WO2011125739A1 - 多層構造体、積層体及びその製造方法 - Google Patents

多層構造体、積層体及びその製造方法 Download PDF

Info

Publication number
WO2011125739A1
WO2011125739A1 PCT/JP2011/058010 JP2011058010W WO2011125739A1 WO 2011125739 A1 WO2011125739 A1 WO 2011125739A1 JP 2011058010 W JP2011058010 W JP 2011058010W WO 2011125739 A1 WO2011125739 A1 WO 2011125739A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
multilayer structure
resin
ethylene
resin composition
Prior art date
Application number
PCT/JP2011/058010
Other languages
English (en)
French (fr)
Inventor
田井 伸二
河合 宏
聡 山越
晃太 磯山
正雄 日笠
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2012509515A priority Critical patent/JP5882197B2/ja
Priority to EP11765639.7A priority patent/EP2554372B1/en
Priority to US13/638,753 priority patent/US9744748B2/en
Priority to CA2794706A priority patent/CA2794706C/en
Priority to CN201180017332.5A priority patent/CN103097129B/zh
Publication of WO2011125739A1 publication Critical patent/WO2011125739A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/02Combined thermoforming and manufacture of the preform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2029/00Use of polyvinylalcohols, polyvinylethers, polyvinylaldehydes, polyvinylketones or polyvinylketals or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0068Permeability to liquids; Adsorption
    • B29K2995/0069Permeability to liquids; Adsorption non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/008Wide strips, e.g. films, webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/044 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/42Alternating layers, e.g. ABAB(C), AABBAABB(C)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/74Oxygen absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • Y10T428/31913Monoolefin polymer
    • Y10T428/3192Next to vinyl or vinylidene chloride polymer

Definitions

  • the present invention relates to a multilayer structure in which four or more resin layers comprising a resin composition containing an ethylene-vinyl alcohol copolymer are laminated adjacently, a laminate using the multilayer structure, and a method for producing the same
  • the present invention relates to a multilayer structure having a very excellent gas barrier property and excellent in flexibility, pinhole resistance, stretchability and thermoformability, and a laminate.
  • the purpose of improving various properties while considering gas barrier properties is, for example, (1) ethylene content And a multilayer structure having two ethylene-vinyl alcohol copolymer layers having different saponification degrees and containing a boron compound in one layer (see Japanese Patent Laid-Open No. 5-31863), and (2) ethylene content
  • a multilayer structure having a thermoplastic resin layer on at least one side of a layer comprising a composition containing two or more different types of ethylene-vinyl alcohol copolymers has been developed.
  • the conventional multilayer structure (1) improves the heat sealing property while maintaining the gas barrier property and the non-adsorption property of the contents, and the conventional multilayer structure (2) also maintains the gas barrier property. Thus, the moldability is improved.
  • these multilayer structures cannot meet the demand for further improvement in gas barrier properties, and also have a disadvantage that the gas barrier properties and the like during deformation such as bending and stretching are greatly reduced.
  • the present invention has been made in view of these disadvantages, has a very excellent gas barrier property, can maintain properties such as a gas barrier property even when used by being deformed such as stretching or bending, and is resistant to bending. It aims at providing the multilayer structure which is excellent also in a property, pinhole resistance, stretchability, thermoformability, etc. Moreover, it aims at providing the laminated body provided with such a multilayer structure. Furthermore, it aims at providing the method of manufacturing the multilayer structure and laminated body which have such a characteristic, suppressing the raise of manufacturing cost.
  • the invention made to solve the above problems is A multilayer structure in which four or more resin layers made of a resin composition containing an ethylene-vinyl alcohol copolymer are laminated adjacently.
  • the multilayer structure has a very excellent gas barrier property because four or more resin layers made of a resin composition containing an ethylene-vinyl alcohol copolymer are laminated adjacent to each other.
  • the multilayer structure has excellent stretchability and thermoformability due to four or more resin layers.
  • four or more adjacent resin layers commonly contain an ethylene-vinyl alcohol copolymer, it has excellent interlayer adhesion.
  • the multilayer structure has high bending resistance and pinhole resistance due to the excellent interlayer adhesion and the resin layer structure of four or more layers, and has high gas barrier properties such as bending and stretching. It is maintained against deformation.
  • the average thickness of one layer of the resin layer is preferably 0.01 ⁇ m or more and 10 ⁇ m or less.
  • the average thickness of the multilayer structure is preferably 0.1 ⁇ m or more and 1,000 ⁇ m or less.
  • the ethylene unit content is preferably 3 mol% or more and 70 mol% or less, and the saponification degree is preferably 80 mol% or more.
  • the gas barrier property of the multilayer structure can be further improved, and in addition, the melt moldability can be improved.
  • this high melt moldability can provide a good and uniform multilayer structure, and can also improve interlayer adhesion.
  • the moisture resistance of the multilayer structure can be improved.
  • the ethylene-vinyl alcohol copolymer constituting the resin layer has at least one selected from the group consisting of the following structural units (I) and (II),
  • the content of these structural units (I) or (II) with respect to all the structural units is preferably 0.5 mol% or more and 30 mol% or less.
  • the ethylene-vinyl alcohol copolymer constituting the resin layer has the following structural unit (I) or (II) within the above content range, whereby the flexibility of the resin composition constituting the resin layer and Since the processing characteristics are improved, the bending resistance, pinhole resistance, durability, stretchability, thermoformability, and interlayer adhesion of the multilayer structure can be improved.
  • R 1 , R 2 and R 3 are each independently a hydrogen atom, an aliphatic hydrocarbon group having 1 to 10 carbon atoms, an alicyclic hydrocarbon group having 3 to 10 carbon atoms, carbon Represents an aromatic hydrocarbon group or a hydroxyl group of formula 6-10.
  • a pair of R 1 , R 2 and R 3 may be bonded (except when a pair of R 1 , R 2 and R 3 are both hydrogen atoms).
  • the aliphatic hydrocarbon group having 1 to 10 carbon atoms, the alicyclic hydrocarbon group having 3 to 10 carbon atoms, or the aromatic hydrocarbon group having 6 to 10 carbon atoms has a hydroxyl group, a carboxyl group, or a halogen atom. It may be.
  • R 4 , R 5 , R 6 and R 7 are each independently a hydrogen atom, an aliphatic hydrocarbon group having 1 to 10 carbon atoms, or an alicyclic hydrocarbon having 3 to 10 carbon atoms. Group, an aromatic hydrocarbon group having 6 to 10 carbon atoms or a hydroxyl group. R 4 and R 5 or R 6 and R 7 may be bonded (except when R 4 and R 5 or R 6 and R 7 are both hydrogen atoms).
  • the aliphatic hydrocarbon group having 1 to 10 carbon atoms, the alicyclic hydrocarbon group having 3 to 10 carbon atoms, or the aromatic hydrocarbon group having 6 to 10 carbon atoms is a hydroxyl group, an alkoxy group, a carboxyl group, or a halogen atom. You may have an atom.
  • the resin composition may contain a thermoplastic resin having oxygen scavenging ability. As described above, since the resin composition constituting the resin layer contains a thermoplastic resin having oxygen scavenging ability, a high oxygen scavenging function is added to the multilayer structure, and thus its gas barrier property and durability Is further improved.
  • the resin composition may contain a desiccant. As described above, since the resin composition constituting the resin layer contains a desiccant, the contained ethylene-vinyl alcohol copolymer is kept in a dry state, so that the gas barrier property of the multilayer structure is effectively improved. Can be made.
  • the resin composition has a melt viscosity ( ⁇ 1 ) of 1 ⁇ 10 2 Pa ⁇ s to 1 ⁇ 10 4 Pa ⁇ s at a temperature of 210 ° C. and a shear rate of 10 / second, a temperature of 210 ° C., and a shear rate of 1,000 /
  • the melt viscosity ( ⁇ 2 ) in seconds is 1 ⁇ 10 1 Pa ⁇ s or more and 1 ⁇ 10 3 Pa ⁇ s or less, and the melt viscosity ratio ( ⁇ 2 / ⁇ 1 ) is expressed by the following formula (1). Satisfy.
  • the resin composition constituting the resin layer has a melt viscosity and a melt viscosity ratio in the above range, the resin layer and thus the multilayer structure can be molded according to the target dimensions and at a high speed. A multilayer structure having a uniform and good appearance can be obtained. Furthermore, there is an effect of improving interlayer adhesion. ⁇ 0.8 ⁇ (1/2) log 10 ( ⁇ 2 / ⁇ 1 ) ⁇ ⁇ 0.1 (1)
  • the resin layer may have an A layer and a B layer made of resin compositions in which at least one selected from the group consisting of composition, blending ratio and ethylene-vinyl alcohol copolymer structure is different from each other.
  • the multilayer structure includes resin layers having different compositions, blending ratios, and structures of ethylene-vinyl alcohol copolymers as layers including four or more adjacent ethylene-vinyl alcohol copolymers.
  • Can adjust properties such as gas barrier properties, flex resistance, pinhole resistance, stretchability and thermoformability.
  • a synergistic effect can be exhibited by giving a different function to A layer and B layer, or A layer and B layer complementing each other. Thereby, the characteristics of the gas barrier property, stretchability and thermoformability of the multilayer structure can be further improved, and further properties other than those properties can be imparted.
  • the A layer and the B layer are alternately laminated.
  • the above synergistic effect is effectively exhibited, and as a result, the gas barrier property, durability, and other characteristics of the multilayer structure can be further improved. it can.
  • the difference in ethylene unit content between the ethylene-vinyl alcohol copolymer constituting the A layer and the ethylene-vinyl alcohol copolymer constituting the B layer is preferably 3 mol% or more and 50 mol% or less. Bending resistance, pinhole resistance, stretchability and thermoformability of the multilayer structure are further improved by the difference in the ethylene unit content of the ethylene-vinyl alcohol copolymer between the A layer and the B layer within the above range.
  • the multilayer structure can be easily used for various applications.
  • thermoplastic resin having oxygen scavenging ability Only one of the A layer and the B layer may contain a thermoplastic resin having oxygen scavenging ability.
  • a thermoplastic resin having oxygen scavenging ability only in one of the resin layers laminated in this way, the multilayer structure can have flexibility, pinhole resistance, stretchability and thermoformability.
  • even when oxygen is absorbed, a multilayer structure in which unpleasant odor diffusion is suppressed due to the presence of other layers can be obtained.
  • a desiccant only in one resin composition of the A layer and the B layer It is good to contain a desiccant only in one resin composition of the A layer and the B layer.
  • the desiccant By including the desiccant in the resin composition, the ethylene-vinyl alcohol copolymer contained can be kept in a dry state and the gas barrier property can be improved.
  • the desiccant since the desiccant is a powder, the content of the desiccant is a gas barrier.
  • the resin composition constituting the four or more resin layers may be the same.
  • extremely high gas barrier properties are exhibited by forming four or more adjacent resin layers from the same resin composition.
  • durability improves.
  • the kind of resin composition used as the raw material of a multilayer structure can be reduced, As a result, manufacture of such a multilayer structure excellent in gas barrier property and having high durability becomes easy.
  • thermoplastic resin layer other than the ethylene-vinyl alcohol copolymer By further laminating a thermoplastic resin layer other than the ethylene-vinyl alcohol copolymer on the multilayer structure, it is possible to obtain a laminate having high gas barrier properties and excellent durability.
  • various functions such as heat sealability and peelability can be imparted.
  • the average thickness of the laminate is preferably 1 ⁇ m or more and 5,000 ⁇ m or less.
  • At least one selected from the group consisting of an alkali metal salt, an alkaline earth metal salt, and a fourth periodic d-block metal salt of the periodic table is used as the resin composition of the layer located in the outermost layer of the multilayer structure. It is good to contain a seed
  • the laminate is suitably used for food packaging.
  • Packaging materials used for food packaging need to maintain high gas barrier properties while repeatedly deforming such as stretching and bending at the time of use, but have excellent properties such as gas barrier properties, durability and flexibility as described above.
  • Another invention made to solve the above-mentioned problems is a method for producing the multilayer structure, wherein the multilayer structure is molded by a multilayer coextrusion method using a resin composition containing an ethylene-vinyl alcohol copolymer. It is characterized by.
  • a multilayer structure having very high gas barrier properties and excellent in bending resistance, pinhole resistance, stretchability, and interlayer adhesion is suppressed while increasing the production cost. It can be manufactured easily and reliably.
  • the above problem can also be solved by a method for producing a laminate formed by a multilayer coextrusion method using a resin composition containing an ethylene-vinyl alcohol copolymer and a thermoplastic resin.
  • a method for producing a laminate since the thermoplastic resin layer can be formed at the same time when the multilayer structure is manufactured, the laminate is easily and reliably manufactured while suppressing an increase in manufacturing cost. Furthermore, the interlayer adhesion between the outermost layer of the multilayer structure composed of a resin composition containing an ethylene-vinyl alcohol copolymer and the thermoplastic resin layer is excellent.
  • the multilayer structure of the present invention has a very excellent gas barrier property because four or more resin layers containing an ethylene-vinyl alcohol copolymer are laminated adjacent to each other.
  • the laminate of the present invention has high gas barrier properties and is excellent in durability. Furthermore, according to the method for manufacturing a multilayer structure and a laminate of the present invention, a multilayer structure and a laminate having such characteristics can be easily and reliably manufactured while suppressing an increase in manufacturing cost.
  • EVOH ethylene-vinyl alcohol copolymer
  • the multilayer structure includes four or more resin layers containing EVOH adjacent to each other.
  • the gas barrier property is improved by the structure in which four or more resin layers containing EVOH are laminated.
  • the reason for improving the gas barrier property by laminating four or more resin layers containing EVOH adjacent to each other is not necessarily clear, but it is conceivable that laminating four or more layers takes a larger orientation.
  • the structure in which four or more resin layers are laminated reduces the occurrence of continuous defects such as pinholes and cracks.
  • the multilayer structure has a very high gas barrier property due to the structure itself. It has characteristics such as durability to maintain the resistance.
  • the total number of resin layers is preferably 6 or more, more preferably 10 or more, and particularly preferably 15 or more.
  • the lower limit of the average thickness of the multilayer structure is preferably 0.1 ⁇ m, more preferably 1 ⁇ m, and even more preferably 5 ⁇ m.
  • the upper limit of the average thickness of the multilayer structure is preferably 1,000 ⁇ m, more preferably 500 ⁇ m, further preferably 250 ⁇ m or less, further preferably 100 ⁇ m or less, and particularly preferably 50 ⁇ m or less. If the average thickness of the multilayer structure is smaller than the above lower limit, the strength may be insufficient and it may be difficult to use. On the other hand, when the average thickness of the multilayer structure exceeds the upper limit, flexibility, moldability and the like may be reduced, leading to an increase in manufacturing cost.
  • the thickness of the multilayer structure is obtained by averaging measured values of the cross-sectional thickness at nine arbitrarily selected points of the multilayer structure.
  • the lower limit of the average thickness of one resin layer is preferably 0.01 ⁇ m, more preferably 0.05 ⁇ m, and still more preferably 0.1 ⁇ m.
  • the upper limit of the average thickness of one resin layer is preferably 10 ⁇ m, more preferably 7 ⁇ m, further preferably 5 ⁇ m, and further preferably 3 ⁇ m, 2 ⁇ m, 1 ⁇ m, 0.5 ⁇ m, and 0.25 ⁇ m. If the average thickness of one resin layer is smaller than the above lower limit, it becomes difficult to mold with a uniform thickness, and in some cases, the formation of the layer does not go well, resulting in turbulence of the layer and flow spots, and the multilayer structure.
  • the average thickness of one layer of the resin layer refers to a value obtained by dividing the average thickness of the multilayer structure by the number of layers of the resin layer.
  • the four or more resin layers constituting the multilayer structure are layers made of a resin composition containing EVOH.
  • the resin composition constituting the resin layer contains EVOH, a multilayer structure having excellent gas barrier properties can be obtained.
  • the resin composition contains EVOH.
  • EVOH EVOH contained in the resin composition constituting the resin layer has an ethylene unit and a vinyl alcohol unit as main structural units.
  • the EVOH may contain one or more other structural units in addition to the ethylene unit and the vinyl alcohol unit.
  • This EVOH is usually obtained by polymerizing ethylene and a vinyl ester and saponifying the resulting ethylene-vinyl ester copolymer.
  • the lower limit of the ethylene unit content of EVOH (that is, the ratio of the number of ethylene units to the total number of monomer units in EVOH) is preferably 3 mol%, more preferably 10 mol%, still more preferably 20 mol%. 25 mol% is particularly preferable.
  • the upper limit of the ethylene unit content of EVOH is preferably 70 mol%, more preferably 60 mol%, still more preferably 55 mol%, and particularly preferably 50 mol%. If the ethylene unit content of EVOH is smaller than the above lower limit, the water resistance, hot water resistance and gas barrier property under high humidity of the multilayer structure may be lowered, or the melt moldability of the multilayer structure may be deteriorated. . On the contrary, when the ethylene unit content of EVOH exceeds the upper limit, the gas barrier property of the multilayer structure may be deteriorated.
  • the lower limit of the saponification degree of EVOH (that is, the ratio of the number of vinyl alcohol units to the total number of vinyl alcohol units and vinyl ester units in EVOH) is preferably 80 mol%, more preferably 95 mol%, and 99 mol%. Particularly preferred.
  • the upper limit of the saponification degree of EVOH is preferably 99.99 mol%. If the saponification degree of EVOH is smaller than the above lower limit, the melt moldability may be lowered, and in addition, the gas barrier property of the multilayer structure may be lowered, or the coloring resistance and moisture resistance may be unsatisfactory. is there.
  • EVOH if the saponification degree of EVOH exceeds the above upper limit, an increase in gas barrier property or the like with respect to an increase in the production cost of EVOH cannot be expected so much.
  • Such EVOH can be used alone, but an embodiment in which EVOH is blended with EVOH having a saponification degree exceeding 99 mol% is also suitable.
  • the EVOH 1,2-glycol bond structural unit content G (mol%) preferably satisfies the following formula (2), and the intrinsic viscosity is preferably 0.05 L / g or more and 0.2 L / g or less.
  • E is the ethylene unit content (mol%) in EVOH (provided that E ⁇ 64 (mol%)).
  • the resin composition constituting the resin layer contains EVOH having such a content G of 1,2-glycol bond structural units and intrinsic viscosity, the humidity dependency of the gas barrier property of the resulting multilayer structure is reduced. In addition to exhibiting the above properties, it has good transparency and gloss and can be easily laminated with other thermoplastic resins. Therefore, the suitability of the multilayer structure as a material for food packaging or the like can be improved.
  • the content G of 1,2-glycol bond structural unit is S.I. According to the method described in Aniya et al. (Analytical Science Vol. 1, 91 (1985)), an EVOH sample can be used as a dimethyl sulfoxide solution and measured by a nuclear magnetic resonance method at a temperature of 90 ° C.
  • EVOH preferably has at least one selected from the group consisting of the structural units (I) and (II).
  • the structural units (I) and (II) As a minimum of content with respect to all the structural units of the said structural unit (I) or (II), 0.5 mol% is preferable, 1 mol% is more preferable, 1.5 mol% is further more preferable.
  • the upper limit of the content of the structural unit (I) or (II) is preferably 30 mol%, more preferably 15 mol%, still more preferably 10 mol%.
  • examples of the aliphatic hydrocarbon group having 1 to 10 carbon atoms include an alkyl group and an alkenyl group
  • examples of the alicyclic hydrocarbon group having 3 to 10 carbon atoms include Examples thereof include a cycloalkyl group and a cycloalkenyl group
  • examples of the aromatic hydrocarbon group having 6 to 10 carbon atoms include a phenyl group.
  • R 1 , R 2 and R 3 are preferably each independently a hydrogen atom, a methyl group, an ethyl group, a hydroxyl group, a hydroxymethyl group or a hydroxyethyl group. Among these, More preferably, they are each independently a hydrogen atom, a methyl group, a hydroxyl group or a hydroxymethyl group.
  • the method of incorporating the structural unit (I) in EVOH is not particularly limited.
  • a method of copolymerizing a monomer derived from the structural unit (I) and the like. can be mentioned.
  • Monomers derived from this structural unit (I) include alkenes such as propylene, butylene, pentene, hexene; 3-hydroxy-1-propene, 3-acyloxy-1-propene, 3-acyloxy-1-butene, 4 -Acyloxy-1-butene, 3,4-diacyloxy-1-butene, 3-acyloxy-4-hydroxy-1-butene, 4-acyloxy-3-hydroxy-1-butene, 3-acyloxy-4-methyl-1 -Butene, 4-acyloxy-2-methyl-1-butene, 4-acyloxy-3-methyl-1-butene, 3,4-diacyloxy-2-methyl-1-butene, 4-hydroxy-1-pentene, 5 -Hydroxy-1-pentene, 4,5-dihydroxy-1-pentene, 4-acyloxy-1-pentene, 5-acyloxy-1-pentene, 4 5-diacyloxy-1-pentene, 4-hydroxy-3-methyl-1-pentene, 5-
  • propylene, 3-acyloxy-1-propene, 3-acyloxy-1-butene, 4-acyloxy-1-butene, 3 1,4-diacetoxy-1-butene is preferred.
  • propylene, 3-acetoxy-1-propene, 3-acetoxy-1-butene, 4-acetoxy-1-butene, and 3,4-diacetoxy-1-butene are preferable.
  • 1,4-diacetoxy-1-butene is particularly preferred.
  • an alkene having an ester it is derived into the structural unit (I) during the saponification reaction.
  • R 4 and R 5 are preferably both hydrogen atoms.
  • R 4 and R 5 are both hydrogen atoms
  • one of R 6 and R 7 is an aliphatic hydrocarbon group having 1 to 10 carbon atoms, and the other is a hydrogen atom.
  • the aliphatic hydrocarbon group is preferably an alkyl group or an alkenyl group. From the viewpoint of particularly emphasizing the gas barrier property of the multilayer structure, it is particularly preferable that one of R 6 and R 7 is a methyl group or an ethyl group, and the other is a hydrogen atom.
  • R 6 and R 7 is a substituent represented by (CH 2 ) h OH (where h is an integer of 1 to 8) and the other is a hydrogen atom.
  • h is preferably an integer of 1 to 4, more preferably 1 or 2, and particularly preferably 1.
  • the method of incorporating the structural unit (II) in EVOH is not particularly limited, and a method of incorporating EVOH obtained by a saponification reaction by reacting with a monovalent epoxy compound is used.
  • a monovalent epoxy compound compounds represented by the following formulas (III) to (IX) are preferably used.
  • R 8 , R 9 , R 10 , R 11 and R 12 are each independently a hydrogen atom, an aliphatic hydrocarbon group having 1 to 10 carbon atoms (an alkyl group or an alkenyl group). Etc.), an alicyclic hydrocarbon group having 3 to 10 carbon atoms (such as a cycloalkyl group or a cycloalkenyl group) or an aliphatic hydrocarbon group having 6 to 10 carbon atoms (such as a phenyl group).
  • I, j, k, p, and q represent integers of 1 to 8.
  • Examples of the monovalent epoxy compound represented by the above formula (III) include epoxy ethane (ethylene oxide), epoxy propane, 1,2-epoxybutane, 2,3-epoxybutane, and 3-methyl-1,2-epoxy.
  • Examples of the monovalent epoxy compound represented by the above formula (IV) include methyl glycidyl ether, ethyl glycidyl ether, n-propyl glycidyl ether, isopropyl glycidyl ether, n-butyl glycidyl ether, isobutyl glycidyl ether, tert-butyl glycidyl ether.
  • Examples of the monovalent epoxy compound represented by the formula (V) include ethylene glycol monoglycidyl ether, propanediol monoglycidyl ether, butanediol monoglycidyl ether, pentanediol monoglycidyl ether, hexanediol monoglycidyl ether, heptanediol mono Examples thereof include glycidyl ether and octanediol monoglycidyl ether.
  • Examples of the monovalent epoxy compound represented by the above formula (VI) include 3- (2,3-epoxy) propoxy-1-propene, 4- (2,3-epoxy) propoxy-1-butene, 5- ( 2,3-epoxy) propoxy-1-pentene, 6- (2,3-epoxy) propoxy-1-hexene, 7- (2,3-epoxy) propoxy-1-heptene, 8- (2,3-epoxy ) Propoxy-1-octene and the like.
  • Examples of the monovalent epoxy compound represented by the formula (VII) include 3,4-epoxy-2-butanol, 2,3-epoxy-1-butanol, 3,4-epoxy-2-pentanol, 2, 3-epoxy-1-pentanol, 1,2-epoxy-3-pentanol, 2,3-epoxy-4-methyl-1-pentanol, 2,3-epoxy-4,4-dimethyl-1-pen Tanol, 2,3-epoxy-1-hexanol, 3,4-epoxy-2-hexanol, 4,5-epoxy-3-hexanol, 1,2-epoxy-3-hexanol, 2,3-epoxy-4- Methyl-1-hexanol, 2,3-epoxy-4-ethyl-1-hexanol, 2,3-epoxy-4,4-dimethyl-1-hexanol, 2,3-epoxy-4,4-diethi -1-hexano
  • Examples of the monovalent epoxy compound represented by the above formula (VIII) include 1,2-epoxycyclopentane, 1,2-epoxycyclohexane, 1,2-epoxycycloheptane, 1,2-epoxycyclooctane, 1, Examples include 2-epoxycyclononane, 1,2-epoxycyclodecane, 1,2-epoxycycloundecane, and 1,2-epoxycyclododecane.
  • Examples of the monovalent epoxy compound represented by the above formula (IX) include 3,4-epoxycyclopentene, 3,4-epoxycyclohexene, 3,4-epoxycycloheptene, 3,4-epoxycyclooctene, 3, Examples include 4-epoxycyclononene, 1,2-epoxycyclodecene, 1,2-epoxycycloundecene, 1,2-epoxycyclododecene, and the like.
  • the carbon number of the monovalent epoxy compound is more preferably 2 to 6, and further preferably 2 to 4.
  • the monovalent epoxy compound is particularly preferably a compound represented by the formula (III) or (IV) among the above formulas. Specifically, 1,2-epoxybutane, 2,3-epoxybutane, epoxypropane, epoxyethane, and glycidol are preferable from the viewpoint of reactivity with EVOH and gas barrier properties of the resulting multilayer structure. Propane and glycidol are particularly preferred.
  • 1,2-epoxybutane, 2,3-epoxybutane, epoxypropane, or epoxyethane should be used as the epoxy compound. It is particularly preferable to use epoxypropane.
  • the copolymerization method of ethylene and vinyl ester is not particularly limited, and for example, any of solution polymerization, suspension polymerization, emulsion polymerization, and bulk polymerization may be used. Moreover, any of a continuous type and a batch type may be sufficient.
  • fatty acid vinyl such as vinyl acetate, vinyl propionate and vinyl pivalate can be used.
