WO2011132680A1 - ポリアミド微粒子及びその製造方法並びにそれを用いた光学フィルム及び液晶表示装置 - Google Patents

ポリアミド微粒子及びその製造方法並びにそれを用いた光学フィルム及び液晶表示装置 Download PDF

Info

Publication number
WO2011132680A1
WO2011132680A1 PCT/JP2011/059645 JP2011059645W WO2011132680A1 WO 2011132680 A1 WO2011132680 A1 WO 2011132680A1 JP 2011059645 W JP2011059645 W JP 2011059645W WO 2011132680 A1 WO2011132680 A1 WO 2011132680A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
fine particles
light
temperature
optical film
Prior art date
Application number
PCT/JP2011/059645
Other languages
English (en)
French (fr)
Inventor
初 青野
中山 喜美男
高橋 淳也
亮 崎本
達也 庄司
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to KR1020127030296A priority Critical patent/KR20130066618A/ko
Priority to CN201180019884XA priority patent/CN102869706A/zh
Priority to JP2012511672A priority patent/JP5641044B2/ja
Priority to BR112012026755A priority patent/BR112012026755A2/pt
Priority to US13/641,395 priority patent/US20130038822A1/en
Priority to EP11772015A priority patent/EP2562204A1/en
Publication of WO2011132680A1 publication Critical patent/WO2011132680A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/14Powdering or granulating by precipitation from solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to polyamide fine particles having excellent depolarization properties, a method for producing the same, an optical film using the same, and a liquid crystal display device.
  • liquid crystal display devices are thin, light, and have high image quality and are capable of competing with CRT, and multi-color and high-definition liquid crystal displays are on the market.
  • the driving principle of these liquid crystal display devices includes TFT method, MIM method, STN method, TN method, etc., but in any method, display light is emitted as linearly polarized light using a set of polarizing plates, Therefore, the light reaching the observer is linearly polarized light.
  • a polarizing filter or polarizing glasses may be used as a technique for reducing eye strain caused by long-term use of a liquid crystal display such as a personal computer.
  • a polarizing filter or polarizing glasses may be used as a technique for reducing eye strain caused by long-term use of a liquid crystal display such as a personal computer.
  • light emitted from a liquid crystal screen is linearly polarized light.
  • the angle of the polarizing filter or the polarizing glasses is inclined, the amount of light is remarkably reduced, so that it is not visible when it is severe, or the way of viewing is different on the left and right.
  • Patent Document 1 a polymer having an amorphous structure
  • Patent Document 2 a commercially available PET film having birefringence
  • Patent Document 3 a deflection canceling plate using a quartz plate
  • Patent Document 5 discloses that a uniform solution is temporarily formed by mixing a solution composed of polyamide and its solvent, a non-solvent of polyamide, and water. Later, a method for producing polyamide particles by precipitating a polymer is disclosed.
  • Patent Documents 6 to 8 disclose a temperature-induced phase separation method in which polyamide, which is a crystalline polymer, is dissolved in a solvent such as high-temperature ethylene glycol and the solution is cooled to obtain polyamide fine particles. .
  • each member constituting the backlight of the liquid crystal display device has been devised to suppress the loss of light and improve the light utilization efficiency, such as adopting a material with high transmittance.
  • the polarizing film introduced into the liquid crystal element portion is usually composed of iodine-based or dichroic dyes, 50% of natural light is transmitted, but 50% is absorbed, and the light use efficiency is increased. The problem is that it is low and the screen becomes dark.
  • Patent Document 10 discloses a reflective polarizer display in which stretched films having different refractive indexes are multilayered. According to this, the light from the backlight passes through the prism sheet and then enters the brightness enhancement film.
  • the brightness enhancement film is composed of a lower diffusing film, a reflective polarizer layer (DBEF layer), and an upper diffusing film layer.
  • the reflective polarizer layer transmits the first polarization direction component of incident light and is perpendicular thereto.
  • the second polarization direction is reflected with high efficiency.
  • the reflected second polarization component is uniformly randomized into the first component and the second component by scattering and reflection of light in the optical cavity, thereby transmitting the reflected polarizer again and reusing the light. It is said that the brightness of the liquid crystal display can be improved.
  • Patent Documents 11 to 13 disclose a liquid crystal display device that reuses a polarized component reflected by the same idea.
  • Patent Document 4 discloses a filter having a depolarizing function using polyamide porous fine particles.
  • light diffusibility can also be imparted by controlling the refractive index difference between the polyamide particles and the binder resin.
  • JP 2003-185821 A Japanese Patent Laid-Open No. 10-10522 JP 2010-091655 A International Publication No. 2007/119592 JP 2007-204767 A JP-A-8-12765 US Pat. No. 2,639,278 JP 2006-328173 A JP-A-6-308496 JP 2004-004699 A JP 2000-221507 A JP 2001-188126 A Japanese Patent Laid-Open No. 04-184429
  • the optical filter described in Patent Document 4 has a depolarizing ability that converts linearly polarized light into non-polarized light that is close to natural light, light transmission with the film sandwiched between polarizing plates oriented in crossed Nicols.
  • the rate was 10% or less at a wavelength of 550 nm, and the conversion efficiency was not satisfactory in practice. Therefore, the present invention is capable of converting polarized light into non-polarized light close to natural light with high efficiency and without color change, and also has the effect of uniformly diffusing light from the light source and its production It is an object to provide a method, an optical film using the method, and a liquid crystal display device.
  • the present inventors have conducted intensive studies, and as a result, by using polyamide fine particles having a spherulite structure and having adjusted crystallite size and crystallinity, polarized light is close to natural light. It has been found that an optical film and a liquid crystal display device can be obtained that can be converted into non-polarized light with high efficiency and without color change, and also have the effect of uniformly diffusing the light of the light source. . That is, the present invention relates to a polyamide fine particle characterized by having a crystallite size by wide-angle X-ray diffraction of 12 nm or more and a crystallinity by DSC of 50% or more and having a spherulite structure.
  • the present invention also relates to an optical film having a resin layer containing the polyamide fine particles.
  • the present invention is a liquid crystal display device comprising a light source device, a rear polarizing plate, a liquid crystal cell, and a front polarizing plate, wherein the optical surface is disposed between the front surface of the front polarizing plate or the back surface of the rear polarizing plate and the light source device.
  • the present invention relates to a liquid crystal display device having a film.
  • the present invention also provides a uniform polyamide by mixing and heating the polyamide (A) and a solvent (B) that acts as a good solvent at high temperatures and as a non-solvent at low temperatures. After preparing the solution, the polyamide solution and the low-temperature solvent (C) were mixed with stirring within 3 minutes until the temperature became 20 to 80 ° C. lower than the phase separation temperature of the polyamide solution, and the temperature was maintained.
  • the present invention relates to a method for producing polyamide fine particles, characterized in that polyamide is deposited by standing as it is.
  • polarized light can be converted into non-polarized light that is close to natural light with high efficiency and without color change, and also has the effect of uniformly diffusing light from the light source.
  • a polyamide fine particle, a method for producing the same, an optical film using the same, and a liquid crystal display device can be provided.
  • FIG. 6 is a scanning electron micrograph of polyamide fine particles used in Comparative Example 6.
  • FIG. It is the graph which showed the wavelength dependence of the light transmittance of the optical film and the quarter phase difference plate (comparative example 8) which were each produced in Example 11 and the comparative example 7.
  • the present invention relates to a spherical or substantially spherical spherulite structure which is a crystal structure peculiar to a crystalline resin such as polyamide, a spherulite structure having a bulge on one side partially missing and a defect on the other side (C type) , A ball-like shape), or a spherulite structure (dumbbell shape) close to a deficient axial crystal and a highly crystalline polyamide fine particle having a specific crystallite size and crystallinity.
  • the polyamide fine particles according to the present invention preferably have a porous structure, have a relatively uniform particle diameter and particle shape, and have higher depolarization ability than conventional polyamide fine particles. Therefore, these fine particles can be used as high-performance depolarized light diffusing materials for liquid crystal display display optical filters and backlights.
  • the spherulite structure is determined by observing the cross section of the particle with a scanning or transmission electron microscope and determining whether or not the polyamide fibrils grow radially from the vicinity of the central core. Can do.
  • the polyamide fine particles according to the present invention have a spherical or substantially spherical spherulite structure in which the single particle itself is a crystal structure peculiar to the crystalline polymer as a whole or locally, or a partially deficient spherulite structure ( C-shaped, lenticular shape) or a deficient axial crystal spherulite structure (dumbbell shape).
  • the spherulite structure is preferable because the ability to depolarize is increased.
  • grains of these various structures may be sufficient.
  • Single particles themselves have a global or local spherulitic structure means that polyamide fibrils grow three-dimensionally or radially from single or multiple cores near the center of a single particle.
  • the polyamide fine particles according to the present invention have a crystallinity measured by DSC of 50% or more.
  • the crystallinity of polyamide can be obtained by X-ray diffraction, DSC measurement, or density.
  • the DSC measurement is preferred.
  • the degree of crystallinity of the polyamide crystallized from the melt is high, at most about 30%.
  • a low crystallinity is not preferable because the ability to convert linearly polarized light into non-polarized light is reduced.
  • the polyamide fine particles according to the present invention have a crystallite size of 12 nm (nanometers) or more determined from wide-angle X-ray diffraction.
  • the larger the crystallite size the higher the depolarization property.
  • the thickness is less than 12 nm, the depolarization ability tends to decrease.
  • the sphere equivalent number average particle diameter of the polyamide fine particles according to the present invention is preferably 1.0 to 50 ⁇ m, and more preferably 1.0 to 30 ⁇ m.
  • number average particle diameter is smaller than 1.0 ⁇ m, the secondary cohesive force is strong, and the handling operation is deteriorated.
  • it is larger than 50 ⁇ m the film thickness of the optical material containing the particles becomes thick when handled as optical functional particles in electronic material applications, so that it is difficult to reduce the thickness.
  • the polyamide fine particles according to the present invention preferably have a porous structure.
  • the porous structure tends to increase the multiple scattering effect and increase the depolarization ability.
  • the BET specific surface area of the polyamide fine particles according to the present invention is 0.1 to 80 m 2 / g, preferably 3 to 75 m 2 / g, and more preferably 5 to 70 m 2 / g.
  • the specific surface area is lower than 0.1 m 2 / g, the porous property of the obtained porous powder is lowered.
  • 80 m ⁇ 2 > / g it will become easy to aggregate.
  • the average pore diameter of the polyamide fine particles according to the present invention is preferably 0.01 to 0.5 ⁇ m, more preferably 0.01 to 0.3 ⁇ m.
  • the average pore diameter is smaller than 0.01 ⁇ m, the porosity is lowered.
  • the porosity index (RI) of the polyamide fine particles according to the present invention is preferably 5 to 100.
  • the porosity index (RI) is defined as the ratio of the specific surface area of the porous spherical particles to the specific surface area of the smooth spherical particles having the same diameter. If the porosity index is smaller than 5, it is not preferable because the supporting function and adsorption function as porous particles are inferior. When the porosity is greater than 100, it becomes difficult to handle as a powder.
  • the melting point of the polyamide fine particles according to the present invention is preferably 110 to 320 ° C., more preferably 130 to 300 ° C. When the melting point is lower than 110 ° C., the thermal stability in optical applications tends to be lowered.
  • the polyamide fine particles according to the present invention have a ratio of volume average particle diameter (or volume reference average particle diameter) to number average particle diameter (or number reference average particle diameter) of 1 to 2.5 in the particle size distribution. It is preferably 1 to 2.0, more preferably 1 to 1.5. When the ratio of the volume average particle diameter to the number average particle diameter (particle size distribution index PDI) is larger than 2.5, the handling as a powder becomes worse.
  • the polyamide fine particles according to the present invention preferably have a depolarization coefficient Dpc ( ⁇ ) defined by the following formulas 1 and 2 for light having a wavelength of 550 nm of 1.5 / m or more, and 2.0 / m or more. It is more preferable that it is 2.3 / m or more.
  • Dpc depolarization coefficient
  • the extinction coefficient is less than 1.5 / m, it is necessary to add a large number of particles to the optical film, which may cause problems such as an increase in film thickness and an increase in haze.
  • polyamide used for the polyamide fine particles according to the present invention examples include those obtained by ring-opening polymerization of cyclic amide, polycondensation of amino acids, polycondensation of dicarboxylic acid and diamine, and the like.
  • Examples of raw materials used for ring-opening polymerization of cyclic amides include ⁇ -caprolactam, ⁇ -laurolactam, and the like, and raw materials used for polycondensation of amino acids include ⁇ -aminocaproic acid, ⁇ -aminododecanoic acid, ⁇ -
  • Examples of raw materials used for polycondensation of dicarboxylic acid and diamine include dicarboxylic acids such as succinic acid, adipic acid, sebacic acid, 1,4-cyclohexyldicarboxylic acid, and derivatives thereof, ethylenediamine, hexa Examples include diamines such as methylene diamine, 1,4-cyclohexyl diamine, pentamethylene diamine, and decamethylene diamine.
  • These polyamides may be further copolymerized with a small amount of an aromatic component such as terephthalic acid, isophthalic acid, and m-xylylenediamine.
  • polyamide 6 examples include polyamide 6, polyamide 46, polyamide 66, polyamide 610, polyamide 612, polyamide 11, polyamide 12, polyamide 6/66, polynonamethylene terephthalamide (polyamide 9T), polyhexamethylene azide.
  • polyamide / polyhexamethylene terephthalamide copolymer (polyamide 66 / 6T), polyhexamethylene terephthalamide / polycaproamide copolymer (polyamide 6T / 6), polyhexamethylene adipamide / polyhexamethylene isophthalamide copolymer (polyamide 66 / 6I), polyhexamethylene isophthalamide / polycaproamide copolymer (polyamide 6I / 6), polydodecamide / polyhexamethylene terephthalamide copolymer (polyamide) 2 / 6T), polyhexamethylene adipamide / polyhexamethylene terephthalamide / polyhexamethylene isophthalamide copolymer (polyamide 66 / 6T / 6I), polyhexamethylene terephthalamide / polyhexamethylene isophthalamide copolymer (polyamide 6T / 6I) ), Polyhexamethylene terephthal
  • the molecular weight of the polyamide is preferably 1,000 to 100,000, more preferably 2,000 to 50,000, and particularly preferably 3,000 to 30,000. If the molecular weight of the polyamide is too small, the conditions for forming the porous fine particles are narrowed, making the production difficult. On the other hand, if the molecular weight of the polyamide is too large, primary aggregates are easily formed during production, which is not preferable.
  • the polyamide fine particles according to the present invention are manufactured by a method using temperature-induced phase separation.
  • the polyamide (A) used as a raw material is mixed with the solvent (B) and then heated to create a uniform polyamide solution, and the entire polyamide solution is rapidly and uniformly cooled to a predetermined temperature.
  • the solvent (C) can be added with stirring within a predetermined time, and then allowed to stand. At that time, it is most important to stir and mix the two liquids in as short a time as possible, to homogenize them before starting the precipitation (white turbidity), and to stop the stirring and allow the precipitation to proceed under static conditions.
  • a method for producing resin fine particles capable of producing the polyamide fine particles according to the present invention will be described.
  • a crystalline resin (A) typified by polyamide and a solvent (B) that acts as a good solvent at high temperatures and as a non-solvent at low temperatures are mixed and heated.
  • the entire resin solution is uniformly and rapidly cooled to a predetermined temperature by mixing the resin solution and the low-temperature solvent (C) with stirring within a predetermined time.
  • the resin is allowed to stand still while maintaining the temperature.
  • the above production method is uniform by adding a low temperature non-solvent to a high temperature crystalline resin solution, stirring and mixing. Therefore, the temperature in the system becomes uniform in a very short time. For this reason, precipitation from a uniform crystalline resin solution at a reduced temperature is performed from a uniform state in the system at a supersaturated temperature, so that nucleation and nucleation progress almost simultaneously throughout the system. .
  • a spherical or substantially spherical spherulite structure which is a crystalline structure unique to the crystalline resin, or a partially deficient spherulite structure (C Highly crystalline particles having a crystallite size and crystallinity having a crystallite size and crystallinity having a spherulite structure (dumbbell shape) close to a deficient axial crystal, or a shape of a ball or a ball shape).
  • the above production method can produce fine particles with high crystallinity even for crystalline resins other than polyamide.
  • the crystalline resin (A) that can be used is not particularly limited as long as it can have a spherulite structure by crystallization from a molten state, and examples thereof include polyalkylene, polyamide, polyether, polyimide, and liquid crystal polymer. It is done.
  • polyolefins such as polyethylene, isotactic polypropylene, syndiotactic polypropylene, polybutene-1 and poly-4-methylpentene, or crystalline ethylene / propylene copolymers
  • polyesters such as polybutylene terephthalate and polyethylene terephthalate, Syndiotactic polystyrene, isotactic polystyrene, polyphenylene sulfide, polyether ether ketone, wholly aromatic polyamide, wholly aromatic polyester, polytetrafluoroethylene, polyvinylidene fluoride, and other fluororesins, polyethylene succinate, polybutylene succinate And aliphatic polyesters such as polylactic acid, polyvinyl alcohol, polyacetal, and polyether nitrile.
  • the solvent (B) used in the above production method is a non-solvent for the crystalline resin (A) at a low temperature range, but acts as a good solvent at a high temperature, for example, a temperature range below the boiling point of the solvent. preferable.
  • examples of the solvent (B) that acts as a good solvent at high temperatures and a non-solvent at low temperatures include polyamides and cyclic amides.
  • Specific examples of the polyhydric alcohol include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 2,3-butanediol, 1,4-butanediol, and glycerin.
  • Examples of the cyclic amide include those having 4 to 18 carbon atoms constituting the ring. Specific examples include 2-pyrrolidone, piperidone, N-methylpyrrolidone, ⁇ -caprolactam, N-methylcaprolactam, ⁇ -lauryl lactam, and the like.
  • the cycloalkylidene ring may have a substituent that does not inhibit the reaction.
  • substituents examples include an acyclic or cyclic alkyl group such as a methyl group, an ethyl group, and a cyclohexyl group, a vinyl group, Non-cyclic or cyclic alkenyl groups such as cyclohexenyl group, aryl groups such as phenyl group, alkoxy groups such as methoxy group, alkoxycarbonyl groups such as methoxycarbonyl group, and halogen groups such as chloro group.
