellulose is added as a film forming aid so as to be 30% by mass in terms of TiO 2 to form a semiconductor film. A coating solution was prepared. Next, the coating solution is applied onto a transparent glass substrate on which fluorine-doped tin oxide is formed as an electrode layer, dried naturally, and subsequently irradiated with 6000 mJ / cm 2 of ultraviolet rays using a low-pressure mercury lamp to form a film. Cured. Furthermore, it heated at 300 degreeC for 30 minute (s), decomposed | disassembled and annealed hydroxypropyl cellulose, and formed the oxide semiconductor film (D).
Next, the dye of the present invention was adsorbed as a spectral sensitizing dye in the same manner as the oxide semiconductor film (A).
Then, the photoelectric cell (D) was created by the method similar to a photoelectric cell (A), and (eta) was measured. The experimental results are shown in Table 4. As a result, conversion efficiency of 3.5% or more is ◎, 2.5% or more and less than 3.5% is ◯, 2.0% or more and less than 2.5% is △, 2.0% Less than were shown as x.
Moreover, the reduction rate of the conversion efficiency after 300-hour dark storage at 80 degreeC and the reduction rate of the conversion efficiency after 600 hours continuous light irradiation were measured. As a result of evaluating the durability, the conversion efficiency decrease rate was less than 3% of the fresh, ◎, 3% to less than 5%, ◯, 5% to less than 10%, and 10% or more to x.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
 表4の実験結果より、本発明の色素の場合には、試験セル(A)~(C)を使用した場合にとりわけ変換効率が高いことがわかった。 From the experimental results shown in Table 4, it was found that the conversion efficiency was particularly high when the test cells (A) to (C) were used in the case of the dye of the present invention.
(実験5)
 方法を変えて酸化チタンの調製又は合成を行い、得られた酸化チタンから酸化物半導体膜を作製し、光電気化学電池とし、その評価を行った。
(Experiment 5)
Titanium oxide was prepared or synthesized by changing the method, an oxide semiconductor film was prepared from the obtained titanium oxide, and a photoelectrochemical cell was evaluated.
(1)熱処理法による酸化チタンの調製
 市販のアナターゼ型酸化チタン(石原産業(株)製、商品名ST-01)を用い、これを約900℃に加熱してブルーカイト型の酸化チタンに変換し、さらに約1,200℃に加熱してルチル型の酸化チタンとした。それぞれ順に、比較酸化チタン1(アナターゼ型)、酸化チタン1(ブルーカイト型)、比較酸化チタン2(ルチル型)とする。
(1) Preparation of titanium oxide by heat treatment Using commercially available anatase-type titanium oxide (trade name ST-01, manufactured by Ishihara Sangyo Co., Ltd.), this is heated to about 900 ° C and converted to blue-kite type titanium oxide. Further, it was heated to about 1,200 ° C. to obtain a rutile type titanium oxide. Respectively, comparative titanium oxide 1 (anatase type), titanium oxide 1 (blue kite type), and comparative titanium oxide 2 (rutile type) are used.
(2)湿式法による酸化チタンの合成
(酸化チタン2(ブルーカイト型))
 蒸留水954mlを還流冷却器付きの反応槽に装入し、95℃に加温した。撹拌速度を約200rpmに保ちながら、この蒸留水に四塩化チタン(Ti含有量:16.3質量%、比重1.59、純度99.9%)水溶液46mlを約5.0ml/minの速度で反応槽に滴下した。このとき、反応液の温度が下がらないように注意した。その結果、四塩化チタン濃度が0.25mol/リットル(酸化チタン換算2質量%)であった。反応槽中では反応液が滴下直後から、白濁し始めたがそのままの温度で保持を続け、滴下終了後さらに昇温し沸点付近(104℃)まで加熱し、この状態で60分間保持して完全に反応を終了した。
 反応により、得られたゾルを濾過し、次いで60℃の真空乾燥器を用いて粉末とした。この粉末をX線回折法により定量分析した結果、(ブルーカイト型121面のピーク強度)/(三本が重なる位置でのピーク強度)比は0.38、(ルチル型のメインピーク強度)/(三本が重なる位置でのピーク強度)比は0.05であった。これらから求めると酸化チタンは、ブルーカイト型が約70.0質量%、ルチル型が約1.2質量%、アナターゼ型が約28.8質量%の結晶性であった。また、透過型電子顕微鏡でこの微粒子を観察したところ、1次粒子の平均粒径は0.015μmであった。
(2) Synthesis of titanium oxide by wet method (titanium oxide 2 (blue kite type))
Distilled water (954 ml) was charged into a reaction vessel equipped with a reflux condenser and heated to 95 ° C. While maintaining the stirring speed at about 200 rpm, 46 ml of an aqueous solution of titanium tetrachloride (Ti content: 16.3 mass%, specific gravity 1.59, purity 99.9%) was added to this distilled water at a speed of about 5.0 ml / min. It was dripped at the reaction tank. At this time, care was taken not to lower the temperature of the reaction solution. As a result, the titanium tetrachloride concentration was 0.25 mol / liter (2% by mass in terms of titanium oxide). In the reaction vessel, the reaction solution started to become cloudy immediately after dropping, but kept at the same temperature. After the dropping was completed, the temperature was further raised and heated to the vicinity of the boiling point (104 ° C.). The reaction was terminated.
The sol obtained by the reaction was filtered, and then powdered using a vacuum dryer at 60 ° C. As a result of quantitative analysis of this powder by X-ray diffractometry, the ratio of (peak intensity on the surface of blue kite type 121) / (peak intensity at the position where the three overlap) is 0.38, (rutile main peak intensity) / The ratio (peak intensity at the position where the three lines overlap) was 0.05. From these, the titanium oxide was crystallinity of about 70.0% by mass for the brookite type, about 1.2% by mass for the rutile type, and about 28.8% by mass for the anatase type. Further, when the fine particles were observed with a transmission electron microscope, the average particle diameter of the primary particles was 0.015 μm.
(酸化チタン3(ブルーカイト型))
 三塩化チタン水溶液(Ti含有量:28質量%、比重1.5、純度99.9%)を蒸留水で希釈し、チタン濃度換算で0.25モル/Lの溶液とした。このとき、液温が上昇しないよう氷冷して、50℃以下に保った。次に、この溶液を還流冷却器付きの反応槽に500ml投入し、85℃に加温しながらオゾンガス発生装置から純度80%のオゾンガスを1L/minでバブリングし、酸化反応を行なった。この状態で2時間保持し、完全に反応を終了した。得られたゾルをろ過、真空乾燥し、粉末とした。この粉末をX線回折法により定量分析した結果、(ブルーカイト型121面のピーク強度)/(三本が重なる位置でのピーク強度)比は0.85、(ルチル型のメインピーク強度)/(三本が重なる位置でのピーク強度)比は0であった。これらから求めると二酸化チタンは、ブルーカイト型が約98質量%、ルチル型が0質量%、アナターゼ型が0質量%であり、約2%は無定形であった。また、透過型電子顕微鏡でこの微粒子を観察したところ、1次粒子の平均粒径は0.05μmであった。
(Titanium oxide 3 (Blue Kite type))
An aqueous solution of titanium trichloride (Ti content: 28% by mass, specific gravity 1.5, purity 99.9%) was diluted with distilled water to obtain a solution having a concentration of 0.25 mol / L in terms of titanium concentration. At this time, it was ice-cooled so as not to increase the liquid temperature and kept at 50 ° C. or lower. Next, 500 ml of this solution was put into a reaction tank equipped with a reflux condenser, and ozone gas with a purity of 80% was bubbled from the ozone gas generator at 1 L / min while heating at 85 ° C. to carry out an oxidation reaction. This state was maintained for 2 hours to complete the reaction. The obtained sol was filtered and vacuum-dried to obtain a powder. As a result of quantitative analysis of this powder by X-ray diffractometry, the ratio of (peak intensity on the surface of blue kite type 121) / (peak intensity at the position where the three overlap) is 0.85, (rutile main peak intensity) / The ratio (peak intensity at the position where the three lines overlap) was 0. From these, the titanium dioxide was about 98% by mass for the blue kite type, 0% by mass for the rutile type, 0% by mass for the anatase type, and about 2% was amorphous. Further, when the fine particles were observed with a transmission electron microscope, the average particle diameter of the primary particles was 0.05 μm.
(色素増感型光電変換素子の作製および評価)
 上記の酸化チタン1~3で調製した酸化チタンを半導体として特開2000-340269の図1に示す構成を有する光電変換素子を次のように作製した。
 ガラス基板上にフッ素ドープの酸化スズをコートし、導電性透明電極とした。電極面上にそれぞれの酸化チタン粒子を原料としたペーストを作成し、バーコート法で厚さ50μmに塗布した後、500℃で焼成して膜厚約20μmの薄層を形成した。次に色素の3×10-4モル濃度のエタノール溶液を調製し、これに上記の酸化チタンの薄層を形成したガラス基板を浸漬し、12時間室温で保持した。
(Production and evaluation of dye-sensitized photoelectric conversion device)
A photoelectric conversion element having the structure shown in FIG. 1 of JP-A No. 2000-340269 was produced as follows using titanium oxide prepared by the above titanium oxides 1 to 3 as a semiconductor.
A glass substrate was coated with fluorine-doped tin oxide to form a conductive transparent electrode. A paste using each titanium oxide particle as a raw material was formed on the electrode surface, applied to a thickness of 50 μm by a bar coating method, and then baked at 500 ° C. to form a thin layer having a thickness of about 20 μm. Next, a 3 × 10 −4 molar ethanol solution of the dye was prepared, and the glass substrate on which the above-mentioned titanium oxide thin layer was formed was immersed therein and kept at room temperature for 12 hours.
 電解液としてテトラプロピルアンモニウムのヨウ素塩とヨウ化リチウムのアセトニトリル溶液を用い、白金を対極として特開2000-340269の図1に示す構成を有する光電変換素子を作製した。光電変換は160wの高圧水銀ランプの光(フィルターで赤外線部をカット)を上記の素子に照射し、その際の変換効率を測定した。結果を表5に示す。結果は、変換効率が3.5%以上のものを◎、2.5%以上3.5%未満のものを○、2.0%以上2.5%未満のものを△、2.0%未満のものを×として表示した。また、80℃で300時間暗所保存後の変換効率の低下率、及び600時間連続光照射後の変換効率の低下率を測定した。これらの耐久性の評価結果は、変換効率の低下率がフレシュの3%未満を◎、3%以上5%未満を○、5%以上10%未満を△、10%以上を×とした。 A photoelectric conversion element having the configuration shown in FIG. 1 of JP-A No. 2000-340269 was prepared using an iodine salt of tetrapropylammonium and an acetonitrile solution of lithium iodide as an electrolytic solution and using platinum as a counter electrode. For photoelectric conversion, light from a 160-w high-pressure mercury lamp (the infrared part was cut by a filter) was applied to the above-mentioned element, and the conversion efficiency at that time was measured. The results are shown in Table 5. The results are: conversion efficiency of 3.5% or more ◎, 2.5% or more of less than 3.5% ○, 2.0% or more of less than 2.5% △, 2.0% Less than were shown as x. Moreover, the reduction rate of the conversion efficiency after 300-hour dark storage at 80 degreeC and the reduction rate of the conversion efficiency after 600 hours continuous light irradiation were measured. As a result of evaluating the durability, the conversion efficiency decrease rate was less than 3% of the fresh, ◎, 3% to less than 5%, ◯, 5% to less than 10%, and 10% or more to x.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
 表5の実験結果より、本発明の色素は変換効率が高く、耐久性も優れていることがわかった。 From the experimental results in Table 5, it was found that the dye of the present invention has high conversion efficiency and excellent durability.
(実験6)
 粒径の異なる酸化チタンを用いて半導体電極として、光電気化学電池を作製し、その特性を評価した。
[ペーストの調製]
 まず光電極を構成する半導体電極の半導体層又は光散乱層を形成するためのペーストを以下の手順で調製した。
(Experiment 6)
Photoelectrochemical cells were fabricated as semiconductor electrodes using titanium oxides having different particle sizes, and the characteristics were evaluated.
[Preparation of paste]
First, a paste for forming a semiconductor layer or a light scattering layer of a semiconductor electrode constituting the photoelectrode was prepared by the following procedure.
(ペースト1)
 球形のTiO粒子(アナターゼ型、平均粒径;25nm、以下、球形TiO粒子1という)とを硝酸溶液に入れて撹拌することによりチタニアスラリーを調製した。次に、チタニアスラリーに増粘剤としてセルロース系バインダーを加え、混練してペーストを調製した。
(Paste 1)
A titania slurry was prepared by placing spherical TiO 2 particles (anatase type, average particle size: 25 nm, hereinafter referred to as spherical TiO 2 particles 1) in a nitric acid solution and stirring. Next, a cellulose binder as a thickener was added to the titania slurry and kneaded to prepare a paste.
(ペースト2)
 球形TiO粒子1と、球形のTiO粒子(アナターゼ型、平均粒径;200nm、以下、球形TiO粒子2という)とを硝酸溶液に入れて撹拌することによりチタニアスラリーを調製した。次に、チタニアスラリーに増粘剤としてセルロース系バインダーを加え、混練してペースト(TiO粒子1の質量:TiO粒子2の質量=30:70)を調製した。
(Paste 2)
A titania slurry was prepared by placing spherical TiO 2 particles 1 and spherical TiO 2 particles (anatase type, average particle size: 200 nm, hereinafter referred to as spherical TiO 2 particles 2) in a nitric acid solution and stirring. Next, a cellulose binder as a thickener was added to the titania slurry and kneaded to prepare a paste (mass of TiO 2 particles 1: mass of TiO 2 particles 2 = 30:70).
(ペースト3)
 ペースト1に、棒状のTiO粒子(アナターゼ型、直径;100nm、アスペクト比;5、以下、棒状TiO粒子1という)を混合し、棒状TiO粒子1の質量:ペースト1の質量=10:90のペーストを調製した。
(Paste 3)
The paste 1 is mixed with rod-like TiO 2 particles (anatase type, diameter: 100 nm, aspect ratio: 5, hereinafter referred to as rod-like TiO 2 particles 1), the mass of the rod-like TiO 2 particles 1: the mass of the paste 1 = 10: Ninety pastes were prepared.
(ペースト4)
 ペースト1に、棒状TiO粒子1を混合し、棒状TiO粒子1の質量:ペースト1の質量=30:70のペーストを調製した。
(Paste 4)
The paste 1, a rod-shaped TiO 2 particles 1 were mixed, the mass rod-shaped TiO 2 particles 1: Paste 1 Mass = 30: 70 paste was prepared.
(ペースト5)
 ペースト1に、棒状TiO粒子1を混合し、棒状TiO粒子1の質量:ペースト1の質量=50:50のペーストを調製した。
(Paste 5)
The paste 1, a rod-shaped TiO 2 particles 1 were mixed, the mass rod-shaped TiO 2 particles 1: Paste 1 Mass = 50: 50 paste was prepared.
(ペースト6)
 ペースト1に、板状のマイカ粒子(直径;100nm、アスペクト比;6、以下、板状マイカ粒子1という)を混合し、板状マイカ粒子1の質量:ペースト1の質量=20:80のペーストを調製した。
(Paste 6)
The paste 1 is mixed with plate-like mica particles (diameter: 100 nm, aspect ratio: 6, hereinafter referred to as plate-like mica particles 1), and the mass of the plate-like mica particles 1: the mass of the paste 1 = 20: 80 paste. Was prepared.
(ペースト7)
 ペースト1に、棒状のTiO粒子(アナターゼ、直径;30nm、アスペクト比;6.3、以下、棒状TiO粒子2という)を混合し、棒状TiO粒子2の質量:ペースト1の質量=30:70のペーストを調製した。
(Paste 7)
The paste 1 is mixed with rod-like TiO 2 particles (anatase, diameter: 30 nm, aspect ratio: 6.3, hereinafter referred to as rod-like TiO 2 particles 2), and the mass of the rod-like TiO 2 particles 2: the mass of the paste 1 = 30. : 70 paste was prepared.
(ペースト8)
 ペースト1に、棒状のTiO粒子(アナターゼ、直径;50nm、アスペクト比;6.1、以下、棒状TiO粒子3という)を混合し、棒状TiO粒子3の質量:ペースト1の質量=30:70のペーストを調製した。
(Paste 8)
The paste 1 is mixed with rod-like TiO 2 particles (anatase, diameter: 50 nm, aspect ratio: 6.1, hereinafter referred to as rod-like TiO 2 particles 3), and the mass of the rod-like TiO 2 particles 3: the mass of the paste 1 = 30. : 70 paste was prepared.
(ペースト9)
 ペースト1に、棒状のTiO粒子(アナターゼ、直径;75nm、アスペクト比;5.8、以下、棒状TiO粒子4という)を混合し、棒状TiO粒子4の質量:ペースト1の質量=30:70のペーストを調製した。
(Paste 9)
The paste 1 is mixed with rod-like TiO 2 particles (anatase, diameter: 75 nm, aspect ratio: 5.8, hereinafter referred to as rod-like TiO 2 particles 4), and the mass of the rod-like TiO 2 particles 4: the mass of the paste 1 = 30. : 70 paste was prepared.
