WO2011142369A2 - 電源装置及び充電回路 - Google Patents

電源装置及び充電回路 Download PDF

Info

Publication number
WO2011142369A2
WO2011142369A2 PCT/JP2011/060788 JP2011060788W WO2011142369A2 WO 2011142369 A2 WO2011142369 A2 WO 2011142369A2 JP 2011060788 W JP2011060788 W JP 2011060788W WO 2011142369 A2 WO2011142369 A2 WO 2011142369A2
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
charging
battery body
circuit
power supply
Prior art date
Application number
PCT/JP2011/060788
Other languages
English (en)
French (fr)
Other versions
WO2011142369A3 (ja
Inventor
徳生 大西
Original Assignee
国立大学法人徳島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人徳島大学 filed Critical 国立大学法人徳島大学
Priority to JP2012514814A priority Critical patent/JP5794982B2/ja
Priority to CN2011800233256A priority patent/CN102934317A/zh
Priority to KR1020127031700A priority patent/KR20130079419A/ko
Publication of WO2011142369A2 publication Critical patent/WO2011142369A2/ja
Publication of WO2011142369A3 publication Critical patent/WO2011142369A3/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a power supply device and a charging circuit including a charging circuit that charges a chargeable / dischargeable secondary battery.
  • secondary batteries such as nickel-hydrogen batteries, lithium-ion batteries, and lead-acid batteries are used as unit cells.
  • a battery pack in which a plurality of batteries are connected in series is used as a power source for the electric motor.
  • SOC State of Charge
  • the terminal voltage based on the charging state of each unit cell SOC; also referred to as remaining capacity
  • charging can be performed while leaving this unit unattended. If done, some unit cells may be overcharged. Further, the deterioration of the unit cell proceeds at an accelerated rate, and if it deteriorates, even if only a part of the unit cells is used, the entire assembled battery becomes unusable.
  • an assembled battery charge state adjusting device as shown in Patent Document 1 has been proposed as a method of adjusting the variation in the charged state among a plurality of unit cells constituting a charged assembled battery.
  • the charging state adjusting device 90 is configured by connecting a plurality of unit cells 91 each including a secondary battery in series, and charging / discharging in a closed circuit state in which a load and a charger are connected to both ends. Adjust the state of charge of the assembled battery.
  • the charge state adjusting device 90 cyclically connects each unit cell 91 to the equal charge capacitor 92 in an open circuit state of the assembled battery, and the equal charge capacitor 92 provided insulated from the load and the charger. And cyclic connection means 93.
  • the unit cell 91 having a high cell voltage is connected to the cell voltage via the equal charging capacitor 92.
  • the voltage difference can be reduced.
  • the charge state adjustment device 90 of FIG. 26 only adjusts the variation of the charged unit cells 91, and once the unit cells 91 are charged, the variation is suppressed using the charge state adjustment device 90. Because of the configuration, the charging process and the adjustment process are required separately, which takes time, and the circuits for performing the charging and adjustment are also individually required, which causes a problem that the circuit configuration becomes complicated. .
  • the charge state adjusting device 90 can only adjust the charge state while sequentially switching the unit cells 91 in a cyclic manner, there is a drawback in that it takes time until the entire charging of the assembled battery is completed and the efficiency is deteriorated. .
  • recently assembled batteries often use a large number of unit cells 91 in response to a demand for large capacity, and in such cyclic switching charging, charging is performed in proportion to the number of secondary batteries used.
  • the switching operation of the unit cell 91 becomes complicated, which is not practical.
  • the circuit example of FIG. 26 since a photo MOS transistor is used as the switching element, there is a problem that the drive circuit becomes complicated and the circuit cost increases.
  • the circuit configuration becomes complicated. The problem arises.
  • this circuit the charge is temporarily accumulated through the equal charge capacitor 92 and then the accumulated charge is transferred to the unit cell 91 having a low terminal voltage. Therefore, a large capacity equal charge capacitor 92 is essential.
  • this equal charging capacitor 92 is a terminal voltage that is very close to and does not exceed the open circuit terminal voltage in the fully charged state of each unit cell 91 before the start of charging. There is a problem that it is necessary to be charged in advance by an alternator or the like, preparation for such charging is essential, and the configuration is further complicated.
  • a main object of the present invention is to provide a power supply device and a charging circuit capable of optimal charging by preventing overcharging of a secondary battery at a lower cost.
  • a plurality of secondary battery bodies 10 each having a positive electrode and a negative electrode and connected in series with each other, and the secondary battery body
  • a constant current source generation circuit 20 having a supply output terminal OT for supplying power for charging 10 and a supply input terminal IT, and the constant current source generation circuit 20 is individually different for each secondary battery body 10.
  • a selection switch switching circuit 30 capable of supplying a charging current, and the selection switch switching circuit 30 is connected to each of the secondary battery bodies 10 and individually has a charging path for charging the secondary battery body 10.
  • the charge path for the battery body 10 is configured and the charge path for other secondary batteries is released.
  • the constant current source generation circuit 20 is connected between the supply output terminal OT and the supply input terminal IT.
  • a charging switch 22 connected in series with the reactor L and controlled to be turned ON / OFF by the control circuit 40.
  • the chopper circuit is connected to an external power supply EP.
  • the secondary battery body 10 can be charged. This makes it possible to charge an arbitrary secondary battery body using one constant current source generation circuit, and obtain an advantage that appropriate charging according to the electrical characteristics of the secondary battery body can be performed individually.
  • the secondary battery body can be charged to a high voltage by using a low voltage external power source, for example, as a step-up chopping operation by the chopper circuit.
  • a plurality of secondary battery bodies 10 each having a positive electrode and a negative electrode and connected in series with each other, and electric power for charging the secondary battery body 10 are supplied.
  • a constant current source generating circuit 20 having a supply output terminal OT and a supply input terminal IT, and the constant current source generating circuit 20 to charge each secondary battery body 10, so that the positive electrode of each secondary battery body 10 and the supply
  • a plurality of positive-side charging paths PC each connected to the output terminal OT, a plurality of negative-side charging paths NC each connecting the negative electrode of each secondary battery body 10 and the supply input terminal IT, and the positive-side charging path
  • a plurality of selection switches 31 provided in each of the PC and the negative electrode side charging path NC and a control circuit 40 for controlling ON / OFF of the plurality of selection switches 31 can be provided.
  • the amount of charge can be adjusted according to the remaining capacity of the secondary battery body.
  • the advantage is that the secondary battery body can be used safely for a long period of time by reducing the variation in charge amount between secondary battery bodies and avoiding overcharge Is obtained.
  • the power supply device further includes voltage detection means 26 for detecting the voltage across the reactor L, and the control circuit 40 connects the secondary battery body 10 to the secondary battery body 10.
  • the control circuit 40 connects the secondary battery body 10 to the secondary battery body 10.
  • control circuit 40 can measure the battery voltage of each secondary battery body 10 in a time-sharing manner. Thereby, the battery voltage of all the secondary battery bodies can be sequentially detected by one voltage detection means.
  • control circuit 40 can be configured to be capable of ON / OFF control of the selection switch 31 so as to charge any plurality of secondary battery bodies 10 simultaneously. As a result, a plurality of secondary battery bodies can be controlled to be charged at the same time, and charging can proceed efficiently.
  • the selection switch 31 can be an element having no self-extinguishing capability.
  • the selection switch can be extinguished using the OFF period of the chopper circuit, and a special additional circuit for extinguishing the arc can be eliminated.
  • the selection switch 31 can be constituted by the thyristor 32.
  • the thyristor 32 As a result, it is possible to obtain an advantage that the secondary battery bodies connected in series can be individually charged without providing a charging circuit for each secondary battery body by using a thyristor having excellent reliability, particularly reverse breakdown voltage characteristics. .
  • the secondary battery body 10 can be configured by connecting a plurality of battery cells in series or in parallel. Thereby, it becomes possible to charge equally even if the secondary battery body comprised by the some battery cell was connected in series.
  • the charging circuit is capable of charging a plurality of secondary battery bodies 10 each having a positive electrode and a negative electrode and connected in series to each other.
  • a constant current source generation circuit 20 having a supply output terminal OT and a supply input terminal IT for supplying electric power for charging the secondary battery body 10, and each secondary battery body 10 is charged by the constant current source generation circuit 20.
  • a plurality of positive-side charging paths PC that can connect the positive electrode of the battery body 10 and the supply output terminal OT, respectively, and a plurality of negative-electrode sides that can connect the negative electrode of each secondary battery body 10 and the supply input terminal IT, respectively.
  • the constant current source The raw circuit 20 includes a reactor L connected between the supply output terminal OT and the supply input terminal IT, and a charging switch 22 connected in series with the reactor L and controlled on / off by the control circuit 40.
  • the chopper circuit is connected to an external power source EP to charge the secondary battery body 10.
  • FIG. 3 is a circuit diagram showing a state in which secondary battery bodies 10A to 10D are charged by the power supply device of FIG. 1 is a circuit diagram illustrating a power supply device according to a first embodiment. It is a circuit diagram which shows the circuit example of the power supply device of FIG. FIG. 6 is a circuit diagram illustrating a power supply device according to a second embodiment. It is a circuit diagram which shows the circuit example of the power supply device of FIG. FIG. 6 is a circuit diagram illustrating a power supply device according to a third embodiment. It is a circuit diagram which shows the circuit example of the power supply device of FIG. FIG.
  • FIG. 6 is a circuit diagram illustrating a power supply device according to a fourth embodiment.
  • FIG. 17 is a circuit diagram illustrating a circuit example of the power supply device of FIG. 16.
  • FIG. 9 is a circuit diagram illustrating a power supply device according to a fifth embodiment. It is a circuit diagram which shows the circuit example of the power supply device of FIG.
  • FIG. 10 is a circuit diagram illustrating a power supply device according to a sixth embodiment.
  • FIG. 21 is a circuit diagram illustrating a circuit example of the power supply device of FIG. 20.
  • FIG. 10 is a circuit diagram illustrating a power supply device according to a seventh embodiment. It is a circuit diagram which shows the circuit example of the power supply device of FIG. 24A is a timing chart showing the state of charging one secondary battery body, FIG.
  • FIG. 24B is a current path when the charging switch is ON, and FIG. 24C is a charging switch 22 being OFF. It is a circuit diagram which shows each the current pathway at the time of.
  • FIG. 25 (a) is a timing chart for sequentially charging a plurality of secondary battery bodies, FIG. 25 (b) is when the charging switch is ON, and FIG. 25 (c) is when the first secondary battery body is selected.
  • 25 (d) shows a current path when the second secondary battery body 10B is selected, and
  • FIG. 25 (e) shows a current path when the Nth secondary battery body is selected.
  • each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.
  • the contents described in some embodiments and examples may be used in other examples and embodiments.
  • FIG. 1 is a block diagram of the power supply apparatus 100
  • FIG. 2 is a circuit diagram showing an example of the power supply apparatus 100 of FIG. 1
  • FIG. 3 is a state in which the secondary battery body 10A is charged by the power supply apparatus 100 of FIG. 4
  • FIG. 5 is a circuit diagram showing a state of charging the secondary battery body 10C
  • FIG. 6 is charging the secondary battery body 10D.
  • FIG. 7 is a circuit diagram showing how the secondary battery bodies 10A and 10B are charged
  • FIG. 8 is a circuit diagram showing how the secondary battery bodies 10A and 10C are charged
  • FIG. 9 is a secondary battery.
  • FIG. 1 is a block diagram of the power supply apparatus 100
  • FIG. 2 is a circuit diagram showing an example of the power supply apparatus 100 of FIG. 1
  • FIG. 3 is a state in which the secondary battery body 10A is charged by the power supply apparatus 100 of FIG. 4
  • FIG. 5 is a circuit diagram showing a state of charging the secondary battery body 10C
  • FIG. 6
  • FIG. 10 is a circuit diagram showing a power supply device 100 according to the first embodiment
  • FIG. 11 is a circuit diagram showing a circuit example of the power supply device 100 of FIG. Yes.
