WO2011152248A1 - セメント組成物及びセメント組成物の製造方法 - Google Patents

セメント組成物及びセメント組成物の製造方法 Download PDF

Info

Publication number
WO2011152248A1
WO2011152248A1 PCT/JP2011/061868 JP2011061868W WO2011152248A1 WO 2011152248 A1 WO2011152248 A1 WO 2011152248A1 JP 2011061868 W JP2011061868 W JP 2011061868W WO 2011152248 A1 WO2011152248 A1 WO 2011152248A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
content
cement composition
cement
limestone
Prior art date
Application number
PCT/JP2011/061868
Other languages
English (en)
French (fr)
Inventor
則彦 澤邊
殿河内 仁
貴康 伊藤
三上 浩
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to CN201180027238.8A priority Critical patent/CN102917999B/zh
Priority to SG2012088175A priority patent/SG185805A1/en
Priority to US13/701,278 priority patent/US8641819B2/en
Priority to KR1020127034028A priority patent/KR101404381B1/ko
Publication of WO2011152248A1 publication Critical patent/WO2011152248A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • C04B22/066Magnesia; Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/14Cements containing slag
    • C04B7/147Metallurgical slag
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/38Preparing or treating the raw materials individually or as batches, e.g. mixing with fuel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/067Slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2/00Lime, magnesia or dolomite
    • C04B2/02Lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/02Portland cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • C04B7/246Cements from oil shales, residues or waste other than slag from waste building materials, e.g. waste asbestos-cement products, demolition waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Definitions

