WO2011148764A1 - ハニカム構造体の製造方法 - Google Patents

ハニカム構造体の製造方法 Download PDF

Info

Publication number
WO2011148764A1
WO2011148764A1 PCT/JP2011/060545 JP2011060545W WO2011148764A1 WO 2011148764 A1 WO2011148764 A1 WO 2011148764A1 JP 2011060545 W JP2011060545 W JP 2011060545W WO 2011148764 A1 WO2011148764 A1 WO 2011148764A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
aluminum
magnesium
columnar body
titanium
Prior art date
Application number
PCT/JP2011/060545
Other languages
English (en)
French (fr)
Inventor
康輔 魚江
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2011148764A1 publication Critical patent/WO2011148764A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/003Apparatus or processes for treating or working the shaped or preshaped articles the shaping of preshaped articles, e.g. by bending
    • B28B11/006Making hollow articles or partly closed articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/003Apparatus or processes for treating or working the shaped or preshaped articles the shaping of preshaped articles, e.g. by bending
    • B28B11/006Making hollow articles or partly closed articles
    • B28B11/007Using a mask for plugging
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3472Alkali metal alumino-silicates other than clay, e.g. spodumene, alkali feldspars such as albite or orthoclase, micas such as muscovite, zeolites such as natrolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide

Definitions

  • the present invention relates to a method for manufacturing a honeycomb structure.
  • a honeycomb structure made of porous ceramics has been used as a ceramic filter (DPF: Diesel Particulate Filter) for collecting fine particles such as carbon particles contained in exhaust gas discharged from an internal combustion engine such as a diesel engine. It has been.
  • DPF Diesel Particulate Filter
  • the honeycomb structure for DPF is usually a columnar body, and the columnar honeycomb structure is formed with a plurality of through holes penetrating between the opposing end faces.
  • first end surface On one end surface (first end surface) of the honeycomb structure, the end portions of the open through holes and the end portions of the through holes closed by the sealing portions are alternately arranged in a lattice pattern.
  • the through hole whose end is open on the first end surface is closed with a sealing portion on the second end surface opposite to the first end surface. Further, the through hole whose end is closed by the sealing portion on the first end surface is open on the second end surface. Therefore, in manufacturing a honeycomb structure for DPF, a step of closing only one end portion of the through hole formed in the columnar body with a sealing material (hereinafter referred to as “sealing step”) is required.
  • Patent Document 1 as an example of the above-described sealing step, a cordierite columnar body in which a plurality of through-holes are formed is installed in a cylinder, and a part of the through-holes opened on the end surface of the columnar body is formed with a film.
  • a process is disclosed in which a sealing material in the form of a slurry is applied to the end face, and the piston is pushed into the cylinder to introduce the sealing material into some through holes with the piston.
  • the sealing step disclosed in Patent Document 1 is complicated because it requires a complicated device including a needle jig for making a hole in the film, a sealing piston, a cylinder, and the like. Further, in the sealing step disclosed in Patent Document 1, when the sealing material is introduced into the through hole by the piston, the piston and the end surface of the columnar body are in close contact with each other via the sealing material. Therefore, the sealing material introduced into the through hole by the piston is pulled out from the through hole as the piston is pulled out from the cylinder. Therefore, in the DPF manufactured using the sealing step disclosed in Patent Document 1, the fine particles pass through the through holes whose both ends are not blocked by the sealing portions, and the collection rate of the fine particles is high. It will decline.
  • the present invention has been made in view of such problems of the prior art, and provides a method for manufacturing a honeycomb structure that is simpler than the prior art and can suppress the detachment of the sealing material from the through holes. With the goal.
  • a method for manufacturing a honeycomb structure includes a mask having a mask portion and a plurality of openings on an end surface where a through-hole of a columnar body having a plurality of through-holes is opened.
  • a step of closing a part of the through-holes in the mask portion a step of applying a slurry-like sealing material to the mask installed on the end surface, and pressing the blade against the sealing material applied to the mask, Moving the substrate substantially parallel to the surface of the mask.
  • the blade is pressed against the sealing material applied to the mask, and the blade is moved substantially parallel to the surface of the mask, so that the sealing material fills the end of some through holes through the opening of the mask. Is done. That is, in the present invention, the sealing material is pushed into the end portions of some through holes by the blade.
  • the end of the through hole can be filled with the sealing material, and the sealing process is simplified as compared with the conventional manufacturing method that requires a complicated apparatus system. .
  • the piston is pressed perpendicularly to the end surface of the columnar body, the sealing material is introduced into the through hole extending perpendicularly to the end surface, and then the piston is perpendicular to the end surface of the columnar body.
  • the sealing material in a through-hole may detach
  • the sealing material is detached from the through hole as the blade moves. Not likely to occur.
  • the columnar body is fitted into the bottom hole of the frame having the bottom plate in which the bottom hole having substantially the same shape as the end surface of the columnar body is formed. It is preferable to press the blade against the sealing material and move the blade substantially parallel to the surface of the mask.
  • the frame it is possible to prevent extra sealing material that is not introduced into the through-holes from being applied to the mask from adhering to the side surface of the columnar body. Further, by using the frame, it is possible to collect excess sealing material in the frame and reuse it in the sealing step. That is, in the present invention, the manufacturing cost of the honeycomb structure can be reduced by reusing the sealing material.
  • the columnar body preferably contains Al and Ti.
  • a honeycomb structure formed from a columnar body containing Al and Ti is made of an aluminum titanate sintered body, has an extremely small thermal expansion coefficient, a high melting point, excellent thermal shock resistance during regeneration, and a limit deposition amount of soot. Is suitable as a large DPF.
  • the present invention it is possible to provide a method for manufacturing a honeycomb structure that is simpler than before and can suppress the detachment of the sealing material from the through hole.
  • FIG.1 (a) is a perspective view of the columnar body formed in the manufacturing process of the honeycomb structure which concerns on one Embodiment of this invention
  • FIG.1 (b) is an end surface of the columnar body of Fig.1 (a).
  • FIG. 2A is a perspective view of the columnar body of FIG. 1A and a mask installed on an end surface of the columnar body
  • FIG. 2B is a top view of the mask shown in FIG. 2A.
  • FIG. 3 is a perspective view of a columnar body in which a blade, a frame, and masks are installed on both end faces used in the sealing step in the method for manufacturing a honeycomb structure according to an embodiment of the present invention.
  • FIG. 3 is a perspective view of a columnar body in which a blade, a frame, and masks are installed on both end faces used in the sealing step in the method for manufacturing a honeycomb structure according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing a part of the sealing step corresponding to the cross section taken along line IV-IV of the columnar body in which the blade, the frame, and the masks on both end faces shown in FIG. 3 are installed.
  • FIG. 5 is a schematic diagram showing a part of the sealing step corresponding to the cross section taken along line IV-IV of the columnar body in which the blade, the frame, and the masks on both end faces shown in FIG. 3 are installed.
  • FIG. 6 is a schematic diagram showing a part of the sealing step corresponding to the cross section taken along line IV-IV of the columnar body in which the blade, the frame, and the masks on both end faces shown in FIG. 3 are installed.
  • Fig. 7 (a) is a perspective view of a honeycomb structure manufactured by the method for manufacturing a honeycomb structure according to one embodiment of the present invention
  • Fig. 7 (b) is a view of the honeycomb structure of Fig. 7 (a). It is an end view.
  • the columnar body 70 is a cylindrical body having a honeycomb structure.
  • the columnar body 70 has a plurality of partition walls 70c that are parallel to the central axis thereof and orthogonal to each other. That is, the columnar body 70 has a lattice structure in a cross section perpendicular to the central axis direction.
  • the columnar body 70 is formed with a large number of through holes 70a (flow passages) extending in the same direction (center axis direction), and the partition walls 70c separate the through holes 70a.
  • Each through hole 70 a is perpendicular to both end faces of the columnar body 70.
  • the columnar body 70 may be a porous ceramic made of, for example, an aluminum titanate sintered body.
  • aluminum titanate sintered body implies “aluminum magnesium titanate sintered body”. That is, the aluminum titanate sintered body may contain magnesium. Moreover, the aluminum titanate sintered body may contain silicon.
  • Crystal patterns such as alumina and titania may be included.
  • the columnar body 70 may be a green molded body (unfired molded body) formed from an inorganic compound powder (Al 2 O 3 , TiO 2 or the like) as a ceramic raw material and an organic binder.
  • an inorganic compound powder Al 2 O 3 , TiO 2 or the like
  • the first mask 200 a is attached to the first end surface of the columnar body 70 where the plurality of through holes 70 a are open.
  • the first mask 200a as shown in FIG. 2B, mask portions 270a and openings 270b having substantially the same dimensions as the through holes 70a are arranged in a staggered manner.
  • the first mask 200a is affixed to the first end surface of the columnar body 70 so that each through hole 70a overlaps the mask portion 270a and the opening 270b.
  • the second mask 200b is attached to the second end surface of the columnar body 70 opposite to the first end surface.
  • the arrangement relationship between the opening and the mask portion of the second mask 200b is opposite to that of the first mask 200a. Therefore, the through hole 70a closed by the mask portion 270b of the first mask 200a on the first end face side overlaps with the opening of the second mask 200b on the second end face side.
  • the through hole 70a closed by the mask portion of the second mask 200b on the second end surface side overlaps the opening 270a of the first mask 200a on the first end surface side. Therefore, all of the plurality of through holes 70a formed in the columnar body 70 are opened at one of the first end surface and the second end surface, and are closed by the mask portion at the other.
  • a (transparent) resin film in which no opening is formed is attached to the first end surface (through hole 70a) of the columnar body 70, and a heated metal rod or laser beam or the like.
  • a plurality of openings 270a arranged in a checkered pattern may be formed in the film by the heat rays.
  • a blade 300 (a spatula) and a rectangular frame 302 are used.
  • the frame 302 includes a bottom plate 302a.
  • a circular bottom hole 302b having a shape substantially the same as that of the first end surface of the columnar body 70 is formed.
  • the columnar body 70 to which the first mask 200 a and the second mask 200 b are attached is fitted into the bottom hole 302 b of the frame 302.
  • the shape of the frame 302 is not particularly limited.
  • the frame 302 may be fixed to the columnar body 70 using an adhesive tape or a jig.
  • a slurry-like sealing material 304 is applied to the entire surface of the first mask 200a disposed in the frame 302 with a substantially uniform thickness.
  • the sealing material 304 a mixture of an inorganic compound powder (ceramic material, ceramic raw material powder or a mixture thereof), an organic binder, a lubricant, a pore forming agent, a solvent, and the like may be used.
  • the composition of the inorganic compound powder contained in the sealing material 304 may be the same as or different from the composition of the inorganic compound powder for forming the columnar body 70.
  • the entire columnar body 70 fitted in the frame 302 may be installed in a vibrator, and the sealing material 304 applied to the first mask 200a may be vibrated. By this vibration, the sealing material 304 on the first mask 200a is flattened, and the bubbles in the sealing material 304 are removed.
  • the blade 300 is moved in parallel with the surface of the first mask 200a while pressing the tip of the blade 300 against the sealing material 304 applied to the entire surface of the first mask 200a. Then, the entire surface of the first mask 200a is scanned. As a result, as shown in FIGS. 5 and 6, the sealing material 304 is introduced substantially uniformly through the opening into the end of each through hole 70 a that overlaps the opening of the first mask 200 a. At this time, the sealing material 304 remaining without being introduced into the end portion of the through hole 70 a is collected in the frame 302. That is, the frame 302 functions as a tray for the extra sealing material 304. In the sealing step, after the sealing material 304 is introduced into the through hole 70a, the entire columnar body 70 may be vibrated by a vibrator. As a result, the sealing material 304 is easily filled in the gaps at the ends of the through holes 70a.