  • a monomer that can be copolymerized in addition to the above components for example, alkenes other than those described above; unsaturated acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid, or anhydrides thereof Products, salts, mono- or dialkyl esters, etc .; nitriles such as acrylonitrile and methacrylonitrile; amides such as acrylamide and methacrylamide; olefin sulfonic acids such as vinyl sulfonic acid, allyl sulfonic acid and methallyl sulfonic acid; Vinyl ethers, vinyl ketone, N-vinyl pyrrolidone, vinyl chloride, vinylidene chloride and the like can be copolymerized in a small amount.
  • unsaturated acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid, or anhydrides thereof Products, salts, mono-
  • a vinyl silane compound can be contained as 0.0002 mol% or more and 0.2 mol% or less as a copolymerization component.
  • examples of the vinylsilane compound include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltri ( ⁇ -methoxy-ethoxy) silane, ⁇ -methacryloyloxypropylmethoxysilane, and the like. Of these, vinyltrimethoxysilane and vinyltriethoxysilane are preferably used.
  • the solvent used for the polymerization is not particularly limited as long as it is an organic solvent capable of dissolving ethylene, vinyl ester and ethylene-vinyl ester copolymer.
  • a solvent for example, alcohols such as methanol, ethanol, propanol, n-butanol and tert-butanol; dimethyl sulfoxide and the like can be used.
  • methanol is particularly preferable in that removal and separation after the reaction is easy.
  • Examples of the catalyst used in the polymerization include 2,2-azobisisobutyronitrile, 2,2-azobis- (2,4-dimethylvaleronitrile), 2,2-azobis- (4-methoxy-2,4 -Dimethylvaleronitrile), 2,2-azobis- (2-cyclopropylpropionitrile) and other azonitrile initiators; isobutyryl peroxide, cumylperoxyneodecanoate, diisopropylperoxycarbonate, di-n- Organic peroxide initiators such as propyl peroxydicarbonate, t-butyl peroxyneodecanoate, lauroyl peroxide, benzoyl peroxide, t-butyl hydroperoxide and the like can be used.
  • the polymerization temperature is 20 to 90 ° C., preferably 40 to 70 ° C.
  • the polymerization time is 2 to 15 hours, preferably 3 to 11 hours.
  • the polymerization rate is 10 to 90%, preferably 30 to 80%, based on the charged vinyl ester.
  • the resin content in the solution after polymerization is 5 to 85%, preferably 20 to 70%.
  • a polymerization inhibitor is added as necessary, and after removing unreacted ethylene gas, unreacted vinyl ester is removed.
  • the above copolymer solution is continuously supplied from the upper part of the tower filled with Raschig rings at a constant rate, and an organic solvent vapor such as methanol is blown from the lower part of the tower.
  • a method may be employed in which a mixed vapor of an organic solvent such as methanol and unreacted vinyl ester is distilled from the top, and a copolymer solution from which unreacted vinyl ester has been removed is removed from the bottom of the column.
  • an alkali catalyst is added to the copolymer solution to saponify the copolymer.
  • the saponification method can be either a continuous type or a batch type.
  • this alkali catalyst for example, sodium hydroxide, potassium hydroxide, alkali metal alcoholate and the like are used.
  • the copolymer solution concentration is 10 to 50% by mass
  • the reaction temperature is 30 to 65 ° C.
  • the amount of catalyst used is 0.02 to 1.0 per mole of vinyl ester structural unit.
  • Mole, saponification time is 1-6 hours.
  • EVOH after the saponification reaction contains an alkali catalyst, by-product salts such as sodium acetate and potassium acetate, and other impurities. Therefore, it is preferable to remove these by neutralization and washing as necessary.
  • water containing almost no metal ions such as ion-exchanged water, chloride ions, or the like, a part of sodium acetate, potassium acetate or the like may remain.
  • the resin composition which comprises a resin layer contains the 1 type or multiple types of compound chosen from a phosphoric acid compound, a carboxylic acid, and a boron compound according to an embodiment.
  • a phosphoric acid compound, carboxylic acid or boron compound By including such a phosphoric acid compound, carboxylic acid or boron compound in the resin composition of the resin layer, various performances of the multilayer structure can be improved.
  • the thermal stability during melt molding of the multilayer structure can be improved by including a phosphoric acid compound in the resin composition of the resin layer containing EVOH.
  • a phosphoric acid compound for example, various acids, such as phosphoric acid and phosphorous acid, its salt, etc. are mentioned.
  • the phosphate may be contained in any form of, for example, a first phosphate, a second phosphate, and a third phosphate, and is not particularly limited as a counter cation species, but an alkali metal salt Or an alkaline earth metal salt is preferable.
  • sodium dihydrogen phosphate, potassium dihydrogen phosphate, sodium hydrogen phosphate, or potassium hydrogen phosphate is preferred because of its high thermal stability improving effect.
  • the lower limit of the phosphoric acid compound content (the phosphoric acid compound content in the dry resin composition of the resin layer) is preferably 1 ppm, more preferably 10 ppm, and even more preferably 30 ppm.
  • the upper limit of the content of the phosphoric acid compound is preferably 10,000 ppm, more preferably 1,000 ppm, and even more preferably 300 ppm. If the content of the phosphoric acid compound is less than the above lower limit, coloring during melt molding may become intense. In particular, since the tendency is remarkable when the heat histories are accumulated, a molded product obtained by molding the resin composition pellet may be poor in recoverability. On the other hand, if the content of the phosphoric acid compound exceeds the above upper limit, there is a risk that gels and blisters of the molded product are likely to occur.
  • carboxylic acid in the resin composition of the resin layer containing EVOH, there is an effect of controlling the pH of the resin composition, preventing gelation and improving the thermal stability.
  • carboxylic acid those having a pKa at 25 ° C. of 3.5 or more are preferable.
  • carboxylic acid such as oxalic acid, succinic acid, benzoic acid, citric acid or the like having a pKa at 25 ° C. of less than 3.5 is contained, it becomes difficult to control the pH of the resin composition containing EVOH, Interlayer adhesion may be unsatisfactory.
  • acetic acid or lactic acid is preferable from the viewpoint of cost and the like.
  • the upper limit of the carboxylic acid content is preferably 10,000 ppm, more preferably 1,000 ppm, and even more preferably 500 ppm. If the carboxylic acid content is less than the lower limit, coloring may occur during melt molding. Conversely, if the content of carboxylic acid exceeds the above upper limit, the interlayer adhesion may be insufficient.
  • a boron compound in the resin composition of the resin layer containing EVOH, there is an effect of improving thermal stability.
  • a boron compound is added to a resin composition composed of EVOH, it is considered that a chelate compound is generated between EVOH and the boron compound.
  • the heat stability is higher than that of normal EVOH. It is possible to improve and improve mechanical properties.
  • the boron compound is not particularly limited, and examples thereof include boric acids, boric acid esters, borates, and borohydrides.
  • examples of boric acids include orthoboric acid (H 3 BO 3 ), metaboric acid, and tetraboric acid
  • examples of boric acid esters include triethyl borate and trimethyl borate.
  • examples of the borate include alkali metal salts, alkaline earth metal salts, and borax of the various boric acids. Of these, orthoboric acid is preferred.
  • the upper limit of the boron compound content is preferably 10,000 ppm, more preferably 2,000 ppm, and even more preferably 1,000 ppm. If the boron compound content is less than the above lower limit, the effect of improving the thermal stability by adding the boron compound may not be obtained. On the contrary, when the content of the boron compound exceeds the above upper limit, gelation tends to occur and there is a risk of forming defects.
  • the method for containing the phosphoric acid compound, carboxylic acid or boron compound in the resin composition containing EVOH is not particularly limited.
  • the resin composition when preparing pellets of the resin composition containing EVOH or the like, the resin composition contains A method of adding and kneading is preferably employed.
  • the method of adding to the resin composition is not particularly limited, but the method of adding as a dry powder, the method of adding in a paste impregnated with a solvent, the method of adding in a suspended state in a liquid, or dissolving in a solvent.
  • the method of adding as a solution is exemplified.
  • a method of dissolving in a solvent and adding as a solution is preferable.
  • the solvent used in these methods is not particularly limited, but water is preferably used from the viewpoints of solubility of the additive, cost merit, ease of handling, safety of work environment, and the like.
  • a metal salt described later, a resin other than EVOH, other additives, and the like can be added simultaneously.
  • a method of containing a phosphoric acid compound, a carboxylic acid, and a boron compound a method of immersing pellets or strands obtained by an extruder or the like after saponification in a solution in which those substances are dissolved is also uniformly dispersed. It is preferable in that it can be performed. Also in this method, water is preferably used as the solvent for the same reason as described above. By dissolving a metal salt described later in this solution, the metal salt can be contained simultaneously with the phosphoric acid compound and the like.
  • the resin composition constituting the resin layer contains a compound having a conjugated double bond having a molecular weight of 1,000 or less. By containing such a compound, the hue of the resin composition of the resin layer is improved, so that a multilayer structure having a good appearance can be obtained.
  • Examples of such a compound include a conjugated diene compound having a structure in which at least two carbon-carbon double bonds and one carbon-carbon single bond are alternately connected, three carbon-carbon double bonds, and A triene compound having a structure in which two carbon-carbon single bonds are alternately connected; a conjugated polyene compound having a structure in which a larger number of carbon-carbon double bonds and carbon-carbon single bonds are alternately connected; Examples thereof include conjugated triene compounds such as 2,4,6-octatriene.
  • the compound having a conjugated double bond may include a plurality of conjugated double bonds independently in one molecule, for example, a compound having three conjugated trienes in the same molecule such as tung oil. It is.
  • Examples of the compound having a conjugated double bond include a carboxyl group and a salt thereof, a hydroxyl group, an ester group, a carbonyl group, an ether group, an amino group, an imino group, an amide group, a cyano group, a diazo group, a nitro group, a sulfone group, and a sulfoxide. It may have other various functional groups such as a group, sulfide group, thiol group, sulfonic acid group and salt thereof, phosphoric acid group and salt thereof, phenyl group, halogen atom, double bond and triple bond.
  • Such a functional group may be directly bonded to the carbon atom in the conjugated double bond, or may be bonded to a position away from the conjugated double bond.
  • the multiple bond in the functional group may be in a position capable of conjugating with the conjugated double bond, for example, 1-phenylbutadiene having a phenyl group or sorbic acid having a carboxyl group also has the conjugated double bond referred to herein. Included in compounds.
  • this compound include, for example, 2,4-diphenyl-4-methyl-1-pentene, 1,3-diphenyl-1-butene, 2,3-dimethyl-1,3-butadiene, 4-methyl-1 , 3-pentadiene, 1-phenyl-1,3-butadiene, sorbic acid, myrcene and the like.
  • the conjugated double bond in the compound having a conjugated double bond is not only an aliphatic conjugated double bond such as 2,3-dimethyl-1,3-butadiene and sorbic acid, but also 2,4-diphenyl. Also included are aliphatic and aromatic conjugated double bonds such as -4-methyl-1-pentene and 1,3-diphenyl-1-butene. However, from the viewpoint of obtaining a multilayer structure having a more excellent appearance, a compound containing a conjugated double bond between aliphatic groups is preferred, and a conjugated double bond having a polar group such as a carboxyl group and a salt thereof, or a hydroxyl group is preferred. Also preferred are compounds comprising. Further, a compound having a polar group and containing an aliphatic conjugated double bond is particularly preferable.
  • the molecular weight of the compound having a conjugated double bond is preferably 1,000 or less. When the molecular weight exceeds 1,000, the surface smoothness and extrusion stability of the multilayer structure may be deteriorated.
  • the lower limit of the content of the compound having a conjugated double bond having a molecular weight of 1,000 or less is preferably 0.1 ppm, more preferably 1 ppm, further preferably 3 ppm, and more preferably 5 ppm or more from the viewpoint of the effect exerted. Particularly preferred.
  • the upper limit of the content of this compound is preferably 3,000 ppm, more preferably 2,000 ppm, still more preferably 1,500 ppm, and particularly preferably 1,000 ppm from the viewpoint of the effect exerted.
  • As a method for adding the compound having a conjugated double bond it is preferable to add after the polymerization as described above and before the saponification from the viewpoint of improving the surface smoothness and the extrusion stability. Although the reason for this is not necessarily clear, it is considered that the compound having a conjugated double bond has an action of preventing alteration of EVOH before saponification and / or during the saponification reaction.
  • the multilayer structure may contain a metal salt in the resin composition constituting the resin layer.
  • the resin composition contains a metal salt
  • the thermal stability of the multilayer structure is improved and the melt moldability is improved.
  • the interlayer adhesiveness between resin layers improves.
  • the durability of the said multilayered structure further improves by improving the interlayer adhesiveness between resin layers. The reason why such a metal salt improves interlayer adhesion is not necessarily clear, but it is considered that the affinity between the hydroxyl groups of EVOH between the resin layers becomes higher due to the presence of the metal salt.
  • the metal salt may be contained in both of the resin compositions of the adjacent resin layers, or may be contained in either one of the resin compositions.
  • the metal salt is not particularly limited, but an alkali metal salt, an alkaline earth metal salt, or a d block metal salt described in the fourth period of the periodic table is preferable in terms of further improving interlayer adhesion. Among these, alkali metal salts or alkaline earth metal salts are more preferable, and alkali metal salts are particularly preferable.
  • the alkali metal salt is not particularly limited, and examples thereof include aliphatic carboxylates such as lithium, sodium, and potassium, aromatic carboxylates, phosphates, and metal complexes.
  • Specific examples of the alkali metal salt include sodium acetate, potassium acetate, sodium phosphate, lithium phosphate, sodium stearate, potassium stearate, sodium salt of ethylenediaminetetraacetic acid, and the like.
  • sodium acetate, potassium acetate, and sodium phosphate are particularly preferable because they are easily available.
  • the alkaline earth metal salt is not particularly limited, and examples thereof include acetates and phosphates such as magnesium, calcium, barium, and beryllium. Among these, magnesium or calcium acetate or phosphate is particularly preferable because it is easily available. When such an alkaline earth metal salt is contained, there is also an advantage that the die adhesion amount of the molding machine of the resin that has deteriorated at the time of melt molding can be reduced.
  • a metal salt of d block metal described in the 4th period of a periodic table For example, carboxylate, phosphorus, such as titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc And acid salts and acetylacetonate salts.
  • the lower limit of the metal salt content (content in terms of metal element based on the entire multilayer structure) is 1 ppm, more preferably 5 ppm, still more preferably 10 ppm, and particularly preferably 20 ppm.
  • the upper limit of the content of the metal salt is 10,000 ppm, more preferably 5,000 ppm, further preferably 1,000 ppm, and particularly preferably 500 ppm.
  • the content of the metal salt is smaller than the above lower limit, the interlaminar adhesion is lowered, and the durability of the multilayer structure may be lowered.
  • the content of the metal salt exceeds the above upper limit, the resin composition is highly colored, and the appearance of the multilayer structure may be deteriorated.
  • the method of containing this metal salt in the resin composition is not particularly limited, and a method similar to the method of containing a phosphoric acid compound or the like in the resin composition of the resin layer as described above is employed.
  • the resin composition constituting the resin layer can contain various components other than EVOH in addition to the above metal salt and the like.
  • components other than EVOH include an oxygen scavenger and a desiccant.
  • the oxygen scavenger is a substance having oxygen scavenging ability (oxygen absorption function).
  • the oxygen scavenging ability refers to a function of absorbing and consuming oxygen from a given environment or reducing the amount thereof.
  • the oxygen scavenger that can be contained in the resin composition constituting the resin layer is not particularly limited as long as it has such properties. Since the resin composition of the resin layer contains EVOH and contains an oxygen scavenger, oxygen scavenging ability is added. As a result, the gas barrier property of the multilayer structure can be further improved.
  • thermoplastic resins having oxygen scavenging ability for example, thermoplastic resins having oxygen scavenging ability, organic oxygen scavengers such as ascorbic acid; inorganic oxygen scavengers such as iron and sulfite. Etc.
  • thermoplastic resin having an oxygen scavenging ability is preferable from the viewpoint of high oxygen scavenging ability and easy inclusion in the resin composition of the multilayer structure.
  • thermoplastic resin with oxygen scavenging ability is not particularly limited as long as it is a thermoplastic resin capable of scavenging oxygen.
  • an ethylenically unsaturated hydrocarbon polymer having a carbon-carbon double bond or Examples thereof include polymer blends (excluding those having a molecular weight of 1,000 or less and having a conjugated double bond) (hereinafter, also simply referred to as “unsaturated hydrocarbon polymer”).
  • the unsaturated hydrocarbon polymer may have a substituent or may be unsubstituted.
  • An unsubstituted unsaturated hydrocarbon polymer is defined as any compound having at least one aliphatic carbon-carbon double bond and consisting of 100% by weight carbon and hydrogen.
  • a substituted unsaturated hydrocarbon polymer is also defined as an ethylenically unsaturated hydrocarbon having at least one aliphatic carbon-carbon double bond and consisting of about 50-99% by weight carbon and hydrogen.
  • Preferred unsubstituted or substituted unsaturated hydrocarbon polymers are those having two or more ethylenically unsaturated groups per molecule.
  • ethylenically unsaturated hydrocarbon polymers can consist of a mixture of two or more substituted or unsubstituted ethylenically unsaturated hydrocarbons.
  • unsubstituted unsaturated hydrocarbon polymers include, but are not limited to: Diene polymers such as polyisoprene (eg trans-polyisoprene), polybutadiene (eg 1,2-polybutadiene) and copolymers thereof (eg styrene-butadiene copolymers); produced by metathesis of polypentenamers, polyoctenamers and olefins Other polymers; derived from diene oligomers such as squalene; dicyclopentadiene, norbornadiene, 5-ethylidene-2-norbornene, and other monomers containing two or more carbon-carbon double bonds (conjugated or nonconjugated) Polymer or copolymer; carotenoids such as ⁇ -carotene.
  • Diene polymers such as polyisoprene (eg trans-polyisoprene), polybutadiene (eg 1,2-polybuta
  • Preferred substituted unsaturated hydrocarbon polymers include, but are not limited to, those having an oxygen-containing moiety, such as esters, carboxylic acids, aldehydes, ethers, ketones, alcohols, peroxides, and / or hydroperoxides.
  • Particular examples of such hydrocarbons are condensation polymers such as polyesters derived from monomers containing carbon-carbon double bonds; unsaturated fatty acids such as oleic acid, ricinoleic acid, dehydrated ricinoleic acid, and linole Acids and their derivatives, including but not limited to esters.
  • Such hydrocarbons include (meth) allyl (meth) acrylate.
  • the carbon-carbon double bond content is preferably 0.01 to 1.0 equivalent per 100 g of the polymer.
  • Such a polymer with reduced double bonds can be a homopolymer, a copolymer, and / or a blend of polymers.
  • a blend of polymers is particularly desirable. Because the change in physical properties in the discontinuous phase has a relatively small impact on the overall physical properties of the blend that the continuous phase will dominate, so there is a large amount of double bonds present in the discontinuous phase. This is because it may be desirable to have a portion.
  • Suitable examples of homopolymers are poly (octenamer) having 0.91 equivalent double bonds per 100 g and poly (4-vinylcyclohexene) having 0.93 equivalent double bonds per 100 g.
  • Suitable examples of copolymers include C 1 -C 4 alkyl acrylates and methacrylates.
  • Examples include 1,3-butadiene, isoprene, 5-ethylidene-2-norbornene, 4-vinylcyclohexene, 1,4-hexadiene, 1,6-octadiene and the like, one or more vinyl monomers, For example, copolymers derived from ethylene, propylene, styrene, vinyl acetate, and / or ⁇ -olefins. Particular examples are terpolymers of ethylene, propylene and 5-ethylidene-2-norbornene. Such EPDM elastomers typically contain 3-14% by weight of 5-ethylidene-2-norbornene.
  • Such polymers are within the requirement of 0.01 to 1.0 equivalent double bonds per 100 grams of polymer.
  • partially hydrogenated ethylenically unsaturated polymers eg, polybutadiene
  • polybutadiene partially hydrogenated ethylenically unsaturated polymers having at least about 50% of the hydrogenated double bonds.
  • blends of polymers Particularly preferred are blends of EPDM and 20-40% polybutadiene, EPDM and 20-40% poly (octenamer), and 50/50 blends of polybutadiene and saturated polyolefins.
  • thermoplastic resin having a carbon-carbon double bond substantially only in the main chain Among such unsaturated hydrocarbon polymers, the oxygen scavenging property is very high, and from the viewpoint that it can be very easily contained in the resin composition of the multilayer structure, substantially only in the main chain.
  • a thermoplastic resin (D) having a carbon-carbon double bond (hereinafter also simply referred to as “thermoplastic resin (D)”) (excluding those having a molecular weight of 1,000 or less and having a conjugated double bond) is particularly preferable.
  • thermoplastic resin (D) “substantially has a carbon-carbon double bond only in the main chain” means that the carbon-carbon double bond existing in the main chain of the thermoplastic resin (D). Is 90% or more of the total carbon-carbon double bonds contained in the main chain or side chain in the molecule.
  • the carbon-carbon double bond present in the main chain is preferably 93% or more, more preferably 95% or more.
  • thermoplastic resin (D) Since the thermoplastic resin (D) has a carbon-carbon double bond in its molecule, it can react with oxygen efficiently and has high oxygen scavenging ability. By including such a thermoplastic resin (D) in the resin composition constituting the resin layer, the gas barrier properties of the multilayer structure can be significantly improved.
  • the carbon-carbon double bond includes a conjugated double bond but does not include a multiple bond contained in an aromatic ring.
  • the lower limit of the content of the carbon-carbon double bond contained in the thermoplastic resin (D) is preferably 0.001 equivalent / g, more preferably 0.005 equivalent / g, and further 0.01 equivalent / g. preferable.
  • the upper limit of the carbon-carbon double bond content is preferably 0.04 equivalent / g, more preferably 0.03 equivalent / g, and still more preferably 0.02 equivalent / g. If the carbon-carbon double bond content is less than the lower limit, the resulting multilayer structure may have an insufficient oxygen scavenging function. On the other hand, when the content of carbon-carbon double bonds exceeds the above upper limit, the resin composition becomes highly colored and the appearance of the resulting multilayer structure may be deteriorated.
  • thermoplastic resin (D) since the thermoplastic resin (D) has a carbon-carbon double bond substantially only in the main chain, the low molecular weight decomposition product accompanying the cleavage of the double bond in the side chain by reaction with oxygen. Is very rare. Some of the low molecular weight decomposition products are unpleasant odor substances. However, since such decomposition products are not easily generated, unpleasant odors are rarely generated. Therefore, by including such a thermoplastic resin (D) in the resin composition constituting the resin layer, the multilayer structure has high gas barrier properties and durability, and does not generate an unpleasant odor by scavenging oxygen. can do.
  • thermoplastic resin with many carbon-carbon double bonds in the side chain there is no problem in terms of oxygen scavenging, but it is decomposed by cleavage of the side chain double bond as described above. Things are generated. Therefore, an unpleasant odor is generated and the surrounding environment may be significantly impaired.
  • thermoplastic resin (D) when the carbon-carbon double bond in the main chain reacts with oxygen, it undergoes oxidation at the site of allyl carbon (carbon adjacent to the double bond). It is preferably not quaternary carbon. Furthermore, since it is impossible to deny the possibility that a low molecular weight decomposition product is generated by cleavage of the main chain, the allyl carbon may be an unsubstituted carbon, that is, a methylene carbon in order to suppress this. preferable. From the above points, the thermoplastic resin (D) preferably has at least one of the units represented by the following formulas (X) and (XI).
  • R 13 , R 14 , R 15 and R 16 may each independently have a hydrogen atom, an alkyl group which may have a substituent, or a substituent.
  • R 15 and R 16 may form a ring by a methylene group or an oxymethylene group (provided that R 15 and R 16 are both hydrogen atoms).
  • R 17 and R 18 represent an alkyl group which may have a substituent, an aryl group which may have a substituent, or an alkylaryl group which may have a substituent.
  • R 13 , R 14 , R 15 and R 16 are alkyl groups
  • the number of carbon atoms is preferably 1 to 5, and when they are aryl groups, the number of carbon atoms is preferably 6 to 10.
  • the number of carbon atoms in the case of an alkylaryl group is preferably 7-11.
  • Specific examples of such an alkyl group include a methyl group, an ethyl group, a propyl group, and a butyl group
  • examples of an aryl group include a phenyl group
  • examples of an alkylaryl group include a tolyl group
  • examples of a halogen atom are each a chlorine atom.
  • examples of the substituent that may be contained in the thermoplastic resin (D) include various hydrophilic groups.
  • the hydrophilic group herein includes a hydroxyl group, an alkoxy group having 1 to 10 carbon atoms, an amino group, an aldehyde group, a carboxyl group, a metal carboxylate group, an epoxy group, an ester group, a carboxylic anhydride group, a boronic acid group, water And boron-containing groups (for example, boronic acid ester groups, boronic acid anhydride groups, boronic acid groups, etc.) that can be converted to boronic acid groups in the presence of.
  • thermoplastic resin (D) contains these hydrophilic groups, the thermoplastic resin (D) becomes highly dispersible in the resin composition containing EVOH in the resin layer, and the resulting multilayer structure is obtained. Improves oxygen scavenging function.
  • the hydrophilic group reacts with the hydroxyl group of EVOH of the adjacent resin layer to form a chemical bond, thereby improving the interlayer adhesion between the resin layers, and the gas barrier property of the resulting multilayer structure Such properties and durability are further improved.
  • thermoplastic resins (D) compounds in which all of R 13 , R 14 , R 15 and R 16 are hydrogen atoms in the units of the above formulas (X) and (XI) of the resin are: From the viewpoint of preventing odor, it is particularly preferable. Although the reason for this is not necessarily clear, when R 13 , R 14 , R 15 and R 16 are other than hydrogen atoms, these groups are oxidized when the thermoplastic resin (D) reacts with oxygen. This is presumed to be caused by cutting into odorous substances.
  • thermoplastic resin (D) among the units of the above formulas (X) and (XI), a unit derived from a diene compound is preferable.
  • a unit derived from a diene compound By being a unit derived from a diene compound, the thermoplastic resin (D) having such a structural unit can be easily produced.
  • diene compound include isoprene, butadiene, 2-ethylbutadiene, 2-butylbutadiene, chloroprene and the like. Only 1 type of these may be used and multiple types may be used together.
  • thermoplastic resin (D) containing units derived from these diene compounds include polybutadiene, polyisoprene, polychloroprene, polyoctenylene and the like.
  • polybutadiene and polyoctenylene are particularly preferable in that the oxygen scavenging function is particularly high.
  • the copolymer which contains structural units other than the said structural unit as a copolymerization component as a thermoplastic resin (D) can also be used. Examples of such copolymer components include styrene, acrylonitrile, and propylene.
  • the thermoplastic resin (D) is such a copolymer
  • the content of the units represented by the above formulas (X) and (XI) is the sum of all structural units of the thermoplastic resin (D).