  • the present invention relates to a cement composition and a method for producing the cement composition.
  • Non-Patent Document 1 describes chemical analysis values of various Portland cements (ordinary Portland cement (N), early-strength Portland cement (H), moderately hot Portland cement (M), low heat Portland cement (L)). Then, the amount of C 3 A is calculated from each component of this chemical analysis value (for example, Al 2 O 3 , Fe 2 O 3 ) using the Borg equation, and the amount of condensed water required for this C 3 A amount (standard softness of cement paste) Table 1 shows the amount of water: the amount of water necessary to obtain a certain degree of softness.
  • Patent Document 1 As a method for improving the fluidity of mortar or concrete, “use inorganic powder such as limestone fine powder (Patent Document 1)”, “adjust the form of gypsum to be mixed (Patent Document 2)”, “particle size Is a specific range, and an aggregate having a good particle shape is used (Patent Document 3).
  • Other general methods include “using an admixture (fluidizing agent)”. However, these methods have problems such as an increase in manufacturing cost and an adverse effect on strength development.
  • the present invention has been made in view of the above circumstances, and is a case where a relatively large amount of waste such as coal ash and construction generated soil is used, and the content of Al and C 3 A in the cement clinker is increased.
  • Another object of the present invention is to provide a cement composition that can improve the fluidity of cement paste, mortar, and concrete, and a method for producing the cement composition.
  • the present inventors have used a relatively large amount of waste such as coal ash and construction generated soil, and the Al content and C 3 A content in the cement composition.
  • waste such as coal ash and construction generated soil
  • the Al content and C 3 A content in the cement composition In cement with a relatively large amount, the content of strontium (hereinafter referred to as “Sr”) and the content of magnesium oxide (hereinafter referred to as “MgO”) in the cement composition can improve the fluidity of cement paste, mortar or concrete.
  • the present invention has been completed.
  • the present invention relates to a cement composition having an Sr content of 0.065 to 1.0% by mass and an MgO content of more than 1.0% by mass and 3.0% by mass or less.
  • the present invention also provides f.
  • the present invention relates to a cement composition having a CaO content of 1.5% by mass or less.
  • the SO 3 content is 1.6 to 2.6% by mass
  • the C 3 S content calculated by the Borg formula is 50 to 70% by mass
  • the C 2 S content is 5 to 25%.
  • the present invention relates to a cement composition having a mass%, a C 3 A content of 6 to 15 mass%, and a C 4 AF content of 7 to 15 mass%.
  • the present invention also provides limestone, meteorite, so that the Sr content of the cement composition is 0.065 to 1.0% by mass and the MgO content is more than 1.0% by mass and not more than 3.0% by mass. , Adjusting the basic unit of raw material selected from the group consisting of coal ash, clay, blast furnace slag, construction generated soil, sewage sludge, hydrocake and iron source, blending the adjusted raw materials, and firing to produce cement clinker
  • the present invention relates to a method for producing a cement composition, comprising a step (A) of performing, a step (B) of mixing and pulverizing cement clinker, gypsum, and limestone and blast furnace slag as a mixture.
  • this invention relates to the manufacturing method of a cement composition which uses a shell as a partial substitute of limestone.
  • the raw material for cement clinker in the step (A) is 700-1400 kg of limestone per ton of cement clinker, 20-150 kg of limestone, 0-300 kg of coal ash, 0-100 kg of clay, 0-100 kg of blast furnace slag, 10
  • the present invention relates to a method for producing a cement composition, comprising: 150 kg, sewage sludge 0-100 kg, hydrocake 0-100 kg, and iron source 30-80 kg.
  • the present invention provides a method for producing a cement composition, wherein in the step (A), the construction generated soil and the coal ash are blended so that the mass ratio of the construction generated soil to the coal ash is 0.13 to 1.6. About. Further, in the present invention, the Sr content in the construction generated soil in the step (A) is 0.01 to 1.0% by mass, and the Sr content in the coal ash is 0.02 to 0.4% by mass.
  • the present invention relates to a method for producing a cement composition.
  • the condensed water amount and the concrete unit water amount are reduced, and the fluidity of the cement paste, mortar and concrete is improved. can do.
  • the cement composition of the present invention is characterized in that the Sr content is 0.065 to 1.0% by mass, and the MgO content is more than 1.0% by mass and not more than 3.0% by mass.
  • Sr and MgO in the cement composition are minor and trace components.
  • the inventors have determined that the Sr content of the cement composition and the MgO content are related to the flowability of the mortar and concrete, and by making the Sr content and the MgO content within an appropriate range, It was found that the amount of condensed water and the unit water amount of concrete can be reduced, and the fluidity of cement paste, mortar and concrete can be improved. As a result, it is possible to maintain and improve the fluidity of cement paste, mortar, and concrete using the cement composition even when using waste such as coal ash and construction generated soil that are desired to be effectively used.
  • the Sr content and the MgO content of the cement composition are content ratios (% by mass) with respect to the total mass of the cement composition.
  • the Sr content of the cement composition can be measured according to the Cement Association standard test method JCAS I-52 2000 “ICP emission spectroscopic analysis and electric heating atomic absorption analysis method”.
  • the MgO content in the cement composition can be measured according to JIS R 5202: 1998 “Chemical analysis method of Portland cement”.
  • the mineral composition (C 3 S, C 2 S, C 3 A and C 4 AF) of the cement composition can be measured according to the Borg type or the Rietveld analysis method of powder X-ray diffraction measurement (XRD). .
  • the Sr content of the cement composition is 0.065 to 1.0% by mass, preferably 0.067 to 0.5% by mass, more preferably 0.068 to 0.3% by mass, and still more preferably. Is 0.070 to 0.20% by mass, particularly preferably 0.070 to 0.15% by mass.
  • the MgO content of the cement composition is more than 1.0% by mass and not more than 3.0% by mass, preferably more than 1.0% by mass and not more than 2.6% by mass, more preferably 1.1 to 2.6% by mass, more preferably 1.1 to 2.5% by mass, particularly preferably 1.2 to 2.5% by mass, and most preferably 1.8 to 2.4% by mass. .
  • the C 3 A content measured according to the XRD / Rietveld analysis method of the cement composition is 0.1 to 11.0% by mass, preferably 1.0 to 10.5% by mass, more preferably 2.0 to 10.2% by mass, more preferably 3.0 to 10.2% by mass, particularly preferably 3.0 to 9.0% by mass, and most preferably 3.0 to 7.0%. % By mass.
  • the Sr content of the cement composition is less than 0.065% by mass or the MgO content is 1.0% by mass or less, the fluidity of the mortar or concrete is reduced, and the amount of condensed water or The unit water volume of concrete may increase.
  • the CaO content is preferably 1.5% by mass or less, more preferably 0.1 to 1.2% by mass, still more preferably 0.2 to 1.0% by mass, and particularly preferably 0.3%. 0.8% by mass.
  • the cement composition of the present invention has an SO 3 content of preferably 1.6 to 2.6% by mass, more preferably 1.7 to 2.5% by mass, and still more preferably 1.8 to 2.4%. % By mass, particularly preferably 1.8 to 2.3% by mass.
  • SO 3 content of the cement composition is within the above range, the strength development of mortar and concrete can be improved while maintaining the fluidity of the cement composition appropriately.
  • the SO 3 content in the cement composition is a content ratio (mass%) with respect to the total mass, and this content ratio can be measured according to JIS R 5202: 1998 “Chemical analysis method of Portland cement”.
  • the mineral composition calculated by the Borg formula of the cement composition of the present invention preferably has a C 3 S content of 50 to 70% by mass, a C 2 S content of 3 to 25% by mass, and a C 3 A content of 6 to 6%.
  • 15 mass% and C 4 AF content is 7 to 15 mass%, more preferably C 3 S content is 51 to 67 mass%, C 2 S content is 5 to 25 mass%, and C 3 A content is Is 8 to 13% by mass and the C 4 AF content is 8 to 12% by mass, and more preferably the C 3 S content is 52 to 65% by mass, the C 2 S content is 8 to 22% by mass, and C 3
  • the A content is 8 to 12% by mass and the C 4 AF content is 8 to 11% by mass, particularly preferably the C 3 S content is 53 to 65% by mass and the C 2 S content is 8 to 21% by mass.
  • the C 3 A content is 8 to 10% by mass and the C 4 AF content is 8 to 10% by mass.
  • the C 3 S content, the C 2 S content, the C 3 A content, and the C 4 AF content in the cement composition calculated by the Borg formula are expressed by the following formulas [1] to [4]. calculate.
  • CaO”, SiO 2 ”, “Al 2 O 3 ” and “Fe 2 O 3 ” in the formula are respectively the cement compositions of CaO, SiO 2 , Al 2 O 3 and Fe 2 O 3 in the cement composition. It is the content rate (mass%) with respect to the whole mass of a thing. These content ratios can be measured by JIS R 5202 “Method for chemical analysis of Portland cement” or JIS R 5204 “Method for fluorescent X-ray analysis of cement”.
  • the Sr content in the cement composition is 0.065 to 1.0% by mass, and the MgO content is more than 1.0% by mass and 3.0% by mass or less.
  • a step (A) of producing a cement clinker by firing and a step (B) of mixing and pulverizing the obtained cement clinker and gypsum are included.
  • Examples of raw materials for cement clinker in step (A) include limestone, meteorite, coal ash, clay, blast furnace slag, construction generated soil, sewage sludge, hydrocake, and iron source.
  • Coal ash is generated from a coal-fired power plant or the like, and includes cinder ash, fly ash, clinker ash, and bottom ash.
  • Examples of construction generated soil include residual soil, mud soil, waste soil, etc., which are generated as a result of construction work.
  • Examples of sewage sludge include sludge, dry pulverized limestone, and incineration residues.
  • Examples of the iron source include copper tangling and blast furnace dust.
  • the cement clinker raw material in the process (A) is 700 to 1400 kg of limestone, 20 to 150 kg of limestone, 0 to 300 kg of coal ash, 0 to 100 kg of clay, 0 to 100 kg of blast furnace slag, It is preferable to blend 10 to 150 kg, sewage sludge 0 to 100 kg, hydrocake 0 to 100 kg, and iron source 30 to 80 kg.
  • cement clinker raw material in the step (A) limestone 800 to 1300 kg, meteorite 20 to 100 kg, coal ash 50 to 250 kg, clay 0 to 80 kg, blast furnace slag 5 to 50 kg, construction generated soil 20 More preferably, 150 kg, sewage sludge 0-70 kg, hydrocake 20-80 kg and iron source 30-60 kg are blended.
  • limestone, coal ash, and construction generated soil as cement clinker raw materials it is particularly preferable to mix 900 to 1200 kg of limestone, 80 to 270 kg of coal ash, and 20 to 150 kg of construction generated soil per ton of cement clinker.
  • the “raw material basic unit” means the mass (kg / t-clinker) of each raw material used in producing 1 ton of cement clinker.
  • step (A) As a method of adjusting the raw material intensity of the cement clinker raw material in the step (A), specifically, the Sr content and MgO content of the sampled cement composition are measured, and the Sr content and MgO content are measured. Adjust the raw material intensity of the cement clinker raw material so that is within a specific range.
  • the Sr content of limestone which is a calcium source raw material
  • the use amount of coal ash and construction generated soil (raw material basic unit) affect the Sr content in the cement composition.
  • the mass ratio of construction generated soil to coal ash (construction generated soil (kg / t-clinker) / coal ash (kg / t-clinker)) is preferably 0.13 to 1.6, and more preferably 0.8. It is 15 to 1.5, more preferably 0.2 to 1.5, and particularly preferably 0.2 to 1.4.
  • each cement clinker raw material is adjusted with the raw material basic unit so that the MgO content contained in the cement composition is more than 1.0% by mass and not more than 3.0% by mass. It is preferable to mix.
  • the Sr content and MgO content in each raw material are preferably in the following ranges.
  • Sr content in each raw material and MgO content are the content rate (mass%) with respect to each raw material (100 mass%).
  • the Sr content is preferably 0.01 to 0.10% by mass, more preferably 0.01 to 0.09% by mass, still more preferably 0.01 to 0.08% by mass, particularly preferably. 0.015-0.08% by mass is used.
  • the MgO content is preferably 0.1 to 2.0% by mass, more preferably 0.1 to 1.5% by mass, still more preferably 0.1 to 1.3% by mass, particularly preferably 0.2 to Use 1.3% by mass.
  • waste shells as a raw material in order to keep the amount of Sr in a specific range.
  • Shells are marine waste, but contain CaO content and MgO content to the same extent as limestone, and because Sr content is higher than limestone, it can be used as a partial replacement for natural resources limestone, Resources can be preserved and useful.
  • Typical shells include scallops, oysters and oyster shells.
  • the calcium source material limestone + shell
  • the calcium source material preferably has an Sr content of 0.02 to 0.3% by mass, more preferably 0.02 to 0.26% by mass, More preferably 0.02 to 0.2% by mass, particularly preferably 0.025 to 0.2% by mass.
  • the shell preferably has a Sr content of 0.02 to 1.0% by mass, preferably 0.02 to 0.5% by mass, more preferably 0.05 to 0.3% by mass, particularly preferably. 0.03 to 0.3% by mass can be used.
  • a shell having a CaO content of preferably 35 to 55% by mass, more preferably 40 to 55% by mass, still more preferably 40 to 50% by mass, and particularly preferably 45 to 50% by mass can be used.
  • the shell has an MgO content of preferably 0.1 to 5.0% by mass, more preferably 0.1 to 3.0% by mass, still more preferably 0.1 to 2.0% by mass, particularly preferably 0. 1 to 1.0% by mass can be used.
  • a shell As a partial substitute for limestone.
  • a material containing a relatively large amount of CaO, Sr and MgO may be used.
  • the Sr content is preferably 0.001 to 0.04% by mass, more preferably 0.001 to 0.03% by mass, still more preferably 0.001 to 0.025% by mass, particularly preferably. 0.001 to 0.02% by mass is used.
  • the MgO content is preferably 0.01 to 1.0% by mass, more preferably 0.03 to 0.8% by mass, and still more preferably 0.03 to 0.6% by mass.
  • the Sr content is preferably 0.02 to 0.4% by mass, more preferably 0.02 to 0.3% by mass, still more preferably 0.02 to 0.25% by mass, particularly preferably. Is 0.02 to 0.2% by mass.
  • the MgO content is preferably 0.1 to 3.0% by mass, more preferably 0.2 to 2.5% by mass, still more preferably 0.4 to 2.5% by mass, particularly preferably 0.5 to Use 2.0% by mass.
  • the Sr content is preferably 0.02 to 0.2% by mass, more preferably 0.02 to 0.15% by mass, still more preferably 0.02 to 0.10% by mass, and particularly preferably. Is 0.03 to 0.1% by mass.