  • the columnar body 70 is removed from the bottom hole 302b of the frame 302.
  • the sealing step for the second end surface to which the second mask 200b is attached is performed. After performing the sealing step on both end faces, each mask is peeled off from each end face.
  • a (transparent) resin film in which no opening is formed is attached to the second end surface (through hole 70a) of the columnar body 70, a heated metal rod, a laser beam, or the like A plurality of openings arranged in a checkered pattern may be formed in the film by the heat rays.
  • the dried columnar body is fired to seal the sealing material 304 that closes one end of the through hole 70a.
  • the sealing material 304 By sintering the sealing material 304, as shown in FIG. 7, a ceramic sealing portion 70 b that closes one end of the through hole 70 a is formed, and the cylindrical honeycomb structure 170 is completed.
  • honeycomb structure In the honeycomb structure 170, the through hole 70a closed by the sealing portion 70b on the first end face side is open on the second end face side.
  • the through hole 70a closed by the sealing portion 70b on the second end surface side is open on the first end surface side.
  • a honeycomb structure (multi-cell ceramic monolith) having such a structure is suitable for DPF.
  • DPF made of sintered aluminum magnesium titanate has an extremely small coefficient of thermal expansion, a high melting point, and excellent thermal shock resistance during reproduction, compared with DPF made of SiC, cordierite or aluminum titanate alone. It is excellent in that the limit deposition amount of is large.
  • a platinum-based metal catalyst supported on a carrier such as alumina or a promoter such as ceria or zirconia may be attached to the partition wall surface of the honeycomb structure 170 for DPF.
  • the aluminum content in the aluminum titanate sintered body is not particularly limited, but is, for example, 40 to 60 mol% in terms of aluminum oxide.
  • the titanium content in the aluminum titanate sintered body is not particularly limited, but is, for example, 35 to 55 mol% in terms of titanium oxide.
  • the magnesium content in the aluminum titanate sintered body is preferably 1 to 5% by mass in terms of magnesium oxide.
  • the silicon content in the aluminum titanate sintered body is preferably 2 to 5% by mass in terms of silicon oxide.
  • the aluminum titanate sintered body may contain components derived from raw materials or trace components inevitably mixed into work-in-process in the manufacturing process.
  • the inner diameter (the length of one side of the square) of the cross section perpendicular to the longitudinal direction of the through hole 70a is not particularly limited, but is, for example, 0.8 to 2.5 mm.
  • the length of the honeycomb structure 170 in the direction in which the through hole 70a extends is not particularly limited, but is, for example, 40 to 350 mm.
  • the outer diameter of the honeycomb structure 170 is not particularly limited, but is, for example, 10 to 320 mm.
  • the length D of the sealing portion 70b is not particularly limited, but is, for example, 1 to 20 mm.
  • the number (cell density) of the through holes 70a opened in the end face of the honeycomb structure 170 is not particularly limited, but is, for example, 150 to 450 cpsi.
  • the unit of cpsi means “/ inch 2 ” and is equal to “/(0.0254m) 2 ”.
  • the thickness of the partition wall of the through hole 70a is not particularly limited, but is, for example, 0.15 to
  • Method of forming columnar body (Preparation of raw material mixture)
  • a raw material mixture prepared by mixing an inorganic compound powder, an organic binder, a solvent, and the like with a kneader or the like is molded to obtain a green molded body.
  • the inorganic compound powder includes a titanium source powder and an aluminum source powder.
  • the inorganic compound powder may further contain a magnesium source powder and a silicon source powder.
  • the aluminum source is a compound that becomes an aluminum component constituting the aluminum titanate sintered body.
  • the aluminum source include alumina (aluminum oxide).
  • the crystal type of alumina include ⁇ -type, ⁇ -type, ⁇ -type, and ⁇ -type, and may be indefinite (amorphous). Of these, ⁇ -type alumina is preferably used.
  • the aluminum source may be a compound that is led to alumina by firing alone in air.
  • Examples of such a compound include an aluminum salt, aluminum alkoxide, aluminum hydroxide, and metal aluminum.
  • the aluminum salt may be an inorganic salt with an inorganic acid or an organic salt with an organic acid.
  • the aluminum inorganic salt include aluminum nitrates such as aluminum nitrate and ammonium aluminum nitrate, and aluminum carbonates such as ammonium aluminum carbonate.
  • the aluminum organic salt include aluminum oxalate, aluminum acetate, aluminum stearate, aluminum lactate, and aluminum laurate.
  • aluminum alkoxide examples include aluminum isopropoxide, aluminum ethoxide, aluminum sec-butoxide, aluminum tert-butoxide, and the like.
  • Examples of the aluminum hydroxide crystal type include a gibbsite type, a bayerite type, a norosotrandite type, a boehmite type, and a pseudo-boehmite type, and may be amorphous (amorphous).
  • Examples of the amorphous aluminum hydroxide include an aluminum hydrolyzate obtained by hydrolyzing an aqueous solution of a water-soluble aluminum compound such as an aluminum salt or an aluminum alkoxide.
  • an aluminum source only 1 type may be used and 2 or more types may be used together.
  • alumina is preferably used as the aluminum source, more preferably ⁇ -type alumina.
  • the aluminum source may contain trace components derived from the raw materials or inevitably contained in the production process.
  • the particle size of the aluminum source powder is not particularly limited.
  • the particle diameter of the aluminum source powder corresponding to a volume-based cumulative percentage of 50% measured by laser diffraction method may be in the range of 20 to 60 ⁇ m. This particle diameter is also called D50 or average particle diameter. From the viewpoint of reducing shrinkage during firing, it is preferable to use an aluminum source powder having a D50 in the range of 30 to 60 ⁇ m.
  • An alumina sol or a silica sol described later can be added to the raw material mixture.
  • fine particles in the raw material mixture are adsorbed to each other, and the amount of particles having a particle diameter of 0.1 ⁇ m or less in the green molded body is reduced to an inorganic compound powder (solid content).
  • the strength of the molded body after degreasing at 500 ° C. can be, for example, 0.2 kgf or more.
  • the alumina sol is a colloid using fine particle alumina as a dispersoid and a liquid as a dispersion medium.
  • Alumina sol can be used alone as an aluminum source, but is preferably used in combination with other aluminum sources.
  • the dispersion medium of alumina sol is removed by evaporation or the like at the time of mixing or calcination, for example.
  • the dispersion medium for the alumina sol examples include aqueous solutions and various organic solvents such as aqueous hydrochloric acid, aqueous acetic acid, aqueous nitric acid, alcohol, xylene, toluene, and methyl isobutyl ketone.
  • a colloidal alumina sol having an average particle diameter of 1 to 100 nm is preferably used.
  • Examples of commercially available alumina sol include “Alumina sol 100”, “Alumina sol 200”, “Alumina sol 520” manufactured by Nissan Chemical Industries, Ltd., “NanoTekAl 2 O 3 ” manufactured by CI Kasei. Among these, it is preferable to use “Alumina sol 200" manufactured by Nissan Chemical Industries.
  • the alumina sol can be used in an amount of 0 to 10 parts by weight, preferably 0 to 5 parts by weight, based on 100 parts by weight of the inorganic compound powder (solid content). Two or more kinds of alumina sols may be mixed and used.
  • titanium source is a compound that becomes a titanium component constituting the aluminum titanate sintered body, and examples of such a compound include titanium oxide.
  • examples of titanium oxide include titanium (IV) oxide, titanium (III) oxide, and titanium (II) oxide.
  • titanium (IV) oxide is preferably used.
  • Examples of the crystal form of titanium (IV) oxide include anatase type, rutile type, brookite type and the like, and may be indefinite (amorphous). More preferred is anatase type or rutile type titanium (IV) oxide.
  • the titanium source may be a compound that is led to titania (titanium oxide) by firing alone in air.
  • titania titanium oxide
  • examples of such compounds include titanium salts, titanium alkoxides, titanium hydroxide, titanium nitride, titanium sulfide, titanium metal and the like.
  • titanium salts include titanium trichloride, titanium tetrachloride, titanium sulfide (IV), titanium sulfide (VI), and titanium sulfate (IV).
  • titanium alkoxide include titanium (IV) ethoxide, titanium (IV) methoxide, titanium (IV) t-butoxide, titanium (IV) isobutoxide, titanium (IV) n-propoxide, titanium (IV) tetraiso Examples thereof include propoxide and chelates thereof.
  • titanium source only 1 type may be used and 2 or more types may be used together.
  • titanium oxide is preferably used as the titanium source, and more preferably titanium (IV) oxide.
  • a titanium source can contain the trace component contained unavoidable in the raw material origin or manufacturing process.
  • the particle size of the titanium source powder is not particularly limited.
  • the particle diameter (D50) of the titanium source powder corresponding to a volume-based cumulative percentage of 50% as measured by a laser diffraction method may be in the range of 0.5 to 25 ⁇ m.
  • the D50 of the titanium source powder is preferably in the range of 1 to 20 ⁇ m.
  • the titanium source powder may show a bimodal particle size distribution. When using a titanium source powder showing such a bimodal particle size distribution, the particle size distribution measured by the laser diffraction method is used. It is preferable that the particle diameter of the peak with the larger particle diameter is in the range of 20 to 50 ⁇ m.
  • the mode diameter of the titanium source powder measured by the laser diffraction method is not particularly limited, but may be in the range of 0.3 to 60 ⁇ m.
  • the raw material mixture may contain a magnesium source.
  • An aluminum titanate sintered body produced from a green molded body containing a magnesium source is a sintered body of aluminum magnesium titanate crystals.
  • magnesium source examples include magnesia (magnesium oxide) and a compound that is led to magnesia by firing alone in air.
  • magnesia magnesium oxide
  • a compound that is led to magnesia by firing alone in air examples include magnesium salt, magnesium alkoxide, magnesium hydroxide, magnesium nitride, metal magnesium and the like.
  • magnesium salts include magnesium chloride, magnesium perchlorate, magnesium phosphate, magnesium pyrophosphate, magnesium oxalate, magnesium nitrate, magnesium carbonate, magnesium acetate, magnesium sulfate, magnesium citrate, magnesium lactate, magnesium stearate, Examples include magnesium salicylate, magnesium myristate, magnesium gluconate, magnesium dimethacrylate, and magnesium benzoate.
  • magnesium alkoxide examples include magnesium methoxide and magnesium ethoxide.
  • a magnesium source can contain the trace component contained unavoidable in the raw material origin or manufacturing process.
  • magnesium source a compound serving both as a magnesium source and an aluminum source can also be used.
  • An example of such a compound is magnesia spinel (MgAl 2 O 4 ).
  • magnesium source only 1 type may be used and 2 or more types may be used together.
  • the particle size of the magnesium source powder is not particularly limited.
  • the particle diameter (D50) of the magnesium source powder corresponding to a volume-based cumulative percentage of 50% measured by laser diffraction may be in the range of 0.5 to 30 ⁇ m. From the viewpoint of reducing shrinkage during firing, it is preferable to use a magnesium source powder having a D50 in the range of 3 to 20 ⁇ m.
  • the molar amount of the magnesium source in terms of MgO (magnesia) in the green molded body is based on the total molar amount of the aluminum source in terms of Al 2 O 3 (alumina) and the titanium source in terms of TiO 2 (titania). 0.03-0.15 is preferable, and 0.03-0.12 is more preferable. By adjusting the content of the magnesium source within this range, an aluminum titanate sintered body having a large pore diameter and an open porosity with improved heat resistance can be obtained relatively easily.
