WO2011128984A1 - 動作確認試験方法、動作確認試験プログラム、及びクロック分配回路 - Google Patents

動作確認試験方法、動作確認試験プログラム、及びクロック分配回路 Download PDF

Info

Publication number
WO2011128984A1
WO2011128984A1 PCT/JP2010/056623 JP2010056623W WO2011128984A1 WO 2011128984 A1 WO2011128984 A1 WO 2011128984A1 JP 2010056623 W JP2010056623 W JP 2010056623W WO 2011128984 A1 WO2011128984 A1 WO 2011128984A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
differential signal
signal
data
differential
Prior art date
Application number
PCT/JP2010/056623
Other languages
English (en)
French (fr)
Inventor
明彦 紺本
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2012510498A priority Critical patent/JP5422736B2/ja
Priority to PCT/JP2010/056623 priority patent/WO2011128984A1/ja
Publication of WO2011128984A1 publication Critical patent/WO2011128984A1/ja
Priority to US13/644,943 priority patent/US20130030752A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • G06F1/12Synchronisation of different clock signals provided by a plurality of clock generators

Definitions

  • Communication device systems that operate with synchronized clocks may have different phases of input data due to transmission delays caused by cables connecting the devices, so a phase adjustment circuit that adjusts the phase difference of input data with respect to output data is installed. ing.
  • the operation check test of the phase adjustment circuit is performed with the phase adjustment circuit mounted on the communication device.
  • test logic is built in a cache chip, a microprogram is read from a tester provided outside the cache chip, and a test is performed by the test logic to perform a function test (operation check test).
  • the operation confirmation test should be performed. There was an operating range that could not be performed. In such a case, it is not possible to test the entire operating range of the system or device in which the phase adjustment circuit is mounted, which may cause a problem in the reliability of the system or device in which the phase adjustment circuit is mounted. .
  • an operation check test method, an operation check test program, and a clock distribution circuit capable of performing an operation check test over the entire range in which the phase of the phase adjustment circuit can be adjusted and performing the operation check test easily and accurately are provided. For the purpose.
  • An operation check test method includes a phase adjustment circuit that adjusts and outputs the phase of at least one of a first differential signal and a second differential signal, and the first output from the phase adjustment circuit. Either one of the first differential signal and the second differential signal is used as a clock signal, and either the first differential signal or the second differential signal is used as a data signal in synchronization with the clock signal.
  • An operation confirmation test method in which a computer performs an operation confirmation test of the phase adjustment circuit of a clock distribution circuit including a differential DFF to be acquired, wherein the computer is configured to detect the first differential signal or the second differential signal.
  • an operation confirmation test program capable of performing an operation confirmation test over the entire range in which the phase of the phase adjustment circuit can be adjusted and performing the operation confirmation test easily and accurately. it can.
  • FIG. 3 is a block diagram illustrating a server to which the clock distribution circuit according to the first embodiment is applied.
  • 3 is a diagram illustrating a high-speed serial I / O reception circuit including the clock distribution circuit according to the first embodiment.
  • FIG. 3 is a diagram illustrating a state in which an LSI tester is connected to the high-speed serial I / O reception circuit 100 according to the first embodiment.
  • FIG. It is a figure which shows the output of DFF when the phase of a data signal is shifted in steps of 45 degrees with respect to the clock signal of DFF.
  • FIG. 6 is a diagram illustrating a value of an output data signal DFFq with respect to output phases of adjustment circuits A and B of the clock distribution circuit according to the first embodiment.
  • 3 is a flowchart showing the processing contents of a first stage operation check test executed by an LSI tester connected to the high-speed serial I / O reception circuit of the first embodiment.
  • 3 is a flowchart showing the contents of a second stage operation check test executed by the LSI tester connected to the high-speed serial I / O receiver circuit of the first embodiment.
  • 6 is a diagram illustrating a high-speed serial I / O reception circuit including a clock distribution circuit according to a modification of the first embodiment.
  • FIG. 6 is a diagram illustrating a high-speed serial I / O reception circuit including a clock distribution circuit according to a second embodiment.
  • FIG. 10 is a flowchart showing the processing contents of an operation check test executed by an LSI tester connected to the high-speed serial I / O receiving circuit according to the second embodiment.
  • 6 is a diagram illustrating a high-speed serial I / O reception circuit including a clock distribution circuit according to a third embodiment.
  • FIG. 1 is a block diagram illustrating a server to which the clock distribution circuit according to the first embodiment is applied.
  • the server 1 is an information processing apparatus including a CPU (Central Processing Unit) 10, a cache 20, a memory controller 30, a main storage device 40, and an auxiliary storage device 50.
  • the CPU 10, the cache 20, the memory controller 30, the main storage device 40, and the auxiliary storage device 50 are connected by, for example, a dedicated system bus 60.
  • the server 1 may include a plurality of CPUs 10.
  • the cache 20 is a memory that temporarily stores data necessary when the CPU 10 performs arithmetic processing, and is realized by, for example, an SRAM (Static Random Access Memory).
  • SRAM Static Random Access Memory
  • the memory controller 30 is a control device that performs control when data is read and written between the memory controller 30 and the main storage device 40 based on a command from the CPU 10.
  • the CPU 10, the cache 20, and the memory controller 30 are realized by, for example, an LSI (Large Scale Integration).
  • the main storage device 40 is, for example, a DRAM (Dynamic Random Access Memory) or a ROM (Read Only Memory), and the auxiliary storage device 50 is, for example, a hard disk.
  • DRAM Dynamic Random Access Memory
  • ROM Read Only Memory
  • the server 1 may include a data input / output port for communicating with an external device.
  • the clock distribution circuit according to the first embodiment is built in, for example, the CPU 10 or the memory controller 30 in the server 1, but in the following, the clock distribution circuit according to the first embodiment is built in the high-speed serial I / O reception circuit.
  • the CPU 10 see FIG. 1
  • the high-speed serial I / O reception circuit incorporating the clock distribution circuit of the first embodiment
  • a high-speed serial I / O receiving circuit incorporating the clock distribution circuit of the first embodiment will be described with reference to FIG.
  • FIG. 2 is a diagram illustrating a high-speed serial I / O reception circuit including the clock distribution circuit according to the first embodiment.
  • the high-speed serial I / O receiving circuit 100 includes a clock distribution circuit 110, an amplifier 120, a DFE (Decision Feedback Equalizer) 130, and test ports 140A and 140B.
  • the clock distribution circuit 110 includes a phase adjustment circuit 111 and a differential DFF (differential D flip-flop) 112.
  • a data processing circuit 150 is connected to the output side of the DFF 130.
  • the phase adjustment circuit 111 is a two-phase ⁇ two-output type phase adjustment circuit, and includes an adjustment circuit A and an adjustment circuit B.
  • a clock signal output from the oscillator 11A in the CPU 10 is input to the phase adjustment circuit 111 as a four-phase clock signal via a PLL (Phase-locked loop) 11B.
  • the phase adjustment circuit 111 adjusts the phase delay of the clock signal in the transmission path by the adjustment circuits A and B, and outputs the clock signal.
  • the adjustment circuit A and the adjustment circuit B each output a two-phase clock signal.
  • the two-phase clock signals output from the adjustment circuits A and B are differential clock signals that are 180 degrees out of phase (inverted).
  • the phase adjustment circuit 111 is connected to a test port 140A used in an operation confirmation test of the clock distribution circuit via a signal line.
  • a phase shift command for shifting the phase of the clock signal output from the adjustment circuits A and B of the phase adjustment circuit 111 is input to the test port 140A during the operation confirmation test of the clock distribution circuit 110.
  • the differential DFF 112 has data input terminals d and dx, clock input terminals ck and ckx, and a data output terminal q.
  • the data input terminals d and dx are respectively connected to a pair of output terminals of the adjustment circuit A, and a differential clock signal output from the adjustment circuit A is input thereto.
  • a non-inverted clock signal is input to the data input terminal d
  • an inverted clock signal is input to the data input terminal dx.
  • the clock input terminals ck and ckx are respectively connected to a pair of output terminals of the adjustment circuit B, and a differential clock signal output from the adjustment circuit B is input thereto.
  • a non-inverted clock signal is input to the clock input terminal ck, and an inverted clock signal is input to the clock input terminal ckx.
  • the data output terminal q is an output terminal that outputs an output data signal strobed by the differential DFF 112.
  • the differential DFF 112 uses the differential clock signal input to the clock input terminals ck and ckx as a clock, strobes the differential clock signal input to the data input terminals d and dx as data, and outputs it from the data output terminal q. Output as a data signal.
  • FIG. 2 shows a configuration in which the adjustment circuit A is connected to the data input terminals d and dx of the differential DFF 112 and the adjustment circuit B is connected to the clock input terminals ck and ckx.
  • the adjustment circuit B is connected to the data input terminals d and dx
  • the adjustment circuit A is connected to the clock input terminals ck and ckx. May be. That is, the differential DFF 112 uses one of the differential clock signals output from the adjustment circuits A and B as a clock signal and the other as a data signal, and strobes the data signal in synchronization with the clock signal.
  • the differential clock signals output from the adjustment circuits A and B are used as a data signal and a clock signal, respectively, and an operation check test is performed by shifting the phase of the data signal with respect to the clock signal. Test the operation by shifting the phase of the clock signal.
  • the test port 140B is connected to the data output terminal q of the differential DFF 112 via a signal line. The operation confirmation test will be described later.
  • the amplifier 120 is connected to a signal line in the CPU 10 (see FIG. 1).
  • the amplifier 120 receives, for example, data for integer arithmetic or floating point arithmetic via a signal line.
  • the DFE 130 has D / L (Decision Latch) 131 and 132. Data is input from the amplifier 120 to the D / L 131 and 132. Further, the differential clock signal from the adjustment circuit A of the phase adjustment circuit 111 is input to the D / L 131, and the differential clock signal from the adjustment circuit B is input to the D / L 132. The D / Ls 131 and 132 latch the data input from the amplifier 120 using the differential clock signals input from the adjustment circuits A and B, respectively, and transmit the data to the data processing circuit 150 in the subsequent stage.
  • the data processing circuit 150 includes FFs (Flip Flop) 151 and 152 and a calculation unit 153.
  • the input terminal of the FF 151 is connected to the D / L 131
  • the input terminal of the FF 152 is connected to the D / L 132
  • the output terminals of the FFs 151 and 152 are connected to the calculation unit 153.
  • the arithmetic unit 153 only needs to be able to perform integer arithmetic or floating point arithmetic based on the data held by the FFs 151 and 152, and may be a logic circuit, for example.
  • Test ports 140A and 140B are ports for connecting an LSI tester when performing an operation check test of the phase adjustment circuit 111 of the clock distribution circuit 110.
  • a phase shift command is input from the LSI tester to the test port 140A, and output data output from the output terminal q of the differential DFF 112 is read by the LSI tester via the test port 140B.
  • FIG. 3 is a diagram illustrating a state in which an LSI tester is connected to the high-speed serial I / O reception circuit 100 according to the first embodiment.
  • the LSI tester 160 is an operation check test apparatus existing outside the server 1 (see FIG. 1), and is connected to the test ports 140A and 140B.
  • the LSI tester 160 inputs a phase shift command to the high-speed serial I / O receiving circuit 100 via the test port 140A, and output data output from the output terminal q of the differential DFF 112 via the test port 140B. Read.
  • the LSI tester 160 performs an operation check test of the phase adjustment circuit 111 by comparing the read data with expected value data.
  • the expected value data is output data that is expected to be output from the output terminal q of the differential DFF 112 when the operation of the phase adjustment circuit 111 is normal.
  • the LSI tester 160 may be an arithmetic processing unit that can execute a program for an operation check test of the phase adjustment circuit 111, and for example, a computer can be used.
  • the LSI tester 160 includes an operation check test processing unit 161 and a memory 162.
  • the operation check test processing unit 161 includes a data acquisition unit 161A, a phase shift unit 161B, and a comparison unit 161C, and performs an operation check test process by executing a program for the operation check test.
  • the data acquisition unit 161A acquires the output data output from the differential DFF 112 via the test port 140B and stores it in the memory 162.
  • the phase shift unit 161B inputs a phase shift command to the phase adjustment circuit 111 via the test port 140A. Thereby, the phase of the clock signal output from the adjustment circuits A and B of the phase adjustment circuit 111 is shifted.
  • the phase shifter 161B is configured to output both clock signals in a predetermined phase unit until the phase difference between the clock signal output from the adjustment circuit A and the clock signal output from the adjustment circuit B reaches one cycle of each signal.
  • a phase shift command for shifting the phase is repeatedly input to the phase adjustment circuit 111.
  • the comparison unit 161C compares the output data signal output from the clock distribution circuit 110 with the expected value of the output data. Since the phase shift unit 161B repeatedly issues a phase shift command for instructing a phase shift in a predetermined phase unit, the comparison unit 161C acquires a plurality of output data output from the clock distribution circuit each time the phase shift command is issued. Compare with multiple expected values of output data.
  • the processing of the data acquisition unit 161A, the phase shift unit 161B, and the comparison unit 161C is executed as the LSI tester 160, and therefore the following description will be made assuming that the LSI tester 160 performs each processing.
  • the memory 162 stores a program for the operation check test, data acquired in the operation check test, and the like.
  • the LSI tester 160 transmits a phase shift command to the phase adjustment circuit 111 and an oscillation command to the oscillator 11A during an operation check test.
  • the operation confirmation test of the first embodiment includes two stages, a first stage and a second stage.
  • first, the first stage operation confirmation test will be described.
  • FIG. 4 shows an output data signal of the differential DFF when the phase of the data signal input to the differential DFF 112 is gradually shifted by 45 ° with respect to the clock signal input to the differential DFF.
  • the clock signal DFFck is a clock signal input from the adjustment circuit B to the clock input terminal ck of the differential DFF 112 (see FIG. 3), and the data signal DFFd is the data input terminal of the differential DFF 112. It is assumed that d is a data signal input from the adjustment circuit A.
  • FIG. 4 shows the output data signal of the differential DFF obtained when the phase of the clock signal output from the adjustment circuit B is fixed and the phase of the clock signal output from the adjustment circuit A is shifted stepwise by 45 °. Indicates.
  • the output data signal DFFq is an output data signal output to the output terminal q of the differential DFF 112 (see FIG. 3).
  • the phase shift of the data signal for the first stage operation check test is performed by a phase shift command input to the phase adjustment circuit 111 from the LSI tester 160 (see FIG. 3).
  • the clock signal and the data signal are oscillated by an oscillation command input from the LSI tester 160 to the phase adjustment circuit 111.
  • the phase difference between the clock signal DFFck and the data signal DFFd is 45 °
  • the data signal DFFd that is strobed at the rising edge of the clock signal DFFck is data (data).
  • the data signal DFFq becomes data (data).
  • the phase difference between the clock signal DFFck and the data signal DFFd is 90 °
  • the data signal DFFd that is strobed at the rising edge of the clock signal DFFck is data (data).
  • the data signal DFFq becomes data (data).
  • the data signal DFFd strobed at the rising edge of the clock signal DFFck is a data bar (data (bar).
  • the output data signal DFFq becomes data (data).
  • the data signal DFFd strobed at the rising edge of the clock signal DFFck is a data bar (data (bar).
  • the output data signal DFFq becomes a data bar (data bar).
  • the data signal DFFd strobed at the rising edge of the clock signal DFFck is a data bar (data (bar).
  • the output data signal DFFq becomes a data bar (data bar).
  • the data signal DFFd strobed at the rising edge of the clock signal DFFck is a data bar (data (bar).
  • the output data signal DFFq becomes a data bar (data bar).
  • the data signal DFFd strobed at the rising edge of the clock signal DFFck is a data bar (data (bar).
  • the output data signal DFFq becomes a data bar (data bar).
  • the values of the eight output data signals DFFq are , “00001111”.
  • the eight output data signals DFFq include four “0” s and four “1” s because the data (data) “0” is differential at 180 ° in one cycle (360 °). This is because the data bar (data bar) “1” is strobed by the differential DFF 112 in the remaining 180 °. In addition, “0” or “1” continues until the phase difference between the clock signal and the data signal reaches 180 °, and the data (data) “0” state continues for the remaining 180 °. This is because the state of data bar (data bar) “1” continues.
  • a point where “0” or “1” occurs discontinuously and suddenly among the eight output data signals DFFq represents a malfunction region.
  • the phase of the data signal is shifted as shown in FIG. 4 and the eight output data signals DFFq are “01001111”, the phase difference corresponding to the second data “1” from the left of DFFq It can be seen that there is an abnormality in the operation of the phase modulation circuit 111 when the angle is 45 °. Since the operation example shown in FIG.
  • the LSI tester 160 (see FIG. 3) is connected to the high-speed serial I / O receiving circuit 100 and the operation check test of the first stage is performed, when the phase is shifted as shown in FIG.
  • the expected value used in the tester 160 may be set to “00001111”. Then, by comparing the output data signal DFFq obtained in the first stage operation check test with the expected value by the LSI tester 160, it is possible to determine whether the operation of the phase adjustment circuit 111 is normal or abnormal. .
  • n is an integer of 2 or more
  • the first stage is performed so as to obtain n output data signals DFFq while shifting the phase difference between the clock signal and the data signal by 1 / n cycles.
  • An eye movement confirmation test may be performed.
  • the phase adjustment circuit 111 is in the phase where the discontinuous and sudden output data signal DFFq occurs (or before and after the phase). It can be seen that there is a malfunction region.
  • the division number n When the division number n is set to an odd number, the numbers of “0” and “1” included in the n output data signals DFFq are different by one. In this case, “0” and “1” The error of the number “1” is recognized up to the error “1”, and the operation failure region may be grasped based on the presence / absence of the location where “0” or “1” occurs discontinuously and suddenly.
  • the expected value in the case of the division number n is that up to one error in the number of “0” and “1” included in the n output data signals DFFq is recognized, and “0” or “1” is What is necessary is just to set as a value which does not include the location which arises discontinuously and suddenly.
  • a first-stage operation check test may be performed so as to obtain a plurality of output data signals DFFq.
  • the data signal and the clock signal are supplied to the differential DFF while shifting the phase of either the clock signal DFFck or the data signal DFFd by 30 ° to obtain DFFq, and the level of the clock signal DFFck and the data signal DFFd is obtained.