  • the MgO content is preferably 3.0 to 9.0% by mass, more preferably 4.0 to 8.0% by mass, still more preferably 5.0 to 7.0% by mass, and particularly preferably 5.0 to 9.0% by mass. Use 6.0% by mass.
  • the Sr content is preferably 0.001 to 0.03% by mass, more preferably 0.003 to 0.025% by mass, still more preferably 0.003 to 0.02% by mass, and 0.004. Use one having a mass of 0.02% by mass.
  • the MgO content is preferably 0.3 to 6.0% by mass, more preferably 0.5 to 5.0% by mass, still more preferably 0.5 to 4.0% by mass, particularly preferably 0.4 to Use 3.0% by mass.
  • the Sr content is preferably 0.01 to 1.0% by mass, more preferably 0.01 to 0.7% by mass, still more preferably 0.01 to 0.5% by mass, Preferably, 0.02 to 0.4% by mass is used.
  • the MgO content is preferably 0.5 to 5.0% by mass, more preferably 0.5 to 4.0% by mass, still more preferably 1.0 to 3.0% by mass, particularly preferably 1.5 to Use 3.0% by mass.
  • the Sr content is preferably 0.001 to 0.1% by mass, more preferably 0.001 to 0.07% by mass, still more preferably 0.001 to 0.05% by mass, and particularly preferably. Is 0.001 to 0.03% by mass.
  • the MgO content is preferably 0.5 to 4.0% by mass, more preferably 0.5 to 3.0% by mass, still more preferably 0.5 to 2.0% by mass, particularly preferably 0.6 to Use 2.0% by mass.
  • the hydrocake has a Sr content of preferably 0.1 to 1.5% by mass, more preferably 0.1 to 1.0% by mass, still more preferably 0.1 to 0.8% by mass, and particularly preferably. Is 0.2 to 0.6% by mass.
  • the MgO content is preferably 5 to 30% by mass, more preferably 5 to 25% by mass, still more preferably 10 to 20% by mass, particularly preferably 10 to 15% by mass.
  • the copper content is preferably 0.005 to 0.05% by mass, more preferably 0.005 to 0.04% by mass, still more preferably 0.005 to 0.03% by mass, and particularly preferably Sr content. Is 0.01 to 0.03% by mass.
  • the MgO content is preferably 0.3 to 2.5% by mass, more preferably 0.5 to 2.0% by mass, still more preferably 0.5 to 1.5% by mass, and particularly preferably 0.5 to 2.0% by mass. Use 1.0% by mass.
  • the Sr content is preferably 0.001 to 0.03% by mass, more preferably 0.001 to 0.02% by mass, still more preferably 0.002 to 0.015% by mass, and particularly preferably. Is 0.002 to 0.01% by mass.
  • the MgO content is preferably 0.2 to 3.5% by mass, more preferably 0.2 to 2.5% by mass, still more preferably 0.2 to 2.0% by mass, and particularly preferably 0.2 to 2.5% by mass. Use 1.5% by mass.
  • the cement clinker can be manufactured using an existing cement manufacturing facility such as an SP system (multistage cyclone preheating system) or an NSP system (multistage cyclone preheating system equipped with a calcining furnace).
  • SP system multistage cyclone preheating system
  • NSP system multistage cyclone preheating system equipped with a calcining furnace
  • a cement composition for measuring Sr and MgO contents is collected, and the Sr content and MgO content of the cement composition are measured. 0.065 to 1.0% by mass, and adjusting the raw material unit of the cement clinker so that the MgO content is more than 1.0% by mass and not more than 3.0% by mass, and blending these raw materials, By using the fired cement clinker, a cement composition with improved fluidity can be produced.
  • the CaO content is preferably 1.5% by mass or less.
  • each raw material of the cement clinker is not particularly limited, but it is preferable to pulverize and mix with a raw material pulverizing mill or the like and mix with a blending silo.
  • the cement clinker raw material that has been pulverized and mixed can be further fired using a suspension preheater and a rotary kiln, which are existing facilities.
  • a suspension preheater and a rotary kiln which are existing facilities.
  • firing conditions such as the firing temperature and firing time of the cement clinker, f.
  • a cement clinker for producing a cement composition having a CaO content of 1.5% by mass or less can be obtained.
  • the firing temperature of the cement clinker is not particularly limited, but when an NSP type cement production facility is used, the temperature of the cement clinker in the vicinity of the rotary kiln outlet is preferably 800 to 1700 ° C, more preferably 900 to 1600 ° C. More preferably, it is 1000 to 1500 ° C.
  • the firing time is 20 minutes to 2 hours, more preferably 20 minutes to 1.5 hours, and still more preferably 20 minutes to 1.0 hour.
  • the obtained cement clinker is preferably cooled to about 100 to 200 ° C., for example, by a clinker cooler provided on the downstream side of the rotary kiln.
  • the cooling rate is preferably 10 to 60 ° C./min, more preferably 15 to 45 ° C./min, and further preferably 15 to 30 ° C./min.
  • the cement composition can be produced by mixing and pulverizing the cement clinker obtained in step (A), gypsum, and limestone and blast furnace slag as a mixture. .
  • gypsum it is desirable to satisfy the quality specified in JIS R 9151 “natural gypsum for cement”. Specifically, dihydrate gypsum, hemihydrate gypsum, and insoluble anhydrous gypsum are preferably used.
  • gypsum is mixed so that the amount of SO 3 in the cement composition is preferably 1.6 to 2.6% by mass, more preferably 1.7 to 2.4% by mass. And crush.
  • pulverization method The method of using classifiers, such as grinders, such as a ball mill, and a separator, is mentioned.
  • the cement composition further contains limestone and blast furnace slag as a mixed material.
  • the limestone as a mixed material include limestone described in JIS R 5210 “Portland cement”.
  • the blast furnace slag as a mixed material include blast furnace slag defined by JIS R 5211 “Blast furnace cement”.
  • the cement composition may contain a mixed material other than limestone and blast furnace slag.
  • a siliceous mixed material specified by JIS R 5212 “silica cement”, fly ash specified by JIS A 6201 “fly ash for concrete”, and the like can be used.
  • the mixed material preferably has a total content (% by mass) of the mixed material with respect to the total mass of the cement composition of 5% by mass or less.
  • a total content (% by mass) of the mixed material with respect to the total mass of the cement composition of 5% by mass or less.
  • the brane specific surface area of the cement composition of the present invention is preferably 2800 to 4000 cm 2 / g. When the brain specific surface area is within the above range, mortar and concrete having excellent strength development can be produced.
  • the brane specific surface area of the cement composition is more preferably 3200 to 3800 cm 2 / g, still more preferably 3200 to 3500 cm 2 / g.
  • Sr and MgO-containing cement clinker materials include limestone A, limestone B, aragonite, coal ash, clay, blast furnace slag, construction soil, sewage sludge, hydrocake and iron source (copper tangled, blast furnace dust)
  • the Sr content and MgO content are measured in advance, and the Sr content and MgO content of the cement composition sampled in advance are measured.
  • the Sr content of the cement composition is 0.07 to 1.0.
  • the raw material unit of the clinker raw material was adjusted so that the MgO content was 0.8% to 2.6% by mass, and these raw materials were blended.
  • dihydrate gypsum was used so that the SO 3 content of the cement composition was within a predetermined range.
  • Table 2 shows numerical values of chemical components of limestone, aragonite, coal ash, and blast furnace slag used in Examples and Comparative Examples. Moreover, Sr content in raw materials other than the raw material shown in Table 2, and MgO content are described below.
  • the chemical components and raw material basic units shown below are dry base (non-water-containing raw material basic units).
  • the chemical components (ig.loss to MgO) listed in Table 2 are JIS M 8853: 1998 “Chemical analysis method for aluminosilicate materials for ceramics”, and the SO 3 content is JIS R 5202: 1998 “Portland cement”
  • the chemical analysis method of was performed.
  • the Sr content in the raw material was measured according to the Cement Association Standard Test Method JCAS I-52 2000 “Method for quantifying trace components in cement by ICP emission spectroscopic analysis and electric heating atomic absorption analysis”.
  • cement clinker ingredients The basic unit of each raw material used as a raw material for cement clinker is 20 to 150 kg / t-clinker of meteorite, 0 to 100 kg / t-clinker of clay, 0 to 100 kg / t of blast furnace slag, excluding limestone, coal ash and construction generated soil. They were clinker, sewage sludge 0-100 kg / t-clinker, hydrocake 0-100 kg / t-clinker and iron source 30-80 kg / t-clinker.
  • Cement clinker raw material that has a great influence on the Sr content in the cement composition, raw material basic unit (basic unit) of limestone, coal ash and construction generated soil, and Sr content brought from each of the above raw materials per cement clinker Amount and MgO content (content ratio (mass%) with respect to the total mass of the raw material for forming cement clinker 1t), and Sr content brought in per cement clinker 1t from the mixed raw material of limestone, coal ash, and construction generated soil
  • Table 3 shows the MgO content (content ratio (mass%) with respect to the total mass of the raw material for forming the cement clinker 1t).
  • Table 3 shows the mass ratio of construction generated soil to coal ash (construction generated soil (kg / t-clinker) / coal ash (kg / t-clinker)) and the mixture of coal ash and construction generated soil.
  • Sr content and MgO content content ratio (mass%) with respect to the total mass of the mixture of coal ash and construction generated soil) were described.
  • the Sr content was measured according to the Cement Association standard test method JCAS I-52 2000 “Method for quantifying trace components in cement by ICP emission spectroscopic analysis and electric heating atomic absorption analysis”.
  • the MgO content was measured in accordance with JIS R 5202: 1998 “Portland Cement Chemical Analysis Method”.
  • Dihydrate gypsum was mixed with the obtained cement clinker so that the content of SO 3 in the cement composition was 2% by mass, and 4% by mass of limestone and 1% by mass of blast furnace slag were added as a mixing material. Were pulverized so that the specific surface area of Blaine was 3200 to 3500 cm 2 / g to obtain a cement composition.
  • the Sr content in the cement composition was 0.034 to 0.06% by mass, which is outside the range of the Sr content of the cement composition of the present invention (Comparative Examples 1 to 5)
  • the MgO content in the cement composition was 1.0 mass% or less (Comparative Examples 2 and 6), which was outside the range of the MgO content in the cement composition of the present invention.
  • Reference 4 Y. Takeuchi and F.T. Nishi: Crystal-chemical Charactarization of the 3CaO—Al 2 O 3 —Na 2 O Solid Solution Series, Zeitschrift for Kristalography, Vol. 152, pp. 259-307 (1980)
  • Reference 5 A. A. Colville and S.M. Geller: The Crystal Structure of Brownmillite, Ca 2 FeAlO 5 , Acta Crystallographica, Vol. B27, p. 2311 (1971)
  • Admixture AE water reducing agent Pozzolith No. 70 (Pozoris) Water: tap water
  • the mixer used for mixing concrete, the mixing amount and the procedure are as follows.
  • Mixer Forced biaxial mixer (nominal volume 55L) Mixing amount: 30 L / batch Mixing time and procedure 1) Add fine aggregate and cement to mixer and knead for 10 seconds. 2) Add water (including admixture) and mix for 60 seconds. 3) Add coarse aggregate, knead for 60 seconds, let stand for 5 minutes, and then mix and discharge for 15 seconds. 4)
  • the specimen was produced according to JIS A1132.
  • the evaluation items and test methods for concrete performance are as follows. The slump was measured according to JIS A 1101, and the compressive strength was measured according to JIS A 1108 at a material age of 28 days.
  • the amount of condensed water in Examples 1 and 5 to 7 is less than that in Comparative Examples 1 and 5 to 6, and the unit water amount in Examples 1, 2 and 5 is also the same for concrete. Therefore, the Sr content in the cement composition is 0.065 to 1.0% by mass, and the MgO content is more than 1.0% by mass and not more than 3.0% by mass. By doing so, the fluidity of mortar and concrete is improved.
  • FIG. 1 shows the relationship between the Sr content and MgO content of the Sr content of 0.034 to 0.06 mass% or the MgO content of 1.0 mass% or less, and the condensed water amount or unit water amount. .
  • the Sr content is 0.07 to 0.1062% by mass, and the MgO content is 1.
  • the amount of condensed water (standard soft water amount of cement paste) is less than 28.0% (in FIG. 1, ⁇ amount of condensed water ⁇ 28.0%), and the unit water amount of concrete is Less than 180 kg / m 3 (in FIG. 1, ⁇ unit water amount ⁇ 180 kg / m 3 ), the amount of condensed water and / or the unit water amount of concrete could be reduced.
  • the Sr content is 0.065 to 1.0 mass% and the MgO content is When it exceeds 1.0 mass% and is 3.0 mass% or less, the amount of condensed water can be reduced to less than 28.0%, and the unit water amount of concrete can be reduced to less than 180 kg / m 3 .
  • the Sr content in the cement composition is 0.065 to 1.0 mass%
  • the MgO content does not satisfy either numerical value of more than 1.0% by mass and 3.0% by mass or less
  • the amount of condensed water is 28.0% or more (in FIG. 1, the amount of condensed water ⁇ 28.0). %)
  • the unit water volume of concrete increased to 180 kg / m 3 or more (in FIG. 1, ⁇ unit water volume ⁇ 180 kg / m 3 ).
  • the Sr content is 0.065 to If the numerical value of 1.0% by mass is not satisfied, the condensed water amount increases to 28.0% or more or the unit water amount to 180 kg / m 3 or more, and the Sr content is 0 as in the cement composition of Comparative Example 6. Even if the numerical value of 0.065 to 1.0% by mass is satisfied, if the MgO content exceeds 1.0% by mass and does not satisfy the numerical value of 3.0% by mass, the amount of condensed water increases to 28.0% or more. did.
  • Example 8 Comparative Example 7
  • Example 8 an oyster shell was used as a shell, as a partial substitute for limestone B shown in Table 2.
  • the shell had a CaO content of 48 mass%, an Sr content of 0.13 mass%, and an MgO content of 0.53 mass%. 10% by mass of limestone B was replaced with shells.
  • the other raw materials were the same as those in Comparative Examples 1-5.
  • Table 8 shows basic units of calcium source materials (limestone, shells), coal ash and construction generated soil, Sr content (% by mass) brought from each of the above materials per 1 ton of cement clinker, limestone and coal ash and construction Sr content (mass%) brought in from the mixed raw material of generated soil per 1 ton of cement clinker, mass ratio of construction generated soil to coal ash, and Sr content (mass%) in the mixture of coal ash and construction generated soil was described. Further, a cement composition was obtained in the same manner as in Examples and Comparative Examples 1 to 5, and the Sr content of the cement composition was measured. The results are shown in Table 8. The Sr content was measured according to the Cement Association standard test method JCAS I-52 2000 “Method for quantifying trace components in cement by ICP emission spectroscopic analysis and electric heating atomic absorption analysis”.
  • the cement clinker is manufactured by adjusting the raw material basic unit of the cement clinker raw material so that the mass ratio of the construction generated soil to the coal ash becomes 0.13 to 1.6. As a result, the Sr content of the obtained cement composition could be 0.072% by mass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Treatment Of Sludge (AREA)