  • the raw material mixture may further contain a silicon source.
  • the silicon source is a compound that becomes a silicon component and is contained in the aluminum titanate sintered body. By using the silicon source in combination, it becomes possible to obtain an aluminum titanate sintered body with improved heat resistance.
  • Examples of the silicon source include silicon oxides (silica) such as silicon dioxide and silicon monoxide.
  • the silicon source may be a compound that is led to silica by firing alone in air.
  • examples of such compounds include silicic acid, silicon carbide, silicon nitride, silicon sulfide, silicon tetrachloride, silicon acetate, sodium silicate, sodium orthosilicate, feldspar, and glass frit.
  • feldspar, glass frit and the like are preferably used, and glass frit and the like are more preferably used because they are easily available industrially and have a stable composition.
  • Glass frit means flakes or powdery glass obtained by pulverizing glass.
  • As the silicon source a powder made of a mixture of feldspar and glass frit can also be used.
  • the silicon source is glass frit
  • the yield point of the glass frit is defined as a temperature (° C.) at which the expansion of the glass frit is measured from a low temperature by using a thermomechanical analyzer (TMA: Thermo Mechanical Analysis), and then the expansion stops.
  • a general silicate glass containing silicate (SiO 2 ) as a main component (0% by weight or more in all components) can be used.
  • the glass constituting the glass frit includes other components such as alumina (Al 2 O 3 ), sodium oxide (Na 2 O), potassium oxide (K 2 O), calcium oxide ( CaO), magnesia (MgO) and the like may be included.
  • the glass constituting the glass frit may contain ZrO 2 in order to improve the hot water resistance of the glass itself.
  • silicon source only 1 type may be used and 2 or more types may be used together.
  • the particle size of the silicon source powder is not particularly limited.
  • the particle diameter (D50) of the silicon source corresponding to a volume-based cumulative percentage of 50% measured by laser diffraction method may be in the range of 0.5 to 30 ⁇ m.
  • the D50 of the silicon source is in the range of 1 to 20 ⁇ m.
  • the content of the silicon source in the raw material mixture is 100 parts by weight of the total amount of the aluminum source in terms of Al 2 O 3 (alumina) and the titanium source in terms of TiO 2 (titania).
  • the content of the silicon source in the raw material mixture is more preferably 2% by weight or more and 5% by weight or less in the inorganic compound source contained in the raw material mixture.
  • the silicon source may contain trace components that are derived from the raw materials or inevitably contained in the production process.
  • a composite oxide such as magnesia spinel (MgAl 2 O 4 )
  • a compound containing two or more metal elements among titanium, aluminum, silicon, and magnesium can be used as a raw material.
  • silica sol is a colloid using fine particle silica as a dispersoid and liquid as a dispersion medium.
  • the silica sol can be used alone as a silicon source, but is preferably used in combination with other silica sources.
  • the dispersion medium of silica nasol is removed by evaporation or the like during mixing or calcination, for example.
  • silica sol dispersion medium examples include aqueous solutions and various organic solvents such as an aqueous ammonia solution, alcohol, xylene, toluene, and triglyceride.
  • a colloidal silica sol having an average particle diameter of 1 to 100 nm is preferably used.
  • silica sol examples include “Snowtex 20, 30, 40, 50, N, O, S, C, 20L, OL, XS, XL, YL, ZL, QAS-40, LSS manufactured by Nissan Chemical Industries, Ltd. -35, LSS-45 "," Adelite AT-20, AT-30, AT-40, AT-50, AT-20N, AT-20A, AT-30A, AT-20Q, AT-300, manufactured by Asahi Denka Co., Ltd. “AT-300Q”, “Cataloid S-20L, S-20H, S-30L, S-30H, SI-30, SI-40, SI-50, SI-350, SI-500, SI-manufactured by Catalyst Kasei Kogyo Co., Ltd.
  • the content of silica sol in the raw material mixture may be 0 to 10 parts by weight, preferably 0 to 5 parts by weight in terms of solid content with respect to 100 parts by weight of the inorganic compound powder (solid content). Two or more kinds of silica sols may be mixed and used.
  • the raw material mixture may contain aluminum titanate or aluminum magnesium titanate.
  • the aluminum magnesium titanate corresponds to a raw material having both a titanium source, an aluminum source, and a magnesium source.
  • organic binder a water-soluble organic binder is preferable.
  • the water-soluble organic binder include celluloses such as methylcellulose, hydroxypropylmethylcellulose, and hydroxyethylmethylcellulose; alcohols such as polyvinyl alcohol; salts such as lignin sulfonate.
  • the amount of the organic binder is usually 20 parts by weight or less, preferably 15 parts by weight or less, more preferably 6 parts by weight with respect to 100 parts by weight of the inorganic compound powder.
  • the lower limit amount of the organic binder is usually 0.1 parts by weight, preferably 3 parts by weight.
  • solvent for example, alcohols such as methanol, ethanol, butanol and propanol, glycols such as propylene glycol, polypropylene glycol and ethylene glycol, and polar solvents such as water can be used. Of these, water is preferable, and ion-exchanged water is more preferably used from the viewpoint of few impurities.
  • the amount of the solvent used is usually 10 to 100 parts by weight, preferably 20 to 80 parts by weight, based on 100 parts by weight of the inorganic compound powder.
  • a nonpolar solvent may be used as the solvent.
  • the raw material mixture can contain an organic additive other than the organic binder.
  • organic additives are, for example, pore formers, lubricants and plasticizers, and dispersants.
  • the pore-forming agent examples include carbon materials such as graphite, resins such as polyethylene, polypropylene, and polymethyl methacrylate, plant materials such as starch, nut shells, walnut shells, and corn, ice, and dry ice.
  • the amount of pore-forming agent added is usually 0 to 40 parts by weight, preferably 0 to 25 parts by weight, based on 100 parts by weight of the inorganic compound powder.
  • the pore former disappears when the green molded body is fired. Therefore, in the aluminum titanate sintered body, micropores are formed at locations where the pore-forming agent was present.
  • Lubricants and plasticizers include alcohols such as glycerin, caprylic acid, lauric acid, palmitic acid, higher fatty acids such as alginate, oleic acid and stearic acid, and stearic acid metal salts such as Al stearate.
  • the addition amount of the lubricant and the plasticizer is usually 0 to 10 parts by weight, preferably 1 to 5 parts by weight with respect to 100 parts by weight of the inorganic compound powder.
  • the dispersant examples include inorganic acids such as nitric acid, hydrochloric acid and sulfuric acid, organic acids such as oxalic acid, citric acid, acetic acid, malic acid and lactic acid, alcohols such as methanol, ethanol and propanol, ammonium polycarboxylate, Surfactants such as oxyalkylene alkyl ethers are listed.
  • the amount of the dispersant added is usually 0 to 20 parts by weight, preferably 2 to 8 parts by weight, based on 100 parts by weight of the inorganic compound powder.
  • a green molded body is formed by molding the above-described raw material mixture using an extruder having a die having a lattice-shaped opening. In addition, you may knead
  • a columnar body can be obtained by calcining (degreasing) and firing the green molded body described above.
  • the obtained columnar body is mainly composed of a sintered body of crystal grains of aluminum titanate.
  • by performing firing after forming the raw material mixture it is possible to suppress shrinkage during firing compared to the case of directly firing the raw material mixture, and cracking of the obtained aluminum titanate sintered body
  • the green molded body may be used as a columnar body without firing.
  • Calcination is a process for removing the organic binder in the green molded body and the organic additive blended as necessary by burning or decomposing.
  • a typical calcining process corresponds to an initial stage of the firing process, that is, a temperature raising stage (for example, a temperature range of 300 to 900 ° C.) until the green molded body reaches the firing temperature.
  • a temperature raising stage for example, a temperature range of 300 to 900 ° C.
  • the firing temperature of the green molded body is usually 1300 ° C. or higher, preferably 1400 ° C. or higher.
  • the firing temperature is usually 1650 ° C. or lower, preferably 1550 ° C. or lower.
  • the rate of temperature increase up to the firing temperature is not particularly limited, but is usually 1 ° C./hour to 500 ° C./hour.
  • Firing is usually performed in the atmosphere, but depending on the type and usage ratio of the raw material powder used, that is, aluminum source powder, titanium source powder, magnesium source powder and silicon source powder, an inert gas such as nitrogen gas or argon gas.
  • the firing may be performed in a reducing gas such as carbon monoxide gas or hydrogen gas. Further, the firing may be performed in an atmosphere in which the water vapor partial pressure is lowered.
  • Calcination is usually performed using a normal firing furnace such as a tubular electric furnace, a box-type electric furnace, a tunnel furnace, a far-infrared furnace, a microwave heating furnace, a shaft furnace, a reflection furnace, a rotary furnace, or a roller hearth furnace. Firing may be performed batchwise or continuously. Moreover, you may carry out by a stationary type and may carry out by a fluid type.
  • a normal firing furnace such as a tubular electric furnace, a box-type electric furnace, a tunnel furnace, a far-infrared furnace, a microwave heating furnace, a shaft furnace, a reflection furnace, a rotary furnace, or a roller hearth furnace.
  • Firing may be performed batchwise or continuously.
  • you may carry out by a stationary type and may carry out by a fluid type.
  • the time required for firing may be sufficient time for the green molded body to transition to the aluminum titanate crystal, and varies depending on the amount of the green molded body, the type of firing furnace, firing temperature, firing atmosphere, etc. 10 minutes to 24 hours.
  • the green molded body may be heated at a temperature equal to or higher than the thermal decomposition temperature of the organic binder and other organic additives and lower than the sintering temperature of the inorganic compound powder.
  • the green molded body after the calcining step may be heated at a temperature equal to or higher than the sintering temperature of the inorganic compound powder.
  • the columnar body 70 having a honeycomb structure can be obtained.
  • Such a columnar body 70 has a shape that substantially maintains the shape of the green molded body immediately after molding.
  • the obtained columnar body 70 can be processed into a desired shape by grinding or the like.
  • the honeycomb structure 170 may be a porous ceramic made of cordierite or silicon carbide.
  • the columnar body includes cordierite, silicon carbide, or raw material powder thereof.
  • the shape of the honeycomb structure 170 is not limited to a cylinder, and can take any shape depending on the application.
  • the shape of the honeycomb structure 170 may be a polygonal column, an elliptical column, or the like.
  • the use of the honeycomb structure is not limited to DPF.
  • the honeycomb structure includes an exhaust gas filter or catalyst carrier used for exhaust gas purification of an internal combustion engine such as a gasoline engine, a filter used for filtering food and drink such as beer, and gas components (for example, carbon monoxide, carbon dioxide, etc.) generated during petroleum refining. , Nitrogen, oxygen, etc.) can be suitably applied to ceramic filters such as a selective permeation filter.
  • an aluminum titanate sintered compact has a high pore volume and an open porosity, it can maintain favorable filter performance over a long period of time.
  • the manufacturing method according to the present invention is simpler than the conventional method and can suppress the detachment of the sealing material from the through hole, and is therefore suitable for manufacturing a honeycomb structure for DPF.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Filtering Materials (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Abstract

 本発明のハニカム構造体の製造方法は、複数の貫通孔70aが形成された柱 状体70の貫通孔70aが開いている端面に、マスク部270b及び複数の開口部270aを有するマスク200aを設置し、マスク部270bで一部の貫通孔70aを塞ぐ工程と、端面に設置されたマスク200aにスラリー状の封口材304を塗布する工程と、マスク200aに塗布された封口材304にブレード300を押し当て、ブレード300をマスク200aの表面に略平行に移動させる工程と、を備える。

Description

ハニカム構造体の製造方法
 本発明は、ハニカム構造体の製造方法に関する。
 従来、ディーゼルエンジンなどの内燃機関から排出される排ガスに含まれるカーボン粒子等の微細粒子を捕集するためのセラミックスフィルター(DPF:Diesel Particulate Filter)として、多孔質のセラミックスからなるハニカム構造体が用いられている。
 DPF用のハニカム構造体は通常柱状体であり、柱状のハニカム構造体には、その対向する端面間を貫通する複数の貫通孔が形成されている。ハニカム構造体の一方の端面(第一端面)では、開いた貫通孔の端部と封口部で塞がれた貫通孔の端部とが、格子状に交互に配置されている。第一端面において端部が開いている貫通孔は、第一端面と反対側の第二端面において封口部で塞がれている。また、第一端面において端部が封口部で塞がれている貫通孔は、第二端面において開いている。したがって、DPF用のハニカム構造体の製造では、柱状体に形成された貫通孔の端部の一方だけを封口材で塞ぐ工程(以下、「封口工程」という。)が必要となる。
 下記特許文献1には、上記の封口工程の一例として、複数の貫通孔が形成されたコージェライトの柱状体をシリンダー内に設置し、柱状体の端面に開いた一部の貫通孔をフィルムで塞ぎ、当該端面にスラリー状の封口材を塗り、ピストンをシリンダー内に押し込むことにより、封口材をピストンで一部の貫通孔内に導入する工程が開示されている。
特公昭63-24731号公報
 しかしながら、上記特許文献1に開示された封口工程は、フィルムに穴を開ける針治具、封口用のピストン及びシリンダー等を備える複雑な装置を必要とするため煩雑であった。また、上記特許文献1に開示された封口工程では、封口材をピストンで貫通孔内に導入する際に、ピストンと柱状体の端面とが封口材を介して密着する。そのため、ピストンにより貫通孔内に導入された封口材が、ピストンのシリンダー内からの引き抜きに伴って貫通孔から引き出されてしまう。したがって、上記特許文献1に開示された封口工程を用いて製造したDPFでは、両端部が封口部で塞がれていない貫通孔内を微細粒子が通過してしまい、微細粒子の捕集率が低下してしまう。
 本発明は、このような従来技術の有する課題に鑑みてなされたものであり、従来よりも簡易であり、貫通孔からの封口材の脱離を抑制できるハニカム構造体の製造方法を提供することを目的とする。
 上記目的を達成するために、本発明に係るハニカム構造体の製造方法は、複数の貫通孔が形成された柱状体の貫通孔が開いている端面に、マスク部及び複数の開口部を有するマスクを設置し、マスク部で一部の前記貫通孔を塞ぐ工程と、端面に設置されたマスクにスラリー状の封口材を塗布する工程と、マスクに塗布された封口材にブレードを押し当て、ブレードをマスクの表面に略平行に移動させる工程と、を備える。
 上記本発明では、マスクに塗布された封口材にブレードを押し当て、ブレードをマスクの表面に略平行に移動させることにより、マスクの開口部を通じて一部の貫通孔の端部に封口材が充填される。つまり、本発明では、封口材をブレードによって一部の貫通孔の端部に押し込む。このように、本発明では、少なくともブレードとマスクさえあれば、貫通孔の端部に封口材を充填することでき、複雑な装置系を要する従来の製造方法に比べて封口工程が簡易化される。
 上記特許文献1に示す封口工程では、上述のように、ピストンを柱状体の端面に垂直に押し当て、端面に垂直に延びる貫通孔に封口材を導入した後、ピストンを柱状体の端面に垂直な方向に移動させて柱状体から分離させる。そして、このピストンの垂直移動に伴って貫通孔内の封口材が貫通孔から脱離しまうことがある。貫通孔の長軸方向とピストンの移動方向とが一致すると、ピストンの移動に伴って貫通孔から封口材が引き抜かれ易いからである。しかし、上記本発明では、ブレードを柱状体の端面に平行な方向(すなわち、貫通孔の長軸に直交する方向)に移動させるため、ブレードの移動に伴う封口材の貫通孔からの脱離が生じ難い。
 上記本発明では、柱状体の端面と略同一の形状の底穴が形成された底板を有する枠の底穴に柱状体を嵌め込んでマスクが設置された端面を枠で囲い、マスクに塗布された封口材にブレードを押し当て、ブレードをマスクの表面に略平行に移動させることが好ましい。枠を用いることにより、マスクに塗布された封口材のうち貫通孔に導入されない余分な封口材が柱状体の側面に付着することを防止できる。また、枠を用いることにより、余分な封口材を枠内に回収して封口工程で再利用することができる。すなわち、上記本発明では、封口材の再利用によってハニカム構造体の製造コストを低減することも可能である。
 上記本発明では、柱状体がAl及びTiを含むことが好ましい。Al及びTiを含む柱状体から形成されるハニカム構造体は、チタン酸アルミニウム焼結体からなり、熱膨張係数が極めて小さく、融点が高く、再生時の耐熱衝撃性に優れ、煤の限界堆積量が大きいDPFとして好適である。
 本発明によれば、従来よりも簡易であり、貫通孔からの封口材の脱離を抑制できるハニカム構造体の製造方法を提供することが可能となる。
図1(a)は、本発明の一実施形態に係るハニカム構造体の製造過程で形成される柱状体の斜視図であり、図1(b)は、図1(a)の柱状体の端面図である。 図2(a)は、図1(a)の柱状体と当該柱状体の端面に設置されたマスクの斜視図であり、図2(b)は、図2(a)に示すマスクの上面図である。 図3は、本発明の一実施形態に係るハニカム構造体の製造方法における封口工程で用いるブレード、枠及び両端面にマスクが設置された柱状体の斜視図である。 図4は、図3に示すブレード、枠及び両端面にマスクが設置された柱状体のIV-IV線断面に対応し、封口工程の一部を示す模式図である。 図5は、図3に示すブレード、枠及び両端面にマスクが設置された柱状体のIV-IV線断面に対応し、封口工程の一部を示す模式図である。 図6は、図3に示すブレード、枠及び両端面にマスクが設置された柱状体のIV-IV線断面に対応し、封口工程の一部を示す模式図である。 図7(a)は、本発明の一実施形態に係るハニカム構造体の製造方法により製造したハニカム構造体の斜視図であり、図7(b)は、図7(a)のハニカム構造体の端面図である。
 以下、図面を参照しながら、本発明の好適な一実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。なお、同一又は同等の要素については同一の符号を付す。また、上下左右の位置関係は図面に示す通りであるが、寸法の比率は図面に示すものに限定されない。まず、柱状体に対する封口工程について説明し、続いて他の工程について説明する。
 (柱状体)
 図1(a)及び図1(b)に示すように、柱状体70は、ハニカム構造を有する円柱体である。柱状体70は、その中心軸に平行であり、互いに直交する複数の隔壁70cを有する。つまり、柱状体70は、その中心軸方向に垂直な断面において格子構造を有する。換言すれば、柱状体70には、同一方向(中心軸方向)に延びる多数の貫通孔70a(流路)が形成されており、隔壁70cが各貫通孔70aを隔てる。各貫通孔70aは柱状体70の両端面に垂直である。なお、柱状体70が有する複数の隔壁70cが互いになす角は特に限定されず、例えば120°であってもよい。柱状体70は、例えば、チタン酸アルミニウム焼結体等からなる多孔質のセラミックスであればよい。なお、本実施形態において、「チタン酸アルミニウム焼結体」は「チタン酸アルミニウムマグネシウム焼結体」を含意する。つまり、チタン酸アルミニウム焼結体は、マグネシウムを含有してもよい。また、チタン酸アルミニウム焼結体はケイ素を含有してもよい。チタン酸アルミニウム焼結体は、X線回折スペクトルにおいて、チタン酸アルミニウム(AlTiO)またはチタン酸アルミニウムマグネシウム(Al2(1-x)MgTi(1+x))の結晶パターンのほか、アルミナ、チタニアなどの結晶パターンを含んでいてもよい。柱状体70の形成方法については後述する。なお、柱状体70は、セラミックスの原料の無機化合物粉末(Al,TiO等)及び有機バインダ等から形成されたグリーン成形体(未焼成の成形体)であってもよい。以下では、チタン酸アルミニウム焼結体からなる多孔質のハニカム構造体の製造方法について説明する。
 [封口工程]
 図1,2に示すように、封口工程では、柱状体70において複数の貫通孔70aが開いている第一端面に第一マスク200aを貼り付ける。第一マスク200aでは、図2(b)に示すように、貫通孔70aと略同様の寸法を有するマスク部270aと開口部270bとが千鳥状に配置されている。各貫通孔70aとマスク部270a及び開口部270bとが重なるように、柱状体70の第一端面に第一マスク200aを貼り付ける。また、柱状体70において第一端面とは反対側の第二端面に、第二マスク200bを貼り付ける。第二マスク200bが有する開口部とマスク部の配置関係は第一マスク200aとは真逆である。したがって、第一端面側で第一マスク200aのマスク部270bに塞がれた貫通孔70aは、第二端面側で第二マスク200bの開口部と重なる。第二端面側で第二マスク200bのマスク部に塞がれた貫通孔70aは、第一端面側で第一マスク200aの開口部270aと重なる。したがって、柱状体70に形成された複数の貫通孔70aのいずれも、第一端面又は第二端面のいずれか一方において開き、他方においてマスク部で塞がれる。なお、第一マスク200aを用いる代わりに、開口部が形成されていない(透明の)樹脂製のフィルムを柱状体70の第一端面(貫通孔70a)に貼り付け、加熱した金属棒又はレーザー光線等の熱線により、市松模様状に並ぶ複数の開口部270aをフィルムに形成してもよい。
 図3に示すように、封口工程では、ブレード300(へら)及び四角形状の枠302を用いる。枠302は底板302aを備える。底板302aには、柱状体70の第一端面と形状が略同様である円状の底穴302bが形成されている。第一マスク200a及び第二マスク200bが貼り付けられた柱状体70を枠302の底穴302bに嵌め込む。これにより、第一マスク200aが貼り付けられた第一端面を枠302で囲う。なお、枠302の形状は特に限定されない。粘着テープや治具を用いて柱状体70に枠302を固定してもよい。
 枠302内に配置された第一マスク200aの表面全体に、スラリー状の封口材304を略均一な厚さで塗布する。封口材304としては、無機化合物粉末(セラミックス材料、セラミックスの原料粉末又はそれらの混合物)、有機バインダ、潤滑剤、造孔剤及び溶媒等の混合物を用いればよい。封口材304が含有する無機化合物粉末の組成は、柱状体70を形成するための無機化合物粉末の組成と同じであってもよく、異なっていてもよい。なお、例えば枠302に嵌められた柱状体70全体を振動器に設置し、第一マスク200aに塗布された封口材304を振動させてもよい。この振動により、第一マスク200a上の封口材304が平坦化し、封口材304中の気泡が除去される。
 図4~6に示すように、第一マスク200aの表面全体に塗布された封口材304にブレード300の先端を押し当てながら、ブレード300を第一マスク200aの表面に平行に移動させ、ブレード300で第一マスク200aの表面全体を走査する。これにより、図5,6に示すように、第一マスク200aの開口部と重なる各貫通孔70aの端部内に開口部を通じて封口材304が略均一に導入される。このとき、貫通孔70aの端部内に導入されずに余った封口材304は、枠302内に回収される。つまり、枠302は余分な封口材304の受け皿として機能する。なお、封口工程では、貫通孔70aに封口材304を導入した後、柱状体70全体を振動器により振動させてもよい。これにより、貫通孔70aの端部の隙間に隈なく封口材304が充填され易くなる。
 以上の第一端面に対する封口工程後、枠302の底穴302bから柱状体70を取り外す。次に、第一端面に対する上記の封口工程と同様に、第二マスク200bが貼られた第二端面に対する封口工程を実施する。両端面に封口工程を施した後に、各端面から各マスクを剥がす。なお、第二マスク200bを用いる代わりに、開口部が形成されていない(透明の)樹脂製のフィルムを柱状体70の第二端面(貫通孔70a)に貼り付け、加熱した金属棒又はレーザー光線等の熱線により、市松模様状に並ぶ複数の開口部をフィルムに形成してもよい。