  • acyclic or cyclic alkyl group such as a methyl group, an ethyl group, and a cyclohexyl group
  • Non-cyclic or cyclic alkenyl groups such as cyclohexenyl group
  • aryl groups such as phenyl group
  • alkoxy groups such as methoxy group
  • alkoxycarbonyl groups such as methoxycarbonyl group
  • halogen groups such as chloro group.
  • an additive for lowering the dissolution temperature may be added.
  • the crystalline resin (A) is polyamide
  • calcium chloride, lithium chloride and the like can be used as an additive for inorganic salts.
  • the above is not limited as long as the metal salt is an inorganic salt that acts on the hydrogen bond portion of the polyamide to promote dissolution.
  • the heating temperature for dissolving the crystalline resin (A) is 10 to 100 ° C. or more higher than the temperature at which the resin starts to dissolve in the solvent (B) (hereinafter sometimes referred to as “phase separation temperature”). Is preferred.
  • phase separation temperature the temperature at which the resin starts to dissolve in the solvent (B)
  • the concentration of the crystalline resin (A) in the resin solution is preferably 0.1 to 30% by weight. If it is lower than 0.1% by weight, the productivity of the particles becomes low. If it is higher than 30% by weight, a resin that cannot be completely dissolved may remain in the solution, and uniform particles may not be obtained.
  • the uniform resin solution is mixed with a low-temperature solvent (C) that acts as a non-solvent for the crystalline resin (A) at least at a low temperature, whereby the entire resin solution is uniformly and rapidly heated to a predetermined temperature. Allow to cool.
  • the solvent (C) that can be used here may be a non-solvent at least at a low temperature and highly compatible with the solvent (B) with respect to the crystalline resin (A), but is the same as the solvent (B).
  • the same composition is preferable.
  • a lot of labor may be required for fractional collection and the like.
  • Examples of the solvent (C) that can be used in the present invention include polyhydric alcohols similar to the solvent (B) and mixtures thereof when the crystalline resin (A) is polyamide. Specifically, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 2,3-butanediol, 1,4-butanediol, glycerin, propylene glycol, dipropylene Glycol, 1,5-pentanediol, hexylene glycol and the like. These may be used as a mixture.
  • the temperature at which the resin solution is cooled is preferably 20 to 80 ° C. lower than the phase separation temperature, more preferably 30 to 70 ° C., and most preferably 40 to 60 ° C.
  • the cooling temperature is less than 20 ° C. from the phase separation temperature, since the supersaturation is low, it takes a long time for the resin to start and finish, and a massive precipitate or aggregate of particles can be obtained. It is not preferable.
  • the temperature is lower than 80 ° C., the resin starts to precipitate due to a local temperature decrease before the two liquids are uniformly stirred and mixed, and thus non-uniform particles and aggregates are obtained.
  • the temperature and amount of the solvent (C) used for cooling are determined by the temperature and volume of the resin solution to be cooled.
  • the temperature difference between the resin solution and the solvent (C) used for cooling is preferably within 150 ° C. If the temperature difference is larger than 150 ° C., the resin starts to be precipitated while the solvent (C) is being added, and thus aggregation and the like occur.
  • the final resin concentration after mixing the two liquids is preferably 20% by weight or less, and more preferably 15% by weight or less. If the resin concentration at the time of precipitation is too high, the particles may aggregate, and if severe, the solution may solidify, which is not preferable.
  • the low temperature solvent (C) may be added to the high temperature resin solution, or the high temperature resin solution is added to the low temperature solvent (C). However, it is preferable to stir until the two liquids are uniform. The stirring time is most preferably within 3 minutes, preferably within 2 minutes, and more preferably within 1 minute. Whether or not the two liquids are sufficiently mixed can be determined by observing the concentration fluctuation due to the difference in refractive index between the two liquids or by keeping the temperature of the liquid mixture constant within ⁇ 1 ° C.
  • Stirring is not particularly limited in shape and apparatus as long as it is a commonly used stirring blade. Further, the rotational speed of the stirring blade is not particularly limited as long as the mixed solution becomes uniform in a short time. In addition, it is preferable to equip with a facility such as a baffle plate that improves the stirring effect more evenly in a shorter time.
  • the baffle plate is preferable because the flow rate of the liquid after stopping stirring is stopped in a short time.
  • the standing time is preferably maintained until the precipitation is completed, specifically 5 minutes to 240 minutes, more preferably 10 minutes to 120 minutes.
  • the sprayed solution can be deposited under a laminar flow in a tube kept at a predetermined temperature.
  • the generated resin fine particles are solid-liquid separated by a method such as decantation, filtration or centrifugation, and are non-solvents of resin at around room temperature in order to remove the solvents (B) and (C) adhering to the surface. It can wash
  • these solvents include monovalent aliphatic alcohols having 1 to 3 carbon atoms such as methanol, ethanol, 1-propanol, 2-propanol, acetone, and methyl ethyl ketone.
  • aliphatic ketones such as acetophenone, propiophenone, butyrophenone, aromatic hydrocarbons such as toluene and xylene, aliphatic hydrocarbons such as heptane, hexane, octane, n-decane, or water. Can do.
  • the resin particles that have been separated and washed can be finally made into a dry powder through a drying process.
  • a drying method general-purpose powder drying methods such as vacuum drying, constant temperature drying, spray drying, freeze drying, and fluidized tank drying can be used.
  • the post-treatment described later is not required, but further performance improvement can be expected by carrying out, so in this drying step, for example, the melting point above the glass transition temperature.
  • a post-treatment may be carried out at a temperature below and under a reduced pressure of 100 Torr or less for annealing for an appropriate time.
  • the polyamide fine particles according to the present invention may be used in addition to the above, for example, a method of granulating a polyamide monomer while polymerizing in a non-solvent, a method of adding a non-solvent to a polyamide solution, and a spray dryer.
  • a method of granulating a polyamide monomer while polymerizing in a non-solvent a method of adding a non-solvent to a polyamide solution
  • a spray dryer a method of adding a non-solvent to a polyamide solution
  • a spray dryer a method of adding a non-solvent to a polyamide solution
  • a spray dryer Prepared by post-treatment to improve the crystallite size and crystallinity of fine particles prepared by known methods such as spray drying polyamide solution, cooling polyamide at high temperature, and cooling the solution itself You can also
  • annealing is appropriately performed at a temperature not lower than the glass transition temperature and not higher than the melting point of the target polyamide under a reduced pressure of 100 Torr or lower.
  • the method of performing for a long time is mentioned.
  • An annealing temperature lower than the glass transition temperature is not preferable because the mobility of the polyamide molecular chain is poor.
  • An annealing temperature exceeding the melting point is not preferable because the polyamide in the particles may melt.
  • the pressure is not less than 100 Torr, the polyamide is undesirably deteriorated by oxidation, causing decomposition, yellowing and the like.
  • the annealing time depends on the annealing temperature, it is usually about 1 to 100 hours.
  • the optical film according to the present invention contains polyamide fine particles produced as described above.
  • a transparent resin is used as a binder resin and particles are dispersed in the transparent resin is formed into a plate shape or a film shape, and (b) the particles are A mode in which a coating film is formed on a substrate together with a binder resin, (c) a mode in which particles are bonded to a substrate with a binder resin as an adhesive, and (d) a mode in which an adhesive layer composed of a binder resin and particles is sandwiched between upper and lower substrates.
  • grains on the transparent substrate like (b) or (c) is preferable.
  • examples of the transparent resin in which particles are dispersed include methacrylic resin, polystyrene resin, polycarbonate resin, polyester resin, and cyclic polyolefin resin.
  • the transparent resin is preferably a material having a refractive index different from that of the (porous) particles in order to increase light diffusibility, and the same kind of material or refractive index as that of the (porous) particles in order to suppress light scattering. Is preferably a close material. Further, in order to adjust the light diffusibility by utilizing the unevenness of the surface, it is possible to further overcoat only the binder resin.
  • the blending ratio of the particles is preferably 0.1 to 60% by weight with respect to the total of the transparent resin and the particles.
  • grains are mixed and disperse
  • the binder used for the transparent paint include acrylic resins, polyester resins, and urethane resins.
  • Transparent substrates such as methacrylic resins, polystyrene resins, polycarbonate resins, polyester resins, cyclic polyolefin resins, and cellulose-based thermoplastic resins can be used as transparent substrates, and inorganic transparent plates such as glass plates are used. Is also possible. Of these, there is no problem even with a polyethylene terephthalate or polycarbonate substrate having a large birefringence.
  • the particles may be directly bonded to a transparent substrate with a binder resin (a known adhesive or the like) as in the embodiment (c).
  • a binder resin a known adhesive or the like
  • the optical film according to the present invention preferably has little angle dependency of the amount of transmitted light with respect to linearly polarized light. That is, the variation coefficient of the amount of transmitted light when the optical film is installed between a polarizer and an analyzer having the same polarization axis and the optical film is rotated in the range of 0 to 360 ° around the optical axis is as follows. It is desirable to be within 20%.
  • the degree of non-polarization (100-V) determined from the Stokes parameters represented by the formulas shown in the following equations 4 and 5 is preferably 10% or more, and more preferably 15% or more. Preferably, 20% or more is particularly preferable.
  • the optical film according to the present invention preferably has a total light transmittance of 50% to 99% and a haze of 1% to 99% or less.
  • the optical film according to the present invention is mounted on the liquid crystal display screen as it is as shown in FIG. 2A, and is mounted between the display surface side polarizing plate and the antireflection layer as shown in FIG. As shown in FIG. 2 (c), it is assumed that the display surface side polarizing plate is mounted between a polarizing layer (PVA, etc.) and a protective layer (TAC, etc.).
  • the optical film according to the present invention may exhibit antireflection and / or antiglare effects without requiring surface post-processing.
  • a transparent substrate may be bonded as a protective film to the outer surface of the optical film.
  • the transparent substrate used is not particularly limited as long as it is transparent, and examples thereof include polycarbonate resin, methacrylic resin, PET resin, polystyrene resin, cyclic polyolefin resin, triacetyl cellulose resin, and transparent glass. It is done. Moreover, it is preferable to perform an antireflection treatment and / or an antiglare treatment and / or a hard coat treatment on the outer surface of these transparent substrates. Furthermore, the method for depositing the polymer film on the transparent substrate is not particularly limited, and a known method can be used.
  • the optical film diffuses light while canceling the polarization before and after the prism sheet, as shown in FIG.
  • the light source device, the rear polarizing plate, the liquid crystal cell, and the front polarizing plate are the basic components.
  • the light source device the polarizing plate, the liquid crystal cell, and the polarizing plate are provided with these four components, and if necessary, an optical compensator, a color filter, etc.
  • Other components may be provided between and before and after these four components.
  • Any of the constituent elements may be well-known and commonly used, and is not particularly limited.
  • the light source device and the liquid crystal cell are arranged on the back polarizing plate and on the front of the display further than the liquid crystal cell. There is a front polarizing plate.
  • the optical film according to the present invention can be disposed further on the front surface of the front polarizing plate.
  • an optical compensator, a color filter, or the like is disposed in front of the liquid crystal cell.
  • the optical film can be disposed in front of the color filter.
  • the optical film may be arranged on either the front side or the back side of the optical compensator.
  • the optical film according to the present invention can be disposed between the light source device and the rear polarizing plate.
  • a diffusion film or the like is disposed behind the liquid crystal cell.
  • the optical film may be disposed on either the front surface or the back side of the diffusion film.
  • the optical film according to the present invention has very little change in the wavelength or color of polarized light and can be converted to non-polarized light that is close to natural light with high efficiency. Therefore, by attaching the optical film according to the present invention to a liquid crystal display device such as a liquid crystal television, a liquid crystal display of a computer or a mobile phone, linearly polarized light emitted therefrom can be converted into non-polarized light. There is no sense of incongruity and dark field can be eliminated. In addition, even when used alone, the eyestrain can be reduced because light can be gently dispersed. Moreover, the antireflection function which prevents the reflection of a fluorescent lamp etc. can be provided by adjusting the refractive index difference between particle
  • the optical film according to the present invention can amplify the transmission polarization component of the reflection polarizer with high efficiency by easily randomizing the reflection polarization component from the reflection polarizer together with the light diffusion effect. Therefore, by using the optical film according to the present invention for a liquid crystal display device or the like, the polarization component transmitted through the liquid crystal element portion can be increased, and the luminance can be improved. In addition, even when the light component emitted from the light source device includes a polarization component due to the influence of the light source, the prism sheet, or the like, the influence of luminance unevenness due to the birefringence of the substrate of the diffusion sheet can be reduced.
  • the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
  • the degree of crystallinity of polyamide fine particles, crystallite size, average particle diameter, specific surface area, average pore diameter, porosity, porosity, spherulite structure, depolarization ability, depolarization degree of optical film, total light Measurements of transmittance (T), haze (H), transmitted light amount, and the like were performed as follows.
  • the degree of crystallinity was measured by DSC (differential scanning calorimeter). Specifically, in a nitrogen stream at a flow rate of 40 ml / min, the heat of crystal fusion determined from the area of the endothermic peak at a temperature increase rate of 10 ° C./min and a temperature range of 120 to 230 ° C. and the heat of crystal fusion of a known polyamide It calculated
  • the heat of fusion of polyamide 6 is R.V. It was set to 45 cal / g according to the description of Vieweg et al., Kunststoff IV polyamide, page 218, Carl Hanger Verlag, 1966.
  • the average particle size and particle size distribution were measured as an average value of 100,000 fine particles using a Coulter counter.
  • the number average particle size (Dn) is represented by the following formula 8
  • the volume average particle size (Dv) is represented by the following formula 9
  • the particle size distribution index (PDI) is represented by the following formula 10.
  • the average pore diameter was measured with a mercury porosimeter. The average pore diameter was determined in the measurement range of 0.0036 to 14 ⁇ m.
  • the porosity P (porosity) of the polyamide porous fine particles represents the ratio between the volume of the polyamide in one particle and the volume of the space (expressed by the following formula 11). That is, if it is set as the intra-particle cumulative pore volume (P 1 ), it is expressed by the following equation (12).
  • the intra-particle cumulative pore volume is calculated, and the intra-particle porosity is calculated according to the formula shown by the following equation (13).
  • the density ⁇ of the polyamide fine particles was obtained from the crystallinity ⁇ , the crystal density ⁇ c, and the amorphous density ⁇ a obtained by DSC.
  • the crystal density ( ⁇ c) of the polyamide 6 was 1.23 cm 3 / g
  • the amorphous density ( ⁇ a) was 1.09 cm 3 / g.
  • the degree of porosity (RI) of the polyamide fine particles can be expressed by the ratio of the specific surface area value Sp 0 when the spherical particles are assumed to have the same particle diameter and the BET specific surface area Sp in the case of the porous fine particles. And 15 is obtained.
  • the debiasing coefficient in the following examples is at a wavelength of 550 nm unless otherwise specified.
  • the degree of depolarization (DODP) was calculated from the equation shown in Equation 3.
  • the degree of depolarization in the following examples is at a wavelength of 550 nm unless otherwise specified.
  • a halogen lamp fiber light source, polarizer and analyzer, slit, and detector are arranged on a straight line with the central axis of the light source aligned, and the polarizer and analyzer are aligned with the polarization axis.
  • An optical film to be measured was placed between the analyzers, and the transmitted light intensity was measured when the optical film was rotated in steps of 0 to 360 ° and 5 ° around the optical axis.
  • a schematic diagram of the measuring apparatus is shown in FIG.
  • the polarization state of light can be described by four Stokes parameters S 0 to S 3 .
  • S 0 is the incident light intensity
  • S 1 is the dominant component of the horizontal linearly polarized light component
  • S 2 is the priority component of the 45 ° linearly polarized light component
  • S 3 is the Stokes parameter indicating the priority component of the clockwise circularly polarized light component. It is represented by the formula shown by 5.
  • the ratio of the intensity of completely polarized light to the incident intensity S 0 is defined as the polarization degree V, and is expressed by the following equation (19).
  • V 100%, all the emitted light can be described by the polarization component, and if the value of V is low, it indicates that there are random components that cannot be described by the polarization component. If the random polarization component is non-polarized, the degree of non-polarization is described by (100-V).
  • Total light transmittance of optical film, haze The total light transmittance (T) and haze (H) were measured according to JIS K7361-1 and JIS K7136 using a Nippon Denshoku Industries haze meter NDH5000.
  • the luminance was measured using a luminance meter LS-110 manufactured by Konica Minolta and a backlight unit of a commercially available 32-inch liquid crystal television.
  • the backlight unit is composed of a light source LED, a diffuser plate, two prism sheets, and a reflective polarizer (DBEF) from the bottom, and a configuration in which an optical film is mounted between the prism sheet and the reflective polarizer is A.
  • Prism A state in which an optical film was mounted between the sheet and the diffusion film was designated as configuration B.
  • the absorption polarizing plate was further disposed on the upper surface of the reflective polarizer (DBEF) with the brightest surface, and the luminances of Configuration A and Configuration B were measured.
  • Example 1 After mixing polyamide 6 (manufactured by Ube Industries Co., Ltd .: molecular weight 13,000) with glycerin in a container so that the weight concentration of polyamide is 20% by weight, the temperature of the solution is introduced while introducing nitrogen gas into the system. Was raised, the polyamide started to dissolve at 180 ° C., and this temperature was taken as the phase separation temperature. The temperature was further raised and dissolved with heating until stirring at 200 ° C. to obtain a homogeneous solution. To this solution, 80 ° C. glycerin was added with stirring within 1 minute until 140 ° C. ⁇ 1 ° C., 40 ° C. lower than the phase separation temperature, and further stirred for 20 seconds.