  • the number of units is preferably 50 mol% or more, and more preferably 70 mol% or more.
  • the lower limit of the number average molecular weight of the thermoplastic resin (D) is preferably 1,000, more preferably 5,000, still more preferably 10,000, and particularly preferably 40,000.
  • the upper limit of the number average molecular weight is preferably 500,000, more preferably 300,000, still more preferably 250,000, and particularly preferably 200,000.
  • the molecular weight of the thermoplastic resin (D) is less than 1,000 or more than 500,000, the resulting multilayer structure is inferior in moldability and handling properties, and the strength and elongation of the multilayer structure.
  • thermoplastic resins (D) can be used.
  • thermoplastic resin (D) having a carbon-carbon double bond substantially only in the main chain as described above varies depending on the type of the thermoplastic resin (D).
  • polybutadiene (cis) 1,4-polybutadiene) can be synthesized by using a cobalt-based or nickel-based catalyst as a catalyst.
  • the catalyst include, for example, a combination of CoCl 2 ⁇ 2C 5 H 5 N complex and diethylaluminum chloride.
  • Usable solvents include inert organic solvents, among which hydrocarbons having 6 to 12 carbon atoms, such as alicyclic hydrocarbons such as hexane, heptane, octane, decane, or toluene, benzene Aromatic hydrocarbons such as xylene are preferred.
  • the polymerization is usually carried out in the temperature range of ⁇ 78 ° C. to 70 ° C. for a time range of 1 to 50 hours.
  • a part of the carbon-carbon double bond existing after the polymerization may be reduced by hydrogen as long as the mechanical properties, gas barrier properties, oxygen scavenging performance and the like of the multilayer structure are not impaired. Absent. At this time, it is particularly preferable to selectively reduce the carbon-carbon double bond remaining in the side chain with hydrogen.
  • the content of the thermoplastic resin having the oxygen scavenging ability in the resin composition is not particularly limited, but is preferably 0.1% by mass to 30% by mass, and more preferably 2% by mass to 20% by mass. When this content is less than the above lower limit, the oxygen scavenging ability may not be fully exhibited. On the contrary, when this content exceeds the said upper limit, the performance with which EVOH is provided may not fully be exhibited.
  • thermoplastic resin having the oxygen scavenging ability is preferably dispersed and contained in the resin composition (resin layer). By containing in such a state, oxygen scavenging ability can be more effectively exhibited while maintaining the performance of EVOH.
  • the particle size at this time is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 1 ⁇ m or less from the viewpoint of more effectively exerting oxygen scavenging ability.
  • the resin composition constituting the resin layer preferably further contains a transition metal salt (E) (excluding the metal salt) together with the unsaturated hydrocarbon polymer (including the thermoplastic resin (D)).
  • a transition metal salt (E) excluding the metal salt
  • the oxygen scavenging function of the resulting multilayer structure is further improved, and as a result, the gas barrier property is further enhanced.
  • the transition metal salt (E) promotes the reaction between the unsaturated hydrocarbon polymer and oxygen present in the multilayer structure or oxygen that permeates through the multilayer structure. Something is considered.
  • transition metal ion constituting the transition metal salt (E) examples include, but are not limited to, ions such as iron, nickel, copper, manganese, cobalt, rhodium, titanium, chromium, vanadium, and ruthenium.
  • iron, nickel, copper, manganese or cobalt ions are preferable, manganese or cobalt ions are more preferable, and cobalt ions are particularly preferable.
  • Examples of the counter anion of the transition metal ion constituting the transition metal salt (E) include a carboxylate ion and a halogen anion.
  • Specific examples of the counter anion include, for example, acetic acid, stearic acid, acetylacetone, dimethyldithiocarbamic acid, palmitic acid, 2-ethylhexanoic acid, neodecanoic acid, linoleic acid, toluic acid, oleic acid, resin acid, capric acid, naphthene.
  • Examples include, but are not limited to, anions, chloride ions, and acetylacetonate ions generated by ionization of hydrogen ions from acids and the like.
  • transition metal salts include cobalt 2-ethylhexanoate, cobalt neodecanoate, and cobalt stearate.
  • the transition metal salt (E) may be a so-called ionomer having a polymer counter anion.
  • the lower limit of the content of the transition metal salt (E) is preferably 1 ppm in terms of metal element, more preferably 5 ppm, and even more preferably 10 ppm with respect to the resin composition constituting the resin layer.
  • the upper limit of the content of the transition metal salt (E) is preferably 50000 ppm, more preferably 10000 ppm, and still more preferably 5000 ppm. If the content of the transition metal salt (E) is smaller than the lower limit, the resulting multilayer structure may have an insufficient oxygen scavenging effect.
  • the desiccant is a substance that absorbs moisture and can be removed from a given environment.
  • the desiccant that can be contained in the resin composition of the multilayer structure is not particularly limited as long as it has such properties. Since the resin composition of the resin layer is kept in a dry state by containing such a desiccant, the gas barrier property of the resin layer containing EVOH can be kept high.
  • hydrate-forming salts that is, salts that absorb water as crystal water, especially phosphates (excluding the above-mentioned phosphates), especially anhydrides thereof, are most effective.
  • suitable hydrate-forming salts such as sodium borate, sodium sulfate, etc., especially their anhydrides, and other hygroscopic compounds such as sodium chloride, sodium nitrate, sugar Silica gel, bentonite, molecular sieve, high-grade aqueous resin, etc. can also be used. These can be used alone or in combination.
  • the desiccant is preferably dispersed as fine particles in the matrix of the resin layer containing EVOH.
  • the body area average diameter of the particles having a major axis of 10 ⁇ m or more is 30 ⁇ m or less, preferably 25 ⁇ m, optimal. If it is 20 ⁇ m or less, it is effective to form such a finely dispersed state, and it is possible to obtain a highly gas barrier multi-layer structure that has never been achieved.
  • a composition having such a finely dispersed state can be achieved only by carefully combining special processing methods suitable for the purpose.
  • the body area average diameter of the particles having a major axis of 10 ⁇ m or more has a great influence on the gas barrier properties of the multilayer structure including the resin composition as a layer. The reason for this is not necessarily clear, but it is presumed that particles having a large particle size have a particularly inconvenient effect on the moisture absorption effect or the gas barrier property of EVOH.
  • the ratio of EVOH and desiccant used in the resin layer is not particularly limited, but a mass ratio of 97: 3 to 50:50, particularly 95: 5 to 70:30 is preferable.
  • phosphates that can form hydrates are particularly preferable.
  • Many phosphates form a hydrate containing a plurality of water molecules as crystal water, so that the mass of water absorbed per unit mass is large, and the contribution to the improvement of gas barrier properties of the multilayer structure is great.
  • the number of molecules of crystal water that can contain phosphate often increases stepwise as the humidity increases, moisture can be gradually absorbed as the humidity environment changes.
  • phosphates examples include sodium phosphate (Na 3 PO 4 ), trilithium phosphate (Li 3 PO 4 ), disodium hydrogen phosphate (Na 2 HPO 4 ), and sodium dihydrogen phosphate (NaH 2 PO).
  • the polyphosphate includes diphosphate (pyrophosphate), triphosphate (tripolyphosphate), and the like. Of these phosphates, anhydrides containing no crystallization water are preferred. Further, sodium phosphate, disodium hydrogen phosphate, and sodium dihydrogen phosphate are preferable.
  • the phosphate is usually a powder.
  • commercially available phosphate powder has an average particle size of 15 to 25 ⁇ m and a maximum particle size of 40 to 100 ⁇ m. If a powder containing such large particles is used, the gas barrier property of the resin layer of the multilayer structure may be insufficient. When particles larger than the thickness of the resin layer of the multilayer structure are contained, the gas barrier property may be greatly lowered. Therefore, it is preferable that the particle diameter of the phosphate powder is not more than the thickness of the resin layer of the multilayer structure.
  • the phosphate powder preferably has an average particle size of 10 ⁇ m or less.
  • the average particle size is more preferably 1 ⁇ m or less.
  • Such an average particle diameter can be measured using a particle size analyzer by, for example, a light scattering method.
  • the phosphate as a desiccant When using phosphate as a desiccant, it is preferable to mix with a dispersant.
  • a dispersant By blending such a dispersant, the phosphate as a desiccant can be well dispersed in the resin composition containing EVOH.
  • examples of such a dispersant include fatty acid salts, glycerin fatty acid esters, and fatty acid amides.
  • the glycerol ester of aromatic carboxylic acid is generally liquid at room temperature, and is not suitable for dry blending with phosphate.
  • Examples of the fatty acid salt include calcium stearate, zinc stearate, magnesium stearate and the like.
  • Examples of the glycerin fatty acid ester include glycerin monostearic acid ester and monodecanoyl octanoyl glyceride.
  • Examples of the fatty acid amide include ethylene bis stearic acid amide.
  • fatty acid salts are preferably used from the viewpoint of improving the slipperiness of the phosphate powder and preventing screen clogging of the extruder during melt kneading.
  • calcium salts, zinc salts and the like are preferable.
  • glycerin fatty acid esters are preferably used from the viewpoint of obtaining particularly good dispersibility.
  • glycerol mono- or di-fatty acid esters are preferable, glycerol mono-fatty acid esters are more preferable, and glycerol monostearic acid esters are particularly preferable.
  • These dispersants are preferably composed of a compound having 8 to 40 carbon atoms. By having the number of carbons in such a range, good dispersibility can be obtained. A more preferable lower limit value of the carbon number is 12, and a more preferable upper limit value of the carbon number is 30.
  • the blending amount of the dispersing agent is preferably 1 to 20 parts by mass with respect to 100 parts by mass of the phosphate.
  • the content of the dispersant is preferably 2 parts by mass or more, and more preferably 3 parts by mass or more.
  • the content of the dispersant exceeds 20 parts by mass with respect to 100 parts by mass of the phosphate, the resin composition pellets become too slippery to feed into the extruder, and the multilayer structure. The interlaminar adhesion force during the production is reduced.
  • the content of the dispersant is preferably 15 parts by mass or less, and more preferably 10 parts by mass or less.
  • the resin composition constituting the resin layer is not limited to the purpose of the present invention. Besides the above, various resins such as a heat stabilizer, an ultraviolet absorber, an antioxidant, a colorant, a filler, etc.
  • the additive may be included.
  • the amount thereof is preferably 50% by mass or less, more preferably 30% by mass or less, based on the total amount of the resin composition. In particular, it is particularly preferably 10% by mass or less.
  • the melt viscosity ( ⁇ 1 ) at a temperature of 210 ° C. and a shear rate of 10 / sec in the resin composition of the resin layer is 1 ⁇ 10 2 Pa ⁇ s to 1 ⁇ 10 4 Pa ⁇ s, a temperature of 210 ° C., a shear rate of 1,
  • the melt viscosity ( ⁇ 2 ) at 000 / second is 1 ⁇ 10 1 Pa ⁇ s or more and 1 ⁇ 10 3 Pa ⁇ s or less, and the melt viscosity ratio ( ⁇ 2 / ⁇ 1 ) is represented by the following formula (1) It is preferable to satisfy. ⁇ 0.8 ⁇ (1/2) log 10 ( ⁇ 2 / ⁇ 1 ) ⁇ ⁇ 0.1 (1)
  • melt viscosity ( ⁇ 1 ) is less than 1 ⁇ 10 2 Pa ⁇ s
  • resin flow spots occur during extrusion film formation by melt coextrusion lamination or melt extrusion, and a multilayer structure having a uniform and good appearance is obtained. Can be difficult.
  • neck-in and film swaying become significant, and the resulting multilayer structure and the thickness variation and width reduction of the resin layer before lamination become large, making it impossible to obtain a uniform multilayer structure with the desired dimensions. There is.
  • melt viscosity ( ⁇ 1 ) exceeds 1 ⁇ 10 4 Pa ⁇ s
  • the flow spots of the resin become large during extrusion film formation by melt coextrusion laminating or melt extrusion, and it has a uniform and good appearance. It may be difficult to obtain a multilayer structure.
  • melt coextrusion laminating or melt extrusion molding is performed under high-speed take-up conditions exceeding 100 m / min, film breakage is likely to occur, high-speed film formation is significantly impaired, and die swell is likely to occur. It may be difficult to obtain a thin multilayer structure or a resin layer before lamination.
  • melt viscosity ( ⁇ 2 ) when the melt viscosity ( ⁇ 2 ) is smaller than 1 ⁇ 10 1 Pa ⁇ s, a multilayer structure having a uniform and good appearance is caused by extruding spots of the resin during extrusion film formation by melt coextrusion lamination or melt extrusion. It may be difficult to obtain a body. In addition, neck-in and film swaying become remarkable, and there is a risk that the thickness variation and width reduction of the obtained multilayer structure and the resin layer before lamination are increased. On the other hand, if the melt viscosity ( ⁇ 2 ) exceeds 1 ⁇ 10 3 Pa ⁇ s, the torque applied to the extruder becomes too high, and extrusion spots and weld lines may easily occur.
  • the value of (1/2) log 10 ( ⁇ 2 / ⁇ 1 ) is more preferably ⁇ 0.6 or more, and more preferably ⁇ 0.2 or less.
  • the value of (1/2) log 10 ( ⁇ 2 / ⁇ 1 ) in the above formula is the melt viscosity ( ⁇ 1 ) and the melt in the logarithmic logarithmic graph with the melt viscosity as the vertical axis and the shear rate as the horizontal axis. It is determined as the slope of a straight line connecting two points of viscosity ( ⁇ 2 ).
  • the values of melt viscosity ( ⁇ 1 ) and melt viscosity ( ⁇ 2 ) referred to in the present specification refer to values when measured by the method described in the Examples section below.
  • the resin composition of the resin layer has a viscosity behavior stability (M 100 / M 20 , where M 20 is 20 at the start of kneading) in relation to the melt kneading time and torque at at least one point at a temperature 10 to 80 ° C. higher than the melting point.
  • M 100 represents the torque after 100 minutes from the start of kneading is preferably in the range of 0.5 to 1.5.
  • the viscosity behavior stability value closer to 1 indicates that the viscosity change is smaller and the thermal stability (long run property) is more excellent.
  • the resin layer made of the resin composition containing EVOH is not particularly limited as long as it contains EVOH.
  • the multilayer structure may be composed of, for example, resin layers made of the same resin composition, and at least one selected from the group consisting of composition, blending ratio and EVOH structure is made of different resin compositions.
  • a resin layer may be included.
  • the same resin composition refers to a resin composition having substantially the same composition, blending ratio, and EVOH structure.
  • the kind of resin composition used as the raw material for the multilayer structure can be reduced, and such a multilayer structure having excellent gas barrier properties and high durability can be easily produced. More preferably, all the resin layers of the multilayer structure are formed of the same resin composition.
  • the resin composition which is different from at least one selected from the group consisting of the above-mentioned composition, blending ratio and EVOH structure includes EVOH having a different structure, or different types and contents of components other than EVOH, or It says that it is the resin composition which is both.
  • the EVOH structure is different in terms of ethylene unit content, degree of saponification, degree of polymerization, types of structural units other than ethylene units and vinyl alcohol units or their contents, or types of functional groups possessed by EVOH or Content etc. are mentioned.
  • the types of components other than the EVOH are not particularly limited.
  • metal salts for example, metal salts, oxygen scavengers, desiccants, resins other than EVOH, heat stabilizers, ultraviolet absorbers, antioxidants, colorants, fillers Etc.
  • the content of components other than EVOH being different from each other includes the case where the resin composition of one layer does not contain that component.
  • the multilayer structure has two resin layers made of resin compositions in which at least one selected from the group consisting of composition, blending ratio, and EVOH structure is different from each other, these resin layers are designated as A.
  • Layer, layer B By having such an A layer and a B layer, the structure of EVOH in each of the A and B layers and the type and content of components other than EVOH are selected while being different from each other. Characteristics can be adjusted. Moreover, it can also be set as the multilayered structure which has further various characteristics other than these characteristics.
  • the stacking order of the A layer and the B layer in the multilayer structure is not particularly limited, and a synergistic effect based on the complementary relationship of each function of the A layer and the B layer, an interlayer adhesion between the two layers, and the like are effective.
  • At least one selected from the group consisting of a composition, a blending ratio, and an EVOH structure includes EV layer, and has a C layer made of a resin composition different from the A layer and the B layer.
  • a stacking order such as can be adopted.
  • the A layer and the B layer are alternately stacked as in the above (1), (2), or (3).
  • the synergistic effect by the A layer and the B layer can be exhibited between all the layers, and the characteristics obtained by the synergistic effect can be effectively expressed.
  • interlayer adhesion can be exerted between all layers, and the occurrence of defects such as delamination can be reduced.
  • characteristics such as gas barrier properties of the multilayer structure and durability of the characteristics can be enhanced. .
  • the multilayer structure can be a multilayer structure that can maintain gas barrier properties by repeatedly using deformation such as stretching and bending due to the laminated structure of the A layer and the B layer.
  • the multilayer structure includes EVOH in addition to two types of A layer and B layer, and at least one selected from the group consisting of composition, blending ratio and EVOH structure is from a resin composition different from the A layer and B layer. It is also possible to have a C layer or the like.
  • the gas barrier properties, stretchability, and thermoformability of the resulting multilayer structure can be adjusted or improved.
  • the stretchability and thermoformability of the multilayer structure can be improved, and various uses It is possible to provide a multilayer structure that is easy to use.
  • the lower limit of the difference in the ethylene unit content of EVOH between the A layer and the B layer is preferably 3 mol%, more preferably 5 mol%, and even more preferably 7 mol%.
  • the upper limit of the difference in the ethylene content of EVOH between the A layer and the B layer is preferably 70 mol%, more preferably 50 mol%, and even more preferably 30 mol%. If the difference in ethylene content is smaller than the above lower limit, the degree of improvement in stretchability and thermoformability of the multilayer structure may be reduced. Conversely, when the difference in ethylene unit content exceeds the above upper limit, the stretchability of the multilayer structure tends to deteriorate.
  • components other than EVOH can be contained in only one resin composition of the A layer and the B layer.
  • a component other than EVOH in only one of the A layer and the B layer, even when such a component may deteriorate the characteristics of the multilayer structure, the disadvantage is minimized. It can be suppressed to the limit.
  • the inclusion layer and the non-containment layer of components other than EVOH are complementarily related to each other, and it is possible to exert a high function by a synergistic effect.
  • thermoplastic resin having an oxygen scavenging ability preferably an unsaturated hydrocarbon polymer, more preferably a thermoplastic resin (D)
  • one of the thermoplastic resins one of the thermoplastic resins. Since the diffusion of the odor component generated by scavenging oxygen in the containing layer is suppressed by the gas barrier property of the other non-containing layer, the generation of odor from the multilayer structure can be suppressed. As described above, it is possible to exhibit higher gas barrier properties while eliminating the disadvantages of the oxygen scavenger contained to further enhance the extremely high gas barrier properties of the multilayer structure.
  • the gas barrier property may be lowered due to the presence of the desiccant in one desiccant-containing layer. Only the inclusion layer can be retained, and the humidity reduction effect of the desiccant is exerted on the other non-containment layer, so that the gas barrier property can be improved as the entire multilayer structure.
  • the melt viscosity ( ⁇ 2A ) of the resin composition of the A layer and the resin composition of the B layer at a temperature of 210 ° C. and a shear rate of 1,000 / second.
  • the lower limit of the ratio ( ⁇ 2B / ⁇ 2A ) to the melt viscosity ( ⁇ 2B ) of the product is preferably 0.1, more preferably 0.25, and even more preferably 0.5.
  • the upper limit of the ratio ( ⁇ 2B / ⁇ 2A ) of the melt viscosity of the A layer and the B layer is preferably 10, more preferably 4, and even more preferably 2.
  • the method for producing the multilayer structure is not particularly limited as long as the resin layer containing EVOH is laminated and bonded satisfactorily.
  • known methods such as co-extrusion, lamination, coating, bonding, and adhesion are known.
  • the method can be adopted.
  • the method for producing the multilayer structure includes (1) a method for producing a multilayer structure by a multilayer coextrusion method using a resin composition containing EVOH, and (2) a resin composition containing EVOH.
  • a laminate having a resin layer containing EVOH is manufactured by a coextrusion method, and a multilayer structure having a resin layer containing EVOH is manufactured by stacking and stretching a plurality of laminates via an adhesive.
  • the method of doing is illustrated.
  • a method of molding by a multilayer coextrusion method using two types of resin compositions containing EVOH of (1) is preferable.
  • the resin composition containing EVOH is heated and melted, supplied from different extruders or pumps to the extrusion die through the respective flow paths, and extruded and laminated from the extrusion die to the multilayer.
  • the multilayer structure is formed.
  • this extrusion die for example, a multi-manifold die, a field block, a static mixer, or the like can be used.
  • the multilayer structure has a very high gas barrier property as described above, and is excellent in stretchability, thermoformability, durability, and interlayer adhesion. Therefore, the multilayer structure can be used for food and medical packaging materials that require a high degree of protection of the contents from the external environment, and among them, particularly high gas barrier properties, stretchability, durability It is suitably used for food packaging materials that require properties and transparency.
  • the laminate of the present invention is obtained by further laminating a thermoplastic resin layer other than EVOH on the multilayer structure.
  • a thermoplastic resin layer other than EVOH a thermoplastic resin layer other than EVOH
  • the layer structure of the laminate, the thermoplastic resin layer, the relationship between the multilayer structure and the thermoplastic resin layer, and the manufacturing method will be described in this order.
  • the laminated body is formed by laminating the multilayer structure and a thermoplastic resin layer other than EVOH, so that the multilayer structure has high gas barrier properties, bending resistance, pinhole resistance, and the like, and the thermoplastic resin layer. It has a feature that it can have various functions such as heat sealability and peelability.
  • the thermoplastic resin layer may be laminated on both surfaces of the multilayer structure, or may be laminated on one surface, or two or more thermoplastic resin layers may be laminated. Further, the laminate may have two or more multilayer structures.
  • the lower limit of the average thickness of the laminate is preferably 1 ⁇ m, more preferably 10 ⁇ m, and even more preferably 50 ⁇ m.
  • the upper limit of the average thickness of the laminate is preferably 5,000 ⁇ m, more preferably 3000 ⁇ m, and still more preferably 2000 ⁇ m. If the average thickness of the laminate is smaller than the lower limit, the strength of the laminate may be lowered. On the contrary, when the average thickness of the laminate exceeds the upper limit, the flexibility and moldability of the laminate are insufficient, and the durability may be lowered.
  • the thermoplastic resin layer constituting the laminate is a layer containing a thermoplastic resin other than EVOH.
  • the thermoplastic resin include various polyolefins (polyethylene, polypropylene, poly 1-butene, poly 4-methyl-1-pentene, ethylene-propylene copolymers, copolymers of ethylene and ⁇ -olefins having 4 or more carbon atoms).
  • Copolymer of polyolefin and maleic anhydride ethylene-vinyl ester copolymer, ethylene-acrylic ester copolymer, or modified polyolefin obtained by graft-modifying these with unsaturated carboxylic acid or derivatives thereof), various nylons (Nylon-6, nylon-6,6, nylon-6 / 6,6 copolymer, etc.), polyvinyl chloride, polyvinylidene chloride, polyester, polystyrene, polyacrylonitrile, polyurethane, polyacetal, modified polyvinyl alcohol resin, etc. It is done.
  • thermoplastic resin layer in contact with the outermost layer of the multilayer structure preferably has high adhesion to the outermost resin layer, and is included in the hydroxyl group of the EVOH in the resin layer or the resin layer.
  • Those having a molecular chain having a functional group that reacts with a functional group of another component to form a bond are particularly preferable.
  • an adhesive resin is preferably used among the thermoplastic resins. Examples of such adhesive resins include unsaturated carboxylic acids or their anhydrides (such as maleic anhydride), boronic acid groups, and boron-containing groups that can be converted to boronic acid groups in the presence of water.
  • copolymer polyethylene (low density polyethylene, linear low density polyethylene, ultra low density polyethylene, ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid ester (methyl ester or ethyl ester) copolymer)
  • polyethylene low density polyethylene, linear low density polyethylene, ultra low density polyethylene, ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid ester (methyl ester or ethyl ester) copolymer
  • the resin composition of the layer located in the outermost layer of the multilayer structure has at least one metal selected from the group consisting of the above-mentioned alkali metal salts, alkaline earth metal salts, and periodic block fourth period d-block metal salts It is preferable to contain a salt.
  • a metal salt in the resin composition of the outermost layer, the adhesion between the outermost layer of the multilayer structure and the thermoplastic resin layer is improved, and a laminate having excellent strength can be obtained.
  • the metal salt may be contained only in the resin composition of the layer located at the outermost layer of the A layer and the B layer. While inclusion of such a metal salt improves interlayer adhesion, it affects the thermal stability of the resin composition containing EVOH.
  • the thermal stability of the multilayer structure in the laminate is not limited. Can be improved.
  • the adhesion between the outermost layer of the multilayer structure and the adjacent thermoplastic resin layer is improved.
  • the thermal stability of the multilayer structure can be improved, a laminate having excellent thermal stability and excellent strength can be obtained.
  • the production method of the laminate is not particularly limited, and a method of simultaneously laminating a thermoplastic resin layer by a multilayer coextrusion method when producing the multilayer structure, adhesion or extrusion with an adhesive to the multilayer structure.
  • a method of laminating a thermoplastic resin layer by laminating or the like is employed.
  • the multilayer coextrusion method is preferred.
  • a support layer may be further laminated on both sides or one side of the laminate of the present invention.
  • the support layer is not particularly limited and may not be a resin layer.
  • a general synthetic resin layer, a synthetic film, or the like is also used.
  • the means for laminating the support layer is not particularly limited, and adhesion with an adhesive, extrusion lamination, or the like is employed.
  • the laminate has characteristics such as extremely high gas barrier properties, flex resistance, and pinhole resistance, as well as various functions such as heat sealability and peelability. Therefore, the laminate can be used for food and medical packaging materials that require a high degree of protection of the contents from the external environment and that require packaging simplicity, It is suitably used for food packaging materials that require particularly high gas barrier properties, stretchability, durability, transparency, and the like.
  • the present invention will be described more specifically with reference to examples.
  • the present invention is not limited to the following examples.
  • the first layer is referred to as the A layer and the second layer as the B layer.
  • the content of each component was quantified by the following method.
  • Acetic acid 20 g of dried EVOH pellets were put into 100 mL of ion-exchanged water and extracted by heating at 95 ° C. for 6 hours. The extract was neutralized and titrated with 1/50 N NaOH using phenolphthalein as an indicator, and the acetic acid content was quantified.
  • sorbic acid 0.05% by mass with respect to the charged vinyl acetate
  • the polymerization rate was 45% based on the charged vinyl acetate.
  • the copolymerization reaction solution was fed to the outlet and unreacted vinyl acetate was removed from the top of the column by introducing methanol vapor from the bottom of the column to obtain a 40% methanol solution of the copolymer.
  • the copolymer had an ethylene unit content of 32.5 mol% and a vinyl acetate unit content of 67.5 mol%.