(ペースト10)
 ペースト1に、棒状のTiO粒子(アナターゼ、直径;130nm、アスペクト比;5.2、以下、棒状TiO粒子5という)を混合し、棒状TiO粒子5の質量:ペースト1の質量=30:70のペーストを調製した。
(Paste 10)
The paste 1 is mixed with rod-like TiO 2 particles (anatase, diameter: 130 nm, aspect ratio: 5.2, hereinafter referred to as rod-like TiO 2 particles 5), and the mass of the rod-like TiO 2 particles 5: the mass of the paste 1 = 30. : 70 paste was prepared.
(ペースト11)
 ペースト1に、棒状のTiO粒子(アナターゼ、直径;180nm、アスペクト比;5、以下、棒状TiO粒子6という)を混合し、棒状TiO粒子6の質量:ペースト1の質量=30:70のペーストを調製した。
(Paste 11)
The paste 1 is mixed with rod-like TiO 2 particles (anatase, diameter: 180 nm, aspect ratio: 5, hereinafter referred to as rod-like TiO 2 particles 6), and the mass of the rod-like TiO 2 particles 6: the mass of the paste 1 = 30: 70. A paste was prepared.
(ペースト12)
 ペースト1に、棒状のTiO粒子(アナターゼ、直径;240nm、アスペクト比;5、以下、棒状TiO粒子7という)を混合し、棒状TiO粒子7の質量:ペースト1の質量=30:70のペーストを調製した。
(Paste 12)
The paste 1 is mixed with rod-like TiO 2 particles (anatase, diameter: 240 nm, aspect ratio: 5, hereinafter referred to as rod-like TiO 2 particles 7), and the mass of the rod-like TiO 2 particles 7: the mass of the paste 1 = 30: 70. A paste was prepared.
(ペースト13)
 ペースト1に、棒状のTiO粒子(アナターゼ、直径;110nm、アスペクト比;4.1、以下、棒状TiO粒子8という)を混合し、棒状TiO粒子8の質量:ペースト1の質量=30:70のペーストを調製した。
(Paste 13)
The paste 1 is mixed with rod-like TiO 2 particles (anatase, diameter: 110 nm, aspect ratio: 4.1, hereinafter referred to as rod-like TiO 2 particles 8), and the mass of the rod-like TiO 2 particles 8: the mass of the paste 1 = 30. : 70 paste was prepared.
(ペースト14)
 ペースト1に、棒状のTiO粒子(アナターゼ、直径;105nm、アスペクト比;3.4、以下、棒状TiO粒子9という)を混合し、棒状TiO粒子9の質量:ペースト1の質量=30:70のペーストを調製した。
(Paste 14)
The paste 1 is mixed with rod-shaped TiO 2 particles (anatase, diameter: 105 nm, aspect ratio: 3.4, hereinafter referred to as rod-shaped TiO 2 particles 9), and the mass of the rod-shaped TiO 2 particles 9: the mass of the paste 1 = 30. : 70 paste was prepared.
(光電気化学電池1)
 以下に示す手順により、特開2002-289274記載の図5に示した光電極12と同様の構成を有する光電極を作製し、更に、光電極を用いて、当該光電極以外は色素増感型太陽電池20と同様の構成を有する10×10mmのスケールの光電気化学電池1を作製した。
(Photoelectrochemical cell 1)
A photoelectrode having the same configuration as that of the photoelectrode 12 shown in FIG. 5 described in JP-A-2002-289274 is prepared by the following procedure, and further a dye-sensitized type using the photoelectrode except for the photoelectrode. A 10 × 10 mm scale photoelectrochemical cell 1 having the same configuration as that of the solar cell 20 was produced.
 ガラス基板上にフッ素ドープされたSnO導電膜(膜厚;500nm)を形成した透明電極を準備した。そして、このSnO導電膜上に、上記のペースト2をスクリーン印刷し、次いで乾燥させた。その後、空気中、450℃の条件のもとで焼成した。更に、ペースト4を用いてこのスクリーン印刷と焼成とを繰り返すことにより、SnO導電膜上に図5に示す半導体電極2と同様の構成の半導体電極(受光面の面積;10mm×10mm、層厚;10μm、半導体層の層厚;6μm、光散乱層の層厚;4μm、光散乱層に含有される棒状TiO粒子1の含有率;30質量%)を形成し、増感色素を含有していない光電極を作製した。 A transparent electrode in which a fluorine-doped SnO 2 conductive film (film thickness: 500 nm) was formed on a glass substrate was prepared. Then, the paste 2 was screen-printed on the SnO 2 conductive film and then dried. Then, it baked on the conditions of 450 degreeC in the air. Further, by repeating this screen printing and baking using the paste 4, a semiconductor electrode having the same configuration as the semiconductor electrode 2 shown in FIG. 5 on the SnO 2 conductive film (area of light receiving surface; 10 mm × 10 mm, layer thickness) 10 μm, layer thickness of semiconductor layer; 6 μm, layer thickness of light scattering layer; 4 μm, content of rod-like TiO 2 particles 1 contained in the light scattering layer; 30% by mass), containing sensitizing dye A photoelectrode was prepared.
 次に、半導体電極に色素を以下のようにして吸着させた。まずマグネシウムエトキシドで脱水した無水エタノールを溶媒として、これに本発明の色素を、その濃度が3×10-4mol/Lとなるように溶解し、色素溶液を調製した。次に、この溶液に半導体電極を浸漬し、これにより、半導体電極に色素を約1.5ミリモル/m吸着し、光電極10を完成させた。 Next, the pigment | dye was made to adsorb | suck to a semiconductor electrode as follows. First, an anhydrous ethanol dehydrated with magnesium ethoxide was used as a solvent, and the dye of the present invention was dissolved in the solvent so as to have a concentration of 3 × 10 −4 mol / L to prepare a dye solution. Next, the semiconductor electrode was immersed in this solution, thereby adsorbing about 1.5 mmol / m 2 of the dye to the semiconductor electrode, and the photoelectrode 10 was completed.
 次に、対極として上記の光電極と同様の形状と大きさを有する白金電極(Pt薄膜の厚さ;100nm)、電解質Eとして、ヨウ素及びヨウ化リチウムを含むヨウ素系レドックス溶液を調製した。更に、半導体電極の大きさに合わせた形状を有するデュポン社製のスペーサーS(商品名:「サーリン」)を準備し、特開2002-289274記載の図3に示すように、光電極10と対極CEとスペーサーSを介して対向させ、内部に上記の電解質を充填して光電気化学電池1を完成させた。 Next, an iodine-based redox solution containing iodine and lithium iodide as a platinum electrode (thickness of Pt thin film; 100 nm) having the same shape and size as the above-described photoelectrode as a counter electrode and electrolyte E was prepared. Furthermore, a spacer S (trade name: “Surlin”) manufactured by DuPont having a shape corresponding to the size of the semiconductor electrode was prepared. As shown in FIG. 3 described in JP-A-2002-289274, the photoelectrode 10 and the counter electrode were prepared. The photoelectrochemical cell 1 was completed by facing the CE through the spacer S and filling the above electrolyte therein.
(光電気化学電池2)
 半導体電極の製造を以下のようにして行ったこと以外は、光電気化学電池1と同様の手順により特開2002-289274記載の図1に示した光電極10及び特開2002-289274記載の図3に示した色素増感型太陽電池20と同様の構成を有する光電極及び光電気化学電池2を作製した。
(Photoelectrochemical cell 2)
The photoelectrode 10 shown in FIG. 1 described in JP-A No. 2002-289274 and the diagram described in JP-A No. 2002-289274 are the same as those of the photoelectrochemical cell 1 except that the semiconductor electrode is manufactured as follows. A photoelectrode and a photoelectrochemical cell 2 having the same configuration as the dye-sensitized solar cell 20 shown in FIG.
 ペースト2を半導体層形成用ペーストとして使用した。そして、SnO導電膜上に、ペースト2をスクリーン印刷し、次いで乾燥させた。その後、空気中、450℃の条件のもとで焼成し、半導体層を形成した。 Paste 2 was used as a semiconductor layer forming paste. Then, paste 2 was screen-printed on the SnO 2 conductive film and then dried. Then, it baked on the conditions of 450 degreeC in the air, and formed the semiconductor layer.
 ペースト3を光散乱層の最内部の層形成用ペーストとして使用した。また、ペースト5を光散乱層の最外部の層形成用ペーストとして使用した。そして、色素増感太陽電池1と同様にして半導体層上に光散乱層を形成した。 Paste 3 was used as the innermost layer forming paste of the light scattering layer. The paste 5 was used as the outermost layer forming paste of the light scattering layer. Then, a light scattering layer was formed on the semiconductor layer in the same manner as in the dye-sensitized solar cell 1.
 そして、SnO導電膜上に、特開2002-289274記載の図1に示す半導体電極2と同様の構成の半導体電極(受光面の面積;10mm×10mm、層厚;10μm、半導体層の層厚;3μm、最内部の層の層厚;4μm、最内部の層に含有される棒状TiO粒子1の含有率;10質量%、最外部の層の層厚;3μm、最内部の層に含有される棒状TiO粒子1の含有率;50質量%)を形成し、増感色素を含有していない光電極を作製した。光電気化学電池1と同様に、光電極と対極CEとスペーサーSを介して対向させ、内部に上記の電解質を充填して光電気化学電池2を完成させた。 Then, on the SnO 2 conductive film, a semiconductor electrode having the same configuration as the semiconductor electrode 2 shown in FIG. 1 described in JP-A No. 2002-289274 (light receiving surface area: 10 mm × 10 mm, layer thickness: 10 μm, layer thickness of the semiconductor layer) 3 μm, the thickness of the innermost layer; 4 μm, the content of rod-like TiO 2 particles 1 contained in the innermost layer; 10% by mass, the thickness of the outermost layer; 3 μm, contained in the innermost layer The content ratio of the rod-like TiO 2 particles 1 to be formed; 50% by mass) was formed, and a photoelectrode containing no sensitizing dye was produced. Similarly to the photoelectrochemical cell 1, the photoelectrochemical cell 2 was completed by making the photoelectrode, the counter electrode CE, and the spacer S face each other and filling the above electrolyte therein.
(光電気化学電池3)
 半導体電極の製造に際して、ペースト1を半導体層形成用ペーストとして使用し、ペースト4を光散乱層形成用ペーストとして使用したこと以外は、光電気化学電池1と同様の手順により図5に示した光電極10及び特開2002-289274記載の図3に示した光電気化学電池20と同様の構成を有する光電極及び光電気化学電池3を作製した。なお、半導体電極は、受光面の面積;10mm×10mm、層厚;10μm、半導体層の層厚;5μm、光散乱層の層厚;5μm、光散乱層に含有される棒状TiO粒子1の含有率;30質量%であった。
(Photoelectrochemical cell 3)
The light shown in FIG. 5 was prepared by the same procedure as that of the photoelectrochemical cell 1 except that the paste 1 was used as the semiconductor layer forming paste and the paste 4 was used as the light scattering layer forming paste when the semiconductor electrode was manufactured. A photoelectrode and photoelectrochemical cell 3 having the same configuration as that of the electrode 10 and the photoelectrochemical cell 20 shown in FIG. 3 described in JP-A-2002-289274 were produced. The semiconductor electrode has a light receiving surface area of 10 mm × 10 mm, a layer thickness of 10 μm, a semiconductor layer thickness of 5 μm, a light scattering layer thickness of 5 μm, and the rod-like TiO 2 particles 1 contained in the light scattering layer. Content rate: 30% by mass.
(光電気化学電池4)
 半導体電極の製造に際して、ペースト2を半導体層形成用ペーストとして使用し、ペースト6を光散乱層形成用ペーストとして使用したこと以外は、光電気化学電池1と同様の手順により図5に示した光電極10及び特開2002-289274記載の図3に示した光電気化学電池20と同様の構成を有する光電極及び光電気化学電池4を作製した。なお、半導体電極は、受光面の面積;10mm×10mm、層厚;10μm、半導体層の層厚;6.5μm、光散乱層の層厚;3.5μm、光散乱層に含有される板状マイカ粒子1の含有率;20質量%であった。
(Photoelectrochemical cell 4)
In the production of the semiconductor electrode, the light shown in FIG. 5 was obtained by the same procedure as that of the photoelectrochemical cell 1 except that the paste 2 was used as the semiconductor layer forming paste and the paste 6 was used as the light scattering layer forming paste. A photoelectrode and photoelectrochemical cell 4 having the same configuration as the electrode 10 and the photoelectrochemical cell 20 shown in FIG. 3 described in JP-A-2002-289274 were produced. The semiconductor electrode has a light receiving surface area: 10 mm × 10 mm, layer thickness: 10 μm, semiconductor layer thickness: 6.5 μm, light scattering layer thickness: 3.5 μm, plate-like contained in the light scattering layer The content of mica particles 1 was 20% by mass.
(光電気化学電池5)
 半導体電極の製造に際して、ペースト2を半導体層形成用ペーストとして使用し、ペースト8を光散乱層形成用ペーストとして使用したこと以外は、光電気化学電池1と同様の手順により光電極及び光電気化学電池5を作製した。なお、半導体電極の光散乱層に含有される棒状TiO粒子3の含有率;30質量%であった。
(Photoelectrochemical cell 5)
In the production of the semiconductor electrode, the photoelectrode and the photoelectrochemistry were prepared in the same procedure as in the photoelectrochemical cell 1 except that the paste 2 was used as the semiconductor layer forming paste and the paste 8 was used as the light scattering layer forming paste. Battery 5 was produced. The content ratio of the rod-shaped TiO 2 particles 3 contained in the light scattering layer of the semiconductor electrode; was 30 wt%.
(光電気化学電池6)
 半導体電極の製造に際して、ペースト2を半導体層形成用ペーストとして使用し、ペースト9を光散乱層形成用ペーストとして使用したこと以外は、光電気化学電池1と同様の手順により光電極及び光電気化学電池6を作製した。なお、半導体電極の光散乱層に含有される棒状TiO粒子4の含有率;30質量%であった。
(Photoelectrochemical cell 6)
In the production of the semiconductor electrode, the photoelectrode and the photoelectrochemical process were performed in the same manner as in the photoelectrochemical cell 1 except that the paste 2 was used as the semiconductor layer forming paste and the paste 9 was used as the light scattering layer forming paste. A battery 6 was produced. The content ratio of the rod-shaped TiO 2 particles 4 contained in the light scattering layer of the semiconductor electrode; was 30 wt%.
(光電気化学電池7)
 半導体電極の製造に際して、ペースト2を半導体層形成用ペーストとして使用し、ペースト10を光散乱層形成用ペーストとして使用したこと以外は、光電気化学電池1と同様の手順により光電極及び光電気化学電池7を作製した。なお、半導体電極の光散乱層に含有される棒状TiO粒子5の含有率;30質量%であった。
(Photoelectrochemical cell 7)
In the production of the semiconductor electrode, the photoelectrode and the photoelectrochemistry were prepared in the same procedure as in the photoelectrochemical cell 1 except that the paste 2 was used as the semiconductor layer forming paste and the paste 10 was used as the light scattering layer forming paste. Battery 7 was produced. The content ratio of the rod-shaped TiO 2 particles 5 contained in the light scattering layer of the semiconductor electrode; was 30 wt%.
(光電気化学電池8)
 半導体電極の製造に際して、ペースト2を半導体層形成用ペーストとして使用し、ペースト11を光散乱層形成用ペーストとして使用したこと以外は、光電気化学電池1と同様の手順により光電極及び光電気化学電池8を作製した。なお、半導体電極の光散乱層に含有される棒状TiO粒子6の含有率;30質量%であった。
(Photoelectrochemical cell 8)
In the production of the semiconductor electrode, the photoelectrode and the photoelectrochemistry were prepared in the same procedure as in the photoelectrochemical cell 1 except that the paste 2 was used as the semiconductor layer forming paste and the paste 11 was used as the light scattering layer forming paste. Battery 8 was produced. The content ratio of the rod-shaped TiO 2 particles 6 contained in the light scattering layer of the semiconductor electrode; was 30 wt%.
(光電気化学電池9)
 半導体電極の製造に際して、ペースト2を半導体層形成用ペーストとして使用し、ペースト13を光散乱層形成用ペーストとして使用したこと以外は、光電気化学電池1と同様の手順により光電極及び光電気化学電池9を作製した。なお、半導体電極の光散乱層に含有される棒状TiO粒子8の含有率;30質量%であった。
(Photoelectrochemical cell 9)
In the production of the semiconductor electrode, the photoelectrode and the photoelectrochemistry were prepared in the same procedure as in the photoelectrochemical cell 1 except that the paste 2 was used as the semiconductor layer forming paste and the paste 13 was used as the light scattering layer forming paste. A battery 9 was produced. The content ratio of the rod-shaped TiO 2 particles 8 contained in the light scattering layer of the semiconductor electrode; was 30 wt%.
(光電気化学電池10)
 半導体電極の製造に際して、ペースト2を半導体層形成用ペーストとして使用し、ペースト14を光散乱層形成用ペーストとして使用したこと以外は、光電気化学電池1と同様の手順により光電極及び光電気化学電池10を作製した。なお、半導体電極の光散乱層に含有される棒状TiO粒子9の含有率;30質量%であった。
(Photoelectrochemical cell 10)
In the production of the semiconductor electrode, the photoelectrode and the photoelectrochemical process were performed in the same manner as in the photoelectrochemical cell 1 except that the paste 2 was used as the semiconductor layer forming paste and the paste 14 was used as the light scattering layer forming paste. Battery 10 was produced. The content of the rod-like TiO 2 particles 9 contained in the light scattering layer of the semiconductor electrode was 30% by mass.