  • the power supply device 100 generates a plurality of secondary battery bodies 10A to 10N and a constant current source that supplies power for charging the secondary battery body 10 connected to the external power source EP.
  • the circuit 20 includes a selection switch switching circuit 30 connected between the constant current source generation circuit 20 and the secondary battery body 10 and capable of supplying different charging currents to the respective secondary battery bodies 10 individually.
  • This power supply device is connected to and drives a load LD.
  • the external power supply EP is a power source that supplies power for charging to the power supply device.
  • a hybrid vehicle driving battery provided in the rapid charging station is used.
  • a charging battery for charging is applicable.
  • a rectified commercial power supply or the commercial power supply itself can be used as the external power supply EP.
  • a DC voltage source is used as the external power source EP. (Secondary battery body 10)
  • Each secondary battery body 10 includes a positive electrode and a negative electrode, and a plurality of secondary battery bodies 10 are connected in series.
  • Each secondary battery body 10 can be constituted by connecting a plurality of battery cells in series or in parallel, in addition to being constituted by a single battery cell.
  • a rechargeable secondary battery such as a lithium ion secondary battery, a nickel hydrogen battery, a nickel cadmium battery, or a lead storage battery can be used.
  • a lithium ion secondary battery is preferable because it has a larger electric capacity per volume than a nickel metal hydride battery and is excellent in miniaturization and high output.
  • the constant current source generation circuit 20 of FIG. 1 includes a supply output terminal OT and a supply input terminal IT, and charges each secondary battery body 10 with the selection switch switching circuit 30. Therefore, the constant current source generation circuit 20 includes a conversion circuit that converts the voltage of the external power supply EP into a current or voltage suitable for charging the secondary battery body 10.
  • a constant current is generated. For example, when charging a lithium ion secondary battery, constant current charging is performed when the voltage of the secondary battery body 10 is lower than the first voltage, and switching to constant voltage charging is performed when the voltage exceeds the first voltage. Constant voltage charging is performed until reaching a higher second voltage, and when reaching the second voltage, it is determined that the battery is fully charged and charging is terminated.
  • the charging control method is an example, and other known charging methods can be used as appropriate depending on the type of the secondary battery body to be used. Such charging control is performed by ON / OFF control of a charging switch 22 described later. (Selection switch switching circuit 30)
  • the selection switch switching circuit 30 is connected to each of the secondary battery bodies 10 and is capable of individually configuring a charging path for charging the secondary battery body 10, and ON / OFF of the plurality of selection switches 31. And a control circuit 40 for controlling. Specifically, as shown in the circuit example of FIG. 2, a charging path for individually connecting the constant current source generation circuit 20 and each secondary battery body 10 is configured by ON / OFF of a plurality of selection switches 31. . More specifically, the selection switch switching circuit 30 includes a plurality of positive-side charging paths PC each connecting the positive electrode of each secondary battery body 10 and the supply output terminal OT, and the negative electrode and supply of each secondary battery body 10.
  • the plurality of secondary battery bodies 10 can be individually connected and charged by the selection switch 31 while using one constant current source generation circuit 20.
  • the amount of charge can be adjusted according to the remaining capacity of the secondary battery body 10, so that the entire secondary battery bodies connected in series are charged.
  • the variation in the charge amount between the secondary battery bodies can be reduced, and the advantage that the secondary battery bodies can be used with high safety over a long period of time by avoiding overcharging is obtained.
  • the secondary battery bodies are not limited to be charged one by one, and a plurality of secondary batteries can be charged simultaneously. (Selection switch 31)
  • a semiconductor switching element can be used, and examples thereof include a thyristor, a GTO thyristor, an IGBT, a bipolar transistor, and an FET.
  • a thyristor is preferably used.
  • a self-extinguishing element having a self-extinguishing function such as a GTO thyristor or IGBT can also be used. This is because the ON / OFF control of the selection switch 31 can be easily performed by the self-extinguishing function. 2 to 10, the selection switch 31 is schematically shown. For example, when the selection switch can be energized in both directions, a rectifier such as a diode that prevents energization in the reverse direction is charged.
  • the rectifying element is inserted in series with respect to the charging path, and can be provided at an arbitrary position as long as it is in the charging path. Further, when a semiconductor element having a rectifying characteristic such as a thyristor is used as the selection switch, such a rectifying element can be omitted. (Thyristor 32)
  • FIG. 11 shows a circuit example in which the thyristor 32 is used as the selection switch 31 in the power supply apparatus 100 of FIG.
  • thyristors 32A to 32H correspond to selection switches 31A to 31H, respectively.
  • an ON signal is input from the control circuit 40 to the gate terminal of the thyristor 32.
  • the charging switch 22 described later is turned off to stop the output of the chopper circuit, and the amount of current supplied to the thyristor 32 is made zero.
  • the thyristor 32 is turned off, and charging of the secondary battery body 10 can be stopped.
  • the thyristor 32 is excellent in reverse withstand voltage characteristics, and can be easily turned on and can simplify the drive circuit.
  • the control circuit 40 controls ON / OFF of each selection switch 31 as shown in FIG.
  • This control circuit is configured by an ASIC or the like.
  • a charging path for an arbitrary secondary battery body 10 is configured by switching the selection switch 31 and, at the same time, a charging path for another secondary battery is released.
  • only the selection switches 31A and 31C are turned ON and the other selection switches 31 are turned OFF, so that only the secondary battery body 10A is connected to the constant current source generation circuit 20, and the other secondary switches
  • the battery body 10 can be charged according to the characteristics of the secondary battery body 10 ⁇ / b> A by being disconnected from the constant current source generation circuit 20.
  • the selection switches 31A and 31C are turned off and the selection switches 31B and 31E are turned on as shown in FIG.
  • the selection switches 31B and 31E are turned OFF and the selection switches 31D and 31G are turned ON to charge the secondary battery body 10C as shown in FIG. Start.
  • the selection switches 31D and 31G are switched to OFF as shown in FIG. 6, and the selection switches 31F and 31H are switched to ON to start charging the secondary battery body 10D. .
  • all the secondary battery bodies 10 can be charged by switching ON / OFF of the selection switch 31 sequentially.
  • an appropriate secondary battery body can be appropriately charged by the selection switch switching circuit 30 while using one constant current source generation circuit 20.
  • each secondary battery body to be charged is compared with the case where the secondary battery bodies to be charged are connected in parallel.
  • the advantage that it is possible to individually perform appropriate charging according to the electrical characteristics and the like is obtained. Especially when the remaining capacity of each secondary battery is different, charging with the same current at the same time will charge a specific secondary battery body with a lot of remaining capacity quickly, so that all the secondary battery bodies will be charged until charging is completed. If the operation is continued, the secondary battery body that has been fully charged is overcharged, which may cause deterioration.
  • this method is particularly suitable for charging a nickel metal hydride battery or a nickel cadmium battery having negative characteristics. That is, since the nickel hydride battery has a characteristic that the voltage decreases when it is fully charged, when trying to charge the nickel hydride battery in a state of being connected in parallel, the voltage of each nickel hydride battery gradually increases, Since the voltage of a nickel metal hydride battery or the like that has reached full charge first decreases, a large amount of current is supplied to the battery, which causes a decrease in voltage and makes it difficult to supply appropriate charging power. There was a problem of becoming. On the other hand, according to the method according to the above-described embodiment, since individual charging for each secondary battery body is possible, an excellent advantage that such a problem due to uniform charging can be solved is obtained. .
  • the charging device can also charge a plurality of secondary battery bodies simultaneously connected to the external power source. For example, in the example shown in FIG. 7, in order to charge the secondary battery bodies 10A and 10B at the same time, the selection switches 31A and E are turned on and the other selection switches 31 are turned off. Thereby, the adjacent secondary battery bodies 10 can be charged simultaneously.
  • the secondary battery body which was distant can also be charged simultaneously.
  • the secondary battery bodies 10A and 10C can be charged simultaneously by turning on the selection switches 31A, 31C, 31D, and 31G and turning off the other selection switches 31.
  • the selection switches 31A and 31H and turning off the other selection switches 31 all of the secondary battery bodies 10A, 10B, 10C, and 10D can be charged simultaneously.
  • the secondary battery bodies can be charged efficiently.
  • the electric power supplied from the external power supply side is constant, so that it does not theoretically lead to shortening of the time required for charging. (Equalization regeneration operation)
  • equalizing charging that reduces variation in electric capacity between the secondary battery bodies obtained as a result can be realized by charging individual secondary battery bodies under appropriate conditions.
  • the secondary battery body having a large electric capacity is discharged and regenerated to the constant current source generation circuit side. It can also be directed to charge the secondary battery body, which can further reduce the difference in electric capacity.
  • Such regeneration operation is also referred to as equalization regeneration in this specification.
  • a power source that performs a regenerative operation such as a hybrid vehicle or a plug-in hybrid vehicle is used, it is particularly advantageous because the regenerative operation can equalize the secondary battery bodies.
  • the regenerative operation can be realized both when the secondary battery body is connected to the constant current source generating circuit alone and when the plurality of secondary battery bodies are connected to the constant current source generating circuit. Not too long.
  • the constant current source generating circuit 20 shown in this figure includes a chopper circuit including a reactor L and a charging switch 22 connected in series with the reactor L.
  • the charging switch 22 is connected in series to the external power supply EP and the reactor L, and forms a closed circuit in which the external power supply EP, the reactor L, and the charging switch 22 are connected when the charging switch 22 is turned on.
  • a semiconductor switching element is used for the charging switch 22.
  • an IGBT is used as the semiconductor switching element. The IGBT can control the current of the reactor L so that the power can be stored in a direction in which the reactor L can supply power to the secondary battery body 10 (rightward in FIG. 10).
  • the reactor L is connected between the supply output terminal OT and the supply input terminal IT, and realizes a chopping operation of power supplied from the external power supply EP by turning on / off the charging switch 22 connected in series. . That is, when the charging switch 22 is turned on, power from the external power source EP is supplied only to the reactor L. When the charging switch 22 is switched from ON to OFF in this state, the electric energy stored in the reactor L is released. Then, it flows into the secondary battery body 10 side through the charging path and charging is performed. By repeating such ON / OFF operation of the charging switch 22, intermittent charging current is supplied to the secondary battery body 10, and pulse charging is realized.
  • the control circuit 40 turns on / off the charging switch 22.
  • the constant current source generating circuit 20 is composed of a boost chopper circuit.
  • the step-up chopper circuit can charge the secondary battery body 10 to a high voltage using the low-voltage external power supply EP by the step-up chopping operation.
  • the present invention is not limited to this configuration, and for example, a step-up / step-down chopper circuit can be used.
  • the constant current source generation circuit 20 is caused to function as a step-up chopper, the condition is that the battery voltage (for example, 24V) of the secondary battery body 10 selected as the charging target is higher than the external power source EP (for example, 20V). It becomes.
  • the battery voltage for example, 24V
  • the constant current source generation circuit 20 functions as a step-up / step-down chopper, and thus can be used more flexibly without such a voltage value limitation.
  • a circuit example using the thyristor 32 for the selection switch 31 is shown in FIG. According to this configuration, since the thyristor used as the selection switch 31 can be turned off using the OFF period of the boost chopper used as the constant current source generation circuit 20, the thyristor having no self-extinguishing capability can be specially extinguished. It can be realized without a commutation circuit, and charging control using a thyristor can be realized very suitably.
  • control circuit 40 controls the constant current source generation circuit 20 and the selection switch switching circuit 30.
  • the present invention is not limited to this configuration.
  • a constant current source generation circuit control circuit that controls the constant current source generation circuit 20 and a selection switch circuit control circuit that controls the selection switch switching circuit 30 are individually provided. Needless to say, it can also be provided. (Example 2 equalization charge and equalization regeneration)
  • equalization regeneration which advanced equalization more by regenerative operation as mentioned above is also realizable.
  • a circuit example of a power supply device capable of realizing such equalization charging and equalization regeneration is shown in the circuit diagram of FIG. In the following examples, only three secondary battery bodies 10 (10A to 10C) are shown for the sake of simplicity, and other secondary battery bodies are not shown. As described above, the number of connections can be arbitrarily set.
  • the power supply device 200 shown in this figure is connected to a power source capable of regenerative operation (for example, a lithium ion battery installed in a quick charging station) as an external power source EP. (Regeneration switch 24)
  • the constant current source generation circuit 20 of FIG. 12 has a regeneration switch 24 connected to the reactor L in addition to the charging switch 22 of FIG. Similarly to the charging switch 22, the regeneration switch 24 can use a semiconductor switching element such as an IGBT.
  • the regenerative switch 24 defines the energizing direction of the regenerative switch 24 so that the current flows through the reactor L in the direction opposite to the charging switch 22 and in the direction discharged from the secondary battery body 10 (leftward in FIG. 12). .
  • the regenerative switch 24 has a rectifying function, or a rectifying element such as a diode is connected to the regenerative discharge path in series with the regenerative switch 24.
  • a rectifying function or a rectifying element such as a diode is connected to the regenerative discharge path in series with the regenerative switch 24.
  • FIG. 12 a circuit example using a thyristor 32 as the selection switch 31 and an IGBT as the charging switch 22 and the regeneration switch 24 is shown in FIG.
  • a rectifier when used for the charging switch 22 and the regeneration switch 24, the rectifier can be unnecessary.
  • a diode is connected in antiparallel between the emitter and collector of each IGBT. These diodes have a function of protecting the IGBT having poor reverse breakdown voltage characteristics as a path for charging the energy accumulated in the reactor L to the secondary battery body 10 or regenerating it to the external power source EP.
  • the regenerative switch 24 is not limited to the configuration of connecting to both ends of the reactor L as shown in the connection example of FIG. 12, and for example, is branched at one end of the reactor L as shown in FIG. 14 according to the third embodiment. Needless to say, it is also possible to connect in this manner.
  • a circuit example in which the thyristor 32 is used for the selection switch 31 and the IGBT is used for the charging switch 22 and the regeneration switch 24 is shown in FIG. 15.
  • the regenerative switch 24 shown in these drawings is also connected to the control circuit 40, and ON / OFF is controlled by the control circuit 40.
  • the regenerative switch 24 is set by the control circuit 40 to be turned off.
  • the discharge switch is turned off and the regenerative switch 24 is turned on.
  • the secondary battery body can be discharged to reduce the electric capacity, and the discharge energy can be supplied to the external power source and reused, so that the energy can be used efficiently. This is particularly effective for applications that require high energy efficiency, such as electric vehicles and hybrid vehicles.
  • the power supply apparatus 400 shown in this example includes a charging diode 23 between one end (right side in the figure) of the reactor L and the supply output terminal OT in addition to the charging switch 22 of FIG. Since the charging diode 23 prevents current from flowing from the secondary battery body 10 side to the external power supply EP side, the regenerative operation is prohibited in this circuit, and only equalization charging is performed.
  • FIG. 16 an example in which a thyristor 32 is used for the selection switch 31 and an IGBT is used for the charging switch 22 is shown in FIG. (Example 5)
  • the configuration is not limited to the circuit example of FIG. 16 and, for example, a configuration as shown in FIG.
  • the charging diode 23 connected to the end of the reactor L is connected to another end instead of the same side as the charging switch 22. Even in this configuration, the charging diode 23 can similarly inhibit the inflow of current from the secondary battery body 10 side to the external power supply EP side.
  • FIG. an example in which a thyristor 32 is used for the selection switch 31 and an IGBT is used for the charging switch 22 is shown in FIG. (Example 6)
  • FIG. 20 shows a circuit example for performing only the equalizing regenerative operation as a sixth embodiment.
  • the charging switch is not provided, and instead, the regeneration switch 24 and the regeneration diode 25 are connected to one end of the reactor L.
  • FIG. 20 a circuit example in which a thyristor 32 is used for the selection switch 31 and an IGBT is used for the regeneration switch 24 is shown in FIG. (Example 7)
  • FIG. 22 shows a circuit example of another power supply device 700.
  • the connection position of the regeneration switch 24 is connected to the end of the reactor L not on the same side as the regeneration diode 25 but on the other end. Even in this configuration, the regeneration switch 24 prohibits the charging operation while the regeneration switch 24 allows the regeneration operation from the secondary battery body 10 side to the external power supply EP side.
  • FIG. 23 shows a circuit example in which the thyristor 32 is used as the selection switch 31 and the IGBT is used as the regeneration switch 24. (Voltage detection means 26)
  • both ends of the reactor L are provided with voltage detection means 26 for detecting the voltage across the reactor.
  • the voltage detection means 26 can be constituted by, for example, a differential amplifier or a resistor.
  • the voltage detection means 26 detects the voltage of the secondary battery body 10 by detecting the voltage across the reactor while the constant current source generation circuit 20 is connected to the arbitrary secondary battery body 10 by the selection switch switching circuit 30. can do. For example, in the circuit example of FIG. 10, only the selection switch 31A and the selection switch 31C are turned on and the other selection switches 31 are turned off under the control of the control circuit 40.
  • the voltage appearing at the voltage across the reactor becomes equal to the battery voltage of the secondary battery body 10, and therefore the battery voltage of the secondary battery body 10 can be detected by the voltage detection means 26. Further, if the charging path is switched by the control circuit 40, the battery voltage of each secondary battery body 10 can be sequentially detected. In this manner, the voltage detection means 26 can measure the battery voltages of all the secondary battery bodies 10 by scanning each secondary battery body 10 by the control circuit 40, that is, in a time division manner. In other words, the battery voltage of the plurality of secondary battery bodies 10 can be detected by the single voltage detection means 26, and the switching of the secondary battery bodies 10 can be performed using the above-described charging selection switch 31. The number of parts becomes almost unnecessary, and an advantage that the circuit configuration for detecting the battery voltage of all the secondary battery bodies 10 can be extremely simplified can be obtained.
  • detection of the battery voltage of each secondary battery body 10 is preferably performed before the start of charging.
  • the SOC can be calculated based on the battery voltage of the secondary battery body 10
  • the remaining capacity of each secondary battery body 10 can be grasped in advance and adjusted to an appropriate charging current.
  • the state of charging can be monitored while the battery voltage of the secondary battery body 10 is detected by the voltage detection means 26 at an appropriate timing, for example, at a constant period.
  • the battery voltage of the secondary battery body 10 is detected at a predetermined timing such as before the start of charging or at a constant period during charging.
  • the control circuit 40 turns off the selection switch 31 and finishes charging the secondary battery. (Timing chart)
  • the selection circuits and current paths of the thyristors 32A to 32N when the charging switch 22 is ON and OFF are shown.
  • a sample hold circuit SH is connected to the voltage detection means 26.
  • 24A to 24C show how the secondary battery body 10A is charged.
  • FIG. 24A shows a timing chart showing waveforms of the respective parts.
  • b) shows a current path when the charging switch 22 is ON
  • FIG. 24C shows a current path when the charging switch 22 is OFF.
  • the thyristor 32A can be turned off.
  • the current I 32A of the thyristor 32A has a pulse waveform as shown in FIG.
  • the voltage e x across the inductance L, a rectangular wave voltage E 10A of the voltage E P and the secondary battery body 10A of the external power supply EP is applied alternately as shown in FIG. 24 (a). Further, the voltage E 10A of the secondary battery body 10A can be detected by the sample hold operation for the voltage detection means 26.
  • FIGS. 25A to 25E show how the secondary battery bodies 10A to 10N are charged.
  • 25A is a timing chart showing the waveforms of the respective parts
  • FIG. 25B is a secondary battery body when the charging switch 22 is OFF
  • FIG. 25C is the secondary battery body when the charging switch 22 is OFF.
  • FIG. 25 (d) shows a case where the charging switch 22 is OFF and the secondary battery body 10B is selected.
  • FIG. 25 (e) shows a case where the charging switch 22 is OFF and the secondary battery body. Current paths when 10N is selected are shown respectively.
  • FIG. 25A the period for charging the secondary battery body 10A is indicated by (b) / (c), and the above-described operation of FIG. 24 is performed.
  • charging switch 22 as shown in FIG. 25 (b) is ON, it increases the current I L to the inductance L, the result OFF no current flows in the thyristor 32A ⁇ 32N.
  • FIG. 25C when the charging switch 22 is OFF and the secondary battery body 10A is selected, the thyristor 32A is turned ON by the gate signal and the current I 32A flows, and the inductance L is supplied. The current I L decreases.
  • the voltage e x across the inductance L, the voltage E 10A of the voltage E P and the secondary battery body 10A of the external power supply EP Becomes a rectangular wave applied alternately.
  • the period during which the secondary battery body 10B is charged is indicated by (b) / (d) in FIG.
  • the charging switch 22 when the charging switch 22 is ON as shown in FIG. As L increases, no current flows through the thyristors 32A to 32N, and the thyristors 32A to 32N are turned off.
  • FIG. 25D when the charging switch 22 is OFF and the secondary battery body 10B is selected, the thyristor 32B is turned ON by the gate signal and the current I 32B flows, and the current to the inductance L flows. I L decreases.
  • Voltage e x across the inductance L in this (b) / (d) period a rectangular wave voltage E 10B of the voltage E P and the secondary battery body 10B of the external power supply EP is applied alternately.
  • the period during which the secondary battery body 10N is charged is indicated by (b) / (e) in FIG.
  • the charging switch 22 is ON as shown in FIG. time, the increased current I L to the inductance L, and become OFF no current flows in the thyristor 32A ⁇ 32N.
  • FIG. 25 (e) when the charging switch 22 is OFF and the secondary battery body 10N is selected, the thyristor 32N is turned ON by the gate signal and the current I 32N flows, and the current to the inductance L flows. I L decreases.
  • the voltage E P and the voltage E 10N of the external power supply EP are alternately applied.
  • the voltage E 10A to E 10N of each selected secondary battery body can be detected from the output e B of the sample and hold circuit SH by the sample and hold operation of the sample and hold circuit SH.
  • the voltage detection means is not limited to the sample and hold circuit, and other configurations can be used as appropriate.
  • the present invention since it is possible to perform equalization charging control of each secondary battery body with a very simple circuit configuration, a DC voltage such as an electric vehicle that requires a high voltage or an uninterruptible power supply is used.
  • a DC voltage such as an electric vehicle that requires a high voltage or an uninterruptible power supply is used.
  • the system configuration can be greatly simplified, and since overcharge / discharge does not occur, the life and safety of the secondary battery body can be increased, and the cost can be reduced.
  • the power supply device and the charging circuit according to the present invention can be suitably used as a driving power source for a hybrid vehicle, a plug-in hybrid vehicle, an electric vehicle, or the like.
  • the power supply is not limited to a vehicle power supply, and can be used for other power supply devices such as an assist bicycle, a power tool, an uninterruptible power supply (UPS), and a large-capacity storage battery bank used for a power supply for driving a factory.
  • UPS uninterruptible power supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】二次電池の過充電を防止して各二次電池の電気特性に応じて最適な充電を行う。 【解決手段】選択スイッチ切替回路30が、各二次電池体10と各々に接続され、該二次電池体10を充電する充電経路を個別に構成可能な選択スイッチであるサイリスタ32と、複数のサイリスタ32のON/OFFを制御する制御回路40とを有し、制御回路40が、サイリスタ32のON/OFFを制御することにより、任意の二次電池体10に対する充電経路を構成すると共に、他の二次電池に対する充電経路を解除し、定電流源発生回路20は、供給出力端子OT及び供給入力端子ITの間に接続されたリアクトルLと、リアクトルLと直列に接続され、制御回路40でON/OFFを制御される充電用スイッチ22と、で構成されたチョッパ回路を備えており、チョッパ回路を外部電源EPと接続して、二次電池体10を充電する。