  • polyamide 6 manufactured by Ube Industries Co., Ltd .: molecular weight 13,000
  • the number average particle size of the obtained particles was 11.5 ⁇ m, the volume average particle size was 16.4 ⁇ m, and the PDI was 1.4, which was a relatively uniform particle size.
  • the crystallinity was 51.9%, the crystallite size was 13.9 nm, the specific surface area was 8.4 m 2 / g, and the average pore diameter was 14.2 nm.
  • the depolarization coefficient of the particles was 2.85 / m, and the degree of depolarization of the polyamide fine particle dispersion sheet was 20.1%.
  • the measurement result of the light transmittance of the polyamide fine particle-dispersed sheet is shown in FIG.
  • the obtained polymer particles were observed with a scanning electron microscope, they were relatively uniform spherical porous particles having a number average particle diameter of 10.0 ⁇ m and a volume average particle diameter of 13.8 ⁇ m.
  • An SEM image of the obtained particles is shown in FIG.
  • the obtained particles had an average pore diameter of 56.8 nm, a crystallite size of 11.2 nm, PDI 1.4, a specific surface area of 21.4 m 2 / g, a porosity index RI42.1, and a crystallinity of 56%.
  • the depolarization coefficient of the particles was 1.11 / m, and the degree of depolarization of the polyamide fine particle dispersion sheet was 8.6%.
  • the measurement result of the light transmittance of the polyamide fine particle-dispersed sheet is shown in FIG.
  • Example 2 In Example 1, a glycerin solution was prepared so that the weight concentration of polyamide was 2% by weight, and then glycerin at 80 ° C. was stirred in this solution until it became 130 ° C. ⁇ 1 ° C., which was 50 ° C. lower than the phase separation temperature. Then, the mixture was further stirred for 20 seconds, and after confirming that there was no concentration fluctuation, it was allowed to stand in an oil bath at 130 ° C. As a result, the solution began to become cloudy after about 25 seconds after standing, and a uniform precipitate of polyamide 6 was obtained without any clumps of precipitates formed in the container. The obtained precipitate was washed with methanol, dried at room temperature, and then observed with SEM.
  • substantially spherical porous particles were observed.
  • TEM transmission electron microscope
  • the number average particle diameter of the obtained particles was 15.1 ⁇ m, and the volume average particle diameter was 17.6 ⁇ m.
  • the crystallinity was 58.6%, the crystallite size was 12.4 nm, and the specific surface area was 7.6 m 2 / g.
  • the debiasing coefficient of the particles was 2.81 / m.
  • Example 3 Polyamide 6 (manufactured by Ube Industries, Ltd .: molecular weight 13,000) was mixed with ethylene glycol in a container so that the weight concentration of polyamide was 10% by weight, and then nitrogen gas was introduced into the system, When the temperature was raised, the polyamide started to dissolve at 150 ° C., and this temperature was taken as the phase separation temperature. The temperature was further raised, and the mixture was heated and dissolved with stirring until 180 ° C. to obtain a homogeneous solution. To this solution, ethylene glycol at 40 ° C. was added within 1 minute while stirring until 110 ° C. ⁇ 1 ° C., which was 40 ° C. lower than the phase separation temperature, and further stirred for 20 seconds.
  • the obtained particles had a crystallinity of 52.3%, a crystallite size of 14.3 nm, a specific surface area of 5.1 m 2 / g, and an average pore diameter of 55 nm.
  • the depolarization coefficient of the particles was 2.59 / m, and the degree of depolarization of the polyamide fine particle dispersion sheet was 18.9%.
  • the measurement result of the light transmittance of the polyamide fine particle-dispersed sheet is shown in FIG.
  • Example 3 The polyamide 6 precipitate in Example 3 was kept on a stainless steel vat kept at 75 ° C. for 30 minutes with a liquid film having a thickness of 1.5 mm to obtain a precipitate of polyamide 6. The obtained precipitate was washed several times with methanol, dried at room temperature, and then observed for particle size and SEM.
  • the obtained polyamide fine particles had a number average particle size of 9.8 ⁇ m, a volume average particle size of 14.0 ⁇ m, an average pore size of 19 nm, a PDI of 1.43, a specific surface area of 3.0 m 2 / g, a crystallinity of 47.5%, a crystallite The size was 12.6 nm.
  • the depolarization coefficient of the particles was 1.01 / m, and the degree of depolarization of the polyamide fine particle dispersion sheet was 7.7%.
  • the measurement result of the light transmittance of the polyamide fine particle-dispersed sheet is shown in FIG.
  • Example 4 In Example 3, after preparing a solution with ethylene glycol so that the weight concentration of the polyamide is 2% by weight, stirring the ethylene glycol at 20 ° C. until it becomes 100 ° C. ⁇ 1 ° C., which is 50 ° C. lower than the phase separation temperature. The mixture was added within minutes, mixed, and further stirred for 20 seconds. After confirming that there was no concentration fluctuation, the mixture was allowed to stand in an oil bath at 100 ° C. As a result, after standing, the solution began to become cloudy after 80 seconds, and a uniform precipitate of polyamide 6 was obtained without generating any massive precipitate in the container.
  • the obtained precipitate was washed several times with methanol, dried at room temperature, and then subjected to observation with a scanning electron microscope. As a result, axial-shaped (dumbbell-shaped) porous particles were observed. When the particles were observed with a polarizing microscope, it was confirmed that the particles had a bright field even under crossed Nicols and had a spherulitic structure.
  • the number average particle diameter of the obtained particles was 18.2 ⁇ m, and the volume average particle diameter was 21.6 ⁇ m.
  • the specific surface area was 6.4 m 2 / g, the crystallinity was 56.6%, and the crystallite size was 12.9 nm.
  • the debiasing coefficient of the particles was 2.52 / m.
  • Example 4 In Example 3, after preparing a solution with ethylene glycol so that the weight concentration of polyamide was 10% by weight, stirring was stopped, and the resulting solution was cooled in air at a cooling rate of 1.6 ° C./min. However, film-like precipitates were observed on the surface of the solution at around 140 ° C., and when the cooling was continued, gelation progressed from around 120 ° C. to the entire solution, and the solution was completely solidified at 115 ° C. The obtained solid was soft and easily collapsed. After the solidified material was broken, washed with methanol and dried at room temperature, the resulting powdery precipitate was subjected to SEM observation and seemed to be porous and connected with slug. The structure was observed. The polyamide 6 powder thus obtained had a poor tactile sensation, and large massive precipitates were also observed. The crystallinity was 52.0% and the crystallite size was 10.8 nm. The debiasing coefficient of the particles was 1.12 / m.
  • Example 5 In Example 3, after preparing a solution with ethylene glycol so that the weight concentration of polyamide was 2% by weight, 30 ° C. ethylene glycol was stirred into this solution until it became 130 ° C. ⁇ 1 ° C., which was 20 ° C. lower than the phase separation temperature. The mixture was added within 1 minute, and stirred for 20 seconds. After confirming that there was no concentration fluctuation, the solution was allowed to stand in an oil bath at 130 ° C. As a result, the solution began to become cloudy after about 10,000 seconds after standing, and a massive precipitate was simultaneously formed in the container, and a non-uniform polyamide 6 precipitate was obtained.
  • the precipitate thus obtained was taken out, washed with methanol, dried at room temperature, and then subjected to SEM observation. As a result, porous massive particles in which spherulite particles were connected were observed.
  • the number average particle size was 25.3 ⁇ m
  • the volume average particle size was 40.3 ⁇ m
  • the specific surface area was 6.4 m 2 / g.
  • the crystallinity was 59.2% and the crystallite size was 13.1 nm.
  • the debiasing coefficient of the particles was 2.48 / m.
  • Example 6 In Example 3, after preparing a solution with ethylene glycol so that the weight concentration of polyamide is 3% by weight, stirring the ethylene glycol at 30 ° C. until it becomes 80 ° C. ⁇ 1 ° C., which is 70 ° C. lower than the phase separation temperature. When added within minutes, precipitation started during stirring and the liquid began to become cloudy, so stirring was immediately stopped and the mixture was allowed to stand in an oil bath at 80 ° C. The obtained precipitate was washed with methanol, dried at room temperature, and observed with SEM. As a result, slightly aggregated axial crystal polyamide particles were observed.
  • the number average particle size was 18.6 ⁇ m
  • the volume average particle size was 32.2 ⁇ m
  • the specific surface area was 4.9 m 2 / g.
  • the crystallinity was 54.8% and the crystallite size was 12.8 nm.
  • the debiasing coefficient of the particles was 2.39 / m.
  • Example 7 Polyamide 6 (manufactured by Ube Industries, Ltd .: molecular weight 13,000) was mixed with 1,3-butanediol in a container so that the weight concentration of polyamide was 1% by weight, and then nitrogen gas was introduced into the system. However, when the temperature of the solution was raised, since the polyamide started to dissolve at 152 ° C., this temperature was set as the phase separation temperature. The temperature was further raised, and the mixture was heated and dissolved with stirring until 170 ° C. to obtain a homogeneous solution. To this solution, 1,3-butanediol at 40 ° C. was added within 1 minute while stirring until it became 105 ° C. ⁇ 1 ° C., which was 47 ° C.
  • the number average particle diameter of the obtained particles was 19.9 ⁇ m, and the volume average particle diameter was 22.6 ⁇ m, and the particles had a relatively uniform particle size.
  • the crystallinity was 59.8%, the crystallite size was 12.7 nm, and the specific surface area was 8.9 m 2 / g.
  • the debiasing coefficient of the particles was 2.61 / m.
  • Example 8 Polyamide 6 (manufactured by Ube Industries, Ltd .: molecular weight 13,000) was mixed with ethylene glycol in a container so that the weight concentration of the polyamide was 20% by weight, and then nitrogen gas was introduced into the system, When the temperature was raised, the polyamide started to dissolve at 150 ° C., and this temperature was taken as the phase separation temperature. The temperature was further raised and dissolved with heating until stirring at 160 ° C. to obtain a homogeneous solution, which was kept at 160 ° C. for 6 hours. This solution was added to ethylene glycol at 40 ° C. within 1 minute with stirring until 100 ° C. ⁇ 1 ° C., 50 ° C. lower than the phase separation temperature, and further stirred for 20 seconds.
  • the obtained polymer particles were observed with a scanning electron microscope, they were relatively uniform spherical porous particles having a number average particle diameter of 15.6 ⁇ m and a volume average particle diameter of 23.2 ⁇ m.
  • the specific surface area was 7.1 m 2 / g.
  • the crystallite size was 11.5 nm, PDI was 1.5, and the crystallinity was 49%.
  • the debiasing coefficient of the particles was 1.32 / m.
  • Example 9 The particles obtained in Comparative Example 5 were dried under reduced pressure at 180 ° C. for 4 hours at 100 Torr or less. When the obtained particles were observed with a scanning electron microscope, they were relatively uniform spherical porous particles having a number average particle diameter of 15.0 ⁇ m and a volume average particle diameter of 24.1 ⁇ m. The specific surface area was 5.2 m 2 / g. The crystallite size was 12.5 nm, PDI was 1.6, and the crystallinity was 53%. The debiasing coefficient of the particles was 2.31 / m.
  • Example 10 Polyamide 6 (manufactured by Ube Industries, Ltd .: molecular weight 13,000) was mixed with ethylene glycol in a container so that the weight concentration of the polyamide was 20% by weight, and then nitrogen gas was introduced into the system, When the temperature was raised, the polyamide started to dissolve at 150 ° C., and this temperature was taken as the phase separation temperature. The temperature was further raised and dissolved with heating until stirring at 160 ° C. to obtain a homogeneous solution, which was kept at 160 ° C. for 6 hours. This solution was added to ethylene glycol at 40 ° C. within 1 minute with stirring until 100 ° C. ⁇ 1 ° C., 50 ° C. lower than the phase separation temperature, and further stirred for 20 seconds.
  • the crystallinity of the obtained particles was measured by DSC measurement, the crystallinity of the particles was 57.9% and the crystallite size was 13.9 nm.
  • the depolarization coefficient of the particles is 2.97 / m, the depolarization degree of the polyamide fine particle dispersion sheet is 24.4%, and the depolarization degree variation coefficient CV ( ⁇ ) in the wavelength range of 400 to 750 nm is 11.9. %Met.
  • Polyamide 6 (manufactured by Ube Industries, Ltd .: molecular weight 11,000) is added and dissolved in a solution containing phenol and 2-propanol (IPA) in a mass ratio of 9: 1, and the concentration of polyamide 6 is 20% by mass.
  • a polyamide 6 solution was prepared. To 1 part by weight of this polyamide solution, a mixed solution in which IPA and water were mixed in advance at 3 parts by weight and 2.6 parts by weight, respectively, was added. The temperature was 20 ° C. The mixture was allowed to stand for 24 hours to complete the precipitation. Thereafter, the polymer was isolated by centrifugal separation, and then centrifugal dehydration was performed while applying IPA at 50 ° C.
  • the obtained polymer particles were observed with a scanning electron microscope, they were relatively uniform spherical porous particles having a number average particle diameter of 5.50 ⁇ m and a volume average particle diameter of 6.49 ⁇ m.
  • the average pore size is 0.05681 ⁇ m
  • PDI is 1.18
  • the specific surface area is 21.4 m 2 / g
  • the porosity index RI is 42.1
  • the crystallinity of the polymer particles is 51.7%
  • the crystallite size Was 11.3 nm.
  • this porous particle was found to have nylon fibrils grown three-dimensionally radially from a single or a plurality of cores, and the single particle itself had a spherulite structure. .
  • the depolarization coefficient of the particles is 0.53 / m
  • the depolarization degree of the polyamide fine particle dispersion sheet is 4.51%
  • the depolarization degree coefficient of variation CV ( ⁇ ) in the wavelength range of 400 to 750 nm is 38.0. %Met.
  • Example 11 20 parts by weight of the particles prepared in Example 10, 50 parts by weight of urethane acrylate oligomer (UV-7600B manufactured by Nippon Gosei Kagaku), 0.8% by weight of photopolymerization initiator 1-hydroxy-cyclohexyl phenyl ketone (manufactured by Wako Pure Chemical Industries) A slurry was prepared by uniformly dispersing 50 parts by weight of toluene and 50 parts by weight of toluene.
  • urethane acrylate oligomer UV-7600B manufactured by Nippon Gosei Kagaku
  • photopolymerization initiator 1-hydroxy-cyclohexyl phenyl ketone manufactured by Wako Pure Chemical Industries
  • This slurry was coated on a triacetylcellulose (TAC) substrate with a bar coater, then cured by UV irradiation (850 mJ / cm 2 ) and dried to form a resin layer containing polyamide fine particles on the TAC substrate.
  • a film was created.
  • the coefficient of variation CV ( ⁇ ) of the degree of depolarization in the wavelength range of 400 to 750 nm was 5.3%.
  • the wavelength dependence of the degree of depolarization of this optical film is shown in FIG.
  • the polarizing film when the polarizing film is arranged on the optical film prepared in Example 11 at various angles with respect to the polarizing axis of the liquid crystal display, the polarizing film is tilted 90 degrees to the right or left from the optical axis in the bright field. It was confirmed that the image on the liquid crystal display was clearly visible, the dark field was eliminated, and there was almost no change in the color of the image on the display. Thereby, it became clear that the optical film of the present invention can convert linearly polarized light into non-polarized light with high efficiency.
  • Example 9 When the same operation as in Example 12 was performed using a quarter-wave plate (Biei Imaging Co., Ltd .: quarter-wave plate MCR140U), reflection of a fluorescent lamp could be confirmed and there was no antireflection function. confirmed.
  • the image on the liquid crystal display seen through the quarter-wave plate looks yellowish
  • Example 10 When the same operation as in Example 12 was performed using a commercially available polyethylene terephthalate (PET) film, reflection of a fluorescent lamp could be confirmed, and it was confirmed that there was no antireflection function. Also, regardless of the angle ⁇ between the polarization axis of the liquid crystal display and the optical axis of the polarizing film, the image on the liquid crystal display can be confirmed, but rainbow color unevenness due to retardation resulting from birefringence occurs throughout the film, The image was very difficult to see.
  • PET polyethylene terephthalate
  • Example 13 An optical film was prepared in the same manner as in Example 11 except that a polyethylene terephthalate (PET) substrate was used instead of the triacetyl cellulose (TAC) substrate.
  • PET polyethylene terephthalate
  • TAC triacetyl cellulose
  • Example 14 20 parts by weight of the particles prepared in Example 10, 50 parts by weight of urethane acrylate oligomer (UV-7600B manufactured by Nippon Gosei Kagaku), 0.8% by weight of photopolymerization initiator 1-hydroxy-cyclohexyl phenyl ketone (manufactured by Wako Pure Chemical Industries) A slurry was prepared by uniformly dispersing 50 parts by weight of toluene and 50 parts by weight of toluene.
  • urethane acrylate oligomer UV-7600B manufactured by Nippon Gosei Kagaku
  • photopolymerization initiator 1-hydroxy-cyclohexyl phenyl ketone manufactured by Wako Pure Chemical Industries
  • Example 11 The polyethylene terephthalate substrate (50 ⁇ m) used in Example 14 had a haze of 0.4% and a total light transmittance of 92.8%.
  • FIG. 11 shows the angle dependency of the transmitted light of this film. When this optical film was rotated in the range of 0 to 360 ° around the optical axis, the variation coefficient of the amount of transmitted light of linearly polarized light was 21.6%. The degree of non-polarization (100-V) determined from the Stokes parameters was 0.7%.
  • Example 15 An optical film was prepared in the same manner as in Example 14 except that the thickness of the polyethylene terephthalate substrate was 100 ⁇ m. In the wavelength range of 400 to 750 nm, the coefficient of variation CV ( ⁇ ) of the degree of depolarization DODP ( ⁇ , ⁇ ) was 5.4 (%) at the maximum. The haze of this film was 48.1%, and the total light transmittance was 88.2%. When this optical film was rotated in the range of 0 to 360 ° around the optical axis, the variation coefficient of the amount of transmitted light of linearly polarized light was 19.2%. The degree of non-polarization (100-V) determined from the Stokes parameters was 25.3%.
  • Example 12 The haze of the polyethylene terephthalate substrate (100 ⁇ m) used in Example 15 was 2.4%, and the total light transmittance was 90.0%.
  • this polyethylene terephthalate substrate was rotated in the range of 0 to 360 ° about the optical axis, the variation coefficient of the amount of transmitted light of linearly polarized light was 23.7%.
  • the degree of non-polarization (100-V) obtained from the Stokes parameters was 0.4%.
  • Example 16 20 parts by weight of the particles prepared in Example 10, 50 parts by weight of urethane acrylate oligomer (UV-7600B manufactured by Nippon Gosei Kagaku), 0.8% by weight of photopolymerization initiator 1-hydroxy-cyclohexyl phenyl ketone (manufactured by Wako Pure Chemical Industries) A slurry was prepared by uniformly dispersing 50 parts by weight of toluene and 50 parts by weight of toluene.
  • urethane acrylate oligomer UV-7600B manufactured by Nippon Gosei Kagaku
  • photopolymerization initiator 1-hydroxy-cyclohexyl phenyl ketone manufactured by Wako Pure Chemical Industries
  • This slurry is coated on a triacetylcellulose (TAC) substrate (80 ⁇ m) with a bar coater, cured by UV irradiation (850 mJ / cm 2 ), and dried to form a resin layer containing polyamide fine particles on the TAC substrate.
  • TAC triacetylcellulose
  • the formed optical film was created.
  • the coefficient of variation (CV) in the degree of depolarization at a wavelength of 400 to 750 nm was 5.2 (%).
  • the haze of this optical film was 55%.
  • this optical film was mounted on a backlight unit and the luminance was measured, it was 1349 (cd / m 2 ) in configuration A and 1422 (cd / m 2 ) in configuration B.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Dispersion Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Liquid Crystal (AREA)