  • the methanol solution of the copolymer was introduced into a saponification reactor, and then a sodium hydroxide / methanol solution (85 g / L) was added so as to be 0.5 equivalent to the vinyl acetate component in the copolymer, Further, methanol was added to adjust the copolymer concentration to 15% by mass.
  • the temperature inside the reactor was raised to 60 ° C., and the reaction was carried out for 5 hours while blowing nitrogen gas into the reactor. Thereafter, the reaction was stopped by neutralization with acetic acid, and the contents were taken out from the reactor and left at room temperature to precipitate in the form of particles.
  • the operation of draining the precipitated particles with a centrifuge and adding a large amount of water to remove the liquid was repeated to obtain EVOH (A-1) having a saponification degree of 99.5 mol%.
  • the obtained EVOH (A-1) was added to an aqueous solution containing acetic acid, sodium acetate, sodium hydrogen phosphate and orthoboric acid (OBA) (0.3 g of acetic acid, 0.2 g of sodium acetate, 0.1% of sodium hydrogen phosphate in 1 L of an aqueous solution).
  • OBA orthoboric acid
  • 05 g, 0.35 g of orthoboric acid was dissolved) and the mixture was treated at a bath ratio of 20, dried, and then pelletized with an extruder to obtain pellet (A-1).
  • the MFR of the pellet (A-1) was 3.8 g / 10 min (210 ° C., under a load of 2160 g).
  • the pellet (A-1) had an acetic acid content of 150 ppm, a sodium ion content of 140 ppm, a phosphoric acid compound content of 45 ppm in terms of phosphate radicals, and a boron compound content of 260 ppm in terms of boron.
  • sorbic acid 0.05% by mass with respect to the charged vinyl acetate
  • the polymerization rate was 30% based on the charged vinyl acetate.
  • the copolymerization reaction liquid was supplied to the outlet and unreacted vinyl acetate was removed from the top of the tower by introducing methanol vapor from the bottom of the tower, to obtain a 40% by mass methanol solution of the copolymer.
  • the copolymer had an ethylene unit content of 44.5 mol% and a vinyl acetate unit content of 55.5 mol%.
  • the methanol solution of the copolymer was introduced into a saponification reactor, and then a sodium hydroxide / methanol solution (85 g / L) was added so as to be 0.5 equivalent to the vinyl acetate component in the copolymer, Further, methanol was added to adjust the copolymer concentration to 15% by mass.
  • the temperature inside the reactor was raised to 60 ° C. and reacted for 5 hours while blowing nitrogen gas into the reactor. Thereafter, the reaction was stopped by neutralization with acetic acid, and the contents were taken out from the reactor and left at room temperature to precipitate in the form of particles.
  • the precipitated particles were deliquored with a centrifuge, and a large amount of water was added and deliquored repeatedly to obtain EVOH (A-2) having a saponification degree of 99.5%.
  • the obtained EVOH (A-2) was mixed with an aqueous solution containing acetic acid, sodium acetate and sodium hydrogenphosphate (0.3 g of acetic acid, 0.2 g of sodium acetate, 0.05 g of sodium hydrogenphosphate, orthoboric acid in 1 L of aqueous solution). 0.03 g dissolution) was used, and the mixture was treated at a bath ratio of 20, dried, and then pelletized with an extruder to obtain pellets (A-2).
  • the MFR of the pellet (A-2) was 11.5 g / 10 minutes (210 ° C., under a load of 2160 g).
  • the pellet (A-2) had an acetic acid content of 135 ppm, a sodium ion content of 140 ppm, a phosphoric acid compound content of 40 ppm in terms of phosphate radicals, and a boron compound content of 10 ppm in terms of boron.
  • sorbic acid 0.05% by mass with respect to the charged vinyl acetate
  • the polymerization rate was 52% based on the charged vinyl acetate.
  • the copolymerization reaction solution was fed to the outlet and unreacted vinyl acetate was removed from the top of the column by introducing methanol vapor from the bottom of the column to obtain a 40% methanol solution of the copolymer.
  • the copolymer had an ethylene unit content of 26.5 mol% and a vinyl acetate unit content of 73.5 mol%.
  • the methanol solution of the copolymer was introduced into a saponification reactor, and then a sodium hydroxide / methanol solution (85 g / L) was added so as to be 0.5 equivalent to the vinyl acetate component in the copolymer, Further, methanol was added to adjust the copolymer concentration to 15% by mass.
  • the temperature inside the reactor was raised to 60 ° C., and the reaction was carried out for 5 hours while blowing nitrogen gas into the reactor. Thereafter, the reaction was stopped by neutralization with acetic acid, and the contents were taken out from the reactor and left at room temperature to precipitate in the form of particles.
  • the operation of draining the precipitated particles with a centrifuge and adding a large amount of water to remove the liquid was repeated to obtain EVOH (A-3) having a saponification degree of 99.8%.
  • the obtained EVOH (A-3) was added to an aqueous solution containing acetic acid, sodium acetate, sodium hydrogenphosphate and orthoboric acid (OBA) (0.3 g of acetic acid, 0.02 g of sodium acetate, 0.1% of sodium hydrogenphosphate in 1 L of an aqueous solution). 005 g, 0.15 g of orthoboric acid dissolved), treated at a bath ratio of 20, dried, and then pelletized with an extruder to obtain pellet (A-3).
  • the MFR of the pellet (A-3) was 6.4 g / 10 min (210 ° C., under a load of 2160 g).
  • the pellet (A-3) had an acetic acid content of 95 ppm, a sodium ion content of 14 ppm, a phosphoric acid compound content of 5 ppm in terms of phosphate radicals, and a boron compound content of 85 ppm in terms of boron.
  • EVOH (A-2) obtained in the same manner as in Production Example 2 was added to an aqueous solution containing acetic acid and sodium hydrogenphosphate (0.05 g of acetic acid, 0.02 g of sodium hydrogenphosphate, 0.1% of orthoboric acid in 1 L of an aqueous solution). 04g dissolution), a bath ratio of 20, and drying to obtain EVOH composition particles.
  • the MFR of the EVOH composition particles was 9.7 g / 10 min (210 ° C., under a load of 2160 g).
  • the EVOH composition particles had an acetic acid content of 40 ppm, a phosphoric acid compound content of 20 ppm in terms of phosphate radicals, and a boron compound content of 14 ppm in terms of boron.
  • the MFR of the obtained pellet (A-4) was 6.8 g / 10 min (210 ° C., under a load of 2160 g).
  • the pellet (A-4) has an acetic acid content of 420 ppm, a zinc ion content of 120 ppm, a sodium content of 130 ppm, a phosphate compound content of 20 ppm in terms of phosphate radicals, and a trifluoromethanesulfonate ion content of 280 ppm.
  • the boron compound content was 12 ppm in terms of boron.
  • the introduction amount of the structural unit (ii) other than the ethylene unit and vinyl alcohol unit of EVOH (A-4) was 1 H-NMR (internal standard substance: tetramethylsilane, solvent: d6-DMSO). ), It was 5.8 mol%.
  • sorbic acid 500 ppm based on the amount of vinyl acetate charged
  • SA sorbic acid
  • the copolymerization reaction liquid was supplied to the outlet and unreacted vinyl acetate was removed from the top of the tower by introducing methanol vapor from the bottom of the tower, to obtain a 40% by mass methanol solution of the copolymer.
  • the copolymer had an ethylene unit content of 29.0 mol%.
  • the methanol solution of the copolymer was introduced into a saponification reactor, and then a sodium hydroxide / methanol solution (85 g / L) was added so as to be 0.5 equivalent to the vinyl acetate component in the copolymer, Further, methanol was added to adjust the copolymer concentration to 15% by mass.
  • the temperature inside the reactor was raised to 60 ° C., and the reaction was carried out for 5 hours while blowing nitrogen gas into the reactor. Thereafter, the reaction was stopped by neutralization with acetic acid, and the contents were taken out from the reactor and left at room temperature to precipitate in the form of particles.
  • the precipitated particles were removed by a centrifuge, and a large amount of water was further added and removed to obtain EVOH (A-5) having a saponification degree of 99.5 mol%.
  • the structural unit (I) represented by the following formula is introduced as the structural unit (I) other than the ethylene unit and the vinyl alcohol unit of the EVOH (A-5), and the amount introduced is 1 H It was 2.5 mol% as measured by -NMR (internal standard substance: tetramethylsilane, solvent: d6-DMSO).
  • the obtained EVOH (A-5) was added to an aqueous solution containing acetic acid, sodium acetate, sodium hydrogenphosphate and orthoboric acid (OBA) (0.3 g of acetic acid, 0.2 g of sodium acetate, 0.1% of sodium hydrogenphosphate in 1 L of an aqueous solution). 07 g, 0.32 g of orthoboric acid was dissolved), and the mixture was treated at a bath ratio of 20, dried, and pelletized with an extruder to obtain pellets (A-5).
  • the MFR of the pellet (A-5) was 2.5 g / 10 min (210 ° C., under a load of 2160 g).
  • the pellet (A-5) had an acetic acid content of 150 ppm, a sodium content of 150 ppm, a phosphoric acid compound content of 50 ppm in terms of phosphate radicals, and a boron compound content of 150 ppm in terms of boron.
  • the MFR of the obtained pellet (A-6) was 4.5 g / 10 min (210 ° C., under 2160 g load).
  • the pellet (A-6) has an acetic acid content of 105 ppm, a sodium ion content of 125 ppm, a cobalt ion content of 400 ppm, a phosphate compound content of 40 ppm in terms of phosphate radicals, and a boron compound content of boron. It was 230 ppm.
  • the pellet (A-6) was formed into a film under the following extrusion conditions using a 40 ⁇ extruder (“PLABOR GT-40-A” manufactured by Plastics Engineering Laboratory) and a T die, and the thickness was 30 ⁇ m. A single layer film was obtained.
  • the MFR of the obtained pellet (A-7) was 4.3 g / 10 min (210 ° C., under a load of 2160 g).
  • the pellet (A-7) has an acetic acid content of 160 ppm, a zinc ion content of 20 ppm, a sodium content of 135 ppm, a phosphate compound content of 40 ppm in terms of phosphate radicals, and a trifluoromethanesulfonate ion content of 55 ppm.
  • the boron compound content was 210 ppm in terms of boron.
  • Example 1 Pellet (A-1) is fed into a 17-layer feed block so that a multilayer structure consisting of 8 layers of A and 9 layers of B is alternately formed by the resin composition constituting the pellet. Then, it was supplied as a molten state at 210 ° C. to the co-extrusion machine, co-extruded and merged to obtain a multilayer laminate. The melt of the pellets (A-1) to be joined is changed so that each layer flow path gradually increases in thickness from the surface side toward the center side in the feed block, so that each layer of the extruded multilayer structure has a thickness. Extruded so that the thickness was uniform.
  • the slit shape was designed so that the layer thicknesses of the adjacent A layer and B layer were substantially the same.
  • the thus obtained laminate composed of a total of 17 layers was rapidly cooled and solidified on a casting drum which was kept at a surface temperature of 80 ° C. and electrostatically applied, and wound up.
  • the flow path shape and the total discharge amount were set so that the time from when the melted pellets (A-1) merged to when rapidly solidified on the casting drum was about 4 minutes.
  • the cast film obtained as described above was subjected to cross-sectional observation with DIGITAL MICROSCOPE VHX-900 (manufactured by KEYENCE).
  • DIGITAL MICROSCOPE VHX-900 manufactured by KEYENCE.
  • the average thickness of each of the A layer and the B layer was 1 ⁇ m, and the overall average thickness was 17 ⁇ m. It was a structure.
  • each thickness was made into the average value of the measured value in 9 points
  • the cast film obtained as described above was subjected to cross-sectional observation with DIGITAL MICROSCOPE VHX-900 (manufactured by KEYENCE), and as a result, the total average thickness was 20 ⁇ m.
  • melt viscosity of the resin composition constituting each layer The melt viscosity at a predetermined temperature of the resin composition constituting the A layer and the resin composition constituting the B layer is determined by using a capillograph (Toyo Seiki Seisakusho) It was measured using IC type manufactured by Co., Ltd.
  • Example 24 Using the following four types of 37-layer coextrusion apparatus, a multilayer structure (polypropylene / adhesive resin / ethylene-vinyl alcohol copolymer layer (EVOH (A-2 ) And EVOH (A-1), and a 33-layer multilayer structure having an alternating structure) / adhesive resin / polypropylene).
  • the sheet is composed of an ethylene-vinyl alcohol copolymer layer (alternate 33-layer multilayer structure composed of EVOH (A-2) and EVOH (A-1)) of 100 ⁇ m, an adhesive resin layer of 50 ⁇ m, polypropylene The layer is 800 ⁇ m.
  • the ethylene-vinyl alcohol copolymer layer consisting of 33 layers of alternating constitution consists of pellets (A-2) and pellets (A-1) that are alternately divided into 17 layers by the resin composition of each pellet.
  • A-2) and pellets (A-1) that are alternately divided into 17 layers by the resin composition of each pellet.
  • a 33-layer feed block is supplied as a molten state at 220 ° C. to a co-extrusion machine, and co-extrusion is performed to join together.
