WO2011129020A1 - Negative electrode active material, and secondary battery, capacitor and electricity storage device each using the negative electrode active material - Google Patents

Negative electrode active material, and secondary battery, capacitor and electricity storage device each using the negative electrode active material Download PDF

Info

Publication number
WO2011129020A1
WO2011129020A1 PCT/JP2010/062469 JP2010062469W WO2011129020A1 WO 2011129020 A1 WO2011129020 A1 WO 2011129020A1 JP 2010062469 W JP2010062469 W JP 2010062469W WO 2011129020 A1 WO2011129020 A1 WO 2011129020A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
secondary battery
positive electrode
Prior art date
Application number
PCT/JP2010/062469
Other languages
French (fr)
Japanese (ja)
Inventor
秀和 井戸
万聡 西内
芽久美 安藤
智行 松原
Original Assignee
株式会社コベルコ科研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010095225A external-priority patent/JP2011228402A/en
Priority claimed from JP2010095223A external-priority patent/JP2011228057A/en
Priority claimed from JP2010095224A external-priority patent/JP5575531B2/en
Application filed by 株式会社コベルコ科研 filed Critical 株式会社コベルコ科研
Priority to CN2010800655516A priority Critical patent/CN102812580A/en
Publication of WO2011129020A1 publication Critical patent/WO2011129020A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a negative electrode active material, a secondary battery and a capacitor using the same, and an electricity storage device.
  • Lithium (Li) ion batteries have excellent energy density (hereinafter also referred to as “capacity”), and are therefore used as secondary batteries.
  • Capacity energy density
  • Li lithium ion batteries
  • an electrode using an aluminum (Al) -Li alloy As an anode for a secondary battery, an electrode using an aluminum (Al) -Li alloy has been studied and partly put into practical use.
  • This is an Al—Li alloy electrode for a non-aqueous secondary battery made of an Al—Li alloy mainly containing Al and containing 4 to 12% by mass of Li.
  • the size of the LiAl compound in the network eutectic structure is 10 ⁇ m. It is the following (refer patent document 1).
  • a tin (Sn) or Sn—nickel (Ni) alloy negative electrode having a spherical void on the surface or inside has been studied.
  • the voids have a porosity of 10 to 98% and a pore diameter of 0.05 to 100 ⁇ m, and are configured to be alloyed with Li (see Patent Document 2).
  • an electrode having a structure in which Li or zinc (Zn) is held as a negative electrode active material related to a battery reaction on a porous Ni or Al current collector having pores having an average diameter of 3 ⁇ m or less is known. (See Patent Document 3).
  • the capacitor is regarded as promising as a power storage device for renewable energy such as a main power source and an auxiliary power source of an electric vehicle or solar power generation or wind power generation.
  • renewable energy such as a main power source and an auxiliary power source of an electric vehicle or solar power generation or wind power generation.
  • the energy density of the capacitor is low (that is, the electric capacity is small)
  • the following attempts to improve these have been proposed.
  • a Li ion hybrid capacitor in which a positive electrode and a negative electrode are immersed in an electrolytic solution via a separator has been proposed (see Patent Document 4).
  • the positive electrode contains non-porous charcoal as an active material
  • the negative electrode contains a carbon (C) material capable of reversibly occluding and desorbing Li ions as an active material
  • the electrolyte solution is aprotic containing a Li salt. It is an organic solvent.
  • the negative electrode active material is a carbonaceous porous powder (see Patent Document 5).
  • This carbonaceous porous powder is an aggregate in which porous carbon black having an average particle diameter of 12 to 300 nm having a pore structure is bound with a carbon material.
  • the positive electrode active material the same material as the carbon (C) material disclosed in Patent Document 4 is used.
  • Japanese Unexamined Patent Publication No. 63-51052 Japanese Unexamined Patent Publication No. 2006-260886 Japanese Unexamined Patent Publication No. 8-321310 Japanese Unexamined Patent Publication No. 2007-294539 Japanese Unexamined Patent Publication No. 2008-150270
  • the void has a spherical shape and is independent from each other.
  • the effect of Li volume expansion in the void accompanying charging is concentrated on the void inner wall of the Sn or Sn—Ni alloy negative electrode, so that the negative electrode is likely to crack and the cycle life is insufficient.
  • the manufacturing technique disclosed in Patent Document 2 cannot form a negative electrode from Al having pores.
  • the current collector itself is porous, but the negative electrode active material is not porous. Therefore, there is a problem that the influence of the volume expansion of the negative electrode active material is not sufficiently mitigated and the cycle life is insufficient. Furthermore, since the negative electrode active material is made of only Li or Zn, there is a problem that dendrite generation cannot be suppressed.
  • the negative electrode disclosed in Patent Document 4 contains a carbon material as an active material, a doping amount of Li equal to or higher than C 6 Li cannot theoretically be obtained, and a large capacity cannot be expected. Furthermore, the capacity of the positive electrode is considerably smaller than that of the negative electrode due to the mechanism of storing electricity only by adsorption of anions, and the capacity of the negative electrode cannot be fully utilized.
  • the negative electrode disclosed in Patent Document 5 also contains a carbon material as an active material, so theoretically, a doping amount of Li equal to or higher than C 6 Li cannot be obtained. Cannot expect large capacity.
  • the positive electrode has a capacity that is considerably smaller than that of the negative electrode due to a mechanism for storing electricity only by adsorption of anions, and the capacity of the negative electrode cannot be fully utilized.
  • an object of the present invention is to provide a negative electrode active material capable of ensuring a large energy density (large capacity) and extending the cycle life, a secondary battery and a capacitor using the same, and an electricity storage device. That is.
  • one form of the first invention of the present invention is a negative electrode active material produced from a foil body made of a lithium-containing aluminum alloy, and at least the surface layer portion of the foil body has a three-dimensional network. And a large number of pores, and the surface area ratio of the surface layer portion is 10 to 80%.
  • Another aspect of the first invention of the present invention includes: a negative electrode having the negative electrode active material; a positive electrode; and an ion conductive electrolyte disposed between the negative electrode and the positive electrode.
  • Next battery a negative electrode having the negative electrode active material; a positive electrode; and an ion conductive electrolyte disposed between the negative electrode and the positive electrode.
  • Another aspect of the first invention of the present invention includes a negative electrode having the negative electrode active material, a positive electrode, and an ion conductive electrolyte disposed between the negative electrode and the positive electrode. It is.
  • one aspect of the second invention of the present invention is a negative electrode active material for a secondary battery produced from a porous aluminum alloy, and includes at least one of silicon and tin. It is the negative electrode active material for secondary batteries to contain.
  • the contents of the silicon and the tin are 0.05 to 24 atomic%, respectively, and the total content of the silicon and the tin is 30 atomic% or less.
  • the secondary battery negative electrode active material preferably contains 0.02 to 5 atomic% of magnesium.
  • a secondary battery comprising: an ion conductive electrolyte disposed between the two.
  • Another aspect of the second invention of the present invention is a negative electrode active material for a capacitor produced from a porous aluminum alloy, the negative electrode active material for a capacitor containing lithium and at least one of silicon and tin. It is a substance.
  • the silicon and tin contents are 0.05 to 24 atomic%, respectively, and the total content of the silicon and tin is 30 atomic% or less.
  • the negative electrode active material for capacitors contains 0.02 to 5 atomic% of magnesium.
  • Another aspect of the second invention of the present invention comprises a negative electrode having the negative electrode active material for a capacitor, a positive electrode, and an ion conductive electrolyte disposed between the negative electrode and the positive electrode. Capacitor.
  • an aspect of the third invention of the present invention is a negative electrode active material produced from a porous lithium-containing aluminum alloy having pores, wherein the pore opening diameter is Is 5 ⁇ m or less (however, zero is not included), and the ratio of the length of the pores / the opening diameter ratio of the pores is 10 or more.
  • the opening diameter of the pores is preferably 0.1 to 5 ⁇ m, and the ratio of the length of the pores / the opening diameter of the pores is preferably 10 to 100.
  • Another aspect of the third invention of the present invention includes a negative electrode having the negative electrode active material, a positive electrode, and an ion conductive electrolyte solution disposed between the negative electrode and the positive electrode. Next battery.
  • Another aspect of the third invention of the present invention is a capacitor comprising: a negative electrode having the negative electrode active material; a positive electrode; and an ion conductive electrolyte disposed between the negative electrode and the positive electrode. It is.
  • an aspect of the fourth invention of the present invention is that a negative electrode having a negative electrode active material made from a porous lithium-containing aluminum alloy, and a graphite-based positive electrode active material containing activated carbon. And an ion conductive electrolyte solution disposed between the negative electrode and the positive electrode.
  • the negative electrode active material is prepared from a foil body made of a lithium-containing aluminum alloy, and at least the surface layer portion of the foil body has a three-dimensional network skeleton and many fine particles. Since the surface area ratio of the surface layer portion is 10 to 80% with holes, a negative electrode active material that can simultaneously satisfy a large capacity and a long cycle life, and a secondary battery and a capacitor using the same Can be provided.
  • the negative electrode active material for a secondary battery is made of a porous aluminum alloy and contains at least one of silicon and tin, the cycle life is not reduced.
  • a negative electrode active material capable of securing a capacity and a secondary battery using the same can be provided.
  • the negative electrode active material for a capacitor is made of a porous aluminum alloy and contains lithium and at least one of silicon and tin, the cycle life is reduced.
  • a negative electrode active material capable of securing a large capacity and a capacitor using the same can be provided.
  • the negative electrode active material is made of a porous lithium-containing aluminum alloy having pores, and the opening diameter of the pores is 5 ⁇ m or less (however, it does not include zero).
  • the electricity storage device includes a negative electrode having a negative electrode active material prepared from a porous lithium-containing aluminum alloy, a positive electrode having a graphite-based positive electrode active material containing activated carbon, the negative electrode, Therefore, it is possible to provide an electricity storage device that can ensure a large energy density (large capacity) without reducing the cycle life.
  • FIG. 2 is a partially enlarged schematic view of a negative electrode active material formed by the synthesis method shown in FIG. 1.
  • FIG. 3 is a reference diagram based on a photograph showing a surface state of a surface layer portion of the negative electrode active material shown in FIG.
  • FIG. 3 is a reference diagram based on a photograph showing a cross-sectional state of the BB cross section of the negative electrode active material shown in FIG. 2 observed with a scanning electron microscope. It is explanatory drawing for demonstrating the definition of the surface aperture ratio of the surface layer part of the negative electrode active material shown by FIG.
  • FIG. 1 is a schematic diagram for explaining one embodiment of a method for synthesizing a negative electrode active material according to Embodiment 1 of the first invention.
  • reference numeral 1 denotes a container
  • reference numeral 2 denotes an aluminum foil connected to the negative electrode side
  • reference numeral 3 denotes a lithium plate connected to the positive electrode side
  • reference numeral 4 denotes an electrolytic solution poured into the container 1.
  • the aluminum foil 2 is prepared in advance under the following pretreatment conditions.
  • As the electrolytic solution an aqueous solution containing 10% by mass hydrochloric acid and 0.1% by mass sulfuric acid is used.
  • An aluminum foil having a purity of 99.9% and a thickness of 110 ⁇ m was etched with ion-exchanged water after etching for 500 seconds at 60 Hz and a current density of 180 mA / cm 2 in the above-described electrolytic solution controlled at 38 ° C.
  • the pretreated aluminum foil 2 and the lithium plate 3 are immersed in an electrolytic solution 4 and connected to the negative electrode side and the positive electrode side to face each other.
  • EC electrolyte
  • DEC diethyl carbonate
  • FIG. 2 is a partially enlarged schematic view of the negative electrode active material 12 formed by the synthesis method shown in FIG. FIG. 2 shows that the negative electrode active material 12 includes a surface layer portion 12a and a base portion 12b.
  • the surface layer portion 12a has a three-dimensional network skeleton and a structure having a large number of pores (presents a so-called sponge-like structure).
  • the opening diameter D of these pores is 0.5 ⁇ m to 2 ⁇ m.
  • the pore mentioned here is a general term including some holes generated due to the pretreatment conditions and the like of the aluminum foil 2.
  • FIG. 3 is a reference diagram based on a photograph showing a surface state of the surface of the surface layer portion 12a of the negative electrode active material 12 shown in FIG. 2 observed from the direction of arrow A with a scanning electron microscope.
  • FIG. 4 is a reference diagram based on a photograph showing a cross-sectional state of the negative electrode active material 12 shown in FIG. 2 taken along the line BB with a scanning electron microscope. From FIG. 4, the average thickness of the surface layer portion 12a is about 5 ⁇ m. In light of the object of the present invention, the average thickness of the surface layer portion 12a is preferably 1 ⁇ m to 50 ⁇ m. 2 to 4, it has been described that the surface layer portion 12a on the surface (one surface side) of the negative electrode active material 12 has a sponge-like structure, but the back surface (other surface side) of the negative electrode active material 12 is also sponged. There is a surface layer portion 12a having a shape structure.
  • the surface layer portion 12a has a large number of pores, and the opening diameter D of these pores is preferably 0.1 to 5 ⁇ m. This is because when the opening diameter D of the pores exceeds 5 ⁇ m, the surface area of the negative electrode active material 12 decreases and the capacity decreases, and when it is less than 0.1 ⁇ m, it becomes difficult for the electrolyte solution described later to enter the pores. It is.
  • the cross-sectional shape of the pores is not limited to a circle.
  • the surface and cross-sectional properties of the surface layer portion 12a were observed with the scanning electron microscope described above, and the surface aperture ratio was measured.
  • the definition of the aperture ratio is shown in FIG.
  • the opening diameter D of the pores is an average diameter
  • the distance L between the pores is an average length. From the above measurement results, it was found that the surface area ratio of the surface layer portion 12a is preferably 10 to 80% (see Table 1 above).
  • the surface opening ratio is less than 10%, stress relaxation due to the volume expansion is insufficient. It is believed that there is. Further, when the surface opening ratio exceeds 80%, it is considered that the mechanical strength as the negative electrode active material 12 is insufficient (refer to Tables 2 and 3 below for details).
  • the aluminum foil 2 having a thickness of 110 ⁇ m has been described as an example.
  • the present invention is not necessarily limited thereto, and an aluminum foil having a thickness of about 5 ⁇ m to 200 ⁇ m can be used.
  • the example in which the aluminum alloy is substantially composed of Al and Li has been described, but the present invention is not necessarily limited thereto.
  • Aluminum alloys containing elements such as Mg and Zn other than Li may be used.
  • the aluminum alloy in the first invention may contain 0.05 atom (at)% or less of Si, Fe, Cu, Mn, Mg, Zn, Ti, etc. as inevitable impurities.
  • an aluminum foil 2 having a purity of 99.9% is connected to the negative electrode side, and the potential is controlled to 25 mV (vs. Li / Li + ).
  • electrolysis in an electrolytic solution at 0 ° C. has been described, the present invention is not necessarily limited thereto.
  • Aluminum can be alloyed with Li by electrolysis.
  • FIG. 6 is a schematic diagram for explaining one form of a secondary battery according to Embodiment 2 of the first invention.
  • reference numeral 10 denotes a container
  • reference numeral 12 denotes a negative electrode active material obtained by the same synthesis as in the first embodiment
  • reference numeral 13 denotes an aluminum current collector
  • reference numeral 14 denotes a positive electrode active material.
  • Reference numeral 15 denotes a separator impregnated with the same electrolytic solution 4 used in the synthesis in the first embodiment. The separator 15 is sandwiched between the negative electrode active material 12 and the positive electrode active material 14 having MnO 2 provided by being applied and dried on the current collector 13. Test No. 1 shown in Table 1 of Embodiment 1 described above. In accordance with the negative electrode active material 12 of 1A to 9A, the secondary battery configured in this way was tested. Table 1 below shows 1A to 9A.
  • the voltage of the secondary battery configured as shown in FIG. 6 was measured. Next, a cycle test (discharge depth: 20%) of these secondary batteries was performed, and the cycle number at the time when the discharge end voltage began to decrease rapidly was defined as the cycle life. Moreover, the surface of each negative electrode active material 12 was observed, and the presence or absence of dendrite production
  • test no. No dendrites were observed in any of 1A to 9A.
  • Test No. The cycle life of 1A to 7A was 680 to 1500, and the target predetermined value (600 or more) was satisfied. This is the result of test no. Since the surface layer portion 12a of the negative electrode active material 12 of 1A to 7A has a three-dimensional network skeleton and a large number of pores (having a sponge-like structure), stress due to volume expansion at the time of charging can be reduced (effect) It is thought that this is because of On the other hand, test no. The cycle lives of 8A and 9A were 120 and 130, respectively, which were below the predetermined value. This is the result of test no.
  • the surface area ratio of the surface layer portion 12a is less than 10% as in 8A, the surface layer portion 12a no longer has a sponge-like structure, and stress relaxation due to volume expansion during charging cannot be achieved (the effect is absorbed). This is probably because it was not possible.
  • Test No When the surface opening ratio is more than 80% as in 9A, it is considered that the mechanical strength of the negative electrode active material 12 becomes insufficient and the predetermined cycle life cannot be satisfied. Therefore, the surface aperture ratio is preferably 10 to 80%.
  • the secondary battery that satisfies the target performance is the test no. 1A to 7A. Therefore, the negative electrode active material 12 suitable for this secondary battery has a test No. shown in Table 1 above. 1A to 7A. Thus, the test No. shown in Table 1 of Embodiment 1 described above. It can be seen that the negative electrode active material 12 of 1A to 7A does not generate dendrite as a negative electrode active material for a secondary battery, and exhibits a remarkable effect in extending the cycle life.
  • FIG. 7 is a schematic diagram for explaining one form of the capacitor according to the third embodiment of the first invention.
  • reference numeral 20 denotes an aluminum current collector
  • reference numeral 21 denotes a positive electrode active material
  • reference numeral 22 denotes a separator impregnated with an electrolytic solution.
  • the same elements as those in the first and second embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the separator 22 is sandwiched between the negative electrode active material 12 and the positive electrode active material 21 having activated carbon (BET specific surface area: 800 to 1300 m 2 / g) provided by being applied and dried on the current collector 20. It is a configuration.
  • the capacitors thus configured according to the negative electrode active materials 12 of 1A to 9A were tested. Table 1 below shows 1A to 9A. Further, for comparison, a capacitor in which artificial graphite (BET specific surface area 50 m 2 / g) is used as the negative electrode active material 12 is referred to as Test No. 10A.
  • capacitors are charged to a predetermined voltage with a constant current and a constant voltage in a constant temperature bath at 25 ° C., discharged to 1.0 V with a constant current, and the number of cycles at the time when the capacitance starts to rapidly decrease is cycled. The life is assumed. Further, the surface of the negative electrode active material 12 was observed to confirm whether dendrite was generated.
  • test no. No dendrite formation was observed in any of 1A to 10A.
  • Test No. Although the cycle life of 1A to 7A satisfied the target value (600 or more) of 600 to 1200, test no. The cycle lives of 8A and 9A were 200 and 100, respectively, which were below the predetermined value. This is considered to be due to the same reason as described in the second embodiment.
  • Test No. The cycle life of 10A was 500, which was below the target predetermined value (600 or more). This is thought to be because delamination of the negative electrode using artificial graphite as the negative electrode active material was caused by volume shrinkage / expansion accompanying the entry and exit of Li ions during charge and discharge.
  • the capacitor configured as shown in FIG. 7 was discharged to 1.0 V with a constant current in a thermostat at 25 ° C. Then, the product of the voltage V and current I at the time of discharging time integrating the discharge energy, as equal to 1 / 2CV 2, was determined the capacitance per unit weight of the negative electrode active material 12 C (F / g) . The results are shown in Table 3 above.
  • test no. All of 1A to 10A satisfied a target capacitance C per unit weight (300 F / g or more).
  • the configuration of the capacitor that satisfies the target predetermined performance was determined as Test No. 1A to 7A. That is, similarly to the result of the secondary battery of the second embodiment described above, the negative electrode active material 12 suitable for the capacitor has a test no. 1A to 7A.
  • the content of Li in the negative electrode active material 12 is preferably 1 at% to 70 at%.
  • the Li content in the negative electrode active material 12 Is more preferably 10 at% to 70 at%.
  • a current collector may be separately provided with respect to the negative electrode active material 12, such as forming a negative electrode by lightly pressing the negative electrode active material 12 to a copper current collector via a conductive paste.
  • the negative electrode active material 32 (see FIG. 8) that does not need to contain lithium (Li) is completed.
  • the negative electrode active material 32 has a large number of pores as described in detail below.
  • EC electrolyte
  • DEC diethyl carbonate
  • the negative electrode active material 32 (see FIG. 9) as the negative electrode active material for capacitors shown in 11B to 21B was obtained.
  • the negative electrode active material 32 obtained by these syntheses has a large number of pores.
  • the pore mentioned here is a general term including some holes generated due to the pretreatment conditions of the aluminum foil.
  • the distribution state of the pores is almost uniform, and the ratio of the area occupied by the pores on the surface of the negative electrode active material 32 obtained by the above synthesis is preferably 10% to 80%.
  • the distribution state of the pores reflects the distribution state of the pores of the aluminum foil previously pretreated. Further, the lithium content in the porous negative electrode active material 32 having pores is calculated from the amount of electricity at the time of the synthesis experiment (see Tables 4 and 5 below).
  • FIG. 8 is a schematic diagram for explaining one form of the secondary battery according to Embodiment 1 of the second invention.
  • reference numeral 30 is a container
  • reference numeral 33 is an aluminum current collector
  • reference numeral 34 is LiCoO 2 as a positive electrode active material containing lithium and capable of occluding and releasing lithium
  • reference numeral 35 is a negative electrode for the secondary battery.
  • the separator impregnated with the same electrolyte used for the synthesis of the active material is shown.
  • the separator 35 is configured to be sandwiched between the negative electrode active material 32 and LiCoO 2 34 provided by applying and drying on the current collector 33. Test No. shown in Table 4 above.
  • the secondary battery constructed in this manner according to the negative electrode active material 32 for secondary batteries 1B to 9B was tested. 1B to 9B and are shown in Table 6.
  • the voltage of the secondary battery configured as shown in FIG. 8 was measured. Next, a cycle test (discharge depth 20%) was performed on these secondary batteries, and the cycle number when the capacity was reduced to 80% of the initial value was defined as the cycle life. In addition, the initial negative electrode capacity was determined, and the surface of the negative electrode active material 32 was observed to confirm whether dendrite was generated. The results are shown in Table 6 above.
  • test no. The voltages 1B to 9B are 3.5 to 3.9 V, and a predetermined target voltage is generated.
  • Test No. The cycle life of 1B to 7B and 9B was 970 to 1830 times, and the target predetermined value (600 times or more) was satisfied. This is the result of test no.
  • the lithium content in the negative electrode active material 32 increases and the volume expands during charging, but the influence is absorbed and alleviated over the negative electrode active material 32 because of the porous structure. Conceivable.
  • test no. The cycle life of 8B was 320 times, which was below the predetermined value. This is the result of test no.
  • the initial negative electrode capacities of 1B to 7B are 810 to 1350 mAh / g, which satisfy the target predetermined capacity (800 mAh / g or more).
  • the initial negative electrode capacities of 8B and 9B were 740 and 790, respectively, which were below the predetermined capacity.
  • the initial negative electrode capacities of 1B to 7B increased because the ability to occlude lithium was 2.3 times that of graphite, 4.4 times that of silicon (Si), and 4.4 times that of tin (Sn). It seems to be caused by being.
  • the contents of silicon and tin are each preferably 0.05 to 24 atoms (at)%.
  • the total content is preferably 30 atomic% or less. This is because when the respective contents of silicon and tin are less than 0.05 atomic%, the effect of occluding lithium is small. Moreover, when the content of silicon or tin is more than 24 atomic%, or when the total content of silicon and tin is more than 30 atomic%, it is difficult to produce a porous negative electrode active material.
  • test no. In 1B to 9B no dendrite formation was observed. From the above results, in order to realize a negative electrode active material capable of securing a large capacity without reducing the cycle life and a secondary battery using the negative electrode active material, test no. It can be seen that 1B to 7B are suitable.
  • FIG. 9 is a schematic diagram for explaining one embodiment of a capacitor according to the present invention.
  • reference numeral 40 denotes an aluminum current collector
  • reference numeral 41 denotes a positive electrode active material
  • reference numeral 42 denotes a separator impregnated with an electrolytic solution.
  • the same elements as those of the first embodiment of the second invention are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the separator 42 includes the negative electrode active material 32 for the capacitor, a positive electrode active material 41 having activated carbon (BET specific surface area: 800 to 1300 m 2 / g) provided by applying and drying on the current collector 40, It has a configuration sandwiched between.
  • the capacitors thus configured according to the negative electrode active material 32 for capacitors 11B to 21B were tested. 11B-21B and shown in Table 7.
  • the voltage of the capacitor configured as shown in FIG. 9 was measured. Further, the capacitor configured as shown in FIG. 9 was discharged to 1.0 V with a constant current in a thermostat at 25 ° C. Then, as a discharge energy product obtained by integrating the time of the voltage V and current I at the time of discharge is equal to 1 / 2CV 2, was determined the capacitance per unit weight of the negative electrode active material 12 C (F / g). The results are shown in Table 7 above.
  • the voltages 11B to 21B are 3.3 to 3.8V, and a predetermined target voltage is generated.
  • the capacitance C of 11B to 19B is 1840 to 2450 F / g, which satisfies the target predetermined value (1800 F / g or more).
  • the electrostatic capacities C of 20B and 21B were 1740 and 1790, respectively, which were below a predetermined value.
  • the capacitance C of 11B to 19B is increased because the ability to occlude lithium is 2.3 times that of graphite, 4.4 times that of silicon (Si), and 4 times that of tin (Sn). This is considered to be 4 times.
  • the contents of silicon and tin are each preferably 0.05 to 24 atoms (at)%. Moreover, when both silicon and tin are contained, the total content is preferably 30 atomic% or less. This is because when the respective contents of silicon and tin are less than 0.05 atomic%, the effect of occluding lithium is small. Moreover, when the content of silicon or tin is more than 24 atomic%, or when the total content of silicon and tin is more than 30 atomic%, it is difficult to produce a porous negative electrode active material.
  • test no. The cycle life of 11B to 19B and 21B was 14000 to 110,000 times, and the target predetermined value (10000 times or more) was satisfied. This is the result of test no.
  • the lithium content in the negative electrode active material 32 increases and the volume expands during charging.
  • the influence is absorbed and alleviated throughout the negative electrode active material 32. Conceivable.
  • test no. The cycle life of 20B was 3000 times, which was below the predetermined value. This is the result of test no.
  • 20B since Mg content is large, it is thought that the influence relaxation of volume expansion was insufficient.
  • Test No. 14B to 18B contain an appropriate amount of Mg and improve the mechanical strength of the negative electrode active material 32, which is advantageous in satisfying a higher cycle life while increasing the capacity.
  • test no. in 11B to 21B no dendrite formation was observed.
  • test no. in order to realize a negative electrode active material capable of securing a large capacity without reducing the cycle life and a capacitor using the same, test no. It can be seen that 11B to 19B are suitable.
  • an aluminum foil having a thickness of 110 ⁇ m has been described as an example.
  • the present invention is not necessarily limited thereto, and an aluminum foil having a thickness of about 5 ⁇ m to 200 ⁇ m can be used.
  • an example in which an alloy containing Si, Sn, and Mg as appropriate mainly using Al is used as the negative electrode active material for the secondary battery has been described.
  • the negative electrode active material for the secondary battery may contain 0.05 at% or less of Fe, Cu, Mn, Zn, Ti, etc. as inevitable impurities.
  • the negative electrode active material for a capacitor may contain 0.05 at% or less of Fe, Cu, Mn, Zn, Ti or the like as an inevitable impurity.
  • the content of Li in the negative electrode active material for capacitors is preferably 5 at% to 70 at%. This is because when the Li content is less than 5 at%, the energy density decreases, and when the Li content exceeds 70 at%, volume dendrite of the electrode tends to occur. Note that the Li content is more preferably 30 at% to 65 at%.
  • Embodiments 1 and 2 of the second invention the configuration in which a current collector is not separately provided for the negative electrode active material 32 has been described.
  • the present invention is not necessarily limited thereto.
  • FIG. 10 is a schematic view for explaining a synthesis method of one embodiment of the negative electrode active material according to the present invention.
  • reference numeral 51 is a container
  • reference numeral 52 is an aluminum foil connected to the negative electrode side
  • reference numeral 53 is a lithium plate connected to the positive electrode side
  • reference numeral 54 is an electrolytic solution poured into the container 51.
  • the aluminum foil 52 is prepared in advance under the following pretreatment conditions.
  • an aqueous solution containing 5.5% by mass hydrochloric acid, 1.5% by mass phosphoric acid, 0.5% by mass nitric acid, and 2.0% by mass aluminum chloride is used as the electrolytic solution.
  • aluminum foil 52 having a purity of 99.9% and a thickness of 110 ⁇ m is etched for 10 seconds to 27 minutes with a triangular wave alternating current of 10 Hz and current density of 120 mA / cm 2 in the above-described electrolyte controlled at 18 ° C. Washed with water.
  • these aluminum foils 52 were immersed in a 5.0% by mass sulfuric acid aqueous solution at 60 ° C. for 2 to 3 minutes, and then washed with ion-exchanged water.
  • the pre-treated aluminum foil 52 and the lithium plate 53 are immersed in an electrolyte solution 54 and connected to the negative electrode side and the positive electrode side to face each other.
  • EC electrolyte
  • DEC diethyl carbonate
  • the lithium-containing aluminum alloy obtained by this synthesis has a large number of pores.
  • the term “lithium-containing aluminum alloy” as used herein is a generic name including a lithium-containing aluminum alloy that includes some unalloyed portions in the central portion depending on synthesis conditions and the like.
  • the pore mentioned here is a general term including some holes generated due to pretreatment conditions of the aluminum foil 52 and the like.
  • the pore opening diameter and the pore length shown in Table 8 below are defined as follows. That is, since the cross-sectional shape of the pores is not necessarily circular, the pore opening diameter referred to here is the maximum transverse length of the cross-section of the pores.
  • the pore length referred to here is the maximum length of the pore.
  • the distribution state of the pores is almost uniform, and the ratio of the area occupied by the pores on the surface of the negative electrode active material 62 obtained by the above synthesis is preferably 30% to 80%.
  • the distribution state of the pores reflects the distribution state of the pores of the aluminum foil 52 pretreated in advance.
  • test No. obtained by the above synthesis.
  • the surface and cross-sectional properties of the negative electrode active material 62 of 1C to 10C were observed with a scanning electron microscope, the pore diameter and the pore length were measured, and the pore length / pore diameter. The ratio was calculated. The results are shown in Table 8 above.
  • the lithium content in the negative electrode active material 62 was calculated from the amount of electricity at the time of the synthesis experiment (see Table 8 above).
  • the 1C to 10C negative electrode active material 62 has a pore opening diameter of 0.05 to 7 ⁇ m, and a pore length / pore opening ratio of 7 to 103. The pores are distributed almost uniformly on the surface of the negative electrode active material 62, and the area ratio of the pores on this surface is in the range of 30% to 80%.
  • This test No. Which of the 1C to 10C negative electrode active material 62 is suitable for a secondary battery and a capacitor will be described in detail in Embodiments 2 and 3 below.
  • the aluminum foil 52 having a thickness of 110 ⁇ m has been described.
  • the present invention is not necessarily limited thereto, and an aluminum foil having a thickness of about 5 ⁇ m to 200 ⁇ m may be used.
  • the example in which the aluminum alloy is substantially composed of Al and Li has been described.
  • the present invention is not necessarily limited thereto, and an aluminum alloy containing elements such as Mg and Zn in addition to Li is used. May be.
  • the aluminum alloy may contain 0.05% or less of Si, Fe, Cu, Mn, Mg, Zn, Ti, etc. as inevitable impurities.
  • an aluminum foil 52 having a purity of 99.9% is connected to the negative electrode side, and the potential is controlled to 25 mV (vs.
  • Li / Li + Li / Li +
  • electrolysis in an electrolytic solution at 0 ° C. Li and an alloy can also be obtained by cathodic electrolysis at a constant potential (0.3 V (vs. Li / Li + ) or less) in an aprotic electrolyte containing Li ions.
  • a constant potential 0.3 V (vs. Li / Li + ) or less
  • FIG. 11 is a schematic diagram for explaining one form of a secondary battery according to Embodiment 2 of the third invention.
  • reference numeral 60 is a container
  • reference numeral 61 is a copper current collector
  • reference numeral 62 is a negative electrode active material obtained by the synthesis described in the first embodiment
  • reference numeral 63 is an aluminum current collector
  • reference numeral 64 is a current collector.
  • a positive electrode active material is shown.
  • Reference numeral 65 denotes a separator impregnated with the same electrolytic solution 54 used in the synthesis described in the first embodiment.
  • the separator 65 includes a negative electrode active material 62 that is lightly pressed onto the current collector 61 via a conductive paste, and a positive electrode active material 64 having MnO 2 provided by being applied and dried on the current collector 63. It is sandwiched. Test No. 1 shown in Table 8 in Embodiment 1 above.
  • the secondary battery configured in this manner in accordance with the negative electrode active material 62 of 1C to 10C was tested. 1C to 10C and shown in Table 9 below.
  • the voltage of the secondary battery configured as shown in FIG. 11 was measured. Next, a cycle test (discharge depth 20%) was performed, and the cycle number at the time when the discharge end voltage began to drop rapidly was defined as the cycle life. In addition, the surface of the negative electrode active material 62 was observed to confirm whether dendrite was generated. The results are shown in Table 9 above.
  • test no. The voltage of 1C to 10C is 2.7 to 3.7V, and a predetermined target voltage is generated.
  • Test No. Although the cycle life of 1C to 7C satisfied the target predetermined value (600 or more), the test No. The cycle life from 8C to 10C was 210, which was below the predetermined value. This is the result of test no.
  • the lithium content in the negative electrode active material 62 increases during charging and the volume expands, but the aspect ratio of the pores in the negative electrode active material 62 is large (pore length / pore diameter). This is probably because the influence was absorbed and alleviated over the inside of the negative electrode active material 62 having a porous structure.
  • the ratio of pore length / pore opening diameter is less than 10, and it is considered that the effect of volume expansion was not sufficiently alleviated.
  • the pore length / pore diameter ratio is preferably 10 to 100.
  • the opening diameter of the pores exceeds 5 ⁇ m, the surface area of the negative electrode active material 62 decreases and the energy density decreases.
  • the opening diameter of the pore is less than 0.1 ⁇ m, the penetration of the electrolyte into the pore becomes insufficient. Therefore, the opening diameter of the pores is preferably 0.1 to 5 ⁇ m.
  • the negative electrode active material 62 suitable for the secondary battery has a test No. shown in Table 8 of Embodiment 1 described above. 1C to 7C.
  • the test No. shown in Table 8 of the first embodiment described above It can be seen that 1C to 7C negative electrode active material 62 is a negative electrode active material for a secondary battery, does not generate dendrite, and exhibits a remarkable effect in extending the cycle life.
  • FIG. 12 is a schematic diagram for explaining one form of a capacitor according to Embodiment 3 of the third invention.
  • reference numeral 70 denotes an aluminum current collector
  • reference numeral 71 denotes a positive electrode active material
  • reference numeral 72 denotes a separator impregnated with an electrolytic solution.
  • the same elements as those in the configurations of Embodiments 1 and 2 of the third invention are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the separator 72 includes a negative electrode active material 62 lightly pressed onto the current collector 61 via a conductive paste, and activated carbon (BET specific surface area: 800 to 1300 m 2 / between the positive electrode active material 71 having g).
  • the capacitors configured in this manner in accordance with the negative electrode active material 62 of 1C to 10C were tested as shown in Table 10 below. 1C to 10C. Furthermore, for comparison, test No. In 11C, artificial graphite (BET specific surface area of 50 m 2 / g) is used as the negative electrode active material.
  • the capacitor configured as shown in FIG. 12 was discharged to 1.0 V with a constant current in a thermostatic chamber at 25 ° C. Then, as equal to the product of the voltage V and current I at the time of discharge time integrating the discharge energy is 1 / 2CV 2, was determined the capacitance per unit weight of the negative electrode active material 62 C (F / g). The results are shown in Table 10 above.
  • test no. Although the cycle life of 1C to 7C satisfied the target predetermined value (600 or more), the test No. The cycle life of 8C to 11C was 200 to 500, which was below a predetermined value. This is considered to be due to the same reason as explained in the secondary battery of Embodiment 2 of the third invention. That is, test no. In 1C to 7C, the lithium content in the negative electrode active material 62 increases and the volume expands during charging, but the aspect ratio of the pores in the negative electrode active material 62 is large (pore length / pore opening diameter). Therefore, it is considered that the influence is absorbed and relaxed over the inside of the negative electrode active material 62 having a porous structure. On the other hand, test no.
  • the ratio of pore length / pore opening diameter is less than 10, and it is considered that the effect of volume expansion was not sufficiently alleviated. Also, even if the pore length / pore diameter ratio exceeds 100, the effect does not increase so much. Therefore, the pore length / pore aperture ratio is preferably 10 to 100.
  • Test No. The reason why the cycle life of 11C fell below a predetermined value was that delamination of the negative electrode in which artificial graphite was used as the negative electrode active material was caused by volume contraction / expansion accompanying the entry and exit of Li ions during charge and discharge. Seem.
  • the absolute value of the opening diameter of the pore is also restricted. That is, if the opening diameter of the pores exceeds 5 ⁇ m, the surface area of the negative electrode active material 62 decreases and the energy density decreases. If the opening diameter is less than 0.1 ⁇ m, the electrolyte does not sufficiently penetrate into the pores. Therefore, the opening diameter of the pores is preferably 0.1 to 5 ⁇ m.
  • test no. In Nos. 1C to 9C and 11C no dendrite formation was observed. At 10C, formation of dendrite was observed. From these results, the configuration of the capacitor satisfying the target predetermined performance was determined as Test No. 1C to 7C. That is, the negative electrode active material 62 suitable for this capacitor also has a test no. 1C to 7C. As described above, the test No. shown in Table 8 of the first embodiment described above. It can be seen that the negative electrode active material 62 of 1C to 7C is a negative electrode active material for a capacitor, has no increase in capacity and generation of dendrites, and exhibits a remarkable effect in extending the cycle life. The content of Li in the negative electrode active material 62 is preferably 1 at% to 70 at%.
  • the content of Li in the negative electrode active material 62 Is more preferably 10 at% to 70 at%.
  • the previously pretreated aluminum foil and lithium plate connected to the positive electrode side and the negative electrode side, respectively, are immersed in the electrolytic solution and connected to the negative electrode side and the positive electrode side to face each other.
  • EC electrolyte
  • DEC diethyl carbonate
  • the lithium-containing aluminum alloy obtained by this synthesis has a large number of pores.
  • the lithium-containing aluminum alloy mentioned here is a general term including a lithium-containing aluminum alloy including some unalloyed parts depending on the synthesis conditions and the like.
  • the pore mentioned here is a general term including some holes generated due to the pretreatment conditions of the aluminum foil.
  • the opening diameter of the pores and the length of the pores are defined as follows. That is, since the cross-sectional shape of the pore is not necessarily circular, the opening diameter of the pore referred to here is the maximum transverse length of the cross-section of the pore. Further, since the depth of the pores may be deformed, the pore length referred to here is the maximum length of the pores. Test No.
  • the 1D to 8D negative electrode active material 82 has a pore opening diameter of 0.05 to 7 ⁇ m, and a pore length / pore opening ratio of 7 to 103.
  • the distribution state of the pores is almost uniform, and the proportion of the area occupied by the pores on the surface of the negative electrode active material 82 obtained by the above synthesis is preferably 30% to 80%.
  • the distribution state of the pores reflects the distribution state of the pores of the aluminum foil previously pretreated. Further, the lithium content in the negative electrode active material 82 is calculated from the amount of electricity at the time of the synthesis experiment (see Table 11 below).
  • Activated carbon (average particle size 2.5 ⁇ m, BET specific surface area: 800 to 1300 m 2 / g) and graphite (average particle size 2.0 ⁇ m) are mixed at a predetermined ratio shown in Table 11 above, and positive electrode active material 84 ( (See FIG. 13) (see Test Nos. 1D to 8D shown in Table 11 above).
  • the definition of the graphite content in the positive electrode active material 84 is: mass of graphite / (mass of activated carbon + mass of graphite) ⁇ 100 (%).
  • FIG. 13 is a schematic diagram for explaining a capacitor as one embodiment of the electricity storage device according to the fourth invention.
  • reference numeral 80 denotes a container
  • reference numeral 85 denotes a separator impregnated with the same electrolytic solution used for the synthesis of the negative electrode active material.
  • a capacitor is configured by sandwiching the separator 85 between the negative electrode and the positive electrode. That is, the separator 85 is sandwiched between the negative electrode active material 82 and the positive electrode active material 84. Test No. shown in Table 11 The capacitor thus configured according to the negative electrode active material 82 and the positive electrode active material 84 of 1D to 8D was tested. 1D to 8D are shown in Table 12 below.
  • test no. The charging voltage of 1D to 7D is 4.4 to 4.8V. Higher than 8D.
  • the energy density (capacity) of 1D to 6D is 90 to 200 Wh / kg, which satisfies the target predetermined energy density (90 to 200 Wh / kg or more).
  • the energy densities (capacities) of 7D and 8D were 84 and 70, respectively, which were lower than the predetermined energy density.
  • Test No. The energy density (capacity) of 1D to 6D is increased because the positive electrode having a graphite-based positive electrode active material containing activated carbon capable of intercalating anions and cations is a porous lithium-containing aluminum alloy negative electrode active material.
  • test no. 1D to 6D employ a configuration in which a positive electrode having a graphite-based positive electrode active material containing activated carbon and a negative electrode having a negative electrode active material made of a porous lithium-containing aluminum alloy are used, so that energy density (capacity) And the target predetermined cycle life (600 or more) are satisfied.
  • energy density Capacity
  • target predetermined cycle life 600 or more
  • volume expansion occurs due to an increase in the lithium content in the negative electrode.
  • a negative electrode having a porous lithium-containing aluminum alloy negative electrode active material is used. Is absorbed and relaxed.
  • activated carbon is contained so that the graphite content in the positive electrode active material 84 is 10% to 70%. It is preferable.
  • the content of Li in the negative electrode active material 82 is preferably 5 atom (at)% to 70 at%. The reason is that when the Li content is less than 5 at%, the energy density becomes small, and when the Li content exceeds 70 at%, volume dendrite of the electrode is likely to occur. More preferably, the Li content is 30 at% to 65 at%.
  • the negative electrode active material 82 preferably further contains 0.1 at% to 24 at% of Si. The reason is that when the Si content is less than 0.1 at%, the negative electrode active material 82 has insufficient strength, and when the Si content exceeds 24 at%, the negative electrode active material 82 becomes brittle.
  • an aluminum foil having a thickness of 110 ⁇ m has been described as an example.
  • the present invention is not necessarily limited thereto, and an aluminum foil having a thickness of about 5 ⁇ m to 200 ⁇ m may be used.
  • Si, Sn, and Mg are appropriately contained as a negative electrode active material made of a porous aluminum alloy containing lithium, as shown in Table 11 above. An alloy is described.
  • the negative electrode active material may contain 0.05 at% or less of Fe, Cu, Mn, Zn, Ti or the like as an inevitable impurity.
  • An electrolytic solution may be employed.
  • a current collector may be separately provided with respect to the negative electrode active material 82, for example, a negative electrode is produced by lightly pressing the negative electrode active material 82 against a copper current collector via a conductive paste.