Abstract

 偏光した光を自然光と近い非偏光に高効率かつ色味の変化を伴わず変換することができ、さらに光源の光を均一に光拡散させる効果も有するポリアミド微粒子及びその製造方法並びにそれを用いた光学フィルム及び液晶表示装置を提供する。広角X線回折による結晶子サイズが12nm以上、及びDSCによる結晶化度が50%以上であり、球晶構造からなることを特徴とするポリアミド微粒子である。また、上記ポリアミド微粒子を含む樹脂層を有することを特徴とする光学フィルム、及び、光源装置、背面偏光板、液晶セルおよび前面偏光板を備えた液晶表示装置であって、前面偏光板の前面または背面偏光板の背面と前記光源装置の間に、上記光学フィルムを有することを特徴とする液晶表示装置である。

Description

ポリアミド微粒子及びその製造方法並びにそれを用いた光学フィルム及び液晶表示装置
 本発明は、偏光解消性に優れたポリアミド微粒子及びその製造方法並びにそれを用いた光学フィルム及び液晶表示装置に関する。
 近年、液晶表示装置は、薄型、軽量、高画質の特徴を有し、CRTに対抗しうる表示装置となっており、マルチカラーや高精細の液晶ディスプレイ等が上市されている。これらの液晶表示装置の駆動原理には、TFT方式、MIM方式、STN方式、TN方式等があるが、いずれの方式でも、一組の偏光板を用いて表示光を直線偏光として発しており、したがって、観察者に達する光は直線偏光となっている。
 ところで、パソコン等の液晶ディスプレイを長時間使用することで生じる眼精疲労を軽減する手法として、偏光フィルターあるいは偏光眼鏡を用いる場合があるが、上記のように、液晶画面から発せられる光は直線偏光であるために、偏光フィルターや偏光眼鏡の角度が傾くと光量が著しく減少し甚だしい場合には見えなくなったり、また、左右で見え方が異なるようになったり、非常に不都合であった。
 これを回避するために、波長に対して1/4波長板を用いることで、直線偏光を楕円偏光に変える手法や、入射光の波長に干渉と回折現象をおこす雲膜現象を利用する手法が考えられているが、いずれも効果があがっていない。
 さらに、アモルファス構造を持った高分子(特許文献1参照)、複屈折性を有する市販のPETフィルム、水晶板を用いた偏向解消板(特許文献2参照)、極短繊維からなる複屈折微粒子を含む透光性樹脂層を備えた偏光解消能を持つ光学積層体(特許文献3参照)などにより直線偏光を非偏光に変換することが提案されているが、どれも実用的ではない。
 そのため、ポリアミドとその溶媒とからなる溶液と、ポリアミドの非溶媒、および水を混合することにより、一時的に均一な溶液を形成した後、ポリマーを析出することにより粒子化した、球晶構造を有する結晶性高分子からなる微粒子を含む光フィルターが提案されている(特許文献4参照)。
 また、このような微粒子を製造する方法として、特許文献5には、ポリアミドとその溶媒とからなる溶液と、ポリアミドの非溶媒、および水を混合することにより、一時的に均一な溶液を形成した後、ポリマーを析出することによるポリアミド粒子の製造方法が開示されている。また、特許文献6乃至8には結晶性高分子であるポリアミドを高温のエチレングリコールなどの溶媒に溶解させ、その溶液を冷却することによりポリアミドの微粒子を得る温度誘起相分離法が開示されている。
 なお、球晶構造の高分子からなる配向膜を用いた液晶表示装置が提案されているが(特許文献9参照)、これは、視野角を広げることを目的として、偏光板と液晶層の間に配置したものであり、本発明の偏光解消フィルムとは目的が異なっている。また、球晶構造を有する高分子膜を偏光解消フィルムとして用いて、直線偏光を非偏光に変換を試みた場合、フィルム作成時に加わる歪みが成型後のフィルムに残留し、屈折率異方性を発現し、直線偏光を均一に自然光と同じ非偏光に変換することができる偏光解消フィルムは得られない。
 また近年、液晶表示装置のバックライトを構成する各部材には、高透過率の材料が採用される等、光の損出を抑えて光利用効率を向上させる工夫がなされている。しかしながら液晶素子部へ導入する偏光フィルムは、通常ヨウ素系あるいは、二色性色素から構成されるため、自然光のうちの50%は透過させるものの、50%は吸収してしまい、光の利用効率が低く、画面が暗くなるという問題が生じる。
 そのため自然光に含まれる偏光成分を分離し、一方成分のみ透過させるとともに他方を反射させて、反射した光を再利用することで光の利用効率を向上させる方法が種々提案されている。
 特許文献10には、屈折率の相互に異なる延伸フィルムを多層積層した反射偏光子ディスプレーが開示されている。これによると、バックライトからの光が、プリズムシートを透過後、輝度上昇フィルムに入光する。輝度上昇フィルムは下部拡散フィルムおよび反射偏光子層(DBEF層)および上部拡散フィルム層から構成されており、反射偏光子層においては、入射した光の第一の偏光方向成分を透過し、それに直角な第二の偏光方向を高効率で反射する。反射した第二の偏光成分は、光学キャビティにおける光の散乱と反射によって第一成分と第二成分に均等にランダム化されることによって、再び反射偏光子を透過し、光を再利用化することができ、これによって液晶ディスプレーの輝度を向上させることができるとされている。その他特許文献11乃至13などにも同様の発想で反射した偏光成分を再利用する液晶表示装置が開示されている。
 しかしながら、これら第二の偏光成分を光の散乱や反射のみでランダム化させるのは容易ではなく、散乱と反射を何度も繰り返す必要があり効率的ではない。また、λ/4波長板を用いて円偏光化することによって高効率に第一成分と第二成分に均等化させることは可能であるが、λ/4波長板は可視光領域にて波長依存性があることから、特定の波長の光の透過性による着色の問題が発生する。これらを回避するために、広帯域λ/4波長板を用いることが想定されるが、現状高価であり現実的に実装できるものではない。
 また、前出の特許文献4には、ポリアミド多孔質微粒子を用いた偏光解消機能を有するフィルターが開示されている。この文献では、ポリアミド粒子とバインダー樹脂との屈折率差を制御することで、光拡散性も付与できるとされている。
特開2003-185821号公報 特開平10-10522号公報 特開2010-091655号公報 国際公開第2007/119592号 特開2007-204767号公報 特開平8-12765号公報 米国特許2639278号 特開2006-328173号公報 特開平6-308496号公報 特開2004-004699号公報 特開2000-221507号公報 特開2001-188126号公報 特開平04-184429号公報
 以上の背景技術において、特許文献4記載の光フィルターは直線偏光を自然光と近しい非偏光に変換する偏光解消能は認められるものの、クロスニコルに配向させた偏光板に該フィルムを挟んだ光の透過率は波長550nmで10%以下であり、その変換効率は実用上満足できるものではなかった。
 そこで、本発明は、偏光した光を自然光と近い非偏光に高効率かつ色味の変化を伴わず変換することができ、さらに光源の光を均一に光拡散させる効果も有するポリアミド微粒子及びその製造方法並びにそれを用いた光学フィルム及び液晶表示装置を提供することを目的としている。
 以上の目的を達成するため、本発明者らは、鋭意検討した結果、球晶構造を有し、結晶子サイズ及び結晶化度を調整したポリアミド微粒子を用いることで、偏光した光を自然光と近い非偏光に高効率かつ色味の変化を伴わず変換することができ、さらに光源の光を均一に光拡散させる効果も有する光学フィルム及び液晶表示装置が得られることを見出し、本発明に至った。すなわち、本発明は、広角X線回折による結晶子サイズが12nm以上、及びDSCによる結晶化度が50%以上であり、球晶構造からなることを特徴とするポリアミド微粒子に関する。
 また、本発明は、上記ポリアミド微粒子を含む樹脂層を有することを特徴とする光学フィルムに関する。
 さらに、本発明は、光源装置、背面偏光板、液晶セルおよび前面偏光板を備えた液晶表示装置であって、前面偏光板の前面または背面偏光板の背面と前記光源装置の間に、上記光学フィルムを有することを特徴とする液晶表示装置に関する。
 また、本発明は、ポリアミド(A)と、該ポリアミド(A)に対して高温では良溶媒として作用し低温では非溶媒として作用する溶剤(B)とを混合して加熱することによって均一なポリアミド溶液を調製した後、該ポリアミド溶液と低温の溶剤(C)とを該ポリアミド溶液の相分離温度より20~80℃低い温度となるまで3分以内で攪拌しながら混合し、その温度を保ったまま静置してポリアミドを析出させることを特徴とするポリアミド微粒子の製造方法に関する。
 以上のように、本発明によれば、偏光した光を自然光と近い非偏光に高効率かつ色味の変化を伴わず変換することができ、さらに光源の光を均一に光拡散させる効果も有するポリアミド微粒子及びその製造方法並びにそれを用いた光学フィルム及び液晶表示装置を提供することができる。
本発明の液晶ディスプレイ装置(バックライト部)の構成を示した分解図である。(a)反射偏光子層(DBEF)なし。(b)反射偏光子層(DBEF)あり。(c)反射偏光子層(ワイヤーグリッド型)あり。 本発明の液晶ディスプレイ装置(液晶セル上部)の構成を示した分解図である。(a)Aが反射防止層である。(b)Aが反射防止層と偏光板の間に装着される。(c)Aが偏光板内部に装着される。 フィルムの透過光強度測定装置の概略図である。 実施例1で得られたポリアミド微粒子の電子顕微鏡写真 実施例1、3及び比較例1、3で作成した光学フィルムの偏光解消能の評価結果 比較例1で得られたポリアミド微粒子の電子顕微鏡写真 実施例3で得られたポリアミド微粒子の電子顕微鏡写真 実施例10で用いたポリアミド微粒子の走査型電子顕微鏡写真である。 比較例6で用いたポリアミド微粒子の走査型電子顕微鏡写真である。 実施例11および比較例7でそれぞれ作成した光学フィルムおよび1/4位相差板(比較例8)の光透過率の波長依存性を示したグラフである。 実施例14および比較例11の光学フィルムの透過光強度の測定結果である。
 本発明は、ポリアミド等の結晶性樹脂特有の結晶構造である球状や略球状の球晶構造、一部欠損した一方の側に膨らみを有し反対側に欠損部を有する球晶構造(C型状、勾玉状)、又は、さらに欠損した軸晶に近い球晶構造(ダンベル状)を有し、かつ特定の結晶子サイズと結晶化度からなる結晶性の高いポリアミド微粒子に関するものである。また、本発明に係るポリアミド微粒子は、好ましくは多孔質構造を有し、粒子径および粒子形状が比較的揃ったものであり、これまでのポリアミド微粒子よりも高い偏光解消能を有する。そのため、これらの微粒子は液晶ディスプレイ表示用光学フィルターやバックライト向けの高性能な偏光解消光拡散材料として用いることができる。
 本発明に係るポリアミド微粒子において、上記球晶構造は、走査型もしくは透過型電子顕微鏡にて、粒子の断面を観察し、中心核近傍からポリアミドのフィブリルが放射状に成長しているかどうかで判断することができる。また、本発明に係るポリアミド微粒子は、単一粒子そのものが全体的にあるいは局所的にも結晶性高分子特有の結晶構造である球状や略球状の球晶構造、一部欠損した球晶構造(C型状、勾玉状)、又は、さらに欠損した軸晶的球晶構造(ダンベル状)を有する。上記球晶構造を有することにより、偏光解消能力が高くなるため、好ましい。また、これらさまざまな構造の粒子を混合した粒子でもよい。「単一粒子そのものが全体的にあるいは局所的に球晶構造」であるとは、一つの単独粒子の中心付近の単数または複数のコアからポリアミドフィブリルが三次元等方あるいは放射状に成長して形成した結晶性高分子特有の構造であり、局所的にとは、粒子がそれらの構造の一部分を有することを意味する。
 本発明に係るポリアミド微粒子は、DSCで測定された結晶化度が50%以上である。ポリアミドの結晶化度は、X線回析により求める方法、DSC測定法により求める方法、密度から求める方法があるが、DSC測定法により求める方法が好適である。普通、溶融物から結晶化させたポリアミドの結晶化度は高いものでせいぜい30%程度である。結晶化度が低いと、直線偏光を非偏光に変換する能力が落ちるので好ましくない。
 本発明に係るポリアミド微粒子は、広角X線回折から求めた結晶子サイズが12nm(ナノメートル)以上である。結晶子サイズが大きいほど、偏光解消性が高くなる。一方12nm未満では、偏光解消能が低下する傾向がある。
 本発明に係るポリアミド微粒子の球相当数平均粒子径(以下、単に数平均粒子径と略記する場合がある。)は、1.0~50μmが好ましく、1.0~30μmがより好ましい。数平均粒子径が1.0μmより小さいと、二次凝集力が強く、取り扱い操作が悪くなる。また、50μmより大きいと、電子材料用途で光機能粒子として取り扱う際、粒子を含む光学材料の膜厚が厚くなるため、薄型化しにくくなり好ましくない。
 本発明に係るポリアミド微粒子は、多孔質構造を有することが好ましい。多孔質構造により、多重散乱効果が増し、偏光解消能力が高くなる傾向がある。
 本発明に係るポリアミド微粒子のBET比表面積は、0.1~80m/g、好ましくは3~75m/g、さらに好ましくは5~70m/gである。比表面積が0.1m/gより低いと、得られた多孔質粉体の多孔質性が落ちる。また、80m/gより大きいと凝集しやすくなる。
 本発明に係るポリアミド微粒子の平均細孔径は、0.01~0.5μmが好ましく、より好ましくは0.01~0.3μmである。平均細孔径が0.01μmより小さい場合、多孔質性が落ちる。0.5μmより大きい場合、得られた粒子の機械的強度が落ちる事がある。
 本発明に係るポリアミド微粒子の多孔度指数(RI)は、5~100が好ましい。ここで多孔度指数(RI)とは、同じ直径の平滑な球状粒子の比表面積に対し、多孔質の球状粒子の比表面積の比で表示したものと定義する。多孔度指数が5より小さければ、多孔質粒子としての担持機能や吸着機能が劣るため好ましくない。多孔度が100より大きいと、粉体として取り扱いづらくなる。
 本発明に係るポリアミド微粒子の融点は、110~320℃であることが好ましく、130~300℃であることがより好ましい。融点が110℃より低くなると、光学用途における熱安定性が低くなる傾向がある。
 本発明に係るポリアミド微粒子は、粒子径分布において、数平均粒子径(または数基準平均粒子径)に対する体積平均粒子径(または体積基準平均粒子径)の比が1~2.5であることが好ましく、1~2.0であることがより好ましく、1~1.5であることが特に好ましい。数平均粒子径に対する体積平均粒子径の比(粒度分布指数PDI)が2.5より大きいと、粉体としての取り扱いが悪くなる。
 本発明に係るポリアミド微粒子は、波長550nmの光に対する下記数1及び数2で定める消偏係数Dpc(λ)が、1.5/m以上であることが好ましく、2.0/m以上であることがより好ましく、2.3/m以上であることが特に好ましい。消偏係数が1.5/m未満であると光学フィルムに多くの粒子を配合する必要が生じ、膜厚が増加する、ヘイズが上昇するなどの問題が生じることがあり好ましくない。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 本発明に係るポリアミド微粒子に用いられるポリアミドは、環状アミドの開環重合、アミノ酸の重縮合、ジカルボン酸とジアミンの重縮合等で得られるものが挙げられる。環状アミドの開環重合に用いられる原料としては、ε-カプロラクタム、ω-ラウロラクタム等が挙げられ、アミノ酸の重縮合に用いられる原料としては、ε-アミノカプロン酸、ω-アミノドデカン酸、ω-アミノウンデカン酸などが挙げられ、ジカルボン酸とジアミンの重縮合に用いられる原料としては、蓚酸、アジピン酸、セバシン酸、1,4-シクロヘキシルジカルボン酸などのジカルボン酸やそれらの誘導体と、エチレンジアミン、ヘキサメチレンジアミン、1,4-シクロヘキシルジアミン、ペンタメチレンジアミン、デカメチレンジアミンなどのジアミンなどが挙げられる。
 これらのポリアミドには、さらに、テレフタル酸、イソフタル酸、m-キシリレンジアミンなどの少量の芳香族成分を共重合してもよい。
 上記ポリアミドの具体的な例としては、ポリアミド6、ポリアミド46、ポリアミド66、ポリアミド610、ポリアミド612、ポリアミド11、ポリアミド12、ポリアミド6/66、ポリノナメチレンテレフタルアミド(ポリアミド9T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミドコポリマー(ポリアミド66/6T)、ポリヘキサメチレンテレフタルアミド/ポリカプロアミドコポリマー(ポリアミド6T/6)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミドコポリマー(ポリアミド66/6I)、ポリヘキサメチレンイソフタルアミド/ポリカプロアミドコポリマー(ポリアミド6I/6)、ポリドデカミド/ポリヘキサメチレンテレフタラミドコポリマー(ポリアミド12/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ポリアミド66/6T/6I)、ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ポリアミド6T/6I)、ポリヘキサメチレンテレフタルアミド/ポリ(2-メチルペンタメチレンテレフタルアミド)コポリマー(ポリアミド6T/M5T)、ポリキシリレンアジパミド(ポリアミドMXD6)、およびこれらの混合物ないし共重合樹脂が挙げられる。これらの中で、ポリアミド6、ポリアミド46、ポリアミド66、ポリアミド610、ポリアミド612、ポリアミド11、ポリアミド12又はポリアミド6/66共重合樹脂が好ましく、材料の取り扱い性の観点から、特にポリアミド6が好ましい。
 上記ポリアミドの分子量は、1,000~100,000であることが好ましく、2,000~50,000であることがより好ましく、3,000~30,000であることが特に好ましい。ポリアミドの分子量が小さすぎると、多孔質微粒子の形成条件が狭くなり、製造が難しくなる。また、ポリアミドの分子量が大きすぎると、製造時に一次凝集体が出来やすくなり好ましくない。