(光電気化学電池11)
 半導体電極の製造に際して、ペースト2のみを用いて半導体層のみからなる半導体電極(受光面の面積;10mm×10mm、層厚;10μm、)を作製したこと以外は、光電気化学電池1と同様の手順により光電極及び比較光電気化学電池1を作製した。
(Photoelectrochemical cell 11)
Similar to the photoelectrochemical cell 1 except that a semiconductor electrode (light-receiving surface area: 10 mm × 10 mm, layer thickness: 10 μm) made of only the semiconductor layer using only the paste 2 was manufactured in the manufacture of the semiconductor electrode. A photoelectrode and a comparative photoelectrochemical cell 1 were prepared according to the procedure.
(電気化学電池12)
 半導体電極の製造に際して、ペースト2を半導体層形成用ペーストとして使用し、ペースト7を光散乱層形成用ペーストとして使用したこと以外は、光電気化学電池1と同様の手順により光電極及び比較光電気化学電池2を作製した。なお、半導体電極の光散乱層に含有される棒状TiO粒子2の含有率;30質量%であった。
(Electrochemical battery 12)
In the production of the semiconductor electrode, the photoelectrode and the comparative photoelectricity were prepared in the same procedure as in the photoelectrochemical cell 1 except that the paste 2 was used as the semiconductor layer forming paste and the paste 7 was used as the light scattering layer forming paste. A chemical battery 2 was produced. The content ratio of the rod-shaped TiO 2 particles 2 contained in the light scattering layer of the semiconductor electrode; was 30 wt%.
[電池特性試験]
 電池特性試験を行ない、光電気化学電池1~10、比較光電気化学電池1~2について変換効率ηを測定した。電池特性試験は、ソーラーシミュレータ(WACOM製、WXS-85H)を用い、AM1.5フィルターを通したキセノンランプから1000W/m2の疑似太陽光を照射することにより行った。I-Vテスターを用いて電流-電圧特性を測定し、エネルギー変換効率(η/%)を求めた。その結果を表6に示す。結果は、変換効率が3.5%以上のものを◎、2.5%以上3.5%未満のものを○、2.0%以上2.5%未満のものを△、2.0%未満のものを×として表示した。また、80℃で300時間暗所保存後の変換効率の低下率、及び600時間連続光照射後の変換効率の低下率を測定した。これらの耐久性の評価結果は、変換効率の低下率がフレシュの3%未満を◎、3%以上5%未満を○、5%以上10%未満を△、10%以上を×とした。
[Battery characteristics test]
A battery characteristic test was performed, and the conversion efficiency η was measured for the photoelectrochemical cells 1 to 10 and the comparative photoelectrochemical cells 1 and 2. The battery characteristic test was performed by irradiating 1000 W / m 2 of pseudo-sunlight from a xenon lamp through an AM1.5 filter using a solar simulator (WAXS, WXS-85H). The current-voltage characteristics were measured using an IV tester to determine the energy conversion efficiency (η /%). The results are shown in Table 6. As a result, conversion efficiency of 3.5% or more is ◎, 2.5% or more and less than 3.5% is ◯, 2.0% or more and less than 2.5% is △, 2.0% Less than were shown as x. Moreover, the reduction rate of the conversion efficiency after 300-hour dark storage at 80 degreeC and the reduction rate of the conversion efficiency after 600 hours continuous light irradiation were measured. As a result of evaluating the durability, the conversion efficiency decrease rate was less than 3% of the fresh, ◎, 3% to less than 5%, ◯, 5% to less than 10%, and 10% or more to x.
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
 表6の通り、本発明の色素は変換効率が高く、耐久性も優れていることがわかった。 As shown in Table 6, it was found that the dye of the present invention has high conversion efficiency and excellent durability.
(実験7)
 金属酸化物微粒子に金属アルコキシドを加えスラリー状としたものを導電性基板に塗布し、その後、UVオゾン照射、UV照射又は乾燥を行い、電極を作製した。その後、光電気化学電池を作製し、変換効率を測定した。
(Experiment 7)
A slurry obtained by adding metal alkoxide to metal oxide fine particles was applied to a conductive substrate, and then UV ozone irradiation, UV irradiation or drying was performed to produce an electrode. Then, the photoelectrochemical cell was produced and the conversion efficiency was measured.
(金属酸化物微粒子)
 金属酸化物微粒子としては、酸化チタンを用いた。酸化チタンは、質量比で、30%ルチル型及び70%アナターゼ型、平均粒径25nmのP25粉末(Degussa社製、商品名)を用いた。
(Metal oxide fine particles)
Titanium oxide was used as the metal oxide fine particles. As the titanium oxide, P25 powder (trade name, manufactured by Degussa) having a mass ratio of 30% rutile type and 70% anatase type and an average particle size of 25 nm was used.
(金属酸化物微粒子粉末の前処理)
 金属酸化物微粒子をあらかじめ熱処理することで表面の有機物と水分を除去した。酸化チタン微粒子の場合は450℃のオーブンで大気下、30分間加熱した。
(Pretreatment of metal oxide fine particle powder)
The metal oxide fine particles were previously heat-treated to remove surface organic substances and moisture. In the case of titanium oxide fine particles, the fine particles were heated in an oven at 450 ° C. in the atmosphere for 30 minutes.
(金属酸化物微粒子に含まれる水分量の測定)
 温度26℃、湿度72%の環境に保存しておいた酸化チタン、P25粉末(Degussa社製、商品名)に含まれる水分量を、熱重量測定における重量減少、及び300℃に加熱したときに脱着した水分量のカールフィッシャー滴定により定量した。
(Measurement of water content in metal oxide fine particles)
When the moisture content contained in titanium oxide and P25 powder (trade name, manufactured by Degussa) stored in an environment of temperature 26 ° C. and humidity 72% is reduced by thermogravimetry and heated to 300 ° C. The amount of moisture desorbed was determined by Karl Fischer titration.
 酸化チタン、P25粉末(Degussa社製、商品名)を300℃で加熱したときに脱着する水分量をカールフィッシャー滴定によって定量したところ、0.1033gの酸化チタン微粉末中に0.253mgの水が含まれていた。すなわち、酸化チタン微粉末は約2.5wt%の水分を含んでいたため、金属酸化物微粒子粉末は金属アルコキシドとの混合前に450℃のオーブンで30分間熱処理し、冷却後デシケーター中に保存して用いた。 When the amount of water desorbed when titanium oxide, P25 powder (trade name, manufactured by Degussa) was heated at 300 ° C. was quantified by Karl Fischer titration, 0.253 mg of water was contained in 0.1033 g of titanium oxide fine powder. It was included. That is, since the titanium oxide fine powder contained about 2.5 wt% of water, the metal oxide fine particle powder was heat-treated in an oven at 450 ° C. for 30 minutes before mixing with the metal alkoxide, and stored in a desiccator after cooling. Used.
(金属アルコキシドペーストの調製)
 金属酸化物微粒子を結合する役割をする金属アルコキシドとしては、チタン原料としてはチタン(IV)テトライソプロポキシド(TTIP)、ジルコニウム原料としてはジルコニウム(IV)テトラn-プロポキシド、ニオブ原料としてはニオブ(V)ペンタエトキシド(全てAldrich社製)をそれぞれ用いた。
(Preparation of metal alkoxide paste)
The metal alkoxide that plays a role in bonding metal oxide fine particles includes titanium (IV) tetraisopropoxide (TTIP) as a titanium raw material, zirconium (IV) tetra n-propoxide as a zirconium raw material, and niobium as a niobium raw material. (V) Pentaethoxide (all manufactured by Aldrich) was used.
 金属酸化物微粒子と金属アルコキシドのモル濃度比は、金属アルコキシドの加水分解によって生じるアモルファス層が過度に厚くならず、かつ粒子同士の結合が十分行えるように、金属酸化物微粒子径に応じて適宜調節した。なお、金属アルコキシドはすべて、0.1Mのエタノール溶液とした。酸化チタン微粒子とチタン(IV)テトライソプロポキシド(TTIP)とを混合する場合には、酸化チタン微粒子1gに対し、3.55gの0.1M TTIP溶液を混合した。このとき、得られたペースト中の酸化チタン濃度は約22質量%となり、塗布に適当な粘度となった。また、このときの酸化チタンとTTIPとエタノールは、質量比で1:0.127:3.42、モル比で1:0.036:5.92であった。
 同様に、酸化チタン微粒子とTTIP以外のアルコキシドの混合ペーストについても微粒子濃度が22質量%となるように調製した。酸化亜鉛及び酸化スズ微粒子を用いたペーストでは16質量%とした。酸化亜鉛及び酸化スズの場合は、金属酸化物微粒子1gに対して、金属アルコキシド溶液5.25gの比で混合した。
The molar concentration ratio between the metal oxide fine particles and the metal alkoxide is appropriately adjusted according to the metal oxide fine particle diameter so that the amorphous layer generated by hydrolysis of the metal alkoxide is not excessively thick and the particles can be sufficiently bonded to each other. did. All metal alkoxides were 0.1M ethanol solutions. When mixing titanium oxide fine particles and titanium (IV) tetraisopropoxide (TTIP), 3.55 g of 0.1M TTIP solution was mixed with 1 g of titanium oxide fine particles. At this time, the titanium oxide concentration in the obtained paste was about 22% by mass, and the viscosity was appropriate for coating. Moreover, the titanium oxide, TTIP, and ethanol at this time were 1: 0.127: 3.42 by mass ratio, and 1: 0.036: 5.92 by molar ratio.
Similarly, a mixed paste of titanium oxide fine particles and an alkoxide other than TTIP was prepared so that the fine particle concentration was 22% by mass. In the paste using zinc oxide and tin oxide fine particles, the content was 16% by mass. In the case of zinc oxide and tin oxide, the metal alkoxide solution was mixed at a ratio of 5.25 g to 1 g of the metal oxide fine particles.
 金属酸化物微粒子と金属アルコキシド溶液は、密閉容器中においてマグネチックスターラーによって2時間攪拌して均一なペーストを得た。
 導電性基板へのペーストの塗布方法は、ドクターブレード法、スクリーン印刷法、スプレー塗布法などを用いることが可能であり、適当なペースト粘度は塗布方法によって適宜選択した。ここでは簡便にガラス棒で塗布する方法(ドクターブレード法に類似)を用いた。この場合、適当なペースト粘度を与える金属酸化物微粒子の濃度は概ね5~30質量%の範囲となった。
The metal oxide fine particles and the metal alkoxide solution were stirred for 2 hours with a magnetic stirrer in a sealed container to obtain a uniform paste.
As a method for applying the paste to the conductive substrate, a doctor blade method, a screen printing method, a spray coating method, or the like can be used, and an appropriate paste viscosity is appropriately selected depending on the application method. Here, a method of applying simply with a glass rod (similar to the doctor blade method) was used. In this case, the concentration of the metal oxide fine particles giving an appropriate paste viscosity was approximately in the range of 5 to 30% by mass.
 金属アルコキシドの分解によって生成するアモルファス金属酸化物のレイヤー厚さは本実施例では0.1~0.6nm程度の範囲にある。概ね0.05~1.3nm程度が本手法による室温製膜に適切な範囲となっていた。 The layer thickness of the amorphous metal oxide generated by the decomposition of the metal alkoxide is in the range of about 0.1 to 0.6 nm in this embodiment. A range of about 0.05 to 1.3 nm was appropriate for room temperature film formation by this method.
(導電性基板上へのペーストの塗布と風乾処理)
 スズドープ酸化インジウム(ITO)導電膜付きポリエチレンテレフタレート(PET)フィルム基板(20Ω/cm)又はフッ素ドープ酸化スズ(FTO)導電膜付きガラス基板(10Ω/cm)に、スペーサーとして粘着テープ2枚を一定間隔で平行に貼り付け、上記の方法に従って調製した各ペーストを、ガラス棒を用いて均一に塗布した。
(Applying paste on conductive substrate and air-drying treatment)
Two adhesive tapes as spacers on a polyethylene terephthalate (PET) film substrate (20Ω / cm 2 ) with tin-doped indium oxide (ITO) conductive film or a glass substrate (10Ω / cm 2 ) with fluorine-doped tin oxide (FTO) conductive film The pastes were applied in parallel at regular intervals, and each paste prepared according to the above method was uniformly applied using a glass rod.
 ペーストを塗布後、色素吸着前に、UVオゾン処理、UV照射処理、又は乾燥処理の有無について条件を変えて多孔質膜を作製した。
(乾燥処理)
 導電性基板へ塗布した後の膜を大気中室温で2分程度で風乾した。この過程でペースト中の金属アルコキシドが大気中の水分によって加水分解を受け、Tiアルコキシド、Zrアルコキシド、Nbアルコキシドからそれぞれアモルファスの酸化チタン、酸化ジルコニウム、酸化ニオブが形成された。
 生成したアモルファス金属酸化物が、金属酸化物微粒子同士及び膜と導電性基板を接着する役割を果たすため、風乾するのみで機械的強度と付着性に優れた多孔質膜が得られた。
After applying the paste and before dye adsorption, a porous film was prepared by changing the conditions for the presence or absence of UV ozone treatment, UV irradiation treatment, or drying treatment.
(Drying process)
The film after application to the conductive substrate was air-dried at room temperature in the atmosphere for about 2 minutes. During this process, the metal alkoxide in the paste was hydrolyzed by moisture in the atmosphere, and amorphous titanium oxide, zirconium oxide, and niobium oxide were formed from Ti alkoxide, Zr alkoxide, and Nb alkoxide, respectively.
Since the produced amorphous metal oxide plays a role of adhering metal oxide fine particles and the film to the conductive substrate, a porous film excellent in mechanical strength and adhesion was obtained only by air drying.
(UVオゾン処理)
 UVオゾン処理には日本レーザー電子社製のNL-UV253 UVオゾンクリーナーを用いた。UV光源には185nmと254nmに輝線を持つ4.5W水銀ランプ3個を備えており、試料を光源から約6.5センチの距離に水平に配置した。チャンバー中に酸素気流を導入することでオゾンが発生する。本実施例においてはこのUVオゾン処理を2時間行なった。なお、このUVオゾン処理によるITO膜及びFTO膜の導電性の低下は全く見られなかった。
(UV ozone treatment)
For UV ozone treatment, NL-UV253 UV ozone cleaner manufactured by Nippon Laser Electronics was used. The UV light source was equipped with three 4.5 W mercury lamps having emission lines at 185 nm and 254 nm, and the sample was placed horizontally at a distance of about 6.5 cm from the light source. Ozone is generated by introducing an oxygen stream into the chamber. In this example, this UV ozone treatment was performed for 2 hours. Note that no decrease in the conductivity of the ITO film and the FTO film due to this UV ozone treatment was observed.
(UV処理)
 チャンバー中を窒素置換して処理を行う以外は同様に、前記UVオゾン処理と同様に、2時間処理を行った。このUV処理によるITO膜及びFTO膜の導電性の低下はまったく見られなかった。
(UV treatment)
Similarly to the UV ozone treatment, the treatment was performed for 2 hours, except that the inside of the chamber was replaced with nitrogen. No decrease in the conductivity of the ITO film and FTO film due to the UV treatment was observed.
(色素吸着)
 増感色素には本発明の色素を用い、0.5mMのエタノール溶液を調製した。本実施例では上記のプロセスで作製した多孔質膜を100℃のオーブンで1時間乾燥した後に増感色素の溶液に浸漬し、そのまま室温で50分間放置して酸化チタン表面に増感色素を吸着した。増感色素吸着後の試料はエタノールで洗浄し、風乾した。
(Dye adsorption)
The dye of the present invention was used as a sensitizing dye, and a 0.5 mM ethanol solution was prepared. In this example, the porous film produced by the above process was dried in an oven at 100 ° C. for 1 hour, then immersed in a sensitizing dye solution, and allowed to stand at room temperature for 50 minutes to adsorb the sensitizing dye on the titanium oxide surface. did. The sample after adsorption of the sensitizing dye was washed with ethanol and air-dried.
(光電気化学電池の作製と電池特性評価)
 色素吸着後の多孔質膜が形成された導電性基板を光電極とし、これと白金微粒子をスパッタリングにより修飾したITO/PETフィルム又はFTO/ガラス対極を対向させて、光電気化学電池を試作した。上記光電極の実効面積は約0.2cmとした。電解質溶液には0.5MのLiI,0.05MのI,0.5Mのt-ブチルピリジンを含む3-メトキシプロピオニトリルを用い、毛管現象によって両電極間のギャップに導入した。
(Production of photoelectrochemical cell and evaluation of battery characteristics)
A photoelectrochemical cell was fabricated by using a conductive substrate on which a porous film after dye adsorption was formed as a photoelectrode, and an ITO / PET film or FTO / glass counter electrode in which platinum fine particles were modified by sputtering. The effective area of the photoelectrode was about 0.2 cm 2 . As the electrolyte solution, 3-methoxypropionitrile containing 0.5 M LiI, 0.05 M I 2 and 0.5 M t-butylpyridine was introduced into the gap between both electrodes by capillary action.
 電池性能の評価は、一定フォトン数(1016cm-2)照射下での光電流作用スペクトル測定及びAM1.5擬似太陽光(100mW/cm)照射下でのI-V測定により行なった。これらの測定には分光計器社製のCEP-2000型分光感度測定装置を用いた。
 得られた出力特性値を表7にまとめた。結果は、変換効率が2.5%以上のものを◎、2.0%以上2.5%未満のものを○、1.5%以上2.0%未満のものを△、1.5%未満のものを×として表示した。
The battery performance was evaluated by measuring the photocurrent action spectrum under irradiation with a constant number of photons (1016 cm −2 ) and IV measurement under irradiation with AM1.5 simulated sunlight (100 mW / cm 2 ). A CEP-2000 type spectral sensitivity measuring device manufactured by Spectrometer Co., Ltd. was used for these measurements.