Abstract

Disclosed are: a negative electrode active material which is capable of prolonging cycle life, while securing a large energy density (large capacity); and a secondary battery, a capacitor and an electricity storage device, each of which uses the negative electrode active material. A negative electrode active material (12) according to one embodiment of the first invention is formed of a lithium-containing aluminum alloy foil body. The foil body is composed of surface portions (12a) respectively provided on the front surface and the back surface, and a base portion (12b). The surface portions (12a) provided on the front surface and the back surface have a three-dimensional network structure and a plurality of fine pores. The surface portions (12a) provided on the front surface and the back surface have a surface aperture ratio of 10-80%.

Description

負極活物質、これを用いた二次電池およびキャパシタ、ならびに蓄電デバイスNegative electrode active material, secondary battery and capacitor using the same, and power storage device
 本発明は、負極活物質、これを用いた二次電池およびキャパシタ、ならびに蓄電デバイスに関する。 The present invention relates to a negative electrode active material, a secondary battery and a capacitor using the same, and an electricity storage device.
 リチウム(Li)イオン電池は、優れたエネルギー密度(以下、「容量」ともいう)を有するため、二次電池として用いられている。この二次電池に用いられる負極活物質としては、通常、グラファイト(C)にLiがドープされたものが用いられ、理論的にはCLiまでLiをドープすることが可能である。しかしながら、現状、実用上はそれ以下の濃度(C10Li)程度までしかLiをドープすることができない。 Lithium (Li) ion batteries have excellent energy density (hereinafter also referred to as “capacity”), and are therefore used as secondary batteries. As the negative electrode active material used in this secondary battery, a material in which Li is doped into graphite (C) is usually used, and theoretically, Li can be doped up to C 6 Li. However, at present, Li can be doped only to a concentration (C 10 Li) lower than that in practical use.
 二次電池用負極としては、アルミニウム(Al)-Li系合金を用いた電極が検討され、一部実用化されている。これは、Alを主体とし4~12質量%のLiを含むAl-Li合金からなる非水系二次電池用Al-Li合金電極であり、網目状共晶組織中のLiAl化合物の大きさが10μm以下であることを特徴とする(特許文献1参照)。 As an anode for a secondary battery, an electrode using an aluminum (Al) -Li alloy has been studied and partly put into practical use. This is an Al—Li alloy electrode for a non-aqueous secondary battery made of an Al—Li alloy mainly containing Al and containing 4 to 12% by mass of Li. The size of the LiAl compound in the network eutectic structure is 10 μm. It is the following (refer patent document 1).
 さらに、金属製負極の体積膨張の影響を緩和することを目的として、下記のような電極も検討されている。 Furthermore, the following electrodes have been studied for the purpose of reducing the influence of volume expansion of the metal negative electrode.
 例えば、表面や内部に球状の空隙を有したスズ(Sn)やSn-ニッケル(Ni)合金負極が検討されている。上記空隙は、気孔率が10~98%、孔径が0.05~100μmであり、Liと合金化するように構成されている(特許文献2参照)。 For example, a tin (Sn) or Sn—nickel (Ni) alloy negative electrode having a spherical void on the surface or inside has been studied. The voids have a porosity of 10 to 98% and a pore diameter of 0.05 to 100 μm, and are configured to be alloyed with Li (see Patent Document 2).
 また、平均直径3μm以下の細孔を有する多孔質のNiやAl製の集電体上に、電池反応に係わる負極活物質として、Liまたは亜鉛(Zn)が保持された構成の電極が知られている(特許文献3参照)。 Further, an electrode having a structure in which Li or zinc (Zn) is held as a negative electrode active material related to a battery reaction on a porous Ni or Al current collector having pores having an average diameter of 3 μm or less is known. (See Patent Document 3).
 また、キャパシタは二次電池と比べて出力密度が高いため、例えば電気自動車の主電源や補助電源、もしくは太陽光発電や風力発電など再生可能エネルギーの電力蓄積デバイスとして有望視されている。しかし、キャパシタのエネルギー密度は低い(すなわち、電気容量が小さい)ため、これらを改善する下記のような試みが提案されている。 In addition, since the output density of the capacitor is higher than that of the secondary battery, the capacitor is regarded as promising as a power storage device for renewable energy such as a main power source and an auxiliary power source of an electric vehicle or solar power generation or wind power generation. However, since the energy density of the capacitor is low (that is, the electric capacity is small), the following attempts to improve these have been proposed.
 例えば、正極と負極とをセパレータを介して、電解液中に浸漬したLiイオンハイブリッドキャパシタが提案されている(特許文献4参照)。ここで、正極は活物質として非多孔性炭を含み、負極は活物質としてLiイオンを可逆的に吸蔵・脱離可能な炭素(C)材料を含み、電解液はLi塩を含む非プロトン性の有機溶媒である。 For example, a Li ion hybrid capacitor in which a positive electrode and a negative electrode are immersed in an electrolytic solution via a separator has been proposed (see Patent Document 4). Here, the positive electrode contains non-porous charcoal as an active material, the negative electrode contains a carbon (C) material capable of reversibly occluding and desorbing Li ions as an active material, and the electrolyte solution is aprotic containing a Li salt. It is an organic solvent.
 また、Liイオンハイブリッドキャパシタにおいて、特に負極活物質が炭素質多孔性粉末であるものが知られている(特許文献5参照)。この炭素質多孔性粉末は、細孔構造を有する平均粒子径12~300nmの多孔質のカーボンブラックが炭素材で結着された集合体である。また、正極活物質としては上記特許文献4に開示された炭素(C)材料と同じであるものが用いられる。 Also, in Li-ion hybrid capacitors, it is particularly known that the negative electrode active material is a carbonaceous porous powder (see Patent Document 5). This carbonaceous porous powder is an aggregate in which porous carbon black having an average particle diameter of 12 to 300 nm having a pore structure is bound with a carbon material. As the positive electrode active material, the same material as the carbon (C) material disclosed in Patent Document 4 is used.
日本国特開昭63-51052号公報Japanese Unexamined Patent Publication No. 63-51052 日本国特開2006-260886号公報Japanese Unexamined Patent Publication No. 2006-260886 日本国特開平8-321310号公報Japanese Unexamined Patent Publication No. 8-321310 日本国特開2007-294539号公報Japanese Unexamined Patent Publication No. 2007-294539 日本国特開2008-150270号公報Japanese Unexamined Patent Publication No. 2008-150270
 しかしながら、上記特許文献1に開示された二次電池用負極としてのAl-Li系合金は板状であるため、充放電に伴う体積膨張収縮による応力が緩和されない。そのため、負極活物質として機能するAl-Li系合金の剥落が発生し、サイクル寿命が不十分であるという問題点が存在する。 However, since the Al—Li alloy as the negative electrode for a secondary battery disclosed in Patent Document 1 has a plate shape, stress due to volume expansion / contraction due to charge / discharge is not relieved. Therefore, the Al—Li alloy functioning as the negative electrode active material is peeled off, and there is a problem that the cycle life is insufficient.
 また、上記特許文献2に開示されたLiと合金化する空隙を有するSnやSn-Ni合金負極において、その空隙は球状形状を有すると共に互いから独立している。このような構成では、充電に伴う空隙内のLiの体積膨張の影響がSnやSn-Ni合金負極の空隙内壁部に集中するため、負極にクラックが発生しやすく、サイクル寿命が不十分であるという問題点が存在する。さらに、上記特許文献2に開示された製造技術では、細孔を有するAlから負極を形成することができない。 Further, in the Sn or Sn—Ni alloy negative electrode having a void alloyed with Li disclosed in Patent Document 2, the void has a spherical shape and is independent from each other. In such a configuration, the effect of Li volume expansion in the void accompanying charging is concentrated on the void inner wall of the Sn or Sn—Ni alloy negative electrode, so that the negative electrode is likely to crack and the cycle life is insufficient. There is a problem. Furthermore, the manufacturing technique disclosed in Patent Document 2 cannot form a negative electrode from Al having pores.
 また、上記特許文献3に開示された負極においては、集電体自体は多孔質であるものの、負極活物質は多孔質ではない。そのため、負極活物質の体積膨張の影響が十分に緩和されず、サイクル寿命が不十分であるという問題点が存在する。さらに、負極活物質が、LiまたはZnだけからなるため、デンドライトの発生を抑えることができないという問題点も存在する。 In the negative electrode disclosed in Patent Document 3, the current collector itself is porous, but the negative electrode active material is not porous. Therefore, there is a problem that the influence of the volume expansion of the negative electrode active material is not sufficiently mitigated and the cycle life is insufficient. Furthermore, since the negative electrode active material is made of only Li or Zn, there is a problem that dendrite generation cannot be suppressed.
 また、上記特許文献4に開示された負極は活物質として炭素材料を含むため、理論上もCLi以上のLiのドープ量が得られず、大容量を期待できない。さらに、正極はアニオンの吸着のみにより蓄電する機構のために容量が負極よりかなり小さくなり、負極の容量を十分に生かすことができない。 In addition, since the negative electrode disclosed in Patent Document 4 contains a carbon material as an active material, a doping amount of Li equal to or higher than C 6 Li cannot theoretically be obtained, and a large capacity cannot be expected. Furthermore, the capacity of the positive electrode is considerably smaller than that of the negative electrode due to the mechanism of storing electricity only by adsorption of anions, and the capacity of the negative electrode cannot be fully utilized.
 また、上記特許文献4に開示された負極同様に、上記特許文献5に開示された負極も活物質として炭素材料を含むため、理論上もCLi以上のLiのドープ量が得られず、大容量を期待できない。さらに、上記特許文献4に開示された正極同様に、正極はアニオンの吸着のみにより蓄電する機構のために容量が負極よりかなり小さくなり、負極の容量を十分に生かすことができない。 Further, similarly to the negative electrode disclosed in Patent Document 4, the negative electrode disclosed in Patent Document 5 also contains a carbon material as an active material, so theoretically, a doping amount of Li equal to or higher than C 6 Li cannot be obtained. Cannot expect large capacity. Further, like the positive electrode disclosed in Patent Document 4, the positive electrode has a capacity that is considerably smaller than that of the negative electrode due to a mechanism for storing electricity only by adsorption of anions, and the capacity of the negative electrode cannot be fully utilized.
 したがって、本発明の目的は、大きなエネルギー密度(大容量)を確保可能であると共に、サイクル寿命を長くすることができる負極活物質、これを用いた二次電池およびキャパシタ、ならびに蓄電デバイスを提供することである。 Accordingly, an object of the present invention is to provide a negative electrode active material capable of ensuring a large energy density (large capacity) and extending the cycle life, a secondary battery and a capacitor using the same, and an electricity storage device. That is.
 これらの目的を達成するために、本発明の第1発明の一形態は、リチウム含有アルミニウム合金製の箔体から作製される負極活物質であって、上記箔体の少なくとも表層部は三次元網目状骨格を有すると共に多数の細孔を有し、上記表層部の表面開口率が10~80%である負極活物質である。 In order to achieve these objects, one form of the first invention of the present invention is a negative electrode active material produced from a foil body made of a lithium-containing aluminum alloy, and at least the surface layer portion of the foil body has a three-dimensional network. And a large number of pores, and the surface area ratio of the surface layer portion is 10 to 80%.
 本発明の第1発明の他の一形態は、上記負極活物質を有する負極と、正極と、上記負極および上記正極間に配置されるイオン伝導性電解液と、を備えることを特徴とする二次電池である。 Another aspect of the first invention of the present invention includes: a negative electrode having the negative electrode active material; a positive electrode; and an ion conductive electrolyte disposed between the negative electrode and the positive electrode. Next battery.
 本発明の第1発明の他の一形態は、上記負極活物質を有する負極と、正極と、上記負極および上記正極間に配置されるイオン伝導性電解液と、を備えることを特徴とするキャパシタである。 Another aspect of the first invention of the present invention includes a negative electrode having the negative electrode active material, a positive electrode, and an ion conductive electrolyte disposed between the negative electrode and the positive electrode. It is.
 また、これらの目的を達成するために、本発明の第2発明の一形態は、多孔質のアルミニウム合金から作製される二次電池用負極活物質であって、シリコンおよびスズの少なくとも1種を含有する二次電池用負極活物質である。 In order to achieve these objects, one aspect of the second invention of the present invention is a negative electrode active material for a secondary battery produced from a porous aluminum alloy, and includes at least one of silicon and tin. It is the negative electrode active material for secondary batteries to contain.
 上記シリコンと上記スズの含有量がそれぞれ0.05~24原子%であるとともに、上記シリコンと前記スズの含有量の合計が30原子%以下であると好ましい。 It is preferable that the contents of the silicon and the tin are 0.05 to 24 atomic%, respectively, and the total content of the silicon and the tin is 30 atomic% or less.
 上記二次電池用負極活物質は、マグネシウムを0.02~5原子%含有すると好ましい。 The secondary battery negative electrode active material preferably contains 0.02 to 5 atomic% of magnesium.
 本発明の第2発明の他の一形態は、上記二次電池用負極活物質を有する負極と、リチウムを含有しかつリチウムを吸蔵放出可能な正極活物質を有する正極と、上記負極および上記正極間に配置されるイオン伝導性電解液と、を備えることを特徴とする二次電池である。 According to another aspect of the second invention of the present invention, a negative electrode having the negative electrode active material for a secondary battery, a positive electrode having a positive electrode active material containing lithium and capable of occluding and releasing lithium, the negative electrode, and the positive electrode A secondary battery comprising: an ion conductive electrolyte disposed between the two.
 本発明の第2発明の他の一形態は、多孔質のアルミニウム合金から作製されるキャパシタ用負極活物質であって、リチウムと、シリコンおよびスズの少なくとも1種と、を含有するキャパシタ用負極活物質である。 Another aspect of the second invention of the present invention is a negative electrode active material for a capacitor produced from a porous aluminum alloy, the negative electrode active material for a capacitor containing lithium and at least one of silicon and tin. It is a substance.
 上記シリコンと上記スズの含有量がそれぞれ0.05~24原子%であるとともに、上記シリコンと上記スズの含有量の合計が30原子%以下であることが好ましい。 It is preferable that the silicon and tin contents are 0.05 to 24 atomic%, respectively, and the total content of the silicon and tin is 30 atomic% or less.
 上記キャパシタ用負極活物質は、マグネシウムを0.02~5原子%含有すると好ましい。 It is preferable that the negative electrode active material for capacitors contains 0.02 to 5 atomic% of magnesium.
 本発明の第2発明の他の一形態は、上記キャパシタ用負極活物質を有する負極と、正極と、上記負極および上記正極間に配置されるイオン伝導性電解液と、を備えることを特徴とするキャパシタである。 Another aspect of the second invention of the present invention comprises a negative electrode having the negative electrode active material for a capacitor, a positive electrode, and an ion conductive electrolyte disposed between the negative electrode and the positive electrode. Capacitor.
 また、これらの目的を達成するために、本発明の第3発明の一形態は、細孔を有する多孔質のリチウム含有アルミニウム合金から作製される負極活物質であって、上記細孔の開口径が5μm以下(ただし、ゼロは含まない)であり、上記細孔の長さ/上記細孔の開口径比が10以上であることを特徴とする負極活物質である。 In order to achieve these objects, an aspect of the third invention of the present invention is a negative electrode active material produced from a porous lithium-containing aluminum alloy having pores, wherein the pore opening diameter is Is 5 μm or less (however, zero is not included), and the ratio of the length of the pores / the opening diameter ratio of the pores is 10 or more.
 上記細孔の開口径が0.1~5μmであり、上記細孔の長さ/上記細孔の開口径比が10~100であると好ましい。 The opening diameter of the pores is preferably 0.1 to 5 μm, and the ratio of the length of the pores / the opening diameter of the pores is preferably 10 to 100.
 本発明の第3発明の他の一形態は、上記負極活物質を有する負極と、正極と、上記負極および上記正極間に配置されるイオン伝導性電解液と、を備えることを特徴とする二次電池である。 Another aspect of the third invention of the present invention includes a negative electrode having the negative electrode active material, a positive electrode, and an ion conductive electrolyte solution disposed between the negative electrode and the positive electrode. Next battery.
 本発明の第3発明の他の一形態は、上記負極活物質を有する負極と、正極と、上記負極および上記正極間に配置されるイオン伝導性電解液と、を備えることを特徴とするキャパシタである。 Another aspect of the third invention of the present invention is a capacitor comprising: a negative electrode having the negative electrode active material; a positive electrode; and an ion conductive electrolyte disposed between the negative electrode and the positive electrode. It is.
 また、これらの目的を達成するために、本発明の第4発明の一形態は、多孔質のリチウム含有アルミニウム合金から作製された負極活物質を有する負極と、活性炭を含むグラファイト系正極活物質を有する正極と、上記負極および上記正極間に配置されるイオン伝導性電解液と、を備えることを特徴とする蓄電デバイスである。 In order to achieve these objects, an aspect of the fourth invention of the present invention is that a negative electrode having a negative electrode active material made from a porous lithium-containing aluminum alloy, and a graphite-based positive electrode active material containing activated carbon. And an ion conductive electrolyte solution disposed between the negative electrode and the positive electrode.
 以上のように、本発明の第1発明によれば、負極活物質がリチウム含有アルミニウム合金製の箔体から作製され、前記箔体の少なくとも表層部は三次元網目状骨格を有すると共に多数の細孔を有し、前記表層部の表面開口率が10~80%であるため、大容量化とサイクル寿命の長寿命化を同時に満足可能な負極活物質、これを用いた二次電池およびキャパシタを提供することができる。 As described above, according to the first invention of the present invention, the negative electrode active material is prepared from a foil body made of a lithium-containing aluminum alloy, and at least the surface layer portion of the foil body has a three-dimensional network skeleton and many fine particles. Since the surface area ratio of the surface layer portion is 10 to 80% with holes, a negative electrode active material that can simultaneously satisfy a large capacity and a long cycle life, and a secondary battery and a capacitor using the same Can be provided.
 また、本発明の第2発明によれば、二次電池用負極活物質が多孔質のアルミニウム合金から作製され、シリコンおよびスズの少なくとも1種を含有するため、サイクル寿命を低下させることなく、大容量を確保可能な負極活物質およびこれを用いた二次電池を提供することができる。 Further, according to the second invention of the present invention, since the negative electrode active material for a secondary battery is made of a porous aluminum alloy and contains at least one of silicon and tin, the cycle life is not reduced. A negative electrode active material capable of securing a capacity and a secondary battery using the same can be provided.
 また、本発明の第2発明によれば、キャパシタ用負極活物質が多孔質のアルミニウム合金から作製され、リチウムと、シリコンおよびスズの少なくとも1種と、を含有するため、サイクル寿命を低下させることなく、大容量を確保可能な負極活物質およびこれを用いたキャパシタを提供することができる。 According to the second invention of the present invention, since the negative electrode active material for a capacitor is made of a porous aluminum alloy and contains lithium and at least one of silicon and tin, the cycle life is reduced. In addition, a negative electrode active material capable of securing a large capacity and a capacitor using the same can be provided.
 また、本発明の第3発明によれば、負極活物質が細孔を有する多孔質のリチウム含有アルミニウム合金から作製され、前記細孔の開口径が5μm以下(ただし、ゼロは含まない)であり、前記細孔の長さ/前記細孔の開口径比が10以上であるため、大容量化とサイクル寿命の長寿命化を同時に満足可能な負極活物質、これを用いた二次電池およびキャパシタを提供することができる。 According to the third aspect of the present invention, the negative electrode active material is made of a porous lithium-containing aluminum alloy having pores, and the opening diameter of the pores is 5 μm or less (however, it does not include zero). A negative electrode active material capable of satisfying both a large capacity and a long cycle life at the same time, since the pore length / opening diameter ratio is 10 or more, and a secondary battery and a capacitor using the same Can be provided.
 また、本発明の第4発明によれば、蓄電デバイスが多孔質のリチウム含有アルミニウム合金から作製された負極活物質を有する負極と、活性炭を含むグラファイト系正極活物質を有する正極と、前記負極および前記正極間に配置されるイオン伝導性電解液と、を備えるため、サイクル寿命を低下させることなく、大きなエネルギー密度(大容量)を確保可能な蓄電デバイスを提供することができる。 According to the fourth invention of the present invention, the electricity storage device includes a negative electrode having a negative electrode active material prepared from a porous lithium-containing aluminum alloy, a positive electrode having a graphite-based positive electrode active material containing activated carbon, the negative electrode, Therefore, it is possible to provide an electricity storage device that can ensure a large energy density (large capacity) without reducing the cycle life.
本発明の第1発明に係る負極活物質の一実施形態の合成方法を説明するための模式図である。It is a schematic diagram for demonstrating the synthesis | combining method of one Embodiment of the negative electrode active material which concerns on 1st invention of this invention. 図1に示される合成方法により形成した負極活物質の一部拡大模式図である。FIG. 2 is a partially enlarged schematic view of a negative electrode active material formed by the synthesis method shown in FIG. 1. 矢印Aの方向から走査型電子顕微鏡により観察された、図2に示される負極活物質の表層部の表面状態を示す写真に基づく参考図である。FIG. 3 is a reference diagram based on a photograph showing a surface state of a surface layer portion of the negative electrode active material shown in FIG. 走査型電子顕微鏡により観察された、図2に示される負極活物質のB-B断面の断面状態を示す写真に基づく参考図である。FIG. 3 is a reference diagram based on a photograph showing a cross-sectional state of the BB cross section of the negative electrode active material shown in FIG. 2 observed with a scanning electron microscope. 図2に示される負極活物質の表層部の表面開口率の定義を説明するための説明図である。It is explanatory drawing for demonstrating the definition of the surface aperture ratio of the surface layer part of the negative electrode active material shown by FIG. 本発明の第1発明に係る二次電池の一実施形態を説明するための模式図である。It is a schematic diagram for demonstrating one Embodiment of the secondary battery which concerns on 1st invention of this invention. 本発明の第1発明に係るキャパシタの一実施形態を説明するための模式図である。It is a mimetic diagram for explaining one embodiment of a capacitor concerning the 1st invention of the present invention. 本発明の第2発明に係る二次電池の一実施形態を説明するための模式図である。It is a schematic diagram for demonstrating one Embodiment of the secondary battery which concerns on 2nd invention of this invention. 本発明の第2発明に係るキャパシタの一実施形態を説明するための模式図である。It is a mimetic diagram for explaining one embodiment of a capacitor concerning the 2nd invention of the present invention. 本発明の第3発明に係る負極活物質の一実施形態の合成方法を説明するための模式図である。It is a schematic diagram for demonstrating the synthesis | combining method of one Embodiment of the negative electrode active material which concerns on 3rd invention of this invention. 本発明の第3発明に係る二次電池の一実施形態を説明するための模式図である。It is a schematic diagram for demonstrating one Embodiment of the secondary battery which concerns on 3rd invention of this invention. 本発明の第3発明に係るキャパシタの一実施形態を説明するための模式図である。It is a mimetic diagram for explaining one embodiment of a capacitor concerning the 3rd invention of the present invention. 本発明の第4発明に係る蓄電デバイスの一実施形態を説明するための模式図である。It is a schematic diagram for demonstrating one Embodiment of the electrical storage device which concerns on the 4th invention of this invention.
 以下、本発明のそれぞれの形態について、添付図面を参照しながら説明する。 Hereinafter, each embodiment of the present invention will be described with reference to the accompanying drawings.
[第1発明]
 以下、本発明の第1発明について、図1~7を参照しながら説明する。
[First invention]
The first invention of the present invention will be described below with reference to FIGS.
 (実施形態1)
 図1は、第1発明の実施形態1に係る負極活物質の合成方法の一形態を説明するための模式図である。
(Embodiment 1)
FIG. 1 is a schematic diagram for explaining one embodiment of a method for synthesizing a negative electrode active material according to Embodiment 1 of the first invention.
 図1において、符号1は容器、符号2は負極側に接続されたアルミニウム箔、符号3は正極側に接続されたリチウム板、符号4は容器1に注がれた電解液を示す。 1, reference numeral 1 denotes a container, reference numeral 2 denotes an aluminum foil connected to the negative electrode side, reference numeral 3 denotes a lithium plate connected to the positive electrode side, and reference numeral 4 denotes an electrolytic solution poured into the container 1.
(アルミニウム箔2の前処理)
 アルミニウム箔2は、下記の前処理条件により予め準備される。
 電解液としては、10質量%塩酸および0.1質量%硫酸を含む水溶液が用いられる。純度99.9%、厚さ110μmのアルミニウム箔を、38℃に制御された上記電解液中で、60Hz、電流密度180mA/cmで500秒間のエッチング後、イオン交換水で洗浄した。
(Pretreatment of aluminum foil 2)
The aluminum foil 2 is prepared in advance under the following pretreatment conditions.
As the electrolytic solution, an aqueous solution containing 10% by mass hydrochloric acid and 0.1% by mass sulfuric acid is used. An aluminum foil having a purity of 99.9% and a thickness of 110 μm was etched with ion-exchanged water after etching for 500 seconds at 60 Hz and a current density of 180 mA / cm 2 in the above-described electrolytic solution controlled at 38 ° C.
 図1に示されるように、上記予め前処理されたアルミニウム箔2およびリチウム板3を、電解液4内に浸漬し、負極側、正極側にそれぞれ接続して対峙させる。尚、電解液4は、電解質(LiPF)および有機溶媒(エチレンカーボネート(EC):ジエチルカーボネート(DEC)=1:1)からなる、濃度1mol/lの混合溶液である。この状態でアルミニウム箔2の電位を25mV(対Li/Li)に制御し、50℃で電解して合金化することにより、下記表1に示される試験No.1A~9Aのリチウム含有アルミニウム合金製箔体からなる負極活物質12(図2~図7参照)が得られる。 As shown in FIG. 1, the pretreated aluminum foil 2 and the lithium plate 3 are immersed in an electrolytic solution 4 and connected to the negative electrode side and the positive electrode side to face each other. In addition, the electrolyte solution 4 is a mixed solution having a concentration of 1 mol / l composed of an electrolyte (LiPF 6 ) and an organic solvent (ethylene carbonate (EC): diethyl carbonate (DEC) = 1: 1). In this state, the potential of the aluminum foil 2 was controlled to 25 mV (vs. Li / Li + ), and electrolysis was performed at 50 ° C. to form an alloy. A negative electrode active material 12 (see FIGS. 2 to 7) made of a 1A to 9A lithium-containing aluminum alloy foil is obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図2は、図1に示される合成方法により形成された負極活物質12の一部拡大模式図である。図2では、負極活物質12が、表層部12aおよび母体部12bからなることが示されている。この表層部12aは、三次元網目状骨格を有すると共に、多数の細孔を有する構造である(所謂、スポンジ状構造を呈する)。この細孔の開口径Dは、0.5μm~2μmである。また、ここで言う細孔は、上記アルミニウム箔2の前処理条件等により発生する多少の穴を含む総称である。 FIG. 2 is a partially enlarged schematic view of the negative electrode active material 12 formed by the synthesis method shown in FIG. FIG. 2 shows that the negative electrode active material 12 includes a surface layer portion 12a and a base portion 12b. The surface layer portion 12a has a three-dimensional network skeleton and a structure having a large number of pores (presents a so-called sponge-like structure). The opening diameter D of these pores is 0.5 μm to 2 μm. Moreover, the pore mentioned here is a general term including some holes generated due to the pretreatment conditions and the like of the aluminum foil 2.
 図3は、図2に示される負極活物質12の表層部12aの表面を、走査型電子顕微鏡により矢印Aの方向から観察した表面状態を示す写真に基づく参考図である。 FIG. 3 is a reference diagram based on a photograph showing a surface state of the surface of the surface layer portion 12a of the negative electrode active material 12 shown in FIG. 2 observed from the direction of arrow A with a scanning electron microscope.
 図4は、図2に示される負極活物質12のB-B断面を、走査型電子顕微鏡により観察した断面状態を示す写真に基づく参考図である。図4より、表層部12aの平均厚さは、約5μmである。尚、本願発明の目的に照らすと、この表層部12aの平均厚さは、1μm~50μmであると好ましい。また、図2~図4に関しては、負極活物質12の表面(一面側)の表層部12aがスポンジ状構造を有することを説明したが、負極活物質12の裏面(他面側)にもスポンジ状構造の表層部12aが存在する。 FIG. 4 is a reference diagram based on a photograph showing a cross-sectional state of the negative electrode active material 12 shown in FIG. 2 taken along the line BB with a scanning electron microscope. From FIG. 4, the average thickness of the surface layer portion 12a is about 5 μm. In light of the object of the present invention, the average thickness of the surface layer portion 12a is preferably 1 μm to 50 μm. 2 to 4, it has been described that the surface layer portion 12a on the surface (one surface side) of the negative electrode active material 12 has a sponge-like structure, but the back surface (other surface side) of the negative electrode active material 12 is also sponged. There is a surface layer portion 12a having a shape structure.
 上述したように、表層部12aは多数の細孔を有するが、この細孔の開口径Dは0.1~5μmであると好ましい。これは、細孔の開口径Dが5μm超では負極活物質12の表面積が減少して容量が減少し、0.1μm未満では後述する電解液の上記細孔内への浸入が困難になるためである。ただし、細孔の断面形状は、円形に限定されない。 As described above, the surface layer portion 12a has a large number of pores, and the opening diameter D of these pores is preferably 0.1 to 5 μm. This is because when the opening diameter D of the pores exceeds 5 μm, the surface area of the negative electrode active material 12 decreases and the capacity decreases, and when it is less than 0.1 μm, it becomes difficult for the electrolyte solution described later to enter the pores. It is. However, the cross-sectional shape of the pores is not limited to a circle.
 また、表層部12aの表面および断面の性状を、上述した走査型電子顕微鏡により観察し、表面開口率を測定した。この開口率の定義を、図5に示す。この定義において、細孔の開口径Dは平均径であり、細孔間の距離Lは平均長さである。上記測定結果より、表層部12aの表面開口率は、10~80%が好ましいことが判明した(上記表1を参照)。二次電池の充電時には、負極活物質12内のリチウム含有量が増加することにより体積膨張が発生するが、表面開口率が10%未満では、この体積膨張に起因した応力の緩和が不十分であると考えられる。また、表面開口率が80%超では、負極活物質12としての機械的強度が不十分であると考えられる(詳細は、後記表2、表3を参照)。 Further, the surface and cross-sectional properties of the surface layer portion 12a were observed with the scanning electron microscope described above, and the surface aperture ratio was measured. The definition of the aperture ratio is shown in FIG. In this definition, the opening diameter D of the pores is an average diameter, and the distance L between the pores is an average length. From the above measurement results, it was found that the surface area ratio of the surface layer portion 12a is preferably 10 to 80% (see Table 1 above). When the secondary battery is charged, volume expansion occurs due to an increase in the lithium content in the negative electrode active material 12. However, when the surface opening ratio is less than 10%, stress relaxation due to the volume expansion is insufficient. It is believed that there is. Further, when the surface opening ratio exceeds 80%, it is considered that the mechanical strength as the negative electrode active material 12 is insufficient (refer to Tables 2 and 3 below for details).
 上記表1に示される試験No.1A~9Aの負極活物質12のいずれが二次電池用およびキャパシタ用に適するかは、後記実施形態2、3で詳述する。なお、本実施の形態においては、厚さ110μmのアルミニウム箔2を例に説明したが、必ずしもこれに限定されるものではなく、厚さが約5μm~200μmのアルミニウム箔を用いることも可能である。また、本実施形態においては、アルミニウム合金が実質的にAlとLiとからなる例について説明したが、必ずしもこれに限定されない。Li以外にMg、Zn等の元素を含有したアルミニウム合金が用いられてもよい。なお、第1発明におけるアルミニウム合金は、不可避不純物として、Si、Fe、Cu、Mn、Mg、Zn、Ti等を0.05原子(at)%以下含有しても良い。また、本実施形態においては、負極活物質12を合成する条件として、純度99.9%のアルミニウム箔2を負極側に接続すると共に電位を25mV(対Li/Li)に制御して、50℃の電解液中で電解して合金化する例を説明したが、必ずしもこれに限定されない。アルミニウムは電解によってLiと合金化することができる。 Test No. shown in Table 1 above. Which of the negative electrode active materials 12 of 1A to 9A is suitable for a secondary battery and a capacitor will be described in detail in Embodiments 2 and 3 below. In the present embodiment, the aluminum foil 2 having a thickness of 110 μm has been described as an example. However, the present invention is not necessarily limited thereto, and an aluminum foil having a thickness of about 5 μm to 200 μm can be used. . In the present embodiment, the example in which the aluminum alloy is substantially composed of Al and Li has been described, but the present invention is not necessarily limited thereto. Aluminum alloys containing elements such as Mg and Zn other than Li may be used. The aluminum alloy in the first invention may contain 0.05 atom (at)% or less of Si, Fe, Cu, Mn, Mg, Zn, Ti, etc. as inevitable impurities. In the present embodiment, as a condition for synthesizing the negative electrode active material 12, an aluminum foil 2 having a purity of 99.9% is connected to the negative electrode side, and the potential is controlled to 25 mV (vs. Li / Li + ). Although an example of electrolysis in an electrolytic solution at 0 ° C. has been described, the present invention is not necessarily limited thereto. Aluminum can be alloyed with Li by electrolysis.
 (実施形態2)
 図6は、第1発明の実施形態2に係る二次電池の一形態を説明するための模式図である。
(Embodiment 2)
FIG. 6 is a schematic diagram for explaining one form of a secondary battery according to Embodiment 2 of the first invention.
 図6において、符号10は容器、符号12は上記の実施形態1と同様の合成により得られた負極活物質、符号13はアルミニウム製の集電体、符号14は正極活物質を示す。また、符号15は上記の実施形態1における合成で使用されたものと同じ電解液4が含浸されたセパレータを示す。セパレータ15は、負極活物質12と、集電体13上に塗布乾燥されることにより設けられたMnOを有する正極活物質14と、に挟まれた構成である。上述した実施形態1の上記表1に示される試験No.1A~9Aの負極活物質12に合わせて、このように構成された二次電池を試験No.1A~9Aとし、下記表2に示す。 In FIG. 6, reference numeral 10 denotes a container, reference numeral 12 denotes a negative electrode active material obtained by the same synthesis as in the first embodiment, reference numeral 13 denotes an aluminum current collector, and reference numeral 14 denotes a positive electrode active material. Reference numeral 15 denotes a separator impregnated with the same electrolytic solution 4 used in the synthesis in the first embodiment. The separator 15 is sandwiched between the negative electrode active material 12 and the positive electrode active material 14 having MnO 2 provided by being applied and dried on the current collector 13. Test No. 1 shown in Table 1 of Embodiment 1 described above. In accordance with the negative electrode active material 12 of 1A to 9A, the secondary battery configured in this way was tested. Table 1 below shows 1A to 9A.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図6に示されるように構成された二次電池の電圧を計測した。次に、これらの二次電池のサイクル試験(放電深度20%)を行い、放電終止電圧が急激に低下しはじめる時点でのサイクル数をサイクル寿命とした。また、それぞれの負極活物質12の表面を観察し、デンドライト生成の有無を確認した。その結果を上記表2に示す。 The voltage of the secondary battery configured as shown in FIG. 6 was measured. Next, a cycle test (discharge depth: 20%) of these secondary batteries was performed, and the cycle number at the time when the discharge end voltage began to decrease rapidly was defined as the cycle life. Moreover, the surface of each negative electrode active material 12 was observed, and the presence or absence of dendrite production | generation was confirmed. The results are shown in Table 2 above.
 上記表2に示されるように、試験No.1A~9Aのいずれにおいても、デンドライトの生成は認められなかった。また、試験No.1A~7Aのサイクル寿命は680~1500であり、目標とする所定値(600以上)を満足した。これは、試験No.1A~7Aの負極活物質12の表層部12aは三次元網目状骨格および多数の細孔を有する(スポンジ状構造を有する)ため、充電時の体積膨張に起因した応力の緩和が図られ(影響が吸収された)たためであると考えられる。一方、試験No.8A、9Aのサイクル寿命はそれぞれ120、130であり、所定値を下回った。これは、試験No.8Aのように表層部12aの表面開口率が10%未満となると、表層部12aがもはやスポンジ状構造を有さなくなり、充電時の体積膨張に起因した応力の緩和が図れなくなった(影響が吸収できなくなった)ためと考えられる。また、試験No.9Aのように表面開口率が80%超では、負極活物質12の機械的強度が不十分となり、所定のサイクル寿命を満足できなくなったためと思われる。したがって、表面開口率は、10~80%が好ましい。 As shown in Table 2 above, test no. No dendrites were observed in any of 1A to 9A. In addition, Test No. The cycle life of 1A to 7A was 680 to 1500, and the target predetermined value (600 or more) was satisfied. This is the result of test no. Since the surface layer portion 12a of the negative electrode active material 12 of 1A to 7A has a three-dimensional network skeleton and a large number of pores (having a sponge-like structure), stress due to volume expansion at the time of charging can be reduced (effect) It is thought that this is because of On the other hand, test no. The cycle lives of 8A and 9A were 120 and 130, respectively, which were below the predetermined value. This is the result of test no. When the surface area ratio of the surface layer portion 12a is less than 10% as in 8A, the surface layer portion 12a no longer has a sponge-like structure, and stress relaxation due to volume expansion during charging cannot be achieved (the effect is absorbed). This is probably because it was not possible. In addition, Test No. When the surface opening ratio is more than 80% as in 9A, it is considered that the mechanical strength of the negative electrode active material 12 becomes insufficient and the predetermined cycle life cannot be satisfied. Therefore, the surface aperture ratio is preferably 10 to 80%.
 これらの結果から目標とする所定の性能を満足する二次電池は、試験No.1A~7Aである。したがって、この二次電池に適合する負極活物質12は、上記表1に示される試験No.1A~7Aである。このように、上述した実施形態1の上記表1に示される試験No.1A~7Aの負極活物質12は、二次電池用の負極活物質として、デンドライトの生成がなく、かつ、サイクル寿命の長寿命化に顕著な効果を発揮することが分かる。 Based on these results, the secondary battery that satisfies the target performance is the test no. 1A to 7A. Therefore, the negative electrode active material 12 suitable for this secondary battery has a test No. shown in Table 1 above. 1A to 7A. Thus, the test No. shown in Table 1 of Embodiment 1 described above. It can be seen that the negative electrode active material 12 of 1A to 7A does not generate dendrite as a negative electrode active material for a secondary battery, and exhibits a remarkable effect in extending the cycle life.
 (実施形態3)
 図7は、第1発明の実施形態3に係るキャパシタの一形態を説明するための模式図である。
(Embodiment 3)
FIG. 7 is a schematic diagram for explaining one form of the capacitor according to the third embodiment of the first invention.
 図7において、符号20はアルミニウム製の集電体、符号21は正極活物質、符号22は電解液が含浸されたセパレータを示す。本実施形態において、実施形態1、2の構成と同一の要素に関しては同一番号を付し、詳細な説明は省略する。 7, reference numeral 20 denotes an aluminum current collector, reference numeral 21 denotes a positive electrode active material, and reference numeral 22 denotes a separator impregnated with an electrolytic solution. In the present embodiment, the same elements as those in the first and second embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
 セパレータ22は、負極活物質12と、集電体20上に塗布乾燥されることにより設けられた活性炭(BET比表面積:800~1300m/g)を有した正極活物質21と、に挟まれた構成である。セパレータ22に含浸されている電解液は、電解質(LiBF)と有機溶媒{エチレンカーボネート(EC):エチルメチルカーボネート(EMC)=1:1の混合溶液}からなる濃度1.5mol/lの電解液である。上記表1に示される試験No.1A~9Aの負極活物質12に合わせて、このようにして構成されたキャパシタを試験No.1A~9Aとし、下記表3に示す。さらに、比較のために、人造黒鉛(BET比表面積50m/g)が負極活物質12として用いられるキャパシタを、試験No.10Aとした。 The separator 22 is sandwiched between the negative electrode active material 12 and the positive electrode active material 21 having activated carbon (BET specific surface area: 800 to 1300 m 2 / g) provided by being applied and dried on the current collector 20. It is a configuration. The electrolytic solution impregnated in the separator 22 is an electrolyte having a concentration of 1.5 mol / l composed of an electrolyte (LiBF 4 ) and an organic solvent {mixed solution of ethylene carbonate (EC): ethyl methyl carbonate (EMC) = 1: 1}. It is a liquid. Test No. shown in Table 1 above. The capacitors thus configured according to the negative electrode active materials 12 of 1A to 9A were tested. Table 1 below shows 1A to 9A. Further, for comparison, a capacitor in which artificial graphite (BET specific surface area 50 m 2 / g) is used as the negative electrode active material 12 is referred to as Test No. 10A.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 これらのキャパシタを、25℃の恒温槽内で定電流かつ定電圧で所定電圧まで充電し、定電流で1.0Vまで放電させ、静電容量が急激に低下しはじめる時点でのサイクル数をサイクル寿命とした。また、負極活物質12の表面を観察しデンドライト生成の有無を確認した。 These capacitors are charged to a predetermined voltage with a constant current and a constant voltage in a constant temperature bath at 25 ° C., discharged to 1.0 V with a constant current, and the number of cycles at the time when the capacitance starts to rapidly decrease is cycled. The life is assumed. Further, the surface of the negative electrode active material 12 was observed to confirm whether dendrite was generated.
 上記表3に示されるように、試験No.1A~10Aのいずれにおいても、デンドライトの生成は認められなかった。また、試験No.1A~7Aのサイクル寿命は、600~1200と目標とする所定値(600以上)を満足したものの、試験No.8A、9Aのサイクル寿命はそれぞれ200、100であり、所定値を下回った。これは、上記実施形態2で説明したのと同じ理由によると考えられる。また、試験No.10Aのサイクル寿命は500であり、目標とする所定値(600以上)を下回った。これは、充放電時のLiイオンの出入りに伴う体積収縮・膨張によって、負極活物質として人造黒鉛が用いられた負極の層間剥離が引き起こされてしまったためと考えられる。 As shown in Table 3 above, test no. No dendrite formation was observed in any of 1A to 10A. In addition, Test No. Although the cycle life of 1A to 7A satisfied the target value (600 or more) of 600 to 1200, test no. The cycle lives of 8A and 9A were 200 and 100, respectively, which were below the predetermined value. This is considered to be due to the same reason as described in the second embodiment. In addition, Test No. The cycle life of 10A was 500, which was below the target predetermined value (600 or more). This is thought to be because delamination of the negative electrode using artificial graphite as the negative electrode active material was caused by volume shrinkage / expansion accompanying the entry and exit of Li ions during charge and discharge.
 また、図7に示されるように構成されたキャパシタを、25℃の恒温槽内で、定電流で1.0Vまで放電させた。そして、放電時の電圧Vと電流Iの積を時間積分した放電エネルギーが、1/2CVに等しいものとして、負極活物質12の単位重量当たりの静電容量C(F/g)を求めた。その結果を上記表3に示す。 Further, the capacitor configured as shown in FIG. 7 was discharged to 1.0 V with a constant current in a thermostat at 25 ° C. Then, the product of the voltage V and current I at the time of discharging time integrating the discharge energy, as equal to 1 / 2CV 2, was determined the capacitance per unit weight of the negative electrode active material 12 C (F / g) . The results are shown in Table 3 above.
 上記表3に示されるように、試験No.1A~10Aのいずれとも、目標とする所定の単位重量当たりの静電容量C(300F/g以上)を満足した。 As shown in Table 3 above, test no. All of 1A to 10A satisfied a target capacitance C per unit weight (300 F / g or more).
 これらの結果から、目標とする所定の性能を満足するキャパシタの構成は、試験No.1A~7Aである。すなわち、上述した実施形態2の二次電池の結果同様に、キャパシタに適合する負極活物質12は試験No.1A~7Aである。このように、上述した実施形態1の上記表1に示される試験No.1A~7Aの負極活物質12は、キャパシタ用の負極活物質として、大容量化並びにデンドライトの生成がなく、かつ、サイクル寿命の長寿命化に顕著な効果を発揮することが分かる。負極活物質12中のLiの含有量は、1at%~70at%が好ましい。これは、Liの含有量が1at%未満では、エネルギー密度が小さくなり、Liの含有量が70at%を超えると上述したようにデンドライトが発生しやすくなるためである。なお、本実施形態においては、より大きなエネルギー密度(すなわち、目標とする所定の単位重量当たりの静電容量Cが300F/g以上)を前提としているため、負極活物質12中のLiの含有量が10at%~70at%であるとより好ましい。 From these results, the configuration of the capacitor that satisfies the target predetermined performance was determined as Test No. 1A to 7A. That is, similarly to the result of the secondary battery of the second embodiment described above, the negative electrode active material 12 suitable for the capacitor has a test no. 1A to 7A. Thus, the test No. shown in Table 1 of Embodiment 1 described above. It can be seen that the negative electrode active material 12 of 1A to 7A is a negative electrode active material for a capacitor, has no increase in capacity and generation of dendrites, and exhibits a remarkable effect in extending the cycle life. The content of Li in the negative electrode active material 12 is preferably 1 at% to 70 at%. This is because when the Li content is less than 1 at%, the energy density decreases, and when the Li content exceeds 70 at%, dendrites are likely to occur as described above. In the present embodiment, since it is premised on a larger energy density (that is, a target electrostatic capacity C per predetermined unit weight is 300 F / g or more), the Li content in the negative electrode active material 12 Is more preferably 10 at% to 70 at%.
 なお、第1発明の実施形態2、3においては、負極活物質12に対して集電体が別途設けられない構成について説明したが、必ずしもこれに限定されない。例えば、負極活物質12を銅製の集電体に導電ペーストを介して軽く圧接することにより負極を構成するなど、負極活物質12に対して集電体が別途設けられてもよい。 In Embodiments 2 and 3 of the first invention, a configuration in which a current collector is not separately provided for the negative electrode active material 12 has been described. However, the present invention is not necessarily limited thereto. For example, a current collector may be separately provided with respect to the negative electrode active material 12, such as forming a negative electrode by lightly pressing the negative electrode active material 12 to a copper current collector via a conductive paste.
[第2発明]
 以下、本発明の第2発明について、図8、9を参照しながら説明する。
[Second invention]
The second invention of the present invention will be described below with reference to FIGS.
(二次電池用負極活物質およびキャパシタ用負極活物質の調製)
(アルミニウム箔の前処理)
 1)電解液としては、5.5質量%塩酸、1.5質量%リン酸と0.5質量%硝酸、2.0質量%塩化アルミニウムを含む水溶液が用いられる。所定組成(Liを含まない、詳細は下記表4、表5参照)を有する、厚さ110μmのアルミニウム箔を、18℃に制御された上記電解液中で、10Hz、電流密度120mA/cmの三角波交流電流で10秒~27分エッチング後、イオン交換水で洗浄した。
 2)次に、これらのアルミニウム箔を、5.0質量%硫酸水溶液中に、60℃で2分間~3分間浸漬した後、イオン交換水で洗浄した。
 これらの工程により、下記表4の試験No.1B~5Bおよび7B~9Bに示されるような、リチウム(Li)を含有させる必要のない負極活物質32(図8参照)が完成する。この負極活物質32には、下記に詳細を説明されるような多数の細孔を有する。
(Preparation of negative electrode active material for secondary battery and negative electrode active material for capacitor)
(Pretreatment of aluminum foil)
1) As the electrolytic solution, an aqueous solution containing 5.5% by mass hydrochloric acid, 1.5% by mass phosphoric acid, 0.5% by mass nitric acid, and 2.0% by mass aluminum chloride is used. A 110 μm-thick aluminum foil having a predetermined composition (not including Li, see Tables 4 and 5 below for details) is 10 Hz and has a current density of 120 mA / cm 2 in the electrolyte controlled at 18 ° C. After etching with a triangular wave alternating current for 10 seconds to 27 minutes, the substrate was washed with ion-exchanged water.
2) Next, these aluminum foils were immersed in a 5.0% by mass sulfuric acid aqueous solution at 60 ° C. for 2 to 3 minutes, and then washed with ion-exchanged water.
Through these steps, the test Nos. As shown in 1B to 5B and 7B to 9B, the negative electrode active material 32 (see FIG. 8) that does not need to contain lithium (Li) is completed. The negative electrode active material 32 has a large number of pores as described in detail below.
(二次電池用負極活物質およびキャパシタ用負極活物質の合成)
 上記予め前処理されたアルミニウム箔にリチウム(Li)を含有させる場合には、上記予め前処理されたアルミニウム箔およびリチウム板を、電解液内に浸漬し、負極側、正極側にそれぞれ接続して対峙させる。尚、電解液は、電解質(LiPF)および有機溶媒(エチレンカーボネート(EC):ジエチルカーボネート(DEC)=1:1)からなる濃度1mol/lの混合溶液である。この状態で前記アルミニウム箔の電位を25mV(対Li/Li+)に制御して50℃で電解して合金化することにより、下記表4の試験No.6Bに示される二次電池用負極活物質としての負極活物質32(図8参照)および下記表5の試験No.11B~21Bに示されるキャパシタ用負極活物質としての負極活物質32(図9参照)が得られた。これらの合成により得られた負極活物質32は、多数の細孔を有する。また、ここで言う細孔は、上記アルミニウム箔の前処理条件等により発生する多少の穴を含む総称である。細孔の分布状態はほぼ均一であり、上記合成により得られた負極活物質32の表面における細孔が占める面積の割合は10%~80%であると好ましい。この細孔の分布状態には、上記予め前処理されたアルミニウム箔の細孔の分布状態が反映される。また、この細孔を有する多孔質の負極活物質32中のリチウム含有量は、上記合成実験時の電気量から算出される(下記表4、表5参照)。
(Synthesis of secondary battery negative electrode active material and capacitor negative electrode active material)
When lithium (Li) is included in the pre-treated aluminum foil, the pre-treated aluminum foil and lithium plate are immersed in an electrolytic solution and connected to the negative electrode side and the positive electrode side, respectively. Make them confront. The electrolytic solution is a mixed solution having a concentration of 1 mol / l composed of an electrolyte (LiPF 6 ) and an organic solvent (ethylene carbonate (EC): diethyl carbonate (DEC) = 1: 1). In this state, the potential of the aluminum foil was controlled to 25 mV (vs. Li / Li +), and electrolysis was performed at 50 ° C. to form an alloy. The negative electrode active material 32 (see FIG. 8) as the negative electrode active material for the secondary battery shown in FIG. The negative electrode active material 32 (see FIG. 9) as the negative electrode active material for capacitors shown in 11B to 21B was obtained. The negative electrode active material 32 obtained by these syntheses has a large number of pores. Moreover, the pore mentioned here is a general term including some holes generated due to the pretreatment conditions of the aluminum foil. The distribution state of the pores is almost uniform, and the ratio of the area occupied by the pores on the surface of the negative electrode active material 32 obtained by the above synthesis is preferably 10% to 80%. The distribution state of the pores reflects the distribution state of the pores of the aluminum foil previously pretreated. Further, the lithium content in the porous negative electrode active material 32 having pores is calculated from the amount of electricity at the time of the synthesis experiment (see Tables 4 and 5 below).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(負極の形成)
 図8、図9に示されるように、負極活物質32を負極として用いた。
(Formation of negative electrode)
As shown in FIGS. 8 and 9, the negative electrode active material 32 was used as the negative electrode.
(実施形態1)
 図8は、第2発明の実施形態1に係る二次電池の一形態を説明するための模式図である。
(Embodiment 1)
FIG. 8 is a schematic diagram for explaining one form of the secondary battery according to Embodiment 1 of the second invention.
 図8において、符号30は容器、符号33はアルミニウム製の集電体、符号34はリチウムを含有しかつリチウムを吸蔵放出可能な正極活物質としてのLiCoO、符号35は上記二次電池用負極活物質の合成に使用したものと同じ電解液が含浸されたセパレータを示す。セパレータ35は、負極活物質32と集電体33上に塗布乾燥して設けたLiCoO34とに挟まれた構成である。上記表4に示された試験No.1B~9Bの二次電池用の負極活物質32に合わせて、このようにして構成された二次電池を試験No.1B~9Bとし、表6に示す。 In FIG. 8, reference numeral 30 is a container, reference numeral 33 is an aluminum current collector, reference numeral 34 is LiCoO 2 as a positive electrode active material containing lithium and capable of occluding and releasing lithium, and reference numeral 35 is a negative electrode for the secondary battery. The separator impregnated with the same electrolyte used for the synthesis of the active material is shown. The separator 35 is configured to be sandwiched between the negative electrode active material 32 and LiCoO 2 34 provided by applying and drying on the current collector 33. Test No. shown in Table 4 above. The secondary battery constructed in this manner according to the negative electrode active material 32 for secondary batteries 1B to 9B was tested. 1B to 9B and are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 図8に示されるように構成された二次電池の電圧を計測した。次に、これらの二次電池についてサイクル試験(放電深度20%)を行い、容量が初期の80%に低下した時点でのサイクル数を、サイクル寿命とした。また、初期負極容量を求めるとともに、負極活物質32の表面を観察してデンドライト生成の有無を確認した。その結果を上記表6に示す。 The voltage of the secondary battery configured as shown in FIG. 8 was measured. Next, a cycle test (discharge depth 20%) was performed on these secondary batteries, and the cycle number when the capacity was reduced to 80% of the initial value was defined as the cycle life. In addition, the initial negative electrode capacity was determined, and the surface of the negative electrode active material 32 was observed to confirm whether dendrite was generated. The results are shown in Table 6 above.
 上記表6に示されるように、試験No.1B~9Bの電圧は3.5~3.9Vであり、目標とする所定の電圧が発生している。また、試験No.1B~7B、9Bのサイクル寿命は970回~1830回であり、目標とする所定値(600回以上)を満足した。これは、試験No.1B~7B、9Bにおいては、充電時に負極活物質32内のリチウム含有量が増加して体積膨張するが、多孔質構造であるために負極活物質32の内部にわたって影響が吸収、緩和されたためと考えられる。一方、試験No.8Bのサイクル寿命は320回であり、所定値を下回った。これは、試験No.8Bにおいては、マグネシウム(Mg)の含有量が多く、サイクル性が劣化したためと思われる。また、試験No.4B~6Bは、適量のMgを含んでいるため、負極活物質32の機械的強度が向上し、サイクル寿命の点から有利である。 As shown in Table 6 above, test no. The voltages 1B to 9B are 3.5 to 3.9 V, and a predetermined target voltage is generated. In addition, Test No. The cycle life of 1B to 7B and 9B was 970 to 1830 times, and the target predetermined value (600 times or more) was satisfied. This is the result of test no. In 1B to 7B and 9B, the lithium content in the negative electrode active material 32 increases and the volume expands during charging, but the influence is absorbed and alleviated over the negative electrode active material 32 because of the porous structure. Conceivable. On the other hand, test no. The cycle life of 8B was 320 times, which was below the predetermined value. This is the result of test no. In 8B, it is considered that the content of magnesium (Mg) is large and the cycle performance is deteriorated. In addition, Test No. Since 4B to 6B contain an appropriate amount of Mg, the mechanical strength of the negative electrode active material 32 is improved, which is advantageous in terms of cycle life.
 また、上記表6に示されるように、試験No.1B~7Bの初期負極容量は810~1350mAh/gであり、目標とする所定容量(800mAh/g以上)を満足したものの、試験No.8B、9Bの初期負極容量はそれぞれ740、790であり、所定容量を下回った。このように試験No.1B~7Bの初期負極容量が大きくなったのは、リチウムを吸蔵する能力がグラファイトに対してアルミニウムは2.3倍、シリコン(Si)は4.4倍、スズ(Sn)は4.4倍であることに起因していると思われる。なお、シリコンとスズの含有量は、それぞれ0.05~24原子(at)%であると好ましい。また、シリコンとスズの両方が含有される場合には、合計含有量が30原子%以下であると好ましい。これは、シリコンとスズのそれぞれの含有量が0.05原子%未満では、リチウムを吸蔵する効果が小さいためである。また、シリコンまたはスズの含有量がそれぞれ24原子%超の場合や、シリコンとスズの合計含有量が30原子%超の場合は、多孔質状負極活物質の作製が困難であるためである。 Also, as shown in Table 6 above, test no. The initial negative electrode capacities of 1B to 7B are 810 to 1350 mAh / g, which satisfy the target predetermined capacity (800 mAh / g or more). The initial negative electrode capacities of 8B and 9B were 740 and 790, respectively, which were below the predetermined capacity. Thus, test no. The initial negative electrode capacities of 1B to 7B increased because the ability to occlude lithium was 2.3 times that of graphite, 4.4 times that of silicon (Si), and 4.4 times that of tin (Sn). It seems to be caused by being. The contents of silicon and tin are each preferably 0.05 to 24 atoms (at)%. Moreover, when both silicon and tin are contained, the total content is preferably 30 atomic% or less. This is because when the respective contents of silicon and tin are less than 0.05 atomic%, the effect of occluding lithium is small. Moreover, when the content of silicon or tin is more than 24 atomic%, or when the total content of silicon and tin is more than 30 atomic%, it is difficult to produce a porous negative electrode active material.
 また、試験No.1B~9Bでは、デンドライトの生成も認められなかった。以上の結果から、サイクル寿命を低下させることなく、大容量を確保可能な負極活物質およびこれを用いた二次電池を実現する上で、試験No.1B~7Bが適合することが分かる。 Also, test no. In 1B to 9B, no dendrite formation was observed. From the above results, in order to realize a negative electrode active material capable of securing a large capacity without reducing the cycle life and a secondary battery using the negative electrode active material, test no. It can be seen that 1B to 7B are suitable.
(実施形態2)
 図9は、本発明に係るキャパシタの一実施形態を説明するための模式図である。
(Embodiment 2)
FIG. 9 is a schematic diagram for explaining one embodiment of a capacitor according to the present invention.
 図9において、符号40はアルミニウム製の集電体、符号41は正極活物質、符号42は電解液が含浸されたセパレータを示す。本実施形態において、第2発明の実施形態1の構成と同一の要素に関しては同一番号を付し、詳細な説明は省略する。 9, reference numeral 40 denotes an aluminum current collector, reference numeral 41 denotes a positive electrode active material, and reference numeral 42 denotes a separator impregnated with an electrolytic solution. In this embodiment, the same elements as those of the first embodiment of the second invention are denoted by the same reference numerals, and detailed description thereof is omitted.
 セパレータ42は、上記キャパシタ用の負極活物質32と、集電体40上に塗布乾燥させることにより設けられた活性炭(BET比表面積:800~1300m/g)を有した正極活物質41と、に挟まれた構成を有する。セパレータ22に含浸されている電解液は、電解質(LiBF)と有機溶媒{エチレンカーボネート(EC):エチルメチルカーボネート(EMC)=1:1の混合溶液}からなる濃度1.5mol/lの電解液である。表5に示される試験No.11B~21Bのキャパシタ用の負極活物質32に合わせて、このようにして構成されたキャパシタを試験No.11B~21Bとし、表7に示す。 The separator 42 includes the negative electrode active material 32 for the capacitor, a positive electrode active material 41 having activated carbon (BET specific surface area: 800 to 1300 m 2 / g) provided by applying and drying on the current collector 40, It has a configuration sandwiched between. The electrolytic solution impregnated in the separator 22 is an electrolyte having a concentration of 1.5 mol / l composed of an electrolyte (LiBF 4 ) and an organic solvent {mixed solution of ethylene carbonate (EC): ethyl methyl carbonate (EMC) = 1: 1}. It is a liquid. Test No. shown in Table 5 The capacitors thus configured according to the negative electrode active material 32 for capacitors 11B to 21B were tested. 11B-21B and shown in Table 7.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 図9に示されるように構成されたキャパシタの電圧を計測した。また、図9に示されるように構成されたキャパシタを、25℃の恒温槽内で、定電流で1.0Vまで放電させた。そして、放電時の電圧Vと電流Iの積を時間積分した放電エネルギーが1/2CVに等しいとして、負極活物質12の単位重量当たりの静電容量C(F/g)を求めた。その結果を上記表7に示す。 The voltage of the capacitor configured as shown in FIG. 9 was measured. Further, the capacitor configured as shown in FIG. 9 was discharged to 1.0 V with a constant current in a thermostat at 25 ° C. Then, as a discharge energy product obtained by integrating the time of the voltage V and current I at the time of discharge is equal to 1 / 2CV 2, was determined the capacitance per unit weight of the negative electrode active material 12 C (F / g). The results are shown in Table 7 above.
 上記表7に示されるように、試験No.11B~21Bの電圧は3.3~3.8Vであり、目標とする所定の電圧が発生している。また、試験No.11B~19Bの静電容量Cは1840~2450F/gであり、目標とする所定値(1800F/g以上)を満足したものの、試験No.20B、21Bの静電容量Cはそれぞれ1740、1790であり、所定値を下回った。このように、試験No.11B~19Bの静電容量Cが大きくなったのは、リチウムを吸蔵する能力が、グラファイトに対してアルミニウムは2.3倍、シリコン(Si)は4.4倍、スズ(Sn)は4.4倍であるためと考えられる。なお、シリコンとスズの含有量は、それぞれ0.05~24原子(at)%であると好ましい。また、シリコンとスズの両方が含有される場合には、合計含有量が30原子%以下であると好ましい。これは、シリコンとスズのそれぞれの含有量が0.05原子%未満では、リチウムを吸蔵する効果が小さいためである。また、シリコンまたはスズの含有量がそれぞれ24原子%超の場合や、シリコンとスズの合計含有量が30原子%超の場合は、多孔質状負極活物質の作製が困難であるためである。 As shown in Table 7 above, test no. The voltages 11B to 21B are 3.3 to 3.8V, and a predetermined target voltage is generated. In addition, Test No. The capacitance C of 11B to 19B is 1840 to 2450 F / g, which satisfies the target predetermined value (1800 F / g or more). The electrostatic capacities C of 20B and 21B were 1740 and 1790, respectively, which were below a predetermined value. Thus, test no. The capacitance C of 11B to 19B is increased because the ability to occlude lithium is 2.3 times that of graphite, 4.4 times that of silicon (Si), and 4 times that of tin (Sn). This is considered to be 4 times. The contents of silicon and tin are each preferably 0.05 to 24 atoms (at)%. Moreover, when both silicon and tin are contained, the total content is preferably 30 atomic% or less. This is because when the respective contents of silicon and tin are less than 0.05 atomic%, the effect of occluding lithium is small. Moreover, when the content of silicon or tin is more than 24 atomic%, or when the total content of silicon and tin is more than 30 atomic%, it is difficult to produce a porous negative electrode active material.
 次に、これらのキャパシタを、25℃の恒温槽内で、定電流定電圧で所定電圧まで充電し、定電流で1.0Vまで放電させ、静電容量が初期の70%に低下した時点でのサイクル数をサイクル寿命とした。また、負極活物質12の表面を観察し、デンドライト生成の有無を確認した。その結果を上記表7に示す。 Next, when these capacitors are charged to a predetermined voltage with a constant current and a constant voltage in a constant temperature bath at 25 ° C. and discharged to 1.0 V with a constant current, the capacitance is reduced to the initial 70%. The cycle number was defined as the cycle life. Moreover, the surface of the negative electrode active material 12 was observed and the presence or absence of the dendrite production | generation was confirmed. The results are shown in Table 7 above.
 上記表7に示されるように、試験No.11B~19B、21Bのサイクル寿命は14000回~110000回であり、目標とする所定値(10000回以上)を満足した。これは、試験No.11B~19B、21Bにおいては、充電時に負極活物質32内のリチウム含有量が増加して体積膨張するが、多孔質構造であるために負極活物質32の内部にわたって影響が吸収、緩和されたためと考えられる。しかしながら、試験No.20Bのサイクル寿命は3000回であり、所定値を下回った。これは、試験No.20BではMg含有量が多いため、体積膨張の影響緩和が不十分であったためと考えられる。また、試験No.14B~18Bは適量のMgを含み、負極活物質32の機械的強度が向上するため、大容量化を図りながら、より高いサイクル寿命を満足させる上で有利である。 As shown in Table 7 above, test no. The cycle life of 11B to 19B and 21B was 14000 to 110,000 times, and the target predetermined value (10000 times or more) was satisfied. This is the result of test no. In 11B to 19B and 21B, the lithium content in the negative electrode active material 32 increases and the volume expands during charging. However, because of the porous structure, the influence is absorbed and alleviated throughout the negative electrode active material 32. Conceivable. However, test no. The cycle life of 20B was 3000 times, which was below the predetermined value. This is the result of test no. In 20B, since Mg content is large, it is thought that the influence relaxation of volume expansion was insufficient. In addition, Test No. 14B to 18B contain an appropriate amount of Mg and improve the mechanical strength of the negative electrode active material 32, which is advantageous in satisfying a higher cycle life while increasing the capacity.
 また、試験No.11B~21Bでは、デンドライトの生成も認められなかった。以上の結果を総合すると、サイクル寿命を低下させることなく、大容量を確保可能な負極活物質およびこれを用いたキャパシタを実現するためには、試験No.11B~19Bが適合することが分かる。 Also, test no. In 11B to 21B, no dendrite formation was observed. To summarize the above results, in order to realize a negative electrode active material capable of securing a large capacity without reducing the cycle life and a capacitor using the same, test no. It can be seen that 11B to 19B are suitable.
 なお、本実施形態においては、厚さ110μmのアルミニウム箔を例に説明したが、必ずしもこれに限定されるものではなく、厚さ約5μm~200μmのアルミニウム箔を用いることができる。また、本実施形態においては、上記表4に示されるように、二次電池用の負極活物質として、Alを中心にSi、Sn、Mgが適宜含有される合金が用いられる例について説明した。しかしながら、二次電池用の負極活物質は、不可避不純物として、Fe、Cu、Mn、Zn、Ti等を0.05at%以下含有してもよい。また、上記表4に示されるように、本実施形態においては、AlとLiを中心にSi、Sn、Mgを適宜含有する合金がキャパシタ用の負極活物質として用いられる例について説明した。しかしながら、キャパシタ用の負極活物質は、不可避不純物として、Fe、Cu、Mn、Zn、Ti等を0.05at%以下含有してもよい。また、キャパシタ用の負極活物質中のLiの含有量は、5at%~70at%が好ましい。これは、Liの含有量が5at%未満では、エネルギー密度が小さくなり、Liの含有量が70at%を超えると電極の体積デンドライトが発生しやすくなるためである。なお、Liの含有量が30at%~65at%であるとより好ましい。 In the present embodiment, an aluminum foil having a thickness of 110 μm has been described as an example. However, the present invention is not necessarily limited thereto, and an aluminum foil having a thickness of about 5 μm to 200 μm can be used. Further, in the present embodiment, as shown in Table 4 above, an example in which an alloy containing Si, Sn, and Mg as appropriate mainly using Al is used as the negative electrode active material for the secondary battery has been described. However, the negative electrode active material for the secondary battery may contain 0.05 at% or less of Fe, Cu, Mn, Zn, Ti, etc. as inevitable impurities. Further, as shown in Table 4 above, in the present embodiment, an example in which an alloy containing Si, Sn, and Mg as appropriate mainly using Al and Li is used as a negative electrode active material for a capacitor has been described. However, the negative electrode active material for a capacitor may contain 0.05 at% or less of Fe, Cu, Mn, Zn, Ti or the like as an inevitable impurity. The content of Li in the negative electrode active material for capacitors is preferably 5 at% to 70 at%. This is because when the Li content is less than 5 at%, the energy density decreases, and when the Li content exceeds 70 at%, volume dendrite of the electrode tends to occur. Note that the Li content is more preferably 30 at% to 65 at%.
 なお、第2発明の実施形態1、2においては、負極活物質32に対して集電体が別途設けられない構成について説明したが、必ずしもこれに限定されるものではない。例えば、銅製の集電体に負極活物質32を導電ペーストを介して軽く圧接することにより負極を構成するなど、負極活物質32に対して集電体を別途設けることも可能である。 In Embodiments 1 and 2 of the second invention, the configuration in which a current collector is not separately provided for the negative electrode active material 32 has been described. However, the present invention is not necessarily limited thereto. For example, it is possible to separately provide a current collector for the negative electrode active material 32, such as forming a negative electrode by lightly pressing the negative electrode active material 32 to a copper current collector via a conductive paste.
[第3発明]
 以下、本発明の第3発明の一実施形態について、図10~12を参照しながら説明する。
[Third invention]
An embodiment of the third invention of the present invention will be described below with reference to FIGS.
(実施形態1)
 図10は本発明に係る負極活物質の一実施形態の合成方法を説明するための模式図である。図10において、符号51は容器、符号52は負極側に接続されたアルミニウム箔、符号53は正極側に接続されたリチウム板、符号54は容器51に注がれた電解液である。
(Embodiment 1)
FIG. 10 is a schematic view for explaining a synthesis method of one embodiment of the negative electrode active material according to the present invention. In FIG. 10, reference numeral 51 is a container, reference numeral 52 is an aluminum foil connected to the negative electrode side, reference numeral 53 is a lithium plate connected to the positive electrode side, and reference numeral 54 is an electrolytic solution poured into the container 51.
(アルミニウム箔52の前処理)
 アルミニウム箔52は、下記の前処理条件により予め準備しておく。
 1)電解液としては、5.5質量%塩酸、1.5質量%リン酸と0.5質量%硝酸、2.0質量%塩化アルミニウムを含む水溶液が用いられる。純度99.9%、厚さ110μmのアルミニウム箔52を、18℃に制御された上記電解液中で、10Hz、電流密度120mA/cmの三角波交流電流で10秒~27分エッチング後、イオン交換水で洗浄した。
 2)次に、これらのアルミニウム箔52を、5.0質量%硫酸水溶液中に、60℃で2分間~3分間浸漬した後、イオン交換水で洗浄した。
(Pretreatment of aluminum foil 52)
The aluminum foil 52 is prepared in advance under the following pretreatment conditions.
1) As the electrolytic solution, an aqueous solution containing 5.5% by mass hydrochloric acid, 1.5% by mass phosphoric acid, 0.5% by mass nitric acid, and 2.0% by mass aluminum chloride is used. After ion etching, aluminum foil 52 having a purity of 99.9% and a thickness of 110 μm is etched for 10 seconds to 27 minutes with a triangular wave alternating current of 10 Hz and current density of 120 mA / cm 2 in the above-described electrolyte controlled at 18 ° C. Washed with water.
2) Next, these aluminum foils 52 were immersed in a 5.0% by mass sulfuric acid aqueous solution at 60 ° C. for 2 to 3 minutes, and then washed with ion-exchanged water.
 図10において、上記予め前処理されたアルミニウム箔52およびリチウム板53を、電解液54内に浸漬し、負極側、正極側にそれぞれ接続して対峙させる。尚、電解液54は、電解質(LiPF)、有機溶媒(エチレンカーボネート(EC):ジエチルカーボネート(DEC)=1:1)からなる、濃度1mol/lの混合溶液である。この状態でアルミニウム箔52の電位を25mV(対Li/Li)に制御して50℃で電解して合金化することにより、下記表8に示される試験No.1C~10Cの負極活物質62(図11、図12参照)が得られた。この合成により得られたリチウム含有アルミニウム合金は、多数の細孔を有する。ここで言うリチウム含有アルミニウム合金とは、合成条件等により中心部に多少の未合金部を含んだリチウム含有アルミニウム合金も含めた総称である。また、ここで言う細孔とは、アルミニウム箔52の前処理条件等により発生する多少の穴をも含めた総称である。また、下記表8に示す細孔の開口径、および細孔の長さは、次のように定義される。すなわち、細孔の断面形状は円形とは限らないので、ここで言う細孔の開口径とは細孔の断面の最大横断長さとする。また、細孔の深さは、変形している場合もあるので、ここで言う細孔の長さとは、細孔の最大長さとする。また、細孔の分布状態はほぼ均一であり、上記合成により得られた負極活物質62の表面における細孔が占める面積の割合は30%~80%であると好ましい。この細孔の分布状態には、上記予め前処理されたアルミニウム箔52の細孔の分布状態が反映される。 In FIG. 10, the pre-treated aluminum foil 52 and the lithium plate 53 are immersed in an electrolyte solution 54 and connected to the negative electrode side and the positive electrode side to face each other. The electrolytic solution 54 is a mixed solution having a concentration of 1 mol / l made of an electrolyte (LiPF 6 ) and an organic solvent (ethylene carbonate (EC): diethyl carbonate (DEC) = 1: 1). In this state, the potential of the aluminum foil 52 was controlled to 25 mV (vs. Li / Li + ), and electrolysis was performed at 50 ° C. to form an alloy. 1C to 10C of negative electrode active material 62 (see FIGS. 11 and 12) was obtained. The lithium-containing aluminum alloy obtained by this synthesis has a large number of pores. The term “lithium-containing aluminum alloy” as used herein is a generic name including a lithium-containing aluminum alloy that includes some unalloyed portions in the central portion depending on synthesis conditions and the like. Moreover, the pore mentioned here is a general term including some holes generated due to pretreatment conditions of the aluminum foil 52 and the like. In addition, the pore opening diameter and the pore length shown in Table 8 below are defined as follows. That is, since the cross-sectional shape of the pores is not necessarily circular, the pore opening diameter referred to here is the maximum transverse length of the cross-section of the pores. Moreover, since the depth of the pore may be deformed, the pore length referred to here is the maximum length of the pore. The distribution state of the pores is almost uniform, and the ratio of the area occupied by the pores on the surface of the negative electrode active material 62 obtained by the above synthesis is preferably 30% to 80%. The distribution state of the pores reflects the distribution state of the pores of the aluminum foil 52 pretreated in advance.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 また、上記合成により得られた試験No.1C~10Cの負極活物質62の表面および断面の性状を走査型電子顕微鏡により観察して、細孔の開口径および細孔の長さを測定し、細孔の長さ/細孔の開口径比を算出した。その結果を上記表8に示す。また、負極活物質62中のリチウム含有量は、上記合成実験時の電気量から算出した(上記表8参照)。 In addition, test No. obtained by the above synthesis. The surface and cross-sectional properties of the negative electrode active material 62 of 1C to 10C were observed with a scanning electron microscope, the pore diameter and the pore length were measured, and the pore length / pore diameter. The ratio was calculated. The results are shown in Table 8 above. The lithium content in the negative electrode active material 62 was calculated from the amount of electricity at the time of the synthesis experiment (see Table 8 above).
 上記表8に示されるように、合成により得られた試験No.1C~10Cの負極活物質62の細孔の開口径は0.05μm~7μmであり、細孔の長さ/細孔の開口径比は7~103である。また、細孔は、負極活物質62の表面にほぼ均一に分散しており、この表面における細孔が占める面積割合は、30%~80%の範囲である。この試験No.1C~10Cの負極活物質62のいずれが、二次電池用およびキャパシタ用に適するかは後記実施形態2、3で詳述する。なお、本実施形態においては、厚さ110μmのアルミニウム箔52が用いられるものとして説明したが、必ずしもこれに限定されず、厚さが約5μm~200μmのアルミニウム箔が用いられてもよい。また、本実施形態においては、アルミニウム合金が実質的にAlとLiとからなる例について説明したが、必ずしもこれに限定されず、Li以外にMg、Zn等の元素を含有したアルミニウム合金が用いられてもよい。なお、第3発明において、アルミニウム合金は、不可避不純物として、Si、Fe、Cu、Mn、Mg、Zn、Ti等を0.05%以下含有しても良い。また、本実施形態においては、負極活物質62を合成する条件として、純度99.9%のアルミニウム箔52を負極側に接続し、電位を25mV(対Li/Li)に制御して、50℃の電解液中で電解して合金化する例について説明したが、必ずしもこれに限定されない。例えば、純アルミニウムをエッチングにより多孔質化した後に、Liイオンを含む非プロトン性電解液中で定電位(0.3V(対Li/Li)以下)で陰極電解することによっても、Liと合金化することができる。 As shown in Table 8 above, test Nos. Obtained by synthesis were obtained. The 1C to 10C negative electrode active material 62 has a pore opening diameter of 0.05 to 7 μm, and a pore length / pore opening ratio of 7 to 103. The pores are distributed almost uniformly on the surface of the negative electrode active material 62, and the area ratio of the pores on this surface is in the range of 30% to 80%. This test No. Which of the 1C to 10C negative electrode active material 62 is suitable for a secondary battery and a capacitor will be described in detail in Embodiments 2 and 3 below. In the present embodiment, the aluminum foil 52 having a thickness of 110 μm has been described. However, the present invention is not necessarily limited thereto, and an aluminum foil having a thickness of about 5 μm to 200 μm may be used. In the present embodiment, the example in which the aluminum alloy is substantially composed of Al and Li has been described. However, the present invention is not necessarily limited thereto, and an aluminum alloy containing elements such as Mg and Zn in addition to Li is used. May be. In the third invention, the aluminum alloy may contain 0.05% or less of Si, Fe, Cu, Mn, Mg, Zn, Ti, etc. as inevitable impurities. In this embodiment, as a condition for synthesizing the negative electrode active material 62, an aluminum foil 52 having a purity of 99.9% is connected to the negative electrode side, and the potential is controlled to 25 mV (vs. Li / Li + ). Although an example of electrolysis in an electrolytic solution at 0 ° C. has been described, the present invention is not necessarily limited thereto. For example, after making pure aluminum porous by etching, Li and an alloy can also be obtained by cathodic electrolysis at a constant potential (0.3 V (vs. Li / Li + ) or less) in an aprotic electrolyte containing Li ions. Can be
(実施形態2)
 図11は、第3発明の実施形態2に係る二次電池の一形態を説明するための模式図である。
(Embodiment 2)
FIG. 11 is a schematic diagram for explaining one form of a secondary battery according to Embodiment 2 of the third invention.
 図11において、符号60は容器、符号61は銅製の集電体、符号62は上記実施形態1で述べた合成により得られた負極活物質、符号63はアルミニウム製の集電体、符号64は正極活物質を示す。また、符号65は上記実施形態1で述べた合成に使用したものと同じ電解液54が含浸されたセパレータを示す。セパレータ65は、集電体61に導電ペーストを介して軽く圧接された負極活物質62と、集電体63上に塗布乾燥されることにより設けられたMnOを有する正極活物質64と、に挟まれている。上記実施形態1において表8に示された試験No.1C~10Cの負極活物質62に合わせて、このようにして構成された二次電池を試験No.1C~10Cとし、下記表9に示す。 In FIG. 11, reference numeral 60 is a container, reference numeral 61 is a copper current collector, reference numeral 62 is a negative electrode active material obtained by the synthesis described in the first embodiment, reference numeral 63 is an aluminum current collector, and reference numeral 64 is a current collector. A positive electrode active material is shown. Reference numeral 65 denotes a separator impregnated with the same electrolytic solution 54 used in the synthesis described in the first embodiment. The separator 65 includes a negative electrode active material 62 that is lightly pressed onto the current collector 61 via a conductive paste, and a positive electrode active material 64 having MnO 2 provided by being applied and dried on the current collector 63. It is sandwiched. Test No. 1 shown in Table 8 in Embodiment 1 above. The secondary battery configured in this manner in accordance with the negative electrode active material 62 of 1C to 10C was tested. 1C to 10C and shown in Table 9 below.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 図11に示されるように構成した二次電池の電圧を計測した。次に、サイクル試験(放電深度20%)を行い、放電終止電圧が急激に低下しはじめる時点でのサイクル数をサイクル寿命とした。また、負極活物質62の表面を観察し、デンドライト生成の有無を確認した。その結果を上記表9に示す。 The voltage of the secondary battery configured as shown in FIG. 11 was measured. Next, a cycle test (discharge depth 20%) was performed, and the cycle number at the time when the discharge end voltage began to drop rapidly was defined as the cycle life. In addition, the surface of the negative electrode active material 62 was observed to confirm whether dendrite was generated. The results are shown in Table 9 above.
 上記表9に示されるように、試験No.1C~10Cの電圧は2.7~3.7Vであり、目標とする所定の電圧が発生している。また、試験No.1C~7Cのサイクル寿命は、目標とする所定値(600以上)を満足したものの、試験No.8C~10Cのサイクル寿命は210であり、所定値を下回った。これは、試験No.1C~7Cにおいては、充電時に負極活物質62内のリチウム含有量が増加し、体積膨張するが、負極活物質62における細孔のアスペクト比が大きい(細孔の長さ/細孔の開口径比が10以上)ため、多孔質構造である負極活物質62の内部にわたって影響が吸収、緩和されたためと思われる。一方、試験No.8C~10Cでは、細孔の長さ/細孔の開口径比が10未満であり、体積膨張の影響緩和が不十分であったものと思われる。また、細孔の長さ/細孔の開口径比が100を超えてもあまり効果は増大しない。したがって、細孔の長さ/細孔の開口径比は、10~100が好ましい。 As shown in Table 9 above, test no. The voltage of 1C to 10C is 2.7 to 3.7V, and a predetermined target voltage is generated. In addition, Test No. Although the cycle life of 1C to 7C satisfied the target predetermined value (600 or more), the test No. The cycle life from 8C to 10C was 210, which was below the predetermined value. This is the result of test no. In the case of 1C to 7C, the lithium content in the negative electrode active material 62 increases during charging and the volume expands, but the aspect ratio of the pores in the negative electrode active material 62 is large (pore length / pore diameter). This is probably because the influence was absorbed and alleviated over the inside of the negative electrode active material 62 having a porous structure. On the other hand, test no. In the case of 8C to 10C, the ratio of pore length / pore opening diameter is less than 10, and it is considered that the effect of volume expansion was not sufficiently alleviated. In addition, even if the pore length / pore diameter ratio exceeds 100, the effect does not increase so much. Therefore, the pore length / pore diameter ratio is preferably 10 to 100.
 また、エネルギー密度の観点から、細孔の長さ/細孔の開口径比だけでなく、細孔の開口径の絶対値も制約を受ける。細孔の開口径が5μmを超えると、負極活物質62の表面積が減少してエネルギー密度が減少する。また、細孔の開口径が0.1μm未満では、電解液の細孔内への浸入が不十分になる。したがって、細孔の開口径は、0.1~5μmであると好ましい。 Also, from the viewpoint of energy density, not only the pore length / pore diameter ratio but also the absolute value of the pore diameter is restricted. When the opening diameter of the pores exceeds 5 μm, the surface area of the negative electrode active material 62 decreases and the energy density decreases. On the other hand, when the opening diameter of the pore is less than 0.1 μm, the penetration of the electrolyte into the pore becomes insufficient. Therefore, the opening diameter of the pores is preferably 0.1 to 5 μm.
 さらに、試験No.1C~9Cでは、デンドライトの生成が認められなかったものの、試験No.10Cではデンドライトの生成が認められた。これらの結果から、目標とする所定の性能を満足する二次電池の構成は、試験No.1C~7Cである。したがって、この二次電池に適合する負極活物質62は、上述した実施形態1の上記表8に示される試験No.1C~7Cである。このように、上述した実施形態1の上記表8に示される試験No.1C~7Cの負極活物質62は、二次電池用の負極活物質として、デンドライトの生成がなく、かつ、サイクル寿命の長寿命化に顕著な効果を発揮することが分かる。 Furthermore, test no. In Nos. 1C to 9C, no dendrite formation was observed. At 10C, formation of dendrite was observed. From these results, the configuration of the secondary battery satisfying the target predetermined performance was determined as Test No. 1C to 7C. Therefore, the negative electrode active material 62 suitable for the secondary battery has a test No. shown in Table 8 of Embodiment 1 described above. 1C to 7C. Thus, the test No. shown in Table 8 of the first embodiment described above. It can be seen that 1C to 7C negative electrode active material 62 is a negative electrode active material for a secondary battery, does not generate dendrite, and exhibits a remarkable effect in extending the cycle life.
(実施形態3)
 図12は、第3発明の実施形態3に係るキャパシタの一形態を説明するための模式図である。
(Embodiment 3)
FIG. 12 is a schematic diagram for explaining one form of a capacitor according to Embodiment 3 of the third invention.
 図12において、符号70はアルミニウム製の集電体、符号71は正極活物質、符号72は電解液が含浸されたセパレータである。本実施形態において、第3発明の実施形態1、2の構成と同一の要素に関しては同一番号を付し、詳細な説明は省略する。 12, reference numeral 70 denotes an aluminum current collector, reference numeral 71 denotes a positive electrode active material, and reference numeral 72 denotes a separator impregnated with an electrolytic solution. In this embodiment, the same elements as those in the configurations of Embodiments 1 and 2 of the third invention are denoted by the same reference numerals, and detailed description thereof is omitted.
 セパレータ72は、集電体61に導電ペーストを介して軽く圧接された負極活物質62と、集電体70上に塗布乾燥されることにより設けられた活性炭(BET比表面積:800~1300m/g)を有する正極活物質71と、により挟まれている。セパレータ72に含浸されている電解液は、電解質(LiBF)と有機溶媒{エチレンカーボネート(EC):エチルメチルカーボネート(EMC)=1:1の混合溶液}からなる濃度1.5mol/lの電解液である。上述した実施形態1の上記表8に示される試験No.1C~10Cの負極活物質62に合わせて、このようにして構成されたキャパシタを、下記表10に示されるように試験No.1C~10Cとした。さらに、比較のために、試験No.11Cにおいては、負極活物質として、人造黒鉛(BET比表面積50m/g)が用いられている。 The separator 72 includes a negative electrode active material 62 lightly pressed onto the current collector 61 via a conductive paste, and activated carbon (BET specific surface area: 800 to 1300 m 2 / between the positive electrode active material 71 having g). The electrolytic solution impregnated in the separator 72 is an electrolyte having a concentration of 1.5 mol / l composed of an electrolyte (LiBF 4 ) and an organic solvent {mixed solution of ethylene carbonate (EC): ethyl methyl carbonate (EMC) = 1: 1}. It is a liquid. Test No. shown in Table 8 of the first embodiment described above. The capacitors configured in this manner in accordance with the negative electrode active material 62 of 1C to 10C were tested as shown in Table 10 below. 1C to 10C. Furthermore, for comparison, test No. In 11C, artificial graphite (BET specific surface area of 50 m 2 / g) is used as the negative electrode active material.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 図12に示されるように構成されたキャパシタを、25℃の恒温槽内で、定電流で1.0Vまで放電させた。そして、放電時の電圧Vと電流Iの積を時間積分した放電エネルギーが1/2CVに等しいものとして、負極活物質62の単位重量当たりの静電容量C(F/g)を求めた。その結果を上記表10に示す。 The capacitor configured as shown in FIG. 12 was discharged to 1.0 V with a constant current in a thermostatic chamber at 25 ° C. Then, as equal to the product of the voltage V and current I at the time of discharge time integrating the discharge energy is 1 / 2CV 2, was determined the capacitance per unit weight of the negative electrode active material 62 C (F / g). The results are shown in Table 10 above.
 上記表10に示されるように、試験No.1C~11Cのいずれとも、目標とする所定の単位重量当たりの静電容量C(300F/g以上)を満足した。 As shown in Table 10 above, test no. Any of 1C to 11C satisfied a target capacitance C per unit weight (300 F / g or more).
 次に、これらのキャパシタを、25℃の恒温槽内で、定電流定電圧で所定電圧まで充電してから、定電流で1.0Vまで放電させ、静電容量が急激に低下しはじめる時点でのサイクル数をサイクル寿命とした。また、負極活物質62の表面を観察し、デンドライト生成の有無を確認した。その結果を上記表10に示す。 Next, when these capacitors are charged to a predetermined voltage with a constant current and a constant voltage in a constant temperature bath of 25 ° C., then discharged to 1.0 V with a constant current, and when the capacitance starts to drop rapidly. The cycle number was defined as the cycle life. In addition, the surface of the negative electrode active material 62 was observed to confirm whether dendrite was generated. The results are shown in Table 10 above.
 上記表10に示されるように、試験No.1C~7Cのサイクル寿命は、目標とする所定値(600以上)を満足したものの、試験No.8C~11Cのサイクル寿命は、200~500であり、所定値を下回った。これは、第3発明の実施形態2の二次電池で説明したのと同様の理由によると考えられる。すなわち、試験No.1C~7Cにおいては、充電時に負極活物質62内のリチウム含有量が増加して体積膨張するが、負極活物質62における細孔のアスペクト比が大きい(細孔の長さ/細孔の開口径比が10以上)ため、多孔質構造の負極活物質62の内部にわたって影響が吸収、緩和されたものと思われる。一方、試験No.8C~10Cでは、細孔の長さ/細孔の開口径比が10未満であり、体積膨張の影響緩和が不十分であったものと思われる。また、細孔の長さ/細孔の開口径比が100を超えても、効果はあまり増大しない。したがって、細孔の長さ/細孔の開口径比は、10~100であると好ましい。また、試験No.11Cのサイクル寿命が所定値を下回ったのは、充放電時のLiイオンの出入りに伴う体積収縮・膨張によって、人造黒鉛が負極活物質として用いられた負極の層間剥離が引き起こされてしまったためと思われる。 As shown in Table 10 above, test no. Although the cycle life of 1C to 7C satisfied the target predetermined value (600 or more), the test No. The cycle life of 8C to 11C was 200 to 500, which was below a predetermined value. This is considered to be due to the same reason as explained in the secondary battery of Embodiment 2 of the third invention. That is, test no. In 1C to 7C, the lithium content in the negative electrode active material 62 increases and the volume expands during charging, but the aspect ratio of the pores in the negative electrode active material 62 is large (pore length / pore opening diameter). Therefore, it is considered that the influence is absorbed and relaxed over the inside of the negative electrode active material 62 having a porous structure. On the other hand, test no. In the case of 8C to 10C, the ratio of pore length / pore opening diameter is less than 10, and it is considered that the effect of volume expansion was not sufficiently alleviated. Also, even if the pore length / pore diameter ratio exceeds 100, the effect does not increase so much. Therefore, the pore length / pore aperture ratio is preferably 10 to 100. In addition, Test No. The reason why the cycle life of 11C fell below a predetermined value was that delamination of the negative electrode in which artificial graphite was used as the negative electrode active material was caused by volume contraction / expansion accompanying the entry and exit of Li ions during charge and discharge. Seem.
 また、キャパシタにおいても、第3発明の実施形態2の二次電池で説明したのと同様の理由、すなわち、エネルギー密度の観点から、細孔の長さ/細孔の開口径比だけでなく、細孔の開口径の絶対値も制約を受ける。すなわち、細孔の開口径が5μmを超えると負極活物質62の表面積が減少してエネルギー密度が減少し、0.1μm未満では、電解液の細孔内への浸入が不十分になる。したがって、細孔の開口径は、0.1~5μmであると好ましい。 Also, in the capacitor, not only the reason for the reason described in the secondary battery of the second embodiment of the third invention, that is, from the viewpoint of energy density, not only the pore length / pore aperture ratio, The absolute value of the opening diameter of the pore is also restricted. That is, if the opening diameter of the pores exceeds 5 μm, the surface area of the negative electrode active material 62 decreases and the energy density decreases. If the opening diameter is less than 0.1 μm, the electrolyte does not sufficiently penetrate into the pores. Therefore, the opening diameter of the pores is preferably 0.1 to 5 μm.
 さらに、試験No.1C~9C、11Cでは、デンドライトの生成が認められなかったものの、試験No.10Cではデンドライトの生成が認められた。これらの結果から、目標とする所定の性能を満足するキャパシタの構成は、試験No.1C~7Cである。すなわち、このキャパシタに適合する負極活物質62も、上述した実施形態2の二次電池の結果同様に、試験No.1C~7Cとなる。このように、上述した実施形態1の上記表8に示された試験No.1C~7Cの負極活物質62は、キャパシタ用の負極活物質として、大容量化並びにデンドライトの生成がなく、かつ、サイクル寿命の長寿命化に顕著な効果を発揮することが分かる。負極活物質62中のLiの含有量は、1at%~70at%が好ましい。その理由は、Liの含有量が1at%未満ではエネルギー密度が小さくなり、Liの含有量が70at%を超えると上述したようにデンドライトが発生しやすくなるためである。なお、本実施形態においては、より大きなエネルギー密度(すなわち、目標とする所定の単位重量当たりの静電容量Cが300F/g以上)を前提としているため、負極活物質62中のLiの含有量は10at%~70at%であるとより好ましい。 Furthermore, test no. In Nos. 1C to 9C and 11C, no dendrite formation was observed. At 10C, formation of dendrite was observed. From these results, the configuration of the capacitor satisfying the target predetermined performance was determined as Test No. 1C to 7C. That is, the negative electrode active material 62 suitable for this capacitor also has a test no. 1C to 7C. As described above, the test No. shown in Table 8 of the first embodiment described above. It can be seen that the negative electrode active material 62 of 1C to 7C is a negative electrode active material for a capacitor, has no increase in capacity and generation of dendrites, and exhibits a remarkable effect in extending the cycle life. The content of Li in the negative electrode active material 62 is preferably 1 at% to 70 at%. The reason is that if the Li content is less than 1 at%, the energy density becomes small, and if the Li content exceeds 70 at%, dendrites are likely to occur as described above. In the present embodiment, since it is premised on a larger energy density (that is, the target capacitance C per predetermined unit weight is 300 F / g or more), the content of Li in the negative electrode active material 62 Is more preferably 10 at% to 70 at%.
[第4発明]
 以下、本発明の第4発明の一実施形態について、図13を参照しながら説明する。
[Fourth Invention]
Hereinafter, an embodiment of the fourth invention of the present invention will be described with reference to FIG.
 (負極活物質の調製)
  (アルミニウム箔の前処理)
 1)電解液としては、5.5質量%塩酸、1.5質量%リン酸と0.5質量%硝酸、2.0質量%塩化アルミニウムを含む水溶液が用いられる。所定組成(Liを含まない、詳細は下記表11参照)を有する厚さ110μmのアルミニウム箔を、18℃に制御された上記電解液中で、10Hz、電流密度120mA/cmの三角波交流電流で10秒~27分エッチング後、イオン交換水で洗浄した。
 2)次に、これらのアルミニウム箔を、5.0質量%硫酸水溶液中に、60℃で2分間~3分間浸漬した後、イオン交換水で洗浄した。
(Preparation of negative electrode active material)
(Pretreatment of aluminum foil)
1) As the electrolytic solution, an aqueous solution containing 5.5% by mass hydrochloric acid, 1.5% by mass phosphoric acid, 0.5% by mass nitric acid, and 2.0% by mass aluminum chloride is used. A 110 μm-thick aluminum foil having a predetermined composition (not including Li, see Table 11 below for details) in the above-described electrolytic solution controlled at 18 ° C. with a triangular wave alternating current of 10 Hz and a current density of 120 mA / cm 2. After etching for 10 seconds to 27 minutes, the substrate was washed with ion exchange water.
2) Next, these aluminum foils were immersed in a 5.0% by mass sulfuric acid aqueous solution at 60 ° C. for 2 to 3 minutes, and then washed with ion-exchanged water.
(負極活物質の合成)
 正極側、負極側にそれぞれ接続された、上記予め前処理されたアルミニウム箔およびリチウム板を、電解液内に浸漬し、負極側、正極側にそれぞれ接続して対峙させる。尚、電解液は、電解質(LiPF)および有機溶媒(エチレンカーボネート(EC):ジエチルカーボネート(DEC)=1:1)からなる、濃度1mol/lの混合溶液である。この状態で、前記アルミニウム箔の電位を25mV(対Li/Li)に制御し、50℃で電解して合金化することにより、下記表11に示される試験No.1D~8Dの負極活物質82(図13参照)が得られる。この合成により得られたリチウム含有アルミニウム合金は、多数の細孔を有する。ここで言うリチウム含有アルミニウム合金は、合成条件等により多少の未合金部を含むリチウム含有アルミニウム合金をも含めた総称である。また、ここで言う細孔とは、上記アルミニウム箔の前処理条件等により発生する多少の穴をも含めた総称である。また、細孔の開口径、および、細孔の長さは、次のように定義される。すなわち、細孔の断面形状は円形とは限らないので、ここで言う細孔の開口径とは、細孔の断面の最大横断長さとする。また、細孔の深さは変形している場合もあるので、ここで言う細孔の長さとは細孔の最大長さとする。試験No.1D~8Dの負極活物質82の細孔の開口径は0.05μm~7μmであり、細孔の長さ/細孔の開口径比は7~103である。また、細孔の分布状態はほぼ均一であり、上記合成により得られた負極活物質82の表面における細孔が占める面積の割合は30%~80%であると好ましい。この細孔の分布状態には、上記予め前処理されたアルミニウム箔の細孔の分布状態が反映される。また、この負極活物質82中のリチウム含有量は、上記合成実験時の電気量から算出される(下記表11参照)。
(Synthesis of negative electrode active material)
The previously pretreated aluminum foil and lithium plate connected to the positive electrode side and the negative electrode side, respectively, are immersed in the electrolytic solution and connected to the negative electrode side and the positive electrode side to face each other. The electrolytic solution is a mixed solution having a concentration of 1 mol / l composed of an electrolyte (LiPF 6 ) and an organic solvent (ethylene carbonate (EC): diethyl carbonate (DEC) = 1: 1). In this state, the potential of the aluminum foil was controlled to 25 mV (vs. Li / Li + ), and electrolysis was performed at 50 ° C. to form an alloy. A 1D to 8D negative electrode active material 82 (see FIG. 13) is obtained. The lithium-containing aluminum alloy obtained by this synthesis has a large number of pores. The lithium-containing aluminum alloy mentioned here is a general term including a lithium-containing aluminum alloy including some unalloyed parts depending on the synthesis conditions and the like. Moreover, the pore mentioned here is a general term including some holes generated due to the pretreatment conditions of the aluminum foil. Further, the opening diameter of the pores and the length of the pores are defined as follows. That is, since the cross-sectional shape of the pore is not necessarily circular, the opening diameter of the pore referred to here is the maximum transverse length of the cross-section of the pore. Further, since the depth of the pores may be deformed, the pore length referred to here is the maximum length of the pores. Test No. The 1D to 8D negative electrode active material 82 has a pore opening diameter of 0.05 to 7 μm, and a pore length / pore opening ratio of 7 to 103. The distribution state of the pores is almost uniform, and the proportion of the area occupied by the pores on the surface of the negative electrode active material 82 obtained by the above synthesis is preferably 30% to 80%. The distribution state of the pores reflects the distribution state of the pores of the aluminum foil previously pretreated. Further, the lithium content in the negative electrode active material 82 is calculated from the amount of electricity at the time of the synthesis experiment (see Table 11 below).
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
(負極の形成)
 図13に示されるように、上記合成により得られた負極活物質82を負極として用いた。
(Formation of negative electrode)
As shown in FIG. 13, the negative electrode active material 82 obtained by the above synthesis was used as the negative electrode.
(正極活物質の調製)
 活性炭(平均粒径2.5μm、BET比表面積:800~1300m/g)およびグラファイト(平均粒径2.0μm)を、上記表11に示される所定の割合で混合し、正極活物質84(図13参照)として調製した(上記表11に示される試験No.1D~8D参照)。正極活物質84内のグラファイト含有率の定義は、グラファイトの質量/(活性炭の質量+グラファイトの質量)×100(%)である。
(Preparation of positive electrode active material)
Activated carbon (average particle size 2.5 μm, BET specific surface area: 800 to 1300 m 2 / g) and graphite (average particle size 2.0 μm) are mixed at a predetermined ratio shown in Table 11 above, and positive electrode active material 84 ( (See FIG. 13) (see Test Nos. 1D to 8D shown in Table 11 above). The definition of the graphite content in the positive electrode active material 84 is: mass of graphite / (mass of activated carbon + mass of graphite) × 100 (%).
(正極の形成)
 図13に示されるように、上記調製により得られた正極活物質84に、アセチレンブラック45%、PVdF5%をさらに加えると共に、N‐メチル‐2‐ピロリドンでペースト状とした。このペースト状のものを、純アルミニウム箔からなる集電体83に塗布し、乾燥後、圧着して正極とした。
(Formation of positive electrode)
As shown in FIG. 13, 45% of acetylene black and 5% of PVdF were further added to the positive electrode active material 84 obtained by the above preparation, and paste-formed with N-methyl-2-pyrrolidone. This paste-like material was applied to a current collector 83 made of pure aluminum foil, dried, and then pressure bonded to obtain a positive electrode.
(蓄電デバイス)
 図13は、第4発明に係る蓄電デバイスの一実施形態としてのキャパシタを説明するための模式図である。
(Electric storage device)
FIG. 13 is a schematic diagram for explaining a capacitor as one embodiment of the electricity storage device according to the fourth invention.
 図13において、符号80は容器、符号85は、負極活物質の合成に使用したものと同じ電解液が含浸されたセパレータを示す。このセパレータ85を上記負極と上記正極で挟むことにより、キャパシタが構成される。すなわち、セパレータ85は、負極活物質82と正極活物質84とに挟まれることになる。表11に示される試験No.1D~8Dの負極活物質82と正極活物質84に合わせて、このようにして構成されたキャパシタを試験No.1D~8Dとし、下記表12に示す。 In FIG. 13, reference numeral 80 denotes a container, and reference numeral 85 denotes a separator impregnated with the same electrolytic solution used for the synthesis of the negative electrode active material. A capacitor is configured by sandwiching the separator 85 between the negative electrode and the positive electrode. That is, the separator 85 is sandwiched between the negative electrode active material 82 and the positive electrode active material 84. Test No. shown in Table 11 The capacitor thus configured according to the negative electrode active material 82 and the positive electrode active material 84 of 1D to 8D was tested. 1D to 8D are shown in Table 12 below.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 図13に示されるように構成されたキャパシタの充電電圧を計測した。次に、これらのキャパシタについてサイクル試験(放電深度20%)を行い、放電容量が初期の95%になった時点でのサイクル数を、サイクル寿命とした。合わせて、エネルギー密度(Wh/kg)を求めた。その結果を上記表12に示す。 The charging voltage of the capacitor configured as shown in FIG. 13 was measured. Next, a cycle test (discharge depth 20%) was performed on these capacitors, and the cycle number when the discharge capacity reached the initial 95% was defined as the cycle life. In addition, the energy density (Wh / kg) was determined. The results are shown in Table 12 above.
 上記表12に示されるように、試験No.1D~7Dの充電電圧は4.4~4.8Vであり、試験No.8Dと比べて高い。また、試験No.1D~6Dのエネルギー密度(容量)は、90~200Wh/kgであり、目標とする所定のエネルギー密度(90~200Wh/kg以上)を満足したものの、試験No.7D、8Dのエネルギー密度(容量)はそれぞれ84、70であり、所定のエネルギー密度を下回った。試験No.1D~6Dのエネルギー密度(容量)が大きくなったのは、アニオンおよびカチオンをインターカレート可能な活性炭を含むグラファイト系正極活物質を有する正極が、多孔質のリチウム含有アルミニウム合金製負極活物質を有する負極と組み合わされているためと考えられる。このように、試験No.1D~6Dでは、活性炭を含むグラファイト系正極活物質を有する正極と、多孔質のリチウム含有アルミニウム合金製負極活物質を有する負極と、を組み合わせるという構成が採用されているので、エネルギー密度(容量)の増加と、目標とする所定のサイクル寿命(600以上)と、の両方を満足する。充電時には、負極内のリチウム含有量が増加することにより体積膨張が発生するが、第4発明では多孔質のリチウム含有アルミニウム合金製負極活物質を有する負極が採用されているため、体積膨張による影響が吸収、緩和される。また、サイクル寿命を低下させることなく、大きなエネルギー密度(大容量)が確保可能とするためには、正極活物質84内のグラファイト含有率が10%~70%となるように、活性炭が含有されると好ましい。 As shown in Table 12 above, test no. The charging voltage of 1D to 7D is 4.4 to 4.8V. Higher than 8D. In addition, Test No. The energy density (capacity) of 1D to 6D is 90 to 200 Wh / kg, which satisfies the target predetermined energy density (90 to 200 Wh / kg or more). The energy densities (capacities) of 7D and 8D were 84 and 70, respectively, which were lower than the predetermined energy density. Test No. The energy density (capacity) of 1D to 6D is increased because the positive electrode having a graphite-based positive electrode active material containing activated carbon capable of intercalating anions and cations is a porous lithium-containing aluminum alloy negative electrode active material. This is thought to be due to the combination with the negative electrode. Thus, test no. 1D to 6D employ a configuration in which a positive electrode having a graphite-based positive electrode active material containing activated carbon and a negative electrode having a negative electrode active material made of a porous lithium-containing aluminum alloy are used, so that energy density (capacity) And the target predetermined cycle life (600 or more) are satisfied. At the time of charging, volume expansion occurs due to an increase in the lithium content in the negative electrode. However, in the fourth aspect of the invention, a negative electrode having a porous lithium-containing aluminum alloy negative electrode active material is used. Is absorbed and relaxed. Further, in order to ensure a large energy density (large capacity) without reducing the cycle life, activated carbon is contained so that the graphite content in the positive electrode active material 84 is 10% to 70%. It is preferable.
 負極活物質82中のLiの含有量は、5原子(at)%~70at%が好ましい。その理由は、Liの含有量が5at%未満ではエネルギー密度が小さくなり、Liの含有量が70at%を超えると電極の体積デンドライトが発生しやすくなるためである。なお、より好ましくは、Liの含有量は30at%~65at%であるとよい。 The content of Li in the negative electrode active material 82 is preferably 5 atom (at)% to 70 at%. The reason is that when the Li content is less than 5 at%, the energy density becomes small, and when the Li content exceeds 70 at%, volume dendrite of the electrode is likely to occur. More preferably, the Li content is 30 at% to 65 at%.
 また、負極活物質82は、さらに、Siを0.1at%~24at%含有することが好ましい。その理由は、Siの含有量が0.1at%未満では負極活物質82が強度不足となり、Siの含有量が24at%を超えると負極活物質82が脆くなるためである。 The negative electrode active material 82 preferably further contains 0.1 at% to 24 at% of Si. The reason is that when the Si content is less than 0.1 at%, the negative electrode active material 82 has insufficient strength, and when the Si content exceeds 24 at%, the negative electrode active material 82 becomes brittle.
 なお、本実施形態においては、厚さ110μmのアルミニウム箔を例に説明したが、必ずしもこれに限定されず、厚さ約5μm~200μmのアルミニウム箔が用いられてもよい。また、本実施形態においては、リチウムを含有した多孔質のアルミニウム合金により作製される負極活物質として、上記表11に示されるように、AlとLiを中心にSi、Sn、Mgを適宜含有する合金が説明されている。しかしながら、上記負極活物質は、不可避不純物として、Fe、Cu、Mn、Zn、Ti等を0.05at%以下含有してもよい。 In the present embodiment, an aluminum foil having a thickness of 110 μm has been described as an example. However, the present invention is not necessarily limited thereto, and an aluminum foil having a thickness of about 5 μm to 200 μm may be used. Further, in the present embodiment, as shown in Table 11 above, Si, Sn, and Mg are appropriately contained as a negative electrode active material made of a porous aluminum alloy containing lithium, as shown in Table 11 above. An alloy is described. However, the negative electrode active material may contain 0.05 at% or less of Fe, Cu, Mn, Zn, Ti or the like as an inevitable impurity.
 また、セパレータ85に含浸される電解液として、電解質(LiBF)と有機溶媒{エチレンカーボネート(EC):エチルメチルカーボネート(EMC)=1:1の混合溶液}からなる濃度1.5mol/lの電解液が採用されてもよい。 Further, as an electrolytic solution impregnated in the separator 85, an electrolyte (LiBF 4 ) and an organic solvent {ethylene carbonate (EC): ethyl methyl carbonate (EMC) = 1: 1 mixed solution} having a concentration of 1.5 mol / l. An electrolytic solution may be employed.
 なお、本実施形態においては、負極活物質82に対して集電体が別途設けられない構成について説明したが、これに限定されない。例えば、導電ペーストを介して負極活物質82を銅製の集電体に軽く圧接することにより負極を作製するなど、負極活物質82に対して集電体が別途設けられてもよい。 In addition, in this embodiment, although the structure where a collector is not separately provided with respect to the negative electrode active material 82 was demonstrated, it is not limited to this. For example, a current collector may be separately provided with respect to the negative electrode active material 82, for example, a negative electrode is produced by lightly pressing the negative electrode active material 82 against a copper current collector via a conductive paste.
 以上、本発明の実施形態について説明したが、本発明は上述の実施の形態に限られず、特許請求の範囲に記載した限りにおいて様々に変更して実施することが可能である。本出願は2009年1月23日出願の日本特許出願(特願2009-013292)、2010年4月16日出願の日本特許出願(特願2010-095223)、2010年4月16日出願の日本特許出願(特願2010-095224)および2010年4月16日出願の日本特許出願(特願2010-095225)に基づくものであり、その内容はここに参照として取り込まれる。 The embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications can be made as long as they are described in the claims. This application is a Japanese patent application filed on Jan. 23, 2009 (Japanese Patent Application No. 2009-013292), a Japanese patent application filed on Apr. 16, 2010 (Japanese Patent Application No. 2010-095223), and a Japanese patent application filed on Apr. 16, 2010. This is based on a patent application (Japanese Patent Application No. 2010-095224) and a Japanese patent application filed on April 16, 2010 (Japanese Patent Application No. 2010-095225), the contents of which are incorporated herein by reference.
 1、10、30、51、60、80 容器
 2、52、 アルミニウム箔
 3、53 リチウム板
 4、54 電解液
 12、32、62、82 負極活物質
 12a 表層部
 12b 母体部
 13、20、33、40、61、63、70、83 集電体
 14、21、41、64、71、84 正極活物質
 15、35、42、65、85 電解液が含浸されたセパレータ
 34 正極活物質(LiCoO
1, 10, 30, 51, 60, 80 Container 2, 52, Aluminum foil 3, 53 Lithium plate 4, 54 Electrolyte solution 12, 32, 62, 82 Negative electrode active material 12a Surface layer portion 12b Base material portion 13, 20, 33, 40, 61, 63, 70, 83 Current collector 14, 21, 41, 64, 71, 84 Positive electrode active material 15, 35, 42, 65, 85 Separator impregnated with electrolytic solution 34 Positive electrode active material (LiCoO 2 )

Claims (16)

  1.  リチウム含有アルミニウム合金製の箔体から作製される負極活物質であって、
     前記箔体の少なくとも表層部は三次元網目状骨格を有すると共に多数の細孔を有し、
     前記表層部の表面開口率が10~80%である負極活物質。
    A negative electrode active material produced from a foil body made of lithium-containing aluminum alloy,
    At least the surface layer portion of the foil body has a three-dimensional network skeleton and a large number of pores,
    A negative electrode active material having a surface area ratio of 10 to 80% in the surface layer portion.
  2.  請求項1に記載の負極活物質を有する負極と、正極と、前記負極および前記正極間に配置されるイオン伝導性電解液と、を備えることを特徴とする二次電池。 A secondary battery comprising: a negative electrode having the negative electrode active material according to claim 1; a positive electrode; and an ion conductive electrolyte disposed between the negative electrode and the positive electrode.
  3.  請求項1に記載の負極活物質を有する負極と、正極と、前記負極および前記正極間に配置されるイオン伝導性電解液と、を備えることを特徴とするキャパシタ。 A capacitor comprising: a negative electrode having the negative electrode active material according to claim 1; a positive electrode; and an ion conductive electrolyte disposed between the negative electrode and the positive electrode.
  4.  多孔質のアルミニウム合金から作製される二次電池用負極活物質であって、シリコンおよびスズの少なくとも1種を含有する二次電池用負極活物質。 A negative electrode active material for a secondary battery produced from a porous aluminum alloy, the negative electrode active material for a secondary battery containing at least one of silicon and tin.
  5.  請求項4に記載の二次電池用負極活物質であって、前記シリコンと前記スズの含有量がそれぞれ0.05~24原子%であるとともに、前記シリコンと前記スズの含有量の合計が30原子%以下であることを特徴とする二次電池用負極活物質。 5. The negative electrode active material for a secondary battery according to claim 4, wherein the contents of silicon and tin are 0.05 to 24 atomic%, respectively, and the sum of the contents of silicon and tin is 30. A negative electrode active material for a secondary battery, characterized in that it is at most atomic%.
  6.  請求項5に記載の二次電池用負極活物質であって、マグネシウムを0.02~5原子%含有することを特徴とする二次電池用負極活物質。 6. The negative electrode active material for a secondary battery according to claim 5, wherein the negative electrode active material for secondary battery contains 0.02 to 5 atomic% of magnesium.
  7.  請求項4~6のいずれか1項に記載の二次電池用負極活物質を有する負極と、リチウムを含有しかつリチウムを吸蔵放出可能な正極活物質を有する正極と、前記負極および前記正極間に配置されるイオン伝導性電解液と、を備えることを特徴とする二次電池。 A negative electrode having a negative electrode active material for a secondary battery according to any one of claims 4 to 6, a positive electrode having a positive electrode active material containing lithium and capable of occluding and releasing lithium, and between the negative electrode and the positive electrode A secondary battery comprising: an ion-conducting electrolyte disposed in the battery.
  8.  多孔質のアルミニウム合金から作製されるキャパシタ用負極活物質であって、リチウムと、シリコンおよびスズの少なくとも1種と、を含有するキャパシタ用負極活物質。 A negative electrode active material for a capacitor produced from a porous aluminum alloy, the negative electrode active material for a capacitor containing lithium and at least one of silicon and tin.
  9.  前記シリコンと前記スズの含有量がそれぞれ0.05~24原子%であるとともに、前記シリコンと前記スズの含有量の合計が30原子%以下であることを特徴とする請求項8に記載のキャパシタ用負極活物質。 9. The capacitor according to claim 8, wherein the contents of the silicon and the tin are 0.05 to 24 atomic%, respectively, and the total content of the silicon and the tin is 30 atomic% or less. Negative electrode active material.
  10.  請求項9に記載のキャパシタ用負極活物質であって、マグネシウムを0.02~5原子%含有することを特徴とするキャパシタ用負極活物質。 10. The negative electrode active material for capacitors according to claim 9, wherein the negative electrode active material for capacitors contains 0.02 to 5 atomic% of magnesium.
  11.  請求項9に記載のキャパシタ用負極活物質を有する負極と、正極と、前記負極および前記正極間に配置されるイオン伝導性電解液と、を備えることを特徴とするキャパシタ。 A capacitor comprising: a negative electrode having a negative electrode active material for a capacitor according to claim 9; a positive electrode; and an ion conductive electrolyte disposed between the negative electrode and the positive electrode.
  12.  細孔を有する多孔質のリチウム含有アルミニウム合金から作製される負極活物質であって、
     前記細孔の開口径が5μm以下(ただし、ゼロは含まない)であり、
     前記細孔の長さ/前記細孔の開口径比が10以上である負極活物質。
    A negative electrode active material made from a porous lithium-containing aluminum alloy having pores,
    The opening diameter of the pore is 5 μm or less (however, zero is not included);
    A negative electrode active material having a ratio of the length of the pores / opening diameter of the pores of 10 or more.
  13.  前記細孔の開口径が0.1~5μmであり、
     前記細孔の長さ/前記細孔の開口径比が10~100であることを特徴とする請求項12に記載の負極活物質。
    The opening diameter of the pores is 0.1 to 5 μm,
    13. The negative electrode active material according to claim 12, wherein a ratio of the pore length / the aperture diameter of the pore is 10 to 100.
  14.  請求項12または13に記載の負極活物質を有する負極と、正極と、前記負極および前記正極間に配置されるイオン伝導性電解液と、を備えることを特徴とする二次電池。 A secondary battery comprising: a negative electrode having the negative electrode active material according to claim 12; a positive electrode; and an ion conductive electrolyte disposed between the negative electrode and the positive electrode.
  15.  請求項12または13に記載の負極活物質を有する負極と、正極と、前記負極および前記正極間に配置されるイオン伝導性電解液と、を備えることを特徴とするキャパシタ。 14. A capacitor comprising: a negative electrode having the negative electrode active material according to claim 12; a positive electrode; and an ion conductive electrolyte disposed between the negative electrode and the positive electrode.
  16.  多孔質のリチウム含有アルミニウム合金から作製された負極活物質を有する負極と、活性炭を含むグラファイト系正極活物質を有する正極と、前記負極および前記正極間に配置されるイオン伝導性電解液と、を備える蓄電デバイス。 A negative electrode having a negative electrode active material made from a porous lithium-containing aluminum alloy, a positive electrode having a graphite-based positive electrode active material containing activated carbon, and an ion conductive electrolyte disposed between the negative electrode and the positive electrode. Electric storage device provided.
PCT/JP2010/062469 2010-04-16 2010-07-23 Negative electrode active material, and secondary battery, capacitor and electricity storage device each using the negative electrode active material WO2011129020A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010800655516A CN102812580A (en) 2010-04-16 2010-07-23 Negative Electrode Active Material, And Secondary Battery, Capacitor And Electricity Storage Device Each Using The Negative Electrode Active Material

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010-095223 2010-04-16
JP2010-095225 2010-04-16
JP2010-095224 2010-04-16
JP2010095225A JP2011228402A (en) 2010-04-16 2010-04-16 Electrical storage device
JP2010095223A JP2011228057A (en) 2010-04-16 2010-04-16 Negative electrode active material, and secondary battery and capacitor using the same
JP2010095224A JP5575531B2 (en) 2010-04-16 2010-04-16 Negative electrode active material, secondary battery and capacitor using the same

Publications (1)

Publication Number Publication Date
WO2011129020A1 true WO2011129020A1 (en) 2011-10-20

Family

ID=44798410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062469 WO2011129020A1 (en) 2010-04-16 2010-07-23 Negative electrode active material, and secondary battery, capacitor and electricity storage device each using the negative electrode active material

Country Status (2)

Country Link
CN (1) CN102812580A (en)
WO (1) WO2011129020A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012022972A (en) * 2010-07-16 2012-02-02 Kobelco Kaken:Kk Material for negative electrode active material, and secondary battery and capacitor using negative electrode active material formed by alloying the same
CN104054197A (en) * 2012-04-24 2014-09-17 昭和电工株式会社 Negative electrode active material for lithium secondary battery and method for manufacturing same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015154003A (en) * 2014-02-18 2015-08-24 住友電気工業株式会社 Power storage device and charge discharge system
CN108630896A (en) * 2017-03-24 2018-10-09 深圳中科瑞能实业有限公司 A kind of secondary battery negative pole and preparation method thereof and secondary cell
US11189835B2 (en) 2017-03-24 2021-11-30 Real Power Industrial Limited Company Anode for secondary battery, preparation method thereof and secondary battery
CN110911732B (en) * 2018-09-16 2021-12-14 深圳格林德能源集团有限公司 Long-life high-capacity silicon negative electrode lithium ion battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293861A (en) * 1985-10-17 1987-04-30 Bridgestone Corp Secondary batter
JPS62115663A (en) * 1985-11-14 1987-05-27 Sumitomo Chem Co Ltd Organic electrolyte secondary battery
JPH03133062A (en) * 1989-10-16 1991-06-06 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2009231234A (en) * 2008-03-25 2009-10-08 Fuji Heavy Ind Ltd Carbon material for negative electrode, electric power storage device, and product having mounted thereon electric power storage device
JP2010170901A (en) * 2009-01-23 2010-08-05 Kobelco Kaken:Kk Negative-electrode active material, secondary battery and capacitor using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1194476A (en) * 1997-03-26 1998-09-30 周大卫 Replace-able metal air battery
CN101202347A (en) * 2007-11-22 2008-06-18 山东神工海特电子科技有限公司 1.5V lithium iron disulfide button cell with metal framework positive pole

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293861A (en) * 1985-10-17 1987-04-30 Bridgestone Corp Secondary batter
JPS62115663A (en) * 1985-11-14 1987-05-27 Sumitomo Chem Co Ltd Organic electrolyte secondary battery
JPH03133062A (en) * 1989-10-16 1991-06-06 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2009231234A (en) * 2008-03-25 2009-10-08 Fuji Heavy Ind Ltd Carbon material for negative electrode, electric power storage device, and product having mounted thereon electric power storage device
JP2010170901A (en) * 2009-01-23 2010-08-05 Kobelco Kaken:Kk Negative-electrode active material, secondary battery and capacitor using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012022972A (en) * 2010-07-16 2012-02-02 Kobelco Kaken:Kk Material for negative electrode active material, and secondary battery and capacitor using negative electrode active material formed by alloying the same
CN104054197A (en) * 2012-04-24 2014-09-17 昭和电工株式会社 Negative electrode active material for lithium secondary battery and method for manufacturing same

Also Published As

Publication number Publication date
CN102812580A (en) 2012-12-05

Similar Documents

Publication Publication Date Title
Sun et al. Dendrite-free and long-life Na metal anode achieved by 3D porous Cu
JP5182477B2 (en) Non-aqueous secondary battery
JP5575531B2 (en) Negative electrode active material, secondary battery and capacitor using the same
KR101389761B1 (en) Anode active material for lithium secondary battery and preparation method of thereof
WO2014007188A1 (en) Lithium ion capacitor
CN103534853A (en) Rechargeable magnesium ion cell components and assembly
WO2013054710A1 (en) Lithium ion capacitor, power storage device, power storage system
WO2011129020A1 (en) Negative electrode active material, and secondary battery, capacitor and electricity storage device each using the negative electrode active material
KR20140005976A (en) Battery electrode and battery
DK3084866T3 (en) ANODE CHAMBER WITH COLLECTOR OF AN AMORF ALLOY
JP2012004491A (en) Power storage device
JPWO2015076059A1 (en) Capacitor and manufacturing method thereof
Li et al. Pressure-tuned and surface-oxidized copper foams for dendrite-free Li metal anodes
KR20160002417A (en) Negative electrode active material and negative electrode for sodium secondary battery using molten salt electrolyte, and sodium secondary battery using molten salt electrolyte
JP2007299801A (en) Energy storing element
WO2013061789A1 (en) Capacitor
WO2013146464A1 (en) Electrode material, and capacitor and secondary battery using said electrode material
JP5422360B2 (en) Method for producing porous metal body for lithium secondary battery active material
Martha et al. Nanostructured anode materials for batteries (lithium ion, Ni-MH, lead-acid, and thermal batteries)
JP2015095634A (en) Power storage device and manufacturing method thereof
JP2014187383A (en) Capacitor arranged by use of metal porous body
US10256049B2 (en) Positive electrode for a lithium ion capacitor and lithium ion capacitor
JP2011228402A (en) Electrical storage device
JP2010170901A (en) Negative-electrode active material, secondary battery and capacitor using the same
JP5565112B2 (en) Capacitor using porous metal

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080065551.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10849857

Country of ref document: EP

Kind code of ref document: A1