Abstract

 石炭灰や建設発生土等の廃棄物を使用しても、凝結水量やコンクリートの単位水量を低減させ、モルタルやコンクリートの流動性を向上することができる、セメント組成物及びセメント組成物の製造方法を提供する。 Sr含有量が0.065~1.0質量%、且つMgO含有量が1.0質量%を超え3.0質量%以下であるセメント組成物である。セメント組成物のSr含有量が0.065~1.0質量%、且つMgO含有量が1.0質量%を超え3.0質量%以下となるように、石灰石、硅石、石炭灰、粘土、高炉スラグ、建設発生土、下水汚泥、ハイドロケーキ及び鉄源からなる群より選ばれる原料の原料原単位を調整し、調整した原料を配合し、焼成してセメントクリンカーを製造する工程(A)と、セメントクリンカーと、石膏と、混合材として石灰石及び高炉スラグを混合して粉砕する工程(B)を含むセメント組成物の製造方法である。

Description

セメント組成物及びセメント組成物の製造方法
 本発明は、セメント組成物及びセメント組成物の製造方法に関する。
 近年、廃棄物の有効利用の観点から、アルミニウム(以下「Al」とする。)を多く含む廃棄物である石炭灰、建設発生土等がクリンカー原料として多量に使用されている。一般に、セメントクリンカー中のアルミネート相(CA)量は原料中のAl量とともに増加するため、石炭灰等のAlを多く含む廃棄物の利用拡大に伴いセメントクリンカー中のAl量及びCA量が増加し、適正なフレッシュ性状(流動性)を得るためには、凝結水量(セメントペーストの標準軟度水量:一定の軟度を得るために必要な水量)やコンクリートの単位水量を増加させる必要がある。一方、凝結水量やコンクリートの単位水量を増加させると、フレッシュ性状以外の強度発現性等に悪影響を及ぼすことが懸念される。そのため、凝結水量やコンクリートの単位水量を増加させないために、廃棄物の使用量を一定量に制限せざるを得ないという問題がある。
 非特許文献1には、各種ポルトランドセメント(普通ポルトランドセメント(N)、早強ポルトランドセメント(H)、中庸熱ポルトランドセメント(M)、低熱ポルトランドセメント(L))の化学分析値が記載されており、この化学分析値の各成分(例えばAl、Fe)からボーグ式を用いてCA量を算出し、このCA量において必要な凝結水量(セメントペーストの標準軟度水量:一定の軟度を得るための必要な水量)を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、CA量が多い普通ポルトランドセメント(N)や早強ポルトランドセメント(H)は、中庸熱ポルトランドセメント(M)や低熱ポルトランドセメント(L)に比べて凝結水量が多い。
 モルタルやコンクリートの流動性を向上する方法としては、「石灰石微粉末のような無機粉末を使用する(特許文献1)」、「混合する石膏の形態を調整する(特許文献2)」、「粒度が特定の範囲であり、粒形が良好な骨材を使用する(特許文献3)」、その他一般的な方法として「混和剤(流動化剤)を使用する」等の方法がある。しかし、これらの方法では、製造コストの上昇や強度発現性に悪影響を及ぼすといった問題がある。
特開2003-95710号公報 特開2004-292307号公報 特開2005-272223号公報
社団法人セメント協会、セメントの常識、p19~20、2009年3月発行
 本発明は、上記事情に鑑みてなされたものであり、石炭灰や建設発生土等の廃棄物を比較的多く使用し、セメントクリンカー中のAl、CA含有量が増加した場合であっても、セメントペーストやモルタル、コンクリートの流動性を向上することができるセメント組成物、及びセメント組成物の製造方法を提供することを目的とする。
 本発明者らは、上記の目的を達成すべく鋭意検討した結果、石炭灰や建設発生土等の廃棄物を比較的多量に使用し、セメント組成物中のAl含有量やCA含有量が比較的多いセメントにおいて、セメント組成物中のストロンチウム(以下「Sr」とする)含有量、酸化マグネシウム(以下「MgO」とする)含有量が、セメントペースト、モルタル又はコンクリートの流動性の改善に影響を及ぼすことを見出し、本発明を完成するに至った。
 すなわち、本発明は、Sr含有量が0.065~1.0質量%、且つMgO含有量が1.0質量%を超え3.0質量%以下であるセメント組成物に関する。また、本発明は、f.CaO含有量が1.5質量%以下であるセメント組成物に関する。更に、本発明は、SO含有量が1.6~2.6質量%であり、ボーグ式で算定されるCS含有量が50~70質量%、CS含有量が5~25質量%、CA含有量が6~15質量%及びCAF含有量が7~15質量%であるセメント組成物に関する。
 また、本発明は、セメント組成物のSr含有量が0.065~1.0質量%、且つMgO含有量が1.0質量%を超え3.0質量%以下となるように、石灰石、硅石、石炭灰、粘土、高炉スラグ、建設発生土、下水汚泥、ハイドロケーキ及び鉄源からなる群より選ばれる原料の原料原単位を調整し、調整した原料を配合し、焼成してセメントクリンカーを製造する工程(A)と、セメントクリンカーと、石膏と、混合材として石灰石及び高炉スラグを混合して粉砕する工程(B)を含むことを特徴とするセメント組成物の製造方法に関する。また、本発明は、貝殻を石灰石の一部代替として使用する、セメント組成物の製造方法に関する。本発明は、工程(A)におけるセメントクリンカー原料として、セメントクリンカー1トンあたり石灰石700~1400kg、硅石20~150kg、石炭灰0~300kg、粘土0~100kg、高炉スラグ0~100kg、建設発生土10~150kg、下水汚泥0~100kg、ハイドロケーキ0~100kg及び鉄源30~80kgを配合する、セメント組成物の製造方法に関する。また、本発明は、工程(A)において、石炭灰に対する建設発生土の質量比が0.13~1.6となるように建設発生土と石炭灰とを配合する、セメント組成物の製造方法に関する。更に、本発明は、工程(A)における建設発生土中のSr含有量が0.01~1.0質量%であり、且つ石炭灰中のSr含有量が0.02~0.4質量%である、セメント組成物の製造方法に関する。
 本発明によれば、セメント組成物のSr含有量、MgO含有量を適正範囲となるようにすることにより、凝結水量やコンクリートの単位水量が低減され、セメントペースト、モルタル及びコンクリートの流動性を向上することができる。
セメント組成物のSr含有量とMgO含有量と凝結水量又はコンクリートの単位水量との関係を示す図である。
 以下、本発明の好適な実施形態について説明する。
 本発明のセメント組成物は、Sr含有量が0.065~1.0質量%、且つMgO含有量が1.0質量%を超え3.0質量%以下であることを特徴とする。
 セメント組成物のSr及びMgOは少量・微量成分である。本発明者らは、セメント組成物のSr含有量、MgO含有量がモルタル及びコンクリートの流動性と関係があることを突き止め、Sr含有量、MgO含有量を適正範囲となるようにすることにより、凝結水量やコンクリートの単位水量を低減することができ、セメントペースト、モルタル及びコンクリートの流動性が向上できることを見出した。その結果、有効利用が望まれている石炭灰、建設発生土等の廃棄物を用いてもセメント組成物を用いたセメントペースト、モルタル及びコンクリートの流動性を維持・向上することができる。
 セメント組成物のSr含有量及びMgO含有量は、セメント組成物の全体質量に対する含有割合(質量%)である。セメント組成物のSr含有量はセメント協会標準試験方法JCAS I-52 2000「ICP発光分光分析及び電気加熱式原子吸光分析方法」に準じて測定することができる。セメント組成物中のMgO含有量は、JIS R 5202:1998「ポルトランドセメントの化学分析方法」に準じて測定することができる。また、セメント組成物の鉱物組成(CS、CS、CA及びCAF)はボーグ式、または粉末X線回折測定(XRD)のRietveld解析法に準じて測定することができる。
 セメント組成物のSr含有量は、0.065~1.0質量%であり、好ましくは0.067~0.5質量%、より好ましくは0.068~0.3質量%であり、更に好ましくは0.070~0.20質量%であり、特に好ましくは0.070~0.15質量%である。
 セメント組成物のMgO含有量は、1.0質量%を超え3.0質量%以下であり、好ましくは1.0質量%を超え2.6質量%以下であり、より好ましくは1.1~2.6質量%であり、更に好ましくは1.1~2.5質量%であり、特に好ましくは1.2~2.5質量%、極めて好ましくは1.8~2.4質量%である。
 セメント組成物のXRD/Rietveld解析法に準じて測定したCA含有量は、0.1~11.0質量%であり、好ましくは1.0~10.5質量%であり、より好ましくは2.0~10.2質量%であり、更に好ましくは3.0~10.2質量%であり、特に好ましくは3.0~9.0質量%、極めて好ましくは3.0~7.0質量%である。
 セメント組成物のSr含有量が0.065質量%未満、あるいはMgO含有量が1.0質量%以下では、モルタルやコンクリートの流動性の低下を示し、適正な流動性を得るために凝結水量やコンクリートの単位水量が増加する場合がある。
 セメント組成物のf.CaO含有量は、好ましくは1.5質量%以下であり、より好ましくは0.1~1.2質量%であり、更に好ましくは0.2~1.0質量%、特に好ましくは0.3~0.8質量%である。セメント組成物のf.CaO含有量が1.5質量%を超過すると、適正な強度発現性を得ることができない。
 また、本発明のセメント組成物は、SO含有量が、好ましくは1.6~2.6質量、より好ましくは1.7~2.5質量%、更に好ましくは1.8~2.4質量%であり、特に好ましくは1.8~2.3質量%である。セメント組成物のSO含有量が、上記範囲内であると、セメント組成物の流動性を適度に維持しつつ、モルタルやコンクリートの強度発現性も向上することができる。セメント組成物中のSO含有量は、全体質量に対する含有割合(質量%)であり、この含有割合は、JIS R 5202:1998「ポルトランドセメントの化学分析方法」に準じて測定することができる。
 本発明のセメント組成物ボーグ式で算定される鉱物組成は、好ましくはCS含有量が50~70質量%、CS含有量が3~25質量%、CA含有量が6~15質量%及びCAF含有量が7~15質量%であり、より好ましくはCS含有量が51~67質量%、CS含有量が5~25質量%、CA含有量が8~13質量%及びCAF含有量が8~12質量%であり、更に好ましくはCS含有量が52~65質量%、CS含有量が8~22質量%、CA含有量が8~12質量%及びCAF含有量が8~11質量%であり、特に好ましくはCS含有量が53~65質量%、CS含有量が8~21質量%、CA含有量が8~10質量%及びCAF含有量が8~10質量%である。
 ここで、ボーグ式により算出されるセメント組成物中のCS含有量、CS含有量、CA含有量、CAF含有量は、下記の式[1]~[4]により算出する。
 CS含有量(質量%)=4.07×CaO量(質量%)-7.60×SiO量(質量%)-6.72×Al量(質量%)-1.43×Fe量(質量%)-2.85×SO量(質量%)  ・・・[1]
S含有量(質量%)=2.87×SiO量(質量%)-0.754×CS量(質量%)  ・・・[2]
A含有量(質量%)=2.65×Al(質量%)-1.69×Fe(質量%)  ・・・[3]
AF含有量(質量%)=3.04×Fe(質量%)  ・・・[4]
 式中の「CaO」、「SiO」、「Al」及び「Fe」は、それぞれ、セメント組成物におけるCaO、SiO、Al及びFeのセメント組成物の全体質量に対する含有割合(質量%)である。これらの含有割合は、JIS R 5202「ポルトランドセメントの化学分析方法」あるいはJIS R 5204「セメントの蛍光X線分析方法」により測定することができる。
 本発明のセメント組成物の製造方法は、セメント組成物中のSr含有量が0.065~1.0質量%、且つMgO含有量が1.0質量%を超え3.0質量%以下となるように、石灰石、硅石、石炭灰、粘土、高炉スラグ、建設発生土、下水汚泥、ハイドロケーキ及び鉄源からなる群より選ばれる原料の原料原単位を調整し、調整したこれらの原料を配合・焼成してセメントクリンカーを製造する工程(A)と、得られたセメントクリンカーと石膏とを混合して粉砕する工程(B)を含む。
 (A)工程におけるセメントクリンカーの原料としては、石灰石、硅石、石炭灰、粘土、高炉スラグ、建設発生土、下水汚泥、ハイドロケーキ及び鉄源等が挙げられる。石炭灰は、石炭火力発電所等から発生するものであり、シンダアッシュ、フライアッシュ、クリンカアッシュ及びボトムアッシュが挙げられる。建設発生土は、建設工事の施工に伴い副次的に発生する残土や泥土、廃土等が挙げられる。下水汚泥としては、汚泥単味のほか、これに石灰石を加えて乾粉化したものや、焼却残渣等が挙げられる。鉄源としては、銅からみ、高炉ダスト等が挙げられる。
 (A)工程におけるセメントクリンカー原料としては、セメントクリンカー1トン(t)あたり、石灰石700~1400kg、硅石20~150kg、石炭灰0~300kg、粘土0~100kg、高炉スラグ0~100kg、建設発生土10~150kg、下水汚泥0~100kg、ハイドロケーキ0~100kg及び鉄源30~80kgを配合することが好ましい。また、(A)工程におけるセメントクリンカー原料としては、セメントクリンカー1トンあたり、石灰石800~1300kg、硅石20~100kg、石炭灰50~250kg、粘土0~80kg、高炉スラグ5~50kg、建設発生土20~150kg、下水汚泥0~70kg、ハイドロケーキを20~80kg及び鉄源30~60kgを配合することがより好ましい。中でも、セメントクリンカー原料として、石灰石、石炭灰、建設発生土にあっては、セメントクリンカー1トンあたり、石灰石900~1200kg、石炭灰80~270kg、建設発生土20~150kgを配合することが特に好ましく、セメントクリンカー1トンあたり、石灰1000~1100kg、石炭灰100~250kg、建設発生土30~100kgを配合することが更に好ましい。本明細書において、「原料原単位」とは、セメントクリンカーを1トン製造するにあたり、使用される各原料の質量(kg/t-クリンカー)をいう。