The obtained output characteristic values are summarized in Table 7. The results are: conversion efficiency of 2.5% or more ◎, 2.0% or more and less than 2.5% ○, 1.5% or more and less than 2.0% △, 1.5% Less than were shown as x.
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
 表7において、「UVオゾン」、「UV」、「乾燥」の欄はそれぞれ、多孔質膜の形成後、増感色素吸着前における、UVオゾン処理、UV照射処理、乾燥処理の有無を表す。処理したものが「○」であり、処理なしのものが「×」である。
 表7の「TiOの前処理の欄は、酸化チタン微粒子の前処理(450℃のオーブンで30分間熱処理)の有無を示す。試料6、14、22は、高TTIP濃度(酸化チタン:TTIPのモル比が1:0.356)のペーストを用いた試料を表す。他の試料(試料1~5,7~13,23,24)は全て酸化チタン:TTIP=1:0.0356のペーストを用いている。
In Table 7, the columns of “UV ozone”, “UV”, and “dry” indicate the presence / absence of UV ozone treatment, UV irradiation treatment, and drying treatment after formation of the porous film and before sensitizing dye adsorption, respectively. The processed one is “◯”, and the unprocessed one is “×”.
The column of Pretreatment of TiO 2 ” in Table 7 indicates the presence or absence of pretreatment of titanium oxide fine particles (heat treatment in an oven at 450 ° C. for 30 minutes). Samples 6, 14, and 22 represent samples using a paste having a high TTIP concentration (titanium oxide: TTIP molar ratio of 1: 0.356). The other samples (samples 1 to 5, 7 to 13, 23, 24) all use a paste of titanium oxide: TTIP = 1: 0.0356.
 表7に示す結果から、本発明の色素を使用した場合には、多孔質膜の形成後、増感色素吸着前における、UVオゾン処理、UV照射処理、乾燥処理の有無にかかわらず、光電気化学電池の変換効率が高いことがわかった。 From the results shown in Table 7, when the dye of the present invention is used, the photoelectricity is measured regardless of the presence or absence of UV ozone treatment, UV irradiation treatment, and drying treatment after the formation of the porous film and before adsorption of the sensitizing dye. It was found that the conversion efficiency of the chemical battery was high.
(実験8-1)
 溶媒としてアセトニトリルを用い、ヨウ化リチウム0.1mol/l、ヨウ素0.05mol/l、ヨウ化ジメチルプロピルイミダゾリウム0.62mol/lを溶解した電解質溶液を調製した。ここに下記に示すNo.1~No.8のベンズイミダゾール系化合物をそれぞれ濃度0.5mol/lになるように別々に添加し、溶解した。
(Experiment 8-1)
Using acetonitrile as a solvent, an electrolyte solution was prepared in which lithium iodide 0.1 mol / l, iodine 0.05 mol / l, and dimethylpropylimidazolium iodide 0.62 mol / l were dissolved. No. shown below. 1-No. 8 benzimidazole compounds were separately added and dissolved to a concentration of 0.5 mol / l.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 ガラス基板上に、透明導電膜としてフッ素をドープした酸化スズをスパッタリングにより、導電膜を形成した。この導電膜上にアナターゼ型酸化チタン粒子を含有する分散液(水とアセトニトリルの容量比4:1からなる混合溶媒100mlにアナターゼ型酸化チタン(日本アエロジル社製のP-25(商品名))を32g配合し、自転/公転併用式のミキシングコンディショナーを使用して均一に分散、混合して得た、半導体微粒子分散液)を塗布し、その後500℃で焼結して厚さ15μmの感光層を形成した。この感光層に、No.1~No.8のベンズイミダゾール系化合物電解液を、滴下した。
 ここにポリエチレンフィルム製のフレーム型スペーサー(厚さ25μm)をのせ、白金対電極でこれを覆い、光電変換素子を作製した。
 得られた光電変換素子に、Xeランプを光源として強度100mW/cmの光を照射した。表8に得られた開放電圧と光電変換効率を示した。開放電圧は、6.3V以上のものを◎、6.0V以上6.3V未満のものを○、5.7V以上6.0V未満のものを△、5.7V未満のものを×として表示した。変換効率は、3.5%以上のものを◎、2.5%以上3.5%未満のものを○、2.0%以上2.5%未満のものを△、2.0%未満のものを×として表示した。
 なお、表8には、ベンズイミダゾール系化合物を加えていない電解液を用いた光電変換素子の結果も示した。
A conductive film was formed on a glass substrate by sputtering tin oxide doped with fluorine as a transparent conductive film. A dispersion containing anatase-type titanium oxide particles on this conductive film (anatase-type titanium oxide (P-25 (trade name) manufactured by Nippon Aerosil Co., Ltd.)) was added to 100 ml of a mixed solvent having a volume ratio of water and acetonitrile of 4: 1. 32 g of the mixture, and using a rotating / revolving mixing conditioner, uniformly dispersed and mixed to obtain a semiconductor fine particle dispersion), and then sintered at 500 ° C. to form a photosensitive layer having a thickness of 15 μm. Formed. In this photosensitive layer, no. 1-No. 8 benzimidazole compound electrolyte was added dropwise.
A frame type spacer (thickness: 25 μm) made of a polyethylene film was placed thereon, and this was covered with a platinum counter electrode to produce a photoelectric conversion element.
The obtained photoelectric conversion element was irradiated with light having an intensity of 100 mW / cm 2 using a Xe lamp as a light source. Table 8 shows the open circuit voltage and photoelectric conversion efficiency obtained. The open circuit voltage is 6.3V or more, ◎, 6.0V or more and less than 6.3V is indicated as ◯, 5.7V or more and less than 6.0V is indicated as △, and less than 5.7V is indicated as ×. . The conversion efficiency is ◎ for those with 3.5% or more, ◯ for 2.5% or more and less than 3.5%, △ for 2.0% or more and less than 2.5%, and less than 2.0%. Things were displayed as x.
Table 8 also shows the results of photoelectric conversion elements using an electrolytic solution to which no benzimidazole compound was added.
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
 表8の結果から、本発明の光電変換素子は変換効率が高いことがわかる。 From the results in Table 8, it can be seen that the photoelectric conversion element of the present invention has high conversion efficiency.
(実験8-2)
 <実験8>のNo.5の化合物を使用した光電変換素子に封止剤として、エピコート828((商品名)、ジャパンエポキシレジン社製)、硬化剤及びプラスチックペーストからなる樹脂組成物中に直径25μmのガラス球体がほぼ均一に分散された封止剤ペーストを用いたこと以外は同様にして、色素増感太陽電池を作製し、光電変換効率の測定を行った。
 これにより求めた各色素増感太陽学電池の変換効率(η)、85℃で1000時間暗所保存後の変換効率の低下率、及び500時間連続光照射後の変換効率の低下率を測定した。
 フレシュの結果は、変換効率が7.5%以上のものを◎、7.3%以上7.5%未満のものを○、7.1%以上7.3%未満のものを△、7.1%未満のものを×として評価した。
 また、耐久性の評価結果は、変換効率の低下率がフレシュの3%未満を◎、3%以上5%未満を○、5%以上10%未満を△、10%以上を×とした。結果を表8-2中の暗所保存耐久性の欄と、連続光照射耐久性の欄に示した。
(Experiment 8-2)
<Experiment 8> No. As a sealing agent for the photoelectric conversion element using the compound No. 5, as a sealant, a glass sphere having a diameter of 25 μm is almost uniform in a resin composition comprising Epicoat 828 (trade name, manufactured by Japan Epoxy Resin Co., Ltd.), a curing agent and a plastic paste. A dye-sensitized solar cell was prepared in the same manner except that the sealant paste dispersed in was used, and the photoelectric conversion efficiency was measured.
The conversion efficiency (η) of each dye-sensitized solar cell obtained by this, the reduction rate of the conversion efficiency after 1000 hours of dark storage at 85 ° C., and the reduction rate of the conversion efficiency after 500 hours of continuous light irradiation were measured. .
As for the result of fresh, the conversion efficiency is 7.5% or more for ◎, 7.3% to less than 7.5% for ○, 7.1% to less than 7.3% for Δ, 7. Those less than 1% were evaluated as x.
In addition, as a result of evaluating durability, the conversion efficiency decrease rate was less than 3% of fresh, ◎, 3% to less than 5%, ◯, 5% to less than 10%, △, 10% or more to x. The results are shown in the dark storage durability column and continuous light irradiation durability column of Table 8-2.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
 表8-2より、本発明の色素増感太陽電池は、変換効率の初期値はいずれも7.0%以上と高い値を示した。また、暗所保存後及び連続光照射後において、いずれも低下率は9.0%以下と、比較例に比べて耐久性が優れていることがわかった。 From Table 8-2, the initial value of the conversion efficiency of the dye-sensitized solar cell of the present invention showed a high value of 7.0% or more. Moreover, it turned out that durability is excellent compared with a comparative example with the reduction rate of 9.0% or less after storage in a dark place and after continuous light irradiation.
(実験9)
(光電気化学電池1)
 以下に示す手順により、特開2004-152613記載の図1に示した光電極10と同様の構成を有する光電極(ただし、半導体電極2を2層構造とした。)を作製し、更に、この光電極を用いた以外は特開2004-152613記載の図1に示した色素増感型太陽電池20と同様の構成を有する光電気化学電池(半導体電極2の受光面F2の面積:1cm)を作製した。なお、2層構造を有する半導体電極2の各層について、透明電極1に近い側に配置される層を「第1の層」、多孔体層PSに近い側に配置される層を「第2の層」という。
(Experiment 9)
(Photoelectrochemical cell 1)
According to the following procedure, a photoelectrode having the same configuration as the photoelectrode 10 shown in FIG. 1 described in JP-A No. 2004-152613 (however, the semiconductor electrode 2 has a two-layer structure) is manufactured. A photoelectrochemical cell having the same structure as the dye-sensitized solar cell 20 shown in FIG. 1 described in JP-A-2004-152613 except that a photoelectrode is used (the area of the light receiving surface F2 of the semiconductor electrode 2 is 1 cm 2 ). Was made. For each layer of the semiconductor electrode 2 having a two-layer structure, the layer disposed on the side close to the transparent electrode 1 is referred to as “first layer”, and the layer disposed on the side close to the porous body layer PS is referred to as “second layer”. It is called “layer”.
 まず、平均粒子径25nmのP25粉末(Degussa社製、商品名)と、これと粒子径の異なる酸化チタン粒子、P200粉末(平均粒子径:200nm、Degussa社製、商品名)とを用い、P25とP200の合計の含有量が15質量%で、P25とP200との質量比が、P25:P200=30:70となるように、これらにアセチルアセトン、イオン交換水、界面活性剤(東京化成社製、商品名;「Triton-X」)を加え、混練して第2の層形成用のスラリー(以下、「スラリー1」とする)を調製した。 First, P25 powder having an average particle diameter of 25 nm (trade name, manufactured by Degussa), titanium oxide particles having a different particle diameter, and P200 powder (average particle diameter: 200 nm, product name, manufactured by Degussa) were used. And P200 are 15% by mass, and the mass ratio of P25 and P200 is P25: P200 = 30: 70, so that acetylacetone, ion-exchanged water, surfactant (manufactured by Tokyo Chemical Industry Co., Ltd.) , Trade name: “Triton-X”) and kneaded to prepare a slurry for forming a second layer (hereinafter referred to as “slurry 1”).
 次に、P200を使用せず、P25のみを使用したこと以外は前述のスラリー1と同様の調製手順により第1の層形成用のスラリー(P1の含有量;15質量%、以下、「スラリー2」とする)を調製した。 Next, a slurry for forming a first layer (P1 content; 15 mass%; hereinafter, “slurry 2” is prepared by the same preparation procedure as that of the slurry 1 except that only P25 is used without using P200. Was prepared).
 一方、ガラス基板(透明導電性ガラス)上にフッ素ドープされたSnO導電膜(膜厚:700nm)を形成した透明電極(厚さ:1.1mm)を準備した。そして、このSnO導電膜上に、上述のスラリー2をバーコーダで塗布し、次いで乾燥させた。その後、大気中、450℃で30分間焼成した。このようにして、透明電極上に、半導体電極2の第1の層を形成した。 On the other hand, a transparent electrode (thickness: 1.1 mm) in which a fluorine-doped SnO 2 conductive film (film thickness: 700 nm) was formed on a glass substrate (transparent conductive glass) was prepared. Then, the SnO 2 conductive film, the slurry 2 described above was coated with Bakoda, then dried. Then, it baked for 30 minutes at 450 degreeC in air | atmosphere. In this way, the first layer of the semiconductor electrode 2 was formed on the transparent electrode.
 更に、スラリー1を用いて、上述と同様の塗布と焼成とを繰り返すことにより、第1の層上に、第2の層を形成した。このようにして、SnO導電膜上に半導体電極2(受光面の面積;1.0cm、第1層と第2層の合計厚さ:10μm(第1の層の厚さ:3μm、第2の層の厚さ:7μm))を形成し、増感色素を含有していない状態の光電極10を作製した。 Furthermore, the second layer was formed on the first layer by repeating the same application and firing as described above using the slurry 1. In this way, the semiconductor electrode 2 (light-receiving surface area; 1.0 cm 2 , the total thickness of the first layer and the second layer: 10 μm (the thickness of the first layer: 3 μm, the first layer) on the SnO 2 conductive film No. 2 layer thickness: 7 μm)), and a photoelectrode 10 containing no sensitizing dye was prepared.
 次に、増感色素として本発明の色素のエタノール溶液(増感色素の濃度;3×10-4mol/L)を調製した。この溶液に前記光電極10を浸漬し、80℃の温度条件のもとで20時間放置し、増感色素を吸着させた。その後、開放電圧Vocを向上させるために、色素吸着後の半導体電極を4-tert-ブチルピリジンのアセトニトリル溶液に15分浸漬した後、25℃に保持した窒素気流中において乾燥させ、上記光電極10を完成させた。 Next, an ethanol solution of the dye of the present invention (sensitizing dye concentration; 3 × 10 −4 mol / L) was prepared as a sensitizing dye. The photoelectrode 10 was immersed in this solution and allowed to stand for 20 hours under a temperature condition of 80 ° C. to adsorb the sensitizing dye. Thereafter, in order to improve the open circuit voltage Voc, the dye-adsorbed semiconductor electrode was immersed in an acetonitrile solution of 4-tert-butylpyridine for 15 minutes and then dried in a nitrogen stream maintained at 25 ° C. Was completed.
 次に、上記の光電極と同様の形状と大きさを有する対極CEを作製した。先ず、透明導電性ガラス上に、塩化白金酸六水和物のイソプロパノール溶液を滴下し、大気中で乾燥した後に450℃で30分焼成処理することにより、白金焼結対極CEを得た。なお、この対極CEには予め電解質Eの注入用の孔(直径1mm)を設けておいた。 Next, a counter electrode CE having the same shape and size as the above photoelectrode was produced. First, an isopropanol solution of chloroplatinic acid hexahydrate was dropped on a transparent conductive glass, dried in air, and then baked at 450 ° C. for 30 minutes to obtain a platinum sintered counter electrode CE. The counter electrode CE was previously provided with a hole for injection of the electrolyte E (diameter 1 mm).
 次に、溶媒となるメトキシアセトニトリルに、ヨウ化亜鉛と、ヨウ化-1,2-ジメチル-3-プロピルイミダゾリウムと、ヨウ素と、4-tert-ブチルピリジンとを溶解させて液状電解質(ヨウ化亜鉛の濃度:10mmol/L、ヨウ化ジメチルプロピルイミダゾリウムの濃度:0.6mol/L、ヨウ素の濃度:0.05mol/L、4-tert-ブチルピリジン濃度:1mol/L)を調製した。 Next, zinc iodide, 1,2-dimethyl-3-propylimidazolium iodide, iodine, and 4-tert-butylpyridine are dissolved in methoxyacetonitrile as a solvent to obtain a liquid electrolyte (iodinated). Zinc concentration: 10 mmol / L, dimethylpropylimidazolium iodide concentration: 0.6 mol / L, iodine concentration: 0.05 mol / L, 4-tert-butylpyridine concentration: 1 mol / L).
 次に、半導体電極の大きさに合わせた形状を有する三井デュポンポリケミカル社製のスペーサS(商品名:「ハイミラン」,エチレン/メタクリル酸ランダム共重合体アイオノマーフィルム)を準備し、特開2004-152613記載の図1に示すように、光電極と対極とをスペーサを介して対向させ、それぞれを熱溶着により張り合わせて電池の筐体(電解質未充填)を得た。 Next, a spacer S (trade name: “HIMILAN”, ethylene / methacrylic acid random copolymer ionomer film) manufactured by Mitsui Dupont Polychemical Co., Ltd. having a shape matched to the size of the semiconductor electrode was prepared. As shown in FIG. 1 described in 15613, the photoelectrode and the counter electrode were opposed to each other through a spacer, and each was bonded by thermal welding to obtain a battery casing (no electrolyte filled).
 次に、液状電解質を対極の孔から筐体内に注入した後、孔をスペーサと同素材の部材で塞ぎ、更に対極の孔にこの部材を熱溶着させて孔を封止し、光電気化学電池1を完成させた。 Next, after injecting the liquid electrolyte into the housing from the hole of the counter electrode, the hole is closed with a member made of the same material as the spacer, and this member is thermally welded to the hole of the counter electrode to seal the hole. 1 was completed.