  • a first stage operation check test may be performed so as to obtain a plurality of output data signals DFFq.
  • the expected value in this case is that up to one error of n “0” and “1” included in the plurality of output data signals DFFq is recognized, and “0” or “1” is discontinuous and What is necessary is just to set as a value which does not include the location which arises suddenly.
  • the eight output data signals obtained in the example shown in FIG. 4 are “00001111”, and are output between when the phase of the clock signal output from the adjustment circuit A is 135 ° and when it is 180 °. It can be seen that there is a point where the data signal changes from “0” to “1”.
  • the reason why the unit for gradually shifting the phase of the clock signal output from the adjustment circuit A is set to 45 ° is for the convenience of explanation, and in general, the unit for actually shifting the phase. Is set to a smaller value.
  • the phase of the clock signal output from the adjustment circuit B is fixed, and the unit for stepwise shifting the phase of the clock signal output from the adjustment circuit A by dividing the period (360 °) into 72 equal parts. If set, 72 output data signals are obtained.
  • the output data signal changes from “0” to “1” between when the phase of the clock signal output from the adjustment circuit A is 165 ° and when it is 170 °. You can see that there are points to change.
  • the output data signal changes from “0” to “1”.
  • the clock signal output from the adjustment circuit A and the adjustment circuit B The phase difference from the clock signal output from the signal is obtained at an operating point of 168 °.
  • the phase adjustment included in the clock distribution circuit 110 according to the first embodiment is performed by the second-stage operation check test described below.
  • the operation check test of the circuit 111 can be performed with higher accuracy.
  • FIG. 5 is a diagram illustrating the value of the output data signal DFFq with respect to the output phase of the adjustment circuits A and B of the clock distribution circuit according to the first embodiment.
  • the value of the output data signal DFFq shown in FIG. 5 is output when the phase difference between the clock signal output from the adjustment circuit A and the clock signal output from the adjustment circuit B is 168 °, as described above. This is the value of the output data signal DFFq obtained in the operation example in which the data signal changes from “0” to “1”. As shown in FIG. 5, according to the relationship between the phase of the clock signal output from the adjustment circuit A and the phase of the clock signal output from the adjustment circuit B, the DFFq is “1” and the DFFq is “0”. It will be divided into areas.
  • phase difference 168 ° is a phase difference at which a change point where the output data signal changes from “0” to “1” appears.
  • the horizontal axis (hereinafter referred to as “horizontal axis A” or “axis A”) represents the phase shift amount of the signal output from the adjustment circuit A
  • the vertical axis (hereinafter referred to as “vertical axis B” or “axis B”). (Referred to as ")" indicates the phase shift amount of the signal output from the adjustment circuit B.
  • the value of the output data signal DFFq when the phases of the adjustment circuits A and B are shifted from 0 ° to 360 ° is data (data) “0” or data bar (data (bar). It is divided into areas where “1” is obtained.
  • the region where data “data” “0” is obtained is a region below the straight line (1A), a region between the straight line (2A) and the straight line (1B), and a region above the straight line (2B).
  • the region where the data bar (data bar) “1” is obtained is a region between the straight line (1A) and the straight line (2A) and a region between the straight line (1B) and the straight line (2B).
  • the straight line (1A) and the straight line (1B) represented by the equations (1A) and (1B) Represents the boundary of a continuous region.
  • expressions (1) When the expressions (1A) and (1B) are not distinguished from each other, they are referred to as expressions (1).
  • lines (1) When the lines (1A) and (1B) are not distinguished from each other, they are referred to as lines (1).
  • straight line (2A) and the straight line (2B) represented by the expressions (2A) and (2B) represent a boundary of a continuous region.
  • expressions (2) straight lines
  • straight lines (2) straight lines
  • the output values on the straight lines (1A) to (2B) are “1” on the straight lines (1A) (1B) and “0” on the straight lines (2A) (2B).
  • the eight output data signals DFFq obtained when the phase of the clock signal output from the adjustment circuit B is fixed and the phase of the clock signal output from the adjustment circuit A is shifted stepwise by 45 ° are Will be given.
  • the phase difference (the phase of the clock signal output from the adjustment circuit A and the clock output from the adjustment circuit B) at which a change point at which the output data signal changes from “0” to “1” appears.
  • the phase difference from the signal phase is 168 °.
  • phase difference phase difference between the phase of the clock signal output from the adjustment circuit A and the phase of the clock signal output from the adjustment circuit B
  • phase difference between the phase of the clock signal output from the adjustment circuit A and the phase of the clock signal output from the adjustment circuit B
  • the formulas (1A) to (2B) can be expressed as general formulas like the following formulas (3A) to (4B).
  • the phase difference ⁇ is a positive value indicating that the phase of the clock signal output from the adjustment circuit A is advanced with respect to the phase of the clock signal output from the adjustment circuit B.
  • the phase difference ⁇ at which the change point of the output data signal appears cannot be grasped from the output data signal.
  • the clock signal output from the adjustment circuit A If the phase difference between the phase and the phase of the clock signal output from the adjustment circuit A is reduced, the phase difference ⁇ at which the change point of the output data signal appears can be reduced to a certain range. That is, the phase difference ⁇ at which the change point of the output data signal appears can be sandwiched between two values. These two values are neighboring values located in the vicinity of the phase difference ⁇ before and after the change point of the output data signal appears.
  • phase difference (168 °) is found to be between the case where the phase of the clock signal output from the adjustment circuit A is 165 ° and the case where the phase is 170 °. That is, in this operation example, the phase difference ⁇ at which the change point of the output data signal appears is 168 °, and the two neighboring values are 165 ° and 170 °.
  • the phase difference between the phase of the clock signal output from the adjustment circuit A and the phase of the clock signal output from the adjustment circuit B is fixed to a value near the phase difference where the change point of the output data signal appears.
  • a second stage operation check test is performed by simultaneously shifting the phase of the clock signal output from the adjustment circuits A and B in the range of 0 ° to 360 °. As described above, since there are two neighborhood values, it is possible to confirm the operation for both neighborhood values.
  • the phase difference between the adjustment circuit A and the adjustment circuit B is set to 165 °, which is one of the neighboring values, and a second stage operation check test is performed.
  • the phase difference is set to 170 °, which is the other neighboring value, and a second stage operation check test is performed.
  • the second phase operation check test is performed on one neighboring value by shifting the output phase of the adjustment circuit A and the output phase of the adjustment circuit B so as to satisfy the following expressions (5A) and (5B).
  • the output phase of the adjustment circuit A and the output phase of the adjustment circuit B are shifted so as to satisfy the expressions (6A) and (6B), and the second stage operation check test is performed on the other neighboring value.
  • the straight line (5A) (5B) (6A) (6B) represented by Formula (5A) (5B) (6A) (6B) is shown.
  • expressions (5A) and (5B) are not distinguished from each other, they are referred to as expressions (5), and when the straight lines (5A) and (5B) are not distinguished from each other, they are referred to as lines (5).
  • formulas (6A) and (6B) are not distinguished, they are referred to as formula (6), and when the straight lines (6A) and (6B) are not distinguished, they are referred to as straight lines (6).
  • the straight line (5A) represented by the expression (5A) is present at a position 3 ° higher in the positive direction of the B axis than the straight line (2A) represented by the expression (2A), and the value of the output data signal DFFq Exists in the region where becomes "0".
  • the straight line (5B) represented by the expression (5B) exists at a position 3 ° higher in the positive direction of the B axis than the straight line (2B) represented by the expression (2B), and the output data signal It exists in the region where the value of DFFq is “0”.
  • the straight line (6A) represented by the expression (6A) is present at a position 2 ° lower in the negative direction of the B axis than the straight line (2A) represented by the expression (2A), and the output It exists in the region where the value of the data signal DFFq is “1”.
  • the straight line (6B) represented by the equation (6B) exists at a position 2 ° lower in the negative direction of the B axis than the straight line (2B) represented by the equation (2B), and the output data signal It exists in the region where the value of DFFq is “1”.
  • the second stage operation check test is performed by setting the phase difference between the adjustment circuit A and the adjustment circuit B to 165 ° and 170 ° which are two neighboring values of the phase difference (168 °) of the change point. As described above, the second stage operation check test may be performed only for one of the neighboring values.
  • phase difference ⁇ between the adjustment circuit A and the adjustment circuit B is 168 °
  • the phase difference between the clock signals output from the adjustment circuits A and B is a neighborhood value 165.
  • a mode in which the second stage operation confirmation test is performed with the angle fixed at ° and 170 degrees has been described.
  • the phase difference between the adjustment circuit A and the adjustment circuit B is fixed to a value close to ⁇ (0 ° to 360 °), which is a general value of the phase difference at the change point, the second difference with respect to an arbitrary phase difference ⁇ .
  • An operation check test at the stage can be executed.
  • the output data signal DFFq of the differential DFF 112 is The straight line (1) also has an output value boundary.
  • the straight line (1) is a straight line existing at a position different from the straight line (2) by 180 ° in the horizontal axis A direction or the vertical axis B direction. Therefore, the second stage operation check test may be performed for the straight line (1) instead of the straight line (2), or the second stage operation check test for both the straight line (2) and the straight line (1). May be performed.
  • FIG. 6A is a flowchart showing the processing contents of the first stage operation check test executed by the LSI tester connected to the high-speed serial I / O reception circuit of the first embodiment.
  • one period (360 °) is divided into 72 equal parts, and the difference from the clock signal input to the differential DFF 112 is obtained.
  • a case will be described in which the phase of the data signal input to the dynamic DFF 112 is shifted stepwise by 5 ° and supplied to the differential DFF to obtain the output data signal DFFq of the differential DFF 112.
  • the LSI tester 160 first outputs the signal output terminal q of the differential DFF 112 by fixing the phase of the signal output from the adjustment circuit B and shifting the signal phase output from the adjustment circuit A in units of 5 °.
  • the first stage operation check test is performed based on the output data signal. That is, the first stage operation check test is performed by shifting the phase of the differential clock signal input as data (d, dx) from the adjustment circuit A to the differential DFF 112. Thereby, the operation of the adjustment circuit A can be confirmed.
  • the phase of the signal output from the adjustment circuit A is fixed, and the phase of the signal output from the adjustment circuit B is shifted in units of 5 ° to be output from the data output terminal q of the differential DFF 112.
  • a first stage operation check test is performed based on the output data signal. That is, the first stage operation check test is performed by shifting the phase of the differential clock signal input as the clock (ck, ckx) from the adjustment circuit B to the differential DFF 112. Thereby, the operation of the adjustment circuit B can be confirmed.
  • the processing procedure of the first stage operation check test is specifically as follows.
  • the LSI tester 160 sets the phase difference between the signals output from the adjustment circuits A and B to an initial value (0 °) (step S1). At this time, since the phase difference between the adjustment circuits A and B is 0 °, the phase shift command transmitted from the LSI tester 160 to the phase adjustment circuit 111 represents 0 °.
  • the LSI tester 160 transmits an oscillation command to the oscillator 11A so that the oscillator 11A outputs a clock signal (step S2).
  • a clock signal is output from the oscillator 11A
  • a four-phase clock signal is input to the phase adjustment circuit 111 via the PLL 11B.
  • four-phase clock signals having a phase difference of 0 ° between the differential clock signals are output.
  • an output data signal is output from the data output terminal q of the differential DFF 112.
  • the output data signal when the phase difference between the adjustment circuits A and B is 0 ° is data (data) “0” in a normal state as shown in FIG.
  • the LSI tester 160 stores the value of the output data signal from the differential DFF 112 in the memory 162 (step S3).
  • the LSI tester 160 determines whether or not the operation check test for all the predetermined phase differences has been completed (step S4). Specifically, the LSI tester 160 shifts the phase of the clock signal output from the adjustment circuit A in units of 5 ° so that all phase differences (0 ° to 5 °) obtained by dividing one period (360 °) into 72 equal parts. It is determined whether or not an operation confirmation test has been performed for 355 degrees (in increments of °).
  • step S4 determines in step S4 that the operation check test has not been performed for all phase differences (NO in S4), the flow proceeds to step S5, and the phase of the clock signal output from the adjustment circuit A is changed. Advance 5 ° (step S5). That is, the phase of the data signal (d, dx) is advanced by 5 ° with respect to the clock signal (ck, ckx) input to the differential DFF 112.
  • the LSI tester 160 returns the flow to step S2 when the process of step S5 is completed.
  • the processes in steps S2 to S4 are repeatedly executed until the operation check test is completed for all the phase differences.
  • steps S2 to S4 are repeated until the phase of the clock signal output from the adjustment circuit A is advanced by 355 °, the memory 162 of the LSI tester 160 stores data representing 72 output data signals.
  • step S4 If the LSI tester 160 determines in step S4 that the operation check test has been completed for all phase differences (YES in S4), it compares the data representing the 72 output data signals with the expected values (step S6).
  • the output data signal DFFq includes 36 “0” s and 36 “1” s and does not include a location where “0” or “1” occurs discontinuously and suddenly, 72 output data
  • the signal DFFq is determined to be the same as the expected value, and the operation check test is passed. That is, the clock distribution circuit 110 including the phase adjustment circuit 111 is determined to be non-defective at least for the adjustment circuit A.
  • the operation confirmation test is not allowed. Pass. That is, the clock distribution circuit 110 including the phase adjustment circuit 111 is determined as a defective product.
  • step S6 If the value of the output data signal matches the expected value in step S6, in other words, the LSI tester 160 determines that the operation confirmation test is acceptable, the LSI tester 160 performs the processing from step S7 onward in order to perform the operation confirmation test of the adjustment circuit B. Execute. In the processing of steps S7 to S12, an operation check test is performed while the phase of the clock signal output from the adjustment circuit A is advanced by 5 ° except that the phase of the clock signal output from the adjustment circuit B is advanced by 5 °. ⁇ S6 is the same as the process.
  • the LSI tester 160 sets the phase difference between the signals from the adjustment circuits A and B to an initial value (0 °) (step S7). At this time, since the phase difference between the output phases of the adjustment circuits A and B is 0 °, the phase shift command transmitted from the LSI tester 160 to the phase adjustment circuit 111 represents 0 °.
  • the LSI tester 160 transmits an oscillation command to the oscillator 11A in order to cause the oscillator 11A to output a clock signal (step S8).
  • a clock signal is output from the oscillator 11A, and a four-phase clock signal is input to the phase adjustment circuit 111 via the PLL 11B.
  • a four-phase clock signal having a phase difference of 0 ° between the differential clock signals is output, and the clock input terminals ck and ckx and the data input terminal d of the differential DFF 112 are output. , Dx respectively.
  • an output data signal is output from the data output terminal q of the differential DFF 112.
  • the output data signal when the phase difference between the adjustment circuits A and B is 0 ° is data (data) “0”.
  • the LSI tester 160 stores the value of the output data signal in the memory 162 (step S9).
  • the LSI tester 160 determines whether or not an operation check test has been performed for all predetermined phase differences (step S10). Specifically, the LSI tester 160 shifts the phase of the clock signal output from the adjustment circuit B to shift all the phase differences (0 ° to 5 ° in units of 72 equal to one cycle (360 °)). Up to 355 °) is determined whether or not an operation check test has been performed.
  • step S10 If the LSI tester 160 determines in step S10 that the operation check test for all phase differences has not been performed, the LSI tester 160 advances the flow to step S11 and advances the phase of the clock signal output from the adjustment circuit B by 5 ° ( Step S11). That is, the phase of the clock signal (ck, ckx) is advanced by 5 ° with respect to the data signal (d, dx) input to the differential DFF 112.
  • step S11 ends, the LSI tester 160 returns the flow to step S8.
  • step S8 the processing from step S8 to S10 is repeatedly executed until the operation check test is completed for all phase differences.
  • steps S8 to S10 are repeated until the phase of the clock signal output from the adjustment circuit B has been advanced by 355 °, the memory 162 of the LSI tester 160 stores data representing 72 output data signals.
  • step S10 If the LSI tester 160 determines in step S10 that the operation check test has been completed for all phase differences, the LSI tester 160 compares the data representing the 72 output data signals with the expected values (step S12).
  • the output data signal DFFq includes 36 “0” s and 36 “1” s and does not include a location where “0” or “1” occurs discontinuously and suddenly, 72 output data
  • the signal DFFq is determined to be the same as the expected value, and the operation check test is passed. That is, the clock distribution circuit 110 including the phase adjustment circuit 111 is determined to be non-defective for both the adjustment circuits A and B.
  • the operation confirmation test is not allowed. Pass. That is, the clock distribution circuit 110 including the phase adjustment circuit 111 is determined as a defective product.
  • the output data signal of the differential DFF 112 is obtained by directly using the differential output of the two-phase two-output type phase adjustment circuit 111 as a clock signal and a data signal. It is possible to accurately grasp the quality.
  • the differential output output from each of the adjustment circuits A and B of the phase adjustment circuit 111 is used as a clock signal (ck, ckx) and a data signal (d, dx) of the differential DFF 112 to obtain an output data signal. Therefore, an unstable output such as a metastable is hardly generated, and a stable output can be obtained.
  • the operation check test is performed while the output phases of the adjustment circuits A and B of the phase adjustment circuit 111 are directly shifted by the LSI tester 160, the operation check test is performed for the entire range in which the output phase of the phase adjustment circuit 111 can be adjusted. It can be performed.
  • step S5 the case where the phase differences shifted in step S5 and step S11 are each equal to 5 ° has been described.
  • the phase difference shifted in step S5 may be different from the phase difference shifted in step S11.
  • phase adjustment circuit 111 determined to be non-defective in the first stage operation check test shown in FIG. 6A, a more accurate second stage operation check test described below can be performed.