 本発明に係るポリアミド微粒子は、温度誘起による相分離を利用した方法で製造されている。例えば、原料として用いられるポリアミド(A)を溶剤(B)と混合し、その後昇温して均一なポリアミド溶液を作成し、ポリアミド溶液全体を急速に均一に所定の温度まで冷却するために、低温の溶剤(C)を所定時間内に攪拌しながら添加し、その後、静置することによって製造することができる。その際、2液をなるべく短時間で攪拌混合して、析出(白濁)開始前に均一化させ、攪拌を止めて静置条件下で析出を進行させることが最も重要となる。
 以下、本発明に係るポリアミド微粒子を製造することができる樹脂微粒子の製造方法について説明する。
 上記樹脂微粒子の製造方法は、ポリアミドに代表される結晶性樹脂(A)とその樹脂に対して高温では良溶媒として作用し低温では非溶媒として作用する溶剤(B)とを混合して加熱することによって均一な結晶性樹脂溶液を調製した後、この樹脂溶液と低温の溶剤(C)とを所定時間内に攪拌しながら混合することにより、樹脂溶液全体を均一かつ急速に所定の温度まで冷却し、その温度を保ったまま静置させて樹脂を析出させる方法である。本手法を用いた粒子の場合、後述する後処理として、ガラス転移温度以上で融点以下の温度にて、100Torr以下の減圧下でアニーリングを適切な時間行う方法を必要としない。しかしながら、実施することで更なる性能向上も期待できる。
 上記製造方法は、これまでの溶媒添加による相分離法や温度を一定速度で冷却させることによる相分離法と異なり、高温の結晶性樹脂溶液に低温の非溶媒を添加、攪拌、混合して均一とするため、系内の温度が非常に短い時間で均一になる。このため温度が低下した均一な結晶性樹脂溶液からの析出は、過飽和状態にある溶液温度が系内で均一な状態から行われるため、系内のいたるところでほぼ同時に核生成および核成長が進行する。この核生成および核成長速度を混合溶液の温度および結晶性樹脂濃度により制御することによって、結晶性樹脂特有の結晶構造である球状や略球状の球晶構造、一部欠損した球晶構造(C型状、勾玉状)、又は、さらに欠損した軸晶に近い球晶構造(ダンベル状)を有し、かつ特定の結晶子サイズと結晶化度からなる結晶性の高い粒子が得られる。
 上記製造方法により、ポリアミド以外の結晶性樹脂についても、結晶化度の高い微粒子を製造することできる。用いることのできる結晶性樹脂(A)は、溶融状態からの結晶化によって球晶構造をとりうるものであれば、特に制限はなく、ポリアルキレン、ポリアミド、ポリエーテル、ポリイミド、液晶ポリマー等が挙げられる。具体的には、ポリエチレン、アイソタクティックポリプロピレン、シンジオタクチックポリプロピレン、ポリブテン-1、ポリ4メチルペンテン等のポリオレフィン類あるいは結晶性エチレン・プロピレン共重合体、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル類、シンジオタクチックポリスチレン、アイソタクチックポリスチレン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、全芳香族ポリアミド、全芳香族ポリエステル、ポリテトラフルオロエチレン、ポリビニリデンフルオロライド等のフッ素樹脂、ポリエチレンサクシネート、ポリブチレンサクシネート等の脂肪族ポリエステル、ポリ乳酸、ポリビニルアルコール、ポリアセタール、ポリエーテルニトリル等が挙げられる。
 上記製造方法で用いられる溶剤(B)は、結晶性樹脂(A)に対して、低温域では非溶媒であるが、高温、たとえば溶媒の沸点以下のある温度域では良溶媒として作用するものが好ましい。
 結晶性樹脂(A)がポリアミドの場合、ポリアミドに対して高温では良溶媒として作用し、低温では非溶媒として作用する溶剤(B)として、多価アルコールや環状アミドが挙げられる。多価アルコールとしては、具体的には、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、2,3-ブタンジオール、1,4-ブタンジオール、グリセリン、プロピレングリコール、ジプロピレングリコール、1,5-ペンタンジオール、ヘキシレングリコール等が挙げられる。これらは混合して用いても良い。環状アミドとしては、その環を構成する炭素数が4~18のものが挙げられる。具体的には、2-ピロリドン、ピペリドン、N-メチルピロリドン、ε-カプロラクタム、N-メチルカプロラクタム、ω-ラウリルラクタムなどが挙げられる。また、シクロアルキリデン環上に反応を阻害しない置換基を有していてもよく、その置換基としては、例えば、メチル基、エチル基、シクロヘキシル基等の非環状もしくは環状のアルキル基、ビニル基、シクロヘキセニル基等の非環状もしくは環状のアルケニル基、フェニル基等のアリール基、メトキシ基等のアルコキシ基、メトキシカルボニル基等のアルコキシカルボニル基、クロル基等のハロゲン基が挙げられる。好ましくは無置換の2-ピロリドン、ε-カプロラクタムである。
 上記溶媒中に結晶性樹脂(A)の溶解促進のため、溶解温度を降下させるための添加剤を加えても良い。例えば、結晶性樹脂(A)がポリアミドの場合、無機塩の添加剤として塩化カルシウム、塩化リチウム等が挙げられる。金属イオンがポリアミドの水素結合部に作用して溶解を促進する無機塩であれば上記の限りではない。
 結晶性樹脂(A)を溶解する加熱温度は、その樹脂が溶剤(B)に溶解を開始する温度(以下、「相分離温度」と記載する場合もある。)より10~100℃以上高い温度が好ましい。また、溶解する際、窒素ガスなどの不活性なガスによって、系内を密閉して溶解すると樹脂が劣化することが少なく、好ましい。
 樹脂溶液中における結晶性樹脂(A)の濃度は、0.1~30重量%であるのが好ましい。0.1重量%より低いと、粒子の生産性が低くなる。30重量%より高いと、溶液に一部溶け切れない樹脂が残るおそれがあり、均一な粒子が得られないことがあるため好ましくない。
 上記製造方法においては、均一な樹脂溶液を、少なくとも低温では結晶性樹脂(A)の非溶媒として作用する低温の溶剤(C)と混合することにより、樹脂溶液全体を均一かつ急速に所定の温度まで冷却する。ここで用いることができる溶剤(C)は、結晶性樹脂(A)に対して少なくとも低温では非溶媒であり溶剤(B)と相溶性が高いものであればよいが、溶剤(B)と同一の成分から構成されてなる、あるいは混合液の場合は同一の組成であることが好ましい。異なる成分や組成である場合、粒子を回収後、溶剤の再利用を行う際、分別回収などに多くの手間がかかることがある。
 本発明で用いることができる上記の溶剤(C)として、例えば、結晶性樹脂(A)がポリアミドの場合、溶剤(B)と同様な多価アルコール及びそれらの混合物が挙げられる。具体的には、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、2,3-ブタンジオール、1,4-ブタンジオール、グリセリン、プロピレングリコール、ジプロピレングリコール、1,5-ペンタンジオール、ヘキシレングリコール等が挙げられる。これらは混合して用いても良い。
 樹脂溶液を冷却する温度は、相分離温度より20~80℃低い温度が好ましく、30~70℃低い温度がより好ましく、40~60℃低い温度がもっとも好ましい。冷却する温度が相分離温度から20℃未満の場合は、過飽和度が低いために樹脂が析出を開始し終了するまでに多大な時間がかかり、塊状の析出物や粒子の凝集体が得られるので好ましくない。また、80℃より低い場合は、2液が均一に攪拌混合される前に局所的な温度の低下により、樹脂が析出を開始し、不均一な粒子や凝集体が得られるので好ましくない。
 冷却に用いる溶剤(C)の温度と添加量は、冷却する樹脂溶液の温度および容量によって決定される。樹脂溶液と冷却に用いる溶剤(C)との温度差は150℃以内とするのが好ましい。温度差が150℃より大きいと溶剤(C)を添加している最中に樹脂の析出が始まり、凝集等が生じるため好ましくない。また、2液を混合した後の最終的な樹脂濃度は20重量%以下となることが好ましく、15重量%以下となることがより好ましい。析出時の樹脂濃度が高すぎると粒子の凝集、酷い場合は溶液が固化するおそれがあり、好ましくない。
 高温の樹脂溶液と低温の溶剤(C)との混合は、高温の樹脂溶液に低温の溶剤(C)を添加しても良いし、低温の溶剤(C)に高温の樹脂溶液を投入してもよいが、2液が均一となるまで攪拌するのが好ましい。攪拌時間は3分以内、好ましくは2分以内、さらに1分以内がもっとも好ましい。2液が十分混合されたかどうかについては、2液の屈折率の差による濃度ゆらぎが観察されなくなる、あるいは混合液の温度が±1℃以内で一定になることで判断できる。
 攪拌は、通常よく用いられる攪拌翼であれば形状や装置などに特に制限はない。また攪拌翼の回転数は、混合溶液が短時間で均一化するのであれば特に制限はない。また、邪魔板などのより攪拌効果が上がる設備が備わっていると、より短時間で均一に混合され好ましい。
 2液が均一となった後は、攪拌を止めて静置させるのが好ましい。樹脂が析出し始めてからも、攪拌を続けると、得られる粒子の形状が不完全な形状でばらついたり、凝集が起きたり、粒度分布が広がってしまうため好ましくない。邪魔板が備わることで、攪拌停止後の液体の流速が短時間で停止するので好ましい。静置時間は析出が終了するまでの時間保持することが好ましく、具体的には5分~240分が好ましく、10分~120分がさらに好ましい。
 また、所定の温度まで冷却された後は、その温度を保ったままポリアミドを析出させるのが好ましい。冷却されたポリアミド溶液の温度が変化すると、塊状の析出物や粒子の凝集体が生成したり、粒度分布が広がったりすることがあり好ましくない。
 また、2液を2流体ノズルから噴射することで攪拌し、噴射した液体を一定の保温容器中で保持することで粒子化させることもできる。さらに、噴射した溶液を所定の温度に保温された管内にて層流流れの下で析出させることもできる。
 生成した樹脂微粒子は、デカンテーション、ろ過あるいは遠心分離などの方法で固液分離し、表面に付着する溶剤(B)、(C)を除去するために、常温近傍にて樹脂の非溶媒であり溶剤(B)、(C)と親和性の高い粘度の低い溶剤にて洗浄することができる。例えば、結晶性樹脂(A)がポリアミド粒子の場合、これらの溶剤として、メタノール、エタノール、1-プロパノール、2-プロパノールなどの炭素原子数が1~3の1価の脂肪族アルコール、アセトン、メチルエチルケトンなどの脂肪族ケトン、アセトフェノン、プロピオフェノン、ブチロフェノンなどの芳香族ケトン、トルエン、キシレンなどの芳香族炭化水素、ヘプタン、ヘキサン、オクタン、n-デカンなどの脂肪族炭化水素、または水を挙げる事ができる。
 分離、洗浄した樹脂微粒子は、最後に乾燥工程を経て、乾燥粉体にすることができる。乾燥方法としては、真空乾燥、恒温乾燥、噴霧乾燥、凍結乾燥、流動槽乾燥などの汎用の粉体乾燥方法を用いることができる。上記製造方法によって製造された本発明に係るポリアミド微粒子の場合、後述する後処理を必要としないが、実施することで更なる性能向上が期待できるため、本乾燥工程において、例えばガラス転移温度以上融点以下の温度にて、100Torr以下の減圧下でアニーリングを適切な時間行う後処理を実施しても良い。
 また、本発明に係るポリアミド微粒子は、上記以外にも、例えばポリアミドのモノマーを非溶媒中で重合しながら粒子化する手法や、ポリアミド溶液に非溶媒を添加して粒子化する方法、スプレードライヤーでポリアミド溶液を噴霧乾燥する方法、ポリアミドを高温で溶液化した後に、溶液自体を冷却させる方法などの公知の方法で作成した微粒子に結晶子サイズや結晶化度を向上させる後処理をすることによって作成することもできる。
 上記公知の方法で作成した微粒子に結晶子サイズや結晶化度を向上させる後処理方法としては、対象とするポリアミドのガラス転移温度以上融点以下の温度にて、100Torr以下の減圧下でアニーリングを適切な時間行う方法が挙げられる。ガラス転移温度未満のアニーリング温度では、ポリアミド分子鎖の易動性が乏しいため、好ましくない。融点を超えるアニーリング温度では、粒子中のポリアミドが融解してしまう恐れがあり好ましくない。また100Torr以下の減圧下でないと、ポリアミドが酸化劣化して、分解、黄色化などを起こすため好ましくない。アニーリング時間は、アニーリング温度にもよるが、通常1時間~100時間程度である。
 次に、本発明に係る光学フィルムについて説明する。
 本発明に係る光学フィルムは、上記のようにして製造されたポリアミド微粒子を含有するものである。光学フィルムの代表的な態様としては、(a)透明性樹脂をバインダー樹脂として用いて、粒子を透明性樹脂中に分散させたものを板状又はフィルム状に成形した態様、(b)粒子をバインダー樹脂と共に、塗膜として基板上に形成した態様、(c)粒子を基板にバインダー樹脂を接着剤として接着した態様、(d)上下の基板でバインダー樹脂と粒子からなる粘着層を挟んだ態様等が挙げられる。なかでも、(b)あるいは(c)のように、粒子を含む樹脂層を透明基板上に形成した光学フィルムが好ましい。
 上記(a)の態様において、粒子を分散させる透明性樹脂としては、メタクリル樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、ポリエステル樹脂、環状を含むポリオレフィン樹脂等が挙げられる。透明性樹脂は、光拡散性を高める場合には、(多孔質)粒子と屈折率が異なる材料であることが好ましく、光散乱を抑える場合には(多孔質)粒子と同種の材料もしくは屈折率が近い材料であることが好ましい。また、表面の凹凸を利用して光拡散性を調整するために、さらにバインダー樹脂のみをオーバーコートすることもできる。粒子の配合割合は、透明性樹脂と粒子の合計に対して、0.1~60重量%が好ましい。
 また、上記(b)の態様の粒子を含む塗膜を透明性基板上に形成する場合には、粒子を透明性樹脂(透明性塗料)に混合分散し、透明性基板の表面にスプレー法、ディッピング法、カーテンフロー法、ロールコーター法、印刷法等の手段を用いて塗布し、紫外線照射又は加熱で硬化させる方法が用いられる。透明性塗料に用いられるバインダーとしては、アクリル系樹脂、ポリエステル系樹脂、ウレタン系樹脂等が挙げられる。
 透明性基板としては、メタクリル樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、ポリエステル樹脂、環状を含むポリオレフィン樹脂、セルロース系熱可塑性樹脂等の透明性樹脂板が使用できる他、ガラス板のような無機質透明板の採用も可能である。このうち複屈折性の大きいポリエチレンテレフタレートやポリカーボネート基板であっても、問題はない。
 光学フィルムを形成するのに、上記(c)の態様のように粒子を直接透明性基板にバインダー樹脂(公知の接着剤等)で接着してもよい。
 本発明に係る光学フィルムは、下記数3で示される式で表される偏光解消度DODP(λ,θ)の波長400~750nm範囲における変動係数CV(θ)が、θ=0°~90°において、25%以内であることが好ましく、さらに20%以内であることが好ましく、特に、15%以内であることが好ましい。変動係数CV(θ)が25%を超えると、液晶画面に偏光子をつけて回転させたときの色味の変化が大きくなり、好ましくない。ここでθとは、2枚の偏光子の偏光軸間の角度であり、偏光軸が平行のときはθ=0°、偏光軸がクロスニコルの時はθ=90°である。
Figure JPOXMLDOC01-appb-M000008
 さらに、本発明に係る光学フィルムは、直線偏光に対する透過光量の角度依存性が少ないことが好ましい。すなわち、偏光軸を一致させた偏光子と検光子の間に該光学フィルムを設置し、該光学フィルムを光軸を中心に0~360°の範囲で回転させたときの透過光量の変動係数が20%以内であることが望ましい。
 また、本発明に係る光学フィルムは、下記数4及び数5で示される式で表されるストークスパラメーターから求められる非偏光度(100-V)が、10%以上が好ましく、15%以上がさらに好ましく、20%以上が特に好ましい。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 本発明に係る光学フィルムは、全光線透過率が50%~99%、ヘイズが1%~99%以内であることが望ましい。
 本発明に係る光学フィルムは、図2(a)のようにそのまま液晶表示画面上に装着する形態、図2(b)のように表示面側偏光板と反射防止層の間に装着する形態、図2(c)のように表示面側偏光板内部で偏光層(PVAなど)と保護層(TACなど)の間に装着する形態などが想定される。本発明に係る光学フィルムは実施の形態により、表面後加工を必要とせずに反射防止、および/または妨眩等の作用が発揮される場合がある。あるいは、光学フィルムの外側表面に透明基材を保護膜として貼り合わせてもよい。使用される透明基材としては、透明であれば特に限定されないが、例えば、ポリカーボネート樹脂、メタアクリル樹脂、PET樹脂、ポリスチレン樹脂、環状を含むポリオレフィン樹脂、トリアセチルセルロース樹脂、または透明ガラス等が挙げられる。また、これらの透明基材の外側表面に反射防止処理、および/または妨眩処理、および/またはハードコート処理を施すことが好ましい。さらに、透明基材に高分子膜を被着させる方法は特に限定されず、公知の方法を用いることができる。
 また、本発明に係る光学フィルムを装着する液晶表示装置では、図1(a)のように光学フィルムがプリズムシート前後にて偏光を解消させながら光拡散する形態、図1(b)のように輝度上昇フィルム下面にて偏光を解消させながら光拡散する形態、図1(c)のようにワイヤーグリッド型反射偏光子下面にて偏光を解消させながら光拡散する形態などが想定されるが、いずれの場合も光源装置、背面偏光板、液晶セル、前面偏光板を基本構成とするものである。そして、液晶セルの機構によって種々の方式があるものの、少なくとも光源装置、偏光板、液晶セル、偏光板の順でこれら4つの構成要素を備え、さらに必要に応じて光学補償板やカラーフィルターなど、その他の構成要素をこれら4つの構成要素の間や前後に備えていてもよい。また、いずれの構成要素も周知慣用のものでよく、殊更に限定されない。なお、これらの構成において、偏光板が2か所にあるので本明細書においては、それらを区別するため、光源装置と液晶セルの間のものを背面偏光板、液晶セルよりさらに表示の前面にあるのを前面偏光板と称している。