(光電気化学電池2)
 液状電解質におけるヨウ化亜鉛の濃度を50mmol/Lとしたこと以外は、光電気化学電池1と同様の手順及び条件で光電気化学電池2を作製した。
(Photoelectrochemical cell 2)
The photoelectrochemical cell 2 was produced in the same procedure and conditions as the photoelectrochemical cell 1 except that the concentration of zinc iodide in the liquid electrolyte was 50 mmol / L.
(光電気化学電池3)
 液状電解質におけるヨウ化亜鉛の代わりにヨウ化リチウムを添加し、液状電解質におけるヨウ化リチウムの濃度を20mmol/Lとしたこと以外は、光電気化学電池1と同様の手順及び条件で比較光電気化学電池を1を作製した。
(Photoelectrochemical cell 3)
Comparative photoelectrochemistry was performed in the same procedure and conditions as in the photoelectrochemical cell 1 except that lithium iodide was added instead of zinc iodide in the liquid electrolyte, and the concentration of lithium iodide in the liquid electrolyte was 20 mmol / L. A battery 1 was produced.
(電気化学電池4)
 液状電解質におけるヨウ化亜鉛の代わりにヨウ化リチウムを添加し、液状電解質におけるヨウ化リチウムの濃度を100mmol/Lとしたこと以外は、光電気化学電池1と同様の手順及び条件で比較光電気化学電池2を作製した。
(Electrochemical battery 4)
Comparative photoelectrochemistry in the same procedure and conditions as in the photoelectrochemical cell 1 except that lithium iodide was added instead of zinc iodide in the liquid electrolyte, and the concentration of lithium iodide in the liquid electrolyte was 100 mmol / L. Battery 2 was produced.
(電池特性評価試験)
 以下の手順により、光電気化学電池1、2及び比較電気化学電池1、2について、光電変換効率(η(%))を測定した。
(Battery characteristics evaluation test)
The photoelectric conversion efficiency (η (%)) of the photoelectrochemical cells 1 and 2 and the comparative electrochemical cells 1 and 2 was measured by the following procedure.
 電池特性評価試験は、ソーラーシミュレータ(ワコム製、商品名;「WXS-85-H型」)を用い、AMフィルター(AM1.5)を通したキセノンランプ光源からの疑似太陽光の照射条件を、100mW/cmとする(いわゆる「1Sun」の照射条件)測定条件の下で行った。 The battery characteristic evaluation test was conducted using a solar simulator (trade name; “WXS-85-H type” manufactured by Wacom), and the irradiation conditions of pseudo-sunlight from a xenon lamp light source through an AM filter (AM1.5). The measurement was performed under measurement conditions of 100 mW / cm 2 (so-called “1Sun” irradiation conditions).
 各光電気化学電池について、I-Vテスターを用いて室温にて電流-電圧特性を測定し、これらから光電変換効率η[%]を求めた。得られた結果を表9(1Sunの照射条件)の「fresh」として示す。また、60℃、1Sun照射で、10Ω負荷での作動条件で色素増感型太陽電池1~2及び比較色素増感型太陽電池1~2の光電変換効率η[%]の80℃で300時間経時後に調べた耐久性評価試験の結果も表9に示した。Freshの変換効率は、3.5%以上のものを◎、2.5%以上3.5%未満のものを○、2.0%以上2.5%未満のものを△、2.0%未満のものを×として表示した。 For each photoelectrochemical cell, the current-voltage characteristics were measured at room temperature using an IV tester, and the photoelectric conversion efficiency η [%] was determined from these. The obtained results are shown as “fresh” in Table 9 (1 Sun irradiation conditions). Further, the photoelectric conversion efficiency η [%] of the dye-sensitized solar cells 1 and 2 and the comparative dye-sensitized solar cells 1 and 2 is 300 hours at 60 ° C. and 1 Sun irradiation under the operating condition of 10Ω load. Table 9 also shows the results of the durability evaluation test examined after the elapse of time. The conversion efficiency of Fresh is ◎ for those with 3.5% or more, ○ for those with 2.5% to less than 3.5%, △, 2.0% for those with 2.0% or more but less than 2.5% Less than were shown as x.
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
 表9に示した結果から明らかなように、本発明の光電気化学電池は電解質にヨウ化亜鉛を添加した場合でも目的の優れた性能を示すことがわかった。 As is clear from the results shown in Table 9, it was found that the photoelectrochemical cell of the present invention exhibited the desired excellent performance even when zinc iodide was added to the electrolyte.
(実験10)
1.二酸化チタン分散液の調製
 内側をフッ素樹脂コーティングした内容積200mlのステンレス製容器に二酸化チタン微粒子(日本アエロジル(株)製,Degussa P-25)15g、水45g、分散剤(アルドリッチ社製、Triron X-100)1g、直径0.5mmのジルコニアビーズ(ニッカトー社製)30gを入れ、サンドグラインダーミル(アイメックス社製)を用いて1500rpmで2時間分散処理した。得られた分散液からジルコニアビーズを濾別した。得られた分散液中の二酸化チタン微粒子の平均粒径は2.5μmであった。なお粒径はMALVERN社製のマスターサイザーにより測定した。
(Experiment 10)
1. Preparation of Titanium Dioxide Dispersion 15 g of titanium dioxide fine particles (Nippon Aerosil Co., Ltd., Degussa P-25), 45 g of water, dispersant (Triron X, manufactured by Aldrich Co., Ltd.) -100) 1 g, 30 g of zirconia beads having a diameter of 0.5 mm (manufactured by Nikkato Co., Ltd.) were added, and dispersion treatment was performed at 1500 rpm for 2 hours using a sand grinder mill (manufactured by Imex). Zirconia beads were filtered off from the resulting dispersion. The average particle diameter of the titanium dioxide fine particles in the obtained dispersion was 2.5 μm. The particle size was measured with a master sizer manufactured by MALVERN.
2.色素を吸着した酸化チタン微粒子層(電極A)の作製
 フッ素をドープした酸化スズを被覆した、縦20mm、横20mmの導電性ガラス板(旭ガラス(株)製,TCOガラス-U,表面抵抗:約30Ω/m)を準備し、その導電層側の両端(端から3mmの幅の部分)にスペーサー用粘着テープを張った後で、導電層上にガラス棒を用いて上記分散液を塗布した。分散液の塗布後、粘着テープを剥離し、室温で1日間風乾した。次にこの半導体塗布ガラス板を電気炉(ヤマト科学(株)製マッフル炉FP-32型)に入れ、450℃で30分間焼成した。半導体塗布ガラス板を取り出し冷却した後、表10に示す色素のエタノール溶液(濃度:3×10-4mol/L)に1時間浸漬した。色素が吸着した半導体塗布ガラス板を4-tert-ブチルピリジンに15分間浸漬した後、エタノールで洗浄し、自然乾燥させた。このようにして得られた色素増感酸化チタン微粒子層の厚さは10μmであり、酸化チタン微粒子の塗布量は20g/mであった。また色素の吸着量は、その種類に応じて0.1~10mmol/mの範囲内であった。
2. Production of Titanium Oxide Fine Particle Layer (Electrode A) Adsorbed with Dye 20 mm long and 20 mm wide conductive glass plate coated with fluorine-doped tin oxide (Asahi Glass Co., Ltd., TCO glass-U, surface resistance: (Approx. 30 Ω / m 2 ), apply adhesive tape for spacers to both ends of the conductive layer side (3 mm wide from the end), and then apply the dispersion using a glass rod on the conductive layer did. After application of the dispersion, the adhesive tape was peeled off and air-dried at room temperature for 1 day. Next, this semiconductor-coated glass plate was placed in an electric furnace (muffle furnace FP-32 manufactured by Yamato Scientific Co., Ltd.) and baked at 450 ° C. for 30 minutes. After the semiconductor-coated glass plate was taken out and cooled, it was immersed in an ethanol solution of the dyes shown in Table 10 (concentration: 3 × 10 −4 mol / L) for 1 hour. The semiconductor-coated glass plate on which the dye was adsorbed was immersed in 4-tert-butylpyridine for 15 minutes, washed with ethanol, and naturally dried. The thickness of the dye-sensitized titanium oxide fine particle layer thus obtained was 10 μm, and the coating amount of the titanium oxide fine particles was 20 g / m 2 . The amount of dye adsorbed was in the range of 0.1 to 10 mmol / m 2 depending on the type.
3.光電気化学電池の作製
 3タイプの光電気化学電池1、A及びBを以下の方法で作製した。これらの光電気化学電池について、表15に示す色素、窒素含有高分子化合物α、求電子剤βを用いて、試料番号1~9の光電気化学電池を得た。
3. Production of Photoelectrochemical Battery Three types of photoelectrochemical batteries 1, A and B were produced by the following method. For these photoelectrochemical cells, the photoelectrochemical cells of Sample Nos. 1 to 9 were obtained using the dyes shown in Table 15, the nitrogen-containing polymer compound α, and the electrophile β.
(a)光電気化学電池1の作製
 溶媒としては、アセトニトリルと3-メチル-2-オキサゾリジノンとの体積比90/10の混合物を用いた。この溶媒に、ヨウ素と電解質塩として1-メチル-3-ヘキシルイミダゾリウムのヨウ素塩を加えて、0.5mol/Lの電解質塩及び0.05mol/Lのヨウ素を含んだ溶液を調製した。この溶液に、(溶媒+窒素含有高分子化合物+電解質塩)100質量部に対し、下記の窒素含有高分子化合物αを10質量部加えた。さらに窒素含有高分子化合物αに対して、求電子剤βを0.1モル混合し、均一な反応溶液とした。
(A) Production of Photoelectrochemical Battery 1 As a solvent, a mixture of acetonitrile and 3-methyl-2-oxazolidinone in a volume ratio of 90/10 was used. To this solvent, iodine and 1-methyl-3-hexylimidazolium iodine salt as an electrolyte salt were added to prepare a solution containing 0.5 mol / L electrolyte salt and 0.05 mol / L iodine. To this solution, 10 parts by mass of the following nitrogen-containing polymer compound α was added to 100 parts by mass of (solvent + nitrogen-containing polymer compound + electrolyte salt). Furthermore, 0.1 mol of electrophile β was mixed with the nitrogen-containing polymer compound α to obtain a uniform reaction solution.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 一方、前記電極Aの色素増感酸化チタン微粒子層の上にスペーサーを介して白金を蒸着したガラス板からなる対極の白金薄膜側を載置し、導電性ガラス板と白金蒸着ガラス板とを固定した。得られた組立体の開放端を上記電解質溶液に浸漬し、毛細管現象により色素増感酸化チタン微粒子層中に反応溶液を浸透させた。
 次いで80℃で30分間加熱して、架橋反応を行った。このようにして、特開2000-323190号記載の図2に示す通り、導電性ガラス板10の導電層12上に、色素増感酸化チタン微粒子層20、電解質層30、白金薄膜42及びガラス板41からなる対極40が順に積層された光電気化学電池1-1(試料番号1)を得た。
 また、色素を表に示すように変更した以外上記工程と同様にして、光電気化学電池1-2~1-3を得た。
On the other hand, on the dye-sensitized titanium oxide fine particle layer of electrode A, a platinum thin film side of a counter electrode made of a glass plate on which platinum is vapor-deposited through a spacer is placed, and the conductive glass plate and the platinum vapor-deposited glass plate are fixed. did. The open end of the obtained assembly was immersed in the electrolyte solution, and the reaction solution was infiltrated into the dye-sensitized titanium oxide fine particle layer by capillary action.
Subsequently, it heated at 80 degreeC for 30 minute (s), and the crosslinking reaction was performed. Thus, as shown in FIG. 2 of JP-A-2000-323190, the dye-sensitized titanium oxide fine particle layer 20, the electrolyte layer 30, the platinum thin film 42, and the glass plate are formed on the conductive layer 12 of the conductive glass plate 10. A photoelectrochemical cell 1-1 (sample number 1) in which the counter electrode 40 composed of 41 was sequentially laminated was obtained.
In addition, photoelectrochemical cells 1-2 to 1-3 were obtained in the same manner as in the above step except that the dye was changed as shown in the table.
(b)光電気化学電池Aの作製
 前述のようにして色素を吸着させた酸化チタン微粒子層からなる電極A(20mm×20mm)を同じ大きさの白金蒸着ガラス板にスペーサーを介して重ねあわせた。次に両ガラス板の隙間に毛細管現象を利用して電解液(アセトニトリルと3-メチル-2-オキサゾリジノンとの体積比90/10の混合物を溶媒としたヨウ素0.05mol/L、ヨウ化リチウム0.5mol/Lの溶液)を浸透させて、光電気化学電池A-1(試料番号2)を作製した。
 また、増感色素を表に示すように変更した以外上記工程と同様にして、光電気化学電池A-2~A-3を得た。
(B) Production of photoelectrochemical cell A Electrode A (20 mm × 20 mm) composed of a titanium oxide fine particle layer adsorbed with a dye as described above was superimposed on a platinum-deposited glass plate of the same size via a spacer. . Next, using a capillary phenomenon in the gap between the two glass plates, an electrolyte (0.05 mol / L of iodine using a mixture of acetonitrile and 3-methyl-2-oxazolidinone in a volume ratio of 90/10 as a solvent, lithium iodide 0 .5 mol / L solution) was infiltrated to produce Photoelectrochemical Cell A-1 (Sample No. 2).
Photoelectrochemical cells A-2 to A-3 were obtained in the same manner as in the above step except that the sensitizing dye was changed as shown in the table.
(c)光電気化学電池Bの作製(特開平9-27352号公報に記載の電解質を使用)
 前述のようにして色素を吸着させた酸化チタン微粒子層からなる電極A(20mm×20mm)上に、電解液を塗布し、含浸させた。なお電解液は、ヘキサエチレングリコールメタクリル酸エステル(日本油脂化学(株)製,ブレンマーPE-350)1gと、エチレングリコール1gと、重合開始剤として2-ヒドロキシ-2-メチル-1-フェニル-プロバン-1-オン(日本チバガイギー(株)製,ダロキュア1173)20mgを含有した混合液に、ヨウ化リチウム500mgを溶解し10分間真空脱気することにより得た。次に前記混合溶液を含浸させた多孔性酸化チタン層を減圧下に置くことにより、多孔性酸化チタン層中の気泡を除き、モノマーの浸透を促した後、紫外光照射により重合して高分子化合物の均一なゲルを多孔性酸化チタン層の微細空孔内に充填した。このようにして得られたものをヨウ素雰囲気に30分間曝して、高分子化合物中にヨウ素を拡散させた後、白金蒸着ガラス板を重ね合わせ、光電気化学電池B-1(試料番号3)を得た。
 また、色素を表に示すように変更した以外上記工程と同様にして、光電気化学電池B-2~B-3を得た。
(C) Production of photoelectrochemical cell B (using an electrolyte described in JP-A-9-27352)
The electrolyte solution was applied and impregnated on the electrode A (20 mm × 20 mm) composed of the titanium oxide fine particle layer on which the dye was adsorbed as described above. The electrolyte was 1 g of hexaethylene glycol methacrylate (manufactured by Nippon Oil & Fats Chemical Co., Ltd., Bremer PE-350), 1 g of ethylene glycol, and 2-hydroxy-2-methyl-1-phenyl-propane as a polymerization initiator. It was obtained by dissolving 500 mg of lithium iodide in a mixed solution containing 20 mg of -1-one (manufactured by Ciba Geigy Japan, Darocur 1173) and vacuum degassing for 10 minutes. Next, the porous titanium oxide layer impregnated with the mixed solution is placed under a reduced pressure to remove bubbles in the porous titanium oxide layer, promote penetration of the monomer, and then polymerize by irradiation with ultraviolet light. A uniform gel of the compound was filled into the fine pores of the porous titanium oxide layer. The product thus obtained was exposed to an iodine atmosphere for 30 minutes to diffuse iodine in the polymer compound, and then a platinum vapor-deposited glass plate was overlaid, and photoelectrochemical cell B-1 (Sample No. 3) was mounted. Obtained.
Photoelectrochemical cells B-2 to B-3 were obtained in the same manner as in the above step except that the dye was changed as shown in the table.
4.光電変換効率の測定
 500Wのキセノンランプ(ウシオ電機(株)製)の光をAM1.5フィルター(Oriel社製)およびシャープカットフィルター(Kenko L-42)を通すことにより、紫外線を含まない模擬太陽光とした。光強度は89mW/cmとした。
4). Measurement of photoelectric conversion efficiency Simulated sun that does not contain ultraviolet rays by passing light from a 500 W xenon lamp (USHIO INC.) Through an AM1.5 filter (Oriel) and a sharp cut filter (Kenko L-42) It was light. The light intensity was 89 mW / cm 2 .