  • FIG. 6B is a flowchart showing the processing contents of the second stage operation check test executed by the LSI tester connected to the high-speed serial I / O reception circuit of the first embodiment.
  • the LSI tester 160 sets the output phase of the adjustment circuits A and B to the initial values when the second stage operation check test is started (step S13).
  • the LSI tester 160 executes the process of step S13 as a process following step S12 shown in FIG. 6A.
  • the initial value of the output phase of the adjustment circuits A and B is the phase difference between the output phases of the adjustment circuits A and B and the vicinity of the phase difference where the change point of the output data signal appears. It is given by fixing the value and setting the output phase of one of the adjustment circuits A and B to 0 °.
  • the LSI tester 160 first uses one of the two neighboring values to set the output phase of the adjustment circuit A to 165 ° and the output phase of the adjustment circuit to 0 °. At this time, the phase shift command transmitted from the LSI tester 160 to the phase adjustment circuit 111 represents 165 °.
  • phase of the clock signal output from the adjustment circuit A is set to 165 °
  • the phase of the clock signal output from the adjustment circuit B is set to 0 °. That is, the phase of the clock signal output from the adjustment circuit A is set to a phase advanced by 165 ° with respect to the phase of the clock signal output from the adjustment circuit B.
  • This state corresponds to the intersection of the straight line (5) and the A axis shown in FIG.
  • the LSI tester 160 transmits an oscillation command to the oscillator 11A so that the oscillator 11A outputs a clock signal (step S14).
  • a clock signal is output from the oscillator 11A, and a four-phase clock signal is input to the phase adjustment circuit 111 via the PLL 11B.
  • the phase adjustment circuit 111 outputs a four-phase clock signal whose phase difference between the differential clock signals output from each of the adjustment circuits A and B is 0 °, and each clock signal is a clock of the differential DFF 112. Input to the input terminals ck and ckx and the data input terminals d and dx. Then, an output data signal is output from the data output terminal q of the differential DFF 112.
  • the LSI tester 160 stores the output data signal data in the memory 162 (step S15).
  • the LSI tester 160 determines whether or not the operation check test for the entire operation range of the adjustment circuits A and B has been completed (step S16). Specifically, the LSI tester 160 determines whether or not an operation check test for one cycle (360 °) has been performed by sequentially shifting the output phases of the adjustment circuits A and B in increments of 5 °.
  • step S16 If the LSI tester 160 determines in step S16 that the operation check test for the entire operation range has not been completed, the flow proceeds to step S17, and both the output phases of the adjustment circuits A and B are advanced by 5 ° (step S16). S17). That is, the output phases of the adjustment circuits A and B are advanced by 5 ° along the straight line (5) shown in FIG.
  • phase value (5 °) advanced in step S17 is set to the same value as the phase difference value (5 °) shifted in step S5 or S11, but the phase value advanced in step S17.
  • the value may be a value different from the phase difference value shifted in step S5 or S11.
  • the LSI tester 160 returns the flow to step S14 when the process of step S17 ends.
  • the processing from step S14 to step S17 is repeatedly executed until the operation check test for the entire operation range of the adjustment circuits A and B is completed.
  • data representing 72 output data signals is stored in the memory 162 of the LSI tester 160. This corresponds to the case where the output data signal is acquired while the output phases of the adjustment circuits A and B are advanced by 5 ° along the straight line (5) shown in FIG.
  • step S16 If the LSI tester 160 determines in step S16 that the operation check test for the entire operation range has been completed, the LSI tester 160 compares 72 data representing all output data signals with the expected values (step S18). Here, along the straight line (5) in FIG. 5, the expected value is “0” for all phases.
  • the LSI tester 160 determines that the second-stage operation check test for one of the two neighboring values (here, 165 °) is acceptable (YES in S18).
  • the LSI tester 160 determines that the operation confirmation test is unacceptable (NO in S18). That is, the clock distribution circuit 110 including the phase adjustment circuit 111 is determined as a defective product.
  • step S18 If the LSI tester 160 determines in step S18 that the second-stage operation check test has passed, the LSI tester 160 determines whether or not the second-stage operation check test for both of two neighboring values has been completed ( Step S19).
  • the second stage value for the other neighboring value (here, 170 °). In order to perform the operation check test, the flow returns to step S13.
  • the LSI tester 160 uses the other of the two neighboring values to set the output phase of the adjustment circuits A and B to the initial value, and adjusts the output phase of the adjustment circuit A by 170 °. Set the output phase of the circuit to 0 °. At this time, the phase shift command transmitted from the LSI tester 160 to the phase adjustment circuit 111 represents 170 °.
  • phase of the clock signal output from the adjustment circuit A is set to 170 °
  • the phase of the clock signal output from the adjustment circuit B is set to 0 °. That is, the phase of the clock signal output from the adjustment circuit A is set to a phase advanced by 170 ° with respect to the phase of the clock signal output from the adjustment circuit B.
  • This state corresponds to the intersection of the straight line (6) and the A axis shown in FIG.
  • the LSI tester 160 executes steps S14 to S17, and fixes the phase difference between the phase of the clock signal output from the adjustment circuit A and the phase of the clock signal output from the adjustment circuit B to 170 °. Acquire output data signals.
  • step S18 the LSI tester 160 compares 72 data representing all output data signals with expected values (step S18).
  • the expected value is “1” for all phases.
  • the LSI tester 160 determines that the second stage operation check test for the other of the two neighboring values (here, 170 °) is acceptable (YES in S18).
  • the LSI tester 160 determines that the operation check test is unacceptable (NO in S18). That is, the clock distribution circuit 110 including the phase adjustment circuit 111 is determined as a defective product.
  • step S18 determines in step S18 that the second stage operation check test has passed for the other of the two neighboring values, the second stage operation for both of the two neighboring values in step S19. It is determined that the confirmation test has ended (S19 YES).
  • the clock distribution circuit 110 including the phase adjustment circuit 111 is determined to be non-defective.
  • the phase difference between the output phases of the adjustment circuits A and B is fixed to a value near the phase difference where the change point of the output data signal appears.
  • the output data signal of the differential DFF 112 is the clock signal of the differential output of the two-phase two-output phase adjustment circuit 111. Since it is obtained by using it as a data signal, the quality of the operation of the phase adjustment circuit 111 can be easily and accurately determined.
  • the differential output output from each of the adjustment circuits A and B of the phase adjustment circuit 111 is used as a clock signal (ck, ckx) and a data signal (d, dx) of the differential DFF 112 to obtain an output data signal. Therefore, an unstable output such as a metastable is hardly generated, and a stable output can be obtained.
  • the operation check test is performed while the output phases of the adjustment circuits A and B of the phase adjustment circuit 111 are directly shifted by the LSI tester 160, the operation check test is performed for the entire range in which the output phase of the phase adjustment circuit 111 can be adjusted. It can be performed.
  • the method of obtaining the output data signal of the differential DFF 112 while advancing the output phase of the adjustment circuits A and B by 5 ° has been described.
  • the output phases of A and B may be advanced in finer increments (for example, 1 ° or less).
  • finer increments for example, 1 ° or less.
  • the first embodiment includes the differential DFF 112 that uses the differential outputs respectively output from the adjustment circuits A and B of the phase adjustment circuit 111 as the clock signal (ck, ckx) and the data signal (d, dx).
  • the operation confirmation test of the clock distribution circuit 110 has been described.
  • the output of the differential DFF 112 As the output of the differential DFF 112, the output of the phase adjustment circuit 111 is directly used, and the differential output is used for both the clock signal and the data signal. Therefore, the operation of the phase adjustment circuit 111 can be easily and accurately confirmed. be able to.
  • the operation check test is performed while the output phases of the adjustment circuits A and B of the phase adjustment circuit 111 are directly shifted by the LSI tester 160, the operation check test is performed for the entire range in which the output phase of the phase adjustment circuit 111 can be adjusted. It can be performed.
  • the clock distribution circuit 110 may be any part in the server 1 that requires a clock signal. It can be included in a circuit other than the high-speed serial I / O receiving circuit 100.
  • the high-speed serial I / O reception circuit 100 includes the amplifier 120, the DFE 130, and the data processing circuit 150.
  • the circuits included in the high-speed serial I / O reception circuit 100 are not limited to these. Alternatively, another circuit or the like may be used.
  • the LSI tester 160 is an external device of the server 1.
  • the server 1, the high-speed serial I / O reception circuit 100, or the clock distribution circuit 110 may incorporate the LSI tester.
  • FIG. 7 is a diagram showing a high-speed serial I / O receiving circuit according to a modification of the first embodiment.
  • the clock distribution circuit 110 included in the high-speed serial I / O receiving circuit 100A according to the modification of the first embodiment has a built-in LSI tester 160 as an operation check test device according to the first embodiment shown in FIGS. Different from the clock distribution circuit 110 of FIG. Further, since the clock distribution circuit 110 incorporates the LSI tester 160, the high-speed serial I / O reception circuit 100A does not include the test ports 140A and 140B.
  • the clock distribution circuit 110 incorporates the LSI tester 160
  • the high-speed serial I / O reception circuit 100A incorporates the LSI tester 160
  • the server 1 see FIG. 1
  • the LSI tester 160 is built in.
  • FIG. 7 shows a form in which the LSI tester 160 is included in the clock distribution circuit 110
  • the LSI tester 160 is distributed outside the clock distribution circuit 110 to a place inside the high-speed serial I / O reception circuit 100A. May be provided.
  • the LSI tester 160 may be disposed outside the high-speed serial I / O receiving circuit 100A and inside the server 1 (see FIG. 1).
  • the LSI tester 160 is provided in the clock distribution circuit 110, the high-speed serial I / O reception circuit 100A, or the server 1, The operation of the adjustment circuit 111 can be checked easily and accurately.
  • FIG. 8 is a diagram illustrating a high-speed serial I / O reception circuit including the clock distribution circuit according to the second embodiment.
  • the high-speed serial I / O reception circuit 200 includes a two-phase, two-output type phase adjustment circuit 211 included in the clock distribution circuit 210, an amplifier (120-1 to 120-k), and a DFE (130-1). To 130-k) is different from the high-speed serial I / O receiving circuit 200 of the first embodiment.
  • k is a stage number indicating the number of stages, and may be an arbitrary integer of 2 or more. Others are the same as those of the high-speed serial I / O receiving circuit 100 of the first embodiment, and thus the same elements are denoted by the same reference numerals and the description thereof is omitted.
  • the data processing circuits (150-1 to 150-k) connected to the high-speed serial I / O receiving circuit 200 are also multistaged.
  • the phase adjustment circuit 211 includes adjustment circuits A1, B1,..., Ak, Bk. Adjustment circuits A, B,..., Ak, Bk are used in pairs of A and B.
  • the amplifiers 120-1 to 120-k are connected at their input sides to signal lines in the CPU 10 (see FIG. 1).
  • the output sides of the amplifiers 120-1 to 120-k are connected to DFEs 130-1 to 130-k having the same stage number.
  • the DFEs 130-1 to 130-k have D / L 131 and D / L 132, respectively.
  • the data processing circuits 150-1 to 150-k are connected to DFEs 130-1 to 130-k having the same stage number.
  • Each of the data processing circuits 150-1 to 150-k includes FFs 151 and 152 and a calculation unit 153.
  • the clock distribution circuit 210 includes selectors 201 and 201 between the multi-stage phase adjustment circuit 211 and the differential DFF 112.
  • the selector 201 has an input side connected to the adjustment circuits A1 to Ak, and an output side connected to the clock input terminals ck and ckx of the differential DFF 112.
  • the selector 201 selects any one of the adjustment circuits A1 to Ak, and inputs the differential clock signal output from the selected adjustment circuit to the clock input terminals ck and ckx of the differential DFF 112.
  • the selector 202 has an input side connected to the adjustment circuits B1 to Bk, and an output side connected to the data input terminals d and dx of the differential DFF 112.
  • the selector 202 selects any one of the adjustment circuits B1 to Bk, and inputs the differential clock signal output from the selected adjustment circuit to the data input terminals d and dx of the differential DFF 112.
  • the selectors 201 and 202 select a line connected to any one of the adjustment circuits A1 to Ak and B1 to Bk based on a line selection command input from the LSI tester 160. As a result, the adjustment circuits A1 to Ak and B1 to Bk are selected.
  • the adjustment circuits connected to the pair of lines selected by the selectors 201 and 202 are adjustment circuits having the same stage number k among the adjustment circuits A1 to Ak and B1 to Bk. As a result, the adjustment circuits A1 to Ak and B1 to Bk are used in pairs of A and B.
  • differential clock signals of the adjustment circuits A1 to Ak having the same stage number k are input to the D / Ls 131 of the DFEs 130-1 to 130-k.
  • differential clock signals of the adjustment circuits B1 to Bk having the same stage number k are input to the D / Ls 132 of the DFEs 130-1 to 130-k.
  • the differential clock signal of the adjustment circuit A1 is input to the D / L 131 of the DFE 130-1
  • the differential clock signal of the adjustment circuit B1 is input to the D / L 132 of the DFE 130-1.
  • the differential clock signal of the adjustment circuit Ak is input to the D / L 131 of the DFE 130-k
  • the differential clock signal of the adjustment circuit Bk is input to the D / L 132 of the DFE 130-k.
  • DFE130-2 to DFE130- (k-1) adjustment circuits A2 to A (k-1), B2 to B (k-1), and DFE130-2 to DFE130- (k-1), adjustment circuits
  • the signal lines connecting A2 to A (k-1) and B2 to B (k-1) are not shown.
  • the LSI tester 160 executes the processing shown in FIGS. 6A and 6B while selecting the adjustment circuits A1, B1,... Ak, Bk by the selectors 201, 202 using the line selection command, and performs the multistage phase. An operation check test of the adjustment circuit 211 is executed.
  • FIG. 9 is a flowchart showing the processing contents of the operation check test executed by the LSI tester connected to the high-speed serial I / O receiving circuit of the second embodiment.
  • the processing contents of the operation test shown in FIG. 9 are the line selection before and after the first-stage operation test (see FIG. 6A) and the second-stage operation test (see FIG. 6B) of the first embodiment.
  • a process for outputting a command and a process for determining whether or not all lines have been selected are added.
  • the contents of the first-stage operation test and the second-stage operation test are the same as the first-stage operation test and the second-stage operation test of the first embodiment.
  • the description is omitted, and the flowchart is also omitted.
  • the LSI tester 160 transmits a line selection command to the selectors 201 and 202 in order to select the adjustment circuits A1 to Ak and B1 to Bk of the phase adjustment circuit 211 one by one and perform an operation check test (step S100).
  • the process in step S100 is a process that is repeatedly executed until all lines are selected, that is, until a pair of adjustment circuits A1 to Ak and B1 to Bk are selected and all selections are completed.
  • the LSI tester 160 performs a first-stage operation check test to determine whether there is a malfunction (step S101).
  • step S101 is a process of determining whether or not there is a malfunction by executing a first stage operation check test realized by steps S1 to S12 shown in FIG. 6A.
  • Step S101 a pair of the first stage operation confirmation tests of the adjustment circuits A1 to Ak and B1 to Bk included in the phase adjustment circuit 211 are performed.
  • the LSI tester 160 determines that the phase adjustment circuit 211 is a defective product when it is determined as an operation failure in step S101, that is, when it is determined as an operation failure in step S6 or S12 shown in FIG. 6A (NO in S101). . In this case, the operation confirmation test ends.
  • the LSI tester 160 determines that the operation is good in the first-stage operation check test, the LSI tester 160 performs the second-stage operation check test and determines whether there is a malfunction (step S102).
  • step S102 is a process of determining the presence or absence of malfunction by executing a second stage operation check test realized by steps S13 to S19 shown in FIG. 6B.
  • steps S100 to S103 the second stage operation check test of the adjustment circuits A1 to Ak and B1 to Bk included in the phase adjustment circuit 211 is performed one by one.
  • the LSI tester 160 determines that the phase adjustment circuit 211 is a defective product if it is determined to be defective in step S102, that is, if it is determined to be defective in step S18 shown in FIG. 6B (NO in S102). In this case, the operation confirmation test ends.
  • Step S103 the LSI tester 160 determines whether or not the operation check test has been completed for all the adjustment circuits A1 to Ak and B1 to Bk ( Step S103).
  • the process of step S103 can be determined by, for example, whether or not the stage number has reached k.
  • step S103 If the LSI tester 160 determines in step S103 that the operation check test has not been completed for all the adjustment circuits A1 to Ak and B1 to Bk (S103: NO), the flow returns to step S100.
  • step S100 in order to switch the connection destination of the selectors 201 and 201 to the adjustment circuit (any pair of A1 to Ak and B1 to Bk) of the next stage number, a line selection command is sent to the selector 201, 202.
  • the LSI tester 160 determines in step S103 that the operation confirmation test has been completed for all of the adjustment circuits A1 to Ak and B1 to Bk (YES in S103), the adjustment circuit A1 to Ak and B1 to Bk of the phase adjustment circuit 211. Determines that the operation is all good, and ends the series of processes. Thereby, it is determined that the clock distribution circuit 210 of the second embodiment including the phase adjustment circuit 211 is a non-defective product.
  • all the adjustment circuits A1 to Ak and B1 to Bk included in the multistage phase adjustment circuit 211 are also included in the phase adjustment circuit 111 according to the first embodiment.
  • An operation check test can be performed in the same manner as the circuits A and B.
  • FIG. 10 is a diagram illustrating a clock distribution circuit according to the third embodiment.
  • the high-speed serial I / O reception circuit 300 including the clock distribution circuit 310 includes the clock distributors 301A and 301B connected to the adjustment circuits A and B of the phase adjustment circuit 111. Different from the clock distribution circuit 110.
  • the core 401 is connected to the output side of the clock distributor 301A, and the core 402 is connected to the output side of 301B.
  • the clock distribution circuit 310 may be used anywhere in the server 1 (see FIG. 1).
  • Each of the cores 401 and 402 includes FF1 to FFm (m is an integer of 2 or more) and is connected to the output side of the clock distributors 301A and 301B.
  • the cores 401 and 402 are, for example, processor cores, and execute predetermined operations (for example, integer operations or floating point operations) using clock signals input via the clock distributors 301A and 301B.
  • the operation check test of the phase adjustment circuit 111 may be performed in the same manner as the phase adjustment circuit 111 included in the clock distribution circuit 110 of the first embodiment.
  • an operation check test can be performed on the phase adjustment circuit 111 included in the clock distribution circuit 310 as illustrated in FIG. 10 as with the phase adjustment circuit 111 according to the first embodiment. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