 第一端面及び第二端面に対する上記の封口工程を行った後に、乾燥させた柱状体を焼成し、貫通孔70aの一端を塞ぐ封口材304を焼結させる。封口材304の焼結により、図7に示すように、貫通孔70aの一端を塞ぐセラミックスの封口部70bが形成され、円柱状のハニカム構造体170が完成する。
 (ハニカム構造体)
 ハニカム構造体170では、第一端面側で封口部70bに塞がれた貫通孔70aは、第二端面側で開いている。第二端面側で封口部70bに塞がれた貫通孔70aは、第一端面側で開いている。このような構造を有するハニカム構造体(多セル型セラミックモノリス)はDPFに好適である。特にチタン酸アルミニウムマグネシウム焼結体からなるDPFは、SiC、コージェライト又はチタン酸アルミニウム単体からなるDPFに比べて、熱膨張係数が極めて小さく、融点が高く、再生時の耐熱衝撃性に優れ、煤の限界堆積量が大きい点において優れている。なお、DPF用のハニカム構造体170の隔壁表面に、アルミナ等の担体に担持された白金系金属触媒や、セリア又はジルコニア等の助触媒を付着させてもよい。
 チタン酸アルミニウム焼結体におけるアルミニウムの含有率は、特に限定されないが、例えば、酸化アルミニウム換算で40~60モル%である。チタン酸アルミニウム焼結体におけるチタンの含有率は、特に限定されないが、例えば、酸化チタン換算で35~55モル%である。チタン酸アルミニウム焼結体におけるマグネシウムの含有率は酸化マグネシウム換算で1~5質量%であることが好ましい。チタン酸アルミニウム焼結体におけるケイ素の含有率は酸化ケイ素換算で2~5質量%であることが好ましい。なお、チタン酸アルミニウム焼結体の組成は、原料混合物の組成により適宜調整すればよい。チタン酸アルミニウム焼結体は、上記の成分以外に、原料に由来する成分又は製造工程において不可避的に仕掛品に混入する微量の成分を含有し得る。
 貫通孔70aの長手方向に垂直な断面の内径(正方形の一辺の長さ)は特に限定されないが、例えば0.8~2.5mmである。貫通孔70aが延びる方向におけるハニカム構造体170の長さは特に限定されないが、例えば40~350mmである。また、ハニカム構造体170の外径も特に限定されないが、例えば10~320mmである。封口部70bの長さDは特に限定されないが、例えば1~20mmである。ハニカム構造体170の端面に開いている貫通孔70aの数(セル密度)は特に限定されないが、例えば150~450cpsiである。cpsiとの単位は「/inch」を意味し、「/(0.0254m)」に等しい。貫通孔70aの隔壁の厚さは特に限定されないが、例えば0.15~0.76mmである。
 [柱状体の形成方法]
 (原料混合物の調製)
 柱状体を形成するために、無機化合物粉末、有機バインダ及び溶媒等を混練機等により混合して調製した原料混合物を成形して、グリーン成形体を得る。無機化合物粉末は、チタン源粉末及びアルミニウム源粉末を含む。無機化合物粉末は、更にマグネシウム源粉末及びケイ素源粉末を含んでもよい。
 (アルミニウム源)
 アルミニウム源は、チタン酸アルミニウム焼結体を構成するアルミニウム成分となる化合物である。アルミニウム源としては、例えば、アルミナ(酸化アルミニウム)が挙げられる。アルミナの結晶型としては、γ型、δ型、θ型、α型などが挙げられ、不定形(アモルファス)であってもよい。なかでも、α型のアルミナが好ましく用いられる。
 アルミニウム源は、単独で空気中で焼成することによりアルミナに導かれる化合物であってもよい。かかる化合物としては、例えばアルミニウム塩、アルミニウムアルコキシド、水酸化アルミニウム、金属アルミニウムなどが挙げられる。
 アルミニウム塩は、無機酸との無機塩であってもよいし、有機酸との有機塩であってもよい。具体的なアルミニウム無機塩としては、例えば、硝酸アルミニウム、硝酸アンモニウムアルミニウムなどのアルミニウム硝酸塩、炭酸アンモニウムアルミニウムなどのアルミニウム炭酸塩などが挙げられる。アルミニウム有機塩としては、例えば、蓚酸アルミニウム、酢酸アルミニウム、ステアリン酸アルミニウム、乳酸アルミニウム、ラウリン酸アルミニウムなどが挙げられる。
 アルミニウムアルコキシドとして具体的には、例えば、アルミニウムイソプロポキシド、アルミニウムエトキシド、アルミニウムsec-ブトキシド、アルミニウムtert-ブトキシドなどが挙げられる。
 水酸化アルミニウムの結晶型としては、例えば、ギブサイト型、バイヤライト型、ノロソトランダイト型、ベーマイト型、擬ベーマイト型などが挙げられ、不定形(アモルファス)であってもよい。アモルファスの水酸化アルミニウムとしては、例えば、アルミニウム塩、アルミニウムアルコキシドなどのような水溶性アルミニウム化合物の水溶液を加水分解して得られるアルミニウム加水分解物も挙げられる。
 アルミニウム源としては、1種のみを用いてもよいし、2種以上を併用してもよい。
 上記のなかでも、アルミニウム源としては、アルミナが好ましく用いられ、より好ましくは、α型のアルミナである。なお、アルミニウム源は、その原料由来あるいは製造工程において不可避的に含まれる微量成分を含有し得る。
 アルミニウム源粉末の粒径は、特に限定されない。例えば、レーザー回折法により測定される体積基準の累積百分率50%に相当するアルミニウム源粉末の粒子径は20~60μmの範囲内であればよい。なお、この粒子径は、D50又は平均粒子径とも呼ばれる。
焼成時の収縮率低減の観点からは、D50が30~60μmの範囲内であるアルミニウム源粉末を用いることが好ましい。
 原料混合物にはアルミナゾルや後述のシリカゾルを添加することができる。このように、アルミナゾル、シリカゾル等を添加することにより、原料混合物中の微小な粒子同士を吸着させ、グリーン成形体中の粒子径0.1μm以下の粒子の量を、無機化合物粉末(固形分)の100重量部に対して1~5重量部とすることができ、これにより500℃における脱脂後の成形体の強度を例えば0.2kgf以上とすることができる。
 アルミナゾルとは、微粒子状のアルミナを分散質とし、液体を分散媒とするコロイドである。アルミナゾルは、単独でアルミニウム源とすることもできるが、他のアルミニウム源と共に併用されることが好ましい。アルミナゾルの分散媒は、例えば、混合時や仮焼時に蒸発等により除去される。
 アルミナゾルの分散媒としては、水溶液や各種有機溶媒、例えば、塩酸水溶液、酢酸水溶液、硝酸水溶液、アルコール、キシレン、トルエン、メチルイソブチルケトンなどが挙げられる。アルミナゾルとしては、平均粒子径が1~100nmのコロイド状アルミナゾルが好適に用いられる。このような平均粒子径を有するアルミナゾルを用いることにより、原料混合物中の粒子同士を吸着させられるといった利点がある。また、アルミナゾルの市販品としては、例えば、日産化学工業社製「アルミナゾル100」、「アルミナゾル200」、「アルミナゾル520」、シーアイ化成製「NanoTekAl」等が挙げられる。このうち、日産化学工業社製「アルミナゾル200」を用いることが好ましい。
 アルミナゾルは、無機化合物粉末(固形分)の100重量部に対して固形分で0~10重量部、好ましくは0~5重量部用いることができる。アルミナゾルは、2種以上混合して用いてもよい。
 (チタン源)
 チタン源は、チタン酸アルミニウム焼結体を構成するチタン成分となる化合物であり、かかる化合物としては、例えば酸化チタンが挙げられる。酸化チタンとしては、例えば、酸化チタン(IV)、酸化チタン(III)、酸化チタン(II)などが挙げられ、なかでも酸化チタン(IV)が好ましく用いられる。酸化チタン(IV)の結晶型としては、アナターゼ型、ルチル型、ブルッカイト型などが挙げられ、不定形(アモルファス)であってもよい。より好ましくは、アナターゼ型、ルチル型の酸化チタン(IV)である。
 チタン源は、単独で空気中で焼成することによりチタニア(酸化チタン)に導かれる化合物であってもよい。かかる化合物としては、例えば、チタン塩、チタンアルコキシド、水酸化チタン、窒化チタン、硫化チタン、チタン金属などが挙げられる。
 チタン塩として具体的には、三塩化チタン、四塩化チタン、硫化チタン(IV)、硫化チタン(VI)、硫酸チタン(IV)などが挙げられる。チタンアルコキシドとして具体的には、チタン(IV)エトキシド、チタン(IV)メトキシド、チタン(IV)t-ブトキシド、チタン(IV)イソブトキシド、チタン(IV)n-プロポキシド、チタン(IV)テトライソプロポキシド、および、これらのキレート化物などが挙げられる。
 チタン源としては、1種のみを用いてもよいし、2種以上を併用してもよい。
 上記のなかでも、チタン源としては、酸化チタンが好ましく用いられ、より好ましくは、酸化チタン(IV)である。なお、チタン源は、その原料由来あるいは製造工程において不可避的に含まれる微量成分を含有し得る。
 チタン源粉末の粒径は、特に限定されない。例えば、レーザー回折法により測定される、体積基準の累積百分率50%に相当するチタン源粉末の粒子径(D50)は0.5~25μmの範囲内であればよい。十分に低い焼成収縮率の達成のためには、チタン源粉末のD50が1~20μmの範囲内であることが好ましい。なお、チタン源粉末は、バイモーダルな粒径分布を示すことがあるが、このようなバイモーダルな粒径分布を示すチタン源粉末を用いる場合においては、レーザー回折法により測定される粒径分布における、粒径が大きい方のピークの粒径が20~50μmの範囲内であることが好ましい。
 レーザー回折法により測定されるチタン源粉末のモード径は、特に限定されないが、0.3~60μmの範囲内であればよい。
 (マグネシウム源)
 原料混合物は、マグネシウム源を含有していてもよい。マグネシウム源を含むグリーン成形体から製造されたチタン酸アルミニウム焼結体は、チタン酸アルミニウムマグネシウム結晶の焼結体である。
 マグネシウム源としては、マグネシア(酸化マグネシウム)のほか、単独で空気中で焼成することによりマグネシアに導かれる化合物が挙げられる。後者の例としては、例えば、マグネシウム塩、マグネシウムアルコキシド、水酸化マグネシウム、窒化マグネシウム、金属マグネシウムなどが挙げられる。
 マグネシウム塩として具体的には、塩化マグネシウム、過塩素酸マグネシウム、リン酸マグネシウム、ピロリン酸マグネシウム、蓚酸マグネシウム、硝酸マグネシウム、炭酸マグネシウム、酢酸マグネシウム、硫酸マグネシウム、クエン酸マグネシウム、乳酸マグネシウム、ステアリン酸マグネシウム、サリチル酸マグネシウム、ミリスチン酸マグネシウム、グルコン酸マグネシウム、ジメタクリル酸マグネシウム、安息香酸マグネシウムなどが挙げられる。
 マグネシウムアルコキシドとして具体的には、マグネシウムメトキシド、マグネシウムエトキシドなどが挙げられる。なお、マグネシウム源は、その原料由来あるいは製造工程において不可避的に含まれる微量成分を含有し得る。
 マグネシウム源として、マグネシウム源とアルミニウム源とを兼ねた化合物を用いることもできる。このような化合物としては、例えば、マグネシアスピネル(MgAl)が挙げられる。
 マグネシウム源として、1種のみを用いてもよいし、2種以上を併用してもよい。
 マグネシウム源粉末の粒径は、特に限定されない。例えば、レーザー回折法により測定される体積基準の累積百分率50%に相当するマグネシウム源粉末の粒子径(D50)は0.5~30μmの範囲内であればよい。焼成時の収縮率低減の観点からは、D50が3~20μmの範囲内であるマグネシウム源粉末を用いることが好ましい。
 グリーン成形体中におけるMgO(マグネシア)換算でのマグネシウム源のモル量は、Al(アルミナ)換算でのアルミニウム源とTiO(チタニア)換算でのチタン源との合計モル量に対して、0.03~0.15であることが好ましく、より好ましくは0.03~0.12である。マグネシウム源の含有量をこの範囲内に調整することにより、耐熱性がより向上された、大きい細孔径および開気孔率を有するチタン酸アルミニウム焼結体を比較的容易に得ることができる。
 (ケイ素源)
 原料混合物は、ケイ素源をさらに含有していてもよい。ケイ素源は、シリコン成分となってチタン酸アルミニウム焼結体に含まれる化合物である。ケイ素源の併用により、耐熱性がより向上されたチタン酸アルミニウム焼結体を得ることが可能となる。ケイ素源としては、例えば、二酸化ケイ素、一酸化ケイ素などの酸化ケイ素(シリカ)が挙げられる。