 前述の光電気化学電池の導電性ガラス板10と白金蒸着ガラス板40にそれぞれワニ口クリップを接続し、各ワニ口クリップを電流電圧測定装置(ケースレーSMU238型)に接続した。これに導電性ガラス板10側から模擬太陽光を照射し、発生した電気を電流電圧測定装置により測定した。これにより求められた光電気化学電池の変換効率(η)の初期値(fresh)と、300時間連続照射時の変換効率の低下率をまとめて表10に示す。Freshの変換効率は、3.5%以上のものを◎、2.5%以上3.5%未満のものを○、2.0%以上2.5%未満のものを△、2.0%未満のものを×として表示した。 The alligator clips were connected to the conductive glass plate 10 and the platinum-deposited glass plate 40 of the photoelectrochemical cell described above, and each alligator clip was connected to a current-voltage measuring device (Keutley SMU238 type). This was irradiated with simulated sunlight from the conductive glass plate 10 side, and the generated electricity was measured with a current-voltage measuring device. Table 10 summarizes the initial value (fresh) of the conversion efficiency (η) of the photoelectrochemical cell determined in this way and the rate of decrease in conversion efficiency after 300 hours of continuous irradiation. The conversion efficiency of Fresh is ◎ for those with 3.5% or more, ○ for those with 2.5% to less than 3.5%, △, 2.0% for those with 2.0% or more but less than 2.5% Less than were shown as x.
Figure JPOXMLDOC01-appb-T000046
 表10に示した結果から明らかなように、本発明の光電気化学電池はこの場合でも変換効率が高く、耐久性も高く優れたものであることがわかった。
Figure JPOXMLDOC01-appb-T000046
As is apparent from the results shown in Table 10, it was found that the photoelectrochemical cell of the present invention was excellent in conversion efficiency and durability even in this case.
(実験11)
 ゾル-ゲル法によって調製した懸濁液を用いてスクリーン印刷によりTiOの多孔質層をFTOガラス上に塗布し450℃で焼成した。これに本発明の色素化合物A-2、及び増感色素S-1の10-4mol/Lエタノール溶液中に浸漬することで、色素を吸着させた。
 100mgの2,2’,7,7’-テトラキス(ジフェニルアミノ)-9,9’-スピロビフルオレンを5mlのクロロホルムに溶解した。溶液を染料表面にそれを軽く塗ることによって、この溶液を層の細孔内にしみこませた。次に溶液の一滴を直接表面に置いて室温で乾燥した。ついで被覆支持体を蒸着装置に装着して約10-5ミリバールの真空下の熱蒸着によってさらに厚さ100nmの2,2’,7,7’-テトラキス(ジフェニルアミノ)-9,9’-スピロビフルオレンの層を適用した。さらに蒸着装置内でこの被覆支持体に対極として厚さ200nmの金の層を被覆した。
 このように調製した試料を高圧ランプ、光学フィルター、レンズおよびマウンティングを含む光学装置に取り付けた。フィルターの使用およびレンズの移動によって強度を変えることができた。金の層とSnO層とに接点を付け、試料を照射している間電流測定装置に示した装置に取り付けた。測定のために、適当な光学フィルターを用い波長が430nm未満の光を遮断した。さらに放射線の強度を約1000W/m)にほぼ一致するように装置を調整した。
 金の層およびSnO層に接点を付け、また試料を照射している間は両接点をポテンシオスタットに接続した。外部電圧をかけずに増感色素S-1を用いた試料では約90nAの電流を生じたが、本発明の色素化合物A-2を用いた試料では約190nAの電流を生じた。どちらの試料の場合も照射しないと電流は消失した。
(Experiment 11)
A porous layer of TiO 2 was applied onto FTO glass by screen printing using a suspension prepared by a sol-gel method, and baked at 450 ° C. The dye was adsorbed by immersing it in a 10 −4 mol / L ethanol solution of the dye compound A-2 of the present invention and the sensitizing dye S-1.
100 mg of 2,2 ′, 7,7′-tetrakis (diphenylamino) -9,9′-spirobifluorene was dissolved in 5 ml of chloroform. The solution was soaked into the pores of the layer by lightly applying the solution to the dye surface. A drop of the solution was then placed directly on the surface and dried at room temperature. The coated support was then attached to a vapor deposition apparatus and further 2,2 ′, 7,7′-tetrakis (diphenylamino) -9,9′-spiro having a thickness of 100 nm by thermal vapor deposition under a vacuum of about 10-5 mbar. A layer of bifluorene was applied. Furthermore, a gold layer having a thickness of 200 nm was coated on the coated support as a counter electrode in a vapor deposition apparatus.
The sample thus prepared was attached to an optical device including a high-pressure lamp, an optical filter, a lens and a mounting. The intensity could be changed by using a filter and moving the lens. The gold layer and the SnO 2 layer were contacted and attached to the device shown in the current measuring device while the sample was irradiated. For the measurement, light having a wavelength of less than 430 nm was blocked using an appropriate optical filter. Furthermore, the apparatus was adjusted so that the intensity of the radiation was approximately equal to about 1000 W / m 2 ).
Contacts were made on the gold layer and the SnO 2 layer, and both contacts were connected to a potentiostat while the sample was irradiated. The sample using the sensitizing dye S-1 without applying an external voltage produced a current of about 90 nA, whereas the sample using the dye compound A-2 of the present invention produced a current of about 190 nA. In both samples, the current disappeared if not irradiated.
(実験12)
 特開2000-90989の実験1と同様に作成したタンデムセルにおいても、比較色素S-1にくらべ本発明の色素A-2を用いた光電気化学電池は変換効率が高いことが確認できた。
(Experiment 12)
Even in the tandem cell prepared in the same manner as in Experiment 1 of JP-A-2000-90989, it was confirmed that the photoelectrochemical cell using the dye A-2 of the present invention had higher conversion efficiency than the comparative dye S-1.
(実験13)
チタンイソプロポキシド125mlを0.1M-硝酸水溶液(キシダ化学株式会社製)750mlに滴下し、80℃で8時間加熱して、加水分解反応をさせることにより、ゾル液を調製した。得られたゾル液をチタン製オートクレーブにて250℃で15時間保持し、粒子成長させ、その後、超音波分散を30分間行うことにより、平均一次粒径20nmの酸化チタン粒子を含むコロイド溶液を得た。
(Experiment 13)
125 ml of titanium isopropoxide was added dropwise to 750 ml of 0.1M nitric acid aqueous solution (manufactured by Kishida Chemical Co., Ltd.) and heated at 80 ° C. for 8 hours to cause a hydrolysis reaction, thereby preparing a sol solution. The obtained sol solution is kept in a titanium autoclave at 250 ° C. for 15 hours to grow particles, and then subjected to ultrasonic dispersion for 30 minutes to obtain a colloidal solution containing titanium oxide particles having an average primary particle size of 20 nm. It was.
 得られた酸化チタン粒子を含むコロイド溶液を、エバポレーターにて、酸化チタンが10wt%の濃度になるまでゆっくりと濃縮した後、ポリエチレングレコール(キシダ化学株式会社製、重量平均分子量:200000)を酸化チタンに対する重量比で40%添加し、攪拌することにより、酸化チタン粒子が分散した懸濁液を得た。 The resulting colloidal solution containing titanium oxide particles was slowly concentrated with an evaporator until the titanium oxide concentration reached 10 wt%, and then polyethylene glycol (made by Kishida Chemical Co., Ltd., weight average molecular weight: 200000) was oxidized. A suspension in which titanium oxide particles were dispersed was obtained by adding 40% by weight to titanium and stirring.
 透明導電膜2としてSnO膜を形成したガラス基板1の透明導電膜2側に、調製した酸化チタン懸濁液をドクターブレード法で塗布し、面積10mm×10mm程度の塗膜を得た。この塗膜を120℃で30分間予備乾燥し、さらに酸素雰囲気下、500℃で30分間焼成し、第1層多孔質光電変換層4の第1層多孔質半導体層となる、膜厚が10μm程度の酸化チタン膜を形成した。 The prepared titanium oxide suspension was applied by the doctor blade method to the transparent conductive film 2 side of the glass substrate 1 on which the SnO 2 film was formed as the transparent conductive film 2 to obtain a coating film having an area of about 10 mm × 10 mm. This coating film is pre-dried at 120 ° C. for 30 minutes, and further baked at 500 ° C. for 30 minutes in an oxygen atmosphere to become the first porous semiconductor layer of the first porous photoelectric conversion layer 4. The film thickness is 10 μm. About a titanium oxide film was formed.
 次に、市販の酸化チタン微粒子(テイカ社製、製品名:TITANIX JA-1、粒径約180nm)4.0gと酸化マグネシウム粉末(キシダ化学株式会社製)0.4gを蒸留水20mlに入れ、塩酸でpH=1に調整した。さらに、ジルコニアビーズを加え、この混合溶液をペイントシェイカーで8時間分散処理した。その後、ポリエチレングレコール(キシダ化学株式会社製、重量平均分子量:200000)を酸化チタンに対する重量比で40%添加し、攪拌することにより、酸化チタン粒子が分散した懸濁液を得た。  Next, 4.0 g of commercially available titanium oxide fine particles (manufactured by Teika, product name: TITANIX JA-1, particle size of about 180 nm) and 0.4 g of magnesium oxide powder (manufactured by Kishida Chemical Co., Ltd.) are placed in 20 ml of distilled water. The pH was adjusted to 1 with hydrochloric acid. Further, zirconia beads were added, and this mixed solution was subjected to a dispersion treatment with a paint shaker for 8 hours. Thereafter, 40% of polyethylene glycol (manufactured by Kishida Chemical Co., Ltd., weight average molecular weight: 200000) was added in a weight ratio with respect to titanium oxide and stirred to obtain a suspension in which titanium oxide particles were dispersed. *
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 透明導電膜2と多孔質半導体層3を具備したガラス基板1を、約50℃に加温した第1色素の吸着用色素溶液に10分間浸漬させて、多孔質半導体層3に第1色素を吸着させた。その後、ガラス基板1を無水エタノールで数回洗浄し、約60℃で約20分間乾燥させた。次いで、ガラス基板1を0.5N-塩酸に約10分間浸漬させ、その後エタノールで洗浄して、第2層多孔質半導体層に吸着された第1色素を脱着した。さらに、ガラス基板1を約60℃で約20分間乾燥させた。 The glass substrate 1 provided with the transparent conductive film 2 and the porous semiconductor layer 3 is immersed in a dye solution for adsorption of the first dye heated to about 50 ° C. for 10 minutes, and the first dye is applied to the porous semiconductor layer 3. Adsorbed. Thereafter, the glass substrate 1 was washed several times with absolute ethanol and dried at about 60 ° C. for about 20 minutes. Next, the glass substrate 1 was immersed in 0.5N hydrochloric acid for about 10 minutes and then washed with ethanol to desorb the first dye adsorbed on the second porous semiconductor layer. Further, the glass substrate 1 was dried at about 60 ° C. for about 20 minutes.
 次に、吸収スペクトルにおける最大感度吸収波長領域を長波長側に有する色素(第2色素)として、比較色素S-1、及び本発明の色素A-2をエタノールに溶解して、濃度3×10-4モル/リットルの第2色素の吸着用色素溶液を調製した。 Next, as a dye having the maximum sensitivity absorption wavelength region in the absorption spectrum on the long wavelength side (second dye), the comparative dye S-1 and the dye A-2 of the present invention are dissolved in ethanol, and the concentration is 3 × 10. A dye solution for adsorption of −4 mol / liter of the second dye was prepared.
 次に、3-メトキシプロピオニトリル溶媒に、ジメチルプロピルイミダゾリウムヨージドが濃度0.5モル/リットル、ヨウ化リチウムが濃度0.1モル/リットル、ヨウ素が濃度0.05モル/リットルになるように溶解させて、酸化還元性電解液を調製した。第1色素と第2色素を吸着させた多孔質半導体層3を具備したガラス基板1の多孔質半導体層3側と、対向電極層8として白金を具備したITOガラスからなる対極側支持体20の白金側とが対向するように設置し、その間に調製した酸化還元性電解液を注入し、周囲をエポキシ系樹脂の封止材9により封止して、色素増感型太陽電池を完成した。 Next, in 3-methoxypropionitrile solvent, dimethylpropylimidazolium iodide has a concentration of 0.5 mol / liter, lithium iodide has a concentration of 0.1 mol / liter, and iodine has a concentration of 0.05 mol / liter. Thus, a redox electrolyte solution was prepared. The porous semiconductor layer 3 side of the glass substrate 1 provided with the porous semiconductor layer 3 on which the first dye and the second dye are adsorbed, and the counter electrode side support 20 made of ITO glass provided with platinum as the counter electrode layer 8. It was installed so as to face the platinum side, and the prepared redox electrolyte solution was injected therebetween, and the periphery was sealed with an epoxy resin sealing material 9 to complete a dye-sensitized solar cell.
 また、第2層多孔質半導体層を第1多孔質半導体層と同じ層とする、すなわち第1多孔質半導体層を形成する酸化チタン懸濁液を用いて第2層多孔質半導体層を形成すること以外は、酸化チタン膜1と同様に酸化チタン膜2を作成し、これを用いて同様に太陽電池を作製し、評価した。多孔質光電変換層のヘイズ率は15%(S-1を使用した場合)、16%(本発明の色素を使用した場合)であった。 Further, the second porous semiconductor layer is made the same layer as the first porous semiconductor layer, that is, the second porous semiconductor layer is formed using a titanium oxide suspension that forms the first porous semiconductor layer. Except for this, a titanium oxide film 2 was prepared in the same manner as the titanium oxide film 1, and a solar cell was similarly manufactured and evaluated using the titanium oxide film 2. The haze ratio of the porous photoelectric conversion layer was 15% (when S-1 was used) and 16% (when the dye of the present invention was used).
 得られた太陽電池を測定条件:AM-1.5(100mW/cm2)で評価した結果を表11に示した。変換効率は、3.5%以上のものを◎、2.5%以上3.5%未満のものを○、2.0%以上2.5%未満のものを△、2.0%未満のものを×として表示した。 Table 11 shows the results of evaluating the obtained solar cell under measurement conditions: AM-1.5 (100 mW / cm 2). The conversion efficiency is ◎ for those with 3.5% or more, ◯ for 2.5% or more and less than 3.5%, △ for 2.0% or more and less than 2.5%, and less than 2.0%. Things were displayed as x.
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
 本発明の光電気化学電池は光電変換効率に優れ、この系でも有効であることがわかる。
(実験14)
 市販の酸化チタン粒子(テイカ株式会社製、平均粒径20nm)4.0gとジエチレングリコールモノメチルエーテル20mlとを、硬質ガラスビーズを使用してペイントシェイカーにより6時間分散させて酸化チタン懸濁液を作成した。次いで、この酸化チタン懸濁液を、ドクターブレードを用いて、予め酸化スズ導電層を付着させたガラス板(電極層)に塗布し、100℃で30分予備乾燥した後、電気炉で500℃で40分間焼成し、ガラス板上に酸化チタン膜(半導体材料)を形成した。これとは別に、本発明の増感色素及び比較色素をエタノールに溶解して光増感色素溶液を得た。
It can be seen that the photoelectrochemical cell of the present invention is excellent in photoelectric conversion efficiency and is effective even in this system.
(Experiment 14)
Titanium oxide suspension was prepared by dispersing 4.0 g of commercially available titanium oxide particles (manufactured by Teika Co., Ltd., average particle size 20 nm) and 20 ml of diethylene glycol monomethyl ether for 6 hours with a paint shaker using hard glass beads. . Next, this titanium oxide suspension was applied to a glass plate (electrode layer) to which a tin oxide conductive layer had been previously attached using a doctor blade, pre-dried at 100 ° C. for 30 minutes, and then heated to 500 ° C. in an electric furnace. Was baked for 40 minutes to form a titanium oxide film (semiconductor material) on the glass plate. Separately from this, the sensitizing dye and the comparative dye of the present invention were dissolved in ethanol to obtain a photosensitizing dye solution.
 この光増感色素溶液の濃度は5×10-4モル/リットルであった。次に、この溶液中に、膜状の酸化チタンが形成された前記のガラス板を入れ、60℃で60分間色素吸着を行った後、乾燥することにより、ガラス板上に半導体材料及び光増感色素からなる光電変換層を形成した(試料A)。前記試料Aの光電変換層上に、ホール輸送材料としてのポリビニルカルバゾール(重量平均分子量3,000)のトルエン溶液(1%)を塗布して、減圧乾燥してホール輸送層を形成した(試料B)。分子間電荷移動錯体としてのエチルカルバゾール1.95g及び5-ニトロナフトキノン2.03gを100mlアセトンに溶解して、得られた溶液を試料Bのホール輸送層上に繰り返し塗布して伝導層を形成した。次いで、伝導層上に金電極(対電極)を蒸着して光電変換素子を得た(試料C)。得られた光電変換素子(試料C)にソーラーシミュレーターで100W/mの強度の光を照射した。結果を表12に示した。変換効率は、1.5%以上のものを◎、1.0%以上1.5%未満のものを○、0.5%以上1.0%未満のものを△、0.5%未満のものを×として表示した。 The concentration of this photosensitizing dye solution was 5 × 10 −4 mol / liter. Next, the glass plate on which the film-like titanium oxide is formed is placed in this solution, dye adsorption is performed at 60 ° C. for 60 minutes, and drying is performed. A photoelectric conversion layer made of a dye-sensitive dye was formed (Sample A). On the photoelectric conversion layer of Sample A, a toluene solution (1%) of polyvinylcarbazole (weight average molecular weight 3,000) as a hole transport material was applied and dried under reduced pressure to form a hole transport layer (Sample B). ). 1.95 g of ethylcarbazole as an intermolecular charge transfer complex and 2.03 g of 5-nitronaphthoquinone were dissolved in 100 ml acetone, and the obtained solution was repeatedly applied onto the hole transport layer of Sample B to form a conductive layer. . Next, a gold electrode (counter electrode) was deposited on the conductive layer to obtain a photoelectric conversion element (Sample C). The obtained photoelectric conversion element (sample C) was irradiated with light having an intensity of 100 W / m 2 using a solar simulator. The results are shown in Table 12. Conversion efficiency is 1.5% or more for ◎, 1.0% or more and less than 1.5% for ○, 0.5% or more and less than 1.0% for Δ, and less than 0.5%. Things were displayed as x.