 位相調整回路の位相を調整可能な全範囲について動作確認試験が可能で、動作確認試験を容易かつ正確に行える動作確認試験方法、動作確認試験プログラム、及びクロック分配回路を提供することを課題とする。 クロック分配回路の位相調整回路の動作確認試験をコンピュータが行う動作確認試験方法であって、コンピュータは、第1差動信号又は第2差動信号のうちの一方の信号の位相を、他方の信号の位相に対してシフトする第1位相シフト工程と、第1位相シフト工程において位相がシフトされた第1差動信号及び第2差動信号が入力される差動DFFのデータ信号を取得する第1データ取得工程と、第1差動信号と第2差動信号との位相差が第1差動信号及び第2差動信号の1周期分に達するまで第1位相シフト工程及び第1データ取得工程を繰り返し実行することによって得る複数のデータ信号の値と、複数のデータ信号の第1期待値と比較する第1比較工程とを実行する。

Description

動作確認試験方法、動作確認試験プログラム、及びクロック分配回路
 動作確認試験方法、動作確認試験プログラム、及びクロック分配回路に関する。
 同期したクロックで動作する通信装置システムは、装置間を接続するケーブルによる伝送遅延等によって入力データの位相が異なることがあるため、出力データに対する入力データの位相差を調整する位相調整回路を搭載している。従来の通信装置システムでは、位相調整回路を通信装置に搭載した状態で、位相調整回路の動作確認試験を行っていた。
 また、キャッシュチップにテスト論理を内蔵し、キャッシュチップの外部に設けたテスタからマイクロプログラムを読み込み、テスト論理が処理を行なうことによって機能テスト(動作確認試験)を行う半導体装置があった。
特開2003-32231号公報 特開2005-283537号公報
 上述のように、従来は、位相調整回路を実装したシステム全体又は装置全体で動作確認試験を行っていた。
 このため、動作確認試験で動作不良があると判定された場合に、位相調整回路自体に動作不良の原因があるのか、位相調整回路以外の回路等に動作不良の原因があるのかを特定することが困難であった。
 また、位相調整回路を実装したシステム又は装置の動作確認試験における動作条件が限定されていて、位相調整回路の位相を調整できる範囲が限定されているような場合には、動作確認試験を行うことができない動作範囲が生じていた。このような場合には、位相調整回路を実装したシステム又は装置のすべての動作範囲を試験することができず、位相調整回路を実装したシステム又は装置の信頼性に問題が生じる可能性があった。
 そこで、位相調整回路の位相を調整可能な全範囲について動作確認試験が可能で、動作確認試験を容易かつ正確に行うことのできる動作確認試験方法、動作確認試験プログラム、及びクロック分配回路を提供することを目的とする。
 本発明の実施の形態の動作確認試験方法は、第1差動信号又は第2差動信号の少なくとも一方の位相を調整して出力する位相調整回路と、前記位相調整回路から出力される前記第1差動信号又は前記第2差動信号のいずれか一方をクロック信号として用いて、前記クロック信号に同期して前記第1差動信号又は前記第2差動信号のいずれか他方をデータ信号として取得する差動DFFとを含むクロック分配回路の前記位相調整回路の動作確認試験をコンピュータが行う動作確認試験方法であって、前記コンピュータは、前記第1差動信号又は前記第2差動信号のうちの一方の信号の位相を、他方の信号の位相に対してシフトする第1位相シフト工程と、前記第1位相シフト工程において位相がシフトされた前記第1差動信号及び前記第2差動信号が入力される前記差動DFFのデータ信号を取得する第1データ取得工程と、前記第1差動信号と前記第2差動信号との位相差が前記第1差動信号及び前記第2差動信号の1周期分に達するまで前記第1位相シフト工程及び前記第1データ取得工程を繰り返し実行することによって得る複数のデータ信号の値と、前記複数のデータ信号の第1期待値と比較する第1比較工程とを実行する。
 位相調整回路の位相を調整可能な全範囲について動作確認試験が可能で、動作確認試験を容易かつ正確に行うことのできる動作確認試験方法、動作確認試験プログラム、及びクロック分配回路を提供することができる。
実施の形態1のクロック分配回路が適用されるサーバを示すブロック図である。 実施の形態1のクロック分配回路を含む高速シリアルI/O受信回路を示す図である。 実施の形態1の高速シリアルI/O受信回路100にLSIテスタを接続した状態を示す図である。 DFFのクロック信号に対してデータ信号の位相を45°ずつ段階的にシフトした場合におけるDFFの出力を示す図である。 実施の形態1のクロック分配回路の調整回路A、Bの出力位相に対する出力データ信号DFFqの値を示す図である。 実施の形態1の高速シリアルI/O受信回路に接続されるLSIテスタで実行される第1段階目の動作確認試験の処理内容を示すフローチャートである。 実施の形態1の高速シリアルI/O受信回路に接続されるLSIテスタで実行される第2段階目の動作確認試験の処理内容を示すフローチャートである。 実施の形態1の変形例のクロック分配回路を含む高速シリアルI/O受信回路を示す図である。 実施の形態2のクロック分配回路を含む高速シリアルI/O受信回路を示す図である。 実施の形態2の高速シリアルI/O受信回路に接続されるLSIテスタで実行される動作確認試験の処理内容を示すフローチャートである。 実施の形態3のクロック分配回路を含む高速シリアルI/O受信回路を示す図である。
 以下、本発明の動作確認試験方法、動作確認試験プログラム、及びクロック分配回路を適用した実施の形態について説明する。
 <実施の形態1>
 図1は、実施の形態1のクロック分配回路が適用されるサーバを示すブロック図である。
 サーバ1は、CPU(Central Processing Unit:中央演算処理装置)10、キャッシュ20、メモリコントローラ30、主記憶装置40、及び補助記憶装置50を含む情報処理装置である。CPU10、キャッシュ20、メモリコントローラ30、主記憶装置40、及び補助記憶装置50は、例えば、専用のシステムバス60で接続されている。なお、サーバ1は、複数のCPU10を含んでもよい。
 キャッシュ20は、CPU10が演算処理を行う際に必要なデータを一時的に格納するメモリであり、例えば、SRAM(Static Random Access Memory)で実現される。
 メモリコントローラ30は、CPU10の指令に基づき、メモリコントローラ30と主記憶装置40との間でデータの読み書きを行う際の制御を行う制御装置である。
 なお、CPU10、キャッシュ20、及びメモリコントローラ30は、例えば、LSI(Large Scale Integration:大規模集積回路)で実現される。
 主記憶装置40は、例えば、DRAM(Dynamic Random Access Memory:ダイナミックランダムアクセスメモリ)やROM(Read Only Memory:読み出し専用メモリ)であり、補助記憶装置50は、例えば、ハードディスクである。
 なお、サーバ1は、外部装置との通信を行うためのデータ入出力ポート等を含んでいてもよい。
 実施の形態1のクロック分配回路は、例えば、サーバ1内のCPU10又はメモリコントローラ30に内蔵されるが、以下では、実施の形態1のクロック分配回路が高速シリアルI/O受信回路に内蔵されており、実施の形態1のクロック分配回路を内蔵する高速シリアルI/O受信回路がCPU10(図1参照)に含まれている形態について説明する。実施の形態1のクロック分配回路を内蔵する高速シリアルI/O受信回路については、図2を用いて説明する。
 図2は、実施の形態1のクロック分配回路を含む高速シリアルI/O受信回路を示す図である。
 高速シリアルI/O受信回路100は、クロック分配回路110、アンプ120、DFE(Decision Feedback Equalizer)130、及び試験用ポート140A、140Bを含む。クロック分配回路110は、位相調整回路111、差動型DFF(差動型Dフリップフロップ)112を有する。DFF130の出力側には、データ処理回路150が接続されている。
 位相調整回路111は、2相×2出力型の位相調整回路であり、調整回路Aと調整回路Bを含む。位相調整回路111には、CPU10内の発振器11Aから出力されるクロック信号がPLL(Phase-locked loop:位相同期回路)11Bを経て4相のクロック信号として入力する。位相調整回路111は、伝送経路におけるクロック信号の位相の遅延分を調整回路A、Bで調整して、クロック信号を出力する。
 調整回路Aと調整回路Bとは、それぞれ2相のクロック信号を出力する。調整回路A、Bからそれぞれ出力される2相のクロック信号は、互いに180°位相の異なる(位相の反転した)差動クロック信号である。なお、位相調整回路111には、クロック分配回路の動作確認試験の際に用いる試験用ポート140Aが信号線を介して接続されている。試験用ポート140Aには、クロック分配回路110の動作確認試験の際に、位相調整回路111の調整回路A、Bから出力されるクロック信号の位相をシフトさせるための位相シフト指令が入力される。
 差動型DFF112は、データ入力端d、dx、クロック入力端ck、ckx、及びデータ出力端qを有する。
 データ入力端d、dxは、それぞれ、調整回路Aの一対の出力端に接続されており、調整回路Aから出力される差動クロック信号が入力する。図2の例では、データ入力端dには非反転のクロック信号が入力し、データ入力端dxには反転クロック信号が入力する。
 クロック入力端ck、ckxは、それぞれ、調整回路Bの一対の出力端に接続されており、調整回路Bから出力される差動クロック信号が入力する。図2の例では、クロック入力端ckには非反転のクロック信号が入力し、クロック入力端ckxには反転クロック信号が入力する。
 データ出力端qは、差動型DFF112でストローブされた出力データ信号を出力する出力端である。
 差動型DFF112は、クロック入力端ck、ckxに入力する差動クロック信号をクロックとして用いて、データ入力端d、dxに入力する差動クロック信号をデータとしてストローブし、データ出力端qから出力データ信号として出力する。
 図2には、差動型DFF112のデータ入力端d、dxに調整回路Aが接続され、クロック入力端ck、ckxに調整回路Bが接続される形態を示す。しかしながら、調整回路A、Bの出力は、ともに差動クロック信号であるため、データ入力端d、dxに調整回路Bを接続し、クロック入力端ck、ckxに調整回路Aを接続するように接続してもよい。すなわち、差動型DFF112は、調整回路A、Bから出力される差動クロック信号の一方をクロック信号として用い、他方をデータ信号として用いて、クロック信号に同期してデータ信号をストローブする。
 実施の形態1では、調整回路A、Bから出力される差動クロック信号をデータ信号、クロック信号としてそれぞれ用い、クロック信号に対するデータ信号の位相をシフトさせて動作確認試験を行うとともに、データ信号に対するクロック信号の位相をシフトさせて動作確認試験を行う。
 差動型DFF112は、動作確認試験の出力を生成するために用いる回路であるため、差動型DFF112のデータ出力端qには、信号線を介して、試験用ポート140Bが接続されている。なお、動作確認試験については後述する。
 アンプ120は、CPU10(図1参照)内の信号線に接続されている。アンプ120は、信号線を介して、例えば、整数演算用又は浮動小数点演算用のデータが入力する。
 DFE130は、D/L(Decision Latch)131、132を有する。D/L131、132には、アンプ120からデータが入力する。また、D/L131には位相調整回路111の調整回路Aからの差動クロック信号が、D/L132には調整回路Bから差動クロック信号が入力する。D/L131、132はそれぞれ、調整回路A、Bから入力する差動クロック信号を用いて、アンプ120から入力するデータをラッチし、後段のデータ処理回路150に伝送する。
 データ処理回路150は、FF(Flip Flop)151、152、及び演算部153を有する。FF151の入力端はD/L131に、FF152の入力端はD/L132にそれぞれ接続され、各FF151、152の出力端は演算部153に接続されている。演算部153は、FF151、152によって保持されるデータに基づいて整数演算又は浮動小数点演算を行うことができればよく、例えば、論理回路であればよい。
 試験用ポート140A、140Bは、クロック分配回路110の位相調整回路111の動作確認試験を行う際に、LSIテスタを接続するためのポートである。試験用ポート140Aには、LSIテスタから位相シフト指令が入力し、差動型DFF112の出力端qから出力される出力データは、試験用ポート140Bを介してLSIテスタによって読み取られる。
 図3は、実施の形態1の高速シリアルI/O受信回路100にLSIテスタを接続した状態を示す図である。
 LSIテスタ160は、サーバ1(図1参照)の外部に存在する動作確認試験装置であり、試験用ポート140A、140Bに接続される。LSIテスタ160は、試験用ポート140Aを介して位相シフト指令を高速シリアルI/O受信回路100に入力し、試験用ポート140Bを介して、差動型DFF112の出力端qから出力される出力データを読み取る。LSIテスタ160は、読み取ったデータを期待値データと比較することにより、位相調整回路111の動作確認試験を行う。
 なお、期待値データとは、位相調整回路111の動作が正常である場合に、差動型DFF112の出力端qから出力されると期待される出力データである。
 LSIテスタ160は、例えば、位相調整回路111の動作確認試験用のプログラムを実行可能な演算処理装置であればよく、例えば、コンピュータを用いることができる。
 LSIテスタ160は、動作確認試験処理部161とメモリ162を含む。動作確認試験処理部161は、データ取得部161A、位相シフト部161B、及び比較部161Cを含み、動作確認試験用のプログラムを実行することにより、動作確認試験の処理を行う。
 データ取得部161Aは、試験用ポート140Bを介して差動型DFF112から出力される出力データを取得し、メモリ162に格納する。
 位相シフト部161Bは、試験用ポート140Aを介して位相調整回路111に位相シフト指令を入力する。これにより、位相調整回路111の調整回路A、Bから出力されるクロック信号の位相がシフトされる。位相シフト部161Bは、調整回路Aから出力されるクロック信号と調整回路Bとから出力されるクロック信号との位相差が各信号の1周期分に達するまで、所定の位相単位で両クロック信号の位相をシフトする位相シフト指令を、繰り返し位相調整回路111に入力する。
 比較部161Cは、クロック分配回路110から出力された出力データ信号と、出力データの期待値とを比較する。位相シフト部161Bが所定位相単位での位相シフトを指示する位相シフト指令を繰り返し発するので、比較部161Cは、位相シフト指令が発せられる毎にクロック分配回路から出力される複数の出力データを取得し、出力データの複数の期待値と比較する。
 なお、データ取得部161A、位相シフト部161B、及び比較部161Cの処理は、LSIテスタ160として実行されるため、以下では、LSIテスタ160が各処理を行うものとして説明する。
 メモリ162は、動作確認試験用のプログラムと、動作確認試験に際して取得するデータ等を格納する。
 また、LSIテスタ160は、動作確認試験に際して、位相調整回路111に位相シフト指令を伝送するとともに、発振器11Aに発振指令を伝送する。
 次に、実施の形態1のクロック分配回路110に含まれる位相調整回路111の動作確認試験について説明する。実施の形態1の動作確認試験は、第1段階と第2段階の2つの段階を含む。ここでは、まず、第1段階目の動作確認試験について説明する。
 図4は、差動型DFFに入力するクロック信号に対して、差動型DFF112に入力するデータ信号の位相を45°ずつ段階的にシフトした場合における、差動型DFFの出力データ信号を示す図である。
 ここでは、一例として、クロック信号DFFckは、差動型DFF112(図3参照)のクロック入力端ckに調整回路Bから入力するクロック信号であり、データ信号DFFdは、差動型DFF112のデータ入力端dに調整回路Aから入力するデータ信号であるものとする。
 図4は、調整回路Bから出力するクロック信号の位相を固定し、調整回路Aから出力するクロック信号の位相を45°ずつ段階的にシフトした場合に得られる、差動型DFFの出力データ信号を示す。
 なお、出力データ信号DFFqは、差動型DFF112(図3参照)の出力端qに出力される出力データ信号である。
 第1段階目の動作確認試験のためのデータ信号の位相のシフトは、LSIテスタ160(図3参照)から位相調整回路111に入力する位相シフト指令によって行われる。また、クロック信号及びデータ信号の発振は、LSIテスタ160から位相調整回路111に入力する発振指令によって行われる。
 また、ここでは、データ(data)が"0"であり、データバー(data bar)が"1"であるものとして説明する。
 図4(A)に示すように、クロック信号DFFckとデータ信号DFFdとの位相差が0°の場合は、クロック信号DFFckの立ち上がりでストローブされるデータ信号DFFdがデータ(data)であるため、出力データ信号DFFqはデータ(data)となる。
 図4(B)に示すように、クロック信号DFFckとデータ信号DFFdとの位相差が45°の場合は、クロック信号DFFckの立ち上がりでストローブされるデータ信号DFFdがデータ(data)であるため、出力データ信号DFFqはデータ(data)となる。
 図4(C)に示すように、クロック信号DFFckとデータ信号DFFdとの位相差が90°の場合は、クロック信号DFFckの立ち上がりでストローブされるデータ信号DFFdがデータ(data)であるため、出力データ信号DFFqはデータ(data)となる。
 図4(D)に示すように、クロック信号DFFckとデータ信号DFFdとの位相差が135°の場合は、クロック信号DFFckの立ち上がりでストローブされるデータ信号DFFdがデータバー(data bar)であるため、出力データ信号DFFqはデータ(data)となる。
 図4(E)に示すように、クロック信号DFFckとデータ信号DFFdとの位相差が180°の場合は、クロック信号DFFckの立ち上がりでストローブされるデータ信号DFFdがデータバー(data bar)であるため、出力データ信号DFFqはデータバー(data bar)となる。
 図4(F)に示すように、クロック信号DFFckとデータ信号DFFdとの位相差が225°の場合は、クロック信号DFFckの立ち上がりでストローブされるデータ信号DFFdがデータバー(data bar)であるため、出力データ信号DFFqはデータバー(data bar)となる。
 図4(G)に示すように、クロック信号DFFckとデータ信号DFFdとの位相差が270°の場合は、クロック信号DFFckの立ち上がりでストローブされるデータ信号DFFdがデータバー(data bar)であるため、出力データ信号DFFqはデータバー(data bar)となる。
 図4(H)に示すように、クロック信号DFFckとデータ信号DFFdとの位相差が315°の場合は、クロック信号DFFckの立ち上がりでストローブされるデータ信号DFFdがデータバー(data bar)であるため、出力データ信号DFFqはデータバー(data bar)となる。
 以上のように、差動型DFF112に入力するクロック信号の位相に対して差動型DFF112に入力するデータ信号の位相を45°ずつ段階的にシフトさせると、8つの出力データ信号DFFqの値は、"00001111"となる。
 ここで、8つの出力データ信号DFFqに4つの"0"と4つの"1"とが含まれるのは、一周期(360°)のうちの180°ではデータ(data)"0"が差動型DFF112でストローブされており、残りの180°ではデータバー(data bar)"1"が差動型DFF112でストローブされているからである。また、"0"又は"1"が連続するのは、クロック信号とデータ信号との位相差が180°となるまでの間はデータ(data)"0"の状態が続き、残り180°の間はデータバー(data bar)"1" の状態が続くからである。
 このため、1周期(360°)を8等分して、上述のようにクロック信号に対するデータ信号の位相を1/8周期分(45°)ずつシフトさせながら動作確認試験を行うと、位相調整回路111が正常に動作していれば、"00001111"という8つの出力データ信号DFFqが得られることになる。
 これに対して、例えば、差動型DFF112から出力される8つの出力データ信号DFFqが"01001111"である場合のように、"0"と"1"の数が異なる場合は、いずれかの出力データ信号DFFqが動作不良によって生じたことが分かる。
 8つの出力データ信号DFFqの中でも"0"又は"1"が不連続的かつ突発的に生じる点は、動作不良領域を表す。例えば、図4に示すようにデータ信号の位相をシフトさせた場合に、8つの出力データ信号DFFqが"01001111"であれば、DFFqの左から2番目のデータ"1"に対応する、位相差を45°とした場合の位相変調回路111の動作に異常があることが分かる。図4に示す動作例は、調整回路Aからの出力信号の位相をシフトさせることによって得られる動作例であるため、8つの出力データ信号DFFqが"01001111"であれば、調査回路Aからの出力信号の位相を45°進めた動作領域(あるいはその動作領域の付近)に不良があることが分かる。
 従って、LSIテスタ160(図3参照)を高速シリアルI/O受信回路100に接続して第1段階目の動作確認試験を行う際に、図4に示すように位相をシフトさせる場合は、LSIテスタ160で用いる期待値を"00001111"に設定すればよい。そして、第1段階目の動作確認試験で得られる出力データ信号DFFqと期待値をLSIテスタ160で比較すれば、位相調整回路111の動作が正常であるか異常であるかを判定することができる。
 ここでは、1周期(360°)を8等分する場合について説明するが、1周期の分割数は2以上であれば幾つであってもよい。1周期をn(nは2以上の整数)分割する場合は、クロック信号とデータ信号の位相差を1/n周期分ずつシフトさせながら、n個の出力データ信号DFFqを得るように第1段階目の動作確認試験を行えばよい。
 分割数nを偶数に設定する場合には、n個の出力データ信号DFFqの中に含まれる"0"と"1"の数が異なれば、動作不良領域があることが分かる。また、"0"又は"1"が不連続的かつ突発的に生じる箇所があれば、不連続的かつ突発的な出力データ信号DFFqが生じた位相(あるいはその位相の前後)に位相調整回路111の動作不良領域があることが分かる。
 また、分割数nを奇数に設定する場合には、n個の出力データ信号DFFqの中に含まれる"0"と"1"の数が1つ異なるが、その場合は、"0"と"1"の数の誤差を誤差「1」まで認めることとし、"0"又は"1"が不連続的かつ突発的に生じる箇所の有無で動作不良領域を把握すればよい。
 分割数nの場合の期待値は、n個の出力データ信号DFFqに含まれるn個の"0"と"1"の個数の誤差を1個まで認め、かつ、"0"又は"1"が不連続的かつ突発的に生じる箇所を含まない値として設定すればよい。
 なお、1周期をn分割する手法に限らず、クロック信号DFFck又はデータ信号DFFdの位相を所定の位相差分だけシフトさせながら、クロック信号DFFckとデータ信号DFFdの位相差が1周期分に達するまで、複数の出力データ信号DFFqを得るように第1段階目の動作確認試験を行えばよい。例えば、クロック信号DFFck又はデータ信号DFFdのいずれかの位相を30°ずつシフトさせながら差動型DFFにデータ信号とクロック信号とを供給してDFFqを取得し、クロック信号DFFckとデータ信号DFFdの位相差が1周期分(360°)に達するまで、複数の出力データ信号DFFqを得るように第1段階目の動作確認試験を行えばよい。
 この場合の期待値は、複数の出力データ信号DFFqに含まれるn個の"0"と"1"の個数の誤差を1個まで認め、かつ、"0"又は"1"が不連続的かつ突発的に生じる箇所を含まない値として設定すればよい。
 以上では、調整回路Bから出力するクロック信号の位相を固定し、調整回路Aから出力するクロック信号の位相を45°ずつ段階的にシフトした場合に得られる、差動型DFFの出力データ信号について説明した。
 図4に示した例で得られる8つの出力データ信号は"00001111"であり、調整回路Aから出力するクロック信号の位相を135°にした場合と、180°にした場合との間に、出力データ信号が"0"から"1"に変化する点があることが分かる。
 ところで、調整回路Aから出力するクロック信号の位相を段階的にシフトする単位を45°に設定したのは、説明の便宜上の理由によるものであり、一般的には、実際に位相をシフトさせる単位は、より小さな値に設定される。
 例えば、調整回路Bから出力するクロック信号の位相を固定し、1周期分(360°)を72等分して調整回路Aから出力するクロック信号の位相を段階的にシフトする単位を5°に設定したとすると、72個の出力データ信号が得られることになる。
 ここで、調整回路Aから出力するクロック信号の位相を5°ずつ段階的にシフトした場合に、クロック信号の位相が0°から165°の間で34個の"0"が連続し、クロック信号の位相が170°から345°の間で36個の"1"が連続し、クロック信号の位相が350°から355°の間で2個の"0"が連続する72個の出力データ信号が得られたとする。
 この72個の出力データ信号からは、調整回路Aから出力するクロック信号の位相を165°にした場合と、170°にした場合との間に、出力データ信号が"0"から"1"に変化する点があることが分かる。
 このように、調整回路Aから出力するクロック信号の位相を段階的にシフトする単位を小さくすれば、出力データ信号が"0"から"1"に変化する点を、より狭い範囲で把握することができる。
 実施の形態1のクロック分配回路110に含まれる位相調整回路111の動作確認試験では、上述のように第1段階目で出力データ信号が"0"から"1"に変化する位相の範囲を把握した後に、さらに、以下で図5を用いて原理を説明する第2段階目の動作確認試験を実行する。
 以下、第2段階目の動作確認試験の原理を説明するにあたり、出力データ信号が"0"から"1"に変化する点は、一例として、調整回路Aから出力するクロック信号と、調整回路Bから出力するクロック信号との位相差が168°の動作点で得られることとする。
 この168°という値を上述の72個の出力データ信号から把握することはできないが、以下で説明する第2段階目の動作確認試験により、実施の形態1のクロック分配回路110に含まれる位相調整回路111の動作確認試験を、より高精度に実施することができる。
 図5は、実施の形態1のクロック分配回路の調整回路A、Bの出力位相に対する出力データ信号DFFqの値を示す図である。
 図5に示す出力データ信号DFFqの値は、一例として、上述のように、調整回路Aから出力するクロック信号と、調整回路Bから出力するクロック信号との位相差が168°であるときに出力データ信号が"0"から"1"に変化する動作例で得られる出力データ信号DFFqの値である。図5に示すように、調整回路Aから出力するクロック信号の位相と、調整回路Bから出力するクロック信号の位相との関係に応じて、DFFqが"1"となる領域と、DFFqが"0"となる領域に分けられる。
 このように、調整回路Aから出力するクロック信号と、調整回路Bから出力するクロック信号との位相差が168°であるときに出力データ信号が"0"から"1"に変化する場合において、位相差168°は、出力データ信号が"0"から"1"に変化する変化点が現れる位相差である。
 図5において、横軸(以下「横軸A」または「軸A」と称する)は調整回路Aから出力する信号の位相のシフト量を、縦軸(以下「縦軸B」または「軸B」と称する)は調整回路Bから出力する信号の位相のシフト量を、それぞれ示す。図5に示す領域は、横軸A(A=0°~360°)と縦軸B(B=0°~360°)で表されるものとする。
 調整回路A、Bのそれぞれの位相を0°~360°までシフトさせた場合における出力データ信号DFFqの値は、図5に示すように、データ(data)"0"又はデータバー(data bar)"1"が得られる領域に分けられる。
 図5に示すように、出力データ信号が"0"から"1"に変化する変化点が現れる位相差が168°である動作例において、出力データ信号DFFqの値"0"の領域と"1"の領域との境界は、以下の(1A)(1B)(2A)(2B)式で表される。なお、図5中に示す括弧書きの数字((1A)~(2B))は、(1A)~(2B)式で表される直線を示す。
 B=A-348° ・・・(1A) (調整回路Aの出力位相:348°~360°)
 B=A+12°  ・・・(1B) (調整回路Aの出力位相:0°~348°)
 B=A-168° ・・・(2A) (調整回路Aの出力位相:168°~360°)
 B=A+192° ・・・(2B) (調整回路Aの出力位相:0°~168°)
 データ(data)"0"が得られる領域は、直線(1A)よりも下の領域、直線(2A)と直線(1B)の間の領域、及び直線(2B)よりも上の領域である。
 また、データバー(data bar)"1"が得られる領域は、直線(1A)と直線(2A)の間の領域、及び直線(1B)と直線(2B)の間の領域である。
 なお、調整回路A、Bから出力するクロック信号の位相は、0°~360°の値を取り得るため、(1A)式と(1B)式によって表される直線(1A)と直線(1B)は一続きの領域の境界を表す。(1A)式と(1B)式を区別しない場合には、(1)式と称し、直線(1A)と直線(1B)を区別しない場合には、直線(1)と称す。
 同様に、(2A)式と(2B)式によって表される直線(2A)と直線(2B)は一続きの領域の境界を表す。(2A)式と(2B)式を区別しない場合には、(2)式と称し、直線(2A)と直線(2B)を区別しない場合には、直線(2)と称す。
 また、直線(1A)~(2B)上の出力値については、直線(1A)(1B)上では"1"、直線(2A)(2B)上では"0"とする。
 また、調整回路Bから出力するクロック信号の位相を固定し、調整回路Aから出力するクロック信号の位相を45°ずつ段階的にシフトした場合に得られる8つの出力データ信号DFFqは、A軸上で与えられることになる。8つの出力データ信号DFFqは、それぞれ、A-B座標において、(A,B)=(0°,0°)、(45°,0°)、(90°,0°)、(135°,0°)、(180°,0°)、(225°,0°)、(270°,0°)、(315°,0°)の8点で与えられる。
 ここで、図5の動作例は、出力データ信号が"0"から"1"に変化する変化点が現れる位相差(調整回路Aから出力するクロック信号の位相と、調整回路Bから出力するクロック信号の位相との位相差)が168°である動作例である。
 出力データ信号が"0"から"1"に変化する変化点が現れる位相差(調整回路Aから出力するクロック信号の位相と、調整回路Bから出力するクロック信号の位相との位相差)をα°とすると、(1A)~(2B)式は、一般式として次の(3A)~(4B)式のように表すことができる。なお、位相差αは、調整回路Bから出力するクロック信号の位相に対して、調整回路Aから出力するクロック信号の位相が進む分を正の値で示す。
 B=A-(180+α)° ・・(3A) (調整回路Aの出力位相:(α+180)°~360°)
 B=A+(180-α)° ・・(3B) (調整回路Aの出力位相:(0°~(α+180)°)
 B=A-α°       ・・(4A) (調整回路Aの出力位相:α°~360°)
 B=A+(360-α)° ・・(4B) (調整回路Aの出力位相:0°~α°)
 このように、出力データ信号が"0"から"1"に変化する変化点が現れる位相差をα°で表す場合には、出力データ信号DFFqの値"0"の領域と"1"の領域との境界は、上述の(3A)~(4B)式で表すことができる。
 ここで、上述のように、出力データ信号の変化点が現れる位相差αを出力データ信号から把握することはできないが、複数の出力データ信号を得る際に、調整回路Aから出力するクロック信号の位相と、調整回路Aから出力するクロック信号の位相との位相差を小さくしていけば、出力データ信号の変化点が現れる位相差αを、ある範囲に絞ることができる。すなわち、出力データ信号の変化点が現れる位相差αを2つの値で挟むことができる。この2つの値は、出力データ信号の変化点が現れる位相差αの前後の近傍に位置する近傍値である。
 これは、上述のように、調整回路Aから出力するクロック信号の位相を5°ずつシフトして72個の出力データ信号を得た場合に、実際には把握できない出力データ信号の変化点が現れる位相差(168°)が、調整回路Aから出力するクロック信号の位相を165°にした場合と、170°にした場合との間にあることが分かる場合に相当する。すなわち、この動作例では、出力データ信号の変化点が現れる位相差αは168°であり、2つの近傍値は、165°と170°である。
 実施の形態1では、調整回路Aから出力するクロック信号の位相と、調整回路Bから出力するクロック信号の位相との位相差を出力データ信号の変化点が現れる位相差の近傍値に固定し、調整回路A、Bから出力するクロック信号の位相を同時に0°~360°の範囲でシフトさせることにより、第2段階目の動作確認試験を行う。上述のように、近傍値は2つあるため、両方の近傍値について動作確認を行うことができる。
 ここで、図5に示す動作例を用いて具体的に説明する。例えば、図5において、調整回路Aと調整回路Bの位相差を一方の近傍値である165°に設定して第2段階目の動作確認試験を行うとともに、調整回路Aと調整回路Bの位相差を他方の近傍値である170°に設定して第2段階目の動作確認試験を行う。
 すなわち、以下の(5A)(5B)式を満たすように、調整回路Aの出力位相と調整回路Bの出力位相とをシフトさせて一方の近傍値について第2段階目の動作確認試験を行い、次に、(6A)(6B)式を満たすように、調整回路Aの出力位相と調整回路Bの出力位相とをシフトさせて他方の近傍値について第2段階目の動作確認試験を行う。なお、図5中に、式(5A)(5B)(6A)(6B)で表される直線(5A)(5B)(6A)(6B)を示す。
 B=A-165°  ・・・(5A) (調整回路Aの出力位相:165°~360°)
 B=A-165°  ・・・(5B) (調整回路Aの出力位相:0°~165°)
 B=A-170°  ・・・(6A) (調整回路Aの出力位相:170°~360°)
 B=A-170°  ・・・(6B) (調整回路Aの出力位相:0°~170°)
 なお、以下では、(5A)式と(5B)式を区別しない場合には(5)式と称し、直線(5A)と直線(5B)を区別しない場合には直線(5)と称す。同様に、(6A)式と(6B)式を区別しない場合には(6)式と称し、直線(6A)と直線(6B)を区別しない場合には直線(6)と称す。
 (5A)式で表される直線(5A)は、(2A)式で表される直線(2A)よりもB軸の正方向において3°高い位置に存在しており、出力データ信号DFFqの値が"0"となる領域内に存在する。同様に、(5B)式で表される直線(5B)は、(2B)式で表される直線(2B)よりもB軸の正方向において3°高い位置に存在しており、出力データ信号DFFqの値が"0"となる領域内に存在する。
 このため、(5)式を満たすように調整回路A、Bから出力されるクロック信号の位相差を固定して、調整回路A、Bから出力されるクロック信号の位相を同時にシフトさせて得る出力データ信号DFFqの値を確認すれば、直線(2)の近傍に位置する直線(5)上の出力データ信号DFFqを確認できる。このため、位相調整回路111の動作確認試験を、より高精度に行うことができる。