 (A)工程におけるセメントクリンカー原料の原料原単位を特定範囲に調整する方法として、具体的には、サンプリングしたセメント組成物のSr含有量、MgO含有量を測定し、Sr含有量、MgO含有量が特定範囲となるようにセメントクリンカー原料の原料原単位を調整する。
 セメントクリンカー原料の中でも、カルシウム源原料となる石灰石のSr含有量や、石炭灰及び建設発生土の使用量(原料原単位)が、セメント組成物中のSr含有量に影響を与える。セメント組成物中のSr含有量を特定範囲にするためには、石灰石のSr含有量に応じて、石炭灰に対する建設発生土の質量比で調整することが好ましい。例えば石灰石のSr含有量が低い場合は、石炭灰に対する建設発生土の質量比が多くなるように石炭灰及び建設発生土の使用量(原料原単位)を調整することができる。石炭灰に対する建設発生土の質量比(建設発生土(kg/t-クリンカー)/石炭灰(kg/t-クリンカー))は、好ましくは0.13~1.6であり、より好ましくは0.15~1.5であり、更に好ましくは0.2~1.5であり、特に好ましくは0.2~1.4である。
 セメント組成物中のMgO含有量を特定範囲にするには、石灰石、硅石、石炭灰、粘土、高炉スラグ、建設発生土、ハイドロケーキ、並びに鉄源としての銅からみ及び高炉ダストのMgO含有量に基づき、これらの原料からセメント組成物中に含まれるMgO含有量が1.0質量%を超え3.0質量%以下となるように各セメントクリンカー原料を原料原単位で調整し、これらの原料を配合することが好ましい。
 セメントクリンカー原料として、各原料中のSr含有量、及びMgO含有量は、以下の範囲のものを使用することが好ましい。なお、各原料中のSr含有量、及びMgO含有量は、各原料(100質量%)に対する含有割合(質量%)である。
 石灰石としては、Sr含有量が、好ましくは0.01~0.10質量%、より好ましくは0.01~0.09質量%、更に好ましくは0.01~0.08質量%、特に好ましくは0.015~0.08質量%のものを使用する。MgO含有量が、好ましくは0.1~2.0質量%、より好ましくは0.1~1.5質量%、更に好ましくは0.1~1.3質量%、特に好ましくは0.2~1.3質量%のものを使用する。
 また、Sr量を特定範囲にするために廃貝殻を原料として利用することが好ましい。貝殻は水産廃棄物であるが、CaO含有量やMgO含有量を石灰石と同程度含有しており、Sr含有量は石灰石より高いため、天然資源である石灰石の一部代替として使用可能であり、資源の温存ができ有用である。貝殻の代表的なものにはホタテ、アコヤ、カキ殻等が挙げられる。石灰石の一部を貝殻で置き換える場合は、カルシウム源原料(石灰石+貝殻)は、Sr含有量が好ましくは0.02~0.3質量%、より好ましくは0.02~0.26質量%、更に好ましくは0.02~0.2質量%、特に好ましくは0.025~0.2質量%となるようにして使用する。なお、貝殻として、Sr含有量が、好ましくは0.02~1.0質量%、好ましくは0.02~0.5質量%、より好ましくは0.05~0.3質量%、特に好ましくは0.03~0.3質量%のものを使用することができる。貝殻は、CaO含有量が好ましくは35~55質量%、より好ましくは40~55質量%、更に好ましくは40~50質量%、特に好ましくは45~50質量%のものを使用することができる。貝殻は、MgO含有量が、好ましくは0.1~5.0質量%、より好ましくは0.1~3.0質量%、更に好ましくは0.1~2.0質量%、特に好ましくは0.1~1.0質量%のものを使用することができる。Sr含有量が0.02質量%未満であるSr含有量が少ない石灰石を用いる場合は、石灰石の一部代替として貝殻を使用することが好ましい。貝殻以外にも、CaO、Sr及びMgOを比較的多く含む物を使用してもよい。
 硅石としては、Sr含有量が、好ましくは0.001~0.04質量%、より好ましくは0.001~0.03質量%、更に好ましくは0.001~0.025質量%、特に好ましくは0.001~0.02質量%のものを使用する。MgO含有量が、好ましくは0.01~1.0質量%、より好ましくは0.03~0.8質量%、更に好ましくは0.03~0.6質量%のものを使用する。
 石炭灰としては、Sr含有量が、好ましくは0.02~0.4質量%、より好ましくは0.02~0.3質量%、更に好ましくは0.02~0.25質量%、特に好ましくは0.02~0.2質量%のものを使用する。MgO含有量が、好ましくは0.1~3.0質量%、より好ましくは0.2~2.5質量%、更に好ましくは0.4~2.5質量%、特に好ましくは0.5~2.0質量%のものを使用する。
 高炉スラグとしては、Sr含有量が、好ましくは0.02~0.2質量%、より好ましくは0.02~0.15質量%、更に好ましくは0.02~0.10質量%、特に好ましくは0.03~0.1質量%のものを使用する。MgO含有量が、好ましくは3.0~9.0質量%、より好ましくは4.0~8.0質量%、更に好ましくは5.0~7.0質量%、特に好ましくは5.0~6.0質量%のものを使用する。
 粘土としては、Sr含有量が、好ましくは0.001~0.03質量%、より好ましくは0.003~0.025質量%、更に好ましくは0.003~0.02質量%、0.004~0.02質量%のものを使用する。MgO含有量が、好ましくは0.3~6.0質量%、より好ましくは0.5~5.0質量%、更に好ましくは0.5~4.0質量%、特に好ましくは0.4~3.0質量%のものを使用する。
 建設発生土としては、Sr含有量が、好ましくは0.01~1.0質量%、より好ましくは0.01~0.7質量%、更に好ましくは0.01~0.5質量%、特に好ましくは0.02~0.4質量%のものを使用する。MgO含有量が、好ましくは0.5~5.0質量%、より好ましくは0.5~4.0質量%、更に好ましくは1.0~3.0質量%、特に好ましくは1.5~3.0質量%のものを使用する。
 下水汚泥としては、Sr含有量が、好ましくは0.001~0.1質量%、より好ましくは0.001~0.07質量%、更に好ましくは0.001~0.05質量%、特に好ましくは0.001~0.03質量%のものを使用する。MgO含有量が、好ましくは0.5~4.0質量%、より好ましくは0.5~3.0質量%、更に好ましくは0.5~2.0質量%、特に好ましくは0.6~2.0質量%のものを使用する。
 ハイドロケーキとしては、Sr含有量が、好ましくは0.1~1.5質量%、より好ましくは0.1~1.0質量%、更に好ましくは0.1~0.8質量%、特に好ましくは0.2~0.6質量%のものを使用する。MgO含有量が、好ましくは5~30質量%、より好ましくは5~25質量%、更に好ましくは10~20質量%、特に好ましくは10~15質量%のものを使用する。
 銅からみとしては、Sr含有量が、好ましくは0.005~0.05質量%、より好ましくは0.005~0.04質量%、更に好ましくは0.005~0.03質量%、特に好ましくは0.01~0.03質量%のものを使用する。MgO含有量が、好ましくは0.3~2.5質量%、より好ましくは0.5~2.0質量%、更に好ましくは0.5~1.5質量%、特に好ましくは0.5~1.0質量%のものを使用する。
 高炉ダストとしては、Sr含有量が、好ましくは0.001~0.03質量%、より好ましくは0.001~0.02質量%、更に好ましくは0.002~0.015質量%、特に好ましくは0.002~0.01質量%のものを使用する。MgO含有量が、好ましくは0.2~3.5質量%、より好ましくは0.2~2.5質量%、更に好ましくは0.2~2.0質量%、特に好ましくは0.2~1.5質量%のものを使用する。
 セメントクリンカーの製造は、SP方式(多段サイクロン予熱方式)又はNSP方式(仮焼炉を併設した多段サイクロン予熱方式)等の既存のセメント製造設備を用いて製造することができる。
 なお、工業スケールの製造においては、例えば、まず初めにSr、MgO含有量測定用のセメント組成物を採取し、そのセメント組成物のSr含有量、MgO含有量を測定し、Sr含有量が0.065~1.0質量%、且つMgO含有量が1.0質量%を超え3.0質量%以下となるように、セメントクリンカーの原料原単位を調整して、これらの原料を配合し、焼成したセメントクリンカーを用いることによって、流動性を向上したセメント組成物を製造することができる。
 本発明のセメント組成物の製造方法において、得られるセメント組成物のf.CaO含有量は1.5質量%以下であることが好ましい。
 次に、NSP方式の既存のセメント製造設備を用いて、本発明のセメント組成物に用いるセメントクリンカーの製造方法の一実施態様を説明する。なお、本発明のセメント組成物の製造方法は、以下の実施形態に限定されるものではない。
 セメントクリンカーの各原料の混合方法は、特に限定されないが、例えば原料粉砕ミル等で粉砕混合し、ブレンディングサイロで混合することが好ましい。
 粉砕混合されたセメントクリンカー原料は、更に既存の設備であるサスペンションプレヒータ及びロータリーキルンを用いて焼成することができる。セメントクリンカーの焼成温度、焼成時間等の焼成条件を変えることによって、f.CaO含有量が1.5質量%以下となるようにしたセメント組成物を製造するためのセメントクリンカーを得ることができる。
 セメントクリンカーの焼成温度は、特に限定されないが、NSP方式のセメント製造設備を用いた場合には、ロータリーキルンの出口付近におけるセメントクリンカーの温度が、好ましくは800~1700℃、より好ましくは900~1600℃、更に好ましくは1000~1500℃である。焼成時間は、20分間~2時間、より好ましくは20分間~1.5時間、更に好ましくは20分~1.0時間である。
 焼成後、得られたセメントクリンカーは、ロータリーキルンの下流側に設けられたクリンカークーラーによって、例えば100~200℃程度まで冷却されることが好ましい。冷却速度は、好ましくは10~60℃/分であり、より好ましくは15~45℃/分であり、更に好ましくは15~30℃/分である。
 本発明の(B)工程において、セメント組成物は、工程(A)で得られたセメントクリンカーと、石膏と、混合材として石灰石及び高炉スラグとを混合して粉砕することによって製造することができる。
 石膏としては、JIS R 9151「セメント用天然せっこう」に規定される品質を満足することが望ましく、具体的には、二水石膏、半水石膏、不溶性無水石膏が好適に用いられる。
 本発明の(B)工程において、セメント組成物中のSO量が、好ましくは1.6~2.6質量%、より好ましくは1.7~2.4質量%となるように石膏を混合して粉砕する。粉砕方法としては、特に制限されないが、ボールミル等の粉砕機、セパレータ等の分級機を用いる方法が挙げられる。
 本発明の(B)工程において、セメント組成物は、更に混合材として石灰石及び高炉スラグを含有する。混合材としての石灰石としては、JIS R 5210「ポルトランドセメント」に記載される石灰石等が挙げられる。混合材としての高炉スラグとしては、JIS R 5211「高炉セメント」で規定される高炉スラグ等が挙げられる。セメント組成物は、石灰石及び高炉スラグ以外の混合材を含んでいてもよい。石灰石及び高炉スラグ以外の混合材としては、JIS R 5212「シリカセメント」で規定されるシリカ質混合材、JIS A 6201「コンクリート用フライアッシュ」で規定されるフライアッシュ等を利用することができる。混合材は、セメント組成物の全体質量に対する混合材の合計含有割合(質量%)が、5質量%以下であることが好ましい。なお、混合材として石灰石、高炉スラグを使用する場合には、混合材中のSr含有量、MgO含有量を考慮し、セメントクリンカー原料の原料原単位を調整することが好ましい。
 本発明のセメント組成物のブレーン比表面積は、好ましくは2800~4000cm/gである。ブレーン比表面積が上記範囲内であると、優れた強度発現性を有するモルタルやコンクリートの製造が可能となる。セメント組成物のブレーン比表面積は、より好ましくは3200~3800cm/gであり、更に好ましくは3200~3500cm/gである。
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に何ら限定されるものではない。
 以下、実施例及び比較例を挙げて本発明を詳細に説明するが、本発明は以下の実施例に限定されるものではない。
(実施例1~7、比較例1~6)
 [セメントクリンカーの原料]
 Sr及びMgO含有セメントクリンカー原料としては、石灰石A、石灰石B、硅石、石炭灰、粘土、高炉スラグ、建設発生土、下水汚泥、ハイドロケーキ及び鉄源(銅からみ、高炉ダスト)のセメントクリンカー原料のSr含有量、及びMgO含有量を予め測定すると共に、予めサンプリングしておいたセメント組成物のSr含有量、MgO含有量を測定し、セメント組成物のSr含有量が0.07~1.0質量%、且つMgO含有量が0.8~2.6質量%となるようにクリンカー原料の原料原単位を調整し、これらの原料を配合した。また、セメント組成物のSO含有量が所定範囲となるようにするために、二水石膏を使用した。表2に、実施例及び比較例で使用した石灰石、硅石、石炭灰、高炉スラグの化学成分の数値を示す。また、表2に示した原料以外の原料中のSr含有量、及びMgO含有量を以下に記載する。なお、以下に示す化学成分及び原料原単位は、ドライベース(水分を含まない状態)の原料原単位である。
・ 粘土(Sr含有量=0.0138質量%、MgO含有量=1.43質量%)
・ 建設発生土(Sr含有量=0.0272質量%、MgO含有量=1.78質量%)
・ 下水汚泥(Sr含有量=0.002質量%、MgO含有量=0.62質量%)
・ ハイドロケーキ(Sr含有量=0.474質量%、MgO含有量=14.19質量%)
・ 銅からみ(Sr含有量=0.0165質量%、MgO含有量=0.83質量%)
・ 高炉ダスト(Sr含有量=0.0064質量%、MgO含有量=0.22質量%)
Figure JPOXMLDOC01-appb-T000002
 表2に記載の化学成分(ig.loss~MgO)は、JIS M 8853:1998「セラミックス用アルミノけい酸塩質原料の化学分析方法」、SO含有量は、JIS R 5202:1998「ポルトランドセメントの化学分析方法」に準じて行った。また、原料中のSr含有量は、セメント協会標準試験方法JCAS I-52 2000「ICP発光分光分析及び電気加熱式原子吸光分析によるセメント中の微量成分の定量方法」に準じて測定した。