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
 本発明の色素は光電変換素子は光電変換効率に優れ、この系でも有効であることがわかる。
(実験15)
(1)第1光電変換層の形成
 市販の酸化チタン粒子(テイカ株式会社製、平均粒径30nm)4.0gとジエチレングリコールモノメチルエーテル20mlを硬質ガラスビーズを使用しペイントシェイカーにより6時間分散させ酸化チタン懸濁液を作成した。次いで、この酸化チタン懸濁液をドクターブレードを用いて、予め酸化スズ導電層が付着されたガラス板に塗布し、100℃で30分予備乾燥した後、電気炉で500℃で40分間焼成し、酸化チタン膜を得た。
As for the pigment | dye of this invention, it turns out that a photoelectric conversion element is excellent in photoelectric conversion efficiency, and is effective also in this type | system | group.
(Experiment 15)
(1) Formation of first photoelectric conversion layer 4.0 g of commercially available titanium oxide particles (manufactured by Teika Co., Ltd., average particle size 30 nm) and 20 ml of diethylene glycol monomethyl ether were dispersed with a paint shaker for 6 hours using hard glass beads, and titanium oxide. A suspension was made. Next, this titanium oxide suspension was applied to a glass plate to which a tin oxide conductive layer had been previously attached using a doctor blade, preliminarily dried at 100 ° C. for 30 minutes, and then baked at 500 ° C. for 40 minutes. A titanium oxide film was obtained.
 これとは別に、下記S-6で表された色素〔cis-dithiocyanine-N-bis(2,2’-bipyridyl-4,4’-dicarboxylic acid) ruthenium〕をエタノールに溶解した。 Separately, the dye represented by S-6 below [cis-dithiocyline-N-bis (2,2'-bipyrylyl-4,4'-dicarboxylic acid) ruthenium] was dissolved in ethanol.
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
 この色素の濃度は3×10-4モルであった。次に、この溶液中に膜状の酸化チタンを形成した前記のガラス板を入れ、60℃で720分間色素吸着を行ってから乾燥し、本発明の第1光電変換層(試料A)を得た。 The concentration of this dye was 3 × 10 −4 mol. Next, the glass plate on which film-like titanium oxide is formed is put in this solution, and after dye adsorption at 720 minutes at 60 ° C., drying is performed to obtain the first photoelectric conversion layer (sample A) of the present invention. It was.
(2)第2光電変換層の形成
 市販の酸化ニッケル粒子(キシダ化学、平均粒径100nm)4.0gとジエチレングリコールモノメチルエーテル20mlをガラスビーズを使用しペイントシェイカーで8時間分散させ酸化ニッケル懸濁液とした。次いで、この酸化チタン懸濁液をドクターブレードを用いて、酸化スズ導電層が付着されたガラス板に塗布し、100℃で30分予備乾燥した後、300℃で30分間焼成し、酸化ニッケル膜を得た。
(2) Formation of the second photoelectric conversion layer 4.0 g of commercially available nickel oxide particles (Kishida Chemical, average particle size 100 nm) and 20 ml of diethylene glycol monomethyl ether were dispersed with a paint shaker for 8 hours using glass beads, and a nickel oxide suspension It was. Next, this titanium oxide suspension was applied to a glass plate to which a tin oxide conductive layer was adhered using a doctor blade, pre-dried at 100 ° C. for 30 minutes, and then baked at 300 ° C. for 30 minutes. Got.
 これとは別に、本発明の色素及び比較色素S-1をジメチルスルホキシドに溶解した。 Separately, the dye of the present invention and the comparative dye S-1 were dissolved in dimethyl sulfoxide.
 この色素の濃度は1×10-4モルであった。次に、この溶液中に膜状の酸化チタンを形成した前記のガラス板を入れ、70℃で60分間色素吸着を行ってから乾燥し、本発明の第2光電変換層(試料B)を得た。 The concentration of this dye was 1 × 10 −4 mol. Next, the glass plate on which film-like titanium oxide is formed is placed in this solution, and after dye adsorption at 70 ° C. for 60 minutes, drying is performed to obtain the second photoelectric conversion layer (sample B) of the present invention. It was.
(3)前記の試料A上に試料Bを位置させる。これら2つの電極の間に液体電解質を入れ、この側面を樹脂で封止した後、リード線を取付けて、本発明の光電変換素子(素子構成C)を作成した。なお、液体電解質は、アセトニトリル/炭酸エチレンの混合溶媒(体積比が1:4)に、テトラプロピルアンモニウムアイオダイドとヨウ素とを、それぞれの濃度が0.46モル/l、0.06モル/lとなるように溶解したものを用いた。 (3) The sample B is positioned on the sample A. A liquid electrolyte was put between these two electrodes, and this side surface was sealed with resin, and then a lead wire was attached to produce a photoelectric conversion element (element configuration C) of the present invention. In addition, the liquid electrolyte is a mixed solvent of acetonitrile / ethylene carbonate (volume ratio is 1: 4), tetrapropylammonium iodide and iodine, with respective concentrations of 0.46 mol / l and 0.06 mol / l. What was melt | dissolved so that it might become was used.
 また、前記の試料Aを一方の電極として備え、対電極として白金を担持した透明導電性ガラス板を用いた。2つの電極の間に液体電解質を入れ、この側面を樹脂で封止した後、リード線を取付けて、本発明の光電変換素子(素子構成D)を作成した。 Also, a transparent conductive glass plate provided with the sample A as one electrode and carrying platinum as a counter electrode was used. A liquid electrolyte was placed between the two electrodes, and this side surface was sealed with resin, and then a lead wire was attached to produce a photoelectric conversion element (element configuration D) of the present invention.
 得られた光電変換素子(試料C、及びD)にソーラーシミュレーターで1000W/mの強度の光を照射した。変換効率は、6.5%以上のものを◎、6.0%以上6.5%未満のものを○、5.0%以上6.0%未満のものを△、5.0%未満のものを×として表示した。 The obtained photoelectric conversion elements (samples C and D) were irradiated with light having an intensity of 1000 W / m 2 using a solar simulator. Conversion efficiency is 6.5% or more for ◎, 6.0% or more but less than 6.5% ○, 5.0% or more but less than 6.0% Δ, less than 5.0% Things were displayed as x.
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000051
 本発明の光電変換素子は光電変換効率に優れ、この系でも有効であることがわかる。
(実験16)
 高分子電解質を用いた色素増感型太陽電池の作製した例について説明する。
The photoelectric conversion element of this invention is excellent in photoelectric conversion efficiency, and it turns out that it is effective also in this type | system | group.
(Experiment 16)
An example of producing a dye-sensitized solar cell using a polymer electrolyte will be described.
 酸化チタン膜を作製する塗液は、市販の酸化チタン粒子(テイカ株式会社社製、商品名AMT-600、アナターゼ型結晶、平均粒径30nm、比表面積50m/g)4.0gとジエチレングリコールモノメチルエーテル20mlとをガラスビーズを使用し、ペイントシェイカーで7時間分散させ、酸化チタン懸濁液を調製した。この酸化チタン懸濁液をドクターブレードを用いて、11μm程度の膜厚、10mm×10mm程度の面積で、SnOを透明導電膜としてガラス基板1上に作製された基板上に、透明導電膜側に塗布し、100℃で30分間予備乾燥した後、460℃で40分間酸素下で焼成し、その結果、膜厚が8μm程度の酸化チタン膜Aを作製した。 The coating liquid for producing the titanium oxide film was 4.0 g of commercially available titanium oxide particles (manufactured by Teika Co., Ltd., trade name AMT-600, anatase type crystal, average particle size 30 nm, specific surface area 50 m 2 / g) and diethylene glycol monomethyl. 20 ml of ether was dispersed with a paint shaker for 7 hours using glass beads to prepare a titanium oxide suspension. Using a doctor blade, this titanium oxide suspension is formed on a glass substrate 1 having a film thickness of about 11 μm and an area of about 10 mm × 10 mm and SnO 2 as a transparent conductive film. And preliminarily dried at 100 ° C. for 30 minutes and then baked under oxygen at 460 ° C. for 40 minutes. As a result, a titanium oxide film A having a thickness of about 8 μm was produced.
 次に本発明の色素及び比較の色素S-1を無水エタノールに濃度3×10-4モル/リットルで溶解させ吸着用色素溶液を作製した。この吸着用色素溶液を上述で得られた酸化チタン膜と透明導電膜を具備した透明基板を容器にそれぞれ入れ、約4時間浸透させることにより色素を吸着させた。その後、無水エタノールで数回洗浄し約60℃で約20分間乾燥させた。
 次に、一般式(105)で表されるモノマー単位のうち、Rをメチル基、Aを8個のポリエチレンオキサイド基と2個のポリプロピレンオキサイド基と中心核としてブタンテトライル基により構成されるモノマー単位を使用した。
Next, the dye of the present invention and the comparative dye S-1 were dissolved in absolute ethanol at a concentration of 3 × 10 −4 mol / liter to prepare an adsorption dye solution. The dye solution for adsorption was adsorbed by putting the transparent substrate provided with the titanium oxide film and the transparent conductive film obtained above into a container and allowing it to penetrate for about 4 hours. Thereafter, it was washed several times with absolute ethanol and dried at about 60 ° C. for about 20 minutes.
Next, among the monomer units represented by the general formula (105), a monomer composed of R as a methyl group, A as eight polyethylene oxide groups, two polypropylene oxide groups, and a butanetetrayl group as a central core Units were used.
Figure JPOXMLDOC01-appb-C000052
 (式中、Rは水素原子またはメチル基であり、Aはエステル基と炭素原子で結合している残基であり、nは2~4である。)
 このモノマー単位をプロピレンカーボネート(以下、PCと記載する)に20wt%の濃度で溶解させ、また、熱重合開始剤としてアゾビスイソブチロニトリル(AIBN)をモノマー単位に対して1wt%の濃度で溶解させモノマー溶液を作製する。このモノマー溶液を上述の酸化チタン膜に含浸させる手順について以下に示す。真空容器内にビーカー等の容器を設置し、その中に透明導電膜を具備した透明基板上の酸化チタン膜Aを入れ、ロータリーポンプで約10分間真空引きする。真空容器内を真空状態に保ちながらモノマー溶液をビーカー内に注入し、約15分間含浸させ酸化チタン3中にモノマー溶液を十分に染み込ます。ポリエチレン製セパレーター、PETフィルムと押さえ板を設置し冶具にて固定する。その後、約85℃で30分間加熱することにより、熱重合させ高分子化合物を作製する。
Figure JPOXMLDOC01-appb-C000052
(In the formula, R is a hydrogen atom or a methyl group, A is a residue bonded to an ester group with a carbon atom, and n is 2 to 4.)
This monomer unit is dissolved in propylene carbonate (hereinafter referred to as PC) at a concentration of 20 wt%, and azobisisobutyronitrile (AIBN) is used as a thermal polymerization initiator at a concentration of 1 wt% with respect to the monomer unit. Dissolve to make a monomer solution. The procedure for impregnating the above-described titanium oxide film with the monomer solution is described below. A container such as a beaker is placed in the vacuum container, and the titanium oxide film A on the transparent substrate provided with the transparent conductive film is placed therein, and is evacuated by a rotary pump for about 10 minutes. The monomer solution is poured into the beaker while keeping the vacuum container in a vacuum state, and the monomer solution is sufficiently soaked in the titanium oxide 3 by impregnation for about 15 minutes. A polyethylene separator, a PET film and a pressing plate are installed and fixed with a jig. Then, it heat-polymerizes by heating at about 85 degreeC for 30 minutes, and produces a high molecular compound.
 次に、高分子化合物に含浸させる酸化還元性電解液を作製する。酸化還元性電解液は、PCを溶媒として濃度0.5モル/リットルのヨウ化リチウムと濃度0.05モル/リットルのヨウ素を溶解させて作製した。この溶液中に上述の酸化チタン膜Aに作製した高分子化合物を約2時間浸すことにより、高分子化合物中に酸化還元性電解液を染み込ませて高分子電解質を作製した。 Next, a redox electrolyte solution to be impregnated into the polymer compound is prepared. The redox electrolyte was prepared by dissolving 0.5 mol / liter of lithium iodide and 0.05 mol / liter of iodine using PC as a solvent. The polymer compound prepared on the above-described titanium oxide film A was immersed in this solution for about 2 hours, so that the polymer compound was impregnated with the redox electrolyte solution to prepare a polymer electrolyte.
 その後、白金膜を具備した導電性基板を設置し、エポキシ系の封止剤にて周囲を封止し素子Aを作成した。
 また、酸化チタン膜Aを色素吸着後、モノマー処理を行わずに、PCを溶媒として濃度0.5モル/リットルのヨウ化リチウムと濃度0.05モル/リットルのヨウ素を溶解させて作製した酸化還元電解液をそのまま対極との間に注入して封止して素子Bを作成した。素子A、Bを用いて、ソーラーシミュレーターで1000W/mの強度の光を照射した。結果を表14に示した。変換効率は、3.5%以上のものを◎、2.5%以上3.5%未満のものを○、2.0%以上2.5%未満のものを△、2.0%未満のものを×として表示した。
Then, the electroconductive board | substrate which comprised the platinum film | membrane was installed, the periphery was sealed with the epoxy-type sealing agent, and the element A was created.
Further, after the dye adsorption of the titanium oxide film A, the oxidation was performed by dissolving lithium iodide at a concentration of 0.5 mol / liter and iodine at a concentration of 0.05 mol / liter using PC as a solvent without performing monomer treatment. The reduced electrolyte was injected as it was between the counter electrode and sealed to prepare an element B. Using the elements A and B, light having an intensity of 1000 W / m 2 was irradiated with a solar simulator. The results are shown in Table 14. The conversion efficiency is ◎ for those with 3.5% or more, ◯ for 2.5% or more and less than 3.5%, △ for 2.0% or more and less than 2.5%, and less than 2.0%. Things were displayed as x.
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000053
 本発明の色素は光電変換効率に優れ、この系でも有効であることがわかる。
(実験17)
(光電変換素子の作製)
 図1に示す光電変換素子を以下のようにして作製した。
 ガラス基板上に、透明導電膜としてフッ素をドープした酸化スズをスパッタリングにより形成し、これをレーザーでスクライブして、透明導電膜を2つの部分に分割した。
 次に、水とアセトニトリルの容量比4:1からなる混合溶媒100mlにアナターゼ型酸化チタン(日本アエロジル社製のP-25(商品名))を32g配合し、自転/公転併用式のミキシングコンディショナーを使用して均一に分散、混合し、半導体微粒子分散液を得た。この分散液を透明導電膜に塗布し、500℃で加熱して受光電極を作製した。
 その後、同様にシリカ粒子とルチル型酸化チタンとを40:60(質量比)で含有する分散液を作製し、この分散液を前記の受光電極に塗布し、500℃で加熱して絶縁性多孔体を形成した。次いで対極として炭素電極を形成した。
 次に、下記表15に記載された増感色素(複数混合または単独)のエタノール溶液に、上記の絶縁性多孔体が形成されたガラス基板を5時間浸漬した。増感色素の染着したガラスを4-tert-ブチルピリジンの10%エタノール溶液に30分間浸漬した後、エタノールで洗浄し自然乾燥させた。このようにして得られる感光層の厚さは10μmであり、半導体微粒子の塗布量は20g/mであった。電解液は、ヨウ化ジメチルプロピルイミダゾリウム(0.5モル/l)、ヨウ素(0.1モル/l)のメトキシプロピオニトリル溶液を用いた。
It can be seen that the dye of the present invention is excellent in photoelectric conversion efficiency and is effective even in this system.
(Experiment 17)
(Preparation of photoelectric conversion element)
The photoelectric conversion element shown in FIG. 1 was produced as follows.
On the glass substrate, tin oxide doped with fluorine was formed as a transparent conductive film by sputtering, and this was scribed with a laser to divide the transparent conductive film into two parts.
Next, 32 g of anatase-type titanium oxide (P-25 (trade name) manufactured by Nippon Aerosil Co., Ltd.) is mixed with 100 ml of a mixed solvent having a volume ratio of water and acetonitrile of 4: 1, and a rotating / revolving mixing conditioner is prepared. The resulting mixture was uniformly dispersed and mixed to obtain a semiconductor fine particle dispersion. This dispersion was applied to a transparent conductive film and heated at 500 ° C. to produce a light receiving electrode.
Thereafter, similarly, a dispersion containing 40:60 (mass ratio) of silica particles and rutile-type titanium oxide is prepared, and this dispersion is applied to the light receiving electrode and heated at 500 ° C. to form an insulating porous material. Formed body. Next, a carbon electrode was formed as a counter electrode.
Next, the glass substrate on which the insulating porous body was formed was immersed in an ethanol solution of a sensitizing dye (mixed or single) described in Table 15 below for 5 hours. The glass dyed with the sensitizing dye was immersed in a 10% ethanol solution of 4-tert-butylpyridine for 30 minutes, then washed with ethanol and naturally dried. The thickness of the photosensitive layer thus obtained was 10 μm, and the coating amount of semiconductor fine particles was 20 g / m 2 . As the electrolytic solution, a methoxypropionitrile solution of dimethylpropylimidazolium iodide (0.5 mol / l) and iodine (0.1 mol / l) was used.