 直線(5)は出力データ信号DFFqの値が"0"の領域内に存在するため、位相調整回路111が正常に動作すれば、出力データ信号DFFqの値は常に"0"となる。
 従って、出力データ信号DFFqの値に1つでも"1"が含まれる場合は、位相調整回路111に動作不良領域が存在することになる。
 また、同様に、(6A)式で表される直線(6A)は、(2A)式で表される直線(2A)よりもB軸の負方向において2°低い位置に存在しており、出力データ信号DFFqの値が"1"となる領域内に存在する。同様に、(6B)式で表される直線(6B)は、(2B)式で表される直線(2B)よりもB軸の負方向において2°低い位置に存在しており、出力データ信号DFFqの値が"1"となる領域内に存在する。
 このため、(6)式を満たすように調整回路A、Bから出力されるクロック信号の位相差を固定して、調整回路A、Bから出力されるクロック信号の位相を同時にシフトさせて得る出力データ信号DFFqの値を確認すれば、直線(2)の近傍に位置する直線(6)上の出力データ信号DFFqを確認できる。このため、位相調整回路111の動作確認試験をより高精度に行うことができる。
 直線(6)は出力データ信号DFFqの値が"1"の領域内に存在するため、位相調整回路111が正常に動作すれば、出力データ信号DFFqの値は常に"1"となる。
 従って、出力データ信号DFFqの値に1つでも"0"が含まれる場合は、位相調整回路111に動作不良領域が存在することになる。
 以上、調整回路Aと調整回路Bの位相差を変化点の位相差(168°)の2つの近傍値である165°と170°に設定して第2段階目の動作確認試験を行う形態について説明したが、第2段階目の動作確認試験は、いずれか一方の近傍値についてのみ行ってもよい。
 また、図5では、調整回路Aと調整回路Bの位相差を変化点の位相差αが168°の場合に、調整回路A、Bから出力されるクロック信号の位相差を近傍値である165°と170°に固定して第2段階目の動作確認試験を行う形態について説明した。しかしながら、調整回路Aと調整回路Bの位相差を変化点の位相差の一般値であるα(0°~360°)に対する近傍値に固定することにより、任意の位相差αに対して第2段階目の動作確認試験を実行することができる。
 なお、以上では、直線(2)の近傍に位置する直線(5)、(6)を用いた第2段階目の動作確認試験の原理について説明したが、差動型DFF112の出力データ信号DFFqは、直線(1)にも出力値の境界を有する。直線(1)は、直線(2)とは横軸A方向又は縦軸B方向に180°異なる位置に存在する直線である。このため、直線(2)の代わりに直線(1)について第2段階目の動作確認試験を行ってもよいし、直線(2)と直線(1)の両方について第2段階目の動作確認試験を行ってもよい。
 図6Aは、実施の形態1の高速シリアルI/O受信回路に接続されるLSIテスタで実行される第1段階目の動作確認試験の処理内容を示すフローチャートである。
 ここでは、図4をより一般化して72個の出力データ信号を得た場合と同様に、1周期(360°)を72等分して、差動型DFF112に入力するクロック信号に対して差動型DFF112に入力するデータ信号の位相を5°ずつ段階的にシフトさせて差動型DFFに供給し、差動型DFF112の出力データ信号DFFqを得る場合について説明する。
 LSIテスタ160は、まず、調整回路Bから出力する信号の位相を固定し、調整回路Aから出力する信号位相を5°単位でシフトさせることにより、差動型DFF112のデータ出力端qから出力される出力データ信号に基づいて第1段階目の動作確認試験を行う。すなわち、調整回路Aから差動型DFF112にデータ(d、dx)として入力する差動クロック信号の位相をシフトさせることによって第1段階目の動作確認試験を行う。これにより、調整回路Aの動作を確認することができる。
 そして、次に、調整回路Aから出力する信号の位相を固定し、調整回路Bから出力する信号の位相を5°単位でシフトさせることにより、差動型DFF112のデータ出力端qから出力される出力データ信号に基づいて第1段階目の動作確認試験を行う。すなわち、調整回路Bから差動型DFF112にクロック(ck、ckx)として入力する差動クロック信号の位相をシフトさせることによって第1段階目の動作確認試験を行う。これにより、調整回路Bの動作を確認することができる。
 第1段階目の動作確認試験の処理手順は、具体的には、次の通りである。
 LSIテスタ160は、調整回路A、Bから出力する信号の位相差を初期値(0°)に設定する(ステップS1)。なお、このとき調整回路A、Bの位相差は0°であるため、LSIテスタ160から位相調整回路111に伝送される位相シフト指令は0°を表す。
 次いで、LSIテスタ160は、発振器11Aにクロック信号を出力させるべく、発振指令を発振器11Aに伝送する(ステップS2)。これにより、発振器11Aからクロック信号が出力され、PLL11Bを介して位相調整回路111に4相のクロック信号が入力する。位相調整回路111の調整回路A、Bからは、差動クロック信号同士の位相差が0°の4相のクロック信号が出力され、それぞれ差動型DFF112のクロック入力端ck、ckx、データ入力端d、dxに入力する。そして、差動型DFF112のデータ出力端qから出力データ信号が出力される。調整回路A、Bの位相差が0°の場合の出力データ信号は、図4(A)に示す通り、通常時にはデータ(data)"0"となる。
 LSIテスタ160は、差動型DFF112からの出力データ信号の値をメモリ162に格納する(ステップS3)。
 LSIテスタ160は、予め定められたすべての位相差についての動作確認試験が完了したか否かを判定する(ステップS4)。具体的には、LSIテスタ160は、調整回路Aから出力するクロック信号の位相を5°単位でシフトさせることにより、1周期(360°)を72等分したすべての位相差(0°から5°刻みで355°まで)についての動作確認試験を行ったか否かを判定する。
 LSIテスタ160は、ステップS4ですべての位相差についての動作確認試験を行っていないと判定した場合(S4 NO)は、フローをステップS5に進行させ、調整回路Aから出力するクロック信号の位相を5°進める(ステップS5)。すなわち、差動型DFF112に入力するクロック信号(ck、ckx)に対して、データ信号(d、dx)の位相が5°進められる。
 LSIテスタ160は、ステップS5の処理が終了すると、フローをステップS2にリターンする。これにより、すべての位相差について動作確認試験が終了するまで、ステップS2からS4の処理が繰り返し実行されることになる。調整回路Aから出力するクロック信号の位相が355°進められた状態までステップS2~S4が繰り返されると、LSIテスタ160のメモリ162には、72個の出力データ信号を表すデータが格納される。
 LSIテスタ160は、ステップS4ですべての位相差について動作確認試験が終了したと判定すると(S4 YES)、72個の出力データ信号を表すデータを期待値と比較する(ステップS6)。
 出力データ信号DFFqが36個の"0"と36個の"1"を含み、かつ、"0"又は"1"が不連続的かつ突発的に生じる箇所を含まなければ、72個の出力データ信号DFFqは期待値と同一であると判定され、動作確認試験は合格となる。すなわち、その位相調整回路111を含むクロック分配回路110は、少なくとも調整回路Aについては良品と判定される。
 一方、出力データ信号DFFqが含む"0"と"1"の数が異なる場合、又は、"0"又は"1"が不連続的かつ突発的に生じる箇所を含む場合は、動作確認試験は不合格となる。すなわち、その位相調整回路111を含むクロック分配回路110は不良品と判定される。
 LSIテスタ160は、ステップS6で出力データ信号の値と期待値とが一致、言い換えると動作確認試験が合格と判定した場合は、調整回路Bの動作確認試験を行うべく、ステップS7以下の処理を実行する。ステップS7~S12の処理は、調整回路Bから出力するクロック信号の位相を5°ずつ進めること以外は、調整回路Aから出力するクロック信号の位相を5°ずつ進めながら動作確認試験を行うステップS1~S6の処理と同一である。
 LSIテスタ160は、調整回路A、Bの各々からの信号の位相差を初期値(0°)に設定する(ステップS7)。なお、このとき調整回路A、Bの出力位相の位相差は0°であるため、LSIテスタ160から位相調整回路111に伝送される位相シフト指令は0°を表す。
 次いで、LSIテスタ160は、発振器11Aにクロック信号を出力させるべく、発振指令を発振器11Aに伝送する(ステップS8)。これにより、発振器11Aからクロック信号が出力され、PLL11Bを介して位相調整回路111に4相のクロック信号が入力する。位相調整回路111の調整回路A、Bからは、差動クロック信号同士の位相差が0°の4相のクロック信号が出力され、差動型DFF112のクロック入力端ck、ckx、データ入力端d、dxにそれぞれ入力する。そして、差動型DFF112のデータ出力端qから出力データ信号が出力される。調整回路A、Bの位相差が0°の場合の出力データ信号は、データ(data)"0"となる。
 LSIテスタ160は、出力データ信号の値をメモリ162に格納する(ステップS9)。
 LSIテスタ160は、予め定められたすべての位相差について動作確認試験を行ったか否かを判定する(ステップS10)。具体的には、LSIテスタ160は、調整回路Bのから出力するクロック信号の位相をシフトさせることにより、1周期(360°)を72等分したすべての位相差(0°から5°刻みで355°まで)についての動作確認試験を行ったか否かを判定する。
 LSIテスタ160は、ステップS10ですべての位相差についての動作確認試験を行っていないと判定した場合は、フローをステップS11に進行させ、調整回路Bから出力するクロック信号の位相を5°進める(ステップS11)。すなわち、差動型DFF112に入力されるデータ信号(d、dx)に対して、クロック信号(ck、ckx)の位相が5°進められる。
 LSIテスタ160は、ステップS11の処理が終了すると、フローをステップS8にリターンする。これにより、すべての位相差について動作確認試験が終了するまで、ステップS8からS10の処理が繰り返し実行されることになる。調整回路Bから出力するクロック信号の位相が355°進められた状態までステップS8~S10が繰り返されると、LSIテスタ160のメモリ162には、72個の出力データ信号を表すデータが格納される。
 LSIテスタ160は、ステップS10ですべての位相差について動作確認試験が終了したと判定すると、72個の出力データ信号を表すデータを期待値と比較する(ステップS12)。
 出力データ信号DFFqが36個の"0"と36個の"1"を含み、かつ、"0"又は"1"が不連続的かつ突発的に生じる箇所を含まなければ、72個の出力データ信号DFFqは期待値と同一であると判定され、動作確認試験は合格となる。すなわち、その位相調整回路111を含むクロック分配回路110は、調整回路A、Bの両方について良品と判定される。
 一方、出力データ信号DFFqが含む"0"と"1"の数が異なる場合、又は、"0"又は"1"が不連続的かつ突発的に生じる箇所を含む場合は、動作確認試験は不合格となる。すなわち、その位相調整回路111を含むクロック分配回路110は不良品と判定される。
 以上により、調整回路A、Bの第1段階目の動作確認試験が終了する。
 図6Aを用いて説明したように、調整回路A、Bから出力する信号の位相を別々にシフトさせながら位相調整回路111の動作確認試験を行うことにより、調整回路A、Bの動作確認を容易かつ正確に行うことができる。
 差動型DFF112の出力データ信号は、2相2出力型の位相調整回路111の差動出力を直接的にクロック信号及びデータ信号として用いることによって得られているので、位相調整回路111の動作の良否を正確に把握することができる。
 また、位相調整回路111の調整回路A、Bの各々から出力される差動出力を差動型DFF112のクロック信号(ck、ckx)及びデータ信号(d、dx)として用いて出力データ信号を得ているので、メタステーブルのような不安定な出力が極めて生じにくく、安定した出力を得ることができる。
 また、位相調整回路111の調整回路A、Bの出力位相をLSIテスタ160で直接シフトさせながら動作確認試験を行っているので、位相調整回路111の出力位相を調整可能な全範囲について動作確認試験を行うことができる。
 なお、以上では、ステップS5とステップS11でシフトさせる位相差分がそれぞれ5°で等しい場合について説明したが、ステップS5でシフトさせる位相差分とステップS11でシフトさせる位相差分とは異なっていてもよい。
 図6Aに示す第1段階目の動作確認試験で良品と判定された位相調整回路111については、以下で説明する、より高精度な第2段階目の動作確認試験を行うことができる。
 次に、図6Bを用いて第2段階目の動作確認試験の処理手順について説明する。
 図6Bは、実施の形態1の高速シリアルI/O受信回路に接続されるLSIテスタで実行される第2段階目の動作確認試験の処理内容を示すフローチャートである。
 ここでは、一例として、図5に示す動作例と同一条件の場合について説明を行う。また、第2段階目の動作確認試験では、調整回路A、Bから出力するクロック信号の位相を5°ずつ変化させるものとする。
 LSIテスタ160は、第2段階目の動作確認試験を開始すると、調整回路A、Bの出力位相を初期値に設定する(ステップS13)。LSIテスタ160は、ステップS13の処理を図6Aに示すステップS12に続く処理として実行する。
 ここで、第2段階目の動作確認試験において、調整回路A、Bの出力位相の初期値は、調整回路A、Bの出力位相の位相差を出力データ信号の変化点が現れる位相差の近傍値に固定して、調整回路A、Bのいずれか一方の出力位相を0°にすることによって与えられる。
 LSIテスタ160は、まず、2つの近傍値の一方を用い、調整回路Aの出力位相を165°、調整回路の出力位相を0°に設定する。なお、このときLSIテスタ160から位相調整回路111に伝送される位相シフト指令は165°を表す。
 これにより、調整回路Aから出力するクロック信号の位相は165°に設定され、調整回路Bから出力するクロック信号の位相は0°に設定される。すなわち、調整回路Aから出力するクロック信号の位相は、調整回路Bから出力するクロック信号の位相に対して165°進んだ位相に設定される。この状態は、図5に示す直線(5)とA軸の交点に相当する。
 次いで、LSIテスタ160は、発振器11Aにクロック信号を出力させるべく、発振指令を発振器11Aに伝送する(ステップS14)。これにより、発振器11Aからクロック信号が出力され、PLL11Bを介して位相調整回路111に4相のクロック信号が入力する。位相調整回路111からは、調整回路A、Bの各々から出力される差動クロック信号同士の位相差が0°の4相のクロック信号が出力され、各クロック信号はそれぞれ差動型DFF112のクロック入力端ck、ckx、データ入力端d、dxに入力する。そして、差動型DFF112のデータ出力端qから出力データ信号が出力される。S13で位相の初期値を設定した状態では、位相調整回路111の動作が正常であれば、出力データ信号DFFqの値は"0"となる。これは、直線(5)が出力データ信号DFFqの値が"0"の領域内に存在するからである。
 LSIテスタ160は、出力データ信号のデータをメモリ162に格納する(ステップS15)。
 LSIテスタ160は、調整回路A、Bの全動作範囲についての動作確認試験が完了したか否かを判定する(ステップS16)。具体的には、LSIテスタ160は、調整回路A、Bの出力位相を5°刻みで順次シフトさせることにより、1周期(360°)分の動作確認試験を行ったか否かを判定する。
 LSIテスタ160は、ステップS16で全動作範囲についての動作確認試験が完了していないと判定した場合は、フローをステップS17に進行させ、調整回路A、Bの出力位相をともに5°進める(ステップS17)。すなわち、調整回路A、Bの出力位相が図5に示す直線(5)に沿って、5°進められる。
 なお、ここでは、ステップS17で進める位相の値(5°)は、ステップS5又はS11でシフトする位相差の値(5°)と同一の値に設定されているが、ステップS17で進める位相の値は、ステップS5又はS11でシフトする位相差の値と異なる値であってもよい。
 LSIテスタ160は、ステップS17の処理が終了すると、フローをステップS14にリターンする。これにより、調整回路A、Bの全動作範囲についての動作確認試験が完了するまで、ステップS14からS17の処理が繰り返し実行されることになる。調整回路A、Bの出力位相が1周期分に到達するまで進められると、LSIテスタ160のメモリ162には、72個の出力データ信号を表すデータが格納される。これは、図5に示す直線(5)に沿って、調整回路A、Bの出力位相を5°ずつ進めながら、出力データ信号を取得した場合に相当する。
 LSIテスタ160は、ステップS16で全動作範囲についての動作確認試験が完了したと判定すると、すべての出力データ信号を表す72個のデータを期待値と比較する(ステップS18)。ここで、図5の直線(5)に沿った場合、期待値は、すべての位相に対して"0"である。
 LSIテスタ160は、出力データ信号DFFqがすべて"0"であれば、2つの近傍値の一方(ここでは165°)についての第2段階目の動作確認試験は合格と判定する(S18 YES)。
 一方、LSIテスタ160は、出力データ信号DFFqが一つでも"1"を含む場合は、動作確認試験は不合格と判定する(S18 NO)。すなわち、その位相調整回路111を含むクロック分配回路110は不良品と判定される。
 LSIテスタ160は、ステップS18において第2段階目の動作確認試験は合格と判定した場合は、2つの近傍値の両方についての第2段階目の動作確認試験が終了したか否かを判定する(ステップS19)。