 ケイ素源は、単独で空気中で焼成することによりシリカに導かれる化合物であってもよい。かかる化合物としては、例えば、ケイ酸、炭化ケイ素、窒化ケイ素、硫化ケイ素、四塩化ケイ素、酢酸ケイ素、ケイ酸ナトリウム、オルトケイ酸ナトリウム、長石、ガラスフリットなどが挙げられる。なかでも、長石、ガラスフリットなどが好ましく用いられ、工業的に入手が容易であり、組成が安定している点で、ガラスフリットなどがより好ましく用いられる。なお、ガラスフリットとは、ガラスを粉砕して得られるフレークまたは粉末状のガラスをいう。ケイ素源として、長石とガラスフリットとの混合物からなる粉末を用いることもできる。
 ケイ素源がガラスフリットである場合、得られるチタン酸アルミニウム焼結体の耐熱分解性をより向上させるという観点から、屈伏点が700℃以上のものを用いることが好ましい。ガラスフリットの屈伏点は、熱機械分析装置(TMA:Thermo Mechanical Analysis)を用いて、低温からガラスフリットの膨張を測定し、膨張が止まり、次に収縮が始まる温度(℃)と定義される。
 ガラスフリットを構成するガラスには、ケイ酸(SiO)を主成分(全成分中50重量%以上)とする一般的なケイ酸ガラスを用いることができる。ガラスフリットを構成するガラスは、その他の含有成分として、一般的なケイ酸ガラスと同様、アルミナ(Al)、酸化ナトリウム(NaO)、酸化カリウム(KO)、酸化カルシウム(CaO)、マグネシア(MgO)等を含んでいてもよい。また、ガラスフリットを構成するガラスは、ガラス自体の耐熱水性を向上させるために、ZrOを含有していてもよい。
 ケイ素源として、1種のみを用いてもよいし、2種以上を併用してもよい。
 ケイ素源粉末の粒径は、特に限定されない。例えば、レーザー回折法により測定される体積基準の累積百分率50%に相当するケイ素源の粒子径(D50)は0.5~30μmの範囲内であればよい。グリーン成形体の比重をより向上させ、機械的強度のより高い焼成体を得るためには、ケイ素源のD50が1~20μmの範囲内であることが好ましい。
 原料混合物がケイ素源を含む場合、原料混合物中におけるケイ素源の含有量は、Al(アルミナ)換算でのアルミニウム源とTiO(チタニア)換算でのチタン源との合計量100重量部に対して、SiO(シリカ)換算で、通常0.1重量部~10重量部であり、好ましくは5重量部以下である。また、原料混合物中におけるケイ素源の含有量は、原料混合物中に含まれる無機化合物源中、2重量%以上5重量%以下とすることがより好ましい。ケイ素源は、その原料由来あるいは製造工程において不可避的に含まれる微量成分を含有し得る。
 マグネシアスピネル(MgAl)などの複合酸化物のように、チタン、アルミニウム、ケイ素およびマグネシウムのうち、2つ以上の金属元素を成分とする化合物を原料として用いることができる。
 原料混合物中の無機化合物粉末100重量部における粒子径0.1μm以下の粒子の含有量を1~5重量部とする場合、上述のように、原料混合物にアルミナゾルおよび/またはシリカゾルを添加して混合することが好ましい。シリカゾルとは、微粒子状のシリカを分散質とし、液体を分散媒とするコロイドである。シリカゾルは、単独でケイ素源とすることもできるが、他のシリカ源と共に併用されることが好ましい。シリカナゾルの分散媒は、例えば、混合時や仮焼時に蒸発等により除去される。
 シリカゾルの分散媒としては、水溶液や各種有機溶媒、例えば、アンモニア水溶液、アルコール、キシレン、トルエン、トリグリセリドなどが挙げられる。シリカゾルとしては、平均粒子径が1~100nmのコロイド状シリカゾルが好適に用いられる。このような平均粒子径を有するシリカゾルを用いることにより、原料混合物中の粒子同士を吸着させ、焼成時に融解し結合させることができるといった利点がある。
 シリカゾルの市販品としては、例えば、日産化学工業社製「スノーテックス20、30、40、50、N、O、S、C、20L、OL、XS、XL、YL、ZL、QAS-40、LSS-35、LSS-45」、旭電化社製「アデライトAT-20、AT-30、AT-40、AT-50、AT-20N、AT-20A、AT-30A、AT-20Q、AT-300、AT-300Q」、触媒化成工業社製「Cataloid S-20L、S-20H、S-30L、S-30H、SI-30、SI-40、SI-50、SI-350、SI-500、SI-45P、SI-80P、SN、SA、SC-30」、デュポン社製「ルドックスHS-40、HS-30、LS、SM-30、TM、AS、AM」等が挙げられる。このうち、中性域でコロイド状態が安定な「スノーテックスC」を用いることが好ましい。
 原料混合物におけるシリカゾルの含有量は、無機化合物粉末(固形分)の100重量部に対して固形分で0~10重量部、好ましくは0~5重量部であればよい。2種以上のシリカゾルを混合して用いてもよい。
 原料混合物は、チタン酸アルミニウムやチタン酸アルミニウムマグネシウムを含んでもよい。例えば、原料混合物の構成成分としてチタン酸アルミニウムマグネシウムを使用する場合、チタン酸アルミニウムマグネシウムは、チタン源、アルミニウム源およびマグネシウム源を兼ね備えた原料に相当する。
 (有機バインダ)
 有機バインダとしては、水溶性の有機バインダが好ましい。水溶性の有機バインダとしては、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロースなどのセルロース類;ポリビニルアルコールなどのアルコール類;リグニンスルホン酸塩などの塩などが挙げられる。
 有機バインダの量は、無機化合物粉末の100重量部に対して、通常20重量部以下であり、好ましくは15重量部以下、さらに好ましくは6重量部である。また、有機バインダの下限量は、通常0.1重量部、好ましくは3重量部である。
 (溶媒)
 溶媒としては、例えば、メタノール、エタノール、ブタノール、プロパノールなどのアルコール類、プロピレングリコール、ポリプロピレングリコール、エチレングリコールなどのグリコール類、および水などの極性溶媒を用いることができる。なかでも、水が好ましく、不純物が少ない点で、より好ましくはイオン交換水が用いられる。溶媒の使用量は、無機化合物粉末の100重量部に対して、通常、10重量部~100重量部、好ましくは20重量部~80重量部である。なお、溶媒として非極性溶媒を用いてもよい。
 (その他の添加物)
 原料混合物は、有機バインダ以外の有機添加物を含むことができる。その他の有機添加物とは、例えば、造孔剤、潤滑剤および可塑剤、分散剤である。
 造孔剤としては、グラファイト等の炭素材、ポリエチレン、ポリプロピレン、ポリメタクリル酸メチル等の樹脂類、でんぷん、ナッツ殻、クルミ殻、コーンなどの植物材料、氷、及びドライアイス等などが挙げられる。造孔剤の添加量は、無機化合物粉末の100重量部に対して、通常、0~40重量部であり、好ましくは0~25重量部である。造孔剤はグリーン成形体の焼成時に消失する。したがって、チタン酸アルミニウム焼結体では、造孔剤が存在していた箇所に微細孔が形成される。
 潤滑剤及び可塑剤としては、グリセリンなどのアルコール類、カプリル酸、ラウリン酸、パルミチン酸、アラギン酸、オレイン酸、ステアリン酸などの高級脂肪酸、ステアリン酸Al等のステアリン酸金属塩などが挙げられる。潤滑剤及び可塑剤の添加量は、無機化合物粉末の100重量部に対して、通常、0~10重量部であり、好ましくは1~5重量部である。
 分散剤としては、例えば、硝酸、塩酸、硫酸などの無機酸、シュウ酸、クエン酸、酢酸、リンゴ酸、乳酸等の有機酸、メタノール、エタノール、プロパノール等のアルコール類、ポリカルボン酸アンモニウム、ポリオキシアルキレンアルキルエーテル等の界面活性剤などが挙げられる。分散剤の添加量は、無機化合物粉末の100重量部に対して、通常、0~20重量部であり、好ましくは2~8重量部である。
 (グリーン成形体の形成)
 格子状の開口を有するダイを備える押出成形機を用いて、上述の原料混合物を成形することにより、グリーン成形体を形成する。なお、成形前の原料混合物を混練してもよい。
 (グリーン成形体の仮焼き及び焼成)
 上述のグリーン成形体を仮焼き(脱脂)し、且つ焼成することにより、柱状体を得ることができる。得られる柱状体は、主にチタン酸アルミニウムの結晶粒子の焼結体から構成される。本実施形態では、原料混合物を成形してから焼成を行なうことにより、原料混合物を直接焼成する場合と比較して、焼成中の収縮を抑えることができ、得られるチタン酸アルミニウム焼結体の割れを効果的に抑制でき、また、焼成により生成した多孔質性のチタン酸アルミニウム結晶の細孔形状が維持されたチタン酸アルミニウム焼結体を得ることができる。なお、上述のように、グリーン成形体を焼成することなく、柱状体として用いてもよい。
 仮焼(脱脂)は、グリーン成形体中の有機バインダや、必要に応じて配合される有機添加物を、焼失、分解等により除去するための工程である。典型的な仮焼き工程は、焼成工程の初期段階、すなわちグリーン成形体が焼成温度に至るまでの昇温段階(例えば、300~900℃の温度範囲)に相当する。仮焼(脱脂)工程おいては、昇温速度を極力おさえることが好ましい。
 グリーン成形体の焼成温度は、通常、1300℃以上、好ましくは1400℃以上である。また、焼成温度は、通常、1650℃以下、好ましくは1550℃以下である。この温度範囲でグリーン成形体を加熱することにより、グリーン成形体中の無機化合物粉末が確実に焼結する。焼成温度までの昇温速度は特に限定されるものではないが、通常、1℃/時間~500℃/時間である。
 焼成は通常、大気中で行なわれるが、用いる原料粉末、すなわちアルミニウム源粉末、チタニウム源粉末、マグネシウム源粉末およびケイ素源粉末の種類や使用量比によっては、窒素ガス、アルゴンガスなどの不活性ガス中で焼成してもよいし、一酸化炭素ガス、水素ガスなどのような還元性ガス中で焼成してもよい。また、水蒸気分圧を低くした雰囲気中で焼成を行なってもよい。
 焼成は、通常、管状電気炉、箱型電気炉、トンネル炉、遠赤外線炉、マイクロ波加熱炉、シャフト炉、反射炉、ロータリー炉、ローラーハース炉などの通常の焼成炉を用いて行なわれる。焼成は回分式で行なってもよいし、連続式で行なってもよい。また、静置式で行なってもよいし、流動式で行なってもよい。
 焼成に要する時間は、グリーン成形体がチタン酸アルミニウム結晶に遷移するのに十分な時間であればよく、グリーン成形体の量、焼成炉の形式、焼成温度、焼成雰囲気などにより異なるが、通常は10分~24時間である。
 なお、グリーン成形体の仮焼きと焼成を個別に行ってもよい。仮焼き工程では、有機バインダその他の有機添加物の熱分解温度以上であり無機化合物粉末の焼結温度よりも低い温度でグリーン成形体を加熱すればよい。焼成工程では、仮焼き工程後のグリーン成形体を無機化合物粉末の焼結温度以上の温度で加熱すればよい。
 以上のようにして、ハニカム構造を有する柱状体70を得ることができる。このような柱状体70は、成形直後のグリーン成形体の形状をほぼ維持した形状を有する。得られた柱状体70は、研削加工等により、所望の形状に加工することもできる。
 以上、本発明の好適な一実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではない。
 例えば、枠302を用いずに封口工程を実施した場合であっても、本発明の効果を奏することは可能である。
 ハニカム構造体170は、コージェライトやシリコンカーバイド等からなる多孔質のセラミックスであってもよい。この場合、柱状体がコージェライト若しくはシリコンカーバイド又はこれらの原料粉末を含む。ハニカム構造体170の形状は円柱に限定されず、用途に応じて任意の形状をとることができる。例えば、ハニカム構造体170の形状が、多角柱や楕円柱等であってもよい。
 ハニカム構造体の用途はDPFに限定されない。ハニカム構造体は、ガソリンエンジンなどの内燃機関の排気ガス浄化に用いられる排ガスフィルター又は触媒担体、ビールなどの飲食物の濾過に用いる濾過フィルター、石油精製時に生じるガス成分(例えば一酸化炭素、二酸化炭素、窒素、酸素等)を選択的に透過させるための選択透過フィルターなどのセラミックスフィルターなどに好適に適用することができる。なかでも、セラミックスフィルターなどとして用いる場合、チタン酸アルミニウム焼結体は、高い細孔容積および開気孔率を有することから、良好なフィルター性能を長期にわたって維持することができる。
 本発明に係る製造方法は、従来よりも簡易であり、貫通孔からの封口材の脱離を抑制できるため、DPF用ハニカム構造体の製造に適している。
 70・・・柱状体、70a・・・貫通孔、70b・・・封口部、70c・・・隔壁、200a・・・第一マスク、200b・・・第二マスク、270a・・・開口部、270b・・・マスク部、300・・・ブレード、302・・・枠、302a・・・底板、302b・・・底穴、304・・・封口材、170・・・ハニカム構造体。