(光電変換効率の測定)
 500Wのキセノンランプ(ウシオ電機(株)製)の光をAM1.5Gフィルター(Oriel社製)およびシャープカットフィルター(KenkoL-42、商品名)を通すことにより紫外線を含まない模擬太陽光を発生させた。この光の強度は89mW/cmであった。作製した光電変換素子にこの光を照射し、発生した電気を電流電圧測定装置(ケースレー238型、商品名)にて測定した。これにより求められた光電気化学電池の変換効率を測定した結果を下記表15に示した。結果は、変換効率が7.5%以上のものを◎、7.3%以上7.5%未満のものを○、7.1%以上7.3%未満のものを△、7.1%未満のものを×として評価した。
(Measurement of photoelectric conversion efficiency)
Light from a 500 W xenon lamp (USHIO INC.) Is passed through an AM1.5G filter (Oriel) and a sharp cut filter (KenkoL-42, trade name) to generate simulated sunlight that does not contain ultraviolet rays. It was. The intensity of this light was 89 mW / cm 2 . The produced photoelectric conversion element was irradiated with this light, and the generated electricity was measured with a current-voltage measuring device (Caseley 238 type, trade name). The results of measuring the conversion efficiency of the photoelectrochemical cell thus obtained are shown in Table 15 below. The results are: conversion efficiency of 7.5% or more ◎, 7.3% or more of less than 7.5% ○, 7.1% or more of less than 7.3% △, 7.1% Those less than were evaluated as x.
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000054
 増感色素S-4、S-5の構造は以下に示した。 The structures of sensitizing dyes S-4 and S-5 are shown below.
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 本発明の色素を用いて作製された電気化学電池は、表15に示されているように、本発明の増感色素を使用した場合は、高い変換効率を示した。これに対して、比較例の光電気化学電池の変換効率は7.1%未満と不十分であった。 As shown in Table 15, the electrochemical cell produced using the dye of the present invention showed high conversion efficiency when the sensitizing dye of the present invention was used. On the other hand, the conversion efficiency of the photoelectrochemical cell of the comparative example was insufficient at less than 7.1%.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
 本願は、2010年8月3日に日本国で特許出願された特願2010-174732及び2010年8月20日に日本国で特許出願された特願2010-185230に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 This application claims priority based on Japanese Patent Application No. 2010-174732 filed in Japan on August 3, 2010 and Japanese Patent Application No. 2010-185230 filed on August 20, 2010 in Japan. Which is hereby incorporated by reference herein as part of its description.
1 導電性支持体
2 感光体層
 21 色素
 22 半導体微粒子
3 電荷移動体層
4 対極
5 受光電極
6 回路
10 光電変換素子
100 光電気化学電池
DESCRIPTION OF SYMBOLS 1 Conductive support body 2 Photoconductor layer 21 Dye 22 Semiconductor fine particle 3 Charge transfer body layer 4 Counter electrode 5 Photosensitive electrode 6 Circuit 10 Photoelectric conversion element 100 Photoelectrochemical cell

Claims (7)

  1.  下記一般式(1)で表される色素化合物。
    Figure JPOXMLDOC01-appb-C000001
     一般式(1)中、Z、Z、Z、及びZは、芳香族環構造またはヘテロ環構造を表す。R、R、R、及びRは、それぞれ独立に、置換基を表す。m1~m4は、0~4の整数を表し、m1~m4が2以上の時、複数のR~Rは、同一でも異なっていても良い。前記R~Rの少なくとも一つは連結基Yを含み、当該連結基YはZ~Zの少なくとも1つに直結して共役している。またR、R、R及びRの少なくとも1つは酸性基を有する。Mは、水素原子、金属原子、又は置換金属原子を表す。
    A dye compound represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    In General Formula (1), Z 1 , Z 2 , Z 3 , and Z 4 represent an aromatic ring structure or a heterocyclic structure. R 1 , R 2 , R 3 , and R 4 each independently represent a substituent. m1 to m4 represent an integer of 0 to 4, and when m1 to m4 is 2 or more, the plurality of R 1 to R 4 may be the same or different. At least one of R 1 to R 4 includes a linking group Y, and the linking group Y is directly connected to at least one of Z 1 to Z 4 and conjugated. Further, at least one of R 1 , R 2 , R 3 and R 4 has an acidic group. M represents a hydrogen atom, a metal atom, or a substituted metal atom.
  2.  請求項1中、Yが下記一般式(2)~(9)で表される単位を含む部位又はこれらの単位の組み合わせからなる部位を含む請求項1記載の色素化合物。
    Figure JPOXMLDOC01-appb-C000002
     式中、n1~n8は1~10を表す。m7、m9は0~4を表す。m8、m11、m12、m14、及びm15は0~2を表す。R、Rは水素原子又は置換基を表す。R~R15は置換基を表す。X~XはCHまたはNである。
    2. The dye compound according to claim 1, wherein Y comprises a moiety comprising a unit represented by the following general formulas (2) to (9) or a moiety comprising a combination of these units.
    Figure JPOXMLDOC01-appb-C000002
    In the formula, n1 to n8 represent 1 to 10. m7 and m9 represent 0-4. m8, m11, m12, m14, and m15 each represents 0-2. R 5 and R 6 represent a hydrogen atom or a substituent. R 7 to R 15 represent a substituent. X 1 to X 4 are CH or N.
  3.  酸性基がCOOH、PO、PO,SO、SOH、及びCONHOHから選ばれる基である請求項1又は2記載の色素化合物。 The dye compound according to claim 1 or 2, wherein the acidic group is a group selected from COOH, PO 3 H 2 , PO 4 H 2 , SO 3 H 2 , SO 4 H, and CONHOH.
  4.  前記一般式(1)においてR~Rの酸性基を含む基以外の基が疎水性基を有する請求項1~3のいずれか1項に記載の色素化合物。 The dye compound according to any one of claims 1 to 3, wherein a group other than the group containing an acidic group represented by R 1 to R 4 in the general formula (1) has a hydrophobic group.
  5.  感光体層を具備する光電変換素子であって、前記感光体層に請求項1~4のいずれか1項記載の色素化合物を少なくとも1種によって増感される半導体微粒子を含有する光電変換素子。 A photoelectric conversion element comprising a photosensitive layer, wherein the photosensitive layer contains semiconductor fine particles sensitized with at least one dye compound according to any one of claims 1 to 4.
  6.  前記感光体層に、さらに下記一般式(14)で表される色素を含有する請求項5記載の光電変換素子。
     
    Mz(LL)m(LL)m(X)m・CI  一般式(14)
     
    [一般式(14)において、Mzは金属原子を表し、LLは下記一般式(15)で表される2座又は3座の配位子であり、LLは下記一般式(16)で表される2座又は3座の配位子である。
     XはLL及びLL以外の1座または2座の配位子を表す。
     m1は0~3の整数を表し、m1が2以上のとき、LLは同じでも異なっていてもよい。m2は0~3の整数を表し、m2が2のとき、LLは同じでも異なっていてもよい。ただし、m1とm2のうち少なくとも一方は1以上の整数である。
     m3は0~2の整数を表し、m3が2のとき、Xは同じでも異なっていてもよく、X同士が連結していてもよい。
     CIは一般式(14)において、電荷を中和させるのに対イオンが必要な場合の対イオンを表す。]
    Figure JPOXMLDOC01-appb-C000003
    [一般式(15)において、R101及びR102はそれぞれ独立に、カルボキシル基、スルホン酸基、ヒドロキシル基、ヒドロキサム酸基、ホスホリル基またはホスホニル基を表す。R103及びR104はそれぞれ独立に置換基を表し、R105及びR106はそれぞれ独立にアルキル基、アリール基又はヘテロ環基を表す。d1及びd2はそれぞれ0以上の整数を表す。
     L及びLはそれぞれ独立に共役鎖を表す。
     a1及びa2はそれぞれ独立に0~3の整数を表し、a1が2以上のときR101は同じでも異なっていてもよく、a2が2以上のときR102は同じでも異なっていてもよく、b1及びb2はそれぞれ独立に0~3の整数を表す。b1が2以上のときR103は同じでも異なっていてもよく、R103は互いに連結して環を形成してもよく、b2が2以上のときR104は同じでも異なっていてもよく、R104は互いに連結して環を形成してもよい。b1及びb2が共に1以上のとき、R103とR104が連結して環を形成してもよい。
     d3は0又は1を表す。]
    Figure JPOXMLDOC01-appb-C000004
    [一般式(16)において、Za、Zb及びZcはそれぞれ独立に、5又は6員環を形成しうる非金属原子群を表し、それぞれ独立に酸性基を有していてもよい。cは0又は1を表す。]
    The photoelectric conversion element according to claim 5, further comprising a dye represented by the following general formula (14) in the photoreceptor layer.

    Mz (LL 1 ) m 1 (LL 2 ) m 2 (X) m 3 · CI General formula (14)

    [In the general formula (14), Mz represents a metal atom, LL 1 is a bidentate or tridentate ligand represented by the following general formula (15), and LL 2 is the following general formula (16). The bidentate or tridentate ligand represented.
    X represents a ligand of monodentate or bidentate non-LL 1 and LL 2.
    m1 represents an integer of 0 to 3, and when m1 is 2 or more, LL 1 may be the same or different. m2 represents an integer of 0 to 3, and when m2 is 2, LL 2 may be the same or different. However, at least one of m1 and m2 is an integer of 1 or more.
    m3 represents an integer of 0 to 2, and when m3 is 2, Xs may be the same or different, and Xs may be linked together.
    CI represents a counter ion in the general formula (14) when a counter ion is necessary to neutralize the charge. ]
    Figure JPOXMLDOC01-appb-C000003
    [In General Formula (15), R 101 and R 102 each independently represent a carboxyl group, a sulfonic acid group, a hydroxyl group, a hydroxamic acid group, a phosphoryl group, or a phosphonyl group. R 103 and R 104 each independently represent a substituent, and R 105 and R 106 each independently represent an alkyl group, an aryl group, or a heterocyclic group. d1 and d2 each represents an integer of 0 or more.
    L 1 and L 2 each independently represent a conjugated chain.
    a1 and a2 each independently represent an integer of 0 to 3, and when a1 is 2 or more, R 101 may be the same or different, and when a2 is 2 or more, R 102 may be the same or different, b1 And b2 each independently represents an integer of 0 to 3. When b1 is 2 or more, R 103 may be the same or different, R 103 may be linked to each other to form a ring, and when b2 is 2 or more, R 104 may be the same or different. 104 may be connected to each other to form a ring. When b1 and b2 are both 1 or more, may be linked to form a ring R 103 and R 104 are.
    d3 represents 0 or 1. ]
    Figure JPOXMLDOC01-appb-C000004
    [In the general formula (16), Za, Zb and Zc each independently represent a non-metallic atom group capable of forming a 5- or 6-membered ring, and may each independently have an acidic group. c represents 0 or 1; ]
  7.  請求項5又は6に記載の光電変換素子を用いる光電気化学電池。 A photoelectrochemical cell using the photoelectric conversion element according to claim 5 or 6.
PCT/JP2011/067011 2010-08-03 2011-07-26 Metal complex dye, photoelectric conversion element, and photoelectrochemical cell WO2012017874A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010174732 2010-08-03
JP2010-174732 2010-08-03
JP2010185230 2010-08-20
JP2010-185230 2010-08-20

Publications (1)

Publication Number Publication Date
WO2012017874A1 true WO2012017874A1 (en) 2012-02-09

Family

ID=45559376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067011 WO2012017874A1 (en) 2010-08-03 2011-07-26 Metal complex dye, photoelectric conversion element, and photoelectrochemical cell

Country Status (1)

Country Link
WO (1) WO2012017874A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167189A (en) * 2011-02-14 2012-09-06 Aisin Seiki Co Ltd Phthalocyanine derivative, method for producing the same, and dye-sensitized solar cell
JP2013185029A (en) * 2012-03-07 2013-09-19 Konica Minolta Inc Dyestuff for opto-electronic device, opto-electronic device and method of manufacturing the same
WO2020059483A1 (en) * 2018-09-18 2020-03-26 富士フイルム株式会社 Composition, film, optical filter, solid-state imaging device, infrared sensor, method for manufacturing optical filter, camera module, compound, and dispersion composition
JP2022123689A (en) * 2021-02-12 2022-08-24 東洋インキScホールディングス株式会社 Near-infrared absorbing pigment, near-infrared absorbing composition, and optical filter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004220974A (en) * 2003-01-16 2004-08-05 Toyo Ink Mfg Co Ltd Optical functional material
WO2010050574A1 (en) * 2008-10-29 2010-05-06 富士フイルム株式会社 Photoelectrochemical cell
WO2010136178A1 (en) * 2009-05-26 2010-12-02 Corus Uk Limited The preparation of a dye compound and a method for making the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004220974A (en) * 2003-01-16 2004-08-05 Toyo Ink Mfg Co Ltd Optical functional material
WO2010050574A1 (en) * 2008-10-29 2010-05-06 富士フイルム株式会社 Photoelectrochemical cell
WO2010136178A1 (en) * 2009-05-26 2010-12-02 Corus Uk Limited The preparation of a dye compound and a method for making the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SEUNGHUN EU ET AL.: "Synthesis of sterically hindered phthalocyanines and their applications to dye-sensitized solar cells", DALTON TRANSACTIONS, vol. 40, 2008, pages 5476 - 5483 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167189A (en) * 2011-02-14 2012-09-06 Aisin Seiki Co Ltd Phthalocyanine derivative, method for producing the same, and dye-sensitized solar cell
JP2013185029A (en) * 2012-03-07 2013-09-19 Konica Minolta Inc Dyestuff for opto-electronic device, opto-electronic device and method of manufacturing the same
WO2020059483A1 (en) * 2018-09-18 2020-03-26 富士フイルム株式会社 Composition, film, optical filter, solid-state imaging device, infrared sensor, method for manufacturing optical filter, camera module, compound, and dispersion composition
JPWO2020059483A1 (en) * 2018-09-18 2021-08-30 富士フイルム株式会社 Compositions, membranes, optical filters, solid-state image sensors, infrared sensors, methods for manufacturing optical filters, camera modules, compounds, and dispersion compositions.
JP7094379B2 (en) 2018-09-18 2022-07-01 富士フイルム株式会社 Compositions, membranes, optical filters, solid-state image sensors, infrared sensors, methods for manufacturing optical filters, camera modules, compounds, and dispersion compositions.
JP2022123689A (en) * 2021-02-12 2022-08-24 東洋インキScホールディングス株式会社 Near-infrared absorbing pigment, near-infrared absorbing composition, and optical filter
JP7182049B2 (en) 2021-02-12 2022-12-02 東洋インキScホールディングス株式会社 Near-infrared absorbing dye, near-infrared absorbing composition, and optical filter

Similar Documents

Publication Publication Date Title
JP5572029B2 (en) Metal complex dye, photoelectric conversion element and photoelectrochemical cell
JP5620314B2 (en) Photoelectric conversion element, photoelectrochemical cell, dye for photoelectric conversion element and dye solution for photoelectric conversion element
JP5620316B2 (en) Photoelectric conversion element, photoelectrochemical cell and dye
JP5681716B2 (en) Metal complex dye, photoelectric conversion element and photoelectrochemical cell
WO2013137221A1 (en) Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye adsorption liquid composition for dye-sensitized solar cell, semiconductor electrode for dye-sensitized solar cell, and method for producing dye-sensitized solar cell
JP5869481B2 (en) Metal complex dye, photoelectric conversion element and photoelectrochemical cell
JP5620469B2 (en) Method for producing photoelectric conversion element, photoelectric conversion element and photoelectrochemical cell
JP5689351B2 (en) Photoelectric conversion element and photoelectrochemical cell
WO2012017869A1 (en) Metal complex dye, photoelectric conversion element and photoelectrochemical cell
JP5620496B2 (en) Metal complex dye, photoelectric conversion element and photoelectrochemical cell
JP5620315B2 (en) Photoelectric conversion element and photoelectrochemical cell
JP5649368B2 (en) Photoelectric conversion element and photoelectrochemical cell
WO2012017874A1 (en) Metal complex dye, photoelectric conversion element, and photoelectrochemical cell
JP2012051952A (en) Pigment, photoelectric element and photoelectrochemical battery
WO2011118580A1 (en) Photoelectric conversion element and photoelectrochemical cell
WO2012017873A1 (en) Metal complex dye, photoelectric conversion element and photoelectrochemical cell
JP5662728B2 (en) Dye, photoelectric conversion element and photoelectrochemical cell using the same
JP2012038436A (en) Photoelectric conversion element, photoelectrochemical cell using the same, and composition for photoelectric conversion element
JP5572028B2 (en) Photoelectric conversion device, photoelectrochemical cell using the same, and composition for photoelectric conversion device
JP2012036239A (en) Metal complex dye, photoelectric conversion element, and photoelectrochemical cell
JP5572027B2 (en) Photoelectric conversion element and composition for photoelectric conversion element used therefor
JP5756766B2 (en) Photoelectric conversion element, photoelectrochemical cell and dye
JP5775675B2 (en) Photoelectric conversion element, photoelectrochemical cell, and dye solution for photoelectric conversion element
WO2012017870A1 (en) Dye, photoelectric conversion element and photoelectrochemical cell
JP2012038437A (en) Photoelectric conversion element, photoelectrochemical battery using the same, and photoelectric conversion element composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11814502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP