WO2011132655A1 - ポリブチレンテレフタレート樹脂組成物及びポリブチレンテレフタレート樹脂組成物の製造方法 - Google Patents

ポリブチレンテレフタレート樹脂組成物及びポリブチレンテレフタレート樹脂組成物の製造方法 Download PDF

Info

Publication number
WO2011132655A1
WO2011132655A1 PCT/JP2011/059583 JP2011059583W WO2011132655A1 WO 2011132655 A1 WO2011132655 A1 WO 2011132655A1 JP 2011059583 W JP2011059583 W JP 2011059583W WO 2011132655 A1 WO2011132655 A1 WO 2011132655A1
Authority
WO
WIPO (PCT)
Prior art keywords
polybutylene terephthalate
terephthalate resin
resin composition
flame retardant
group
Prior art date
Application number
PCT/JP2011/059583
Other languages
English (en)
French (fr)
Inventor
邦明 川口
一浩 水口
克利 鈴木
美紀 渡邉
Original Assignee
ウィンテックポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウィンテックポリマー株式会社 filed Critical ウィンテックポリマー株式会社
Priority to JP2012511657A priority Critical patent/JPWO2011132655A1/ja
Publication of WO2011132655A1 publication Critical patent/WO2011132655A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones

Definitions

  • the present invention relates to a polybutylene terephthalate resin composition excellent in tracking resistance, mechanical properties, molding stability, and flame retardancy, and a method for producing the polybutylene terephthalate resin composition.
  • Polybutylene terephthalate resin has excellent mechanical properties, electrical properties, heat resistance, weather resistance, water resistance, chemical resistance, and solvent resistance, so it can be used as an engineering plastic for automotive parts, electrical / electronic parts, etc. It is widely used for applications.
  • polybutylene terephthalate resin composition having improved flame retardancy and tracking resistance include, for example, polybutylene terephthalate resin, polylactic acid having a melting point of 190 ° C. or higher, an inorganic filler, a brominated flame retardant, and antimony.
  • a polybutylene terephthalate resin composition containing a flame retardant aid in a predetermined ratio is disclosed (Patent Document 1).
  • the polybutylene terephthalate resin composition described in Patent Document 1 has improved tracking resistance, further improvement in tracking resistance is desired.
  • the polybutylene terephthalate resin composition described in Patent Document 1 is added with a polylactic acid resin in order to improve tracking resistance, so that it is compared with a polybutylene terephthalate resin composition that does not contain a polylactic acid resin. Therefore, the flexural modulus tends to decrease.
  • the polybutylene terephthalate resin composition described in Patent Document 1 may generate white smoke due to decomposition of the resin composition when injection molding is continuously performed, and improvement in molding stability is required.
  • polybutylene terephthalate resin composition described in Patent Document 1 uses a brominated flame retardant as a flame retardant, in recent years, considering the possibility of the generation of dioxins during combustion treatment at the time of disposal, Non-halogenation is required in various resin compositions.
  • the present invention has been made to solve the above-mentioned problems, and is a polybutylene terephthalate resin composition that is excellent in tracking resistance, mechanical properties, molding stability, and flame-retarded with a halogen-free flame retardant.
  • the purpose is to provide goods.
  • This inventor mix blends polylactic acid resin, an organic phosphorus flame retardant, and a nitrogen-containing flame retardant adjuvant with polybutylene terephthalate resin, and content of polylactic acid resin is 1 with respect to 100 mass parts of polybutylene terephthalate resin.
  • content of polylactic acid resin is 1 with respect to 100 mass parts of polybutylene terephthalate resin.
  • a polybutylene terephthalate resin composition excellent in tracking resistance, mechanical properties, and molding stability and flame-retarded with a flame retardant containing no halogen can be obtained.
  • the present invention has been completed. Specifically, the present invention provides the following.
  • the (C) organophosphorus flame retardant is a phosphinate represented by the following general formula (1) and / or a diphosphinate represented by the following general formula (2).
  • Polybutylene terephthalate resin composition (In the general formulas (1) and (2), R 1 and R 2 are a linear or branched C 1-6 -alkyl group which may contain a phenyl group, hydrogen, and one hydroxyl group.
  • R 3 is a linear or branched C 1-10 -alkylene group, arylene group, alkylarylene group or arylalkylene group, and M is an alkaline earth metal, alkali metal, Zn, Al, Fe, Boron, m is an integer from 1 to 3, n is an integer from 1 or 3, and x is 1 or 2.
  • the nitrogen-containing flame retardant aid is a salt of a triazine compound represented by the following general formula (3) and cyanuric acid or isocyanuric acid
  • R 4 and R 5 are a hydrogen atom, an amino group, an aryl group, or an oxyalkyl group having 1 to 3 carbon atoms, and R 4 and R 5 may be the same or different.
  • polybutylene terephthalate resin composition according to any one of (1) to (6), further comprising (F) a polyfunctional epoxy compound.
  • the comparative tracking index (CTI) measured using a 0.1% ammonium chloride aqueous solution and a platinum electrode is 600 V or more, either (1) to (7)
  • a polybutylene terephthalate resin composition that is excellent in tracking resistance, mechanical properties, and molding stability and is flame-retarded with a flame retardant containing no halogen.
  • A polybutylene terephthalate resin
  • B polylactic acid resin
  • C organophosphorous flame retardant
  • D nitrogen-containing flame retardant aid
  • E filler
  • F polyfunctional epoxy compound
  • G A fluororesin
  • H other additives, and the manufacturing method of a polybutylene terephthalate resin composition are demonstrated in order.
  • the (A) polybutylene terephthalate resin used in the polybutylene terephthalate resin composition of the present invention includes a dicarboxylic acid component containing at least terephthalic acid or an ester-forming derivative thereof (C 1-6 alkyl ester, acid halide, etc.), It is a polybutylene terephthalate resin obtained by polycondensation with a glycol component containing at least an alkylene glycol (1,4-butanediol) having 4 carbon atoms or an ester-forming derivative thereof (acetylated product, etc.).
  • the polybutylene terephthalate resin is not limited to a homopolybutylene terephthalate resin, and may be a copolymer containing 60 mol% or more (particularly 75 mol% or more and 95 mol% or less) of a butylene terephthalate unit.
  • the amount of terminal carboxyl groups of the (A) polybutylene terephthalate resin used in the present invention is not particularly limited as long as the object of the present invention is not impaired.
  • the amount of terminal carboxyl groups of the polybutylene terephthalate resin used in the present invention is preferably 30 meq / kg or less, and more preferably 25 meq / kg or less.
  • the resulting polybutylene terephthalate resin composition is less susceptible to strength reduction due to hydrolysis in a moist heat environment.
  • the lower limit value of the terminal carboxyl group amount of the polybutylene terephthalate resin is not particularly limited, but is preferably 5 meq / kg or more, and more preferably 10 meq / kg or more. In general, it is difficult to produce a polybutylene terephthalate resin having a terminal carboxyl group of less than 5 meq / kg.
  • the intrinsic viscosity of the (A) polybutylene terephthalate resin used in the present invention is not particularly limited as long as the object of the present invention is not impaired.
  • the intrinsic viscosity (IV) of the polybutylene terephthalate resin is preferably 0.60 dL / g or more and 1.2 dL / g or less. More preferably, it is 0.65 dL / g or more and 0.9 dL / g or less.
  • the resulting polybutylene terephthalate resin composition has particularly excellent moldability.
  • the intrinsic viscosity can be adjusted by blending polybutylene terephthalate resins having different intrinsic viscosities.
  • a polybutylene terephthalate resin having an intrinsic viscosity of 0.9 dL / g is prepared by blending a polybutylene terephthalate resin having an intrinsic viscosity of 1.0 dL / g and a polybutylene terephthalate resin having an intrinsic viscosity of 0.7 dL / g. Can do.
  • the intrinsic viscosity (IV) of the polybutylene terephthalate resin can be measured, for example, in o-chlorophenol at a temperature of 35 ° C.
  • examples of dicarboxylic acid components (comonomer components) other than terephthalic acid and its ester-forming derivatives include, for example, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 4 C 8-14 aromatic dicarboxylic acids such as 4,4'-dicarboxydiphenyl ether; C 4-16 alkanedicarboxylic acids such as succinic acid, adipic acid, azelaic acid and sebacic acid; C 5-10 such as cyclohexanedicarboxylic acid And cycloalkane dicarboxylic acids of the above; ester-forming derivatives of these dicarboxylic acid components (C 1-6 alkyl ester derivatives, acid halides, etc.). These dicarboxylic acid components can be used alone or in combination of two or more.
  • C 8-12 aromatic dicarboxylic acids such as isophthalic acid
  • C 6-12 alkanedicarboxylic acids such as adipic acid, azelaic acid, and sebacic acid are more preferable.
  • glycol components (comonomer components) other than 1,4-butanediol for example, ethylene glycol, propylene glycol, trimethylene glycol, 1,3-butylene glycol, hexamethylene glycol, C 2-10 alkylene glycol such as neopentyl glycol and 1,3-octanediol; polyoxyalkylene glycol such as diethylene glycol, triethylene glycol and dipropylene glycol; alicyclic diol such as cyclohexanedimethanol and hydrogenated bisphenol A Aromatic diols such as bisphenol A and 4,4′-dihydroxybiphenyl; ethylene oxide 2-mol adduct of bisphenol A, propylene of bisphenol A Kisaido such as a three molar adduct, alkylene oxide adducts of C 2-4 of bisphenol A; or ester-forming derivatives of these glycols
  • C 2-6 alkylene glycol such as ethylene glycol and trimethylene glycol
  • polyoxyalkylene glycol such as diethylene glycol
  • alicyclic diol such as cyclohexanedimethanol
  • Examples of the comonomer component that can be used in addition to the dicarboxylic acid component and the glycol component include 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 4-carboxy-4′-hydroxybiphenyl, and the like.
  • any of the polybutylene terephthalate copolymers obtained by copolymerizing the comonomer components described above can be suitably used as the (A) polybutylene terephthalate resin. Moreover, you may use combining a homopolybutylene terephthalate polymer and a polybutylene terephthalate copolymer as (A) polybutylene terephthalate resin.
  • the (B) polylactic acid resin used in the present invention is a polyester resin composed mainly of units derived from L-lactic acid and / or D-lactic acid.
  • the amount of units derived from L-lactic acid and / or D-lactic acid in the polylactic acid resin is preferably 70 mol% or more, preferably 80 mol% or more, and preferably 90 mol% in all units constituting the polylactic acid resin. % Is particularly preferable, and 100 mol% is most preferable.
  • the polylactic acid resin is composed only of units derived from L-lactic acid and / or D-lactic acid
  • the polylactic acid resin is poly L-lactic acid (PLLA), poly D-lactic acid (PDLA) )
  • a copolyester of L-lactic acid and D-lactic acid can be preferably used.
  • stereocomplex polylactic acid (sc-PLA) formed from poly L-lactic acid and poly-D lactic acid can also be suitably used as (B) polylactic acid resin.
  • the monomer that gives other units derived from L-lactic acid and / or D-lactic acid which may be included in the (B) polylactic acid resin used in the present invention, isophthalic acid, phthalic acid, 2, C 8-14 aromatic dicarboxylic acids such as 6-naphthalenedicarboxylic acid and 4,4′-dicarboxydiphenyl ether; C 4-16 alkanedicarboxylic acids such as succinic acid, adipic acid, azelaic acid and sebacic acid; cyclohexane dicarboxylic acid C 5-10 cycloalkanedicarboxylic acids such as acids; ethylene glycol, propylene glycol, trimethylene glycol, 1,3-butylene glycol, 1,4-butanediol, hexamethylene glycol, neopentyl glycol, 1,3-octane alkylene glycol C 2-10, such as diol; diethylene glycol Polyoxyalkylene glycols such as bis
  • Monomers that give these other units are (B) an ester-forming derivative (acylated compound such as acetylated compound, acid halide such as acid chloride, C 1 such as methyl ester, etc. when producing polylactic acid resin. -6 alkyl ester derivatives).
  • ester-forming derivative acylated compound such as acetylated compound, acid halide such as acid chloride, C 1 such as methyl ester, etc.
  • the method for producing the polylactic acid resin is not particularly limited, and may be produced by directly polymerizing lactic acid or by ring-opening polymerization of lactide.
  • the melting point of the polylactic acid resin is not particularly limited as long as the object of the present invention is not impaired, and is preferably 120 ° C. or higher, more preferably 130 ° C. or higher.
  • (B) polylactic acid resin having such a melting point is used, (B) polybutylene terephthalate resin and (B) polylactic acid are easily mixed and uniformly dispersed, and have excellent tracking resistance and mechanical properties. Easy to prepare composition.
  • the melt viscosity (MV) of the (B) polylactic acid resin used in the present invention is not particularly limited as long as it does not impair the object of the present invention, but it is 10 Pa ⁇ sec or more and 100 Pa as measured at 260 ° C. and a shear rate of 1216 sec ⁇ 1.
  • -It is preferably not more than sec, more preferably not less than 15 Pa ⁇ sec and not more than 60 Pa ⁇ sec.
  • the blending amount of (B) polylactic acid resin is preferably 1 part by mass or more and 200 parts by mass or less with respect to 100 parts by mass of (A) polybutylene terephthalate resin. It is more preferably 150 parts by mass or less, and particularly preferably 10 parts by mass or more and 100 parts by mass or less.
  • the blending amount of (B) polylactic acid resin is too large, sufficient mechanical properties may not be obtained, and when the blending amount of (B) polylactic acid resin is too small, there is a sufficient effect of improving tracking resistance. It may not be obtained.
  • the (C) organophosphorus flame retardant used in the present invention is at least one selected from phosphinates, diphosphinates, and salts of trimer or more phosphinic acid condensates, As long as the flame retardant effect is obtained, there is no particular limitation as long as the object of the present invention is not impaired.
  • organophosphorus flame retardant (C) preferably used in the present invention phosphinate is easily obtained, and the resulting polybutylene terephthalate resin composition is excellent in flame retardancy and mechanical properties. More preferably, diphosphinate is used.
  • the metal forming the salt of phosphinate, diphosphinate, or phosphinic acid condensate of a trimer or more includes antkari metal (potassium, sodium, etc.), arikari earth metal (magnesium, calcium, etc.), transition metal ( Iron, cobalt, nickel, copper, etc.), periodic table group 12 metal (zinc, etc.), periodic table group 13 metal (aluminum, etc.) and the like.
  • the said metal salt may contain 1 type of these metals, and may contain it in combination of 2 or more types.
  • ant-potent earth metals magnesium, calcium, etc.
  • periodic table group 13 metals aluminum, etc.
  • the valence of the metal forming the salt is not particularly limited, preferably 1 or more and 4 or less, more preferably 2 or more and 4 or less, and particularly preferably 2 or 3.
  • the compound represented by the following general formula (1) is preferable as the phosphinate used as the organophosphorus flame retardant (C) in the present invention, and the compound represented by the formula (2) is preferable as the diphosphinate. .
  • R 1 and R 2 are a linear or branched C 1-6 -alkyl group which may contain a phenyl group, hydrogen, and one hydroxyl group. .
  • R 1 and R 2 are preferably both ethyl groups.
  • R 3 is a linear or branched C 1-10 -alkylene group, arylene group, alkylarylene group or arylalkylene group.
  • M is an alkaline earth metal, alkali metal, Zn, Al, Fe, or boron. Among these, Al is preferable.
  • m is an integer of 1 to 3
  • n is an integer of 1 or 3
  • x is 1 or 2.
  • phosphinates that can be suitably used in the present invention include calcium dimethylphosphinate, magnesium dimethylphosphinate, aluminum dimethylphosphinate, zinc dimethylphosphinate, calcium ethylmethylphosphinate, ethylmethylphosphine.
  • examples thereof include zinc, benzene-1,4- (dimethylphosphinic acid) calcium, and benzene-1,4- (dimethylphosphinic acid) magnesium.
  • phosphinates and / or diphosphinates it is particularly preferable to use aluminum diethylphosphinate.
  • the shape of the organophosphorus flame retardant is not particularly limited as long as the object of the present invention is not impaired.
  • the shape of the organophosphorus flame retardant is preferably in the form of powder in that it can be uniformly dispersed in the polybutylene terephthalate resin composition to obtain a good flame retardant effect.
  • the average particle size is preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less, and particularly preferably 5 ⁇ m or less.
  • the average particle diameter of the organophosphorous flame retardant is measured as a median diameter by, for example, a laser diffraction / scattering particle size distribution measuring device.
  • the amount of the (C) organophosphorus flame retardant used in the polybutylene terephthalate resin composition of the present invention is preferably 5 parts by mass or more and 100 parts by mass or less, and preferably 10 parts by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the polybutylene terephthalate resin. Is more preferably 15 parts by mass or more and 60 parts by mass or less. (C) When the amount of the organophosphorus flame retardant used is too large, the tracking resistance may be impaired, and when the amount used is too small, good flame retardancy may not be obtained.
  • the polybutylene terephthalate resin composition of the present invention contains (D) a nitrogen-containing flame retardant auxiliary together with (C) an organophosphorus flame retardant.
  • the nitrogen-containing flame retardant aid used in the present invention is not particularly limited as long as a good flame retardant effect is obtained and does not impair the purpose of the present invention. Nitrogen-containing compounds can be used. Examples of the (D) nitrogen-containing flame retardant aid preferably used in the present invention include a salt of a triazine compound and cyanuric acid or isocyanuric acid, a double salt of a nitrogen compound containing an amino group and polyphosphoric acid Etc. These (D) nitrogen-containing flame retardant aids can be used in combination of two or more.
  • a salt of the triazine compound and cyanuric acid or isocyanuric acid a salt of a triazine compound represented by the following general formula (3) and cyanuric acid or isocyanuric acid is exemplified as a preferable example.
  • R 4 and R 5 are a hydrogen atom, an amino group, an aryl group, or an oxyalkyl group having 1 to 3 carbon atoms, and R 4 and R 5 may be the same or different.
  • the use of melamine cyanurate is particularly preferable among the salts of the triazine compound represented by the general formula (3) and cyanuric acid or isocyanuric acid. .
  • the nitrogen compound containing an amino group contained in a double salt of a nitrogen compound containing an amino group and polyphosphoric acid has at least one amino group and a heterocyclic ring having at least one nitrogen atom as a ring hetero atom.
  • the compound is included, and the heterocycle may have other heteroatoms such as sulfur and oxygen in addition to nitrogen.
  • Such nitrogen-containing heterocycles are 5- or 6-membered unsaturated having a plurality of nitrogen atoms such as imidazole, thiadiazole, thiadiazoline, furazane, triazole, thiadiazine, pyrazine, pyrimidine, pyridazine, triazine, and purine as ring constituent atoms.
  • Nitrogen-containing heterocycles and the like are included. Of these nitrogen-containing rings, 5- or 6-membered unsaturated nitrogen-containing rings having a plurality of nitrogen atoms as ring constituent atoms are preferred, and triazoles and triazines are particularly preferred. Of the double salts of nitrogen compounds containing amino groups and polyphosphoric acid, melam polyphosphate is preferred.
  • the amount of the (D) nitrogen-containing flame retardant auxiliary used in the polybutylene terephthalate resin composition of the present invention is preferably 1 part by mass or more and 50 parts by mass or less, and preferably 1 part by mass or more and 40 parts by mass with respect to 100 parts by mass of the polybutylene terephthalate resin. More preferred is 1 part by mass or more and 30 parts by mass or less.
  • the polybutylene terephthalate resin composition of the present invention preferably contains (E) a filler for the purpose of improving mechanical properties.
  • the type of filler (E) used in the present invention is not particularly limited as long as the object of the present invention is not impaired, and various fillers conventionally used as fillers for polymer materials can be used. Either inorganic fillers or organic fillers can be used.
  • the shape of the filler (E) used in the present invention is not limited as long as the object of the present invention is not impaired, and any of a fibrous filler, a granular filler, and a plate-like filler can be suitably used. .
  • fibrous filler examples include glass fiber, asbestos fiber, silica fiber, silica / alumina fiber, alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, potassium titanate fiber, stainless steel, aluminum, titanium Inorganic fibrous materials such as metallic fibrous materials such as copper and brass.
  • the granular fillers include carbon black, graphite, silica, quartz powder, glass beads, milled glass fiber, glass balloon, glass powder, calcium silicate, aluminum silicate, kaolin, talc, clay, diatomaceous earth, wollastonite, etc. Salts, iron oxide, titanium oxide, zinc oxide, antimony trioxide, oxides of metals such as alumina, carbonates of metals such as calcium carbonate and magnesium carbonate, sulfates of metals such as calcium sulfate and barium sulfate, other ferrites, Examples thereof include silicon carbide, silicon nitride, boron nitride, and various metal powders.
  • examples of the plate-like filler include mica, glass flakes, various metal foils and the like.
  • glass fiber is particularly preferable.
  • any known glass fiber is preferably used, and the glass fiber diameter, the cross-sectional shape such as a cylinder, a saddle-shaped cross-section, an oval cross-section, or the length or glass used for manufacturing chopped strands, rovings, etc. It does not depend on the cutting method.
  • the type of glass used as a raw material for the glass fiber is not particularly limited, but E glass or corrosion resistant glass containing a zirconium element in the composition is preferably used in terms of quality.
  • the surface is treated with an organic treatment agent such as a silane compound or an epoxy compound.
  • an organic treatment agent such as a silane compound or an epoxy compound.
  • Treated fillers are preferably used. Any known silane compound or epoxy compound used for such a filler can be preferably used, and does not depend on the type of silane compound or epoxy compound used for the surface treatment of the filler in the present invention.
  • the content of (E) filler is 100 parts by mass of the total amount of (A) polybutylene terephthalate resin and (B) polylactic acid resin. Is preferably 200 parts by mass or less, more preferably 5 parts by mass or more and 150 parts by mass or less, and particularly preferably 10 parts by mass or more and 100 parts by mass or less. (E) If the content of the filler is 200 parts by mass or less, it is preferable because the fluidity during molding is excellent.
  • the polybutylene terephthalate resin composition of the present invention may contain (F) a polyfunctional epoxy compound for the purpose of improving the hydrolysis resistance of the (B) polylactic acid resin.
  • the polyfunctional epoxy compound is a bifunctional, more preferably trifunctional or higher functional epoxy compound, and various commercially available polyfunctional epoxy compounds can be used as long as the object of the present invention is not impaired.
  • the structure of the polyfunctional epoxy compound is not particularly limited, but an epoxy resin, a homopolymer of an epoxy group-containing polymerizable monomer, or an epoxy group-containing polymerizable monomer and another polymerizable monomer A copolymer of an epoxy group-containing polymerizable monomer and another polymerizable monomer is more preferable.
  • the epoxy resin examples include glycidyl ethers of polyhydroxy compounds (bisphenol type epoxy resins, glycidyl ethers of aromatic polyhydroxy compounds such as resorcin type epoxy resins; aliphatic epoxy resins, etc.), novolac type epoxy resins (phenol nopolac type). , Cresol novolac type epoxy resin, etc.), glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, heterocyclic epoxy resin, cyclic aliphatic epoxy resin, epoxidized polybutadiene and the like.
  • the epoxy group-containing polymerizable monomer has at least one polymerizable group (ethylenic unsaturated bond such as vinyl group or acetylene bond) together with the epoxy group.
  • the epoxy group-containing polymerizable monomer include epoxy ether compounds such as allyl glycidyl ether, vinyl glycidyl ether, chalcone glycidyl ether, 2-cyclohexene-1-glycidyl ether; glycidyl acrylate, glycidyl methacrylate, glycidyl maleate, Glycidyl itaconate, glycidyl vinyl benzoate, glycidyl allylbenzoate, glycidyl cinnamate, glycidyl cinnamylidene acetate, glycidyl dimer, epoxidized stearyl alcohol with acrylic acid or methacrylic acid, cycloaliphatic glycidy
  • polymerizable monomers copolymerizable with the epoxy group-containing polymerizable monomer include olefin monomers such as ethylene, propylene, butene, and hexene; diene monomers such as butadiene and isoprene.
  • Body Aromatic vinyl monomers such as styrene, ⁇ -methylstyrene, vinyltoluene; Acrylic monomers such as acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, acrylonitrile Body; vinyl esters such as vinyl acetate and vinyl propionate.
  • the other polymerizable monomer is preferably a monomer having an ⁇ , ⁇ -unsaturated double bond. These other polymerizable monomers can be used in combination of two or more. Among other polymerizable monomers, an olefin monomer or an acrylic monomer is preferable.
  • the ratio of the epoxy group-containing polymerizable monomer to the total monomers is 1 mass% or more and 50 mass% or less are preferable, 2 mass% or more and 40 mass% or less are more preferable, and 2 mass% or more and 30 mass% or less are especially preferable.
  • the addition amount of the polyfunctional epoxy compound is preferably 0.1 parts by mass or more and 20 parts by mass or less, more preferably 0.5 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of (B) polylactic acid resin. 1 to 10 parts by mass is particularly preferable.
  • (F) polyfunctional epoxy compound is blended with polybutylene terephthalate resin composition in such an amount, (B) polybutylene terephthalate resin composition with excellent mechanical properties while suppressing hydrolysis of polylactic acid resin It becomes easy to get things.
  • (G) Fluorine resin Depending on the use of the molded product, it may be required to be flame retardant classification “V-0” of UL standard 94. In that case, it is preferable to use an anti-drip agent such as (G) a fluorine-based resin together with a flame retardant in the polybutylene terephthalate resin composition of the present invention.
  • fluorine-based resin suitable as an anti-drip agent a fluorine-containing monomer such as tetrafluoroethylene, chlorotrifluoroethylene, vinylidene fluoride, hexafluoropropylene, perfluoroalkyl vinyl ether or a copolymer thereof, Examples thereof include a copolymer of a fluorine-containing monomer and a copolymerizable monomer such as ethylene, propylene, and (meth) acrylate.
  • These (G) fluorine resins can be used alone or in combination of two or more.
  • Examples of such (G) fluorine-based resins include homopolymers such as polytetrafluoroethylene, polychlorotrifluoroethylene, and polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymers, and tetrafluoroethylene.
  • -Copolymers such as perfluoroalkyl vinyl ether copolymer, ethylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, etc. are exemplified.
  • (G) fluorine-based resin may be (meth) acrylate-based resin such as methyl methacrylate / butyl acrylate copolymer, polyester-based resin such as polyethylene terephthalate, or other polyamide-based resin such as polyamide 6. You may use as a mixture with resin.
  • the amount of the (G) fluorine resin used in the polybutylene terephthalate resin composition of the present invention is preferably 10 parts by mass or less, and 0.1 parts by mass or more and 5 parts by mass with respect to 100 parts by mass of the (A) polybutylene terephthalate resin.
  • the following is more preferable, and 0.2 to 1.5 parts by mass is further preferable.
  • (H) Other additives According to the purpose of the polybutylene terephthalate resin composition of the present invention, (C) an organophosphorus flame retardant and (D) a nitrogen-containing flame retardant for (A) polybutylene terephthalate resin and (B) polylactic acid resin. In addition to the fuel aid, (E) filler, (F) polyfunctional epoxy resin, and (G) fluorine-based resin, (H) other additives can be blended.
  • additives are not particularly limited as long as the object of the present invention is not impaired, and various additives conventionally used in various resin compositions can be used.
  • Specific examples of other additives include antioxidants, heat stabilizers, ultraviolet absorbers, antistatic agents, dyes, pigments, lubricants, plasticizers, mold release agents, crystallization accelerators, crystal nuclei Agents and the like.
  • the polybutylene terephthalate resin composition of the present invention can be produced by various methods conventionally known as a method for producing a thermoplastic resin composition.
  • a suitable method for producing the polybutylene terephthalate resin composition of the present invention includes, for example, a method in which each component is melt-kneaded into an extruded pellet using a melt-kneading apparatus such as an extruder.
  • the total content of the components (A) to (H) in the mixture of the raw materials of the polybutylene terephthalate resin composition melt-kneaded according to the above method is preferably 70% by mass or more, more preferably 80% by mass or more, Mass% or more is particularly preferable, and 100 mass% is most preferable.
  • the polybutylene terephthalate resin composition can be made particularly excellent in tracking resistance, mechanical properties, and flame retardancy. .
  • the organophosphorous flame retardant and / or (D) the nitrogen-containing flame retardant is simultaneously fed with (A) other raw materials containing polybutylene terephthalate. It is also possible to feed (side feed) at a position downstream (downstream) in the extrusion direction from the feed position of (A) polybutylene terephthalate.
  • the polybutylene terephthalate resin composition has tensile properties (strength, elongation) as described later. It is also preferable because of its excellent flame retardancy.
  • a single screw extruder or a twin screw extruder is preferably used as the melt-kneading apparatus.
  • the (A) polybutylene terephthalate resin, (B) polylactic acid resin, (C) the organophosphorus flame retardant, and (D) the nitrogen-containing flame retardant aid as described above may optionally include (E) a filler, (F)
  • the polybutylene terephthalate resin composition of the present invention prepared by combining a polyfunctional epoxy resin, (G) a fluorine-based resin, and (H) other additives has excellent tracking resistance, mechanical properties, and molding stability. It is excellent and flame retardant with a flame retardant containing no halogen.
  • the polybutylene terephthalate resin composition of the present invention is excellent in flame retardancy, and was tested by the Underwriters Laboratories UL-94 standard vertical combustion test using a 0.8 mm thick test piece. V-1 or V-0, more preferably V-0 is shown in the measured flame retardancy evaluation.
  • the polybutylene terephthalate resin composition of the present invention has a comparative tracking index (CTI) of 600 V or more measured using a 0.1% aqueous ammonium chloride solution and a platinum electrode in accordance with IEC112 3rd edition. .
  • CTI comparative tracking index
  • the polybutylene terephthalate resin composition of the present invention requires flame retardancy, tracking resistance and excellent mechanical properties, for example, relays, transbobbins, terminal blocks, covers, switches, sockets, coils It is preferably used as a molding material for electric / electronic parts such as plugs, and automotive parts such as on-vehicle part cases and on-vehicle electrical parts such as ECU boxes and connector boxes.
  • Examples 1 to 7 and Comparative Examples 1 to 4 In Examples 1 to 7 and Comparative Examples 1 to 4, the following materials were used as components of the polybutylene terephthalate resin composition.
  • A1 Polybutylene terephthalate resin having an intrinsic viscosity of 0.69 (manufactured by Wintech Polymer Co., Ltd.)
  • A2 Polybutylene terephthalate resin having an intrinsic viscosity of 0.875 (manufactured by Wintech Polymer Co., Ltd.)
  • B1 REVODE 110 (manufactured by Zhejiang Marine Biomaterials Co., Ltd., melting point 159 ° C., melt viscosity (260 ° C., 1216 sec ⁇ 1 ) 27.8 Pa ⁇ sec)
  • B2 Ingeo 6252D (manufactured by Nature Works, melting point 168 ° C., melt viscosity (260 ° C., 1216 sec ⁇ 1 ) 19.8 Pa ⁇ sec)
  • B3 REVODE 101-B (manufactured by Zhejiang Marine Biomaterials Co.,
  • Examples 1 to 5 and Comparative Examples 1 to 4 The components shown in Table 1 were dry blended in the proportions (parts by mass) shown in Table 1, and using a twin-screw extruder (TEX-30 ⁇ manufactured by Nippon Steel Co., Ltd.), the cylinder upper limit set temperature was 240 ° C or Pellets of polybutylene terephthalate resin composition were prepared by melt kneading under conditions of 260 ° C., discharge rate of 15 kg / hr, and screw rotation speed of 129 rpm. Test pieces were prepared using the pellets obtained in the examples and comparative examples, and tested for molding stability, flexural modulus, flame resistance, tracking resistance, and carbonization.
  • Table 1 shows the test results on molding stability, flexural modulus, flame retardancy, tracking resistance, and carbonization of the polybutylene terephthalate resin compositions of Examples and Comparative Examples.
  • the upper limit of the cylinder set temperature of the twin screw extruder at the time of preparing the polybutylene terephthalate resin composition is shown in Table 1.
  • Molding stability, flexural modulus, flame retardancy, tracking resistance, and carbonization were evaluated according to the methods described below.
  • ⁇ Molding condition Cylinder temperature: 260 ° C Mold temperature: 80 ° C (water temperature control) Injection speed: 26mm / s Holding pressure: 60MPa x 20s Screw diameter: 28mm ⁇
  • test piece (0.8 mm thickness) was subjected to UL-94 standard vertical combustion test by Underwriters Laboratories.
  • Examples 1 to 5 by combining (B) polylactic acid resin, (C) organophosphorous flame retardant, and (D) nitrogen-containing flame retardant auxiliary agent (A) into polybutylene terephthalate resin It can be seen that a polybutylene terephthalate resin composition excellent in bending elastic modulus, flame retardancy, and tracking resistance can be prepared.
  • a polybutylene terephthalate resin having good flexural modulus and tracking resistance can be obtained simply by combining (C) an organophosphorus flame retardant and (D) a nitrogen-containing flame retardant aid. It can be seen that cannot be obtained. Further, from Comparative Examples 3 and 4, even when (B) polylactic acid resin is blended, when (C ′) halogen-based flame retardant and (D ′) antimony-based flame retardant aid are combined, good It can be seen that a polybutylene terephthalate resin having a high bending elastic modulus and tracking resistance cannot be obtained.
  • Example 6 and 7 The components shown in Table 2 were dry blended in the proportions (parts by mass) shown in Table 2, and using a twin-screw extruder (TEX-30 ⁇ manufactured by Nippon Steel Co., Ltd.), the cylinder upper limit set temperature was 260 ° C, Pellets of polybutylene terephthalate resin composition were prepared by melt-kneading under conditions of a discharge rate of 15 kg / hr and a screw rotation speed of 129 rpm. Moreover, in Example 7, the feed position of (C) the organophosphorous flame retardant and (D) the nitrogen-containing flame retardant aid is located behind the feed position of (A) polybutylene terephthalate (downstream in the extrusion direction).
  • Test pieces were prepared using the obtained pellets and tested for molding stability, flexural modulus, tensile properties (strength, elongation), flame retardancy, tracking resistance, and carbonization.
  • Table 2 shows the test results relating to molding stability, flexural modulus, tensile properties, flame retardancy, tracking resistance, and carbonization of the polybutylene terephthalate resin compositions of the examples.
  • the tensile properties (strength and elongation) were measured according to ISO527-1,2.
  • Example 6 by combining (B) polylactic acid resin, (C) organophosphorous flame retardant, and (D) nitrogen-containing flame retardant assistant, (A) by blending with polybutylene terephthalate resin. It can be seen that a polybutylene terephthalate resin composition excellent in bending elastic modulus, flame retardancy, and tracking resistance can be prepared.
  • the component of * is side-fed from the downstream side of the extruder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

 耐トラッキング性、機械的特性、及び成形安定性に優れ、且つ、ハロゲンを含まない難燃剤により難燃化されたポリブチレンテレフタレート樹脂組成物を提供することを目的とする。 ポリブチレンテレフタレート樹脂に、ポリ乳酸樹脂、有機リン系難燃剤、及び含窒素難燃助剤を配合し、ポリ乳酸樹脂の含有量をポリブチレンテレフタレート樹脂100質量部に対して1質量部以上200質量部以下として、ポリブチレンテレフタレート樹脂組成物を調製する。

Description

ポリブチレンテレフタレート樹脂組成物及びポリブチレンテレフタレート樹脂組成物の製造方法
 本発明は、耐トラッキング性、機械的特性、成形安定性、及び難燃性に優れるポリブチレンテレフタレート樹脂組成物、及び当該ポリブチレンテレフタレート樹脂組成物の製造方法に関する。
 ポリブチレンテレフタレート樹脂は、優れた機械的特性、電気的特性、耐熱性、耐候性、耐水性、耐薬品性及び耐溶剤性を有するため、エンジニアリングプラスチックとして、自動車部品、電気・電子部品等の種々の用途に広く利用されている。
 そして、自動車部品、電気・電子部品等の用途においては、一般に難燃性、耐トラッキング性が求められており、ポリブチレンテレフタレート樹脂組成物について、アンダーライターズ・ラボラトリーズのUL-94規格の難燃性や比較トラッキング指数(略称CTI)等の耐トラッキング性の改良について多くの検討が報告されている。
 また、自動車部品、電気・電子部品等の用途においては、製品の小型化・軽量化が進められている。このため、製品が小型化・軽量化されても十分な製品の強度が維持できるように、成形材料として使用されるポリブチレンテレフタレート樹脂組成物に対して曲げ弾性率等の機械的特性のさらなる改良が望まれている。
 難燃性及び耐トラッキング性が改良されたポリブチレンテレフタレート樹脂組成物の具体例としては、例えば、ポリブチレンテレフタレート樹脂、融点が190℃以上のポリ乳酸、無機充填材、臭素系難燃剤、及びアンチモン系難燃助剤を所定の比率で含むポリブチレンテレフタレート樹脂組成物が開示されている(特許文献1)。
特開2008-050579号公報
 しかし、特許文献1に記載のポリブチレンテレフタレート樹脂組成物は、耐トラッキング性が改良されてはいるが、さらなる耐トラッキング性の改良が望まれるものである。そして、特許文献1に記載のポリブチレンテレフタレート樹脂組成物は、耐トラッキング性を改良するためにポリ乳酸樹脂が添加されているために、ポリ乳酸樹脂を含まないポリブチレンテレフタレート樹脂組成物と比較して曲げ弾性率が低下する傾向がある。
 また、特許文献1に記載のポリブチレンテレフタレート樹脂組成物は、射出成形を連続して行う際に樹脂組成物の分解により白煙が生じる場合があり、成形安定性の改良が求められる。
 さらに、特許文献1に記載のポリブチレンテレフタレート樹脂組成物は、難燃剤として臭素系難燃剤を用いているが、近年、廃棄時の燃焼処理の際のダイオキシンの生成の可能性を考慮して、種々の樹脂組成物においてノンハロゲン化が要求されている。
 本発明は上記課題を解決するためになされたものであり、耐トラッキング性、機械的特性、及び成形安定性に優れ、且つ、ハロゲンを含まない難燃剤により難燃化されたポリブチレンテレフタレート樹脂組成物を提供することを目的とする。
 本発明者は、ポリブチレンテレフタレート樹脂に、ポリ乳酸樹脂、有機リン系難燃剤、及び含窒素難燃助剤を配合し、ポリ乳酸樹脂の含有量をポリブチレンテレフタレート樹脂100質量部に対して1質量部以上200質量部以下とすることにより、耐トラッキング性、機械的特性、及び成形安定性に優れ、且つ、ハロゲンを含まない難燃剤により難燃化されたポリブチレンテレフタレート樹脂組成物が得られることを見出し、本発明を完成するに至った。具体的には本発明は以下のものを提供する。
 (1) (A)ポリブチレンテレフタレート樹脂と、(B)ポリ乳酸樹脂と、フォスフィン酸塩、ジフォスフィン酸塩、及び、3量体以上のフォスフィン酸縮合物の塩からなる群より選択される1種以上である(C)有機リン系難燃剤と、(D)含窒素難燃助剤とを含み、前記(B)ポリ乳酸樹脂の含有量が前記(A)ポリブチレンテレフタレート樹脂100質量部に対して1質量部以上200質量部以下であるポリブチレンテレフタレート樹脂組成物。
 (2) 前記(C)有機リン系難燃剤が、下記一般式(1)で表されるフォスフィン酸塩、及び/又は、下記一般式(2)で表されるジフォスフィン酸塩である、(1)記載のポリブチレンテレフタレート樹脂組成物。
Figure JPOXMLDOC01-appb-C000003
(一般式(1)、(2)中、R、Rは、フェニル基、水素、1個のヒドロキシル基を含有してよい直鎖又は分枝鎖のC1-6-アルキル基であり、Rは、直鎖又は分枝鎖のC1-10-アルキレン基、アリーレン基、アルキルアリーレン基又はアリールアルキレン基であり、Mは、アルカリ土類金属、アルカリ金属、Zn、Al、Fe、ホウ素であり、mは、1から3の整数であり、nは、1又は3の整数であり、xは、1又は2である。)
 (3) 前記(C)有機リン系難燃剤が、ジエチルフォスフィン酸アルミニウムである、(2)記載のポリブチレンテレフタレート樹脂組成物。
 (4) 前記(D)含窒素難燃助剤が、下記一般式(3)で表されるトリアジン系化合物とシアヌール酸又はイソシアヌール酸との塩である、(1)から(3)何れか記載のポリブチレンテレフタレート樹脂組成物。
Figure JPOXMLDOC01-appb-C000004
(式中、R、Rは水素原子、アミノ基、アリール基、又は炭素数1から3のオキシアルキル基であり、R、Rは同一でもまた異なっていてもよい。)
 (5) 前記(D)含窒素難燃助剤が、メラミンシアヌレートである、(4)記載のポリブチレンテレフタレート樹脂組成物。
 (6) さらに、(E)充填材を含む、(1)から(5)何れか記載のポリブチレンテレフタレート樹脂組成物。
 (7) さらに、(F)多官能エポキシ化合物を含む、(1)から(6)何れか記載のポリブチレンテレフタレート樹脂組成物。
 (8) IEC112第3版に準拠して、0.1%塩化アンモニウム水溶液及び白金電極を用いて測定される比較トラッキング指数(CTI)が、600V以上である、(1)から(7)何れか記載のポリブチレンテレフタレート樹脂組成物。
 (9) (1)から(8)の何れかに記載のポリブチレンテレフタレート樹脂組成物を製造する方法であって、押出機を用い、(C)有機リン系難燃剤及び/又は(D)含窒素難燃助剤を、(A)ポリブチレンテレフタレートのフィード位置よりも、押出方向の後方側でフィードすることを特徴とするポリブチレンテレフタレート樹脂組成物の製造方法。
 本発明によれば、耐トラッキング性、機械的特性、及び成形安定性に優れ、且つ、ハロゲンを含まない難燃剤により難燃化されたポリブチレンテレフタレート樹脂組成物が提供される。
 以下、本発明の実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。なお、説明が重複する箇所については、適宜説明を省略する場合があるが、発明の要旨を限定するものではない。
 以下、(A)ポリブチレンテレフタレート樹脂、(B)ポリ乳酸樹脂、(C)有機リン系難燃剤、(D)含窒素難燃助剤、(E)充填材、(F)多官能エポキシ化合物、(G)フッ素系樹脂、(H)その他の添加剤、及びポリブチレンテレフタレート樹脂組成物の製造方法について順に説明する。
[(A)ポリブチレンテレフタレート樹脂]
 本発明のポリブチレンテレフタレート樹脂組成物において用いる(A)ポリブチレンテレフタレート樹脂は、少なくともテレフタル酸又はそのエステル形成性誘導体(C1-6のアルキルエステルや酸ハロゲン化物等)を含むジカルボン酸成分と、少なくとも炭素原子数4のアルキレングリコール(1,4-ブタンジオール)又はそのエステル形成性誘導体(アセチル化物等)を含むグリコール成分とを重縮合して得られるポリブチレンテレフタレート系樹脂である。ポリブチレンテレフタレート樹脂はホモポリブチレンテレフタレート樹脂に限らず、ブチレンテレフタレート単位を60モル%以上(特に75モル%以上95モル%以下)含有する共重合体であってもよい。
 本発明において用いる(A)ポリブチレンテレフタレート樹脂の末端カルボキシル基量は、本発明の目的を阻害しない限り特に制限されない。本発明において用いるポリブチレンテレフタレート樹脂の末端カルボキシル基量は、30meq/kg以下が好ましく、25meq/kg以下がより好ましい。かかる範囲の末端カルボキシル基量のポリブチレンテレフタレート樹脂を用いる場合には、得られるポリブチレンテレフタレート樹脂組成物が湿熱環境下での加水分解による強度低下を受けにくくなる。
 (A)ポリブチレンテレフタレート樹脂の末端カルボキシル基量の下限値は特に制限されないが、5meq/kg以上が好ましく、10meq/kg以上がより好ましい。一般的に末端カルボキシル基5meq/kg未満のポリブチレンテレフタレート樹脂の製造は困難である。
 また、本発明において用いる(A)ポリブチレンテレフタレート樹脂の固有粘度は本発明の目的を阻害しない範囲で特に制限されない。(A)ポリブチレンテレフタレート樹脂の固有粘度(IV)は0.60dL/g以上1.2dL/g以下であるのが好ましい。さらに好ましくは0.65dL/g以上0.9dL/g以下である。かかる範囲の固有粘度のポリブチレンテレフタレート樹脂を用いる場合には、得られるポリブチレンテレフタレート樹脂組成物が特に成形性に優れたものとなる。また、異なる固有粘度を有するポリブチレンテレフタレート樹脂をブレンドして、固有粘度を調整することもできる。例えば、固有粘度1.0dL/gのポリブチレンテレフタレート樹脂と固有粘度0.7dL/gのポリブチレンテレフタレート樹脂とをブレンドすることにより、固有粘度0.9dL/gのポリブチレンテレフタレート樹脂を調製することができる。(A)ポリブチレンテレフタレート樹脂の固有粘度(IV)は、例えば、o-クロロフェノール中で温度35℃の条件で測定することができる。
 本発明において用いる(A)ポリブチレンテレフタレート樹脂において、テレフタル酸及びそのエステル形成性誘導体以外のジカルボン酸成分(コモノマー成分)としては、例えば、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、4,4’-ジカルボキシジフェニルエーテル等のC8-14の芳香族ジカルボン酸;コハク酸、アジピン酸、アゼライン酸、セバシン酸等のC4-16のアルカンジカルボン酸;シクロヘキサンジカルボン酸等のC5-10のシクロアルカンジカルボン酸;これらのジカルボン酸成分のエステル形成性誘導体(C1-6のアルキルエステル誘導体や酸ハロゲン化物等)が挙げられる。これらのジカルボン酸成分は、単独で又は2種以上を組み合わせて使用できる。
 これらのジカルボン酸成分の中では、イソフタル酸等のC8-12の芳香族ジカルボン酸、及び、アジピン酸、アゼライン酸、セバシン酸等のC6-12のアルカンジカルボン酸がより好ましい。
 本発明において用いるポリブチレンテレフタレート樹脂において、1,4-ブタンジオール以外のグリコール成分(コモノマー成分)としては、例えば、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,3-ブチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、1,3-オクタンジオール等のC2-10のアルキレングリコール;ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール等のポリオキシアルキレングリコール;シクロヘキサンジメタノール、水素化ビスフェノールA等の脂環式ジオール;ビスフェノールA、4,4’-ジヒドロキシビフェニル等の芳香族ジオール;ビスフェノールAのエチレンオキサイド2モル付加体、ビスフェノールAのプロピレンオキサイド3モル付加体等の、ビスフェノールAのC2-4のアルキレンオキサイド付加体;又はこれらのグリコールのエステル形成性誘導体(アセチル化物等)が挙げられる。これらのグリコール成分は、単独で又は2種以上を組み合わせて使用できる。
 これらのグリコール成分の中では、エチレングリコール、トリメチレングリコール等のC2-6のアルキレングリコール、ジエチレングリコール等のポリオキシアルキレングリコール、又は、シクロヘキサンジメタノール等の脂環式ジオール等がより好ましい。
 ジカルボン酸成分及びグリコール成分の他に使用できるコモノマー成分としては、例えば、4-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸、4-カルボキシ-4’-ヒドロキシビフェニル等の芳香族ヒドロキシカルボン酸;グリコール酸、ヒドロキシカプロン酸等の脂肪族ヒドロキシカルボン酸;プロピオラクトン、ブチロラクトン、バレロラクトン、カプロラクトン(ε-カプロラクトン等)等のC3-12ラクトン;これらのコモノマー成分のエステル形成性誘導体(C1-6のアルキルエステル誘導体、酸ハロゲン化物、アセチル化物等)が挙げられる。
 以上説明したコモノマー成分を共重合したポリブチレンテレフタレート共重合体は、何れも(A)ポリブチレンテレフタレート樹脂として好適に使用できる。また、(A)ポリブチレンテレフタレート樹脂として、ホモポリブチレンテレフタレート重合体とポリブチレンテレフタレート共重合体とを組み合わせて使用してもよい。
[(B)ポリ乳酸樹脂]
 本発明において使用される(B)ポリ乳酸樹脂は、L-乳酸及び/又はD-乳酸に由来する単位を主たる単位として構成されるポリエステル樹脂である。(B)ポリ乳酸樹脂における、L-乳酸及び/又はD-乳酸に由来する単位の量は、ポリ乳酸樹脂を構成する全単位中70モル%以上が好ましく、80モル%以上が好ましく、90モル%以上であるのが特に好ましく、100モル%が最も好ましい。
 (B)ポリ乳酸樹脂が、L-乳酸及び/又はD-乳酸に由来する単位のみから構成される場合、(B)ポリ乳酸樹脂は、ポリL-乳酸(PLLA)、ポリD-乳酸(PDLA)、及びL-乳酸とD-乳酸とのコポリエステルの何れも好適に使用できる。また、ポリL-乳酸とポリ-D乳酸とから形成されるステレオコンプレックス型ポリ乳酸(sc-PLA)も(B)ポリ乳酸樹脂として好適に使用できる。
 本発明において用いる(B)ポリ乳酸樹脂が含んでいてもよい、L-乳酸及び/又はD-乳酸に由来する単位の他の単位を与える単量体としては、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、4,4’-ジカルボキシジフェニルエーテル等のC8-14の芳香族ジカルボン酸;コハク酸、アジピン酸、アゼライン酸、セバシン酸等のC4-16のアルカンジカルボン酸;シクロヘキサンジカルボン酸等のC5-10のシクロアルカンジカルボン酸;エチレングリコール、プロピレングリコール、トリメチレングリコール、1,3-ブチレングリコール、1,4-ブタンジオール、ヘキサメチレングリコール、ネオペンチルグリコール、1,3-オクタンジオール等のC2-10のアルキレングリコール;ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール等のポリオキシアルキレングリコール;シクロヘキサンジメタノール、水素化ビスフェノールA等の脂環式ジオール;ビスフェノールA、4,4’-ジヒドロキシビフェニル等の芳香族ジオール;ビスフェノールAのエチレンオキサイド2モル付加体、ビスフェノールAのプロピレンオキサイド3モル付加体等の、ビスフェノールAのC2-4のアルキレンオキサイド付加体;4-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸、4-カルボキシ-4’-ヒドロキシビフェニル等の芳香族ヒドロキシカルボン酸;グリコール酸、ヒドロキシカプロン酸等の脂肪族ヒドロキシカルボン酸;プロピオラクトン、ブチロラクトン、バレロラクトン、カプロラクトン(ε-カプロラクトン等)等のC3-12ラクトンが挙げられる。
 これらの他の単位を与える単量体は、(B)ポリ乳酸樹脂を製造する際に、エステル形成性誘導体(アセチル化物等のアシル化物、酸塩化物等の酸ハライド、メチルエステル等のC1-6のアルキルエステル誘導体)として用いることができる。
 (B)ポリ乳酸樹脂の製造方法は特に限定されず、乳酸を直接重合して製造してもよく、ラクチドの開環重合により製造してもよい。
 (B)ポリ乳酸樹脂の融点は、本発明の目的を阻害しない範囲で特に限定されず、120℃以上が好ましく、130℃以上がより好ましい。かかる範囲の融点の(B)ポリ乳酸樹脂を用いる場合、(A)ポリブチレンテレフタレート樹脂と(B)ポリ乳酸が混合、均一分散しやすく、耐トラッキング性及び機械的特性に優れたポリブチレンテレフタレート樹脂組成物を調製しやすい。
 本発明において用いる(B)ポリ乳酸樹脂の溶融粘度(MV)は、本発明の目的を阻害しない範囲で特に限定されないが、260℃、せん断速度1216sec-1で測定した値で10Pa・sec以上100Pa・sec以下が好ましく、15Pa・sec以上60Pa・sec以下がより好ましい。かかる範囲の溶融粘度の(B)ポリ乳酸樹脂を用いる場合、(A)ポリブチレンテレフタレート樹脂と(B)ポリ乳酸が混合、均一分散しやすく、耐トラッキング性及び機械的特性に優れたポリブチレンテレフタレート樹脂組成物を調製しやすい。
 本発明のポリブチレンテレフタレート樹脂組成物において、(B)ポリ乳酸樹脂の配合量は、(A)ポリブチレンテレフタレート樹脂100質量部に対して、1質量部以上200質量部以下が好ましく、5質量部以上150質量部以下がより好ましく、10質量部以上100質量部以下が特に好ましい。(B)ポリ乳酸樹脂の配合量が多すぎる場合、十分な機械的特性が得られない場合があり、(B)ポリ乳酸樹脂の配合量が少なすぎる場合、十分な耐トラッキング性の改良効果が得られない場合がある。
[(C)有機リン系難燃剤]
 本発明において使用される(C)有機リン系難燃剤としては、フォスフィン酸塩、ジフォスフィン酸塩、及び3量体以上のフォスフィン酸縮合物の塩から選択される1種以上であって、良好な難燃効果が得られるものであれば、本発明の目的を阻害しない範囲で特に限定されない。
 本発明において好適に使用される(C)有機リン系難燃剤としては、入手が容易であり、得られるポリブチレンテレフタレート樹脂組成物が難燃性及び機械的特性に優れることからフォスフィン酸塩、及び/又は、ジフォスフィン酸塩を用いるのがより好ましい。
 フォスフィン酸塩、ジフォスフィン酸塩、又は3量体以上のフォスフィン酸縮合物の塩を形成する金属としては、アリカリ金属(カリウム、ナトリウム等)、アリカリ土類金属(マグネシウム、カルシウム等)、遷移金属(鉄、コバルト、ニッケル、銅等)、周期表第12族金属(亜鉛等)、周期表第13族金属(アルミニウム等)等が挙げられる。前記金属塩は、これらの金属を一種含有してもよく、二種以上組み合わせて含有してもよい。前記金属のうち、アリカリ土類金属(マグネシウム、カルシウム等)及び周期表第13族金属(アルミニウム等)が好ましい。
 塩を形成する金属の価数は特に制限されず、1以上4以下が好ましく、2以上4以下がより好ましく、2又は3が特に好ましい。
 本発明において(C)有機リン系難燃剤として利用するフォスフィン酸塩としては下記の一般式(1)で表される化合物が好ましく、ジフォスフィン酸塩としては式(2)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000005
 上記一般式(1)、(2)中、R、Rは、フェニル基、水素、1個のヒドロキシル基を含有してよい直鎖又は分枝鎖のC1-6-アルキル基である。R、Rはともにエチル基であることが好ましい。
 また、Rは、直鎖又は分枝鎖のC1-10-アルキレン基、アリーレン基、アルキルアリーレン基又はアリールアルキレン基である。
 また、Mは、アルカリ土類金属、アルカリ金属、Zn、Al、Fe、ホウ素である。これらの中でもAlが好ましい。
 mは、1から3の整数であり、nは、1又は3の整数であり、且つ、xは、1又は2である。
 本発明において好適に使用できるフォスフィン酸塩の具体例としては、ジメチルフォスフィン酸カルシウム、ジメチルフォスフィン酸マグネシウム、ジメチルフォスフィン酸アルミニウム、ジメチルフォスフィン酸亜鉛、エチルメチルフォスフィン酸カルシウム、エチルメチルフォスフィン酸マグネシウム、エチルメチルフォスフィン酸アルミニウム、エチルメチルフォスフィン酸亜鉛、ジエチルフォスフィン酸カルシウム、ジエチルフォスフィン酸マグネシウム、ジエチルフォスフィン酸アルミニウム、ジエチルフォスフィン酸亜鉛、メチル-n-プロピルフォスフィン酸カルシウム、メチル-n-プロピルフォスフィン酸マグネシウム、メチル-n-プロピルフォスフィン酸アルミニウム、メチル-n-プロピルフォスフィン酸亜鉛等が挙げられる。
 本発明において好適に使用できるジフォスフィン酸塩の具体例としては、メタンジ(メチルフォスフィン酸)カルシウム、メタンジ(メチルフォスフィン酸)マグネシウム、メタンジ(メチルフォスフィン酸)アルミニウム、メタンジ(メチルフォスフィン酸)亜鉛、ベンゼン-1,4-(ジメチルフォスフィン酸)カルシウム、ベンゼン-1,4-(ジメチルフォスフィン酸)マグネシウム等が挙げられる。
 上記のフォスフィン酸塩、及び/又は、ジフォスフィン酸塩の中でも特にジエチルフォスフィン酸アルミニウムの使用が好ましい。
 (C)有機リン系難燃剤の形状は、本発明の目的を阻害しない範囲で特に限定されない。(C)有機リン系難燃剤の形状としては、ポリブチレンテレフタレート樹脂組成物中に均一に分散し良好な難燃効果が得られる点で粉体状であるのが好ましい。(C)有機リン系難燃剤が粉体状である場合、平均粒子径は10μm以下が好ましく、8μm以下がより好ましく、5μm以下が特に好ましい。(C)有機リン系難燃剤の平均粒子径は、例えば、レーザー回折/散乱式の粒度分布測定装置によりメジアン径として測定される。
 本発明のポリブチレンテレフタレート樹脂組成物における(C)有機リン系難燃剤の使用量は、ポリブチレンテレフタレート樹脂100質量部に対し、5質量部以上100質量部以下が好ましく、10質量部以上80質量部以下がより好ましく、15質量部以上60質量部以下が特に好ましい。(C)有機リン系難燃剤の使用量が多すぎる場合には、耐トラッキング性が損なわれる場合があり、使用量が少なすぎる場合には良好な難燃性が得られない場合がある。
[(D)含窒素難燃助剤]
 本発明のポリブチレンテレフタレート樹脂組成物は、(C)有機リン系難燃剤とともに(D)含窒素難燃助剤を含有する。本発明において使用される含窒素難燃助剤としては、良好な難燃効果が得られ、本発明の目的を阻害しない範囲で特に限定されず、難燃助剤として使用される公知の種々の含窒素化合物を使用することができる。本発明において好適に使用される(D)含窒素難燃助剤の例としては、トリアジン系化合物とシアヌール酸もしくはイソシアヌール酸との塩、アミノ基を含有する窒素化合物とポリリン酸との複塩等が挙げられる。これらの(D)含窒素難燃助剤は2種以上を組み合わせて用いることができる。
 本発明において用いる(D)含窒素難燃助剤としては、(C)有機リン系難燃剤と組み合わせた場合の難燃効果に優れることから、トリアジン系化合物とシアヌール酸もしくはイソシアヌール酸との塩、及び/又は、アミノ基を含有する窒素化合物とポリリン酸との複塩がより好ましい。
 上記トリアジン系化合物とシアヌール酸又はイソシアヌール酸との塩としては、下記一般式(3)で表されるトリアジン系化合物とシアヌール酸又はイソシアヌール酸との塩が好ましいものとして例示される。
Figure JPOXMLDOC01-appb-C000006
 式中、R、Rは水素原子、アミノ基、アリール基、又は炭素数1から3のオキシアルキル基であり、R、Rは同一でもまた異なっていてもよい。
 本発明において用いる(D)含窒素難燃助剤としては、上記一般式(3)で表されるトリアジン系化合物とシアヌール酸又はイソシアヌール酸との塩の中でも特にメラミンシアヌレートの使用が特に好ましい。
 また、アミノ基を含有する窒素化合物とポリリン酸との複塩に含まれるアミノ基を含有する窒素化合物には、少なくとも1つのアミノ基と、少なくとも1つの窒素原子を環のヘテロ原子として有するヘテロ環状化合物が含まれ、ヘテロ環は、窒素以外にイオウ、酸素等の他のヘテロ原子を有していてもよい。このような窒素含有ヘテロ環には、イミダゾール、チアジアゾール、チアジアゾリン、フラザン、トリアゾール、チアジアジン、ピラジン、ピリミジン、ピリダジン、トリアジン、プリン等の複数の窒素原子を環の構成原子として有する5又は6員不飽和窒素含有ヘテロ環等が含まれる。このような窒素含有環のうち、複数の窒素原子を環の構成原子として有する5又は6員不飽和窒素含有環が好ましく、特に、トリアゾール及びトリアジンが好ましい。そして、アミノ基を含有する窒素化合物とポリリン酸との複塩の中では、ポリリン酸メラムが好ましい。
 本発明のポリブチレンテレフタレート樹脂組成物における(D)含窒素難燃助剤の使用量は、ポリブチレンテレフタレート樹脂100質量部に対し、1質量部以上50質量部以下が好ましく、1質量部以上40質量部以下がより好ましく、1質量部以上30質量部以下が特に好ましい。かかる範囲の量で(D)含窒素難燃助剤を(C)有機リン系難燃剤とともに用いることにより、本発明のポリブチレンテレフタレート樹脂組成物が難燃性に優れたものとなる。
[(E)充填材]
 本発明のポリブチレンテレフタレート樹脂組成物は、機械的特性の改良の目的等で、(E)充填材を含むものがより好ましい。本発明において用いる(E)充填材の種類は、本発明の目的を阻害しない範囲で特に限定されず、従来から高分子材料の充填材として使用される種々の充填材を使用することができ、無機充填材及び有機充填材の何れも使用できる。また、本発明で用いる(E)充填材の形状は、本発明の目的を阻害しない範囲で限定されず、繊維状充填材、粉粒状充填材、及び板状充填材の何れも好適に使用できる。
 繊維状充填材として、例えば、ガラス繊維、アスベスト繊維、シリカ繊維、シリカ・アルミナ繊維、アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化珪素繊維、硼素繊維、チタン酸カリウム繊維、さらにステンレス、アルミニウム、チタン、銅、真鍮等の金属の繊維状物等の無機質繊維状物質が挙げられる。
 粉粒状充填材としては、カーボンブラック、黒鉛、シリカ、石英粉末、ガラスビーズ、ミルドガラスファイバー、ガラスバルーン、ガラス粉、珪酸カルシウム、珪酸アルミニウム、カオリン、タルク、クレー、珪藻土、ウォラストナイトの如き珪酸塩、酸化鉄、酸化チタン、酸化亜鉛、三酸化アンチモン、アルミナの如き金属の酸化物、炭酸カルシウム、炭酸マグネシウムの如き金属の炭酸塩、硫酸カルシウム、硫酸バリウムの如き金属の硫酸塩、その他フェライト、炭化珪素、窒化珪素、窒化硼素、各種金属粉末等が挙げられる。
 また、板状充填材としては、マイカ、ガラスフレーク、各種の金属箔等が挙げられる。本発明のポリブチレンテレフタレート樹脂組成物に含まれる充填材としては、ガラス繊維が特に好ましい。
 これらの(E)充填材の中では、コストとポリブチレンテレフタレート樹脂組成物の物性とのバランスに優れることからガラス繊維を用いるのが特に好ましい。
 ガラス繊維としては、公知のガラス繊維が何れも好ましく用いられ、ガラス繊維径や、円筒、繭形断面、長円断面等の断面形状、あるいはチョップドストランドやロービング等の製造に用いる際の長さやガラスカットの方法にはよらない。本発明において、ガラス繊維の原料となるガラスの種類は特に限定されないが、品質上、Eガラスや、組成中にジルコニウム元素を含む耐腐食ガラスが好ましく用いられる。
 また、(E)充填材と、(A)ポリブチレンテレフタレート樹脂と(B)ポリ乳酸樹脂とからなる樹脂マトリックスとの界面特性を向上させる目的で、シラン化合物やエポキシ化合物等の有機処理剤で表面処理された充填材が好ましく用いられる。かかる充填材に用いられるシラン化合物やエポキシ化合物としては公知のものが何れも好ましく用いることができ、本発明で充填材の表面処理に用いられるシラン化合物、エポキシ化合物の種類には依存しない。
 本発明のポリブチレンテレフタレート樹脂組成物が(E)充填材を含む場合の(E)充填材の含有量は、(A)ポリブチレンテレフタレート樹脂と(B)ポリ乳酸樹脂との合計量100質量部に対して200質量部以下が好ましく、5質量部以上150質量部以下がより好ましく、10質量部以上100質量部以下が特に好ましい。(E)充填材の含有量が200質量部以下であれば成形時の流動性が優れるという理由で好ましい。
[(F)多官能エポキシ化合物]
 本発明のポリブチレンテレフタレート樹脂組成物は、(B)ポリ乳酸樹脂の耐加水分解性の改良の目的等で、(F)多官能エポキシ化合物を含んでいてもよい。(F)多官能エポキシ化合物は2官能、より好ましくは3官能以上のエポキシ化合物であって、本発明の目的を阻害しない限り、市販される種々の多官能エポキシ化合物を使用することができる。
 (F)多官能エポキシ化合物の構造は特に限定されないが、エポキシ樹脂、エポキシ基含有重合性単量体の単独重合体、又は、エポキシ基含有重合性単量体と他の重合性単量体との共重合体が好ましく、エポキシ基含有重合性単量体と他の重合性単量体との共重合体がより好ましい。
 エポキシ樹脂としては、例えば、ポリヒドロキシ化合物のグリシジルエーテル(ビスフェノール型エポキシ樹脂、レゾルシン型エポキシ樹脂等の芳香族ポリヒドロキシ化合物のグリシジルエーテル;脂肪族エポキシ樹脂等)、ノボラック型エポキシ樹脂(フェノールノポラック型、クレゾールノボラック型エポキシ樹脂等)、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、複素環式エポキシ樹脂、環式脂肪族エポキシ樹脂、エポキシ化ポリブタジエン等が挙げられる。
 エポキシ基含有重合性単量体は、エポキシ基とともに、少なくとも1つの重合性基(ビニル基等のエチレン性不飽和結合、又はアセチレン結合等)を有している。エポキシ基含有重合性単量体の具体例としては、アリルグリシジルエーテル、ビニルグリシジルエーテル、カルコングリシジルエーテル、2-シクロヘキセン-1-グリシジルエーテル等のエポキシエーテル化合物;グリシジルアクリレート、グリシジルメタクリレート、マレイン酸グリシジル、イタコン酸グリシジル、ビニル安息香酸グリシジルエステル、アリル安息香酸グリシジルエステル、ケイ皮酸グリシジルエステル、シンナミリデン酢酸グリシジルエステル、ダイマー酸グリシジルエステル、エポキシ化ステアリルアルコールとアクリル酸又はメタクリル酸とのエステル、脂環式グリシジルエステル(シクロヘキセン-4,5-ジグリシジルカルボキシレート等)等のエポキシエステル化合物;エポキシヘキセン、リモネンオキシド等のエポキシ化された不飽和鎖状オレフィン又は不飽和環状オレフィン;N-[4-(2,3-エポキシプロポキシ)-3,5-ジメチルベンジル]アクリルアミド等の含窒素エポキシ化合物が挙げられる。これらのエポキシ基含有重合性単量体は、2種以上を組み合わせて使用できる。これらのエポキシ基含有重合単量体の中では、グリシジルアクリレート又はグリシジルメタクリレートが好ましい。
 エポキシ基含有重合性単量体と共重合可能な他の重合性単量体の具体例としては、エチレン、プロピレン、ブテン、ヘキセン等のオレフィン系単量体;ブタジエン、イソプレン等のジエン系単量体;スチレン、α-メチルスチレン、ビニルトルエン等の芳香族ビニル系単量体;アクリル酸、メタクリル酸、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリロニトリル等のアクリル系単量体;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類が挙げられる。他の重合性単量体としては、α,β-不飽和二重結合を有する単量体であるのが好ましい。これらの他の重合性単量体は、2種以上を組み合わせて使用できる。他の重合性単量体の中では、オレフィン系単量体、又はアクリル系単量体が好ましい。
 (F)多官能エポキシ化合物が、エポキシ基含有重合性単量体と他の重合性単量体との共重合体である場合、エポキシ基含有重合性単量体の全単量体に対する比率は、1質量%以上50質量%以下が好ましく、2質量%以上40質量%以下がより好ましく、2質量%以上30質量%以下が特に好ましい。
 (F)多官能エポキシ化合物の添加量は、(B)ポリ乳酸樹脂100質量部に対して0.1質量部以上20質量部以下が好ましく、0.5質量部以上15質量部以下がより好ましく、1質量部以上10質量部以下が特に好ましい。かかる範囲の量でポリブチレンテレフタレート樹脂組成物に(F)多官能エポキシ化合物を配合した場合、(B)ポリ乳酸樹脂の加水分解が抑制されるとともに、機械的特性に優れたポリブチレンテレフタレート樹脂組成物を得やすくなる。
[(G)フッ素系樹脂]
 成形品の用途によっては、UL規格94の難燃区分「V-0」であることを要求される場合がある。その場合には、本発明のポリブチレンテレフタレート樹脂組成物に(G)フッ素系樹脂等の滴下防止剤を難燃剤とともに用いることが好ましい。
 滴下防止剤として好適な(G)フッ素系樹脂としては、テトラフルオロエチレン、クロロトリフルオロエチレン、ビニリデンフルオライド、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル等のフッ素含有モノマーの単独又は共重合体や、前記フッ素含有モノマーとエチレン、プロピレン、(メタ)アクリレート等の共重合性モノマーとの共重合体が挙げられる。これらの(G)フッ素系樹脂は1種又は2種以上を混合して使用できる。
 このような(G)フッ素系樹脂としては、例えば、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリビニリデンフルオライド等の単独重合体や、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、エチレン-テトラフルオロエチレン共重合体、エチレン-クロロトリフルオロエチレン共重合体等の共重合体が例示される。また、(G)フッ素系樹脂は、メタクリル酸メチル・アクリル酸ブチル共重合物等の(メタ)アクリレート系樹脂、ポリエチレンテレフタレート等のポリエステル系樹脂、あるいは、ポリアミド6等のポリアミド系樹脂等の他の樹脂との混合物として使用してもよい。
 本発明のポリブチレンテレフタレート樹脂組成物における(G)フッ素系樹脂の使用量は、(A)ポリブチレンテレフタレート樹脂100質量部に対して10質量部以下が好ましく、0.1質量部以上5質量部以下がより好ましく、0.2質量部以上1.5質量部以上がさらに好ましい。
[(H)その他の添加剤]
 本発明のポリブチレンテレフタレート樹脂組成物はさらにその目的に応じて、(A)ポリブチレンテレフタレート樹脂及び(B)ポリ乳酸樹脂に対して、(C)有機リン系難燃剤、(D)含窒素難燃助剤、(E)充填材、(F)多官能エポキシ樹脂、及び(G)フッ素系樹脂の他に、(H)その他の添加剤を配合できる。
 (H)その他の添加剤は、本発明の目的を阻害しない範囲で特に限定されず、従来、種々の樹脂組成物において使用される種々の添加剤を使用できる。(H)その他の添加剤の具体例としては、酸化防止剤、耐熱安定剤、紫外線吸収剤、帯電防止剤、染料、顔料、潤滑剤、可塑剤、離型剤、結晶化促進剤、結晶核剤等が挙げられる。
[ポリブチレンテレフタレート樹脂組成物の製造方法]
 本発明のポリブチレンテレフタレート樹脂組成物は、従来、熱可塑性樹脂組成物の製造方法として知られる種々の方法によって製造することができる。本発明のポリブチレンテレフタレート樹脂組成物の製造方法として好適な方法としては、例えば、押出機等の溶融混練装置を用いて、各成分を溶融混練して押出しペレットとする方法が挙げられる。
 上記方法に従い溶融混練されるポリブチレンテレフタレート樹脂組成物の原料の混合物における、(A)から(H)の成分の合計の含有量は70質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上が特に好ましく、100質量%が最も好ましい。(A)から(H)の成分の含有量の合計量をかかる範囲とすることにより、ポリブチレンテレフタレート樹脂組成物の、耐トラッキング性、機械的特性、及び難燃性を特に優れたものとできる。
 押出機等の溶融混練装置を使用する場合において、(C)有機リン系難燃剤及び/又は(D)含窒素難燃助剤は、(A)ポリブチレンテレフタレートを含む他の原料とともに、同時にフィードすることもでき、また、(A)ポリブチレンテレフタレートのフィード位置よりも押出方向の後方(下流側)の位置でフィード(サイドフィード)することもできる。特に、(C)有機リン系難燃剤及び/又は(D)含窒素難燃助剤をサイドフィードした場合、ポリブチレンテレフタレート樹脂組成物は、後述するように、引張り特性(強さ、伸び)にも優れ、難燃性にもさらに優れており好ましい。溶融混練装置としては1軸押出機又は2軸押出機が好ましく用いられる。
 以上説明した(A)ポリブチレンテレフタレート樹脂、(B)ポリ乳酸樹脂、(C)有機リン系難燃剤、及び(D)含窒素難燃助剤に、所望により(E)充填材、(F)多官能エポキシ樹脂、(G)フッ素系樹脂、及び(H)その他の添加剤を組み合わせて調製される本発明のポリブチレンテレフタレート樹脂組成物は、耐トラッキング性、機械的特性、及び成形安定性に優れ、且つ、ハロゲンを含まない難燃剤により難燃化されたものである。
 本発明のポリブチレンテレフタレート樹脂組成物は、前述の通り、難燃性に優れるものであって、厚さ0.8mmの試験片を用いてアンダーライターズ・ラボラトリーズのUL-94規格垂直燃焼試験により測定される難燃性評価でV-1又はV-0、より好ましくはV-0を示す。
 また、本発明のポリブチレンテレフタレート樹脂組成物は、IEC112第3版に準拠して、0.1%塩化アンモニウム水溶液及び白金電極を用いて測定される比較トラッキング指数(CTI)が、600V以上である。
 このため、本発明のポリブチレンテレフタレート樹脂組成物は、難燃性、耐トラッキング性、及び優れた機械的特性が要求される、例えば、リレー、トランスボビン、端子台、カバー、スイッチ、ソケット、コイル、プラグ等の電気・電子部品や、ECUボックス、コネクターボックス等の車載部品ケース・車載電装部品等の自動車部品の成形材料として好適に使用される。
 以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例により限定されるものではない。
<実施例1から7、及び比較例1から4>
 実施例1から7、及び比較例1から4において、ポリブチレンテレフタレート樹脂組成物の成分として、以下の材料を用いた。
〔(A)ポリブチレンテレフタレート樹脂〕
A1:固有粘度0.69のポリブチレンテレフタレート樹脂(ウィンテックポリマー株式会社製)
A2:固有粘度0.875のポリブチレンテレフタレート樹脂(ウィンテックポリマー株式会社製)
〔(B)ポリ乳酸樹脂〕
B1:REVODE 110(浙江海生生物材料公司製、融点159℃、溶融粘度(260℃、1216sec-1)27.8Pa・sec)
B2:Ingeo 6252D(ネイチャーワークス社製、融点168℃、溶融粘度(260℃、1216sec-1)19.8Pa・sec)
B3:REVODE 101-B(浙江海生生物材料公司製、融点144℃、溶融粘度(260℃、1216sec-1)44.2Pa・sec)
B4:U’z S-12(トヨタ自動車株式会社製、融点176℃、溶融粘度(260℃、1216sec-1)68.6Pa・sec)
〔(C)有機リン系難燃剤〕
C1:ジエチルフォスフィン酸アルミニウム(クラリアントジャパン株式会社製、EXOLIT OP1240)
〔(C’)ハロゲン系難燃剤〕
C’1:臭素化エポキシ樹脂(ブロモケム・ファーイースト株式会社製、F3100)
〔(D)含窒素難燃助剤〕
D1:メラミンシアヌレート(チバ・ジャパン株式会社製、MELAPUR MC50)
〔(D’)アンチモン系難燃助剤〕
D’1:三酸化アンチモン(日本精鉱株式会社製)
〔(E)充填材〕
E1:ガラス繊維(日本電気硝子株式会社製、E-ガラス、ECS03T-187)
〔(F)多官能エポキシ化合物〕
F1:メタクリル酸グリシジルエステル-アクリル酸メチル共重合体(日油株式会社製、マープルーフ G-0150M)
〔(G)フッ素系樹脂〕
G1:ポリテトラフルオロエチレン、メタクリル酸メチル・アクリル酸ブチル共重合物混合物(三菱レイヨン株式会社製、メタブレンA-3800)
G2:ポリテトラフルオロエチレン(旭硝子株式会社製、フルオンCD-076)
〔(H)その他の添加剤〕
H1:テトラキス[メチレン-3(3,5-ジ-tert-ブチル4-ヒドロキシフェニル)プロピオネート]メタン(酸化防止剤、チバ・ジャパン株式会社製、IRGANOX1010)
H2:ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト(酸化防止剤、株式会社ADEKA製、アデカスタブ PEP-24G)
H3:モンタン酸エステル(離型剤、クラリアントジャパン株式会社製、リコワックスE)
H4:ポリエチレンワックス(離型剤、三洋化成株式会社製 サンワックス165-P)
H5:トリエチレングリオール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート](酸化防止剤、チバ・ジャパン株式会社製、IRGANOX245)
[実施例1から5、及び比較例1から4]
 表1に示す成分を、表1に示す含量(質量部)の比率でドライブレンドし、2軸押出機((株)日本製鋼所製TEX-30α)を用いて、シリンダー上限設定温度240℃又は260℃、吐出量15kg/hr、スクリュー回転数129rpmの条件で溶融混練してポリブチレンテレフタレート樹脂組成物のペレットを作成した。実施例及び比較例で得られたペレットを用いて試験片を作製し、成形安定性、曲げ弾性率、難燃性、耐トラッキング性、及び炭化について試験した。実施例及び比較例のポリブチレンテレフタレート樹脂組成物の、成形安定性、曲げ弾性率、難燃性、耐トラッキング性、及び炭化に関する試験結果を表1に記す。なお、ポリブチレンテレフタレート樹脂組成物調製時の2軸押出機のシリンダー設定温度の上限を、表1に記す。
 成形安定性、曲げ弾性率、難燃性、耐トラッキング性、及び炭化は、以下に記載の方法に従って評価した。
<成形安定性>
 射出成形機(ファナック(株)製、ROBOSHOT S2000i100B)を用い、以下の条件によりISO179/1eAに準拠するシャルピー衝撃強さの測定に用いる試験片を、20個連続して成形し、成形品表面の荒れ、成形品表面の変色、及び、成形機からの発煙の発生を目視にて観察した。
〔成形条件〕
 シリンダ温度:260℃
 金型温度:80℃(水温調)
 射出速度:26mm/s
 保圧:60MPa×20s
 スクリュー径:28mmφ
<曲げ弾性率>
 ISO178に準拠し、曲げ弾性率を測定した。
<難燃性>
 試験片(0.8mm厚み)について、アンダーライターズ・ラボラトリーズのUL-94規格垂直燃焼試験により実施した。
<耐トラッキング性試験>
 IEC(International electrotechnical commission)112第3版に準拠して、0.1%塩化アンモニウム水溶液、白金電極を用いて、試験片にトラッキングが生じる印加電圧(V:ボルト)を測定した。
<炭化観察>
 耐トラッキング性試験と同じ方法に従い、試験片に600Vの電圧を印加し、試験片の表面の炭化の程度を目視により観察した。
Figure JPOXMLDOC01-appb-T000007
*1:組成物中の、(A)ポリブチレンテレフタレート樹脂100質量部に対する(B)ポリ乳酸樹脂の含有量。
*2:組成物中の、(A)ポリブチレンテレフタレート樹脂100質量部に対する(C)有機リン系難燃剤の含有量。
*3:組成物中の、(A)ポリブチレンテレフタレート樹脂100質量部に対する(D)含窒素難燃助剤の含有量。
 実施例1から5によれば、(B)ポリ乳酸樹脂、(C)有機リン系難燃剤、及び(D)含窒素難燃助剤を組み合わせて(A)ポリブチレンテレフタレート樹脂に配合することによって、曲げ弾性率、難燃性、及び耐トラッキング性に優れるポリブチレンテレフタレート樹脂組成物を調製できることが分かる。
 一方、比較例1及び2から、(C)有機リン系難燃剤及び(D)含窒素難燃助剤を組み合わせて配合するのみでは、良好な曲げ弾性率及び耐トラッキング性を有するポリブチレンテレフタレート樹脂が得られないことが分かる。また、比較例3及び4から、(B)ポリ乳酸樹脂を配合しても、(C’)ハロゲン系難燃剤及び(D’)アンチモン系難燃助剤を組み合わせて配合した場合には、良好な曲げ弾性率及び耐トラッキング性を有するポリブチレンテレフタレート樹脂が得られないことが分かる。
 さらに、(C’)ハロゲン系の難燃剤と(D’)アンチモン系難燃助剤とを組み合わせて使用した比較例3及び4では、成形安定性の試験において、ポリブチレンテレフタレート樹脂組成物の分解による成形機のノズルからの発煙が観測され、連続して安定な状態で試験片を成形できないため、成形安定性は不良と評価された。
 一方、(C)有機リン系難燃剤を用いた実施例1から5では、連続して射出成形しても、試験片表面の荒れや変色、射出成形機からの発煙等の不具合は観測されず、成形安定性は良と評価された。
[実施例6及び7]
 表2に示す成分を、表2に示す含量(質量部)の比率でドライブレンドし、2軸押出機((株)日本製鋼所製TEX-30α)を用いて、シリンダー上限設定温度260℃、吐出量15kg/hr、スクリュー回転数129rpmの条件で溶融混練してポリブチレンテレフタレート樹脂組成物のペレットを作成した。また、実施例7では、(C)有機リン系難燃剤及び(D)含窒素難燃助剤のフィード位置を、(A)ポリブチレンテレフタレートのフィード位置よりも後方側(押出方向の下流側)に位置を変えて、ペレットの作成を行った。得られたペレットを用いて試験片を作製し、成形安定性、曲げ弾性率、引張り特性(強さ、伸び)、難燃性、耐トラッキング性、及び炭化について試験した。実施例のポリブチレンテレフタレート樹脂組成物の、成形安定性、曲げ弾性率、引張り特性、難燃性、耐トラッキング性、及び炭化に関する試験結果を表2に記す。なお、引張り特性(強さ、伸び)は、ISO527-1,2に準拠して測定した。
 実施例6、7によれば、(B)ポリ乳酸樹脂、(C)有機リン系難燃剤、及び(D)含窒素難燃助剤を組み合わせて(A)ポリブチレンテレフタレート樹脂に配合することによって、曲げ弾性率、難燃性、及び耐トラッキング性に優れるポリブチレンテレフタレート樹脂組成物を調製できることが分かる。また、特に、(C)有機リン系難燃剤、(D)含窒素難燃助剤を押出機の下流側からサイドフィードを行なった実施例7は、引張り特性(強さ、伸び)にも優れ、難燃性にもさらに優れていることが分かる。
Figure JPOXMLDOC01-appb-T000008
実施例7において※の成分を押出機下流側からサイドフィード。

Claims (9)

  1.  (A)ポリブチレンテレフタレート樹脂と、(B)ポリ乳酸樹脂と、フォスフィン酸塩、ジフォスフィン酸塩、及び、3量体以上のフォスフィン酸縮合物の塩からなる群より選択される1種以上である(C)有機リン系難燃剤と、(D)含窒素難燃助剤とを含み、前記(B)ポリ乳酸樹脂の含有量が前記(A)ポリブチレンテレフタレート樹脂100質量部に対して1質量部以上200質量部以下であるポリブチレンテレフタレート樹脂組成物。
  2.  前記(C)有機リン系難燃剤が、下記一般式(1)で表されるフォスフィン酸塩、及び/又は、下記一般式(2)で表されるジフォスフィン酸塩である、請求項1記載のポリブチレンテレフタレート樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)、(2)中、R、Rは、フェニル基、水素、1個のヒドロキシル基を含有してよい直鎖又は分枝鎖のC1-6-アルキル基であり、Rは、直鎖又は分枝鎖のC1-10-アルキレン基、アリーレン基、アルキルアリーレン基又はアリールアルキレン基であり、Mは、アルカリ土類金属、アルカリ金属、Zn、Al、Fe、ホウ素であり、mは、1から3の整数であり、nは、1又は3の整数であり、xは、1又は2である。)
  3.  前記(C)有機リン系難燃剤が、ジエチルフォスフィン酸アルミニウムである、請求項2記載のポリブチレンテレフタレート樹脂組成物。
  4.  前記(D)含窒素難燃助剤が、下記一般式(3)で表されるトリアジン系化合物とシアヌール酸又はイソシアヌール酸との塩である、請求項1から3何れか記載のポリブチレンテレフタレート樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R、Rは水素原子、アミノ基、アリール基、又は炭素数1から3のオキシアルキル基であり、R、Rは同一でもまた異なっていてもよい。)
  5.  前記(D)含窒素難燃助剤が、メラミンシアヌレートである、請求項4記載のポリブチレンテレフタレート樹脂組成物。
  6.  さらに、(E)充填材を含む、請求項1から5何れか記載のポリブチレンテレフタレート樹脂組成物。
  7.  さらに、(F)多官能エポキシ化合物を含む、請求項1から6何れか記載のポリブチレンテレフタレート樹脂組成物。
  8.  IEC112第3版に準拠して、0.1%塩化アンモニウム水溶液及び白金電極を用いて測定される比較トラッキング指数(CTI)が、600V以上である、請求項1から7何れか記載のポリブチレンテレフタレート樹脂組成物。
  9.  請求項1から8の何れかに記載のポリブチレンテレフタレート樹脂組成物を製造する方法であって、
     押出機を用い、(C)有機リン系難燃剤及び/又は(D)含窒素難燃助剤を、(A)ポリブチレンテレフタレートのフィード位置よりも、押出方向の後方側でフィードすることを特徴とするポリブチレンテレフタレート樹脂組成物の製造方法。
PCT/JP2011/059583 2010-04-19 2011-04-19 ポリブチレンテレフタレート樹脂組成物及びポリブチレンテレフタレート樹脂組成物の製造方法 WO2011132655A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012511657A JPWO2011132655A1 (ja) 2010-04-19 2011-04-19 ポリブチレンテレフタレート樹脂組成物及びポリブチレンテレフタレート樹脂組成物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-095715 2010-04-19
JP2010095715 2010-04-19

Publications (1)

Publication Number Publication Date
WO2011132655A1 true WO2011132655A1 (ja) 2011-10-27

Family

ID=44834174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059583 WO2011132655A1 (ja) 2010-04-19 2011-04-19 ポリブチレンテレフタレート樹脂組成物及びポリブチレンテレフタレート樹脂組成物の製造方法

Country Status (2)

Country Link
JP (1) JPWO2011132655A1 (ja)
WO (1) WO2011132655A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066987A1 (ja) * 2010-11-18 2012-05-24 ウィンテックポリマー株式会社 無機充填材強化ポリブチレンテレフタレート樹脂組成物およびその成形品
WO2014167993A1 (ja) * 2013-04-11 2014-10-16 東洋紡株式会社 熱伝導性樹脂組成物およびそれを使用した熱伝導性封止体
JP2015174978A (ja) * 2014-03-18 2015-10-05 川崎三興化成株式会社 難燃性熱可塑性樹脂組成物及びその製造方法
CN112321999A (zh) * 2020-11-23 2021-02-05 中北大学 一种超支化聚己二酸对苯二甲酸丁二醇酯材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160924A (ja) * 1997-06-13 1999-03-05 Polyplastics Co 難燃性熱可塑性ポリエステル樹脂組成物
JP2008050579A (ja) * 2006-07-28 2008-03-06 Teijin Ltd 樹脂組成物およびそれよりなる成形品
JP2010024272A (ja) * 2008-07-15 2010-02-04 Mitsubishi Engineering Plastics Corp 難燃性熱可塑性樹脂組成物
JP2010037375A (ja) * 2008-08-01 2010-02-18 Toray Ind Inc 難燃性熱可塑性ポリエステル樹脂組成物および成形品

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005042045A (ja) * 2003-07-24 2005-02-17 Unitika Ltd ポリエステル樹脂組成物、およびそれを成形してなる成形体
JP2006233121A (ja) * 2005-02-28 2006-09-07 Kunimune:Kk 生分解性樹脂組成物及びその成形体
JP5214099B2 (ja) * 2005-09-28 2013-06-19 ウィンテックポリマー株式会社 難燃性ポリブチレンテレフタレート樹脂組成物
JP5306929B2 (ja) * 2008-07-23 2013-10-02 三菱エンジニアリングプラスチックス株式会社 難燃性熱可塑性ポリエステル樹脂組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160924A (ja) * 1997-06-13 1999-03-05 Polyplastics Co 難燃性熱可塑性ポリエステル樹脂組成物
JP2008050579A (ja) * 2006-07-28 2008-03-06 Teijin Ltd 樹脂組成物およびそれよりなる成形品
JP2010024272A (ja) * 2008-07-15 2010-02-04 Mitsubishi Engineering Plastics Corp 難燃性熱可塑性樹脂組成物
JP2010037375A (ja) * 2008-08-01 2010-02-18 Toray Ind Inc 難燃性熱可塑性ポリエステル樹脂組成物および成形品

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066987A1 (ja) * 2010-11-18 2012-05-24 ウィンテックポリマー株式会社 無機充填材強化ポリブチレンテレフタレート樹脂組成物およびその成形品
JP5851416B2 (ja) * 2010-11-18 2016-02-03 ウィンテックポリマー株式会社 無機充填材強化ポリブチレンテレフタレート樹脂組成物およびその成形品
WO2014167993A1 (ja) * 2013-04-11 2014-10-16 東洋紡株式会社 熱伝導性樹脂組成物およびそれを使用した熱伝導性封止体
JP2015174978A (ja) * 2014-03-18 2015-10-05 川崎三興化成株式会社 難燃性熱可塑性樹脂組成物及びその製造方法
CN112321999A (zh) * 2020-11-23 2021-02-05 中北大学 一种超支化聚己二酸对苯二甲酸丁二醇酯材料的制备方法
CN112321999B (zh) * 2020-11-23 2022-06-07 中北大学 一种超支化聚己二酸对苯二甲酸丁二醇酯材料的制备方法

Also Published As

Publication number Publication date
JPWO2011132655A1 (ja) 2013-07-18

Similar Documents

Publication Publication Date Title
JP5166866B2 (ja) 難燃性ポリエステル樹脂組成物
US8716378B2 (en) Flame resistant polyester compositions, method of manufacture, and articles thereof
US7405250B2 (en) High flow polyester composition, method of manufacture, and uses thereof
EP2785793B1 (en) Polyester compositions and insert-molded articles made therefrom
JPWO2015072216A1 (ja) 熱可塑性ポリエステル樹脂組成物および成形品
JP2010006965A (ja) 難燃性熱可塑性ポリエステル樹脂組成物
JP2011132424A (ja) 熱可塑性ポリエステル樹脂組成物、それを用いた成形品とその製造方法
JP2009286999A (ja) ポリ乳酸樹脂組成物の製造法
JP2010024312A (ja) 難燃性熱可塑性ポリエステル樹脂組成物
JP4911547B2 (ja) 難燃性ポリブチレンテレフタレート樹脂組成物および成形品
JP2010037375A (ja) 難燃性熱可塑性ポリエステル樹脂組成物および成形品
WO2021153414A1 (ja) 熱可塑性ポリエステル樹脂組成物および成形品
JP6117190B2 (ja) 電子機器用筐体
WO2011132655A1 (ja) ポリブチレンテレフタレート樹脂組成物及びポリブチレンテレフタレート樹脂組成物の製造方法
JP5925321B2 (ja) 電子機器用筐体
JP6904173B2 (ja) 熱可塑性ポリエステル樹脂組成物および成形品
JP5345972B2 (ja) ポリブチレンテレフタレート樹脂組成物
JP2006057037A (ja) 難燃性ポリエステル系樹脂組成物
JP2021024876A (ja) 電気絶縁部品用難燃性ポリブチレンテレフタレート樹脂組成物
JP2021014478A (ja) 熱可塑性ポリエステル樹脂組成物および成形品
JP5194357B2 (ja) 難燃性ポリエチレンテレフタレート樹脂組成物
JP2005239972A (ja) 電離放射線架橋用ポリブチレンテレフタレート樹脂組成物
JP2020203963A (ja) 難燃性熱可塑性ポリエステル樹脂組成物の製造方法
CN116390980A (zh) 阻燃性聚对苯二甲酸丁二醇酯树脂组合物及树脂成形品
JP2003192923A (ja) 難燃性熱可塑性樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11771990

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012511657

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11771990

Country of ref document: EP

Kind code of ref document: A1