Description

電源装置及び充電回路
 本発明は、充放電可能な二次電池を充電する充電回路を備える電源装置及び充電回路に関する。
 例えば、電動モータを用いて走行する電気自動車や、エンジンと電動モータとを併用して走行するハイブリッド電気自動車においては、ニッケル-水素電池やリチウムイオン電池、鉛蓄電池といった二次電池を単位セルとしてこれらを複数個直列接続した組電池が、電動モータの電源として用いられている。このような組電池では、充放電を繰り返すうちに、各単位セルの充電状態(State of Charge:SOC;残容量などとも呼ばれる。)に基づく端子電圧にばらつきが生じ、これを放置したまま充電を行うと、一部の単位セルが過充電状態となることがある。また単位セルの劣化は加速度的に進む上、劣化するとたとえ一部の単位セルのみであっても、組電池全体が使用不可能となってしまう。
 このような問題に対し、充電済みの組電池を構成する複数の単位セル間での充電状態のばらつきを調整する方法として、特許文献1に示すような組電池の充電状態調整装置が提案されている。この充電状態調整装置90は、図26に示すように、二次電池からなる単位セル91を複数個直列に接続して構成され、負荷や充電器が両端に接続された閉回路状態において充放電を行う組電池の充電状態を調整する。またこの充電状態調整装置90は、負荷や充電器とは絶縁して設けられた均等充電用コンデンサ92と、組電池の開回路状態において各単位セル91を均等充電用コンデンサ92にサイクリックに接続するサイクリック接続手段93とを備える。これにより、複数個直列に接続されて組電池を構成する単位セル91の相互間に充電状態のばらつきが生じても、セル電圧の高い単位セル91から均等充電用コンデンサ92を介してセル電圧の低い単位セル91に電荷を移動させることで、電圧差を低減することができる。
特開2002-17048号公報
 しかしながら、図26の充電状態調整装置90は、あくまでも充電済みの単位セル91のばらつきを調整するのみであり、一旦単位セル91を充電した上で、充電状態調整装置90を用いてばらつきを抑制する構成であるため、充電の工程と調整の工程とが個別に必要となり、時間がかかる上、これら充電と調整とを行う回路も個別に必要となるため、回路構成が複雑化するという問題もある。
 またこの充電状態調整装置90では、サイクリックに単位セル91を順次切り替えながら充電状態を調整することしかできないため、組電池の全体の充電を終えるまでに時間がかかり効率が悪くなるという欠点もある。特に近年の組電池は、大容量化の要求に伴い多数の単位セル91を使用することも多くなっており、このようなサイクリック式の切り替え充電では使用する二次電池数に比例して充電時間が長くなる上、単位セル91の切り替え動作も煩雑となり、実用的でない。さらに図26の回路例ではスイッチング素子にフォトMOSトランジスタを使用するため、駆動回路が複雑化して回路コストが高くなるという問題もあった。特に各単位セル91の均等充電制御を行うには、単位セル91を個別に充電できる充電経路を構成する必要があるところ、このような回路の構築にトランジスタを用いると、回路構成が複雑化するという問題が生じる。
 加えて、この回路では均等充電用コンデンサ92を介して一旦電荷を蓄積した上で、端子電圧の低い単位セル91に蓄積電荷を移動させる方式であるため、大容量の均等充電用コンデンサ92が必須となる上、この均等充電用コンデンサ92が、充電開始前の時点で、各単位セル91の満充電状態における開回路端子電圧に極めて近く、かつこれを上回ることのない端子電圧となるように、予めオルタネータ等で充電されている必要があり、そのような充電の前準備が必須となり、構成が一層複雑化するという問題もある。
 本発明は、従来のこのような問題点に鑑みてなされたものである。本発明の主な目的は、より安価に、二次電池の過充電を防止して最適な充電が可能な電源装置及び充電回路を提供することにある。
課題を解決するための手段及び発明の効果
 上記目的を達成するために、本発明の第1の側面に係る電源装置によれば、各々正極と負極を備え、相互に直列接続された複数の二次電池体10と、前記二次電池体10を充電するための電力を供給する供給出力端子OTと供給入力端子ITを備える定電流源発生回路20と、前記定電流源発生回路20で各二次電池体10に対して、個別に異なる充電電流を供給可能な選択スイッチ切替回路30と、を備え、前記選択スイッチ切替回路30が、各二次電池体10と各々に接続され、該二次電池体10を充電する充電経路を個別に構成可能な選択スイッチ31と、前記複数の選択スイッチ31のON/OFFを制御する制御回路40と、を有し、前記制御回路40が、前記選択スイッチ31のON/OFFを制御することにより、任意の二次電池体10に対する充電経路を構成すると共に、他の二次電池に対する充電経路を解除するものであり、前記定電流源発生回路20は、前記供給出力端子OT及び供給入力端子ITの間に接続されたリアクトルLと、前記リアクトルLと直列に接続され、前記制御回路40でON/OFFを制御される充電用スイッチ22と、で構成されたチョッパ回路を備えており、前記チョッパ回路を外部電源EPと接続して、前記二次電池体10を充電するよう構成できる。これにより、一の定電流源発生回路を利用して任意の二次電池体に対して充電が可能となり、該二次電池体の電気特性に応じた適切な充電を個別に行える利点が得られる。また、チョッパ回路によって、例えば昇圧チョッピング動作として低い電圧の外部電源を用いて二次電池体を高い電圧に充電できる。
 また、第2の側面に係る電源装置によれば、各々正極と負極を備え、相互に直列接続された複数の二次電池体10と、前記二次電池体10を充電するための電力を供給する供給出力端子OTと供給入力端子ITを備える定電流源発生回路20と、前記定電流源発生回路20で各二次電池体10を充電するため、各二次電池体10の正極と前記供給出力端子OTとを各々接続した複数の正極側充電経路PCと、各二次電池体10の負極と前記供給入力端子ITとを各々接続した複数の負極側充電経路NCと、前記正極側充電経路PC及び負極側充電経路NCに各々設けられた複数の選択スイッチ31と、前記複数の選択スイッチ31のON/OFFを制御する制御回路40と、を備えることができる。これにより、一の定電流源発生回路を利用して任意の二次電池体に対して充電が可能となることに加え、二次電池体の残容量に応じて充電量を調整できるので、直列接続された二次電池体全体で充電する方式に比べ、二次電池体間の充電量のばらつきを低減し、過充電を回避して長期に渡って安全性高く二次電池体を利用できる利点が得られる。
 さらに、第3の側面に係る電源装置によれば、さらに前記リアクトルLの両端電圧を検出する電圧検出手段26を備えており、前記制御回路40が、任意の二次電池体10を、該二次電池体10と前記リアクトルLとを繋ぐ正極側充電経路PC及び負極側充電経路NCに配置された各選択スイッチ31をそれぞれONに切り替えると共に、他の選択スイッチ31をOFFに切り替えることで、該二次電池体10のみを前記リアクトルLと接続させ、これにより該二次電池体10の電池電圧を前記電圧検出手段26で検出可能に構成できる。これにより、一の電圧検出手段で任意の二次電池体の電池電圧を検出できる。すなわち、各二次電池体の電池電圧を、一の電圧検出手段のみで検出できるので、各二次電池体毎に電圧センサを個別に設ける必要性を無くし、回路を大幅に簡素化できる利点が得られる。
 さらにまた、第4の側面に係る電源装置によれば、前記制御回路40が、時分割で各二次電池体10の電池電圧を測定できる。これにより、一の電圧検出手段ですべての二次電池体の電池電圧を順次検出できる。
 さらにまた、第5の側面に係る電源装置によれば、前記制御回路40が、任意の複数の二次電池体10を同時に充電するよう前記選択スイッチ31をON/OFF制御可能に構成できる。これにより二次電池体を複数同時に充電制御することができ、効率よく充電を進めることができる。
 さらにまた、第6の側面に係る電源装置によれば、前記選択スイッチ31が、自己消弧能力のない素子とすることができる。これにより、チョッパ回路のOFF期間を利用して選択スイッチの消弧が可能となり、消弧のための特別な付加回路などを不要とできる。
 さらにまた、第7の側面に係る電源装置によれば、前記選択スイッチ31をサイリスタ32で構成できる。これにより、信頼性、特に逆耐圧特性にも優れたサイリスタを用いて、直列接続された二次電池体を、二次電池体毎に充電回路を設けることなく、個別に充電できる利点が得られる。
 さらにまた、第8の側面に係る電源装置によれば、前記二次電池体10を、複数の電池セルを直列又は並列に接続して構成できる。これにより、複数の電池セルで構成された二次電池体が直列接続された均等に充電することが可能となる。
 さらにまた、第9の側面に係る充電回路によれば、各々正極と負極を備え、相互に直列接続された複数の二次電池体10を充電可能な充電回路であって、二次電池体10を充電するための電力を供給する供給出力端子OTと供給入力端子ITを備える定電流源発生回路20と、前記定電流源発生回路20で各二次電池体10を充電するため、各二次電池体10の正極と前記供給出力端子OTとを各々接続可能な複数の正極側充電経路PCと、各二次電池体10の負極と前記供給入力端子ITとを各々接続可能な複数の負極側充電経路NCと、前記正極側充電経路PC及び負極側充電経路NCに各々設けられた複数のサイリスタ32と、前記複数のサイリスタ32のON制御を個別に制御可能な制御回路40と、を備えており、前記定電流源発生回路20は、前記供給出力端子OT及び供給入力端子ITの間に接続されたリアクトルLと、前記リアクトルLと直列に接続され、前記制御回路40でON/OFFを制御される充電用スイッチ22と、で構成されたチョッパ回路を備えており、前記チョッパ回路を外部電源EPと接続して、前記二次電池体10を充電するよう構成できる。これにより、一の定電流源発生回路を利用して任意の二次電池体に対して充電が可能となり、二次電池体の残容量に応じて充電量を調整できるので、直列接続された二次電池体全体で充電する方式に比べ、二次電池体間の充電量のばらつきを低減し、過充電を回避して長期に渡って安全性高く二次電池体を利用できる利点が得られる。
本発明の実施の形態に係る電源装置を示すブロック図である。 図1の電源装置を示す回路図である。 図2の電源装置で二次電池体10Aを充電する様子を示す回路図である。 図2の電源装置で二次電池体10Bを充電する様子を示す回路図である。 図2の電源装置で二次電池体10Cを充電する様子を示す回路図である。 図2の電源装置で二次電池体10Dを充電する様子を示す回路図である。 図2の電源装置で二次電池体10A、10Bを充電する様子を示す回路図である。 図2の電源装置で二次電池体10A、10Cを充電する様子を示す回路図である。 図2の電源装置で二次電池体10A~10Dを充電する様子を示す回路図である。 実施例1に係る電源装置を示す回路図である。 図10の電源装置の回路例を示す回路図である。 実施例2に係る電源装置を示す回路図である。 図12の電源装置の回路例を示す回路図である。 実施例3に係る電源装置を示す回路図である。 図14の電源装置の回路例を示す回路図である。 実施例4に係る電源装置を示す回路図である。 図16の電源装置の回路例を示す回路図である。 実施例5に係る電源装置を示す回路図である。 図18の電源装置の回路例を示す回路図である。 実施例6に係る電源装置を示す回路図である。 図20の電源装置の回路例を示す回路図である。 実施例7に係る電源装置を示す回路図である。 図22の電源装置の回路例を示す回路図である。 図24(a)は一の二次電池体を充電する様子を示すタイミングチャート、図24(b)は充電用スイッチがONのときの電流経路、図24(c)は充電用スイッチ22がOFFのときの電流経路を、それぞれ示す回路図である。 図25(a)は複数の二次電池体を順次充電するタイミングチャート、図25(b)は充電用スイッチがONのとき、図25(c)は第一の二次電池体が選択されているとき、図25(d)は第二の二次電池体10Bが選択されているとき、図25(e)は第Nの二次電池体が選択されているときの電流経路を、それぞれ示す回路図である。 従来の組電池の充電状態調整装置を示す回路図である。
 以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための電源装置及び充電回路を例示するものであって、本発明は電源装置及び充電回路を以下のものに特定しない。なお、特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部材の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、一部の実施の形態、実施例において説明された内容は、他の実施例、実施形態等に利用可能なものもある。
 図1~図10に、一実施の形態に係る電源装置100を示す。これらの図において、図1は電源装置100のブロック図、図2は図1の電源装置100の一例を示す回路図、図3は図2の電源装置100で二次電池体10Aを充電する様子を示す回路図、図4は二次電池体10Bを充電する様子を示す回路図、図5は二次電池体10Cを充電する様子を示す回路図、図6は二次電池体10Dを充電する様子を示す回路図、図7は二次電池体10A、10Bを充電する様子を示す回路図、図8は二次電池体10A、10Cを充電する様子を示す回路図、図9は二次電池体10A~10Dを充電する様子を示す回路図、図10は実施例1に係る電源装置100を示す回路図、図11は図10の電源装置100の回路例を示す回路図を、それぞれ示している。電源装置100は、図1に示すように、10A~10Nの複数個の二次電池体10と、外部電源EPと接続され二次電池体10を充電するための電力を供給する定電流源発生回路20と、定電流源発生回路20と二次電池体10との間に接続され、各二次電池体10に対して個別に異なる充電電流を供給可能な選択スイッチ切替回路30とを備える。この電源装置は、負荷LDに接続されてこれを駆動する。また外部電源EPは、電源装置に充電のための電力を供給する電力源であり、例えばハイブリッド車の急速充電ステーションに本発明を適用する場合は、急速充電ステーションに備えられるハイブリッド車駆動用電池を充電するための充電用バッテリが該当する。また、商用電源を整流したものや商用電源そのものを外部電源EPとして利用することもできる。以下の例では、外部電源EPとして直流電圧源を使用している。
(二次電池体10)
 各二次電池体10は、正極と負極を備えており、複数の二次電池体10を直列接続している。各二次電池体10は、一個の電池セルで構成する他、複数の電池セルを直列又は並列に接続して構成することも可能である。電池セルには、リチウムイオン二次電池やニッケル水素電池、ニッケルカドミウム電池、鉛蓄電池などの充電可能な二次電池が利用できる。特にリチウムイオン二次電池は、ニッケル水素電池に比べ体積当たりの電気容量が大きく、小型化、高出力化に優れるため好ましい。なお図2~図11の例では、説明を容易にするため二次電池体10を10A~10Dの4個接続する構成を示しているが、二次電池体の接続数はこれに限定されるものでなく、5個以上あるいは3個以下などとできることはいうまでもない。
(定電流源発生回路20)
 図1の定電流源発生回路20は、供給出力端子OTと供給入力端子ITを備え、選択スイッチ切替回路30でもって各二次電池体10を充電する。このため定電流源発生回路20は、外部電源EPの電圧を、二次電池体10の充電に適した電流又は電圧に変換する変換回路を備える。ここでは定電流を発生させている。例えばリチウムイオン二次電池を充電する場合は、二次電池体10の電圧が第一電圧よりも低い状態では定電流充電を行い、第一電圧を超えると定電圧充電に切り替え、第一電圧よりも高い第二電圧に達するまで定電圧充電を行い、第二電圧に達すると満充電と判定して充電を終了する。なお充電制御方法は一例であって、使用する二次電池体の種類などに応じて、他の既知の充電方法が適宜利用できる。またこのような充電制御は、後述する充電用スイッチ22をON/OFF制御することで行われる。
(選択スイッチ切替回路30)
 選択スイッチ切替回路30は、各二次電池体10と各々に接続され、該二次電池体10を充電する充電経路を個別に構成可能な選択スイッチ31と、複数の選択スイッチ31のON/OFFを制御する制御回路40とを有する。具体的には、図2の回路例に示すように、定電流源発生回路20と各二次電池体10とを個別に接続する充電経路を、複数の選択スイッチ31のON/OFFによって構成する。より具体的には、選択スイッチ切替回路30は、各二次電池体10の正極と供給出力端子OTとを各々接続した複数の正極側充電経路PCと、各二次電池体10の負極と供給入力端子ITとを各々接続した複数の負極側充電経路NCと、正極側充電経路PC及び負極側充電経路NCに各々設けられた複数の選択スイッチ31と、複数の選択スイッチ31のON/OFFを制御する制御回路40とで構成される。このように、一の定電流源発生回路20を利用しつつ、選択スイッチ31によって複数の二次電池体10を個別に接続して、充電することができる。特に各二次電池を個別に定電流源発生回路20と接続することで、該二次電池体10の残容量に応じて充電量を調整できるので、直列接続された二次電池体全体で充電する方式に比べ、二次電池体間の充電量のばらつきを低減し、過充電を回避して長期に渡って安全性高く二次電池体を利用できる利点が得られる。なお、二次電池体を一個ずつ充電する構成に限られず、複数の二次電池を同時に充電することも可能であることはいうまでもない。
(選択スイッチ31)
 選択スイッチ31には、半導体スイッチング素子が利用でき、例えばサイリスタやGTOサイリスタ、IGBT、バイポーラトランジスタ、FETなどが挙げられる。好適にはサイリスタを利用する。ただ、自己消弧機能を持つ自己消弧素子、例えばGTOサイリスタやIGBTなども利用できる。自己消弧機能により選択スイッチ31のON/OFF制御を容易に行うことができるからである。なお図2~図10の例においては、選択スイッチ31を模式的に示しており、例えば選択スイッチが双方向に通電可能な場合は、逆方向への通電を阻止するダイオード等の整流素子を充電経路中に適宜付加できることはいうまでもない。整流素子は充電経路に対して直列に挿入され、また充電経路中であれば任意の位置に設けることができる。また選択スイッチとして、サイリスタのような整流特性を有する半導体素子を利用する場合は、このような整流素子を不要とできる。
(サイリスタ32)
 ここで図10の電源装置100において、選択スイッチ31にサイリスタ32を用いた回路例を、図11に示す。図11において、サイリスタ32A~32Hはそれぞれ選択スイッチ31A~31Hに対応している。各サイリスタ32をONさせるには制御回路40からON信号をサイリスタ32のゲート端子に入力する。一方、サイリスタ32をOFFさせるには、後述する充電用スイッチ22をOFFしてチョッパ回路の出力を停止し、サイリスタ32に通電する電流量をゼロにする。このような消弧動作によってサイリスタ32をOFFし、二次電池体10への充電を停止できる。またサイリスタ32は逆耐圧特性に優れており、ON駆動も容易で駆動回路を簡素化できる利点も得られる。
 また選択スイッチ31にIGBTを使用する場合は、自己消弧機能によりON/OFFの切り替え制御を制御回路40からの信号で容易に行える。すなわち上述したサイリスタのような、一旦電流を停止する消弧動作を不要にできる。反面、サイリスタなどに比べ逆耐圧特性で劣るため、保護用の逆阻止ダイオードを直列に接続することが好ましい。
(制御回路40)
 制御回路40は、図2に示すように各選択スイッチ31のON/OFFを制御する。この制御回路は、ASICなどにより構成される。この例では、選択スイッチ31の切り替えによって任意の二次電池体10に対する充電経路を構成すると同時に、他の二次電池に対する充電経路を解除する。例えば図3の例では、選択スイッチ31A、31CのみをONとし、他の選択スイッチ31をOFFとすることで、二次電池体10Aのみを定電流源発生回路20に接続し、他の二次電池体10は定電流源発生回路20から切り離すことで、二次電池体10Aの特性に応じた充電が可能となる。そして二次電池体10Aの充電が終了すると、次に図4に示すように選択スイッチ31A、31CをOFFとし、選択スイッチ31B及び31EをONに切り替えることで、二次電池体10Bのみを定電流源発生回路20に接続し、他の二次電池体10は定電流源発生回路20から切り離すことで、二次電池体10Bの特性に応じた充電が可能となる。同様に、二次電池体10Bの充電が終了すると、図5に示すように選択スイッチ31B及び31EをOFFに切り替えると共に、選択スイッチ31D及び31GをONに切り替えて、二次電池体10Cの充電を開始する。さらに二次電池体10Cの充電が終了すると、図6に示すように選択スイッチ31D及び31GをOFFに切り替えると共に、選択スイッチ31F及び31HをONに切り替えて、二次電池体10Dの充電を開始する。このようにして、順次選択スイッチ31のON/OFFを切り替えることで、すべての二次電池体10を充電することができる。
 このように、一の定電流源発生回路20を利用しつつ、選択スイッチ切替回路30によって任意の二次電池体に対して適切な充電が可能となる。しかもこの方法では、充電される二次電池体のみが定電流源発生装置と接続されるので、充電対象の二次電池体を並列接続する場合と比較して、充電対象の各二次電池体の電気特性等に応じた適切な充電を個別に行える利点が得られる。特に各二次電池の残容量が異なる場合は、同時に同じ電流で充電すると、残容量の多い特定の二次電池体が速く充電される結果、すべての二次電池体の充電が終了するまで充電を継続すると、先に満充電となった二次電池体が過充電され、劣化が進むおそれがある。逆に、残容量の少ない二次電池体に合わせて充電を終了すると、今度は満充電されない二次電池体が発生することとなって、利用可能な電気容量が少なくなるという問題も生じる。かといって、各二次電池体毎に専用の充電回路を個別に設けることとなれば、回路構成が複雑となる上コストも嵩む。そこで本発明では、一の定電流源発生回路を使用しつつ、選択スイッチ切替回路によって各二次電池体との個別接続を可能とすることで、個別の充電回路を設けることなく、共通の定電流源発生回路でもって個別充電を可能としている。