 本発明に係る光学フィルムは、前面偏光板の更に前面に配することができる。なお、液晶表示装置には、その方式によっては液晶セルより前面に光学補償板やカラーフィルターなどを配している。カラーフィルターが用いられる場合には、光学フィルムは該カラーフィルターより前側に配されることができる。光学補償板が用いられる場合には、光学フィルムは該光学補償板の前側または後ろ側のいずれに配されていてもよい。
 また、本発明に係る光学フィルムは、光源装置と背面偏光板の間に配することができる。液晶表示装置には、その方式によっては液晶セルより背面に拡散フィルムなどを配している。拡散フィルム等が用いられている場合には、光学フィルムは該拡散フィルムの前面または後ろ側のいずれに配されていてもよい。
 本発明に係る光学フィルムは、偏光した光の波長の変化もしくは色味の変化が極めて少なく、かつ自然光と近しい非偏光に高効率で変換することができる。従って、本発明に係る光学フィルムを液晶テレビ、コンピュータや携帯電話の液晶ディスプレイ等の液晶表示装置に装着することにより、それらから発する直線偏光を非偏光に変換できるので、偏光眼鏡を用いた場合でも違和感がなく暗視野の解消ができる。また、単独で用いた場合でも、光を穏やかに分散できるために、眼精疲労を軽減することができる。また粒子と樹脂バインダー間の屈折率差を調整したり、フィルム表面に粒子に基づく凹凸を付与したりすることで、蛍光灯の写り込み等を防ぐ反射防止機能も付与することができる。
 また、本発明に係る光学フィルムは、光拡散効果とともに反射偏光子からの反射偏光成分を容易にランダム化することによって、反射偏光子の透過偏光成分を高効率で増幅することが可能である。従って、本発明に係る光学フィルムを液晶ディスプレイ装置等に使用することにより、液晶素子部を透過する偏光成分を増やすことでき、輝度の向上を図ることができる。
 また、光源やプリズムシートなどの影響により、光源装置から発せられた光成分が偏光成分を含む場合においても、拡散シートの基板の複屈折による輝度ムラの影響を低減することができる。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。また、ポリアミド微粒子の結晶化度、結晶子サイズ、平均粒子径、比表面積、平均細孔径、空孔率、多孔質度、球晶構造、偏光解消能、並びに光学フィルムの偏光解消度、全光線透過率(T)、ヘイズ(H)、透過光量などの測定は次のように行った。
(ポリアミド微粒子の結晶化度)
 結晶化度は、DSC(示差走査熱量計)で測定した。具体的には、流速40ml/min窒素気流中で、昇温速度10℃/min、温度範囲120~230℃の吸熱ピークの面積から求めた結晶融解熱と、既知のポリアミドの結晶融解熱量との比(下記数6で示される式)から求めた。なお、ポリアミド6の融解熱は、R.Viewegら、kunststoffeIV polyamide、218頁、Carl Hanger Verlag、1966年の記載により、45cal/gとした。
Figure JPOXMLDOC01-appb-M000011
(ポリアミド微粒子の結晶子サイズ)
 リガク社製回転陰極型X線回折装置RINT2500型にて、CuKα線を用い、管電圧40kV、管電流130mA、走査速度10°/min、スリット条件:DS(発散スリット)/SS(散乱スリット)/RS(受光スリット)=0.5°/0.5°/0.15mmの条件下、15~40°の走査範囲で回折パターンを得た。得られた回折パターンから、下記数7で示されるScherrerの式よりScherrer定数Kを1とした場合の結晶子サイズDを算出した。
Figure JPOXMLDOC01-appb-M000012
(ポリアミド微粒子の平均粒子径)
 平均粒子径および粒子径分布は、コールターカウンターを用いて、微粒子100,000個の平均値として測定した。数平均粒子径(Dn)は下記数8、体積平均粒子径(Dv)は下記数9、粒子径分布指数(PDI)は下記数10で示される式でそれぞれ表される
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
(ポリアミド微粒子の比表面積)
 比表面積は、窒素吸着によるBET法で3点測定を行った。
(ポリアミド微粒子の平均細孔径・空孔率)
 平均細孔径は、水銀ポロシメータにより測定した。測定範囲は、0.0036~14μmの範囲で平均細孔径を求めた。ポリアミド多孔質微粒子の空孔率P(porousity)は、1個の粒子中のポリアミドの体積と空間体積の割合を表す(下記数11で示される式で表わされる)。即ち、粒子内累積細孔容積(P)とすると下記数12で示される式で表される。
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
 細孔径に対する累積細孔容積の図から、粒子内累積細孔容積を算出し、下記数13で示される式に従って、粒子内空孔率を算出する。このときポリアミド微粒子の密度ρは、DSCで求めた結晶化度χと結晶密度ρc、非晶密度ρaから求めた。ここでポリアミド6の結晶密度(ρc)は1.23cm/g、非晶密度(ρa)は1.09cm/gとした。
Figure JPOXMLDOC01-appb-M000018
(ポリアミド微粒子の多孔質度)
 ポリアミド微粒子の多孔質度(RI)は、同一粒子径で真球状微粒子を仮定したときの比表面積値Spと多孔質微粒子の場合のBET比表面積Spの比で表すことができ、下記数14及び15で示される式で求められる。
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
(ポリアミド微粒子の球晶構造)
 粒子が球状や略球状の球晶構造、一部欠損した球晶構造(C型状、勾玉状)、又は、さらに欠損した軸晶的球晶構造(ダンベル状)を有しているかどうかの判断は、走査型もしくは透過型電子顕微鏡にて、粒子の断面を観察し、中心核近傍からポリアミドのフィブリルが放射状に成長していることで確認した。また、粒子を偏光顕微鏡にて観察した際、偏光子と検光子をクロスニコルにしても、粒子が明視野となるかどうかで確認した。
(ポリアミド微粒子の偏光解消能)
 まず、メタクリル酸メチルモノマー99.46重量部に、ラジカル重合開始剤として2,2’-アゾビス(イソブチロニトリル)(AIBN)0.34重量部、連鎖移動剤として1-ドデカンチオール(n-ラウリルメルカプタン)(n-LM)0.20重量部を加えた後、ポリアミド微粒子1.5重量部を添加、撹拌し、熱重合することで、ポリアミド微粒子が均一に分散された、厚さ約0.5mmの板状の樹脂シート(以下、ポリアミド微粒子分散シートと記載する場合がある。)を作成した。
 次に、紫外・可視分光光度計V-570(日本分光(株)製)を用い、検出部に積分球を、その入口に2枚の偏光フィルムをお互いの偏光軸が直交となるよう設置し(クロスニコル)、上記のポリアミド微粒子が均一に分散された樹脂シートをこれら2枚の偏光フィルムの間に隙間なくはさみ、波長(λ)400~750nmにおける光透過率T(λ)を測定した。偏光フィルムは、株式会社美舘イメージング:ハイコントラスト偏光板MLPH40を用いた。また、ポリアミド微粒子を含まない樹脂シートの光透過率Tp(λ)を測定した。さらに、用いた偏光フィルムの光透過率T(λ)、および2枚の偏光フィルムの偏光軸が平行となるよう重ねた時の光透過率T(λ)・T(λ)、および直交となるよう重ねた時の光透過率T(λ)・T(λ)をそれぞれ測定して、下記数20で示される式から波長λにおける消光比ν(λ)を算出した。これらから下記数1で示される式により波長λにおける消偏係数Dpc(λ)を算出した。以下の実施例における消偏係数は、特に記載がない限り、波長550nmにおけるものである。
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
(光学フィルムの偏光解消度)
 紫外・可視分光光度計V-570(日本分光(株)製)を用い、検出部に積分球を、その入口に2枚の偏光フィルムをお互いの偏光軸の角度がθ(°)となるよう設置し、上記のポリアミド微粒子が均一に分散された樹脂シートをこれら2枚の偏光フィルムの間に隙間なくはさみ、波長(λ)400~750nmにおける光透過率T(λ,θ)を測定した。偏光フィルムは、株式会社美舘イメージング:ハイコントラスト偏光板MLPH40を用いた。また、2枚の偏光フィルムの偏光軸の角度θ=0°(平行)となるよう重ねた時の光透過率T(λ,0)・T(λ,0)を測定して、下記数3で示される式から偏光解消度(DODP)を算出した。以下の実施例における偏光解消度は、特に記載がない限り、波長550nmにおけるものである。
Figure JPOXMLDOC01-appb-M000024
(偏光解消度の波長に対する変動係数)
 偏光解消度DODP(λ,θ)の波長λに対する変動係数CV(θ)は、波長400~750nmの範囲での偏光解消度の標準偏差および平均値より求められた。
(直線偏光に対する透過光量の角度依存性)
 ハロゲンランプによるファイバー光源、偏光子および検光子、スリット、並びに検出器を光源の中心軸を合わせて直線上に配置して、偏光子および検光子の偏光軸を一致させた上で、偏光子と検光子の間に測定する光学フィルムを設置し、該光学フィルムを光軸を中心に0~360°、5°刻み回転させた際の透過光強度を測定した。測定装置の模式図を図5に示した。
(光学フィルム透過光の非偏光度)
 水平偏光成分を光学フィルムに入射し、透過光の偏光状態を測定した。偏光状態の測定には東京インスツルメンツ社製分光ストークスポラリメーターPoxi-spectraを用い、550nmにおける偏光状態を測定した。
 光の偏光状態はS~Sの4つのストークスパラメーターにより記述することができる。Sは入射光強度、Sは水平直線偏光成分の優越分、Sは45°直線偏光成分の優先分、Sは右まわり円偏光成分の優先分を表すストークスパラメーターであり、下記数5で示される式で表される。
Figure JPOXMLDOC01-appb-M000025
 完全偏光状態においては下記数16で示される式、完全非偏光状態では下記数17で示される式でそれぞれ表される。また、部分偏光であれば下記数18で示される式で表される。
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000028
 また、入射強度Sに対する完全偏光の強度の比は偏光度Vと定義され、下記数19で示される式で表される。
Figure JPOXMLDOC01-appb-M000029
 Vの値が100%であれば、出射光は全て偏光成分で記述でき、Vの値が低ければ偏光成分で記述できないランダムな成分が存在することを示す。ランダムな偏光成分を非偏光とすると非偏光度は(100-V)で記述される。
(光学フィルムの全光線透過率、ヘイズ)
 全光線透過率(T)、およびヘイズ(H)は日本電色工業製のヘイズメーターNDH5000を用い、JIS K7361-1およびJIS K7136に準拠して測定した。
(輝度測定)
 輝度は、コニカミノルタ製の輝度計LS-110を用い、市販の32インチ液晶テレビのバックライトユニットを用いて測定した。バックライトユニットは下面から、光源LED、拡散板、プリズムシート2枚、反射偏光子(DBEF)で構成されており、プリズムシートと反射偏光子の間に光学フィルムを装着した状態を構成A、プリズムシートと拡散フィルムの間に光学フィルムを装着した状態を構成Bとした。輝度は、反射偏光子(DBEF)の上面にさらに吸収型偏光板を最も明るくなる面で配置し、構成Aおよび構成Bの輝度を測定した。
(実施例1)
 ポリアミド6(宇部興産(株)製:分子量13,000)を容器中でポリアミドの重量濃度が20重量%となるようにグリセリンと混合した後、窒素ガスを系内に導入しながら、溶液の温度を上昇させたところ、180℃でポリアミドが溶解を開始したため、この温度を相分離温度とした。さらに昇温して、200℃になるまで攪拌しながら加熱溶解して均質な溶液を得た。この溶液に80℃のグリセリンを相分離温度より40℃低い140℃±1℃になるまで1分以内で攪拌しながら添加し、さらに20秒攪拌し、濃度揺らぎがないことを確認後、140℃のオイルバス中に静置した。その結果、静置してから、約15秒後に溶液が白濁し始め、容器内に塊状の析出物が一切生じることなく均一なポリアミド6の沈殿物が得られた。得られた沈殿物をメタノールで洗浄して常温で乾燥後、走査型電子顕微鏡(SEM)によって観察を行ったところ、図4に示すような軸晶型(ダンベル状)の多孔質粒子が観察された。偏光顕微鏡で粒子を観察したところ、クロスニコル下でも粒子が明視野になる部分があり、局所的に球晶構造を有している事が確認された。得られた粒子の数平均粒子径は11.5μm、体積平均粒子径は16.4μmで、PDIは1.4と比較的粒度の揃った粒子であった。また、結晶化度は51.9%、結晶子サイズは13.9nm、比表面積は、8.4m/g、平均細孔径は14.2nmであった。本粒子の消偏係数は2.85/mで、ポリアミド微粒子分散シートの偏光解消度は20.1%であった。ポリアミド微粒子分散シートの光透過率の測定結果を図5に示す。
(比較例1)
 フェノールとメタノールとを重量比で9:1の割合で含む溶液に、ポリアミド6(分子量13,000)を加えて溶解させ、ポリアミド6濃度が5重量%のポリアミド6溶液を調製した。このナイロン溶液1重量部に対して、メタノールと水とをそれぞれ7重量部、0.5重量部で事前に混合した混合液を添加した。温度は室温で行った。24時間静置して、析出終了させた。その後遠心分離でポリマーを単離した後、50℃のメタノールを微粒子の100倍量かけながら遠心分離脱水を行い、粒子の洗浄、常温で乾燥した。得られたポリマー粒子を走査型電子顕微鏡で観察したところ、数平均粒子径10.0μm、体積平均粒子径13.8μmの比較的均一な球形の多孔質粒子であった。得られた粒子のSEM画像を図6に示す。得られた粒子の平均細孔径56.8nm、結晶子サイズ11.2nm、PDI1.4、比表面積21.4m/g、多孔度指数RI42.1、結晶化度56%であった。本粒子の消偏係数は1.11/mで、ポリアミド微粒子分散シートの偏光解消度は8.6%であった。ポリアミド微粒子分散シートの光透過率の測定結果を図5に示す。
(実施例2)
 実施例1においてポリアミドの重量濃度が2重量%となるようにグリセリン溶液を調製後、この溶液に80℃のグリセリンを相分離温度から50℃低い130℃±1℃になるまで攪拌しながら1分以内で添加し、さらに20秒攪拌し、濃度揺らぎがないことを確認後、130℃のオイルバス中に静置した。その結果、静置してから、約25秒後に溶液が白濁し始め、容器内に塊状の析出物が一切生じることなく均一なポリアミド6の沈殿物が得られた。得られた沈殿物をメタノールで洗浄して常温で乾燥後、SEMによって観察を行ったところ、略球形状の多孔質粒子が観察された。透過型電子顕微鏡(TEM)によって断面を観察したところ、中心から放射状にフィブリルが成長した球晶構造を有することを確認した。得られた粒子の数平均粒子径は、15.1μm、体積平均粒子径は17.6μmの比較的粒度の揃った粒子であった。また、結晶化度は58.6%、結晶子サイズは12.4nm、比表面積は7.6m/gであった。本粒子の消偏係数は2.81/mであった。
(比較例2)
 実施例1にてポリアミドの重量濃度が5重量%となるようにグリセリン溶液を調製した後、攪拌を停止し、得られた溶液を2.4℃/分で冷却したところ、相分離温度より20℃低い160℃で溶液が濁り始めた。さらに温度が低下してゆくにしたがって、相分離温度より40℃で溶液がさらに濁った。このようにして得られた析出物を取り出しメタノールで洗浄、常温乾燥した後SEM観察を行ったところ、球晶状の粒子が凝集して連なった多孔質粒子が観察された。このようにして得られたポリアミド6粒子には大きな塊状の析出物も観察された。当粒子凝集体の結晶化度は58.2%、結晶子サイズは10.3nmであった。本粒子の消偏係数は1.35/mであった。
(実施例3)
 ポリアミド6(宇部興産(株)製:分子量13,000)を容器中でポリアミドの重量濃度が10重量%となるようにエチレングリコールと混合した後、窒素ガスを系内に導入しながら、溶液の温度を上昇させたところ、150℃でポリアミドが溶解を開始したため、この温度を相分離温度とした。さらに昇温して、180℃になるまで攪拌しながら加熱溶解して均質な溶液を得た。この溶液に40℃のエチレングリコールを相分離温度から40℃低い110℃±1℃になるまで攪拌しながら1分以内で添加し、さらに20秒攪拌し、濃度揺らぎがないことを確認後、110℃のオイルバス中に静置した。その結果、静置してから、約50秒後に溶液が白濁し始め、容器内に塊状の析出物が一切生じることなく均一なポリアミド6の沈殿物が得られた。得られた沈殿物をメタノールで数回洗浄し、常温乾燥後、走査型電子顕微鏡観察および粒子径を測定した。結果を図7に示す。その結果、数平均粒子径が20.1μm、体積平均粒子径が23.5μmの比較的粒子サイズが揃った多孔質略勾玉状(C型状)粒子が観察された。断面のTEM写真から、球晶構造を有することを確認した。得られた粒子の結晶化度は52.3%、結晶子サイズは14.3nm、比表面積は5.1m/g、平均細孔径は55nmであった。本粒子の消偏係数は2.59/mで、ポリアミド微粒子分散シートの偏光解消度は18.9%であった。ポリアミド微粒子分散シートの光透過率の測定結果を図5に示す。
(比較例3)
 実施例3のポリアミドのエチレングリコール溶液を75℃に保温したステンレスバットの上に、厚さ1.5mmの液膜で30分間保温してポリアミド6の沈殿物が得られた。得られた沈殿物をメタノールで数回洗浄し、常温で乾燥後、粒子径およびSEM観察を行った。得られたポリアミド微粒子は数平均粒子径9.8μm、体積平均粒子径14.0μm、平均細孔径19nm、PDI1.43、比表面積3.0m/g、結晶化度47.5%、結晶子サイズ12.6nmであった。本粒子の消偏係数は1.01/mで、ポリアミド微粒子分散シートの偏光解消度は7.7%であった。ポリアミド微粒子分散シートの光透過率の測定結果を図5に示す。
(実施例4)
 実施例3において、ポリアミドの重量濃度が2重量%になるようにエチレングリコールと溶液を作成後、20℃のエチレングリコールを相分離温度から50℃低い100℃±1℃になるまで攪拌しながら1分以内で添加し、混合し、さらに20秒攪拌し、濃度揺らぎがないことを確認後、100℃のオイルバス中に静置した。その結果、静置してから、80秒後に溶液が白濁し始め、容器内に塊状の析出物が一切生じることなく均一なポリアミド6の沈殿物が得られた。得られた沈殿物をメタノールで数回洗浄し常温で乾燥後、走査型電子顕微鏡観察に供した。その結果、軸晶型(ダンベル状)の多孔質粒子が観察された。偏光顕微鏡で粒子を観察したところ、クロスニコル下でも粒子が明視野になる部分があり、球晶構造を有している事が確認された。得られた粒子の数平均粒子径は、18.2μm、体積平均粒子径は21.6μmの比較的粒度が揃った粒子であった。比表面積は6.4m/g、結晶化度は56.6%、結晶子サイズは12.9nmであった。本粒子の消偏係数は2.52/mであった。
(比較例4)
 実施例3において、ポリアミドの重量濃度が10重量%になるようにエチレングリコールと溶液を作成後、攪拌を停止し、得られた溶液を空気中で1.6℃/分の冷却速度で冷却したところ、140℃付近で溶液表面に膜状の析出物が観察され、さらに冷却を続けたところ120℃付近から溶液全体にゲル化が進行し、115℃で溶液は完全に固化した。得られた固形物は柔らかくて簡単に崩れ、固化物を崩してメタノールで洗浄・常温乾燥した後、得られた粉体状の析出物をSEM観察に供したところ多孔質で勾玉が繋がったような構造体が観察された。このようにして得られたポリアミド6の粉体は触感が悪く、大きな塊状の析出物も観察された。結晶化度は52.0%、結晶子サイズは10.8nmであった。本粒子の消偏係数は1.12/mであった。
(実施例5)
 実施例3において、ポリアミドの重量濃度が2重量%になるようにエチレングリコールと溶液を作成後、この溶液に30℃のエチレングリコールを相分離温度から20℃低い130℃±1℃になるまで攪拌しながら1分以内で添加し、さらに20秒攪拌し、濃度揺らぎがないことを確認後、130℃のオイルバス中に静置した。その結果、静置してから、約10000秒後に溶液が白濁し始め、容器内に塊状の析出物も同時に生じ、不均一なポリアミド6の沈殿物が得られた。このようにして得られた析出物を取り出しメタノールで洗浄、常温乾燥した後SEM観察を行ったところ、球晶状の粒子が連なったような多孔質塊状粒子が観察された。数平均粒子径は25.3μm、体積平均粒子径は40.3μm、比表面積は6.4m/gであった。また、結晶化度は59.2%、結晶子サイズは13.1nmであった。本粒子の消偏係数は2.48/mであった。
(実施例6)
 実施例3において、ポリアミドの重量濃度が3重量%になるようにエチレングリコールと溶液を作成後、30℃のエチレングリコールを相分離温度より70℃低い80℃±1℃になるまで攪拌しながら1分以内で添加したところ攪拌中に析出が始まり、液が濁り始めたので直ちに攪拌をやめ、80℃のオイルバス中に静置した。得られた析出物をメタノールで洗浄し常温乾燥後SEM観察を行ったところ、やや凝集した軸晶型のポリアミド粒子が観察された。数平均粒子径は18.6μm、体積平均粒子径は32.2μm、比表面積は4.9m/gであった。また、結晶化度は54.8%、結晶子サイズは12.8nmであった。本粒子の消偏係数は2.39/mであった。
(実施例7)
 ポリアミド6(宇部興産(株)製:分子量13,000)を容器中でポリアミドの重量濃度が1重量%となるように1,3-ブタンジオールと混合した後、窒素ガスを系内に導入しながら、溶液の温度を上昇させたところ、152℃でポリアミドが溶解を開始したため、この温度を相分離温度とした。さらに昇温して、170℃になるまで攪拌しながら加熱溶解して均質な溶液を得た。この溶液に40℃の1,3-ブタンジオールを相分離温度から47℃低い105℃±1℃になるまで攪拌しながら1分以内で添加し、さらに20秒攪拌し、濃度揺らぎがないことを確認後、105℃のオイルバス中に静置した。その結果、静置してから、約870秒後に溶液が白濁し始め、容器内に塊状の析出物が一切生じることなく均一なポリアミド6の沈殿物が得られた。得られた沈殿物をメタノールで洗浄して常温乾燥後、SEM観察を行ったところ、軸晶型(ダンベル状)の多孔質粒子が観察された。偏光顕微鏡で粒子を観察したところ、クロスニコル下でも粒子が明視野になる部分があり、局所的に球晶構造を有している事が確認された。得られた粒子の数平均粒子径は19.9μm、体積平均粒子径は22.6μmの比較的粒度が揃った粒子であった。また、結晶化度は59.8%、結晶子サイズは12.7nm、比表面積は8.9m/gであった。本粒子の消偏係数は2.61/mであった。
(実施例8)
 ポリアミド6(宇部興産(株)製:分子量13,000)を容器中でポリアミドの重量濃度が20重量%となるようにエチレングリコールと混合した後、窒素ガスを系内に導入しながら、溶液の温度を上昇させたところ、150℃でポリアミドが溶解を開始したため、この温度を相分離温度とした。さらに昇温して、160℃になるまで攪拌しながら加熱溶解して均質な溶液とし、そのまま160℃で6時間保持した。この溶液を40℃のエチレングリコールに相分離温度より50℃低い100℃±1℃になるまで攪拌しながら1分以内で添加し、さらに20秒攪拌し、濃度揺らぎがないことを確認後、100℃に保持しながら静置した。その結果、静置してから、約15秒後に溶液が白濁し始め、容器内に塊状の析出物が一切生じることなく均一なポリアミド6の沈殿物が得られた。得られた沈殿物をメタノールで洗浄して常温乾燥後、走査型電子顕微鏡(SEM)によって観察を行ったところ、勾玉状(C型状)の多孔質粒子が観察された。比表面積は13.2m/gであった。数平均粒子径は14.4μm、体積平均粒子径は19.5μmで、PDIは1.35と比較的粒度の揃った粒子であった。また、結晶化度は57.9%、結晶子サイズは13.9nmであった。本粒子の消偏係数は2.97/mであった。
(比較例5)
 フェノールとメタノールとを質量比で9:1の割合で含む溶液に、ポリアミド6(分子量11,000)を加えて溶解させポリアミド6濃度が20質量%のポリアミド6溶液を調製した。このナイロン溶液1重量部に対して、メタノールと水とをそれぞれ6重量部、1.5重量部で事前に混合した混合液を添加した。温度は室温で行った。24時間静置して、析出終了させた。その後遠心分離でポリマーを単離した後、50℃のメタノールを微粒子の100倍量かけながら遠心分離脱水を行い、粒子の洗浄、常温で乾燥した。得られたポリマー粒子を走査型電子顕微鏡で観察したところ、数平均粒子径15.6μm、体積平均粒子径23.2μmの比較的均一な球形の多孔質粒子であった。比表面積は7.1m/gであった。結晶子サイズは11.5nm、PDIは1.5、結晶化度は49%であった。本粒子の消偏係数は1.32/mであった。
(実施例9)
 比較例5において得られた粒子を180℃で4h、100Torr以下にて減圧乾燥を行った。得られた粒子を走査型電子顕微鏡で観察したところ、数平均粒子径15.0μm、体積平均粒子径24.1μmの比較的均一な球形の多孔質粒子であった。比表面積は5.2m/gであった。結晶子サイズは12.5nm、PDIは1.6、結晶化度は53%であった。本粒子の消偏係数は2.31/mであった。
(実施例10)
 ポリアミド6(宇部興産(株)製:分子量13,000)を容器中でポリアミドの重量濃度が20重量%となるようにエチレングリコールと混合した後、窒素ガスを系内に導入しながら、溶液の温度を上昇させたところ、150℃でポリアミドが溶解を開始したため、この温度を相分離温度とした。さらに昇温して、160℃になるまで攪拌しながら加熱溶解して均質な溶液とし、そのまま160℃で6時間保持した。この溶液を40℃のエチレングリコールに相分離温度より50℃低い100℃±1℃になるまで攪拌しながら1分以内で添加し、さらに20秒攪拌し、濃度揺らぎがないことを確認後、100℃に保持しながら静置した。その結果、静置してから、約15秒後に溶液が白濁し始め、容器内に塊状の析出物が一切生じることなく均一なポリアミド6の沈殿物が得られた。得られた沈殿物をメタノールで洗浄して乾燥後、走査型電子顕微鏡(SEM)によって観察を行ったところ、図8に示すような勾玉状(C型状)の多孔質粒子が観察された。数平均粒子径は14.4μm、体積平均粒子径は19.5μmで、PDIは1.35と比較的粒度の揃った粒子であった。得られた粒子の結晶化度をDSC測定により測定したところ、当粒子の結晶化度は57.9%、結晶子サイズは13.9nmであった。また、当粒子の消偏係数は2.97/m、ポリアミド微粒子分散シートの偏光解消度は24.4%、波長400~750nmの範囲における偏光解消度の変動係数CV(θ)は11.9%であった。
(比較例6)
 フェノールと2-プロパノール(IPA)とを質量比で9:1の割合で含む溶液に、ポリアミド6(宇部興産(株)製:分子量11,000)を加えて溶解させポリアミド6濃度が20質量%のポリアミド6溶液を調製した。このポリアミド溶液1重量部に対して、IPAと水とをそれぞれ3重量部、2.6重量部で事前に混合した混合液を添加した。温度は20℃で行った。24時間静置して、析出終了させた。その後遠心分離でポリマーを単離した後、50℃のIPAを微粒子の100倍量かけながら遠心分離脱水を行い、粒子の洗浄を行なった。得られたポリマー粒子を走査型電子顕微鏡で観察したところ、数平均粒子径5.50μm、体積平均粒子径6.49μmの比較的均一な球形の多孔質粒子であった。また、平均細孔径は0.05681μm、PDIは1.18、比表面積は21.4m/g、多孔度指数RIは42.1、ポリマー粒子の結晶化度は51.7%、結晶子サイズは11.3nmであった。この多孔質粒子は図9に示すように、中心の単一または複数の核から三次元的に放射状にナイロンフィブリルが成長し、単一粒子そのものが球晶構造を有していることがわかった。また、当粒子の消偏係数は0.53/m、ポリアミド微粒子分散シートの偏光解消度は4.51%、波長400~750nmの範囲における偏光解消度の変動係数CV(θ)は38.0%であった。
(実施例11)
 実施例10にて作成した粒子20重量部にウレタンアクリレート系オリゴマー(日本合成化学製UV-7600B)50重量部、光重合開始剤1-ヒドロキシ-シクロヘキシルフェニルケトン(和光純薬製)0.8重量部およびトルエン50重量部を均一分散させて、スラリー体を作成した。このスラリー体をトリアセチルセルロース(TAC)基板上にバーコーターにてコーティング後、UV照射(850mJ/cm)により硬化、乾燥処理をおこない、TAC基板上にポリアミド微粒子を含む樹脂層を形成した光学フィルムを作成した。波長400~750nmの範囲における偏光解消度の変動係数CV(θ)は5.3%であった。本光学フィルムの偏光解消度の波長依存性を図10に示す。
(比較例7)
 比較例6にて作成した粒子を用いて実施例11と同様の手法により、光学フィルムを作成した。波長400~750nmの範囲における偏光解消度の変動係数CV(θ)は29.2%であった。本光学フィルムの偏光解消度の波長依存性を図10に示す。
(比較例8)
 1/4波長板(株式会社美舘イメージング:1/4波長板MCR140U)の波長400~750nmの範囲における偏光解消度の変動係数CV(θ)は28.1%であった。本1/4波長板の偏光解消度の波長依存性を図10に示す。
(実施例12)
 液晶ディスプレイ上に偏光フィルムを置き、液晶ディスプレイの偏光軸と偏光フィルムの光軸の角度θが合致(θ=0°)した場合は明視野となり、明視野時の光軸から右もしくは左90度傾ける(θ=90°)ことで全く暗視野となることを確認した。次に、液晶ディスプレイ画面上に実施例11で作成した光学フィルムを密着させ、蛍光灯の下で観察すると、蛍光灯の写り込みが低減された反射防止機能があることを確認した。さらに実施例11で作成した光学フィルムの上に、偏光フィルムを液晶ディスプレイの偏光軸に対してさまざまな角度で配置したところ、偏光フィルムを明視野時の光軸から右もしくは左90度傾けた状態においても液晶ディスプレイ上の画像をはっきりと見ることができ、暗視野が解消されるとともに、ディスプレイの画像の色味にもほとんど変化がないことが確認された。これにより、本発明の光学フィルムにより、直線偏光を非偏光に高効率で変換できることが明らかとなった。
(比較例9)
 実施例12と同様の操作を1/4波長板(株式会社美舘イメージング:1/4波長板MCR140U)を用いて行なったところ、蛍光灯の写り込みが確認でき、反射防止機能がないことが確認された。また、液晶ディスプレイの偏光軸と偏光フィルムの偏光軸が一致した場合(θ=0°)、1/4波長板を通じて見える液晶ディスプレイ上の画像は黄色っぽく見え、液晶ディスプレイの偏光軸と偏光フィルムの偏光軸が直交した場合(θ=90°)は画面が青みを帯びて見えるという色味の変化を確認した。
(比較例10)
 実施例12と同様の操作を市販のポリエチレンテレフタレート(PET)フィルムを用いて行なったところ、蛍光灯の写り込みが確認でき、反射防止機能がないことが確認された。また液晶ディスプレイの偏光軸と偏光フィルムの光軸の角度θによらず、液晶ディスプレイ上の画像を確認することができるものの、フィルム全体に複屈折から生じるリタデーションによる虹色の色ムラが発生し、画像は大変見にくいものであった。
(実施例13)
 トリアセチルセルロース(TAC)基板の代わりに、ポリエチレンテレフタレート(PET)基板を用いた以外は実施例11と同様にして、光学フィルムを作成した。実施例12と同様の操作を行ったところ、本光学フィルムは、蛍光灯の写り込みが低減された反射防止機能があることを確認した。偏光フィルムを明視野時の光軸から右もしくは左90度傾けた状態においても液晶ディスプレイ上の画像をはっきりと見ることができ、暗視野が解消されるとともに、PETの複屈折による虹色の色ムラも解消され、画像の色味の変化のほとんど解消されたことを確認した。
(実施例14)
 実施例10にて作成した粒子20重量部にウレタンアクリレート系オリゴマー(日本合成化学製UV-7600B)50重量部、光重合開始剤1-ヒドロキシ-シクロヘキシルフェニルケトン(和光純薬製)0.8重量部およびトルエン50重量部を均一分散させて、スラリー体を作成した。このスラリー体をポリエチレンテレフタレート基板(50μm)上にバーコーターにてコーティング後、UV照射(850mJ/cm)により硬化、乾燥処理をおこない、PET基板上にポリアミド微粒子を含む樹脂層を形成した光学フィルムを作成した。波長400~750nmにおける偏光解消度の変動係数(CV)は5.3(%)であった。本光学フィルムのヘイズは46.8%、全光線透過率は90.0%であった。本光学フィルムの透過光の角度依存性について、図11に示す。本光学フィルムを、光軸を中心に0~360°の範囲で回転させたときの直線偏光の透過光量の変動係数は17.8%であった。ストークスパラメーターから求めた非偏光度(100-V)は21.7%であった。
(比較例11)
 実施例14で用いたポリエチレンテレフタレート基板(50μm)のヘイズは0.4%、全光線透過率は92.8%であった。本フィルムの透過光の角度依存性について、図11に示す。本光学フィルムを、光軸を中心に0~360°の範囲で回転させたときの直線偏光の透過光量の変動係数は21.6%であった。ストークスパラメーターから求めた非偏光度(100-V)は0.7%であった。
(実施例15)
 ポリエチレンテレフタレート基板の膜厚を100μmのものとした以外は実施例14と同様にして光学フィルムを作成した。波長400~750nmの範囲で、偏光解消度DODP(λ,θ)の変動係数CV(θ)は、最大で5.4(%)であった。本フィルムのヘイズは48.1%、全光線透過率は88.2%であった。本光学フィルムを、光軸を中心に0~360°の範囲で回転させたときの直線偏光の透過光量の変動係数は19.2%であった。ストークスパラメーターから求めた非偏光度(100-V)は25.3%であった。
(比較例12)
 実施例15で用いたポリエチレンテレフタレート基板(100μm)のヘイズは2.4%、全光線透過率は90.0%であった。本ポリエチレンテレフタレート基板を、光軸を中心に0~360°の範囲で回転させたときの直線偏光の透過光量の変動係数は23.7%であった。ストークスパラメーターから求めた非偏光度(100-V)は0.4%であった。
(実施例16)
 実施例10にて作成した粒子20重量部にウレタンアクリレート系オリゴマー(日本合成化学製UV-7600B)50重量部、光重合開始剤1-ヒドロキシ-シクロヘキシルフェニルケトン(和光純薬製)0.8重量部およびトルエン50重量部を均一分散させて、スラリー体を作成した。このスラリー体をトリアセチルセルロース(TAC)基板(80μm)上にバーコーターにてコーティング後、UV照射(850mJ/cm)により硬化、乾燥処理をおこない、TAC基板上にポリアミド微粒子を含む樹脂層を形成した光学フィルムを作成した。波長400~750nmにおける偏光解消度の変動係数(CV)は5.2(%)であった。本光学フィルムのヘイズは55%であった。本光学フィルムをバックライトユニットに装着して輝度を測定したところ、構成Aで1349(cd/m)、構成Bで1422(cd/m)となった。
(比較例13)
 市販の拡散フィルム(ヘイズ55%)をバックライトユニットに装着して輝度を測定をしたところ、構成Aで1301(cd/m)、構成Bで1388(cd/m)であった。
1 光拡散フィルム
2 光源
3 反射板
4 導光板
5 プリズムシート
6 偏光フィルム
7 液晶素子部
11 輝度上昇フィルム
12 反射偏光子層(DBEF層)
13 反射偏光子層(ワイヤーグリッド型)
14 バックライトモジュール
15 反射防止層(AGあるいはAR)
A  本発明の光学フィルム
 