 LSIテスタ160は、2つの近傍値の両方についての第2段階目の動作確認試験が終了していないと判定した場合は、他方の近傍値(ここでは、170°)についての第2段階目の動作確認試験を行うべく、フローをステップS13にリターンする。
 フローをステップS13にリターンすると、LSIテスタ160は、調整回路A、Bの出力位相を初期値に設定するために、2つの近傍値の他方を用い、調整回路Aの出力位相を170°、調整回路の出力位相を0°に設定する。なお、このときLSIテスタ160から位相調整回路111に伝送される位相シフト指令は170°を表す。
 これにより、調整回路Aから出力するクロック信号の位相は170°に設定され、調整回路Bから出力するクロック信号の位相は0°に設定される。すなわち、調整回路Aから出力するクロック信号の位相は、調整回路Bから出力するクロック信号の位相に対して170°進んだ位相に設定される。この状態は、図5に示す直線(6)とA軸の交点に相当する。
 以下、LSIテスタ160は、ステップS14乃至S17を実行し、調整回路Aから出力するクロック信号の位相と、調整回路Bから出力するクロック信号の位相との位相差を170°に固定して、72個の出力データ信号を取得する。
 そして、LSIテスタ160は、ステップS18において、すべての出力データ信号を表す72個のデータを期待値と比較する(ステップS18)。ここで、図5の直線(6)に沿った場合、期待値は、すべての位相に対して"1"である。
 LSIテスタ160は、出力データ信号DFFqがすべて"1"であれば、2つの近傍値の他方(ここでは170°)についての第2段階目の動作確認試験は合格と判定する(S18 YES)。
 一方、LSIテスタ160は、出力データ信号DFFqに一つでも"1"が含まれる場合は、動作確認試験は不合格と判定する(S18 NO)。すなわち、その位相調整回路111を含むクロック分配回路110は不良品と判定される。
 LSIテスタ160は、ステップS18において2つの近傍値の他方についても第2段階目の動作確認試験は合格と判定した場合は、ステップS19において、2つの近傍値の両方についての第2段階目の動作確認試験が終了したと判定する(S19 YES)。
 この結果、位相調整回路111を含むクロック分配回路110は良品と判定される。
 以上、第1段階目の動作確認試験で良品と判定された位相調整回路111について、調整回路A、Bの出力位相の位相差を出力データ信号の変化点が現れる位相差の近傍値に固定して第2段階目の動作確認試験を行うことにより、調整回路A、Bの動作確認を容易かつ正確に行うことができる。
 また、上述のような第1段階及び第2段階を含む動作確認試験を行う際に、差動型DFF112の出力データ信号は、2相2出力型の位相調整回路111の差動出力をクロック信号及びデータ信号として用いることによって得られるので、位相調整回路111の動作の良否を容易かつ正確に判定することができる。
 また、位相調整回路111の調整回路A、Bの各々から出力される差動出力を差動型DFF112のクロック信号(ck、ckx)及びデータ信号(d、dx)として用いて出力データ信号を得ているので、メタステーブルのような不安定な出力が極めて生じにくく、安定した出力を得ることができる。
 また、位相調整回路111の調整回路A、Bの出力位相をLSIテスタ160で直接シフトさせながら動作確認試験を行っているので、位相調整回路111の出力位相を調整可能な全範囲について動作確認試験を行うことができる。
 なお、図6Bに示す第2段階目の動作確認試験の説明では、調整回路A、Bの出力位相を5°ずつ進めながら差動型DFF112の出力データ信号を得る方法について説明したが、調整回路A、Bの出力位相は、さらに細かい刻み(例えば、1°あるいはそれ以下)で進めるようにしてもよい。このように、より細かい刻みで調整回路A、Bの出力位相を進めながら出力データ信号を得る場合は、より高精度な動作確認試験を行うことができる。
 以上では、位相調整回路111の調整回路A、Bからそれぞれ出力される差動出力をクロック信号(ck、ckx)及びデータ信号(d、dx)として用いる差動型DFF112を含む、実施の形態1のクロック分配回路110の動作確認試験について説明を行った。
 差動型DFF112の出力は、位相調整回路111の出力を直接用いており、また、クロック信号及びデータ信号ともに差動出力を用いているので、位相調整回路111の動作確認を容易かつ正確に行うことができる。
 また、位相調整回路111の調整回路A、Bの出力位相をLSIテスタ160で直接シフトさせながら動作確認試験を行っているので、位相調整回路111の出力位相を調整可能な全範囲について動作確認試験を行うことができる。
 なお、以上では、クロック分配回路110がCPU10内の高速シリアルI/O受信回路100に含まれる形態について説明したが、クロック分配回路110は、サーバ1内でクロック信号が必要な部位であれば、高速シリアルI/O受信回路100以外の回路等に含ませることができる。
 また、以上では、高速シリアルI/O受信回路100にアンプ120、DFE130、データ処理回路150が含まれる形態について説明したが、高速シリアルI/O受信回路100に含まれる回路は、これらに限定されず、他の回路等であってもよい。
 また、以上では、LSIテスタ160がサーバ1の外部装置である形態について説明したが、サーバ1、高速シリアルI/O受信回路100、又はクロック分配回路110がLSIテスタを内蔵していてもよい。
 図7は、実施の形態1の変形例の高速シリアルI/O受信回路を示す図である。
 実施の形態1の変形例の高速シリアルI/O受信回路100Aに含まれるクロック分配回路110は、動作確認試験装置としてのLSIテスタ160を内蔵する点が図2,図3に示す実施の形態1のクロック分配回路110と異なる。また、クロック分配回路110がLSIテスタ160を内蔵することにより、高速シリアルI/O受信回路100Aが試験用ポート140A、140Bを含まない点が、図2,図3に示す実施の形態1の高速シリアルI/O受信回路100と異なる。その他は、図2,図3に示す実施の形態1の高速シリアルI/O受信回路100、クロック分配回路110と同一であるため、説明を省略する。
 図7に示すように、クロック分配回路110がLSIテスタ160を内蔵することにより、高速シリアルI/O受信回路100AがLSIテスタ160を内蔵することになり、また、サーバ1(図1参照)がLSIテスタ160を内蔵することになる。なお、図7には、LSIテスタ160がクロック分配回路110に含まれる形態を示すが、LSIテスタ160は、クロック分配回路110の外部で高速シリアルI/O受信回路100Aの内部となる場所に配設されてもよい。また、同様に、LSIテスタ160は、高速シリアルI/O受信回路100Aの外部でサーバ1(図1参照)の内部となる場所に配設されてもよい。
 実施の形態1によれば、図7に示すように、LSIテスタ160がクロック分配回路110、高速シリアルI/O受信回路100A、又はサーバ1の内部に配設される場合にうおいても、位相調整回路111の動作確認を容易かつ正確に行うことができる。
 <実施の形態2>
 図8は、実施の形態2のクロック分配回路を含む高速シリアルI/O受信回路を示す図である。
 実施の形態2の高速シリアルI/O受信回路200は、クロック分配回路210に含まれる2相2出力型の位相調整回路211、アンプ(120-1~120-k)、及びDFE(130-1~130-k)が多段化されている点が実施の形態1の高速シリアルI/O受信回路200と異なる。
 ここで、kは段数を示す段数番号であり、任意の2以上の整数であればよい。その他は、実施の形態1の高速シリアルI/O受信回路100と同一であるため、同一の要素には同一符号を付し、その説明を省略する。
 なお、高速シリアルI/O受信回路200に接続されるデータ処理回路(150-1~150-k)も多段化されている。
 位相調整回路211は、調整回路A1、B1、・・・、Ak、Bkを有する。調整回路A、B、・・・、Ak、Bkは、A、Bの対で用いられる。
 アンプ120-1~120-kは、それぞれの入力側がCPU10(図1参照)内の信号線に接続されている。アンプ120-1~120-kの出力側は、それぞれ、段数番号の等しいDFE130-1~130-kに接続されている。
 DFE130-1~130-kは、それぞれ、D/L131及びD/L132を有する。
 データ処理回路150-1~150-kは、それぞれ、段数番号の等しいDFE130-1~130-kに接続されている。データ処理回路150-1~150-kは、それぞれ、FF151、152、及び演算部153を有する。
 クロック分配回路210は、多段化された位相調整回路211と差動型DFF112との間にセレクタ201、201を含む。
 セレクタ201は、入力側が調整回路A1~Akに接続されており、出力側は差動型DFF112のクロック入力端ck、ckxに接続されている。セレクタ201は、調整回路A1~Akのいずれか1つを選択し、選択した調整回路が出力する差動クロック信号を差動型DFF112のクロック入力端ck、ckxに入力する。
 セレクタ202は、入力側が調整回路B1~Bkに接続されており、出力側は差動型DFF112のデータ入力端d、dxに接続されている。セレクタ202は、調整回路B1~Bkのいずれか1つを選択し、選択した調整回路が出力する差動クロック信号を差動型DFF112のデータ入力端d、dxに入力する。
 セレクタ201、202は、LSIテスタ160から入力する回線選択指令に基づいて調整回路A1~Ak、B1~Bkのうちのいずれか一対に接続される回線を選択する。これにより、調整回路A1~Ak、B1~Bkの選択が行われる。なお、セレクタ201、202が選択する一対の回線に接続される調整回路は、調整回路A1~Ak、B1~Bkのうち段数番号kの等しい調整回路である。これにより、調整回路A1~Ak、B1~Bkは、A、Bの対で用いられることになる。
 また、DFE130-1~130-kの各々のD/L131には、段数番号kの等しい調整回路A1~Akの差動クロック信号が入力する。同様に、DFE130-1~130-kの各々のD/L132には、段数番号kの等しい調整回路B1~Bkの差動クロック信号が入力する。
 すなわち、DFE130-1のD/L131には、調整回路A1の差動クロック信号が入力し、DFE130-1のD/L132には、調整回路B1の差動クロック信号が入力する。DFE130-kのD/L131には、調整回路Akの差動クロック信号が入力し、DFE130-kのD/L132には、調整回路Bkの差動クロック信号が入力する。
 なお、DFE130-2からDFE130-(k-1)、調整回路A2~A(k-1)、B2~B(k-1)、及びDFE130-2からDFE130-(k-1)と、調整回路A2~A(k-1)、B2~B(k-1)とを接続する信号線については図示を省略する。
 LSIテスタ160は、回線選択指令を用いてセレクタ201、202で調整回路A1、B1・・・Ak、Bkを選択しながら、図6A及び図6Bに示した処理を実行し、多段化された位相調整回路211の動作確認試験を実行する。
 ここで、LSIテスタ160が回線選択指令を用いてセレクタ201、202を切り替える処理について図9を用いて説明する。
 図9は、実施の形態2の高速シリアルI/O受信回路に接続されるLSIテスタで実行される動作確認試験の処理内容を示すフローチャートである。
 図9に示す動作試験の処理内容は、実施の形態1の第1段階目の動作試験(図6A参照)と第2段階目の動作試験(図6B参照)との前後に、それぞれ、回線選択指令を出力する処理と、すべての回線を選択したか否かを判定する処理とを加えたものである。
 このため、第1段階目の動作試験及び第2段階目の動作試験の内容自体は、実施の形態1の第1段階目の動作試験及び第2段階目の動作試験と同一であるため、その説明を省略し、フローチャートも省略して示す。
 LSIテスタ160は、位相調整回路211の調整回路A1~Ak、B1~Bkを一対ずつ選択して動作確認試験を行うために、回線選択指令をセレクタ201、202に伝送する(ステップS100)。ステップS100の処理は、すべての回線を選択するまで、すなわち、調整回路A1~Ak、B1~Bkを一対ずつ選択してすべての選択が完了するまで、繰り返し実行される処理である。
 LSIテスタ160は、第1段階目の動作確認試験を行い、動作不良の有無を判定する(ステップS101)。
 ステップS101の処理は、図6Aに示すステップS1~S12によって実現される、第1段階目の動作確認試験を実行することにより、動作不良の有無を判定する処理である。ステップS100~S103が繰り返されることにより、ステップS101では、位相調整回路211に含まれる調整回路A1~Ak、B1~Bkの第1段階目の動作確認試験を一対ずつ行うことになる。
 LSIテスタ160は、ステップS101で動作不良と判定した場合、すなわち、図6Aに示すステップS6又はS12で動作不良と判定した場合は、位相調整回路211が不良品であると判定する(S101 NO)。この場合は、動作確認試験が終了する。
 LSIテスタ160は、第1段階目の動作確認試験で動作が良好であると判定した場合は、第2段階目の動作確認試験を行い、動作不良の有無を判定する(ステップS102)。
 ステップS102の処理は、図6Bに示すステップS13~S19によって実現される、第2段階目の動作確認試験を実行することにより、動作不良の有無を判定する処理である。ステップS100~S103が繰り返されることにより、ステップS102では、位相調整回路211に含まれる調整回路A1~Ak、B1~Bkの第2段階目の動作確認試験を一対ずつ行うことになる。
 LSIテスタ160は、ステップS102で動作不良と判定した場合、すなわち、図6Bに示すステップS18で動作不良と判定した場合は、位相調整回路211が不良品であると判定する(S102 NO)。この場合は、動作確認試験が終了する。
 LSIテスタ160は、第2段階目の動作確認試験で動作が良好であると判定した場合は、すべての調整回路A1~Ak、B1~Bkについて動作確認試験が終了したか否かを判定する(ステップS103)。ステップS103の処理は、例えば、段数番号がkに到達したか否かによって判定することができる。
 LSIテスタ160は、ステップS103ですべての調整回路A1~Ak、B1~Bkについて動作確認試験が終了していない(S103 NO)と判定した場合は、フローをステップS100にリターンする。この場合は、ステップS100において、セレクタ201、201の接続先を、次の段数番号の調整回路(A1~Ak、B1~Bkのいずれかの対)を切り替えるために、回線選択指令をセレクタ201、202に伝送する。
 LSIテスタ160は、ステップS103ですべての調整回路A1~Ak、B1~Bkについて動作確認試験が終了した(S103 YES)と判定した場合は、位相調整回路211の調整回路A1~Ak、B1~Bkは、すべて動作が良好であると判定し、一連の処理を終了する。これにより、位相調整回路211を含む実施の形態2のクロック分配回路210は良品であると判定される。
 以上、実施の形態2によれば、多段化された位相調整回路211に含まれるすべての調整回路A1~Ak、B1~Bkについても、実施の形態1の位相調整回路111に含まれるすべての調整回路A、Bと同様に動作確認試験を行うことができる。
 <実施の形態3>
 図10は、実施の形態3のクロック分配回路を示す図である。
 実施の形態3のクロック分配回路310を含む高速シリアルI/O受信回路300は、位相調整回路111の調整回路A、Bに接続されるクロック分配器301A、301Bを含む点が実施の形態1のクロック分配回路110と異なる。クロック分配器301Aの出力側にはコア401が、301Bの出力側にはコア402が、それぞれ接続される。クロック分配回路310は、サーバ1(図1参照)内のどこに用いられていてもよい。
 コア401、402は、それぞれ、FF1~FFm(mは2以上の整数)を含み、クロック分配器301A、301Bの出力側に接続されている。コア401、402は、例えば、プロセッサコアであり、クロック分配器301A、301Bを介して入力するクロック信号を用いて、所定の演算(例えば、整数演算又は浮動小数点演算)を実行する。
 位相調整回路111の動作確認試験は、実施の形態1のクロック分配回路110に含まれる位相調整回路111と同様に行えばよい。
 以上、実施の形態3によれば、図10に示すようなクロック分配回路310に含まれる位相調整回路111についても、実施の形態1の位相調整回路111と同様に動作確認試験を行うことができる。
 以上、本発明の例示的な実施の形態の動作確認試験方法、動作確認試験プログラム、及びクロック分配回路について説明したが、本発明は、具体的に開示された実施の形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。
 1 サーバ
 10 CPU
 11A 発振器
 11B PLL
 20 キャッシュ
 30 メモリコントローラ
 40 主記憶装置
 50 補助記憶装置
 60 システムバス
 100 高速シリアルI/O受信回路
 110 クロック分配回路
 111 位相調整回路
 112 差動型DFF
 120 アンプ
 130 DFE
 131、132 D/L
 140A、140B 試験用ポート
 150 データ処理回路
 151、152 FF
 153 演算部
 160 LSIテスタ
 161 動作確認試験処理部
 161A データ取得部
 161B 位相シフト部
 161C 比較部
 162 メモリ
 200 高速シリアルI/O受信回路
 210 クロック分配回路
 211 位相調整回路
 120-1~120-k アンプ
 130-1~130-k DFE
 150-1~150-k データ処理回路
 201、201 セレクタ
 310 クロック分配回路
 301A、301B クロック分配器
 401、402 コア