Claims (3)

  1.  複数の貫通孔が形成された柱状体の前記貫通孔が開いている端面に、マスク部及び複数の開口部を有するマスクを設置し、前記マスク部で一部の前記貫通孔を塞ぐ工程と、
     前記端面に設置された前記マスクにスラリー状の封口材を塗布する工程と、
     前記マスクに塗布された前記封口材にブレードを押し当て、前記ブレードを前記マスクの表面に略平行に移動させる工程と、
     を備える、ハニカム構造体の製造方法。
  2.  前記端面と略同一の形状の底穴が形成された底板を有する枠の前記底穴に前記柱状体を嵌め込んで前記マスクが設置された前記端面を前記枠で囲い、前記マスクに塗布された前記封口材にブレードを押し当て、前記ブレードを前記マスクの表面に略平行に移動させる、
     請求項1に記載のハニカム構造体の製造方法。
  3.  前記柱状体がAl及びTiを含む、
     請求項1又は2に記載のハニカム構造体の製造方法。
PCT/JP2011/060545 2010-05-25 2011-05-02 ハニカム構造体の製造方法 WO2011148764A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010119456A JP2011245396A (ja) 2010-05-25 2010-05-25 ハニカム構造体の製造方法
JP2010-119456 2010-05-25

Publications (1)

Publication Number Publication Date
WO2011148764A1 true WO2011148764A1 (ja) 2011-12-01

Family

ID=45003756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060545 WO2011148764A1 (ja) 2010-05-25 2011-05-02 ハニカム構造体の製造方法

Country Status (2)

Country Link
JP (1) JP2011245396A (ja)
WO (1) WO2011148764A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102701643A (zh) * 2012-04-19 2012-10-03 佛山市金凯地过滤设备有限公司 陶瓷压滤板、其制造方法以及使用该压滤板的压滤机

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2684721T3 (es) * 2013-04-02 2018-10-04 Heraeus Deutschland GmbH & Co. KG Partículas que comprenden AI, Si y Mg en pastas electroconductoras y preparación de células fotovoltaicas

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005349269A (ja) * 2004-06-09 2005-12-22 Ngk Insulators Ltd 目封止ハニカム構造体及びその製造方法
JP2009040046A (ja) * 2007-07-18 2009-02-26 Ngk Insulators Ltd ハニカム構造体の製造方法、及びその製造装置
JP2009190364A (ja) * 2008-02-18 2009-08-27 Ngk Insulators Ltd セラミックハニカムの端面目封じ方法及び装置
WO2009119251A1 (ja) * 2008-03-26 2009-10-01 日本碍子株式会社 目封止ハニカム構造体の製造装置、及びその製造方法
JP2009240864A (ja) * 2008-03-28 2009-10-22 Ngk Insulators Ltd ハニカム構造体、及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005349269A (ja) * 2004-06-09 2005-12-22 Ngk Insulators Ltd 目封止ハニカム構造体及びその製造方法
JP2009040046A (ja) * 2007-07-18 2009-02-26 Ngk Insulators Ltd ハニカム構造体の製造方法、及びその製造装置
JP2009190364A (ja) * 2008-02-18 2009-08-27 Ngk Insulators Ltd セラミックハニカムの端面目封じ方法及び装置
WO2009119251A1 (ja) * 2008-03-26 2009-10-01 日本碍子株式会社 目封止ハニカム構造体の製造装置、及びその製造方法
JP2009240864A (ja) * 2008-03-28 2009-10-22 Ngk Insulators Ltd ハニカム構造体、及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102701643A (zh) * 2012-04-19 2012-10-03 佛山市金凯地过滤设备有限公司 陶瓷压滤板、其制造方法以及使用该压滤板的压滤机

Also Published As

Publication number Publication date
JP2011245396A (ja) 2011-12-08

Similar Documents

Publication Publication Date Title
JP4965734B1 (ja) グリーン成形体及びハニカム構造体の製造方法
WO2010079806A1 (ja) 多孔質セラミックス成形体及びその製造方法
WO2013024745A1 (ja) ハニカム構造体
JP2011068517A (ja) セラミックス焼成体の製造方法
WO2011111666A1 (ja) グリーン成形体、及び、チタン酸アルミニウム焼成体の製造方法
WO2011027783A1 (ja) セラミックス焼成体の製造方法
WO2012141034A1 (ja) ハニカム構造体
WO2012014684A1 (ja) グリーン成形体
WO2012050123A1 (ja) チタン酸アルミニウム質ハニカム構造体
WO2011027904A1 (ja) チタン酸アルミニウム系焼成体の製造方法およびチタン酸アルミニウム系焼成体
WO2011148764A1 (ja) ハニカム構造体の製造方法
WO2013024744A1 (ja) ハニカムフィルタ
JP5879046B2 (ja) チタン酸アルミニウム質ハニカム構造体
JP4837784B2 (ja) ハニカム構造体の製造方法
JP2011245430A (ja) ハニカム構造体
WO2011148765A1 (ja) ハニカム構造体の製造装置
JP5528717B2 (ja) チタン酸アルミニウム系焼成体の製造方法および多孔質セラミックス成形体
JP2011241116A (ja) チタン酸アルミニウム焼結体の製造方法及びチタン酸アルミニウム焼結体
WO2012014683A1 (ja) ハニカム構造体
JP5860633B2 (ja) ハニカム構造体の製造方法
JP2012024698A (ja) ハニカムフィルタ
WO2012014681A1 (ja) グリーン成形体
JP2012001413A (ja) グリーン成形体及びハニカム焼成体の製造方法
JP2012020442A (ja) ハニカム構造体の製造方法
WO2012176888A1 (ja) チタン酸アルミニウム系セラミックス及び成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11786464

Country of ref document: EP

Kind code of ref document: A1