  • the melted pellets (A-2) and pellets (A-1) were extruded by changing the thickness of each layer in the feed block so that the thickness gradually increased from the surface side toward the center side.
  • the multilayer structure was extruded so that the thickness of each layer was uniform.
  • the slit shape was designed so that the layer thicknesses of the adjacent A layer and B layer were substantially the same.
  • the laminate was prepared in such a structure that the outermost layer of the 33 ethylene / vinyl alcohol copolymer layers consisting of alternating layers was EVOH (A-2) consisting of pellets (A-2).
  • the coextrusion molding conditions are as follows.
  • Adapter temperature 230 ° C
  • Feed block temperature 230 ° C
  • Die temperature 235 ° C
  • Adhesive resin 40 ⁇ Extruder 10VSE-40-22 (Osaka Seiki Machine Co., Ltd.)
  • polypropylene 65 ⁇ extruder 20VS-65-22 type (manufactured by Osaka Seiki Co., Ltd.)
  • T-die 650mm width (Plastic Engineering Laboratory) Cooling roll temperature: 30 ° C Pickup speed: 2m / min
  • the polypropylene resin used was a mixture of Novatec PP EA7A and Novatec PP EG-7FT manufactured by Nippon Polypro Co., Ltd. at a ratio of 85:15 (mass ratio). Adma-QF551 "was used.
  • the prepared laminate was conditioned for 30 days in an atmosphere of 23 ° C. and 50% RH, and then a strip-shaped piece having a width of 15 mm was prepared to measure the interlayer adhesion between the adhesive resin layer and the A layer. However, it was 2,850 g / 15 mm and showed good adhesiveness.
  • the measurement sample of the strip-shaped section has a T-type peel strength at an extension rate of 250 mm / min using an autograph “AGS-H type” manufactured by Shimadzu Corporation under an atmosphere of 23 ° C. and 50% RH. It was measured.
  • the obtained value (unit: g / 15 mm) was defined as the interlayer adhesive force between the adhesive resin layer and the A layer.
  • the laminated body produced above was subjected to a pantograph type biaxial stretching machine manufactured by Toyo Seiki and simultaneously biaxially stretched at 140 ° C. at a stretching ratio of 3 ⁇ 3 to obtain a multilayer stretched film.
  • the above-mentioned multilayer sheet exhibited good stretchability. After stretching, the obtained multilayer stretched film had few cracks, unevenness and uneven thickness, and the appearance (transparency, gel / buzz) was also good.
  • the above-prepared multilayer stretched film was conditioned at 20 ° C. for 5 days with 30% RH on one side and 95% RH on the other side, and used two samples of the multilayer structure that had been conditioned.
  • the oxygen permeation amount of the multilayer stretched film of this example was 0.34 cc / m 2 ⁇ day ⁇ atm, indicating a good gas barrier property.
  • thermoforming machine manufactured by Asano Manufacturing Co., Ltd .: vacuum pressure / air deep drawing machine FX-0431-3 type
  • compressed air atmospheric pressure 5 kgf / Cm 2
  • Heater temperature 400 ° C Plug: 45 ⁇ x 65mm Plug temperature: 120 ° C Mold temperature: 70 °C
  • thermoformed container When the external appearance of the obtained thermoformed container was visually observed, it was uniformly stretched without cracks, unevenness and local unevenness, and had excellent transparency and good external appearance.
  • Example 1 A laminate was obtained in the same manner as in Example 20 except that the pellet (A-8) was used instead of the pellet (A-2). It was 160 g / 15mm when the interlayer adhesive force of the adhesive resin layer and A layer was measured like Example 20 using the obtained laminated body.
  • the multilayer structure and laminate of the present invention maintain extremely high characteristics such as gas barrier properties against deformation such as bending and stretching, they are suitable for food packaging materials, various containers, and the like. Used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Wrappers (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 非常に高いガスバリア性を有すると共に、耐屈曲性、耐ピンホール性、延伸性熱成形性及び層間接着性に優れ、屈曲や延伸等の変形をさせて使用する場合でも、高いガスバリア性等の特性を維持できる優れた耐久性を有する多層構造体及びこの多層構造体を用いた積層体、並びにこれらの製造方法を提供することを目的とする。本発明は、エチレン-ビニルアルコール共重合体を含む樹脂組成物からなる樹脂層が4層以上隣接して積層されている多層構造体である。上記樹脂層の一層の平均厚みが0.01μm以上10μm以下であることが好ましい。平均厚みが0.1μm以上1,000μm以下であることが好ましい。上記エチレン-ビニルアルコール共重合体のエチレン単位含有量が3モル%以上70モル%以下、けん化度が80モル%以上であることが好ましい。

Description

多層構造体、積層体及びその製造方法
 本発明は、エチレン-ビニルアルコール共重合体を含む樹脂組成物からなる樹脂層が4層以上隣接して積層されている多層構造体、及びこの多層構造体を用いた積層体、並びにその製造方法に関し、詳細には、非常に優れたガスバリア性を有し、屈曲性、耐ピンホール性、延伸性及び熱成形性にも優れる多層構造体、並びに積層体に関する。
 最近では、ガスバリア性等の各種性能を向上させる目的で、1層の厚みがミクロンオーダー又はサブミクロンオーダーの樹脂層が複数積層された種々の多層構造体が提案されている。中でも、エチレン-ビニルアルコール共重合体層を有する積層フィルムが、その高いガスバリア性、延伸性、熱成形性等の利点を活かし、食品用及び医療用包装材料等の用途に使用されている。
 かかるエチレン-ビニルアルコール共重合体層を含む複数層が積層された従来の多層構造体において、ガスバリア性を考慮しつつ、種々の特性の向上を目的としたものとして、例えば(1)エチレン含有量及びけん化度が互いに異なる2層のエチレン-ビニルアルコール共重合体層を有し、一方の層に硼素化合物を含む多層構造体(特開平5-31863号公報参照)や、(2)エチレン含有量の異なる2種類以上のエチレン-ビニルアルコール共重合体を含む組成物からなる層の少なくとも片面に熱可塑性樹脂層を有する多層構造体(特開平2-261847号公報参照)などが開発されている。
 上記従来の多層構造体(1)は、ガスバリア性と内容物の非吸着性を維持しつつ熱封緘性を改良しており、また、上記従来の多層構造体(2)も、ガスバリア性を維持して、成形性を向上させている。しかしながら、これらの多層構造体では、ガスバリア性のさらなる向上の要求に応えることができておらず、また、屈曲や延伸など変形時のガスバリア性等の低下が大きいという不都合も有している。
特開平5-31863号公報 特開平2-261847号公報
 本発明はこれらの不都合に鑑みてなされたものであり、非常に優れたガスバリア性を有し、延伸や屈曲等の変形をさせて使用してもガスバリア性等の特性を維持でき、かつ耐屈曲性、耐ピンホール性、延伸性、熱成形性等にも優れる多層構造体を提供することを目的とする。また、このような多層構造体を備える積層体を提供することを目的とする。さらに、そのような特性を有する多層構造体及び積層体を製造コストの上昇を抑制しつつ製造する方法を提供することを目的とする。
 上記課題を解決するためになされた発明は、
 エチレン-ビニルアルコール共重合体を含む樹脂組成物からなる樹脂層が4層以上隣接して積層されている多層構造体である。
 当該多層構造体は、エチレン-ビニルアルコール共重合体を含む樹脂組成物からなる樹脂層が4層以上隣接して積層されていることによって、非常に優れたガスバリア性を有している。また当該多層構造体は、4層以上の樹脂層によって優れた延伸性及び熱成形性を有している。加えて、隣接する4層以上の樹脂層が共通してエチレン-ビニルアルコール共重合体を含んでいることにより、優れた層間接着性を有している。当該多層構造体は、この優れた層間接着性及び4層以上の樹脂層構成により、高い耐屈曲性、耐ピンホール性を有していると共に、高いガスバリア性等の特性が屈曲や延伸等の変形に対しても維持される。
 上記樹脂層の一層の平均厚みとしては、0.01μm以上10μm以下が好ましい。上記樹脂層の平均厚みを上記範囲とすることで、多層構造体の全体の厚みが同じである場合でも、層数を増やすことができ、その結果、当該多層構造体のガスバリア性、耐屈曲性、耐ピンホール性、延伸性等をさらに向上させることができる。
 当該多層構造体の平均厚みとしては、0.1μm以上1,000μm以下が好ましい。当該多層構造体の平均厚みを上記範囲とすることで、上記樹脂層の平均厚みを上記範囲とすることと相まって、上記食品包装材等への適用性を維持しつつガスバリア性、耐久性、延伸性等をさらに向上させることができる。
 上記樹脂層を構成するエチレン-ビニルアルコール共重合体において、エチレン単位含有量が3モル%以上70モル%以下、けん化度が80モル%以上であることが好ましい。そのようにエチレン単位含有量及びけん化度を上記範囲にすることによって、当該多層構造体のガスバリア性がさらに向上し、加えて溶融成形性を向上させることができる。またこの高い溶融成形性により、良好で均一な多層構造状態が得られるとともに、層間接着性も向上させることができる。さらに当該多層構造体の耐湿性を向上させることができる。
 上記樹脂層を構成するエチレン-ビニルアルコール共重合体としては、下記構造単位(I)及び(II)からなる群より選ばれる少なくとも1種を有し、
 これらの構造単位(I)又は(II)の全構造単位に対する含有量が0.5モル%以上30モル%以下であるとよい。このように、樹脂層を構成するエチレン-ビニルアルコール共重合体が下記構造単位(I)又は(II)を上記含有量の範囲で有することによって、樹脂層を構成する樹脂組成物の柔軟性及び加工特性が向上するため、当該多層構造体の耐屈曲性、耐ピンホール性、耐久性、延伸性、熱成形性及び層間接着性を向上させることができる。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 上記式(I)中、R、R及びRは、それぞれ独立に、水素原子、炭素数1~10の脂肪族炭化水素基、炭素数3~10の脂環式炭化水素基、炭素数6~10の芳香族炭化水素基又は水酸基を表す。また、R、R及びRのうちの一対が結合していてもよい(但し、R、R及びRのうちの一対が共に水素原子の場合は除く)。また上記炭素数1~10の脂肪族炭化水素基、炭素数3~10の脂環式炭化水素基又は炭素数6~10の芳香族炭化水素基は、水酸基、カルボキシル基又はハロゲン原子を有していてもよい。
 上記式(II)中、R、R、R及びRは、それぞれ独立に、水素原子、炭素数1~10の脂肪族炭化水素基、炭素数3~10の脂環式炭化水素基、炭素数6~10の芳香族炭化水素基又は水酸基を表す。また、RとR又はRとRとは結合していてもよい(但し、RとR又はRとRが共に水素原子の場合は除く)。また、上記炭素数1~10の脂肪族炭化水素基、炭素数3~10の脂環式炭化水素基又は炭素数6~10の芳香族炭化水素基は、水酸基、アルコキシ基、カルボキシル基又はハロゲン原子を有していてもよい。
 上記樹脂組成物が、酸素掃去能を有する熱可塑性樹脂を含有するとよい。このように、樹脂層を構成する樹脂組成物が、酸素掃去能を有する熱可塑性樹脂を含有することによって、多層構造体に高い酸素掃去機能が付加されるので、そのガスバリア性及び耐久性がさらに向上する。
 上記樹脂組成物が、乾燥剤を含有するとよい。このように、樹脂層を構成する樹脂組成物が乾燥剤を含有することによって、含まれるエチレン-ビニルアルコール共重合体が乾燥状態に保たれるので、多層構造体のガスバリア性を効果的に向上させることができる。
 上記樹脂組成物の温度210℃、剪断速度10/秒での溶融粘度(η)が1×10Pa・s以上1×10Pa・s以下、温度210℃、剪断速度1,000/秒での溶融粘度(η)が1×10Pa・s以上1×10Pa・s以下であり、かつ、これらの溶融粘度比(η/η)が下記式(1)を満たすとよい。このように、樹脂層を構成する樹脂組成物が上記範囲の溶融粘度及び溶融粘度比を有することによって、樹脂層ひいては当該多層構造体を目的寸法通りに、かつ高速で成形することができ、また均一で良好な外観を有する多層構造体を得ることができる。さらに層間接着性を向上する効果もある。
  -0.8≦(1/2)log10(η/η)≦-0.1 ・・・(1)
 上記樹脂層として、組成、配合比及びエチレン-ビニルアルコール共重合体の構造からなる群より選ばれる少なくとも1種が互いに異なる樹脂組成物からなるA層及びB層を有するとよい。このように、当該多層構造体が、隣接する4層以上のエチレン-ビニルアルコール共重合体を含む層として、組成や配合比やエチレン-ビニルアルコール共重合体の構造が互いに異なる樹脂層を有することによって、ガスバリア性、耐屈曲性、耐ピンホール性、延伸性及び熱成形性等の特性を調整することができる。またA層及びB層に異なる機能を持たせたり、A層及びB層が相補し合ったりすることにより、相乗効果を発揮することができる。それによって、当該多層構造体のガスバリア性、延伸性及び熱成形性の特性をさらに向上させ、それらの特性以外のさらなる特性を付与したりすることもできる。
 上記A層及びB層が交互に積層されているとよい。このようにA層とB層を交互に積層することで、上記の相乗効果が効果的に発揮され、その結果、当該多層構造体のガスバリア性、耐久性、その他の特性をさらに向上させることができる。
 上記A層を構成するエチレン-ビニルアルコール共重合体と上記B層を構成するエチレン-ビニルアルコール共重合体とのエチレン単位含有量の差が3モル%以上50モル%以下であるとよい。A層及びB層のエチレン-ビニルアルコール共重合体のエチレン単位含有量の差が上記範囲であることで当該多層構造体の耐屈曲性、耐ピンホール性、延伸性及び熱成形性をさらに向上させることができ、種々の用途に使用し易い多層構造体とすることができる。
 上記A層及びB層のうち一方の樹脂組成物にのみ、酸素掃去能を有する熱可塑性樹脂を含有するとよい。このように積層される樹脂層の一方にのみ、酸素掃去能を有する熱可塑性樹脂が含有されることにより、当該多層構造体の耐屈曲性、耐ピンホール性、延伸性及び熱成形性を向上させることができ、さらに酸素を吸収しても他の層の存在により不快な臭気の拡散が抑制された多層構造体とすることができる。
 上記A層及びB層のうち一方の樹脂組成物にのみ、乾燥剤を含有するとよい。乾燥剤を樹脂組成物に含有させることにより、含まれるエチレン-ビニルアルコール共重合体を乾燥状態に保ち、ガスバリア性を向上させることができる一方、乾燥剤は粉体であるため、その含有がガスバリア性に影響を及ぼす面もある。そこで、乾燥剤をA層及びB層の一方の樹脂組成物にのみ含有させることによって、このような影響を一方の樹脂層だけに留めることができるので、多層構造体全体として、ガスバリア性のさらなる向上を達成することができる。
 温度210℃、剪断速度1,000/秒でのA層の樹脂組成物の溶融粘度(η2A)とB層の樹脂組成物の溶融粘度(η2B)との比(η2B/η2A)としては、0.1以上10以下が好ましい。当該溶融粘度の比(η2B/η2A)を上記範囲とすることで、溶融成形によって得られる多層構造体におけるA層とB層との間の流れ斑を抑制し、外観不良、バリア性、耐屈曲性、耐ピンホール性、耐久性、延伸性などの低下を防ぐことができる。また、接着力をさらに強くすることができる。
 上記4層以上の樹脂層を構成する樹脂組成物が同一であるとよい。このように、隣接する4層以上の樹脂層が同一の樹脂組成物から形成されていることによって、非常に高いガスバリア性が発揮される。また、高い層間接着性が得られるため、耐久性が向上する。また、多層構造体の原料となる樹脂組成物の種類を低減することができ、その結果、このような非常にガスバリア性に優れかつ耐久性の高い多層構造体の製造が簡便になる。
 上記多層構造体にさらにエチレン-ビニルアルコール共重合体以外の熱可塑性樹脂層を積層することにより、高いガスバリア性を有し、かつ耐久性に優れた積層体とすることができる。当該熱可塑性樹脂層の種類を選択することにより、ヒートシール性や剥離性などの諸機能を付与することが可能である。
 上記積層体の平均厚みとしては、1μm以上5,000μm以下が好ましい。当該積層体の平均厚みを上記範囲とすることで、食品包装材等への適用性を維持しつつガスバリア性、耐久性、延伸性等にすぐれた積層体とすることができる。
 当該積層体において、上記多層構造体の最外層に位置する層の樹脂組成物に、アルカリ金属塩、アルカリ土類金属塩及び周期律表第4周期dブロック金属塩からなる群より選ばれる少なくとも1種の金属塩を含有し、多層構造体の最外層と上記熱可塑性樹脂層とが接するように積層されているとよい。このようにすることで層間接着性を高めるための金属塩が、多層構造体の最外層に位置する樹脂層に含まれているので、最外層と隣接する熱可塑性樹脂層との接着性を高めることができ、その結果、強度に優れる積層体とすることができる。
 当該積層体は、食品包装用に好適に使用される。食品包装に用いられる包装材などは、使用時に延伸や屈曲等の変形を繰り返しつつ、高いガスバリア性を維持する必要があるが上述のように非常に優れるガスバリア性、耐久性、柔軟性等の特性を有する当該積層体をそのような包装材に好適に使用することができる。
 また、上記課題を解決するためになされた別の発明は、当該多層構造体の製造方法であって、エチレン-ビニルアルコール共重合体を含む樹脂組成物を用いた多層共押出法により成形することを特徴とする。当該多層構造体の製造方法によれば、非常に高いガスバリア性を有し、かつ耐屈曲性、耐ピンホール性、延伸性、層間接着性に優れる多層構造体を製造コストの上昇を抑制しつつ容易かつ確実に製造することができる。
 また、エチレン-ビニルアルコール共重合体を含む樹脂組成物と熱可塑性樹脂とを用いた多層共押出法により成形する積層体の製造方法によっても上記課題を解決することができる。当該積層体の製造方法によれば、上記多層構造体を製造する際に同時に熱可塑性樹脂層を形成することができるため、当該積層体を製造コストの上昇を抑制しつつ容易かつ確実に製造することができ、さらにエチレン-ビニルアルコール共重合体を含む樹脂組成物から構成されている当該多層構造体の最外層と熱可塑性樹脂層との層間接着力が優れたものとなる。
 以上説明したように、本発明の多層構造体は、エチレン-ビニルアルコール共重合体を含む樹脂層が4層以上隣接して積層していることにより、非常に優れたガスバリア性を有する。また耐屈曲性、耐ピンホール性、延伸性、熱成形性等にも優れると共に、高い層間接着性を有するので、食品包装材料などに用いて屈曲や延伸等の変形をさせて使用する場合でも高いガスバリア性等の特性を維持できる優れた耐久性を有している。また、本発明の積層体は、高いガスバリア性を有すると共に、耐久性に優れている。さらに、本発明の多層構造体及び積層体の製造方法によれば、そのような特性を有する多層構造体及び積層体を製造コストの上昇を抑制しつつ容易かつ確実に製造することができる。
 以下、本発明の実施形態を詳述する。
 当該多層構造体は、エチレン-ビニルアルコール共重合体(以下、「EVOH」ともいう)を含む樹脂組成物からなる樹脂層が4層以上隣接して積層されている。
 以下、当該多層構造体の層構造、樹脂層、樹脂層間の関係及び製造方法に関し、この順に説明する。
 〈当該多層構造体の層構造〉
 当該多層構造体は、EVOHを含む樹脂層を4層以上隣接して備えている。このようにEVOHを含む樹脂層が4層以上積層した構造により、ガスバリア性が向上する。EVOHを含む樹脂層を4層以上隣接して積層することによるガスバリア性向上の理由は必ずしも明らかではないが、4層以上積層することで、より大きな配向がかかること等が考えられる。また、4層以上の樹脂層を積層した構造により、ピンホール、割れ等の欠陥が連続して発生することが低減される結果、当該多層構造体はその構造自体により、非常に高いガスバリア性などを維持する耐久性等の特性を有している。かかる観点と製造上の観点から、樹脂層の合計の層数としては、6層以上が好ましく、10層以上がさらに好ましく、15層以上が特に好ましい。
 当該多層構造体の平均厚みの下限としては0.1μmが好ましく、1μmがより好ましく、5μmがさらに好ましい。一方、当該多層構造体の平均厚みの上限としては、1,000μmが好ましく、500μmがより好ましく、250μm以下がさらに好ましく、100μm以下がさらに好ましく、50μm以下が特に好ましい。当該多層構造体の平均厚みが上記下限より小さいと、強度が不足し、使用が困難になるおそれがある。逆に、当該多層構造体の平均厚みが上記上限を超えると、柔軟性、成形性等が低下し、製造コストの上昇を招来するおそれがある。ここで、多層構造体の厚みは、多層構造体の任意に選ばれた9点での断面の厚みの測定値を平均することにより得られる。
 樹脂層一層の平均厚みの下限としては、0.01μmが好ましく、0.05μmがより好ましく、0.1μmがさらに好ましい。一方、樹脂層一層の平均厚みの上限としては、10μmが好ましく、7μmがより好ましく、5μmがさらに好ましく、さらには、3μm、2μm、1μm、0.5μm、0.25μmが好ましい。樹脂層一層の平均厚みが上記下限より小さいと、均一な厚さで成形することが困難になり、場合によっては層の形成がうまく行かず、層の乱れや流れ斑が生じ、当該多層構造体のガスバリア性及びその耐久性が低下するおそれがある。逆に、樹脂層一層の平均厚みが上記上限を超えると、当該多層構造体全体の平均厚みが同じである場合、層数を多くすることが困難になり、上述の多層によるガスバリア性向上効果が期待できなくなるおそれがあり、また当該多層構造体の延伸性や熱成形性が低下するおそれがある。なお、樹脂層の一層の平均厚みとは、当該多層構造体の平均厚みを樹脂層の層数で除した値をいう。
 〈樹脂層〉
 当該多層構造体を構成する4層以上の樹脂層は、EVOHを含む樹脂組成物からなる層である。樹脂層を構成する樹脂組成物がEVOHを含むことで、ガスバリア性に優れる多層構造体を得ることができる。
 (樹脂組成物)
 上記樹脂組成物は、EVOHを含む。
 (EVOH)
 樹脂層を構成する樹脂組成物に含まれるEVOHは、主構造単位として、エチレン単位及びビニルアルコール単位を有する。なお、このEVOHとしては、エチレン単位及びビニルアルコール単位以外に、他の構造単位を1種類又は複数種含んでいてもよい。
 このEVOHは、通常、エチレンとビニルエステルとを重合し、得られるエチレン-ビニルエステル共重合体をけん化して得られる。
 EVOHのエチレン単位含有量(すなわち、EVOH中の単量体単位の総数に対するエチレン単位の数の割合)の下限としては、3モル%が好ましく、10モル%がより好ましく、20モル%がさらに好ましく、25モル%が特に好ましい。一方、EVOHのエチレン単位含有量の上限としては、70モル%が好ましく、60モル%がより好ましく、55モル%がさらに好ましく、50モル%が特に好ましい。EVOHのエチレン単位含有量が上記下限より小さいと、多層構造体の耐水性、耐熱水性、及び高湿度下でのガスバリア性が低下するおそれや、多層構造体の溶融成形性が悪化するおそれがある。逆に、EVOHのエチレン単位含有量が上記上限を超えると、当該多層構造体のガスバリア性が低下するおそれがある。
 EVOHのけん化度(すなわち、EVOH中のビニルアルコール単位及びビニルエステル単位の総数に対するビニルアルコール単位の数の割合)の下限としては、80モル%が好ましく、95モル%がより好ましく、99モル%が特に好ましい。一方、EVOHのけん化度の上限としては99.99モル%が好ましい。EVOHのけん化度が上記下限より小さいと、溶融成形性が低下するおそれがあり、加えて当該多層構造体のガスバリア性が低下するおそれや、耐着色性や耐湿性が不満足なものとなるおそれがある。逆に、EVOHのけん化度が上記上限を超えると、EVOHの製造コストの増加に対するガスバリア性等の上昇もそれほど期待できない。かかるEVOHは単独で用いることも可能であるが、けん化度が99モル%を超えるEVOHとブレンドして用いる実施形態も好適である。
 EVOHの1,2-グリコール結合構造単位の含有量G(モル%)が下記式(2)を満たし、かつ固有粘度が0.05L/g以上0.2L/g以下が好ましい。下記式(2)中EはEVOH中のエチレン単位含有量(モル%)(但し、E≦64(モル%))である。
  G≦1.58-0.0244×E  ・・・(2)
 樹脂層を構成する樹脂組成物がこのような1,2-グリコール結合構造単位の含有量G及び固有粘度を有するEVOHを含むことによって、得られる多層構造体のガスバリア性の湿度依存性が小さくなるという特性が発揮されると共に、良好な透明性及び光沢を有しまた他の熱可塑性樹脂との積層も容易になる。従って、当該多層構造体の食品包装用等の材料としての適性を向上することができる。なお、1,2-グリコール結合構造単位の含有量Gは、S.Aniyaら(Analytical Science Vol.1,91(1985))に記載された方法に準じて、EVOH試料をジメチルスルホキシド溶液とし、温度90℃における核磁気共鳴法によって測定することができる。
 EVOHは、上記構造単位(I)及び(II)からなる群より選ばれる少なくとも1種を有することが好ましい。上記構造単位(I)又は(II)の全構造単位に対する含有量の下限としては0.5モル%が好ましく、1モル%がより好ましく、1.5モル%がさらに好ましい。一方上記構造単位(I)又は(II)の含有量の上限としては30モル%が好ましく、15モル%がより好ましく、10モル%がさらに好ましい。樹脂層の樹脂組成物が上記(I)又は(II)に示す構造単位を上記範囲の割合で有することによって、樹脂層を構成する樹脂組成物の柔軟性及び加工特性が向上する結果、当該多層構造体の延伸性及び熱成形性を向上することができる。