Claims (8)

  1.  第1差動信号又は第2差動信号の少なくとも一方の位相を調整して出力する位相調整回路と、
     前記位相調整回路から出力される前記第1差動信号又は前記第2差動信号のいずれか一方をクロック信号として用いて、前記クロック信号に同期して前記第1差動信号又は前記第2差動信号のいずれか他方をデータ信号として取得する差動DFFと
     を含むクロック分配回路の前記位相調整回路の動作確認試験をコンピュータが行う動作確認試験方法であって、
     前記コンピュータは、
     前記第1差動信号又は前記第2差動信号のうちの一方の信号の位相を、他方の信号の位相に対してシフトする第1位相シフト工程と、
     前記第1位相シフト工程において位相がシフトされた前記第1差動信号及び前記第2差動信号が入力される前記差動DFFのデータ信号を取得する第1データ取得工程と、
     前記第1差動信号と前記第2差動信号との位相差が前記第1差動信号及び前記第2差動信号の1周期分に達するまで前記第1位相シフト工程及び前記第1データ取得工程を繰り返し実行することによって得る複数のデータ信号の値と、前記複数のデータ信号の第1期待値と比較する第1比較工程と
     を実行する、動作確認試験方法。
  2.  前記コンピュータは、前記第1比較工程で比較した前記複数のデータ信号の値と前記第1期待値が一致した場合に、
     前記第1差動信号又は前記第2差動信号のうちの前記他方の信号の位相を、前記一方の信号の位相に対してシフトする第2位相シフト工程と、
     前記第2位相シフト工程において位相がシフトされた前記第1差動信号及び前記第2差動信号が入力される前記差動DFFのデータ信号を取得する第2データ取得工程と、
     前記第1差動信号と前記第2差動信号との位相差が前記第1差動信号及び前記第2差動信号の1周期分に達するまで前記第2位相シフト工程及び前記第2データ取得工程を繰り返し実行することによって得る複数のデータ信号の値と、前記複数のデータ信号の第2期待値と比較する第2比較工程と
     をさらに実行する、請求項1に記載の動作確認試験方法。
  3.  前記コンピュータは、前記第2比較工程で比較した前記複数のデータ信号の値と前記第2期待値が一致した場合に、
     前記第1差動信号と前記第2差動信号との位相差を固定値に設定する位相差設定工程と、
     前記固定値が位相差として設定された前記第1差動信号と前記第2差動信号が入力される前記差動DFFのデータ信号を取得する第3データ取得工程と、
     前記固定値を固定した状態で、前記第1差動信号及び前記第2差動信号の位相を所定分シフトする第3位相シフト工程と、
     前記第1差動信号及び前記第2差動信号の位相シフト分が1周期分に達するまで前記第3データ取得工程及び前記第3位相シフト工程を繰り返し実行することによって得る複数の前記データ信号の値と、前記複数のデータ信号の第3期待値と比較する第3比較工程と
     をさらに実行する、請求項2に記載の動作確認試験方法。
  4.  前記位相差設定工程で設定する前記位相差の固定値は、前記複数のデータ信号に含まれるデータ値の変化点が現れる位相差の近傍値であり、前記第3期待値に含まれる複数のデータ値は、すべて同一値である、請求項3に記載の動作確認試験方法。
  5.  前記近傍値は、前記複数のデータ信号に含まれるデータ値の変化点を挟む第1近傍値及び第2近傍値を含み、前記位相差の固定値は、前記第1近傍値又は前記第2近傍値に設定される、請求項4に記載の動作確認試験方法。
  6.  第1差動信号又は第2差動信号の少なくとも一方の位相を調整して出力する位相調整回路と、
     前記位相調整回路から出力される前記第1差動信号又は前記第2差動信号のいずれか一方をクロック信号として用いて、前記クロック信号に同期して前記第1差動信号又は前記第2差動信号のいずれか他方をデータ信号として取得する差動DFFと、
     前記位相調整回路の動作確認試験を行うための動作確認試験装置に前記差動DFFから出力されるデータ信号を出力するための試験用出力端と、
     前記第1差動信号又は前記第2差動信号のうちの一方の位相を他方の位相に対してシフトさせるための位相シフト指令を前記動作確認試験装置から前記位相調整回路に入力するための試験用入力端と
     を含み、前記位相調整回路は、前記位相シフト指令に基づいて前記第1差動信号又は前記第2差動信号の少なくとも一方の位相をシフトする、クロック分配回路。
  7.  第1差動信号又は第2差動信号の少なくとも一方の位相を調整して出力する位相調整回路と、
     前記位相調整回路から出力される前記第1差動信号又は前記第2差動信号のいずれか一方をクロック信号として用いて、前記クロック信号に同期して前記第1差動信号又は前記第2差動信号のいずれか他方をデータ信号として取得する差動DFFと、
     前記第1差動信号又は前記第2差動信号のうちの一方の信号の位相を、他方の信号の位相に対してシフトする位相シフト部と、
     前記位相シフト部によって位相がシフトされた前記第1差動信号及び前記第2差動信号が入力される前記差動DFFのデータ信号を取得するデータ取得部と、
     前記位相シフト部による位相のシフトと、前記データ取得部による前記データ信号の取得とを前記第1差動信号と前記第2差動信号との位相差が前記第1差動信号及び前記第2差動信号の1周期分に達するまで繰り返し実行することによって得る複数のデータ信号の値と、前記複数のデータ信号の期待値と比較する比較部と
     を含む、クロック分配回路。
  8.  第1差動信号又は第2差動信号の少なくとも一方の位相を調整して出力する位相調整回路と、
     前記位相調整回路から出力される前記第1差動信号又は前記第2差動信号のいずれか一方をクロック信号として用いて、前記クロック信号に同期して前記第1差動信号又は前記第2差動信号のいずれか他方をデータ信号として取得する差動DFFと
     を含むクロック分配回路の前記位相調整回路の動作確認試験を実行させるための動作確認試験プログラムであって、
     前記第1差動信号又は前記第2差動信号のうちの一方の信号の位相を、他方の信号の位相に対してシフトする位相シフト部、
     前記位相シフト部によって位相がシフトされた前記第1差動信号及び前記第2差動信号が入力される前記差動DFFのデータ信号を取得するデータ取得部、及び
     前記位相シフト部による位相のシフトと、前記データ取得部による前記データ信号の取得とを前記第1差動信号と前記第2差動信号との位相差が前記第1差動信号及び前記第2差動信号の1周期分に達するまで繰り返し実行することによって得る複数のデータ信号の値と、前記複数のデータ信号の期待値と比較する比較部
     として機能させる、動作確認試験プログラム。
PCT/JP2010/056623 2010-04-13 2010-04-13 動作確認試験方法、動作確認試験プログラム、及びクロック分配回路 WO2011128984A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012510498A JP5422736B2 (ja) 2010-04-13 2010-04-13 動作確認試験方法、動作確認試験プログラム、及びクロック分配回路
PCT/JP2010/056623 WO2011128984A1 (ja) 2010-04-13 2010-04-13 動作確認試験方法、動作確認試験プログラム、及びクロック分配回路
US13/644,943 US20130030752A1 (en) 2010-04-13 2012-10-04 Operation check test method, program and clock distribution circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/056623 WO2011128984A1 (ja) 2010-04-13 2010-04-13 動作確認試験方法、動作確認試験プログラム、及びクロック分配回路

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/644,943 Continuation US20130030752A1 (en) 2010-04-13 2012-10-04 Operation check test method, program and clock distribution circuit

Publications (1)

Publication Number Publication Date
WO2011128984A1 true WO2011128984A1 (ja) 2011-10-20

Family

ID=44798377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056623 WO2011128984A1 (ja) 2010-04-13 2010-04-13 動作確認試験方法、動作確認試験プログラム、及びクロック分配回路

Country Status (3)

Country Link
US (1) US20130030752A1 (ja)
JP (1) JP5422736B2 (ja)
WO (1) WO2011128984A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8709833B2 (en) * 2011-12-22 2014-04-29 International Business Machines Corporation Measuring current and resistance using combined diodes/resistor structure to monitor integrated circuit manufacturing process variations

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003032231A (ja) * 2001-07-11 2003-01-31 Fujitsu I-Network Systems Ltd 位相調整回路の動作確認試験方法および装置、並びに通信装置
JP2005283537A (ja) * 2004-03-31 2005-10-13 Hitachi Ltd 半導体装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100385232B1 (ko) * 2000-08-07 2003-05-27 삼성전자주식회사 서로 다른 주파수를 가지는 클럭 신호들을 동기화시키는회로
WO2002065688A1 (en) * 2001-02-16 2002-08-22 Fujitsu Limited Timing extracting circuit of optical receiver using frequency clock that is half the data transmission rate, and duty shift adaptive circuit of optical transceiver
JP2004178743A (ja) * 2002-11-28 2004-06-24 Ricoh Co Ltd 光ディスク記録装置
JP3842752B2 (ja) * 2003-03-26 2006-11-08 株式会社東芝 位相補正回路及び受信装置
JP4388931B2 (ja) * 2003-08-04 2009-12-24 株式会社アドバンテスト 試験方法、通信デバイス、及び試験システム
WO2006011666A1 (en) * 2004-07-30 2006-02-02 Semiconductor Energy Laboratory Co., Ltd. Display device, driving method thereof and electronic appliance
JP2011120106A (ja) * 2009-12-04 2011-06-16 Rohm Co Ltd クロックデータリカバリ回路
JP2011160369A (ja) * 2010-02-04 2011-08-18 Sony Corp 電子回路、電子機器、デジタル信号処理方法
JP2012010114A (ja) * 2010-06-25 2012-01-12 Elpida Memory Inc 半導体装置
JP2013102372A (ja) * 2011-11-09 2013-05-23 Renesas Electronics Corp クロックデータリカバリ回路およびそれを内蔵する送受信半導体集積回路
US9143121B2 (en) * 2012-08-29 2015-09-22 Qualcomm Incorporated System and method of adjusting a clock signal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003032231A (ja) * 2001-07-11 2003-01-31 Fujitsu I-Network Systems Ltd 位相調整回路の動作確認試験方法および装置、並びに通信装置
JP2005283537A (ja) * 2004-03-31 2005-10-13 Hitachi Ltd 半導体装置

Also Published As

Publication number Publication date
JPWO2011128984A1 (ja) 2013-07-11
US20130030752A1 (en) 2013-01-31
JP5422736B2 (ja) 2014-02-19

Similar Documents

Publication Publication Date Title
JP4065234B2 (ja) 同期式チップーチップシステムのデータリカバリ装置
KR100891335B1 (ko) 비트 에러율 측정을 수행 할 수 있는 클럭 발생 장치
JP2003218961A (ja) 多変数アイ・ウィンドウ上のi/oの自動較正
JPWO2008032701A1 (ja) クロック調整回路と半導体集積回路装置
US6512707B2 (en) Semiconductor integrated circuit device allowing accurate evaluation of access time of memory core contained therein and access time evaluating method
JP2012098996A (ja) メモリインターフェース回路及び半導体装置
WO2011077574A1 (ja) 信号復元回路、レイテンシ調整回路、メモリコントローラ、プロセッサ、コンピュータ、信号復元方法及びレイテンシ調整方法
US7283601B2 (en) Timing signal generating system and receiving circuit for transmitting signals at high speed with less circuitry
US20060262891A1 (en) Data edge-to-clock edge phase detector for high speed circuits
JP2006275616A (ja) 半導体装置及びスキュー調整方法
JP5422736B2 (ja) 動作確認試験方法、動作確認試験プログラム、及びクロック分配回路
JP2015138485A (ja) メモリコントローラ及び情報処理装置
CN108459876B (zh) 用于缩减面积的控制寄存器电路的方法与装置
US7134060B2 (en) Semiconductor integrated circuit including operation test circuit and operation test method thereof
JP2003008411A (ja) 遅延同期回路用遅延調整回路
JPH05233092A (ja) クロック信号分配方法および分配回路
JPH03171945A (ja) ディジタルシステム
US20120194249A1 (en) Semiconductor Integrated Circuit
JP3527161B2 (ja) 半導体集積回路装置及びクロックスキューの検証方法
US8850256B2 (en) Communication circuit and communication method
JP5604799B2 (ja) フォールトトレラントコンピュータ
US20080272817A1 (en) Integrated Circuit on a Semiconductor Chip with a Phase Shift Circuit and a Method for Digital Phase Shifting
US7899143B2 (en) Adjustment mechanism for source synchronous strobe lockout
JP6500693B2 (ja) 可変遅延制御回路の縮退故障診断方法および可変遅延制御回路を有するメモリコントローラ
JPH05275988A (ja) 信号遅延方法、信号遅延装置及び信号遅延装置用回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849822

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012510498

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10849822

Country of ref document: EP

Kind code of ref document: A1