Claims (12)

  1.  広角X線回折による結晶子サイズが12nm以上、及びDSCによる結晶化度が50%以上であり、球晶構造からなることを特徴とするポリアミド微粒子。
  2.  球相当数平均粒子径が、1~50μmであることを特徴とする請求項1記載のポリアミド微粒子。
  3.  比表面積が、0.1~80m/gであり、多孔質構造を有することを特徴とする請求項1又は2記載のポリアミド微粒子。
  4.  ポリアミドが、ポリアミド6であることを特徴とする請求項1乃至3いずれか記載のポリアミド微粒子。
  5.  波長550nmの光に対する下記数1及び数2で示される式で表される消偏係数Dpc(λ)が、1.5/m以上であることを特徴とする請求項1乃至4いずれか記載のポリアミド微粒子。
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
  6.  請求項1乃至5いずれか記載のポリアミド微粒子を含む樹脂層を有することを特徴とする光学フィルム。
  7.  下記数3で示される式で表される偏光解消度DODP(λ,θ)の波長400~750nm範囲における変動係数CV(θ)が、θ=0°~90°において、25%以内であることを特徴とする請求項6記載の光学フィルム。
    Figure JPOXMLDOC01-appb-M000003
  8.  下記数4及び数5で示される式で表されるストークスパラメータによる非偏光度(100-V)が10%以上であることを特徴とする請求項6又は7記載の光学フィルム。
    Figure JPOXMLDOC01-appb-M000004
    Figure JPOXMLDOC01-appb-M000005
  9.  光源装置、背面偏光板、液晶セルおよび前面偏光板を備えた液晶表示装置であって、前面偏光板の前面または背面偏光板の背面と前記光源装置の間に、請求項6乃至8のいずれか記載の光学フィルムを有することを特徴とする液晶表示装置。
  10.  ポリアミド(A)と、該ポリアミド(A)に対して高温では良溶媒として作用し低温では非溶媒として作用する溶剤(B)とを混合して加熱することによって均一なポリアミド溶液を調製した後、該ポリアミド溶液と低温の溶剤(C)とを前記ポリアミド溶液の相分離温度より20~80℃低い温度となるまで3分以内で攪拌しながら混合し、その温度を保ったまま静置してポリアミドを析出させることを特徴とするポリアミド微粒子の製造方法。
  11.  溶剤(B)が、多価アルコールであることを特徴とする請求項10記載のポリアミド微粒子の製造方法。
  12.  ポリアミド(A)が、ポリアミド6であることを特徴とする請求項10乃至11いずれか記載のポリアミド微粒子の製造方法。
     
PCT/JP2011/059645 2010-04-20 2011-04-19 ポリアミド微粒子及びその製造方法並びにそれを用いた光学フィルム及び液晶表示装置 WO2011132680A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020127030296A KR20130066618A (ko) 2010-04-20 2011-04-19 폴리아마이드 미립자 및 그의 제조방법, 그리고 이것을 이용한 광학 필름 및 액정표시장치
CN201180019884XA CN102869706A (zh) 2010-04-20 2011-04-19 聚酰胺微粒子及其制造方法、以及使用其的光学膜及液晶显示设备
JP2012511672A JP5641044B2 (ja) 2010-04-20 2011-04-19 ポリアミド微粒子及びその製造方法並びにそれを用いた光学フィルム及び液晶表示装置
BR112012026755A BR112012026755A2 (pt) 2010-04-20 2011-04-19 micropartículas de poliamida, método de fabricação das mesmas, película óptica que utiliza as ditas micropartículas de poliamida, e dispositivo de tela de cristal líquido
US13/641,395 US20130038822A1 (en) 2010-04-20 2011-04-19 Polyamide microparticles, manufacturing method therefor, optical film using said polyamide microparticles, and liquid crystal display device
EP11772015A EP2562204A1 (en) 2010-04-20 2011-04-19 Polyamide microparticles, manufacturing method therefor, optical film using said polyamide microparticles, and liquid-crystal display device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010096623 2010-04-20
JP2010-096623 2010-04-20
JP2010151606 2010-07-02
JP2010-151606 2010-07-02
JP2010-182950 2010-08-18
JP2010182950 2010-08-18

Publications (1)

Publication Number Publication Date
WO2011132680A1 true WO2011132680A1 (ja) 2011-10-27

Family

ID=44834198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059645 WO2011132680A1 (ja) 2010-04-20 2011-04-19 ポリアミド微粒子及びその製造方法並びにそれを用いた光学フィルム及び液晶表示装置

Country Status (8)

Country Link
US (1) US20130038822A1 (ja)
EP (1) EP2562204A1 (ja)
JP (1) JP5641044B2 (ja)
KR (1) KR20130066618A (ja)
CN (1) CN102869706A (ja)
BR (1) BR112012026755A2 (ja)
TW (1) TW201141910A (ja)
WO (1) WO2011132680A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179851A1 (ja) * 2012-05-31 2013-12-05 林テレンプ株式会社 光透過性充填材料、それを用いる表示装置の製造方法および表示装置
CN103748143A (zh) * 2011-09-27 2014-04-23 东丽株式会社 聚酰胺1010树脂粒子及其制造方法
JP2014227471A (ja) * 2013-05-23 2014-12-08 宇部興産株式会社 ポリアミド微粒子の製造方法
WO2016147582A1 (ja) * 2015-03-18 2016-09-22 旭化成株式会社 ポリアミド系樹脂発泡成形体、及びポリアミド系樹脂発泡成形体の製造方法
WO2017061502A1 (ja) * 2015-10-07 2017-04-13 ダイセル・エボニック株式会社 繊維強化樹脂及びその製造方法並びに成形品
JP2018503875A (ja) * 2015-01-15 2018-02-08 エルエムエス カンパニー リミテッドLms Co., Ltd. 光再利用向上シートを有する反射偏光モジュール及びこれを備えたバックライトユニット
JP2018043487A (ja) * 2016-09-16 2018-03-22 旭化成株式会社 繊維強化複合体
JP2021130739A (ja) * 2020-02-18 2021-09-09 株式会社ジェイエスピー ポリアミド系樹脂発泡粒子
JP2021526568A (ja) * 2018-11-05 2021-10-07 エルジー・ケム・リミテッド ポリアミド樹脂、およびそれを用いた高分子フィルムおよび樹脂積層体
CN114591531A (zh) * 2022-01-28 2022-06-07 苏州大学 一种由废旧尼龙6织物制备多孔微球的方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104777696A (zh) * 2015-05-08 2015-07-15 京东方科技集团股份有限公司 一种背光模组及显示装置
WO2017110084A1 (ja) * 2015-12-25 2017-06-29 富士フイルム株式会社 直下型バックライトユニット
CN108474524B (zh) * 2015-12-25 2020-09-25 富士胶片株式会社 边缘照明型背光单元
WO2020096284A1 (ko) * 2018-11-05 2020-05-14 주식회사 엘지화학 폴리아미드 수지, 및 이를 이용한 고분자 필름 및 수지 적층체
KR102493983B1 (ko) * 2019-12-09 2023-01-30 주식회사 엘지화학 고분자 수지 조성물, 및 이를 이용한 고분자 수지 복합체, 고분자 필름 및 수지 적층체
KR102552406B1 (ko) * 2019-12-10 2023-07-05 주식회사 엘지화학 고분자 수지 조성물, 및 이를 이용한 고분자 필름 및 수지 적층체
US20220073680A1 (en) * 2019-12-09 2022-03-10 Lg Chem, Ltd. Polymer resin composition, and polymer film, resin laminate using the same
CN111187576B (zh) * 2020-01-03 2021-11-02 京东方科技集团股份有限公司 柔性显示器件及其制备方法
CN213069412U (zh) * 2020-08-10 2021-04-27 北京京东方显示技术有限公司 显示面板及显示装置

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2639278A (en) 1950-12-22 1953-05-19 Polymer Corp Method of preparing finely divided nylon powder
JPH04184429A (ja) 1990-11-20 1992-07-01 Seiko Epson Corp 偏光光源装置及びこれを用いた投射型液晶表示装置
JPH06308496A (ja) 1993-04-22 1994-11-04 Sharp Corp 液晶表示素子
JPH0812765A (ja) 1994-06-28 1996-01-16 Korea Advanced Inst Of Sci Technol 結晶性ポリアミド球状粒子粉末の製造方法
JPH1010522A (ja) 1996-06-24 1998-01-16 Dainippon Printing Co Ltd 液晶表示装置
JP2000221507A (ja) 1999-02-02 2000-08-11 Toyobo Co Ltd 液晶表示装置
JP2001188126A (ja) 2000-01-05 2001-07-10 Fuji Photo Film Co Ltd 偏光分離プリズムシートおよび照明装置
JP2003185821A (ja) 2001-12-14 2003-07-03 Katsuto Ono 目の疲れを押える効果のあるフィルター
JP2004004699A (ja) 1993-12-21 2004-01-08 Three M Innovative Properties Co 反射偏光子ディスプレイ
JP2006328173A (ja) 2005-05-25 2006-12-07 Metal Color:Kk ポリアミド球状粒子粉末の製造方法
JP2007204767A (ja) 2000-06-14 2007-08-16 Ube Ind Ltd ポリアミド多孔質粒子の製造方法
WO2007119592A1 (ja) 2006-03-30 2007-10-25 Ube Industries, Ltd. 光フィルター
JP2008303304A (ja) * 2007-06-07 2008-12-18 Metal Color:Kk 結晶性ポリアミド微粒子の製造方法
JP2010053272A (ja) * 2008-08-29 2010-03-11 Ube Ind Ltd 紫外線防除機能を有する複合化ポリアミド多孔質微粒子およびその製造方法
JP2010091655A (ja) 2008-10-06 2010-04-22 Nitto Denko Corp 光学積層体および画像表示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2225074A1 (en) * 1996-04-19 1997-10-30 Toshihiro Tsuzuki Aromatic polyamide film,its method of production and magnetic recording media employing same
CN1160398C (zh) * 2001-11-21 2004-08-04 中国科学院生态环境研究中心 颗粒度均匀的高分子微球、针状微粒及成形方法
KR101290510B1 (ko) * 2005-09-27 2013-07-26 우베 고산 가부시키가이샤 폴리아미드 다공질 구상 입자
CN101357989B (zh) * 2007-08-03 2012-07-18 东丽纤维研究所(中国)有限公司 一种聚酰胺微粒子及其制备方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2639278A (en) 1950-12-22 1953-05-19 Polymer Corp Method of preparing finely divided nylon powder
JPH04184429A (ja) 1990-11-20 1992-07-01 Seiko Epson Corp 偏光光源装置及びこれを用いた投射型液晶表示装置
JPH06308496A (ja) 1993-04-22 1994-11-04 Sharp Corp 液晶表示素子
JP2004004699A (ja) 1993-12-21 2004-01-08 Three M Innovative Properties Co 反射偏光子ディスプレイ
JPH0812765A (ja) 1994-06-28 1996-01-16 Korea Advanced Inst Of Sci Technol 結晶性ポリアミド球状粒子粉末の製造方法
JPH1010522A (ja) 1996-06-24 1998-01-16 Dainippon Printing Co Ltd 液晶表示装置
JP2000221507A (ja) 1999-02-02 2000-08-11 Toyobo Co Ltd 液晶表示装置
JP2001188126A (ja) 2000-01-05 2001-07-10 Fuji Photo Film Co Ltd 偏光分離プリズムシートおよび照明装置
JP2007204767A (ja) 2000-06-14 2007-08-16 Ube Ind Ltd ポリアミド多孔質粒子の製造方法
JP2003185821A (ja) 2001-12-14 2003-07-03 Katsuto Ono 目の疲れを押える効果のあるフィルター
JP2006328173A (ja) 2005-05-25 2006-12-07 Metal Color:Kk ポリアミド球状粒子粉末の製造方法
WO2007119592A1 (ja) 2006-03-30 2007-10-25 Ube Industries, Ltd. 光フィルター
JP2008303304A (ja) * 2007-06-07 2008-12-18 Metal Color:Kk 結晶性ポリアミド微粒子の製造方法
JP2010053272A (ja) * 2008-08-29 2010-03-11 Ube Ind Ltd 紫外線防除機能を有する複合化ポリアミド多孔質微粒子およびその製造方法
JP2010091655A (ja) 2008-10-06 2010-04-22 Nitto Denko Corp 光学積層体および画像表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RYO SAKIMOTO: "Creation of Polymer Nano- Particles from Solution Crystallization", JAPANESE JOURNAL OF POLYMER SCIENCE AND TECHNOLOGY, vol. 66, no. 12, December 2009 (2009-12-01), pages 591 - 597, XP008167127 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9617395B2 (en) 2011-09-27 2017-04-11 Toray Industries, Inc. Polyamide 1010 polymer particles and method for producing same
CN103748143A (zh) * 2011-09-27 2014-04-23 东丽株式会社 聚酰胺1010树脂粒子及其制造方法
CN103748143B (zh) * 2011-09-27 2016-06-29 东丽株式会社 聚酰胺1010树脂粒子及其制造方法
JPWO2013179851A1 (ja) * 2012-05-31 2016-01-18 林テレンプ株式会社 光透過性充填材料、それを用いる表示装置の製造方法および表示装置
WO2013179851A1 (ja) * 2012-05-31 2013-12-05 林テレンプ株式会社 光透過性充填材料、それを用いる表示装置の製造方法および表示装置
JP2014227471A (ja) * 2013-05-23 2014-12-08 宇部興産株式会社 ポリアミド微粒子の製造方法
JP2018503875A (ja) * 2015-01-15 2018-02-08 エルエムエス カンパニー リミテッドLms Co., Ltd. 光再利用向上シートを有する反射偏光モジュール及びこれを備えたバックライトユニット
JP6068737B1 (ja) * 2015-03-18 2017-01-25 旭化成株式会社 ポリアミド系樹脂発泡成形体、及びポリアミド系樹脂発泡成形体の製造方法
WO2016147582A1 (ja) * 2015-03-18 2016-09-22 旭化成株式会社 ポリアミド系樹脂発泡成形体、及びポリアミド系樹脂発泡成形体の製造方法
US10167373B2 (en) 2015-03-18 2019-01-01 Asahi Kasei Kabushiki Kaisha Polyamide resin foam shaped product and method of producing polyamide resin foam shaped product
WO2017061502A1 (ja) * 2015-10-07 2017-04-13 ダイセル・エボニック株式会社 繊維強化樹脂及びその製造方法並びに成形品
US11407864B2 (en) 2015-10-07 2022-08-09 Daicel-Evonik Ltd. Fiber-reinforced resin, process for producing same, and molded article
JP2018127008A (ja) * 2015-10-07 2018-08-16 ダイセル・エボニック株式会社 繊維強化樹脂及びその製造方法並びに成形品
US10370509B2 (en) 2015-10-07 2019-08-06 Daicel-Evonik Ltd. Fiber-reinforced resin, process for producing same, and molded article
JP2018043487A (ja) * 2016-09-16 2018-03-22 旭化成株式会社 繊維強化複合体
JP2021526568A (ja) * 2018-11-05 2021-10-07 エルジー・ケム・リミテッド ポリアミド樹脂、およびそれを用いた高分子フィルムおよび樹脂積層体
JP2021526569A (ja) * 2018-11-05 2021-10-07 エルジー・ケム・リミテッド ポリアミド樹脂、およびこれを利用した高分子フィルムおよび樹脂積層体
JP7222460B2 (ja) 2018-11-05 2023-02-15 エルジー・ケム・リミテッド ポリアミド樹脂、およびこれを利用した高分子フィルムおよび樹脂積層体
JP7222459B2 (ja) 2018-11-05 2023-02-15 エルジー・ケム・リミテッド ポリアミド樹脂、およびそれを用いた高分子フィルムおよび樹脂積層体
JP2021130739A (ja) * 2020-02-18 2021-09-09 株式会社ジェイエスピー ポリアミド系樹脂発泡粒子
CN114591531A (zh) * 2022-01-28 2022-06-07 苏州大学 一种由废旧尼龙6织物制备多孔微球的方法
CN114591531B (zh) * 2022-01-28 2023-04-28 苏州大学 一种由废旧尼龙6织物制备多孔微球的方法

Also Published As

Publication number Publication date
JPWO2011132680A1 (ja) 2013-07-18
JP5641044B2 (ja) 2014-12-17
KR20130066618A (ko) 2013-06-20
US20130038822A1 (en) 2013-02-14
BR112012026755A2 (pt) 2016-07-12
TW201141910A (en) 2011-12-01
EP2562204A1 (en) 2013-02-27
CN102869706A (zh) 2013-01-09

Similar Documents

Publication Publication Date Title
JP5641044B2 (ja) ポリアミド微粒子及びその製造方法並びにそれを用いた光学フィルム及び液晶表示装置
JP5146313B2 (ja) 光フィルター
KR101814015B1 (ko) 편광 필름용 조성물, 편광 필름, 그 제조 방법 및 상기 편광 필름을 구비하는 액정 표시 장치
JP5232465B2 (ja) 長尺光学積層体の製造方法、長方形状光学積層体の製造方法、及び液晶パネル
CN1934490A (zh) 光学薄膜及液晶显示装置
CN101825806A (zh) 光学补偿片、偏振板、液晶显示装置和制造光学补偿片的方法
JP2011118137A (ja) 輝度向上フィルム、製造方法及び液晶表示装置
WO2017029995A1 (ja) 光学フィルム及び画像表示装置
WO2014157438A1 (ja) 光学フィルムおよびその製造方法、並びに光学フィルムを備えた偏光板、液晶表示装置、偏光プロジェクター用スクリーン
TW201539092A (zh) 液晶顯示裝置
TWI429965B (zh) Production method and image display device of optical laminate
JP5309911B2 (ja) 光学フィルム
JP5919618B2 (ja) 光学補償素子
JP5428155B2 (ja) 光学フィルム用樹脂組成物およびこれからなる光学フィルム
WO2015182517A1 (ja) 光学フィルムおよびその製造方法、ならびに光学フィルムを備えた偏光板、液晶表示装置、偏光プロジェクター用スクリーン
JP5298808B2 (ja) 光学フィルムの製造方法
JP2010128167A (ja) 位相差フィルムの製造方法
JP2014227471A (ja) ポリアミド微粒子の製造方法
TW201341438A (zh) 醯化纖維素膜及其製造方法、偏光板以及液晶顯示裝置
WO2023145905A1 (ja) 被覆アルカリ土類金属炭酸塩微粒子、樹脂組成物および画像表示装置
JP2014106317A (ja) 光拡散シート及びポリアミド多孔質微粒子
JP2013182053A (ja) 位相差フィルムの製造方法
JP2011123326A (ja) 光学素子及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180019884.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11772015

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012511672

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13641395

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127030296

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011772015

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012026755

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012026755

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121018