 上記構造単位(I)及び(II)において、上記炭素数1~10の脂肪族炭化水素基としてはアルキル基、アルケニル基等が挙げられ、炭素数3~10の脂環式炭化水素基としてはシクロアルキル基、シクロアルケニル基等が挙げられ、炭素数6~10の芳香族炭化水素基としてはフェニル基等が挙げられる。
 上記構造単位(I)において、上記R、R及びRは、それぞれ独立に水素原子、メチル基、エチル基、水酸基、ヒドロキシメチル基又はヒドロキシエチル基であることが好ましく、これらの中でも、それぞれ独立に水素原子、メチル基、水酸基又はヒドロキシメチル基であることがさらに好ましい。そのようなR、R及びRであることによって、当該多層構造体の延伸性及び熱成形性をさらに向上させることができる。
 EVOH中に上記構造単位(I)を含有させる方法については、特に限定されないが、例えば、上記エチレンとビニルエステルとの重合において、構造単位(I)に誘導されるモノマーを共重合させる方法などが挙げられる。この構造単位(I)に誘導されるモノマーとしては、プロピレン、ブチレン、ペンテン、ヘキセンなどのアルケン;3-ヒドロキシ-1-プロペン、3-アシロキシ-1-プロペン、3-アシロキシ-1-ブテン、4-アシロキシ-1-ブテン、3,4-ジアシロキシ-1-ブテン、3-アシロキシ-4-ヒドロキシ-1-ブテン、4-アシロキシ-3-ヒドロキシ-1-ブテン、3-アシロキシ-4-メチル-1-ブテン、4-アシロキシ-2-メチル-1-ブテン、4-アシロキシ-3-メチル-1-ブテン、3,4-ジアシロキシ-2-メチル-1-ブテン、4-ヒドロキシ-1-ペンテン、5-ヒドロキシ-1-ペンテン、4,5-ジヒドロキシ-1-ペンテン、4-アシロキシ-1-ペンテン、5-アシロキシ-1-ペンテン、4,5-ジアシロキシ-1-ペンテン、4-ヒドロキシ-3-メチル-1-ペンテン、5-ヒドロキシ-3-メチル-1-ペンテン、4,5-ジヒドロキシ-3-メチル-1-ペンテン、5,6-ジヒドロキシ-1-ヘキセン、4-ヒドロキシ-1-ヘキセン、5-ヒドロキシ-1-ヘキセン、6-ヒドロキシ-1-ヘキセン、4-アシロキシ-1-ヘキセン、5-アシロキシ-1-ヘキセン、6-アシロキシ-1-ヘキセン、5,6-ジアシロキシ-1-ヘキセンなどの水酸基やエステル基を有するアルケンが挙げられる。その中で、共重合反応性、及び得られる多層構造体のガスバリア性の観点からは、プロピレン、3-アシロキシ-1-プロペン、3-アシロキシ-1-ブテン、4-アシロキシ-1-ブテン、3,4-ジアセトキシ-1-ブテンが好ましい。具体的には、その中でも、プロピレン、3-アセトキシ-1-プロペン、3-アセトキシ-1-ブテン、4-アセトキシ-1-ブテン、3,4-ジアセトキシ-1-ブテンが好ましく、その中でも、3,4-ジアセトキシ-1-ブテンが特に好ましい。エステルを有するアルケンの場合は、けん化反応の際に、上記構造単位(I)に誘導される。
 上記構造単位(II)において、R及びRは共に水素原子であることが好ましい。特に、R及びRが共に水素原子であり、上記R及びRのうちの一方が炭素数1~10の脂肪族炭化水素基、他方が水素原子であることがより好ましい。この脂肪族炭化水素基は、アルキル基又はアルケニル基が好ましい。当該多層構造体のガスバリア性を特に重視する観点からは、R及びRのうちの一方がメチル基又はエチル基、他方が水素原子であることが特に好ましい。また、上記R及びRのうちの一方が(CHOHで表される置換基(但し、hは1~8の整数)であり、他方が水素原子であることも特に好ましい。この(CHOHで表される置換基において、hは、1~4の整数であることが好ましく、1又は2であることがより好ましく、1であることが特に好ましい。
 EVOH中に上記構造単位(II)を含有させる方法については、特に限定されないが、けん化反応によって得られたEVOHに一価エポキシ化合物を反応させることにより含有させる方法などが用いられる。一価エポキシ化合物としては、下記式(III)~(IX)で示される化合物が好適に用いられる。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 上記式(III)~(IX)中、R、R、R10、R11及びR12は、それぞれ独立に水素原子、炭素数1~10の脂肪族炭化水素基(アルキル基又はアルケニル基など)、炭素数3~10の脂環式炭化水素基(シクロアルキル基又はシクロアルケニル基など)又は炭素数6~10の脂肪族炭化水素基(フェニル基など)を表す。また、i、j、k、p及びqは、1~8の整数を表す。
 上記式(III)で表される一価エポキシ化合物としては、例えばエポキシエタン(エチレンオキサイド)、エポキシプロパン、1,2-エポキシブタン、2,3-エポキシブタン、3-メチル-1,2-エポキシブタン、1,2-エポキシペンタン、2,3-エポキシペンタン、3-メチル-1,2-エポキシペンタン、4-メチル-1,2-エポキシペンタン、4-メチル-2,3-エポキシペンタン、3-エチル-1,2-エポキシペンタン、1,2-エポキシヘキサン、2,3-エポキシヘキサン、3,4-エポキシヘキサン、3-メチル-1,2-エポキシヘキサン、4-メチル-1,2-エポキシヘキサン、5-メチル-1,2-エポキシヘキサン、3-エチル-1,2-エポキシヘキサン、3-プロピル-1,2-エポキシヘキサン、4-エチル-1,2-エポキシヘキサン、5-メチル-1,2-エポキシヘキサン、4-メチル-2,3-エポキシヘキサン、4-エチル-2,3-エポキシヘキサン、2-メチル-3,4-エポキシヘキサン、2,5-ジメチル-3,4-エポキシヘキサン、3-メチル-1,2-エポキシヘプタン、4-メチル-1,2-エポキシヘプタン、5-メチル-1,2-エポキシヘプタン、6-メチル-1,2-エポキシヘプタン、3-エチル-1,2-エポキシヘプタン、3-プロピル-1,2-エポキシヘプタン、3-ブチル-1,2-エポキシヘプタン、4-エチル-1,2-エポキシヘプタン、4-プロピル-1,2-エポキシヘプタン、5-エチル-1,2-エポキシヘプタン、4-メチル-2,3-エポキシヘプタン、4-エチル-2,3-エポキシヘプタン、4-プロピル-2,3-エポキシヘプタン、2-メチル-3,4-エポキシヘプタン、5-メチル-3,4-エポキシヘプタン、5-エチル-3,4-エポキシヘプタン、2,5-ジメチル-3,4-エポキシヘプタン、2-メチル-5-エチル-3,4-エポキシヘプタン、1,2-エポキシヘプタン、2,3-エポキシヘプタン、3,4-エポキシヘプタン、1,2-エポキシオクタン、2,3-エポキシオクタン、3,4-エポキシオクタン、4,5-エポキシオクタン、1,2-エポキシノナン、2,3-エポキシノナン、3,4-エポキシノナン、4,5-エポキシノナン、1,2-エポキシデカン、2,3-エポキシデカン、3,4-エポキシデカン、4,5-エポキシデカン、5,6-エポキシデカン、1,2-エポキシウンデカン、2,3-エポキシウンデカン、3,4-エポキシウンデカン、4,5-エポキシウンデカン、5,6-エポキシウンデカン、1,2-エポキシドデカン、2,3-エポキシドデカン、3,4-エポキシドデカン、4,5-エポキシドデカン、5,6-エポキシドデカン、6,7-エポキシドデカン、エポキシエチルベンゼン、1-フェニル-1,2-プロパン、3-フェニル-1,2-エポキシプロパン、1-フェニル-1,2-エポキシブタン、3-フェニル-1,2-エポキシペンタン、4-フェニル-1,2-エポキシペンタン、5-フェニル-1,2-エポキシペンタン、1-フェニル-1,2-エポキシヘキサン、3-フェニル-1,2-エポキシヘキサン、4-フェニル-1,2-エポキシヘキサン、5-フェニル-1,2-エポキシヘキサン、6-フェニル-1,2-エポキシヘキサン等が挙げられる。
 上記式(IV)で表される一価エポキシ化合物としては、例えばメチルグリシジルエーテル、エチルグリシジルエーテル、n-プロピルグリシジルエーテル、イソプロピルグリシジルエーテル、n-ブチルグリシジルエーテル、イソブチルグリシジルエーテル、tert-ブチルグリシジルエーテル、1,2-エポキシ-3-ペンチルオキシプロパン、1,2-エポキシ-3-ヘキシルオキシプロパン、1,2-エポキシ-3-ヘプチルオキシプロパン、1,2-エポキシ-4-フェノキシブタン、1,2-エポキシ-4-ベンジルオキシブタン、1,2-エポキシ-5-メトキシペンタン、1,2-エポキシ-5-エトキシペンタン、1,2-エポキシ-5-プロポキシペンタン、1,2-エポキシ-5-ブトキシペンタン、1,2-エポキシ-5-ペンチルオキシペンタン、1,2-エポキシ-5-ヘキシルオキシペンタン、1,2-エポキシ-5-フェノキシペンタン、1,2-エポキシ-6-メトキシヘキサン、1,2-エポキシ-6-エトキシヘキサン、1,2-エポキシ-6-プロポキシヘキサン、1,2-エポキシ-6-ブトキシヘキサン、1,2-エポキシ-6-ヘプチルオキシヘキサン、1,2-エポキシ-7-メトキシヘプタン、1,2-エポキシ-7-エトキシヘプタン、1,2-エポキシ-7-プロポキシヘプタン、1,2-エポキシ-7-ブトキシヘプタン、1,2-エポキシ-8-メトキシオクタン、1,2-エポキシ-8-エトキシオクタン、1,2-エポキシ-8-ブトキシオクタン、グリシドール、3,4-エポキシ-1-ブタノール、4,5-エポキシ-1-ペンタノール、5,6-エポキシ-1-ヘキサノール、6,7-エポキシ-1-ヘプタノール、7,8-エポキシ-1-オクタノール、8,9-エポキシ-1-ノナノール、9,10-エポキシ-1-デカノール、10,11-エポキシ-1-ウンデカノール等が挙げられる。
 上記式(V)で表される一価エポキシ化合物としては、例えばエチレングリコールモノグリシジルエーテル、プロパンジオールモノグリシジルエーテル、ブタンジオールモノグリシジルエーテル、ペンタンジオールモノグリシジルエーテル、ヘキサンジオールモノグリシジルエーテル、ヘプタンジオールモノグリシジルエーテル、オクタンジオールモノグリシジルエーテル等が挙げられる。
 上記式(VI)で表される一価エポキシ化合物としては、例えば3-(2,3-エポキシ)プロポキシ-1-プロペン、4-(2,3-エポキシ)プロポキシ-1-ブテン、5-(2,3-エポキシ)プロポキシ-1-ペンテン、6-(2,3-エポキシ)プロポキシ-1-ヘキセン、7-(2,3-エポキシ)プロポキシ-1-ヘプテン、8-(2,3-エポキシ)プロポキシ-1-オクテン等が挙げられる。
 上記式(VII)で表される一価エポキシ化合物としては、例えば3,4-エポキシ-2-ブタノール、2,3-エポキシ-1-ブタノール、3,4-エポキシ-2-ペンタノール、2,3-エポキシ-1-ペンタノール、1,2-エポキシ-3-ペンタノール、2,3-エポキシ-4-メチル-1-ペンタノール、2,3-エポキシ-4,4-ジメチル-1-ペンタノール、2,3-エポキシ-1-ヘキサノール、3,4-エポキシ-2-ヘキサノール、4,5-エポキシ-3-ヘキサノール、1,2-エポキシ-3-ヘキサノール、2,3-エポキシ-4-メチル-1-ヘキサノール、2,3-エポキシ-4-エチル-1-ヘキサノール、2,3-エポキシ-4,4-ジメチル-1-ヘキサノール、2,3-エポキシ-4,4-ジエチル-1-ヘキサノール、2,3-エポキシ-4-メチル-4-エチル-1-ヘキサノール、3,4-エポキシ-5-メチル-2-ヘキサノール、3,4-エポキシ-5,5-ジメチル-2-ヘキサノール、3,4-エポキシ-2-ヘプタノール、2,3-エポキシ-1-ヘプタノール、4,5-エポキシ-3-ヘプタノール、2,3-エポキシ-4-ヘプタノール、1,2-エポキシ-3-ヘプタノール、2,3-エポキシ-1-オクタノール、3,4-エポキシ-2-オクタノール、4,5-エポキシ-3-オクタノール、5,6-エポキシ-4-オクタノール、2,3-エポキシ-4-オクタノール、1,2-エポキシ-3-オクタノール、2,3-エポキシ-1-ノナノール、3,4-エポキシ-2-ノナノール、4,5-エポキシ-3-ノナノール、5,6-エポキシ-4-ノナノール、3,4-エポキシ-5-ノナノール、2,3-エポキシ-4-ノナノール、1,2-エポキシ-3-ノナノール、2,3-エポキシ-1-デカノール、3,4-エポキシ-2-デカノール、4,5-エポキシ-3-デカノール、5,6-エポキシ-4-デカノール、6,7-エポキシ-5-デカノール、3,4-エポキシ-5-デカノール、2,3-エポキシ-4-デカノール、1,2-エポキシ-3-デカノール等が挙げられる。
 上記式(VIII)で表される一価エポキシ化合物としては、例えば1,2-エポキシシクロペンタン、1,2-エポキシシクロヘキサン、1,2-エポキシシクロヘプタン、1,2-エポキシシクロオクタン、1,2-エポキシシクロノナン、1,2-エポキシシクロデカン、1,2-エポキシシクロウンデカン、1,2-エポキシシクロドデカン等が挙げられる。
 上記式(IX)で表される一価エポキシ化合物としては、例えば3,4-エポキシシクロペンテン、3,4-エポキシシクロヘキセン、3,4-エポキシシクロヘプテン、3,4-エポキシシクロオクテン、3,4-エポキシシクロノネン、1,2-エポキシシクロデセン、1,2-エポキシシクロウンデセン、1,2-エポキシシクロドデセン等が挙げられる。
 上記一価エポキシ化合物の中では、炭素数が2~8のエポキシ化合物が好ましい。特に化合物の取り扱いの容易さ、及びEVOHとの反応性の観点から、一価エポキシ化合物の炭素数としては、2~6がより好ましく、2~4がさらに好ましい。また一価エポキシ化合物は上記式のうち式(III)又は(IV)で表される化合物であることが特に好ましい。具体的にはEVOHとの反応性及び得られる多層構造体のガスバリア性の観点からは、1,2-エポキシブタン、2,3-エポキシブタン、エポキシプロパン、エポキシエタン及びグリシドールが好ましく、その中でもエポキシプロパン及びグリシドールが特に好ましい。食品包装用途、飲料包装用途、医薬品包装用途などの衛生性を要求される用途においては、エポキシ化合物として、1,2-エポキシブタン、2,3-エポキシブタン、エポキシプロパン、又はエポキシエタンを用いることが好ましく、エポキシプロパンを用いることが特に好ましい。
 次に、EVOHの製造方法を具体的に説明する。エチレンとビニルエステルとの共重合方法としては、特に限定されず、例えば溶液重合、懸濁重合、乳化重合、バルク重合のいずれであってもよい。また、連続式、回分式のいずれであってもよい。
 重合に用いられるビニルエステルとしては、酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニルなどの脂肪酸ビニルなどを用いることができる。
 上記重合において、共重合成分として、上記成分以外にも共重合し得る単量体、例えば上記以外のアルケン;アクリル酸、メタクリル酸、クロトン酸、マレイン酸、イタコン酸等の不飽和酸又はその無水物、塩、又はモノ若しくはジアルキルエステル等;アクリロニトリル、メタクリロニトリル等のニトリル;アクリルアミド、メタクリルアミド等のアミド;ビニルスルホン酸、アリルスルホン酸、メタアリルスルホン酸等のオレフィンスルホン酸又はその塩;アルキルビニルエーテル類、ビニルケトン、N-ビニルピロリドン、塩化ビニル、塩化ビニリデンなどを少量共重合させることもできる。また、共重合成分として、ビニルシラン化合物を0.0002モル%以上0.2モル%以下含有することができる。ここで、ビニルシラン化合物としては、例えばビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ(β-メトキシ-エトキシ)シラン、γ-メタクリロイルオキシプロピルメトキシシランなどが挙げられる。この中でビニルトリメトキシシラン、ビニルトリエトキシシランが好適に用いられる。
 重合に用いられる溶媒としては、エチレン、ビニルエステル及びエチレン-ビニルエステル共重合体を溶解し得る有機溶剤であれば特に限定されない。そのような溶媒として、例えばメタノール、エタノール、プロパノール、n-ブタノール、tert-ブタノール等のアルコール;ジメチルスルホキシドなどを用いることができる。その中で、反応後の除去分離が容易である点で、メタノールが特に好ましい。
 重合に用いられる触媒としては、例えば2,2-アゾビスイソブチロニトリル、2,2-アゾビス-(2,4-ジメチルバレロニトリル)、2,2-アゾビス-(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2-アゾビス-(2-シクロプロピルプロピオニトリル)等のアゾニトリル系開始剤;イソブチリルパーオキサイド、クミルパーオキシネオデカノエイト、ジイソプロピルパーオキシカーボネート、ジ-n-プロピルパーオキシジカーボネート、t-ブチルパーオキシネオデカノエイト、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、t-ブチルハイドロパーオキサイド等の有機過酸化物系開始剤などを用いることができる。
 重合温度としては、20~90℃であり、好ましくは40~70℃である。重合時間としては、2~15時間であり、好ましくは3~11時間である。重合率は、仕込みのビニルエステルに対して10~90%であり、好ましくは30~80%である。重合後の溶液中の樹脂分は、5~85%であり、好ましくは20~70%である。
 所定時間の重合後又は所定の重合率に達した後、必要に応じて重合禁止剤を添加し、未反応のエチレンガスを蒸発除去した後、未反応のビニルエステルを除去する。未反応のビニルエステルを除去する方法としては、例えば、ラシヒリングを充填した塔の上部から上記共重合体溶液を一定速度で連続的に供給し、塔下部よりメタノール等の有機溶剤蒸気を吹き込み、塔頂部よりメタノール等の有機溶剤と未反応ビニルエステルの混合蒸気を留出させ、塔底部より未反応のビニルエステルを除去した共重合体溶液を取り出す方法などが採用される。
 次に、上記共重合体溶液にアルカリ触媒を添加し、上記共重合体をけん化する。けん化方法は、連続式、回分式のいずれも可能である。このアルカリ触媒としては、例えば水酸化ナトリウム、水酸化カリウム、アルカリ金属アルコラートなどが用いられる。
 けん化の条件としては、例えば回分式の場合、共重合体溶液濃度が10~50質量%、反応温度が30~65℃、触媒使用量がビニルエステル構造単位1モル当たり0.02~1.0モル、けん化時間が1~6時間である。
 けん化反応後のEVOHは、アルカリ触媒、酢酸ナトリウムや酢酸カリウムなどの副生塩類、その他不純物を含有するため、これらを必要に応じて中和、洗浄することにより除去することが好ましい。ここで、けん化反応後のEVOHを、イオン交換水等の金属イオン、塩化物イオン等をほとんど含まない水で洗浄する際、酢酸ナトリウム、酢酸カリウム等を一部残存させてもよい。
 樹脂層を構成する樹脂組成物に、実施態様に応じて、リン酸化合物、カルボン酸及びホウ素化合物から選ばれる1種又は複数種の化合物を含有させるとよい。かかるリン酸化合物、カルボン酸又はホウ素化合物を樹脂層の樹脂組成物中に含有することによって、当該多層構造体の各種性能を向上させることができる。
 具体的には、EVOHを含む樹脂層の樹脂組成物中にリン酸化合物を含有することで、当該多層構造体の溶融成形時の熱安定性を改善することができる。リン酸化合物としては特に限定されず、例えばリン酸、亜リン酸等の各種の酸やその塩等が挙げられる。リン酸塩としては、例えば第1リン酸塩、第2リン酸塩、第3リン酸塩のいずれの形で含まれていてもよく、その対カチオン種としても特に限定されないが、アルカリ金属塩又はアルカリ土類金属塩が好ましい。特に、リン酸二水素ナトリウム、リン酸二水素カリウム、リン酸水素ナトリウム又はリン酸水素カリウムが、熱安定性改善効果が高い点で好ましい。
 リン酸化合物の含有量(樹脂層の乾燥樹脂組成物中のリン酸化合物のリン酸根換算含有量)の下限としては、1ppmが好ましく、10ppmがより好ましく、30ppmがさらに好ましい。一方、リン酸化合物の含有量の上限としては、10,000ppmが好ましく、1,000ppmがより好ましく、300ppmがさらに好ましい。リン酸化合物の含有量が上記下限より小さいと、溶融成形時の着色が激しくなるおそれがある。特に、熱履歴を重ねるときにその傾向が顕著であるために、上記樹脂組成物ペレットを成形して得られた成形物が回収性に乏しいものとなるおそれがある。逆に、リン酸化合物の含有量が上記上限を超えると、成形物のゲル・ブツが発生し易くなるおそれがある。
 また、EVOHを含む樹脂層の樹脂組成物中にカルボン酸を含有することで、樹脂組成物のpHを制御し、ゲル化を防止して熱安定性を改善する効果がある。カルボン酸としては、25℃におけるpKaが3.5以上であるものが好ましい。25℃におけるpKaが3.5未満であるシュウ酸、コハク酸、安息香酸、クエン酸などのようなカルボン酸を含有すると、EVOHを含む樹脂組成物のpHの制御が困難となり、耐着色性や層間接着性が不満足なものになるおそれがある。特に、カルボン酸としては、コストなどの観点から酢酸又は乳酸が好ましい。
 カルボン酸の含有量(樹脂層の乾燥樹脂組成物中のカルボン酸の含有量)の下限としては、1ppmが好ましく、10ppmがより好ましく、50ppmがさらに好ましい。一方、カルボン酸の含有量の上限としては、10,000ppmが好ましく、1,000ppmがより好ましく、500ppmがさらに好ましい。このカルボン酸の含有量が上記下限より小さいと、溶融成形時に着色が発生するおそれがある。逆に、カルボン酸の含有量が上記上限を超えると、層間接着性が不充分となるおそれがある。
 さらに、EVOHを含む樹脂層の樹脂組成物中にホウ素化合物を含有することで、熱安定性向上の効果がある。詳細には、EVOHからなる樹脂組成物にホウ素化合物を添加した場合、EVOHとホウ素化合物との間にキレート化合物が生成すると考えられ、かかるEVOHを用いることによって、通常のEVOHよりも熱安定性の改善、機械的性質を向上させることが可能である。ホウ素化合物としては、特に限定されるものではなく、例えばホウ酸類、ホウ酸エステル、ホウ酸塩、水素化ホウ素類等が挙げられる。具体的には、ホウ酸類としては、例えばオルトホウ酸(HBO)、メタホウ酸、四ホウ酸等が挙げられ、ホウ酸エステルとしては、例えばホウ酸トリエチル、ホウ酸トリメチルなどが挙げられ、ホウ酸塩としては、上記各種ホウ酸類のアルカリ金属塩、アルカリ土類金属塩、ホウ砂などが挙げられる。これらの中でもオルトホウ酸が好ましい。
 ホウ素化合物の含有量(樹脂層の乾燥樹脂組成物中のホウ素化合物のホウ素換算含有量)の下限としては、1ppmが好ましく、10ppmがより好ましく、50ppmがさらに好ましい。一方、ホウ素化合物の含有量の上限としては、10,000ppmが好ましく、2,000ppmがより好ましく、1,000ppmがさらに好ましい。ホウ素化合物の含有量が上記下限より小さいと、ホウ素化合物を添加することによる熱安定性の改善効果が得られないおそれがある。逆に、ホウ素化合物の含有量が上記上限を超えると、ゲル化しやすく、成形不良となるおそれがある。
 上記リン酸化合物、カルボン酸又はホウ素化合物をEVOHを含む樹脂組成物に含有させる方法は、特に限定されるものではなく、例えばEVOHを含む樹脂組成物のペレット等を調製する際に樹脂組成物に添加して混練する方法が好適に採用される。この樹脂組成物に添加する方法も、特に限定されないが、乾燥粉末として添加する方法、溶媒を含浸させたペースト状で添加する方法、液体に懸濁させた状態で添加する方法、溶媒に溶解させて溶液として添加する方法等が例示される。これらの中で、均質に分散させる観点から、溶媒に溶解させて溶液として添加する方法が好ましい。これらの方法に用いられる溶媒は特に限定されないが、添加剤の溶解性、コスト的メリット、取り扱いの容易性、作業環境の安全性等の観点から水が好適に用いられる。これらの添加の際、後述の金属塩、EVOH以外の樹脂やその他の添加剤などを同時に添加することができる。
 また、リン酸化合物、カルボン酸、ホウ素化合物を含有させる方法として、それらの物質が溶解した溶液に、上記けん化の後押出機等により得られたペレット又はストランドを浸漬させる方法も、均質に分散させることができる点で好ましい。この方法においても、溶媒としては、上記と同様の理由で、水が好適に用いられる。この溶液に後述する金属塩を溶解させることで、リン酸化合物等と同時に金属塩を含有させることができる。
 樹脂層を構成する樹脂組成物は、分子量1,000以下の共役二重結合を有する化合物を含有することが好ましい。このような化合物を含有することによって、樹脂層の樹脂組成物の色相が改善されるので、外観の良好な多層構造体とすることができる。このような化合物としては、例えば少なくとも2個の炭素-炭素二重結合と1個の炭素-炭素単結合とが交互に繋がってなる構造の共役ジエン化合物、3個の炭素-炭素二重結合と2個の炭素-炭素単結合とが交互に繋がってなる構造のトリエン化合物、それ以上の数の炭素-炭素二重結合と炭素-炭素単結合とが交互に繋がってなる構造の共役ポリエン化合物、2,4,6-オクタトリエンのような共役トリエン化合物等が挙げられる。また、この共役二重結合を有する化合物には、共役二重結合が1分子中に独立して複数組あってもよく、例えば桐油のように共役トリエンが同一分子内に3個ある化合物も含まれる。
 上記共役二重結合を有する化合物は、例えばカルボキシル基及びその塩、水酸基、エステル基、カルボニル基、エーテル基、アミノ基、イミノ基、アミド基、シアノ基、ジアゾ基、ニトロ基、スルホン基、スルホキシド基、スルフィド基、チオール基、スルホン酸基及びその塩、リン酸基及びその塩、フェニル基、ハロゲン原子、二重結合、三重結合等の他の各種官能基を有していてもよい。かかる官能基は、共役二重結合中の炭素原子に直接結合されていてもよく、共役二重結合から離れた位置に結合されていてもよい。官能基中の多重結合は上記共役二重結合と共役可能な位置にあってもよく、例えばフェニル基を有する1-フェニルブタジエンやカルボキシル基を有するソルビン酸などもここでいう共役二重結合を有する化合物に含まれる。この化合物の具体例としては、例えば2,4-ジフェニル-4-メチル-1-ペンテン、1,3-ジフェニル-1-ブテン、2,3-ジメチル-1,3-ブタジエン、4-メチル-1,3-ペンタジエン、1-フェニル-1,3-ブタジエン、ソルビン酸、ミルセン等を挙げることができる。
 この共役二重結合を有する化合物における共役二重結合とは、2,3-ジメチル-1,3-ブタジエン、ソルビン酸のような脂肪族同士の共役二重結合のみならず、2,4-ジフェニル-4-メチル-1-ペンテン、1,3-ジフェニル-1-ブテンのような脂肪族と芳香族との共役二重結合も含まれる。但し、外観がより優れた多層構造体を得る観点からは、上記脂肪族同士の共役二重結合を含む化合物が好ましく、またカルボキシル基及びその塩、水酸基等の極性基を有する共役二重結合を含む化合物も好ましい。さらに極性基を有しかつ脂肪族同士の共役二重結合を含む化合物が特に好ましい。
 この共役二重結合を有する化合物の分子量としては、1,000以下が好ましい。分子量が1,000を超えると、多層構造体の表面平滑性、押出安定性等が悪化するおそれがある。
 この分子量が1,000以下の共役二重結合を有する化合物の含有量の下限としては、奏される効果の点から、0.1ppmが好ましく、1ppmがより好ましく、3ppmがさらに好ましく、5ppm以上が特に好ましい。一方、この化合物の含有量の上限としては、奏される効果の点から、3,000ppmが好ましく、2,000ppmがより好ましく、1,500ppmがさらに好ましく、1,000ppmが特に好ましい。
上記共役二重結合を有する化合物の添加方法としては、上述のように重合した後、かつ上記けん化の前に添加するのが、表面平滑性と押出安定性を改善する点で好ましい。この理由については必ずしも明らかではないが、共役二重結合を有する化合物が、けん化の前及び/又はけん化反応中のEVOHの変質を防止する作用を有することに基づくものと考えられる。
 (金属塩)
 当該多層構造体は、樹脂層を構成する樹脂組成物中に、金属塩を含んでいてもよい。このように樹脂組成物が金属塩を含むことによって、当該多層構造体の熱安定性が向上すると共に、溶融成形性が向上する。また、樹脂層間の層間接着性が向上する。そして、樹脂層間の層間接着性が向上することにより、当該多層構造体の耐久性がさらに向上する。かかる金属塩が層間接着性を向上させる理由は、必ずしも明らかではないが、樹脂層間においてEVOHの水酸基同士の親和性が金属塩の存在によってより高くなることが考えられる。また、隣接する樹脂層の一方が、EVOHの水酸基と反応し得る官能基を分子内に有する場合等には、この結合生成反応が、金属塩の存在によって加速されることなども考えられる。なお、金属塩は隣接する樹脂層の樹脂組成物の両方に含有されていてもよく、どちらか一方の樹脂組成物に含有されていてもよい。金属塩は、隣接する樹脂層の少なくとも一方に含まれることで、上述の層間接着性を向上させることができる。
 金属塩としては、特に限定されるものではないが、アルカリ金属塩、アルカリ土類金属塩又は周期律表の第4周期に記載されるdブロック金属塩が層間接着性をより高める点で好ましい。この中でも、アルカリ金属塩又はアルカリ土類金属塩がさらに好ましく、特にアルカリ金属塩が好ましい。
 アルカリ金属塩としては、特に限定されないが、例えばリチウム、ナトリウム、カリウム等の脂肪族カルボン酸塩、芳香族カルボン酸塩、リン酸塩、金属錯体等が挙げられる。このアルカリ金属塩としては、具体的には、酢酸ナトリウム、酢酸カリウム、リン酸ナトリウム、リン酸リチウム、ステアリン酸ナトリウム、ステアリン酸カリウム、エチレンジアミン四酢酸のナトリウム塩等が挙げられる。この中でも、酢酸ナトリウム、酢酸カリウム、リン酸ナトリウムが、入手容易である点から特に好ましい。
 アルカリ土類金属塩としては、特に限定されないが、例えば、マグネシウム、カルシウム、バリウム、ベリリウムなどの酢酸塩又はリン酸塩が挙げられる。この中でも、マグネシウム又はカルシウムの酢酸塩又はリン酸塩が、入手容易である点から特に好ましい。かかるアルカリ土類金属塩を含有させると、溶融成形時における熱劣化した樹脂の成形機のダイ付着量を低減できるという利点もある。
 周期律表の第4周期に記載されるdブロック金属の金属塩としては、特に限定されないが、例えばチタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛などのカルボン酸塩、リン酸塩、アセチルアセトナート塩等が挙げられる。