[セメントクリンカーの原料]
 セメントクリンカー原料として使用した各原料の原単位は、石灰石、石炭灰及び建設発生土を除き、硅石20~150kg/t-クリンカー、粘土0~100kg/t-クリンカー、高炉スラグ0~100kg/t-クリンカー、下水汚泥0~100kg/t-クリンカー、ハイドロケーキ0~100kg/t-クリンカー及び鉄源30~80kg/t-クリンカーであった。
 セメント組成物中のSr含有量に与える影響の大きいセメントクリンカー原料である、石灰石、石炭灰及び建設発生土の原料原単位(原単位)と、上記各原料からセメントクリンカー1t当たりに持ち込まれるSr含有量及びMgO含有量(セメントクリンカー1tを形成するための原料の全体質量に対する含有割合(質量%))と、石灰石と石炭灰と建設発生土の混合原料からセメントクリンカー1t当たりに持ち込まれるSr含有量及びMgO含有量(セメントクリンカー1tを形成するための原料の全体質量に対する含有割合(質量%))とを表3に示した。また、表3には、石炭灰に対する建設発生土の質量比(建設発生土(kg/t-クリンカー)/石炭灰(kg/t-クリンカー))と、石炭灰と建設発生土の混合物中のSr含有量及びMgO含有量(石炭灰と建設発生土の混合物の全体質量に対する含有割合(質量%))を記載した。Sr含有量は、セメント協会標準試験方法JCAS I-52 2000「ICP発光分光分析及び電気加熱式原子吸光分析によるセメント中の微量成分の定量方法」に準じて測定した。MgO含有量は、JIS R 5202:1998「ポルトランドセメントの化学分析方法に準じて測定した。
Figure JPOXMLDOC01-appb-T000003
 [セメントクリンカーの製造]
 上記セメントクリンカー原料を配合し、配合した原料をNSPキルンで最高温度1200~1500℃で焼成し、セメントクリンカーを製造した。NSPキルン出口付近におけるセメントクリンカーの温度は1000~1500℃であった。このセメントクリンカーを、ロータリーキルンの下流側に設けられたクリンカークーラーで、1000~1400℃から100~200℃まで、10~60℃/分の冷却速度で冷却した。
 得られたセメントクリンカーに二水石膏をセメント組成物中のSO含有量が2質量%となるように混合し、更に混合材として石灰石4質量%と高炉スラグ1質量%を添加し、実機ミルでブレーン比表面積が3200~3500cm/gになるように粉砕し、セメント組成物を得た。
 [セメント組成物の化学成分]
 得られたセメント組成物中のSiO、Al、Fe、CaO、MgO及びSOについて、全体質量に対する含有割合(質量%)を測定した。これらの含有割合は、JIS R 5202:1998「ポルトランドセメントの化学分析方法」に準じて測定した。セメント組成物のf.CaO含有量は、JCAS I-01:1997「遊離酸化カルシウムの定量方法」によって測定した。また、セメント組成物中のSr含有量を、セメント協会標準試験方法JCAS I-52 2000「ICP発光分光分析及び電気加熱式原子吸光分析によるセメント中の微量成分の定量方法」に準じて測定した結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、実施例1~7は、クリンカーへのSr持込量が0.0495質量%の石灰石に応じて、石炭灰に対する建設発生土の質量比(建設発生土/石炭灰)が0.15~1.5となるように調整して製造したセメントクリンカーを用いることによって、表4に示すようにセメント組成物中のSr含有量を0.07~0.1062質量%、且つMgO含有量を1.04~2.55質量%に調整することができた。一方、比較例1~6は、セメント組成物のSr含有量及びMgO含有量が特定の範囲内となるようにセメントクリンカー原料の原料原単位を調整することなく、セメントクリンカー原料を配合して製造したセメントクリンカーを用いたため、セメント組成物中のSr含有量は0.034~0.06質量%と、本発明のセメント組成物のSr含有量の範囲外であるか(比較例1~5)、セメント組成物中のMgO含有量が1.0質量%以下(比較例2、6)と、本発明のセメント組成物のMgO含有量の範囲外であった。
 [セメント組成物の鉱物組成]
<セメント組成物の鉱物組成>
 得られたセメント組成物の鉱物組成(CS量、CS量、CA量及びCAF量)を、ボーグ式[1]~[4]及びXRD/Rietveld解析法に基づいて測定した。結果を表6に示す。
<XRD/Rietveld解析法>
 粉末X線回折測定は、粉末X線回折装置RINT-2500(リガク社製)を用い、X線源をCuKαとして,管電圧:35kV、管電流:110mA、測定範囲:2θ=10~60°、ステップ幅:0.02°、計数時間:2秒間、発散スリット:1°、及び受光スリット:0.15mmの条件で行った。得られたX線回折プロファイルを、リートベルト解析ソフト(JADE 6)にて解析し、各クリンカー鉱物の結晶情報のパラメータを得た。なお、リートベルト解析で使用した各種クリンカー鉱物の結晶構造データ及び参考文献を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 参考文献1:F. Nishi and Y. Takeuchi: Tricalcium silicate CaO[SiO]: The monoclinic Superstructure, Zeitschrift fur Krystallographie, Vol.172, pp.297 - 314 (1985)
 参考文献2:K.H. Jost, B. Xiemer and R. Seydel: Redetermination of the Structure of β-Dicalcium Silicate, Acta Crystallographica, Vol.B33, pp.1696 - 1700 (1977)
 参考文献3:P. Mondal and W.J. Jeffrey: The Crystal Structure of Tricalcium Aluminate, Acta Crystallographica, Vol.36, pp.689 - 697 (1975)
 参考文献4:Y. Takeuchi and F. Nishi: Crystal-chemical Characterization of the 3CaO-Al-NaO Solid Solution Series, Zeitschrift fur Kristallographie, Vol.152, pp.259 - 307 (1980)
 参考文献5:A.A. Colville and S. Geller: The  Crystal Structure of Brownmillerite, CaFeAlO, Acta Crystallographica, Vol.B27, p.2311 (1971)
[セメント組成物の物性]
 得られたセメント組成物の物性を以下のようにして測定した。測定結果を表6に示す。
<セメント組成物の粉末特性>
 セメントの粉末特性(ブレーン比表面積及び45μm残分)について、JIS R 5201:1997「セメントの物理試験方法」に準じて測定した。
<色調b値>
 セメント組成物の色調b値は、測色色差計(日本電色社製Spectro Color Meter Se2000)用いて測定した。
<凝結、モルタル圧縮強さ>
 凝結、モルタル圧縮強さは、得られたセメント組成物を用いて、JIS R 5201:1997「セメントの物理試験方法」に準じて測定した。
<コンクリート試験>
 コンクリート試験は、目標スランプ18cm、W/Cが55%、s/aが47%、混和剤量が0.25%とし、目標スランプとなるように単位水量を調整した。結果を表7に示す。なお、W/C、s/aの意味と、使用した細骨材、粗骨材、混和剤を下記に示す。
  W/C:水セメント比(質量比)
  s/a:細骨材率(=細骨材÷全骨材(細骨材+粗骨材))(体積比)
  細骨材:混合砂(海砂/博多産50%+砕砂/住友石炭鉱業50%)
  粗骨材:山口県宮野産2015/50%+1505/50%。
  混和剤:AE減水剤 ポゾリスNo.70(ポゾリス社製)
  水 :上水道水
 コンクリートの練り混ぜに用いたミキサ、練混ぜ量及び手順は以下のとおりである。
  ミキサ:強制二軸型ミキサ(公称容積55L)
  練混ぜ量:30L/バッチ
  練混ぜ時間及び手順
    1)細骨材及びセメントをミキサに投入後、10秒間空練り。
    2)水(混和剤含)を加えて60秒間練混ぜ。
    3)粗骨材を加え60秒間練混ぜ後、5分静置後15秒間練混ぜ排出。
    4)供試体は、JIS A 1132に準拠して作製した。
 コンクリート性能の評価項目及び試験方法は、次のとおりである。スランプは、JIS A 1101、圧縮強度は材齢28日でJIS A 1108に準じて測定した。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、実施例1、5~7の凝結水量は比較例1、5~6に比べ少なく、またコンクリートも同様に実施例1、2、5の単位水量は比較例1、3、4に比べ減少していることから、セメント組成物中のSr含有量を0.065~1.0質量%、且つMgO含有量が1.0質量%を超え3.0質量%以下となるようにすることにより、モルタル及びコンクリートの流動性は向上する。
 表7に示すように、実施例1~6のセメント組成物を用いたモルタルは、材齢28日の圧縮強さが60N/mm以上であり、強度発現性が維持されていることが確認できた。なお、比較例3のように、セメント組成物のf.CaO含有量が1.5質量%を超えると、材齢28日の圧縮強さが60N/mm未満となり、強度発現性が低下した。
 表3~7に示すように、有効利用が望まれている廃棄物である石炭灰や建設発生土を使用することによって、これらの原料よりセメントクリンカーに持ち込まれるAl量が増加した場合であっても、セメント組成物のSr含有量、MgO含有量が一定の範囲となるように、セメントクリンカー原料の原料原単位を調整することによって、得られるセメント組成物を使用したモルタル及びコンクリートの流動性を向上させることができる。更に、f.CaO含有量を1.5質量%以下とすることによって、強度発現性を維持することができる。
 実施例1~7のセメント組成物(Sr含有量が0.07~0.1062質量%、且つMgO含有量が1.04~2.55質量%)及び比較例1~6のセメント組成物(Sr含有量が0.034~0.06質量%であるか、MgO含有量が1.0質量%以下)のSr含有量とMgO含有量と、凝結水量又は単位水量の関係を図1に示す。
 図1(及び表4、6、7参照)に示すように、実施例1、2、5~7のようにSr含有量が0.07~0.1062質量%、且つMgO含有量が1.04~2.55質量%であると、凝結水量(セメントペーストの標準軟度水量)は28.0%未満(図1中、○凝結水量<28.0%)であり、コンクリートの単位水量が180kg/m未満(図1中、△単位水量<180kg/m)と、凝結水量及び/又はコンクリートの単位水量を低減することができた。実施例1のセメント組成物のように、R-CA量が10.1と、比較的多い場合であっても、Sr含有量0.065~1.0質量%、且つMgO含有量が1.0質量%を超え3.0質量%以下であると、凝結水量が28.0%未満、コンクリートの単位水量が180kg/m未満に低減することができた。
 一方、図1(及び表4、6、7参照)に示す比較例1、3~6のセメント組成物のように、セメント組成物中のSr含有量が0.065~1.0質量%、あるいはMgO含有量が1.0質量%を超え3.0質量%以下のどちらか一方の数値を満たしていないと、凝結水量が28.0%以上(図1中、●凝結水量≧28.0%)、コンクリートの単位水量が180kg/m以上(図1中、▲単位水量≧180kg/m)と増加した。例えば比較例1、3~5のセメント組成物のように、MgOの含有量が1.0質量%を超え3.0質量%以下の数値を満たしていても、Sr含有量が0.065~1.0質量%の数値を満たしていないと、凝結水量は28.0%以上又は単位水量が180kg/m以上と増加し、比較例6のセメント組成物のように、Sr含有量が0.065~1.0質量%の数値を満たしていても、MgO含有量が1.0質量%を超え3.0質量%の数値を満たしていないと、凝結水量は28.0%以上と増加した。
(実施例8、比較例7)
 また、廃貝殻を使用してSr含有量を特定範囲にした実施例を以下に記す。
実施例8として、貝殻としてカキ殻を、表2に示す石灰石Bの一部代替として使用した。貝殻はCaO含有量が48質量%、Sr含有量が0.13質量%、MgO含有量が0.53質量%であった。石灰石Bのうち10質量%を貝殻で置き換えた。その他の原料は、比較例1~5と同様のものを使用した。表8に、カルシウム源原料(石灰石、貝殻)、石炭灰及び建設発生土の原単位と、上記各原料からセメントクリンカー1t当たりに持ち込まれるSr含有量(質量%)と、石灰石と石炭灰と建設発生土の混合原料からセメントクリンカー1t当たりに持ち込まれるSr含有量(質量%)と、石炭灰に対する建設発生土の質量比と、石炭灰と建設発生土の混合物中のSr含有量(質量%)を記載した。更に、実施例及び比較例1~5と同様の方法で、セメント組成物を得てセメント組成物のSr含有量を測定した。結果を表8に示す。Sr含有量は、セメント協会標準試験方法JCAS I-52 2000「ICP発光分光分析及び電気加熱式原子吸光分析によるセメント中の微量成分の定量方法」に準じて測定した。
Figure JPOXMLDOC01-appb-T000008
 表8に示すように、クリンカーへのSr持込量が0.0201質量%と少ない石灰石を用いる場合であっても、石灰石の一部代替として貝殻を使用することによって、セメントクリンカーへのSr持込量を0.03質量%以上とすることができ、セメント組成物中のSr含有量が0.07質量%以上とすることができた。表8に示すように、石灰石に応じて、石炭灰に対する建設発生土の質量比が0.13~1.6となるように、セメントクリンカー原料の原料原単位を調整してセメントクリンカーを製造することによって、得られるセメント組成物のSr含有量を0.072質量%にすることができた。