 またこの方法であれば、特に負性特性を有するニッケル水素電池やニッケルカドミウム電池の充電に好適となる。すなわち、ニッケル水素電池等は満充電になると電圧が低下する特性を有することから、ニッケル水素電池等を並列接続した状態で充電しようとすると、徐々に各ニッケル水素電池等の電圧が上昇すると共に、先に満充電に達したニッケル水素電池等の電圧が一旦低下することから、この電池に電流が多く供給されることとなって、却って電圧の低下を招き、適切な充電電力の供給が困難になるという問題があった。これに対して上述の本実施の形態に係る方法によれば、二次電池体毎の個別の充電が可能となることから、このような一律充電による問題を解消できるという優れた利点が得られる。
 またこの充電装置は、二次電池体を個別に外部電源と接続して充電する他、複数の二次電池体を同時に外部電源と接続して充電することもできる。例えば図7に示す例では、二次電池体10A、10Bを同時に充電するため、選択スイッチ31A、EをONし、他の選択スイッチ31をOFFしている。これによって、隣接する二次電池体10を同時に充電できる。
 また、隣接する二次電池体同士に限られず、離れた二次電池体を同時に充電することもできる。例えば図8に示す例では、選択スイッチ31A、31C、31D、31GをONして、他の選択スイッチ31をOFFにすることで、二次電池体10A、10Cを同時に充電することができる。さらに図9に示すように、選択スイッチ31A、31HをONして、他の選択スイッチ31をOFFにすることで、二次電池体10A、10B、10C、10Dをすべて同時に充電することもできる。このように複数の二次電池体を同時に充電することで、効率よく二次電池体の充電を進めることができる。なおこの回路例では、外部電源側から供給される電力は一定であるため、充電に要する時間の短縮化には理論上繋がらない。
(均等化回生動作)
 以上の充電動作では、個別の二次電池体をそれぞれ適切な条件で充電することによって、結果的に得られる二次電池体間の電気容量のばらつきを低減させる均等化充電が実現できる。一方で、複数の二次電池体を同時に充電する際に、二次電池体間の電気容量のばらつきをより直接的に抑制することもできる。すなわち、電気容量の異なる複数の二次電池体を定電流源発生回路に接続した状態では、電池電圧の高い二次電池体に流れ込む電流量が低減し、電池電圧の低い二次電池体に流れ込む電流量がその分増えるため、結果的に電池電圧の低い二次電池体に多く充電されることとなって、電気容量の差が小さくなる方向に左右する。
 また、充電用の電力を供給する電源側が回生動作可能な場合は、電気容量の大きい二次電池体を放電して、定電流源発生回路側に回生し、結果的にこの放電エネルギーを他の二次電池体の充電に振り向けることもでき、これによってさらに電気容量の差を低減できる。このような回生動作を、本明細書では均等化回生とも呼ぶ。例えば、ハイブリッド車やプラグインハイブリッド車のような回生動作を行う電源を用いる場合には、このような回生動作によって二次電池体間の均等化を図ることができるため、特に有利となる。なお回生動作は、二次電池体を単独で定電流源発生回路に接続している場合、及び複数の二次電池体を定電流源発生回路に接続している場合のいずれでも実現できることはいうまでもない。
 このようにして、二次電池体間の電気容量のばらつきを充電の段階で抑制することで、すべての二次電池体を可能な限りの電気容量まで適切に充電でき、さらに一部の二次電池体が過充電される事態を回避し、二次電池体を保護して安定的に長期にわたって高い信頼性で利用できる。またこの構成によれば、充電と容量ばらつき調整とを同じ回路で実現できるので、回路構成の簡素化と共に処理の簡素化を図ることができる。
(チョッパ回路)
 さらに充電回路の詳細な回路例を、実施例1として図10に示す。この図に示す定電流源発生回路20は、リアクトルLと、このリアクトルLと直列に接続された充電用スイッチ22とで構成されたチョッパ回路を備えている。充電用スイッチ22は、外部電源EPとリアクトルLに対して直列に接続されており、充電用スイッチ22のONによって、外部電源EP、リアクトルL、充電用スイッチ22を接続した閉回路を構成する。また充電用スイッチ22には半導体スイッチング素子が使用される。後述する図11に示す具体例では、半導体スイッチング素子としてIGBTを使用している。IGBTはリアクトルLが二次電池体10に対して電力を供給できる向きに(図10において右向き)電力エネルギーを蓄積できるよう、リアクトルLの電流を制御することができる。
 またリアクトルLは、供給出力端子OT及び供給入力端子ITの間に接続されており、直列接続された充電用スイッチ22のON/OFFによって、外部電源EPから供給される電力のチョッピング動作を実現する。すなわち、充電用スイッチ22をONさせると、外部電源EPからの電力がリアクトルLにのみ供給され、この状態で充電用スイッチ22をONからOFFに切り替えると、リアクトルLに蓄えられた電力エネルギーが放出され、充電経路を介して二次電池体10側に流れ込み、充電が行われる。このような充電用スイッチ22のON/OFF動作を繰り返すことで、断続的な充電電流が二次電池体10に供給され、パルス充電が実現される。充電用スイッチ22のON/OFFは、制御回路40によって行われる。
 この例では定電流源発生回路20は、昇圧チョッパ回路で構成されている。昇圧チョッパ回路は、昇圧チョッピング動作により低い電圧の外部電源EPを用いて二次電池体10を高い電圧に充電できる。ただ、この構成に限られず、例えば昇降圧チョッパ回路を利用することもできる。定電流源発生回路20を昇圧チョッパとして機能させる場合は、外部電源EP(例えば20V)よりも負荷、すなわち充電対象として選択された二次電池体10の電池電圧(例えば24V)が高いことが条件となる。図10の例では、定電流源発生回路20は昇降圧チョッパとして機能するため、このような電圧値の制限が無く、より柔軟に利用できる。また図10の回路例において、選択スイッチ31にサイリスタ32を使用した回路例を、図11に示す。この構成によれば、定電流源発生回路20として利用する昇圧チョッパのOFF期間を利用して、選択スイッチ31として利用するサイリスタをOFFできるので、自己消弧能力のないサイリスタの消弧を、特別な転流回路無しで実現することができ、極めて好適にサイリスタを利用した充電制御が実現できる。
 なお図2、図10等の例では、一の制御回路40で、定電流源発生回路20の制御と、選択スイッチ切替回路30の制御を行っている。ただ、この構成に限られるものでなく、例えば定電流源発生回路20の制御を行う定電流源発生回路用制御回路と、選択スイッチ切替回路30の制御を行う選択スイッチ回路用制御回路を、個別に設けることも可能であることはいうまでもない。
(実施例2 均等化充電及び均等化回生)
 また、図10などでは主に均等化充電を行う回路例を示したが、上述の通り回生動作によって均等化をより進めた均等化回生も実現できる。このような均等化充電及び均等化回生を実現可能な電源装置の回路例を、実施例2として図12の回路図に示す。なお以下の例でも、説明を簡素化するため二次電池体10を3つ(10A~10C)のみ図示して、他の二次電池体の図示を省略しているが、二次電池体の接続数が任意に設定できることは上述の通りである。またこの図に示す電源装置200は、外部電源EPとして、回生動作可能な電源(例えば急速充電ステーションに設置されたリチウムイオン電池)を接続している。
(回生用スイッチ24)
 図12の定電流源発生回路20は、図10の充電用スイッチ22に加え、回生用スイッチ24をリアクトルLに接続している。回生用スイッチ24も充電用スイッチ22と同様、IGBTなどの半導体スイッチング素子が利用できる。回生用スイッチ24は充電用スイッチ22と逆向きに、二次電池体10側から放電される方向に(図12において左向き)電流がリアクトルLを流れるよう、回生用スイッチ24の通電方向を規定する。このため、回生用スイッチ24に整流機能を持たせるか、あるいは回生用スイッチ24と直列に、ダイオードなどの整流素子を回生用の放電経路に接続する。図12の回路例において、選択スイッチ31としてサイリスタ32を、充電用スイッチ22及び回生用スイッチ24としてIGBTを使用した回路例を、図13に示す。このように充電用スイッチ22及び回生用スイッチ24に整流素子を用いる場合、整流素子は不要とできる。また、各IGBTのエミッタ-コレクタ間に、それぞれ逆並列にダイオードを接続する。これらのダイオードは、リアクトルLに蓄積したエネルギーを二次電池体10へ充電、あるいは外部電源EPへ回生するための経路として、逆耐圧特性に劣るIGBTを保護する働きがある。この図に示す電源装置200の充電動作において、外部電源EPの外部電源電圧EEPと二次電池体10の電池電圧E10との関係は、二次電池体10と定電流源発生回路20とが個別接続される場合、EEP<E10となる。一方、回生動作においては、二次電池体10の直列接続数をn個とし、各二次電池体の電圧ばらつきを無視すると、EEP>E10*nとなる。このように、充電動作時は、各電池電圧より低い外部電源電圧で充電可能であり、さらに回生動作により外部に電力を取り出す際においても、外部電源電圧は直列接続された電池電圧体の総電圧以上に高いことが必要となるため、逆にいえば低い電池電圧でも回生動作を行うことが可能となり、二次電池体を用いた効果的な充放電が実現される。
(実施例3)
 また回生用スイッチ24は、図12の接続例に示すように、リアクトルLの両端にそれぞれ接続する構成に限られず、例えば実施例3に係る図14に示すように、リアクトルLの一端で分岐させるように接続することも可能であることはいうまでもない。また図14の電源装置300の回路例において、選択スイッチ31にサイリスタ32を、充電用スイッチ22及び回生用スイッチ24にIGBTを使用した回路例を、図15に示す。
 また図示しないが、これらの図に示す回生用スイッチ24も制御回路40に接続されており、制御回路40によってON/OFFを制御される。図12や図14に示す電源装置200、300では、二次電池体10に対して充電用スイッチ22を介して充電を行う際は、回生用スイッチ24はOFFとなるよう制御回路40によって設定される。一方、二次電池体10の余剰電力を外部電源EP側に放電する回生動作時には、逆に放電用スイッチがOFFに切り替えられ、回生用スイッチ24がONとなるように、制御回路40によって切り替えられる。これにより、二次電池体を放電させて電気容量を低減できると共に、放電エネルギーを外部電源に供給して再利用することができ、効率よくエネルギーを利用できる利点が得られる。特に電気自動車やハイブリッド自動車のような、高いエネルギー効率が求められる用途には、極めて有効となる。