 金属塩の含有量(当該多層構造体全体を基準とする金属元素換算の含有量)の下限としては、1ppmとされており、5ppmがより好ましく、10ppmがさらに好ましく、20ppmが特に好ましい。一方、この金属塩の含有量の上限としては、10,000ppmとされており、5,000ppmがより好ましく、1,000ppmがさらに好ましく、500ppmが特に好ましい。金属塩の含有量が上記下限より小さいと、層間接着性が低くなり、当該多層構造体の耐久性が低くなるおそれがある。逆に、金属塩の含有量が上記上限を超えると、樹脂組成物の着色が激しくなり、多層構造体の外観が悪化するおそれがある。
 この金属塩を樹脂組成物に含有する方法は、特に限定されるものではなく、上述のような樹脂層の樹脂組成物中にリン酸化合物等を含有する方法と同様の方法が採用される。
 樹脂層を構成する樹脂組成物は、上記金属塩等以外にも、EVOH以外の種々の成分を含有することができる。そのようなEVOH以外の成分としては、例えば、酸素掃去剤、乾燥剤などが挙げられる。
 酸素掃去剤は、酸素掃去能(酸素吸収機能)を有する物質である。酸素掃去能とは、与えられた環境から酸素を吸収・消費し、又はその量を減少させる機能をいう。樹脂層を構成する樹脂組成物に含有することができる酸素掃去剤は、そのような性質を有するものであればよく、特に限定されない。樹脂層の樹脂組成物がEVOHを含む上に、酸素掃去剤を含有することによって、酸素掃去能が付加される結果、当該多層構造体のガスバリア性をさらに向上させることができる。酸素掃去剤としては種々のものを用いることができ、例えば、酸素掃去能を有する熱可塑性樹脂、アスコルビン酸等の有機系酸素掃去剤;鉄、亜硫酸塩等の無機系酸素掃去剤などが挙げられる。この中で、酸素掃去性が高く、また当該多層構造体の樹脂組成物に含有させることが容易である観点から、酸素掃去能を有する熱可塑性樹脂が好ましい。
 (酸素掃去能を有する熱可塑性樹脂)
 酸素掃去能を有する熱可塑性樹脂としては、酸素を掃去することができる熱可塑性樹脂であれば特に限定されないが、例えば、炭素-炭素二重結合を有するエチレン系不飽和炭化水素のポリマー又はポリマーのブレンド(分子量1,000以下かつ共役二重結合を有するものを除く)(以下、単に「不飽和炭化水素ポリマー」ともいう。)などが挙げられる。
 (不飽和炭化水素ポリマー)
 不飽和炭化水素ポリマーは、置換基を有していてもよく、非置換であってもよい。非置換の不飽和炭化水素ポリマーは少なくとも1つの脂肪族炭素-炭素二重結合を有しかつ100質量%の炭素及び水素からなる任意の化合物と定義される。また、置換された不飽和炭化水素ポリマーは、少なくとも1つの脂肪族炭素-炭素二重結合を有しそして約50~99質量%の炭素及び水素からなるエチレン系不飽和炭化水素として定義される。好ましい非置換又は置換の不飽和炭化水素ポリマーは1分子あたり2以上のエチレン系不飽和基を有するものである。より好ましくは、それは2以上のエチレン系不飽和基を有し、かつ1,000に等しいか、あるいはそれより大きい質量平均分子量を有するポリマー化合物である。エチレン系不飽和炭化水素のポリマーのブレンドは、2種またはそれ以上の置換または非置換のエチレン系不飽和炭化水素の混合物からなることができる。
 非置換の不飽和炭化水素ポリマーの好ましい例は次のものを包含するが、これらに限定されない。ポリイソプレン(例えば、トランス-ポリイソプレン)、ポリブタジエン(例えば1,2-ポリブタジエン)及びそれらのコポリマー(例えば、スチレン-ブタジエン共重合体)等のジエンポリマー;ポリペンテナマー、ポリオクテナマー及びオレフィンの複分解により製造された他のポリマー;スクアレン等のジエンオリゴマー;ジシクロペンタジエン、ノルボルナジエン、5-エチリデン-2-ノルボルネン、その他2以上の炭素-炭素二重結合(共役または非共役)を含有する他のモノマーから誘導されたポリマーまたはコポリマー;β-カロテン等のカロテノイド等。
 好ましい置換された不飽和炭化水素ポリマーは、酸素含有部分をもつもの、例えば、エステル、カルボン酸、アルデヒド、エーテル、ケトン、アルコール、パーオキシド、及び/又はヒドロパーオキシドを包含するが、これらに限定されない。このような炭化水素の特定の例は、縮合ポリマー、例えば、炭素-炭素二重結合を含有するモノマーから誘導されたポリエステル;不飽和脂肪酸、例えば、オレイン酸、リシノール酸、脱水リシノール酸、並びにリノール酸及びそれらの誘導体、例えば、エステルを包含するが、これらに限定されない。このような炭化水素は(メタ)アリル(メタ)アクリレートを包含する。
 上記不飽和炭化水素ポリマーにおいては、炭素-炭素二重結合の含有量が、ポリマー100gあたり、0.01~1.0当量であることが好ましい。ポリマーの二重結合の含量をこのような範囲に制限することによって、当該多層構造体の酸素掃去性及び物理的性質の両方を高く保持することができる。
 このように二重結合が減少したポリマーは、ホモポリマー、コポリマー、及び/又はポリマーのブレンドであることができる。ポリマーのブレンドはことに望ましい。なぜなら不連続相における物理的性質の変化は、連続相が優位を占めるであろうブレンドの全体の物理的性質へ与える影響が比較的少ないので、不連続相の中に存在する二重結合の大部分を有することが望ましいことがあるからである。
 ホモポリマーの適当な例は、100g当たり0.91当量の二重結合を有するポリ(オクテナマー)、及び100g当たり0.93当量の二重結合を有するポリ(4-ビニルシクロヘキセン)である。コポリマーの適当な例は、C-Cアルキルアクリレート及びメタクリレートを包含する。他の例は、1,3-ブタジエン、イソプレン、5-エチリデン-2-ノルボルネン、4-ビニルシクロヘキセン、1,4-ヘキサジエン、1,6-オクタジエン等と、1種または2種以上のビニルモノマー、例えばエチレン、プロピレン、スチレン、酢酸ビニル、及び/又はα-オレフィンとから誘導されたコポリマーを包含する。特定の例は、エチレン、プロピレン及び5-エチリデン-2-ノルボルネンのターポリマーである。このようなEPDMエラストマーは典型的には3~14質量%の5-エチリデン-2-ノルボルネンを含有する。このようなポリマーは、ポリマーの100g当たり0.01~1.0当量の二重結合の要件の範囲内である。また、水素化された二重結合の少なくとも約50%をもつ、部分的に水素化されたエチレン系不飽和のポリマー(例えば、ポリブタジエン)は適当である。ポリマーのブレンドの例は多数である。EPDM及び20~40%のポリブタジエン、EPDM及び20~40%のポリ(オクテナマー)のブレンド、並びにポリブタジエン及び飽和ポリオレフィンの50/50ブレンドはことに好ましい。
 (実質的に主鎖のみに炭素-炭素二重結合を有する熱可塑性樹脂)
 このような不飽和炭化水素ポリマーの中でも、酸素掃去性が非常に高く、また、当該多層構造体の樹脂組成物に非常に容易に含有させることができる観点から、実質的に主鎖のみに炭素-炭素二重結合を有する熱可塑性樹脂(D)(以下、単に「熱可塑性樹脂(D)」ともいう。)(分子量1,000以下かつ共役二重結合を有するものを除く)が特に好ましい。ここで、当該熱可塑性樹脂(D)が「実質的に主鎖のみに炭素-炭素二重結合を有する」とは、当該熱可塑性樹脂(D)の主鎖に存在する炭素-炭素二重結合が分子内の主鎖又は側鎖に含まれる全炭素-炭素二重結合の90%以上であることをいう。主鎖に存在する炭素-炭素二重結合は、好ましくは93%以上、さらに好ましくは95%以上である。
 上記熱可塑性樹脂(D)は、その分子内に炭素-炭素二重結合を有するため、酸素と効率よく反応することが可能であり、高い酸素掃去能が得られる。このような熱可塑性樹脂(D)を、樹脂層を構成する樹脂組成物に含有させることによって、当該多層構造体のガスバリア性を格段に向上させることができる。上記炭素-炭素二重結合とは、共役二重結合を包含するが、芳香環に含まれる多重結合は包含しない。
 熱可塑性樹脂(D)に含まれる炭素-炭素二重結合の含有量の下限としては、0.001当量/gが好ましく、0.005当量/gがより好ましく、0.01当量/gがさらに好ましい。一方、炭素-炭素二重結合の含有量の上限としては、0.04当量/gが好ましく、0.03当量/gがより好ましく、0.02当量/gがさらに好ましい。炭素-炭素二重結合の含有量が上記下限より小さいと、得られる多層構造体の酸素掃去機能が不十分となるおそれがある。逆に、炭素-炭素二重結合の含有量が上記上限を超えると、当該樹脂組成物の着色が激しくなり、得られる多層構造体の外観が悪化するおそれがある。
 上記のように、上記熱可塑性樹脂(D)は実質的に主鎖のみに炭素-炭素二重結合を有するため、酸素との反応により、側鎖の二重結合の開裂に伴う低分子量分解物の発生が極めて少ない。低分子量の分解物の一部は不快臭気物質であるが、このような分解物を生じにくいため不快臭を発生することが少ない。従って、そのような熱可塑性樹脂(D)を樹脂層を構成する樹脂組成物に含有させることによって、高いガスバリア性と耐久性を有するとともに、酸素掃去により不快な臭気を発生しない多層構造体とすることができる。これに対して、炭素-炭素二重結合が側鎖に多い熱可塑性樹脂を使用した場合、酸素掃去性の点では問題とならないが、上述のように側鎖の二重結合の開裂によって分解物が生成する。そのため、不快な臭気が発生し、周囲の環境を著しく損ねるおそれがある。
 上記熱可塑性樹脂(D)において、主鎖中の炭素-炭素二重結合が酸素と反応した際には、アリル炭素(二重結合に隣接する炭素)の部位で酸化を受けるため、アリル炭素は4級炭素でないことが好ましい。さらに、主鎖の開裂によっても低分子量の分解物が生成する可能性は否定できないので、これを抑制するためにも、上記アリル炭素は、置換されていない炭素、すなわち、メチレン炭素であることが好ましい。以上の点から、熱可塑性樹脂(D)は、下記式(X)及び(XI)で示される単位のうちの少なくとも1種を有することが好ましい。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 上記式(X)及び(XI)中、R13、R14、R15及びR16はそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいアルキルアリール基、-COOR17、-OCOR18、シアノ基又はハロゲン原子を表す。R15とR16とはメチレン基又はオキシメチレン基によって環を形成していてもよい(但し、R15とR16とが共に水素原子の場合を除く)。R17及びR18は置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換基を有していてもよいアルキルアリール基を表す。
 上記R13、R14、R15及びR16がアルキル基である場合の炭素原子数は、好ましくは1~5であり、アリール基である場合の炭素原子数は好ましくは6~10であり、アルキルアリール基である場合の炭素原子数は好ましくは7~11である。そのようなアルキル基の具体例としてはメチル基、エチル基、プロピル基、ブチル基が、アリール基の具体例としてはフェニル基が、アルキルアリール基の例としてはトリル基が、ハロゲン原子の例としては塩素原子が、それぞれ挙げられる。
 また熱可塑性樹脂(D)に含まれていてもよい置換基としては、各種親水性基が挙げられる。ここでいう親水性基としては水酸基、炭素数1~10のアルコキシ基、アミノ基、アルデヒド基、カルボキシル基、金属カルボキシレート基、エポキシ基、エステル基、カルボン酸無水物基、ボロン酸基、水の存在下でボロン酸基に転化し得るホウ素含有基(例えば、ボロン酸エステル基、ボロン酸無水物基、ボロン酸塩基等)等が挙げられる。これらの親水性基の中で、アルデヒド基、カルボキシル基、金属カルボキシレート基、エポキシ基、エステル基、カルボン酸無水物基、ボロン酸基、水の存在下でボロン酸基に転化し得るホウ素含有基が、EVOHの水酸基と反応し得る点で好ましい。上記熱可塑性樹脂(D)がこれらの親水性基を含有することによって、当該熱可塑性樹脂(D)が樹脂層のEVOHを含む樹脂組成物中の分散性が高くなって、得られる多層構造体の酸素掃去機能が向上する。また、それとともに、当該親水性基が隣接する樹脂層のEVOHの水酸基と反応して化学的な結合を形成することによって、樹脂層間の層間接着性が向上し、得られる多層構造体のガスバリア性等の特性及び耐久性がさらに向上する。
 また、上記熱可塑性樹脂(D)のうちでも、当該樹脂の上記式(X)及び(XI)の各単位において、R13、R14、R15及びR16のすべてが水素原子である化合物が、臭気を防止する観点からは特に好ましい。この理由については必ずしも明らかではないが、R13、R14、R15及びR16が水素原子以外である場合には、熱可塑性樹脂(D)が酸素と反応する際にこれらの基が、酸化、切断されて臭気物質に変化する場合があるためと推定される。
 上記熱可塑性樹脂(D)において、上記式(X)及び(XI)の単位の中でも、ジエン化合物由来の単位であることが好ましい。ジエン化合物由来の単位であることによって、そのような構造単位を有する熱可塑性樹脂(D)を容易に製造することができる。このようなジエン化合物としては、イソプレン、ブタジエン、2-エチルブタジエン、2-ブチルブタジエン、クロロプレンなどが挙げられる。これらの1種のみを使用してもよく、複数種を併用してもよい。これらジエン化合物由来の単位を含む熱可塑性樹脂(D)の例としては、ポリブタジエン、ポリイソプレン、ポリクロロプレン、ポリオクテニレンなどが挙げられる。これらの中でも、酸素掃去機能が特に高い点で、ポリブタジエン、ポリオクテニレンが特に好ましい。また、熱可塑性樹脂(D)として、上記構造単位以外の構造単位を共重合成分として含有する共重合体も使用可能である。そのような共重合成分としてはスチレン、アクリロニトリル、プロピレンなどが挙げられる。熱可塑性樹脂(D)がこのような共重合体である場合、上記式(X)及び(XI)で示される単位の含有量は、当該熱可塑性樹脂(D)の全構造単位に対するその合計の単位数が50モル%以上が好ましく、70モル%以上がより好ましい。
 当該熱可塑性樹脂(D)の数平均分子量の下限としては、1,000が好ましく、5,000がより好ましく、10,000がさらに好ましく、40,000が特に好ましい。一方、この数平均分子量の上限としては、500,000が好ましく、300,000がより好ましく、250,000がさらに好ましく、200,000が特に好ましい。熱可塑性樹脂(D)の分子量が1,000未満の場合又は500,000を超える場合には、得られる多層構造体の成形加工性、及びハンドリング性に劣り、また多層構造体の強度や伸度などの機械的性質が低下するおそれがある。また、樹脂層を構成する樹脂組成物中における分散性が低下し、その結果、多層構造体のガスバリア性及び酸素掃去性能が低下するおそれがある。熱可塑性樹脂(D)は1種類又は複数種を用いることができる。
 上記のような実質的に主鎖のみに炭素-炭素二重結合を有する熱可塑性樹脂(D)を製造する方法としては、熱可塑性樹脂(D)の種類によっても異なるが、例えば、ポリブタジエン(cis-1,4-ポリブタジエン)の場合、触媒としてコバルト系や、ニッケル系触媒を使用することにより合成することができる。触媒の具体例としては、例えば、CoCl・2CN錯体とジエチルアルミニウムクロライドの組み合わせなどが挙げられる。使用可能な溶媒としては、不活性な有機溶媒が挙げられ、中でも、炭素原子数が6~12の炭化水素、例えばヘキサン、ヘプタン、オクタン、デカンなどの脂環式炭化水素類、またはトルエン、ベンゼン、キシレンなどの芳香族炭化水素類が好適である。重合は通常、-78℃~70℃の温度範囲で、1~50時間の時間の範囲で行われる。
 なお、重合後に存在する炭素-炭素二重結合は、多層構造体の機械的性質やガスバリア性や酸素掃去性能等の効果を阻害しない範囲で、その一部が水素により還元されていても構わない。このとき、特に側鎖に残存する炭素-炭素二重結合を選択的に水素によって還元することが好ましい。
 上記酸素掃去能を有する熱可塑性樹脂の樹脂組成物中の含有量としては特に限定されないが、0.1質量%以上30質量%以下が好ましく、2質量%以上20質量%以下がさらに好ましい。この含有量が上記下限未満の場合は、酸素掃去能を十分に発揮することができない場合がある。逆に、この含有量が上記上限を超える場合は、EVOHが備える性能を十分に発揮できない場合がある。
 また、上記酸素掃去能を有する熱可塑性樹脂は、樹脂組成物(樹脂層)中において、粒子状に分散して含有されていることが好ましい。このような状態で含有されることで、EVOHの性能を維持しつつ、酸素掃去能をより効果的に発揮することができる。なお、この際の粒子径としては、酸素掃去能をより効果的に発揮させる点から、10μm以下が好ましく、5μm以下がより好ましく、1μm以下がさらに好ましい。
 樹脂層を構成する樹脂組成物は、上記不飽和炭化水素ポリマー(熱可塑性樹脂(D)を含む)とともに、さらに遷移金属塩(E)(上記金属塩を除く)を含むことが好ましい。このような遷移金属塩(E)を、上記不飽和炭化水素ポリマーとともに含有することによって、得られる多層構造体の酸素掃去機能がさらに向上する結果、ガスバリア性がさらに高くなる。この理由としては、当該遷移金属塩(E)が、上記不飽和炭化水素ポリマーと多層構造体の内部に存在する酸素又は当該多層構造体中を透過しようとする酸素との反応を促進するためであることなどが考えられる。
 遷移金属塩(E)を構成する遷移金属イオンとしては、鉄、ニッケル、銅、マンガン、コバルト、ロジウム、チタン、クロム、バナジウム又はルテニウム等の各イオンが挙げられるが、これらに限定されない。これらの中でも、鉄、ニッケル、銅、マンガン又はコバルトの各イオンが好ましく、マンガン又はコバルトの各イオンがより好ましく、コバルトイオンが特に好ましい。
 遷移金属塩(E)を構成する遷移金属イオンの対アニオンとしては、カルボン酸イオン又はハロゲンアニオンなどが挙げられる。対アニオンの具体例としては、例えば、酢酸、ステアリン酸、アセチルアセトン、ジメチルジチオカルバミン酸、パルミチン酸、2-エチルへキサン酸、ネオデカン酸、リノール酸、トール酸、オレイン酸、樹脂酸、カプリン酸、ナフテン酸などから水素イオンが電離して生成するアニオン、塩化物イオン又はアセチルアセトネートイオンなどが挙げられるが、これらに限定されない。特に好ましい遷移金属塩の具体例としては、2-エチルへキサン酸コバルト、ネオデカン酸コバルト又はステアリン酸コバルトが挙げられる。また、遷移金属塩(E)は重合体性の対アニオンを有する、いわゆるアイオノマーであってもよい。
 上記遷移金属塩(E)の含有量の下限値としては、樹脂層を構成する樹脂組成物に対して、金属元素換算で1ppmが好ましく、5ppmがより好ましく、10ppmがさらに好ましい。一方、この遷移金属塩(E)の含有量の上限値は、50000ppmが好ましく、10000ppmがより好ましく、5000ppmがさらに好ましい。遷移金属塩(E)の含有量が上記下限より小さいと、得られる多層構造体の酸素掃去効果が不十分となるおそれがある。一方、遷移金属塩(E)の含有量が上記上限を超えると、樹脂層を構成する樹脂組成物の熱安定性が低下し、分解ガスの発生や、ゲル・ブツの発生が著しくなるおそれがある。
 (乾燥剤)
 上記乾燥剤は、水分を吸収し、与えられた環境から除去することができる物質である。当該多層構造体の樹脂組成物に含有することができる乾燥剤は、そのような性質を有するものである限り、特に限定されない。樹脂層の樹脂組成物がこのような乾燥剤を含有することによって乾燥状態に保たれるため、EVOHを含む樹脂層のガスバリア性を高度に保つことができる。
 このような乾燥剤としては、例えば、水和物形成性の塩類、すなわち結晶水として水分を吸収する塩類、とりわけリン酸塩(上記リン酸塩を除く)、特にその無水物がその効果において最も適しているが、その他の水和物形成性の塩類、例えばホウ酸ナトリウム、硫酸ナトリウム等の塩類、特にその無水物も適しており、またその他の吸湿性化合物、例えば塩化ナトリウム、硝酸ナトリウム、砂糖、シリカゲル、ベントナイト、モレキュラーシーブ、高級水性樹脂等も使用可能である。これらは単独で又は複数種を使用することもできる。
 上記乾燥剤はEVOHを含む樹脂層のマトリックス中に微細な粒子として分散されていることが好ましく、とりわけ乾燥剤粒子が長径10μm以上の粒子の体面積平均径が30μm以下、好適には25μm、最適には20μm以下であると効果的であり、かかる微細な分散状態を形成せしめると従来達せられたことのない高度なガスバリア性の多層構造体を得ることができる。このような微細な分散状態を有する組成物は目的にあった特殊な加工方法を注意深く組合せることによりはじめて達成することができる。樹脂層を構成する樹脂組成物中の乾燥剤粒子のうち長径10μm以上の粒子の体面積平均径がこの樹脂組成物を層として含む多層構造体のガスバリア性に大きい影響を与える。この理由は必ずしも明らかではないが、粒径が大きい粒子は吸湿効果あるいはEVOHのガスバリア性に特に不都合な効果を有するものと推定される。
 樹脂層を構成するEVOHと乾燥剤の使用比率は特に制限はないが、質量比で97:3~50:50とりわけ95:5~70:30の範囲の比率が好ましい。
 上記乾燥剤の中でも、水和物を形成可能なリン酸塩(上記リン酸塩を除く)が特に好ましい。多くのリン酸塩は複数の水分子を結晶水として含む水和物を形成するので、単位質量あたりの吸収する水の質量が多く、当該多層構造体のガスバリア性の向上への寄与が大きい。また、リン酸塩を含むことの可能な結晶水の分子数は、湿度の上昇に従って段階的に増加することが多いので、湿度環境の変化に伴って、徐々に水分を吸収することができる。
 このようなリン酸塩としてはリン酸ナトリウム(NaPO)、リン酸三リチウム(LiPO)、リン酸水素二ナトリウム(NaHPO)、リン酸二水素ナトリウム(NaHPO)、ポリリン酸ナトリウム、リン酸リチウム、リン酸水素二リチウム、リン酸二水素リチウム、ポリリン酸リチウム、リン酸カリウム、リン酸水素二カリウム、リン酸二水素カリウム、リン酸一水素ナトリウム、ポリリン酸カリウム、リン酸カルシウム(Ca(PO)、リン酸水素カルシウム(CaHPO)、リン酸二水素カルシウム(Ca(HPO)、ポリリン酸カルシウム、リン酸アンモニウム、リン酸水素二アンモニウム、リン酸二水素アンモニウム、ポリリン酸アンモニウムなどが例示される。ここで、ポリリン酸塩は、二リン酸塩(ピロリン酸塩)、三リン酸塩(トリポリリン酸塩)などを含むものである。これらのリン酸塩のうち、結晶水を含まない無水物が好適である。また、リン酸ナトリウム、リン酸水素二ナトリウム、リン酸二水素ナトリウムが好適である。
 上記リン酸塩は、通常粉体である。通常市販されているリン酸塩の粉体は、平均粒径が15~25μmで、含まれる最大粒子の寸法が40~100μmである。このような大きい粒子を含有する粉体を用いたのでは、当該多層構造体の樹脂層のガスバリア性が不十分になるおそれがある。当該多層構造体の樹脂層の厚さよりも大きい粒子を含有すると、ガスバリア性が大きく低下するおそれがある。従って、リン酸塩の粉体の粒径は、当該多層構造体の樹脂層の厚さ程度以下とすることが好ましい。
 すなわち、リン酸塩の粉体は、その平均粒径が10μm以下であることが好ましい。平均粒径は、より好適には1μm以下である。このような平均粒径は例えば、光散乱法などによって粒度分析計を用いて測定することができる。
 乾燥剤としてリン酸塩を用いる場合は、分散剤と共に配合するのが好ましい。このような分散剤を配合することによって、EVOHを含む樹脂組成物中に乾燥剤であるリン酸塩を良好に分散させることができる。このような分散剤としては、例えば、脂肪酸塩、グリセリン脂肪酸エステル及び脂肪酸アミドなどが挙げられる。なお、芳香族カルボン酸のグリセリンエステルは、一般的に室温において液体であり、リン酸塩とドライブレンドするのに適していない。
 上記脂肪酸塩としては、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム等が挙げられる。上記グリセリン脂肪酸エステルとしては、グリセリンモノステアリン酸エステル、モノデカノイルオクタノイルグリセリド等が挙げられる。上記脂肪酸アミドとしては、エチレンビスステアリン酸アミド等が挙げられる。
 これらの分散剤のうちでも、リン酸塩粉体の滑り性改善や、溶融混練時の押出機のスクリーン閉塞防止の観点からは脂肪酸塩が好適に用いられる。中でも、カルシウム塩、亜鉛塩等が好適である。また、特に良好な分散性を得る観点からはグリセリン脂肪酸エステルが好適に用いられる。中でも、グリセリンのモノ又はジ脂肪酸エステルが好ましく、グリセリンモノ脂肪酸エステルがより好ましく、グリセリンモノステアリン酸エステルが特に好ましい。
 また、これらの分散剤は、炭素数8~40の化合物からなることが好ましい。このような範囲の炭素数を有することによって良好な分散性が得られる。より好適な炭素数の下限値は12であり、より好適な炭素数の上限値は30である。
 分散剤の配合量はリン酸塩100質量部に対して1~20質量部が好ましい。分散剤の含有量がリン酸塩100質量部に対して1質量部未満である場合、リン酸塩の凝集物の発生を抑制することができない。分散剤の含有量は、好適には2質量部以上であり、より好適には3質量部以上である。一方、分散剤の含有量がリン酸塩100質量部に対して20質量部を超える場合、樹脂組成物のペレットの滑りが大きくなりすぎて押出機へのフィードが困難になるとともに、多層構造体を製造する際の層間接着力が低下する。分散剤の含有量は、好適には15質量部以下であり、より好適には10質量部以下である。
 樹脂層を構成する樹脂組成物は、本発明の目的を損なわない範囲で、上記以外に、EVOH以外の他の樹脂、又は熱安定剤、紫外線吸収剤、酸化防止剤、着色剤、フィラーなど種々の添加剤を含んでいてもよい。樹脂層を構成する樹脂組成物が上記以外の添加剤を含む場合、その量は樹脂組成物の総量に対して50質量%以下であることが好ましく、30質量%以下であることがよりこのましく、10質量%以下であることが特に好ましい。
 樹脂層の樹脂組成物における温度210℃、剪断速度10/秒での溶融粘度(η)が1×10Pa・s以上1×10Pa・s以下、温度210℃、剪断速度1,000/秒での溶融粘度(η)が1×10Pa・s以上1×10Pa・s以下であり、かつこれらの溶融粘度比(η/η)が下記式(1)を満たすことが好ましい。
  -0.8≦(1/2)log10(η/η)≦-0.1 ・・・(1)
 溶融粘度(η)が1×10Pa・sより小さいと、溶融共押出しラミネートや溶融押出しなどによる押出し製膜時に樹脂の流れ斑が生じ、均一で良好な外観を有する多層構造体を得ることが困難になるおそれがある。また、ネックインや膜揺れが著しくなり、得られる多層構造体や積層前の樹脂層の厚み斑や幅の縮小が大きくなって、均質で目的寸法どおりの多層構造体を得ることができなくなるおそれがある。逆に、溶融粘度(η)が1×10Pa・sを超える場合も、溶融共押出しラミネートや溶融押出しなどによる押出し製膜時に樹脂の流れ斑が大きくなり、均一で良好な外観を有する多層構造体を得ることが困難になるおそれがある。また、100m/分を超えるような高速引き取り条件下で溶融共押出しラミネートや溶融押出成形を行う場合に膜切れが起こり易くなり、高速成膜性が顕著に損なわれ、またダイスウエルが起こり易くなって薄肉の多層構造体や積層前の樹脂層を得るのが困難になるおそれがある。
 また、溶融粘度(η)が、1×10Pa・sより小さいと、溶融共押出しラミネートや溶融押出などによる押出し成膜時に樹脂の押出し斑が生じ、均一で良好な外観を有する多層構造体を得ることが困難になるおそれがある。また、ネックインや膜揺れが著しくなって、得られる多層構造体や積層する前の樹脂層の厚み斑や幅の縮小が大きくなるおそれがある。逆に、溶融粘度(η)が1×10Pa・sを超えると、押出機に加わるトルクが高くなりすぎ押出し斑やウエルドラインが発生し易くなるおそれがある。
 さらに、上記溶融粘度比(η/η)から算出される(1/2)log10(η/η)の値が-0.8より小さいと、溶融共押出しラミネートや溶融押出などによる押出し成膜時に膜切れを生じ易くなって高速成膜性が損なわれるおそれがある。一方、(1/2)log10(η/η)の値が-0.1を超えると、溶融共押出しラミネートや溶融押出による押出し成膜時にネックインや膜揺れが起こって、得られる多層構造体や積層前の樹脂層に厚み斑や幅の縮小などを生じるおそれがある。かかる観点から、この(1/2)log10(η/η)の値は、-0.6以上であることがより好ましく、-0.2以下であることがより好ましい。なお、上記式における(1/2)log10(η/η)の値は、溶融粘度を縦軸とし、剪断速度を横軸とする両自然対数グラフにおける溶融粘度(η)及び溶融粘度(η)の2点を結ぶ直線の傾きとして求められる。また、本明細書でいう溶融粘度(η)及び溶融粘度(η)の値は、下記実施例欄に記載した方法で測定したときの値をいう。
 樹脂層の樹脂組成物は、その融点より10~80℃高い温度の少なくとも1点における溶融混練時間とトルクの関係において、粘度挙動安定性(M100/M20、但し、M20は混練開始20分後のトルク、M100は混練開始から100分後のトルクを表す)の値が0.5~1.5の範囲であることが好ましい。粘度挙動安定性の値は1に近いほど粘度変化が少なく、熱安定性(ロングラン性)に優れていることを示す。
 〈樹脂層間の関係〉
 当該多層構造体において、EVOHを含む樹脂組成物からなる樹脂層は、EVOHを含むものである限り、特に限定されるものではない。当該多層構造体は、例えば、同一の樹脂組成物からなる樹脂層で構成されていてもよく、組成、配合比及びEVOHの構造からなる群より選ばれる少なくとも1種が互いに異なる樹脂組成物からなる樹脂層を含んでいてもよい。同一の樹脂組成物とは、組成、配合比及びEVOHの構造が実質的に同一である樹脂組成物をいう。当該多層構造体は、隣接する4層以上の樹脂層が同一の樹脂組成物から形成されていると、層間接着性が向上し、非常に高いガスバリア性等の特性を維持する耐久性がさらに向上するため好ましい。また、多層構造体の原料となる樹脂組成物の種類を低減することができ、このような非常にガスバリア性に優れかつ耐久性の高い多層構造体を簡便に製造することができる。当該多層構造体の全ての樹脂層が同一の樹脂組成物で形成されているとさらに好ましい。
 上述の組成、配合比及びEVOHの構造からなる群より選ばれる少なくとも1種が異なる樹脂組成物とは、異なる構造のEVOHを含むか、EVOH以外の成分の種類や含有量が異なるか、又はその両方である樹脂組成物であることをいう。EVOHの構造が異なる点として具体的には、エチレン単位含有量、けん化度、重合度、エチレン単位及びビニルアルコール単位以外の構造単位の種類もしくはその含有量、又はEVOHが有する官能基の種類もしくはその含有量などが挙げられる。また、上記EVOH以外の成分の種類としては特に限定されないが、例えば、金属塩、酸素掃去剤、乾燥剤、EVOH以外の樹脂、熱安定剤、紫外線吸収剤、酸化防止剤、着色剤、フィラーなどが挙げられる。ここで、EVOH以外の成分の含有量が互いに異なるとは、一方の層の樹脂組成物がその成分を含有しない場合も含まれる。