Claims (9)

  1.  Sr含有量が0.065~1.0質量%、且つMgO含有量が1.0質量%を超え3.0質量%以下であることを特徴とするセメント組成物。
  2.  f.CaO含有量が1.5質量%以下である、請求項1記載のセメント組成物。
  3.  SO含有量が1.6~2.6質量%である、請求項1又は2記載のセメント組成物。
  4.  CS含有量が50~70質量%、CS含有量が5~25質量%、CA含有量が6~15質量%及びCAF含有量が7~15質量%である、請求項1~3のいずれか1項記載のセメント組成物。
  5.  セメント組成物のSr含有量が0.065~1.0質量%、且つMgO含有量が1.0質量%を超え3.0質量%以下となるように、石灰石、硅石、石炭灰、粘土、高炉スラグ、建設発生土、下水汚泥、ハイドロケーキ及び鉄源からなる群より選ばれる原料の原料原単位を調整し、調整した原料を配合し、焼成してセメントクリンカーを製造する工程(A)と、セメントクリンカーと、石膏と、混合材として石灰石及び高炉スラグを混合して粉砕する工程(B)を含むことを特徴とするセメント組成物の製造方法。
  6.  貝殻を石灰石の一部代替として使用する、請求項5記載のセメント組成物の製造方法。
  7.  工程(A)におけるセメントクリンカー原料として、セメントクリンカー1トンあたり石灰石700~1400kg、硅石20~150kg、石炭灰0~300kg、粘土0~100kg、高炉スラグ0~100kg、建設発生土10~150kg、下水汚泥0~100kg、ハイドロケーキ0~100kg及び鉄源30~80kgを配合する、請求項5又は6記載のセメント組成物の製造方法。
  8.  工程(A)において、石炭灰に対する建設発生土の質量比が0.13~1.6となるように建設発生土と石炭灰とを配合する、請求項5~7のいずれか1項記載のセメント組成物の製造方法。
  9.  工程(A)における建設発生土中のSr含有量が0.01~1.0質量%であり、且つ石炭灰中のSr含有量が0.02~0.4質量%である、請求項5~8のいずれか1項記載のセメント組成物の製造方法。
PCT/JP2011/061868 2010-06-01 2011-05-24 セメント組成物及びセメント組成物の製造方法 WO2011152248A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180027238.8A CN102917999B (zh) 2010-06-01 2011-05-24 水泥组合物和水泥组合物的制造方法
SG2012088175A SG185805A1 (en) 2010-06-01 2011-05-24 Cement composition and process for producing cement composition
US13/701,278 US8641819B2 (en) 2010-06-01 2011-05-24 Cement composition and process for producing cement composition
KR1020127034028A KR101404381B1 (ko) 2010-06-01 2011-05-24 시멘트 조성물 및 시멘트 조성물의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010126104 2010-06-01
JP2010-126104 2010-06-01
JP2011010229A JP4811534B1 (ja) 2010-06-01 2011-01-20 セメント組成物及びセメント組成物の製造方法
JP2011-010229 2011-01-20