(実施例4)
 逆に回生動作を行わない場合は、実施例4として図16に示すような回路構成を採用できる。この例に示す電源装置400は、図10の充電用スイッチ22に加え、リアクトルLの一端(図において右側)と供給出力端子OTとの間に、充電用ダイオード23を設けている。充電用ダイオード23は二次電池体10側から外部電源EP側に電流が流れ込むことを阻止するため、この回路では回生動作は禁止され、均等化充電のみが行われることとなる。図16の回路例において、選択スイッチ31にサイリスタ32を、充電用スイッチ22にIGBTを使用した例を、図17に示す。
(実施例5)
 また図16の回路例に限られず、実施例5として、例えば図18のような構成を採用することもできる。図18に示す電源装置500の例では、リアクトルLの端部に接続する充電用ダイオード23を、充電用スイッチ22と同じ側でなく、別の端部に接続している。この構成でも、同様に充電用ダイオード23が二次電池体10側から外部電源EP側への電流の流入を禁止できる。図18の回路例において、選択スイッチ31にサイリスタ32を、充電用スイッチ22にIGBTを使用した例を図19に示す。
(実施例6)
 さらに一方で、均等化回生動作のみを行うための回路例を、実施例6として図20に示す。この回路例に示す電源装置600では、充電用スイッチを設けず、代わりに回生用スイッチ24と、回生用ダイオード25をリアクトルLの一端に接続している。図20の回路例において、選択スイッチ31にサイリスタ32を、回生用スイッチ24にIGBTを使用した回路例を、図21に示す。
(実施例7)
 また実施例7として、図22に他の電源装置700の回路例を示す。実施例7では、この図22に示すように回生用スイッチ24の接続位置を、リアクトルLの端部に対して回生用ダイオード25と同じ側でなく、別の端部側に接続している。この構成でも、回生用スイッチ24が二次電池体10側から外部電源EP側への回生動作を許容しつつ、回生用ダイオード25が充電動作を禁止する。また図22の回路例において、選択スイッチ31にサイリスタ32を、回生用スイッチ24にIGBTを使用した回路例を、図23に示す。
(電圧検出手段26)
 さらにリアクトルLの両端には、リアクトル両端電圧を検出するための電圧検出手段26を備えている。この電圧検出手段26は、例えば差動アンプや抵抗器などにより構成できる。電圧検出手段26は、定電流源発生回路20を選択スイッチ切替回路30によって任意の二次電池体10と接続した状態で、リアクトル両端電圧を検出することで、二次電池体10の電圧を検出することができる。例えば、図10の回路例においては、制御回路40の制御により選択スイッチ31A及び選択スイッチ31CのみをONとし、他の選択スイッチ31をOFFとしている。この状態で二次電池体10Aを充電すると、リアクトル両端電圧に現れる電圧が二次電池体10の電池電圧と等しくなるため、電圧検出手段26によって二次電池体10の電池電圧を検出できる。また、制御回路40によって充電経路を切り替えれば、各二次電池体10の電池電圧を順次検出できる。このようにして、電圧検出手段26は制御回路40によって各二次電池体10をスキャンして、すなわち時分割で、すべての二次電池体10の電池電圧を測定できる。すなわち、一の電圧検出手段26でもって、複数の二次電池体10の電池電圧を検出でき、しかも二次電池体10の切り替えは、上述した充電用の選択スイッチ31を利用できるため、追加の部品点数が殆ど不要となり、すべての二次電池体10の電池電圧を検出するための回路構成を極めて簡素化できる利点が得られる。
 なお、各二次電池体10の電池電圧の検出は、好ましくは充電の開始前に行う。特に二次電池体10の電池電圧に基づいてSOCを演算することができるので、予め各二次電池体10の残容量を把握した上で、適切な充電電流に調整できる。また、充電中に、適切なタイミング、例えば一定周期で二次電池体10の電池電圧を電圧検出手段26で検出しながら、充電の様子をモニタすることもできる。
 以上のようにして二次電池体10の電池電圧は、充電開始前や、充電中の一定周期など、所定のタイミングで電池電圧が検出される。そして二次電池体10の電池電圧が一定電圧に達したとき、制御回路40は選択スイッチ31をOFFとし、この二次電池に対する充電を終了する。
(タイミングチャート)
 次に、実施例1に係る電源装置の動作を示すタイミングチャートを図24~図25に示す。ここでは、充電用スイッチ22がONのときとOFFのときのサイリスタ32A~32Nの各選択回路と電流経路を示している。また電源装置は、一例として電圧検出手段26にサンプルホールド回路SHを接続している。これらの図において、図24(a)~図24(c)は二次電池体10Aに充電を行う様子を示しており、図24(a)は各部の波形を示すタイミングチャートを、図24(b)は充電用スイッチ22がONのときの電流経路を、図24(c)は充電用スイッチ22がOFFのときの電流経路を、それぞれ示している。図24(a)において、インダクタンスLの電圧波形exの矩形波の欄にて(b)で示すように、充電用スイッチ22がONのとき、インダクタンスLへの電流ILが増加し、サイリスタ32Aには電流I32Aが流れなくなりOFFとなる。一方、図24(a)のexの欄にて(c)で示すように充電用スイッチ22がOFFのとき、サイリスタ32Aはゲート信号によりONされて電流I32Aが流れ、インダクタンスLへの電流ILが減少する。なお図24(b)~図24(c)において、サイリスタ32のON状態を黒塗りで、OFF状態を白抜きで、それぞれ示している。充電用スイッチ22がONする度にサイリスタ32AはOFFできる。サイリスタ32Aの電流I32Aは図24(a)に示すようなパルス波形となる。またインダクタンスLの両端の電圧exは、図24(a)に示すように外部電源EPの電圧EPと二次電池体10Aの電圧E10Aが交互に印加される矩形波状となる。さらに電圧検出手段26に対するサンプルホールド動作により、二次電池体10Aの電圧E10Aを検出することができる。
 また図25(a)~図25(e)は二次電池体10A~10Nに充電を行う様子を示している。この図において図25(a)は各部の波形を示すタイミングチャートを、図25(b)は充電用スイッチ22がONのとき、図25(c)は充電用スイッチ22がOFFで二次電池体10Aが選択されているとき、図25(d)は充電用スイッチ22がOFFで二次電池体10Bが選択されているとき、図25(e)は充電用スイッチ22がOFFで二次電池体10Nが選択されているときの電流経路を、それぞれ示している。
 図25(a)においては、二次電池体10Aに対する充電を行う期間を(b)/(c)で示しており、上述した図24の動作が行われる。この期間では、まず図25(b)に示すように充電用スイッチ22がONのとき、インダクタンスLへの電流ILが増加し、サイリスタ32A~32Nには電流は流れなくなりOFFとなる。また図25(c)に示すように充電用スイッチ22がOFFであって二次電池体10Aが選択されているとき、サイリスタ32Aはゲート信号によりONされて電流I32Aが流れ、インダクタンスLへの電流ILが減少する。この間においては、これら図25(b)と図25(c)の動作が繰り返されるため、インダクタンスLの両端の電圧exは、外部電源EPの電圧EPと二次電池体10Aの電圧E10Aが交互に印加される矩形波となる。
 さらに二次電池体10Bに対する充電を行う期間を、図25(a)において(b)/(d)で示す。この(b)/(d)期間においては、上述した(b)/(c)期間と同様、図25(b)に示すように充電用スイッチ22がONのときは、インダクタンスLへの電流ILが増加して、サイリスタ32A~32Nには電流は流れなくなりOFFとなる。そして図25(d)において、充電用スイッチ22がOFFであって、二次電池体10Bが選択されているとき、サイリスタ32Bはゲート信号によりONされて電流I32Bが流れ、インダクタンスLへの電流ILが減少する。この(b)/(d)期間においてインダクタンスLの両端の電圧exは、外部電源EPの電圧EPと二次電池体10Bの電圧E10Bが交互に印加される矩形波となる。
 さらにまた二次電池体10Nに対する充電を行う期間を、図25(a)において(b)/(e)で示す。この(b)/(e)期間においても、上述した(b)/(c)期間や(b)/(d)期間と同様、図25(b)に示すように充電用スイッチ22がONのときは、インダクタンスLへの電流ILが増加して、サイリスタ32A~32Nには電流は流れなくなりOFFとなる。そして図25(e)において、充電用スイッチ22がOFFであって、二次電池体10Nが選択されているとき、サイリスタ32Nはゲート信号によりONされて電流I32Nが流れ、インダクタンスLへの電流ILは減少する。この(b)/(e)期間におけるインダクタンスLの両端の電圧exは、外部電源EPの電圧EPと電圧E10Nが交互に印加される。
 また、図25の例においてもサンプルホールド回路SHのサンプルホールド動作により、サンプルホールド回路SHの出力eBには、選択された各二次電池体の電圧E10A~E10Nが検出できる。なお、電圧検出手段はサンプルホールド回路に限定されず、他の構成も適宜利用できる。
 以上説明したように、本発明によれば、極めて簡単な回路構成で、各二次電池体の均等化充電制御ができるため、高い電圧を必要とする電気自動車や、無停電電源などの直流電圧源を構成する上で、システム構成が極めて簡単化できるとともに、過充放電を起こさないため二次電池体の長寿命化や安全性を高めることができるとともに低コスト化を達成することができる。
 本発明に係る電源装置及び充電回路は、ハイブリッド車やプラグインハイブリッド車、電気自動車などの駆動用電源に好適に利用できる。また車両用電源に限らず、アシスト自転車や電動工具、無停電電源(UPS)、工場の駆動用電源などに利用される大容量の蓄電池バンク等、その他の電源装置にも利用できる。
100、200、300、400、500、600、700…電源装置
10、10A、10B、10C、10D、10N…二次電池体
20…定電流源発生回路
22…充電用スイッチ
23…充電用ダイオード
24…回生用スイッチ
25…回生用ダイオード
26…電圧検出手段
30…選択スイッチ切替回路
31、31A~31H…選択スイッチ
32、32A~32H…サイリスタ
40…制御回路
90…充電状態調整装置
91…単位セル
92…均等充電用コンデンサ
93…サイクリック接続手段
EP…外部電源
OT…供給出力端子
IT…供給入力端子
LD…負荷
PC…正極側充電経路
NC…負極側充電経路
L…リアクトル

Claims (9)

  1.  各々正極と負極を備え、相互に直列接続された複数の二次電池体(10)と、
     前記二次電池体(10)を充電するための電力を供給する供給出力端子(OT)と供給入力端子(IT)を備える定電流源発生回路(20)と、
     前記定電流源発生回路(20)で各二次電池体(10)に対して、個別に異なる充電電流を供給可能な選択スイッチ切替回路(30)と、
    を備え、
     前記選択スイッチ切替回路(30)が、各二次電池体(10)と各々に接続され、該二次電池体(10)を充電する充電経路を個別に構成可能な選択スイッチ(31)と、
     前記複数の選択スイッチ(31)のON/OFFを制御する制御回路(40)と、
    を有し、
     前記制御回路(40)が、前記選択スイッチ(31)のON/OFFを制御することにより、任意の二次電池体(10)に対する充電経路を構成すると共に、他の二次電池に対する充電経路を解除するものであり、
     前記定電流源発生回路(20)は、
      前記供給出力端子(OT)及び供給入力端子(IT)の間に接続されたリアクトル(L)と、
      前記リアクトル(L)と直列に接続され、前記制御回路(40)でON/OFFを制御される充電用スイッチ(22)と、
    で構成されたチョッパ回路を備えており、
     前記チョッパ回路を外部電源(EP)と接続して、前記二次電池体(10)を充電するよう構成してなることを特徴とする電源装置。
  2.  各々正極と負極を備え、相互に直列接続された複数の二次電池体(10)と、
     前記二次電池体(10)を充電するための電力を供給する供給出力端子(OT)と供給入力端子(IT)を備える定電流源発生回路(20)と、
     前記定電流源発生回路(20)で各二次電池体(10)を充電するため、
      各二次電池体(10)の正極と前記供給出力端子(OT)とを各々接続した複数の正極側充電経路(PC)と、
      各二次電池体(10)の負極と前記供給入力端子(IT)とを各々接続した複数の負極側充電経路(NC)と、
     前記正極側充電経路(PC)及び負極側充電経路(NC)に各々設けられた複数の選択スイッチ(31)と、
     前記複数の選択スイッチ(31)のON/OFFを制御する制御回路(40)と、
    を備えることを特徴とする電源装置。
  3.  請求項1又は2に記載の電源装置であって、さらに、
     前記リアクトル(L)の両端電圧を検出する電圧検出手段(26)を備えており、
     前記制御回路(40)が、任意の二次電池体(10)を、該二次電池体(10)と前記リアクトル(L)とを繋ぐ正極側充電経路(PC)及び負極側充電経路(NC)に配置された各選択スイッチ(31)をそれぞれONに切り替えると共に、他の選択スイッチ(31)をOFFに切り替えることで、該二次電池体(10)のみを前記リアクトル(L)と接続させ、これにより該二次電池体(10)の電池電圧を前記電圧検出手段(26)で検出可能に構成してなることを特徴とする電源装置。
  4.  請求項1から3のいずれか一に記載の電源装置であって、
     前記制御回路(40)が、時分割で各二次電池体(10)の電池電圧を測定してなることを特徴とする電源装置。
  5.  請求項1から4のいずれか一に記載の電源装置であって、
     前記制御回路(40)が、任意の複数の二次電池体(10)を同時に充電するよう前記選択スイッチ(31)をON/OFF制御可能に構成してなることを特徴とする電源装置。
  6.  請求項1から5のいずれか一に記載の電源装置であって、
     前記選択スイッチ(31)が、自己消弧能力のない素子であることを特徴とする電源装置。
  7.  請求項1から6のいずれか一に記載の電源装置であって、
     前記選択スイッチ(31)がサイリスタ(32)であることを特徴とする電源装置。
  8.  請求項1から7のいずれか一に記載の電源装置であって、
     前記二次電池体(10)が、複数の電池セルを直列又は並列に接続して構成されてなることを特徴とする電源装置。
  9.  各々正極と負極を備え、相互に直列接続された複数の二次電池体(10)を充電可能な充電回路であって、
     二次電池体(10)を充電するための電力を供給する供給出力端子(OT)と供給入力端子(IT)を備える定電流源発生回路(20)と、
     前記定電流源発生回路(20)で各二次電池体(10)を充電するため、
      各二次電池体(10)の正極と前記供給出力端子(OT)とを各々接続可能な複数の正極側充電経路(PC)と、
      各二次電池体(10)の負極と前記供給入力端子(IT)とを各々接続可能な複数の負極側充電経路(NC)と、
     前記正極側充電経路(PC)及び負極側充電経路(NC)に各々設けられた複数のサイリスタ(32)と、
     前記複数のサイリスタ(32)のON制御を個別に制御可能な制御回路(40)と、
    を備えており、
     前記定電流源発生回路(20)は、
      前記供給出力端子(OT)及び供給入力端子(IT)の間に接続されたリアクトル(L)と、
      前記リアクトル(L)と直列に接続され、前記制御回路(40)でON/OFFを制御される充電用スイッチ(22)と、
    で構成されたチョッパ回路を備えており、
     前記チョッパ回路を外部電源(EP)と接続して、前記二次電池体(10)を充電するよう構成してなることを特徴とする充電回路。
PCT/JP2011/060788 2010-05-11 2011-05-10 電源装置及び充電回路 WO2011142369A2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012514814A JP5794982B2 (ja) 2010-05-11 2011-05-10 電源装置及び充電回路
CN2011800233256A CN102934317A (zh) 2010-05-11 2011-05-10 电源装置及充电电路
KR1020127031700A KR20130079419A (ko) 2010-05-11 2011-05-10 전원장치 및 충전회로

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010109711 2010-05-11
JP2010-109711 2010-05-11

Publications (2)

Publication Number Publication Date
WO2011142369A2 true WO2011142369A2 (ja) 2011-11-17
WO2011142369A3 WO2011142369A3 (ja) 2012-02-02

Family

ID=44914778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060788 WO2011142369A2 (ja) 2010-05-11 2011-05-10 電源装置及び充電回路

Country Status (4)

Country Link
JP (1) JP5794982B2 (ja)
KR (1) KR20130079419A (ja)
CN (1) CN102934317A (ja)
WO (1) WO2011142369A2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107444561A (zh) * 2017-08-16 2017-12-08 二工防爆科技股份有限公司 一种防爆电动自行车
WO2018220900A1 (ja) * 2017-06-01 2018-12-06 三菱電機株式会社 電源装置
JP2021097587A (ja) * 2019-12-13 2021-06-24 北京小米移動軟件有限公司Beijing Xiaomi Mobile Software Co.,Ltd. 充電回路、電子機器、充電方法および装置
JPWO2021192126A1 (ja) * 2020-03-26 2021-09-30
CN113921919A (zh) * 2021-08-25 2022-01-11 东风汽车集团股份有限公司 电池***及车辆
JP2022008794A (ja) * 2018-12-21 2022-01-14 オッポ広東移動通信有限公司 複数のセルの充電方法、装置及び電子機器
JP7020737B1 (ja) 2021-09-16 2022-02-16 大西 徳生 充電制御装置
JP7513402B2 (ja) 2020-02-04 2024-07-09 矢崎総業株式会社 電池制御ユニットおよび電池システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112550073B (zh) * 2020-11-30 2022-03-08 嘉兴东大智宇科技有限公司 一种电动叉车用动力电池主动均衡***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147734A (ja) * 1993-11-25 1995-06-06 Fuji Elelctrochem Co Ltd 直列電池の充電装置
JP2000324710A (ja) * 1999-05-17 2000-11-24 Okamura Kenkyusho:Kk 直並列切り換え型キャパシタ蓄電装置
JP2009148149A (ja) * 2007-11-20 2009-07-02 Nissin Electric Co Ltd 昇降圧チョッパ回路の制御方法
JP2009296820A (ja) * 2008-06-06 2009-12-17 Toyota Motor Corp 二次電池の充電制御装置および充電制御方法ならびに電動車両

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005160251A (ja) * 2003-11-27 2005-06-16 Ntt Power & Building Facilities Inc 電力供給システム
CN101645610A (zh) * 2009-09-03 2010-02-10 深圳市晖谱能源科技有限公司 一种电池均衡充电装置及方法
CN101640430B (zh) * 2009-09-07 2011-09-14 清华大学 车用动力电池动态均衡装置及动态均衡方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147734A (ja) * 1993-11-25 1995-06-06 Fuji Elelctrochem Co Ltd 直列電池の充電装置
JP2000324710A (ja) * 1999-05-17 2000-11-24 Okamura Kenkyusho:Kk 直並列切り換え型キャパシタ蓄電装置
JP2009148149A (ja) * 2007-11-20 2009-07-02 Nissin Electric Co Ltd 昇降圧チョッパ回路の制御方法
JP2009296820A (ja) * 2008-06-06 2009-12-17 Toyota Motor Corp 二次電池の充電制御装置および充電制御方法ならびに電動車両

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018220900A1 (ja) * 2017-06-01 2018-12-06 三菱電機株式会社 電源装置
JPWO2018220900A1 (ja) * 2017-06-01 2019-11-07 三菱電機株式会社 電源装置
CN110651409A (zh) * 2017-06-01 2020-01-03 三菱电机株式会社 电源装置
CN110651409B (zh) * 2017-06-01 2022-12-02 三菱电机株式会社 电源装置
CN107444561A (zh) * 2017-08-16 2017-12-08 二工防爆科技股份有限公司 一种防爆电动自行车
JP2022008794A (ja) * 2018-12-21 2022-01-14 オッポ広東移動通信有限公司 複数のセルの充電方法、装置及び電子機器
JP7075443B2 (ja) 2019-12-13 2022-05-25 北京小米移動軟件有限公司 充電回路、電子機器、充電方法および装置
US11451070B2 (en) 2019-12-13 2022-09-20 Beijing Xiaomi Mobile Software Co., Ltd. Charging circuit, electronic device, charging method and charging device
JP2021097587A (ja) * 2019-12-13 2021-06-24 北京小米移動軟件有限公司Beijing Xiaomi Mobile Software Co.,Ltd. 充電回路、電子機器、充電方法および装置
JP7513402B2 (ja) 2020-02-04 2024-07-09 矢崎総業株式会社 電池制御ユニットおよび電池システム
WO2021192126A1 (ja) * 2020-03-26 2021-09-30 三菱電機株式会社 電源装置及び組電池充電方法
JPWO2021192126A1 (ja) * 2020-03-26 2021-09-30
JP7325613B2 (ja) 2020-03-26 2023-08-14 三菱電機株式会社 電源装置及び組電池充電方法
CN113921919A (zh) * 2021-08-25 2022-01-11 东风汽车集团股份有限公司 电池***及车辆
JP7020737B1 (ja) 2021-09-16 2022-02-16 大西 徳生 充電制御装置
JP2023043692A (ja) * 2021-09-16 2023-03-29 大西 徳生 充電制御装置

Also Published As

Publication number Publication date
KR20130079419A (ko) 2013-07-10
JPWO2011142369A1 (ja) 2013-07-22
CN102934317A (zh) 2013-02-13
WO2011142369A3 (ja) 2012-02-02
JP5794982B2 (ja) 2015-10-14

Similar Documents

Publication Publication Date Title
JP5794982B2 (ja) 電源装置及び充電回路
EP2115850B1 (en) Charge equalization apparatus
KR101081255B1 (ko) 전하 균일 장치
JP3706565B2 (ja) ハイブリッドカー用の電源装置
US8692508B2 (en) Battery voltage monitoring device
KR101124725B1 (ko) 전하 균일 장치
US7061207B2 (en) Cell equalizing circuit
EP2605364A2 (en) Battery pack
US9059588B2 (en) Balance correcting apparatus, electricity storage system, and transportation device
EP2685592A1 (en) Balance correction device and electricity storage system
EP3314718B1 (en) Battery balancing circuit
JP6427574B2 (ja) パワーバッテリーの素子の充電平衡化装置
JP5187406B2 (ja) 補機バッテリ充電装置
US9083188B2 (en) Balance correcting apparatus and electricity storage system
US20150069960A1 (en) Auxiliary Battery Charging Apparatus
US11894702B2 (en) Energy transfer circuit and power storage system
JP2009148110A (ja) 充放電器とこれを用いた電源装置
US20210351598A1 (en) Energy transfer circuit and power storage system
Hoque et al. Voltage equalization for series connected lithium-ion battery cells
Kim et al. Charge equalization converter with parallel primary winding for series connected Lithium-Ion battery strings in HEV
JP5604947B2 (ja) 電源装置及び電圧調整方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180023325.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780626

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012514814

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127031700

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11780626

Country of ref document: EP

Kind code of ref document: A2