Publications (1)

Publication Number Publication Date
WO2011152248A1 true WO2011152248A1 (ja) 2011-12-08

Family

ID=45044181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061868 WO2011152248A1 (ja) 2010-06-01 2011-05-24 セメント組成物及びセメント組成物の製造方法

Country Status (6)

Country Link
US (1) US8641819B2 (ja)
JP (1) JP4811534B1 (ja)
KR (1) KR101404381B1 (ja)
CN (1) CN102917999B (ja)
SG (1) SG185805A1 (ja)
WO (1) WO2011152248A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012120747A1 (ja) * 2011-03-09 2012-09-13 宇部興産株式会社 セメント組成物及びその製造方法
JP2016190751A (ja) * 2015-03-31 2016-11-10 住友大阪セメント株式会社 セメントクリンカ及びセメント組成物
CN108751754A (zh) * 2018-05-28 2018-11-06 湖南三恒建设园林工程有限公司 一种夜光水泥的配制方法及夜光路面
CN111439938A (zh) * 2020-04-24 2020-07-24 吉林亚泰水泥有限公司 一种轨道交通专用水泥及其生产工艺

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013193926A (ja) * 2012-03-21 2013-09-30 Ube Industries Ltd セメントクリンカー及びセメントクリンカーの製造方法
JP2013203599A (ja) * 2012-03-28 2013-10-07 Ube Industries Ltd セメントクリンカーのb値の制御方法及びセメントクリンカーの製造方法
KR101299163B1 (ko) * 2013-05-10 2013-08-22 (주)대우건설 조강성 시멘트와 광물질 산업부산물을 이용한 연약지반 고결용 고화재 조성물 및 그 제조방법
JP5900808B1 (ja) * 2014-11-13 2016-04-06 住友大阪セメント株式会社 セメントクリンカ及びセメント組成物
JP5907446B1 (ja) * 2014-11-13 2016-04-26 住友大阪セメント株式会社 セメントクリンカ及びセメント組成物
CN106746780A (zh) * 2015-11-20 2017-05-31 甘肃曼特睿尔公路材料研发有限责任公司 一种采用炉渣的环保型水泥及其制备方法
KR102453706B1 (ko) * 2016-02-17 2022-10-14 가부시키가이샤 리가쿠 해석 장치, 해석 방법 및 해석 프로그램
JP2018083735A (ja) * 2016-11-24 2018-05-31 太平洋セメント株式会社 セメント組成物
US10981831B2 (en) 2017-09-21 2021-04-20 Crown Products & Services, Inc. Dry mix and concrete composition containing bed ash and related methods
KR102245308B1 (ko) * 2018-08-10 2021-04-27 한양대학교 산학협력단 클링커 조성물 및 이의 제조방법
CN109354423A (zh) * 2018-11-07 2019-02-19 富蕴天山水泥有限责任公司 一种炉渣硅酸盐水泥及其制备方法
JP6638842B1 (ja) * 2019-03-29 2020-01-29 住友大阪セメント株式会社 セメント組成物及びセメント組成物の製造方法
US10759697B1 (en) 2019-06-11 2020-09-01 MSB Global, Inc. Curable formulations for structural and non-structural applications
CN112456837A (zh) * 2019-09-09 2021-03-09 罗定市宏泰建材有限公司 一种水泥掺混料及其制备方法
JP6780796B1 (ja) * 2020-03-27 2020-11-04 住友大阪セメント株式会社 セメントクリンカ及びセメント組成物
JP6966012B1 (ja) * 2021-03-26 2021-11-10 住友大阪セメント株式会社 セメント組成物及びその製造方法
CN115448622B (zh) * 2022-09-16 2023-09-22 大冶尖峰水泥有限公司 一种利用高硫高镁石灰石生产高强度熟料的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350337A (ja) * 2004-05-13 2005-12-22 Ube Ind Ltd セメント組成物
JP2010222171A (ja) * 2009-03-23 2010-10-07 Taiheiyo Cement Corp セメントクリンカ、その製造方法および水硬性セメント

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1188085A (zh) * 1997-01-13 1998-07-22 刘绪 无熟料硅酸盐水泥和少熟料水泥
NL1016892C2 (nl) * 2000-12-15 2002-06-19 Mega Tech Holding Bv Samenstelling bestemd als toevoegsel voor cement.
JP2003095710A (ja) 2001-09-21 2003-04-03 Taiheiyo Cement Corp 水硬性組成物
JP4176660B2 (ja) 2003-03-11 2008-11-05 太平洋セメント株式会社 水硬性組成物
JP4166183B2 (ja) 2004-03-25 2008-10-15 太平洋セメント株式会社 コンクリート
CN100586889C (zh) * 2006-11-17 2010-02-03 尹小林 立窑利用电石渣配料生产水泥的新工艺
JP2009149515A (ja) * 2009-03-19 2009-07-09 Ube Ind Ltd セメント組成物及びセメント混練物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350337A (ja) * 2004-05-13 2005-12-22 Ube Ind Ltd セメント組成物
JP2010222171A (ja) * 2009-03-23 2010-10-07 Taiheiyo Cement Corp セメントクリンカ、その製造方法および水硬性セメント

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JAPAN CONCRETE INSTITUTE, CONCRETE BINRAN, 15 February 1996 (1996-02-15), pages 46 *
JUEL.I: "The influence of earth alkalis on the mineralogy in a mineralized Portland cement clinker", CEMENT AND CONCRETE RESEARCH, vol. 31, no. 6, June 2001 (2001-06-01), pages 893 - 897 *
MASSAZZA.F: "INFLUENZA DELLO STRONZIO SULLA COMPOSIZIONE MINERALOGICA DEI CLINKER", CEMENTO, vol. 71, no. 4, 1974, pages 167 - 176 *
TAKAYASU ITO: "Relationship between property of early hydration of cement and aluminate contents determined by Rietveld method", CAJ PROCEEDINGS OF CEMENT & CONCRETE, vol. 56, 10 February 2003 (2003-02-10), pages 29 - 35 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012120747A1 (ja) * 2011-03-09 2012-09-13 宇部興産株式会社 セメント組成物及びその製造方法
JP2016190751A (ja) * 2015-03-31 2016-11-10 住友大阪セメント株式会社 セメントクリンカ及びセメント組成物
CN108751754A (zh) * 2018-05-28 2018-11-06 湖南三恒建设园林工程有限公司 一种夜光水泥的配制方法及夜光路面
CN111439938A (zh) * 2020-04-24 2020-07-24 吉林亚泰水泥有限公司 一种轨道交通专用水泥及其生产工艺

Also Published As

Publication number Publication date
CN102917999A (zh) 2013-02-06
SG185805A1 (en) 2013-01-30
CN102917999B (zh) 2015-06-17
US20130068140A1 (en) 2013-03-21
US8641819B2 (en) 2014-02-04
KR101404381B1 (ko) 2014-06-09
KR20130018953A (ko) 2013-02-25
JP2012012285A (ja) 2012-01-19
JP4811534B1 (ja) 2011-11-09

Similar Documents

Publication Publication Date Title
JP4811534B1 (ja) セメント組成物及びセメント組成物の製造方法
JP4968390B1 (ja) セメント組成物及びその製造方法
WO2012120747A1 (ja) セメント組成物及びその製造方法
JP2011132045A (ja) セメント組成物の水和熱低減方法
JP2012246190A (ja) セメント組成物の製造方法
JP2013103865A (ja) セメントペーストの製造方法
JP2011020890A (ja) セメント組成物の水和熱低減方法及びセメント組成物の製造方法
JP2010228926A (ja) セメント組成物及びその製造方法
JP4775495B1 (ja) セメント組成物及びその製造方法
JP2010001196A (ja) セメント組成物
JP6036167B2 (ja) 低炭素型セメントペースト組成物
JP4842211B2 (ja) セメント添加材用焼成物、セメント添加材及びセメント組成物
WO2022039035A1 (ja) セメント混和材、及びセメント組成物
JP2010168256A (ja) セメント添加材及びセメント組成物
JP2012246189A (ja) セメント組成物の製造方法
JP4770988B2 (ja) 低水和熱セメント組成物及びその製造方法
JP6217305B2 (ja) 低水和熱セメント組成物及びその製造方法
JP2019119641A (ja) ポルトランドセメントの製造方法
JP2013087036A (ja) 低水和熱セメントクリンカおよび低水和熱セメント組成物
JP2014185042A (ja) セメント組成物
JP2012201562A (ja) セメント組成物及びその製造方法
JP2023131119A (ja) セメント組成物
JP2022159034A (ja) セメントクリンカの製造方法
JP6530629B2 (ja) セメントクリンカーの製造方法
JP4190387B2 (ja) セメント混和材及びセメント組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180027238.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789657

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12012502364

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 13701278

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127034028

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11789657

Country of ref document: EP

Kind code of ref document: A1