 このように、当該多層構造体が、組成、配合比及びEVOHの構造からなる群より選ばれる少なくとも1種が互いに異なる樹脂組成物からなる樹脂層を2種有する場合、これらの樹脂層をそれぞれA層、B層とする。このようなA層及びB層を有することによって、A・B各層におけるEVOHの構造やEVOH以外の成分の種類や含有量を互いに相違させつつ選択することにより、当該多層構造体のガスバリア性等の特性を調整することができる。また、それら特性以外の種々の特性をさらに併せ持つ多層構造体とすることもできる。
 当該多層構造体におけるA層及びB層の積層順としては、特に限定されるものではなくA層及びB層の各機能の相補的関係に基づく相乗効果や、両層間の層間接着性等を効果的に発現させるためには、少なくともA層及びB層が隣接する個所を有する構造であることが好ましく、例えば、
(1)A,B,A,B・・・A,B(つまり、(AB)
(2)A,B,A,B・・・・・A(つまり、(AB)A)
(3)B,A,B,A・・・・・B(つまり、(BA)B)
(4)A,A,B,B・・・B,B(つまり、(AABB)
などの積層順を採用することができる。また、A層及びB層に加えて、EVOHを含み、組成、配合比及びEVOHの構造からなる群から選ばれる少なくとも1種がA層及びB層とは異なる樹脂組成物からなるC層を有する場合には、例えば、
(5)A,B,C・・・A,B,C(つまり、(ABC)
などの積層順を採用することができる。
 特に、A層及びB層の積層順としては、上記(1)、(2)又は(3)のように、A層とB層とが交互に積層されていることが好ましい。このように交互に積層されていることによって、A層及びB層による相乗効果を全層間で発揮させることができ、相乗効果で得られる特性を有効に発現させることができる。また、層間接着力を全層間で発揮させることができ、層間剥離等の欠陥の発生が低減され、その結果、当該多層構造体のガスバリア性等の特性及びその特性の耐久性を高めることができる。
 このようにEVOH含有樹脂組成物からなるA層及びB層の2種の層を合計4層以上積層させることによって、非常に高いガスバリア性、延伸性及び熱成形性を併せ持つ多層構造体とすることができる。また、当該多層構造体は、A層及びB層の積層構造により、延伸や屈曲等の変形を繰り返して使用してもガスバリア性を保持できる多層構造体とすることができる。当該多層構造体はA層及びB層の2種に加え、EVOHを含み、組成、配合比及びEVOHの構造からなる群から選ばれる少なくとも1種がA層及びB層とは異なる樹脂組成物からなるC層等を有することも可能である。
 A層及びB層を構成するEVOHの構造が互いに異なることによって、得られる多層構造体のガスバリア性、延伸性及び熱成形性を調整又は向上することができる。例えば、A層を構成するEVOHとB層を構成するEVOHとのエチレン単位含有量を異なるものにすることによって、当該多層構造体の延伸性及び熱成形性を向上させることができ、種々の用途に使用し易い多層構造体とすることができる。このようなA層及びB層のEVOHのエチレン単位含有量の差の下限としては、3モル%が好ましく、5モル%がより好ましく、7モル%がさらに好ましい。一方このA層及びB層のEVOHのエチレン含有量の差の上限としては、70モル%が好ましく、50モル%がより好ましく、30モル%がさらに好ましい。エチレン含有量の差が上記下限より小さいと、当該多層構造体の延伸性及び熱成形性の向上度合いが小さくなるおそれがある。逆に、エチレン単位含有量の差が上記上限を超えると、当該多層構造体の延伸性がかえって悪化する傾向がある。
 上記A層及びB層を有する当該多層構造体においては、EVOH以外の成分を、A層及びB層のうち一方の樹脂組成物にのみ含有させることもできる。このようにEVOH以外の成分をA層及びB層の一方にのみに含有させることによって、そのような成分が当該多層構造体の特性を低下させるおそれのある場合であっても、その不都合を最小限に抑制することができる。また、EVOH以外の成分の含有層と非含有層とが相補的に関連し合って、相乗効果により高度な機能を発揮することも可能になる。
 例えば、A層及びB層の一方にのみ、酸素掃去能を有する熱可塑性樹脂、好ましくは不飽和炭化水素ポリマー、さらに好ましくは熱可塑性樹脂(D)を含有することで、一方の熱可塑性樹脂含有層において酸素掃去により発生した臭気成分が、他方の非含有層のガスバリア性によってその拡散が抑制されるので、当該多層構造体からの臭気の発生を抑制することができる。このように、当該多層構造体の非常に高いガスバリア性をさらに高めるために含有させる酸素掃去剤の不都合な点を解消しつつ、より高いガスバリア性を発揮することを可能にする。
 また、A層及びB層の一方にのみ、乾燥剤を含有することで、一方の乾燥剤含有層において乾燥剤の存在によりガスバリア性が低下するおそれがあるものの、ガスバリア性の低下をこの乾燥剤含有層のみに留めることができ、他方の非含有層には、乾燥剤による湿度低減効果が及ぶため、多層構造体全体としてはガスバリア性を向上させることができる。
 このようなA層及びB層の相補的関係による相乗効果は、A層及びB層が隣接していることによって効果的に発揮され、A層及びB層が交互に積層されていることによって、さらに効果的に発揮される。
 A層及びB層を構成する各樹脂組成物の粘度の関係に関し、温度210℃、剪断速度1,000/秒でのA層の樹脂組成物の溶融粘度(η2A)とB層の樹脂組成物の溶融粘度(η2B)との比(η2B/η2A)の下限としては、0.1が好ましく、0.25がより好ましく、0.5がさらに好ましい。一方、A層及びB層の溶融粘度の当該比(η2B/η2A)の上限としては、10が好ましく、4がより好ましく、2がさらに好ましい。当該粘度比(η2B/η2A)を上記範囲とすることによって、当該多層構造体の多層共押出法による成形において、均一で流れ斑のない層状態が得られ、外観が良好となり、またA層とB層間の接着が良好となって当該多層構造体の耐久性を向上することができる。
 〈当該多層構造体の製造方法〉
 当該多層構造体の製造方法は、EVOHを含む樹脂層が良好に積層・接着される方法であれば特に限定されるものではなく、例えば共押出し、はり合わせ、コーティング、ボンディング、付着などの公知の方法を採用することができる。当該多層構造体の製造方法としては、具体的には、(1)EVOHを含む樹脂組成物を用い、多層共押出法により多層構造体を製造する方法や、(2)EVOHを含む樹脂組成物を用い、まず共押出法によりEVOHを含む樹脂層を有する積層体を製造し、接着剤を介して複数の積層体を重ね合わせ、延伸することでEVOHを含む樹脂層を有する多層構造体を製造する方法などが例示される。この中でも、生産性が高く、層間接着性に優れる観点から、(1)のEVOHを含む2種の樹脂組成物を用いた多層共押出法により成形する方法が好ましい。
 多層共押出法においては、EVOHを含む樹脂組成物は加熱溶融され、異なる押出機やポンプからそれぞれの流路を通って押出ダイに供給され、押出ダイから多層に押し出された後に積層接着することで、当該多層構造体が形成される。この押出ダイとしては、例えばマルチマニホールドダイ、フィールドブロック、スタティックミキサーなどを用いることができる。
 当該多層構造体は、上述のように非常に高いガスバリア性を有し、延伸性、熱成形性、耐久性、及び層間接着性にも優れている。そのため、当該多層構造体は、内容物を外部環境から高度に保護する必要のある食品用及び医療用包装材料等の用途に使用することができ、その中でも、特に高いガスバリア性、延伸性、耐久性、透明性等が要求される食品包装材に好適に使用される。
 〈積層体〉
 本発明の積層体は、上記多層構造体にさらにEVOH以外の熱可塑性樹脂層が積層されてなる。以下、当該積層体の層構造、熱可塑性樹脂層、多層構造体と熱可塑性樹脂層と間の関係及び製造方法に関し、この順に説明する。
 〈当該積層体の層構造〉
 当該積層体は上記多層構造体とEVOH以外の熱可塑性樹脂層が積層されていることにより、当該多層構造体による高いガスバリア性、耐屈曲性、耐ピンホール性等の特性と、熱可塑性樹脂層によるヒートシール性や剥離性等の諸機能を併せ持つことができる特徴を有している。熱可塑性樹脂層は、上記多層構造体の両面に積層されていても、片面に積層されていてもよく、2以上の熱可塑性樹脂層が積層されていてもよい。また、当該積層体は2以上の当該多層構造体を有していてもよい。
 当該積層体の平均厚みの下限としては、1μmが好ましく、10μmがより好ましく、50μmがさらに好ましい。一方、当該積層体の平均厚みの上限としては、5,000μmが好ましく、3000μmがより好ましく、2000μmがさらに好ましい。当該積層体の平均厚みが上記下限より小さいと、当該積層体の強度が低くなるおそれがある。逆に、当該積層体の平均厚みが上記上限を超えると、当該積層体の柔軟性、成形性等が不足し、耐久性が低くなるおそれがある。
 〈熱可塑性樹脂層〉
 当該積層体を構成する熱可塑性樹脂層はEVOH以外の熱可塑性樹脂を含む層である。上記熱可塑性樹脂としては、各種ポリオレフィン(ポリエチレン、ポリプロピレン、ポリ1-ブテン、ポリ4-メチル-1-ペンテン、エチレン-プロピレン共重合体、エチレンと炭素数4以上のα-オレフィンとの共重合体、ポリオレフィンと無水マレイン酸との共重合体、エチレン-ビニルエステル共重合体、エチレン-アクリル酸エステル共重合体、又はこれらを不飽和カルボン酸若しくはその誘導体でグラフト変性した変性ポリオレフィンなど)、各種ナイロン(ナイロン-6、ナイロン-6,6、ナイロン-6/6,6共重合体など)、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエステル、ポリスチレン、ポリアクリロニトリル、ポリウレタン、ポリアセタール及び変性ポリビニルアルコール樹脂などが挙げられる。
 〈多層構造体と熱可塑性樹脂層との関係〉
 上記多層構造体の最外層と接する熱可塑性樹脂層は、当該最外層である樹脂層との間の接着性が高いものが好ましく、樹脂層中のEVOHの有する水酸基や、樹脂層中に含まれる他の成分が有する官能基と反応して結合を生成する官能基を有する分子鎖を有しているものが特に好ましい。このような樹脂層を形成するために、上記熱可塑性樹脂の中でも、接着性樹脂が好適に用いられる。このような接着性樹脂としては、例えば、不飽和カルボン酸又はその無水物(無水マレイン酸等)、ボロン酸基、水の存在下でボロン酸基に転化し得るホウ素含有基をオレフィン系重合体又は共重合体(ポリエチレン(低密度ポリエチレン、直鎖状低密度ポリエチレン、超低密度ポリエチレン、エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸エステル(メチルエステル又はエチルエステル)共重合体)にグラフトしたものが挙げられる。
 当該多層構造体の最外層に位置する層の樹脂組成物に、上述のアルカリ金属塩、アルカリ土類金属塩及び周期律表第4周期dブロック金属塩からなる群より選ばれる少なくとも1種の金属塩を含有させることが好ましい。このように最外層の樹脂組成物に金属塩を含有させることによって多層構造体の最外層と熱可塑性樹脂層との接着性が向上し、強度に優れる積層体とすることができる。
 また、上述のように樹脂層が上記A層及びB層を有する場合においては、A層及びB層のうち最外層に位置する層の樹脂組成物にのみ、上記金属塩を含有させるとよい。このような金属塩の含有は、層間接着性を向上させる一方、EVOHを含む樹脂組成物の熱安定性に影響する。当該積層体によれば、多層構造体の最外層となる一方の層のみに、金属塩を含有し、他方の層に金属塩を含まないため、当該積層体における上記多層構造体の熱安定性を向上させることができる。このようにA層及びB層のうち最外層に位置する層の樹脂組成物にのみ金属塩を含有させることによって、多層構造体の最外層と隣接する熱可塑性樹脂層との接着性を向上させつつ、多層構造体の熱安定性を向上させることができるので、熱安定性に優れ、かつ強度に優れる積層体とすることができる。
 〈当該積層体の製造方法〉
 当該積層体の製造方法としては、特に限定されず、上記多層構造体を製造する際に熱可塑性樹脂層を同時に多層共押出法により積層する方法や、上記多層構造体に接着剤による接着や押出ラミネートなどにより熱可塑性樹脂層を積層する方法が採用される。中でも多層共押出法が好ましい。
 また、本発明の積層体の両面又は片面に、さらに支持層が積層されてもよい。この支持層としては、特に限定されず、樹脂層でなくてもよく、例えば、一般的な合成樹脂層、合成フィルム等も用いられる。また、支持層の積層手段としては、特に限定されず、接着剤による接着や押出ラミネートなどが採用される。
 当該積層体は、上述のように非常に高いガスバリア性、耐屈曲性及び耐ピンホール性を有すると共に、ヒートシール性や剥離性などの諸機能を併せ持つことができる特徴を有する。そのため、当該積層体は、内容物を外部環境から高度に保護する必要があり、かつ包装の簡便性をも求められる食品用及び医療用包装材料等の用途に使用することができ、その中でも、特に高いガスバリア性、延伸性、耐久性、透明性等が要求される食品包装材に好適に用いられる。
 以下、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。本実施例においては、上記4層以上の樹脂層を構成する樹脂組成物が同一である多層構造体である場合にも、便宜上、第1の層をA層と称し、第2の層をB層と称することがある。なお、以下の製造例において各成分の含有量は下記の方法にて定量した。
(1)酢酸
 乾燥EVOHペレット20gをイオン交換水100mLに投入し、95℃で6時間加熱抽出した。抽出液をフェノールフタレインを指示薬として、1/50規定のNaOHで中和滴定し、酢酸の含有量を定量した。
(2)金属イオン
 乾燥EVOHペレットを凍結粉砕により粉砕した。得られたEVOH粉末10gとイオン交換水50mLを100mL共栓付き三角フラスコに投入し、冷却コンデンサーを付けて、95℃で10時間撹拌、加熱抽出した。得られた抽出液2mLを、イオン交換水8mLで希釈した。上記の希釈された抽出液を、株式会社パーキンエルマージャパン社製ICP発光分光分析装置「Optima 4300 DV」を用いて、各金属イオンの量をそれぞれ定量した。
(3)リン酸化合物
 乾燥EVOHペレットを凍結粉砕により粉砕した。得られたEVOH粉末1.0gと濃硝酸15mL及び濃硫酸4mLを共栓付き100mL三角フラスコに投入し、冷却コンデンサーを付け、200~230℃で加熱分解した。得られた溶液をイオン交換水で50mLメスフラスコにメスアップした。上記の溶液を、株式会社パーキンエルマージャパン社製ICP発光分光分析装置「Optima 4300 DV」を用いて、観測波長214.914nmで定量分析することで、リン元素の量を定量し、リン酸化合物の量をリン酸根換算値で算出した。
(4)ホウ素化合物
 試料とする乾燥EVOHペレット50mgを酸素フラスコ燃焼法により完全燃焼させ、得られた燃焼灰分を1mol/L硝酸水溶液10mLに溶解させた。上記溶液を、株式会社パーキンエルマージャパン社製ICP発光分光分析装置「Optima 4300 DV」を用いて、観測波長249.667nmで定量分析することで、ホウ素化合物の含有量をホウ素元素換算値で得た。
 (合成例)ポリオクテニレンの合成
 攪拌機および温度計を装着した容量5Lのガラス製3つ口フラスコを乾燥した窒素で置換した後、これにcis-シクロオクテン110質量部およびcis-4-オクテン187質量部を溶解させたヘプタン624質量部を仕込んだ。
 次いで[1,3-ビス-(2,4,6-トリメチルフェニル)-2-イミダゾリジニリデン]ジクロロ(フェニルメチレン)(トリシクロヘキシルホスフィン)ルテニウム0.0424質量部を、トルエン3.00質量部に溶解させた触媒液を調製し、これをすばやく上記のヘプタン溶液に加えて、55℃で開環メタセシス重合(ROMP)を行った。1時間後、ガスクロマトグラフィー(島津製作所製、GC-14B;カラム:化学品検査協会製、G-100)により分析したところ、cis-シクロオクテンの消失を確認した。その後、エチルビニルエーテル1.08質量部を添加し、更に10分間攪拌した。
 得られた反応液にメタノール600質量部を添加し、55℃で30分間攪拌した後、40℃で1時間静置して分液後、下層(メタノールの層)を除去した。これに、再びメタノール600質量部を添加し、55℃で30分間攪拌した後、40℃で1時間静置して分液後、下層(メタノールの層)を除去した。ヘプタン層(上層)からヘプタンを減圧で留去し、更に、真空乾燥機にて、1Pa、100℃にて6時間乾燥し、重量平均分子量(Mw)が168,000、数平均分子量(Mn)が37,000のポリマー93.7質量部(収率88%)を得た。この重合体(ポリオクテニレン)の、側鎖中の炭素-炭素二重結合の、全炭素-炭素二重結合に対する比率は0%であった。
 (製造例1[ペレット(A-1)の製造])
 冷却装置及び攪拌機を有する重合槽に酢酸ビニル20000質量部、メタノール2000質量部、重合開始剤として2,2’-アゾビス-(4-メトキシ-2,4-ジメチルバレロニトリル)10質量部を仕込み、攪拌しながら窒素置換後、エチレンを導入、内温60℃、エチレン圧力45Kg/cmに調節し、4時間、その温度及び圧力を保持、攪拌し重合させた。次いで、ソルビン酸(SA)10質量部(仕込み酢酸ビニルに対して0.05質量%)をメタノールに溶解し、1.5質量%溶液にして添加した。重合率は、仕込み酢酸ビニルに対して45%であった。該共重合反応液を追出に供給し、塔下部からのメタノール蒸気の導入により未反応酢酸ビニルを塔頂より除去した後、該共重合体の40%のメタノール溶液を得た。該共重合体はエチレン単位含有量32.5モル%、酢酸ビニル単位含有量67.5モル%であった。
 該共重合体のメタノール溶液をけん化反応器に導入し、次いで水酸化ナトリウム/メタノール溶液(85g/L)を共重合体中の酢酸ビニル成分に対して0.5当量となるように添加し、更にメタノールを添加して共重合体濃度が15質量%になるように調整した。反応器内温度を60℃に昇温し、反応器内に窒素ガスを吹き込みながら5時間反応させた。その後、酢酸で中和し反応を停止させ内容物を反応器より取り出し、常温に放置し粒子状に析出した。析出後の粒子を遠心分離機で脱液しさらに大量の水を加え脱液する操作を繰り返し、けん化度99.5モル%のEVOH(A-1)を得た。
 得られたEVOH(A-1)を酢酸、酢酸ナトリウム、リン酸水素ナトリウム及びオルトホウ酸(OBA)を含む水溶液(水溶液1L中、酢酸0.3g、酢酸ナトリウム0.2g、リン酸水素ナトリウム0.05g、オルトホウ酸0.35g溶解)を用い、浴比20で処理し、乾燥後、押出機にてペレット化し、ペレット(A-1)を得た。ペレット(A-1)のMFRは3.8g/10分(210℃、2160g荷重下)であった。また、ペレット(A-1)の酢酸含有量は150ppm、ナトリウムイオン含有量は140ppm、リン酸化合物含有量はリン酸根換算で45ppm、ホウ素化合物の含有量はホウ素換算値で260ppmであった。
 (製造例2[ペレット(A-2)の製造])
 冷却装置及び攪拌機を有する重合槽に酢酸ビニル20000質量部、メタノール1020質量部、重合開始剤として2,2’-アゾビス-(4-メトキシ-2,4-ジメチルバレロニトリル)3.5質量部を仕込み、攪拌しながら窒素置換後、エチレンを導入、内温60℃、エチレン圧力59Kg/cmに調節し、4時間、その温度及び圧力を保持、攪拌し重合させた。次いで、ソルビン酸(SA)10質量部(仕込み酢酸ビニルに対して0.05質量%)をメタノールに溶解し、1.5質量%溶液にして添加した。重合率は、仕込み酢酸ビニルに対して30%であった。該共重合反応液を追出に供給し、塔下部からのメタノール蒸気の導入により未反応酢酸ビニルを塔頂より除去した後、該共重合体の40質量%のメタノール溶液を得た。該共重合体はエチレン単位含有量44.5モル%、酢酸ビニル単位含有量55.5モル%であった。
 該共重合体のメタノール溶液をけん化反応器に導入し、次いで水酸化ナトリウム/メタノール溶液(85g/L)を共重合体中の酢酸ビニル成分に対して0.5当量となるように添加し、更にメタノールを添加して共重合体濃度が15質量%になるように調整した。応器内温度を60℃に昇温し、反応器内に窒素ガスを吹き込みながら5時間反応させた。その後、酢酸で中和し反応を停止させ内容物を反応器より取り出し、常温に放置し粒子状に析出した。析出後の粒子は遠心分離機で脱液しさらに大量の水を加え脱液する操作を繰り返し、けん化度99.5%のEVOH(A-2)を得た。
 得られたEVOH(A-2)を、酢酸、酢酸ナトリウム、およびリン酸水素ナトリウムを含む水溶液(水溶液1L中、酢酸0.3g、酢酸ナトリウム0.2g、リン酸水素ナトリウム0.05g、オルトホウ酸0.03g溶解)を用い、浴比20で処理し、乾燥後、押出機にてペレット化し、ペレット(A-2)を得た。ペレット(A-2)のMFRは11.5g/10分(210℃、2160g荷重下)であった。また、ペレット(A-2)の酢酸含有量は135ppm、ナトリウムイオン含有量は140ppm、リン酸化合物含有量はリン酸根換算で40ppm、ホウ素化合物の含有量はホウ素換算で10ppmであった。
 (製造例3[ペレット(A-3)の製造])
 冷却装置及び攪拌機を有する重合槽に酢酸ビニル20000質量部、メタノール2000質量部、重合開始剤として2,2’-アゾビス-(4-メトキシ-2,4-ジメチルバレロニトリル)10質量部を仕込み、攪拌しながら窒素置換後、エチレンを導入、内温60℃、エチレン圧力38Kg/cmに調節し、3.5時間、その温度及び圧力を保持、攪拌し重合させた。次いで、ソルビン酸(SA)10質量部(仕込み酢酸ビニルに対して0.05質量%)をメタノールに溶解し、1.5質量%溶液にして添加した。重合率は、仕込み酢酸ビニルに対して52%であった。該共重合反応液を追出に供給し、塔下部からのメタノール蒸気の導入により未反応酢酸ビニルを塔頂より除去した後、該共重合体の40%のメタノール溶液を得た。該共重合体はエチレン単位含有量26.5モル%、酢酸ビニル単位含有量73.5モル%であった。
 該共重合体のメタノール溶液をけん化反応器に導入し、次いで水酸化ナトリウム/メタノール溶液(85g/L)を共重合体中の酢酸ビニル成分に対して0.5当量となるように添加し、更にメタノールを添加して共重合体濃度が15質量%になるように調整した。反応器内温度を60℃に昇温し反応器内に窒素ガスを吹き込みながら5時間反応させた。その後、酢酸で中和し反応を停止させ内容物を反応器より取り出し、常温に放置し粒子状に析出した。析出後の粒子を遠心分離機で脱液しさらに大量の水を加え脱液する操作を繰り返し、けん化度99.8%のEVOH(A-3)を得た。
 得られたEVOH(A-3)を酢酸、酢酸ナトリウム、リン酸水素ナトリウム及びオルトホウ酸(OBA)を含む水溶液(水溶液1L中、酢酸0.3g、酢酸ナトリウム0.02g、リン酸水素ナトリウム0.005g、オルトホウ酸0.15g溶解)を用い、浴比20で処理し、乾燥後、押出機にてペレット化し、ペレット(A-3)を得た。ペレット(A-3)のMFRは6.4g/10分(210℃、2160g荷重下)であった。またペレット(A-3)の酢酸含有量は95ppm、ナトリウムイオン含有量は14ppm、リン酸化合物含有量はリン酸根換算で5ppm、ホウ素化合物の含有量はホウ素換算値で85ppmであった。
 (製造例4[ペレット(A-4)の製造])
 製造例2と同様にして得られたEVOH(A-2)を、酢酸、及びリン酸水素ナトリウムを含む水溶液(水溶液1L中、酢酸0.05g、リン酸水素ナトリウム0.02g、オルトホウ酸0.04g溶解)を用い、浴比20で処理し、乾燥してEVOH組成物粒子を得た。該EVOH組成物粒子のMFRは9.7g/10分(210℃、2160g荷重下)であった。また、該EVOH組成物粒子の酢酸含有量は40ppm、リン酸化合物含有量はリン酸根換算で20ppm、ホウ素化合物含有量はホウ素換算値で14ppmであった。
 上記で得られたEVOH組成物粒子を用い、東芝機械社製二軸押出機「TEM-35BS」(37mmφ、L/D=52.5)を使用し、下記押出条件にて触媒添加下でEVOHにエポキシプロパンを反応させ、未反応のエポキシプロパンをベントより除去し、次いで触媒失活剤としてエチレンジアミン四酢酸三ナトリウム水和物8.2質量%水溶液を添加し、ペレット化を行った後、乾燥を行い、エチレン単位及びビニルアルコール単位以外の構造単位(II)として下記式で表される構造単位(ii)を有するエポキシプロパン変性のエチレン-ビニルアルコール共重合体EVOH(A-4)を含むペレット(A-4)を得た。
Figure JPOXMLDOC01-appb-C000014
 シリンダー、ダイ温度設定:
  シリンダー部樹脂フィード口/シリンダー部/アダプター/ダイ
   =160/200/240/240(℃)
 スクリュー回転数:400rpm
 エチレン-ビニルアルコール共重合体フィード量:16kg/hr
 エポキシプロパンフィード量:2.4kg/hrの割合(フィード時の圧力6MPa)
 触媒溶液フィード量:0.32kg/hr
 触媒調整:亜鉛アセチルアセトナート一水和物28質量部を、1,2-ジメトキシエタン957質量部と混合し、混合溶液を得た。得られた混合溶液に、攪拌しながらトリフルオロメタンスルホン酸15質量部を添加し、触媒溶液を得た。すなわち、亜鉛アセチルアセトナート一水和物1モルに対して、トリフルオロメタンスルホン酸1モルを混合した溶液を調整した。
 触媒失活剤水溶液フィード量:0.16kg/hr
 得られたペレット(A-4)のMFRは6.8g/10分(210℃、2160g荷重下)であった。また、ペレット(A-4)の酢酸含有量は420ppm、亜鉛イオン含有量は120ppm、ナトリウム含有量は130ppm、リン酸化合物含有量はリン酸根換算で20ppm、トリフルオロメタンスルホン酸イオンの含有量は280ppm、ホウ素化合物の含有量はホウ素換算値で12ppmであった。また、EVOH(A-4)のエチレン単位及びビニルアルコール単位以外の構造単位(ii)の導入量(エポキシプロパン変性量)はH-NMR(内部標準物質:テトラメチルシラン、溶媒:d6-DMSO)の測定より、5.8モル%であった。
 (製造例5[ペレット(A-5)の製造])
 冷却装置及び攪拌機を有する重合槽に酢酸ビニル20000質量部、メタノール4000質量部、重合開始剤としてアセチルパーオキシド10質量部(仕込み酢酸ビニル量に対して500ppm)、クエン酸0.4質量部(仕込み酢酸ビニル量に対して20ppm)、および3,4-ジアセトキシ-1-ブテンを560質量部を仕込み、攪拌しながら窒素置換後、エチレンを導入、内温67℃、エチレン圧力35Kg/cmに調節し、次いで3,4-ジアセトキシ-1-ブテン全量180質量部を徐々に添加しながら重合し、重合率が仕込み酢酸ビニルに対して50%になるまで6時間重合した。その後、ソルビン酸(SA)10質量部(仕込み酢酸ビニル量に対して500ppm)をメタノールに溶解し、1.5質量%溶液にして添加した。該共重合反応液を追出に供給し、塔下部からのメタノール蒸気の導入により未反応酢酸ビニルを塔頂より除去した後、該共重合体の40質量%のメタノール溶液を得た。該共重合体はエチレン単位含有量29.0モル%であった。
 該共重合体のメタノール溶液をけん化反応器に導入し、次いで水酸化ナトリウム/メタノール溶液(85g/L)を共重合体中の酢酸ビニル成分に対して0.5当量となるように添加し、更にメタノールを添加して共重合体濃度が15質量%になるように調整した。反応器内温度を60℃に昇温し反応器内に窒素ガスを吹き込みながら5時間反応させた。その後、酢酸で中和し反応を停止させ内容物を反応器より取り出し、常温に放置し粒子状に析出した。析出後の粒子は遠心分離機で脱液しさらに大量の水を加え脱液する操作を繰り返し、けん化度99.5モル%のEVOH(A-5)を得た。
 なお、上記のEVOH(A-5)のエチレン単位及びビニルアルコール単位以外の構造単位(I)としては、下記式で表される構造単位(i)が導入されており、その導入量はH-NMR(内部標準物質:テトラメチルシラン、溶媒:d6-DMSO)の測定から2.5モル%であった。
Figure JPOXMLDOC01-appb-C000015
 得られたEVOH(A-5)を酢酸、酢酸ナトリウム、リン酸水素ナトリウム及びオルトホウ酸(OBA)を含む水溶液(水溶液1L中、酢酸0.3g、酢酸ナトリウム0.2g、リン酸水素ナトリウム0.07g、オルトホウ酸0.32g溶解)を用い、浴比20で処理し、乾燥後、押出機にてペレット化し、ペレット(A-5)を得た。ペレット(A-5)のMFRは2.5g/10分(210℃、2160g荷重下)であった。また、ペレット(A-5)の酢酸含有量は150ppm、ナトリウム含有量は150ppm、リン酸化合物含有量はリン酸根換算で50ppm、ホウ素化合物の含有量はホウ素換算値で150ppmであった。
 (製造例6[ペレット(A-6)の製造])
 製造例1において得られたペレット(A-1)を90質量部、上記の合成例で得られたポリオクテニレン10質量部およびステアリン酸コバルト(II)0.4242質量部(コバルト原子として0.0400質量部)をドライブレンドし、東芝機械社製二軸押出機「TEM-35BS」(37mmφ、L/D=52.5)を使用し、下記押出条件にて押出しを行い、ペレット化した後、乾燥して、EVOH(A-1)、ポリオクテニレンおよびステアリン酸コバルトからなる組成物のペレット(A-6)を得た。
 シリンダー、ダイ温度設定:
  シリンダー部樹脂フィード口/シリンダー部/アダプター/ダイ
   =160/200/220/220(℃)
 スクリュー回転数:200rpm
 フィード量:20kg/hr
 得られたペレット(A-6)のMFRは4.5g/10分(210℃、2160g荷重下)であった。また、ペレット(A-6)の酢酸含有量は105ppm、ナトリウムイオン含有量は125ppm、コバルトイオン含有量は400ppm、リン酸化合物含有量はリン酸根換算で40ppm、ホウ素化合物の含有量はホウ素換算値で230ppmであった。
 また、ペレット(A-6)を、40φ押出機(プラスチック工学研究所製「PLABOR GT-40-A」)とTダイからなる製膜機を用いて、下記押出条件で製膜し、厚み30μmの単層フィルムを得た。
 形式:単軸押出機(ノンベントタイプ)
 L/D:24
 口径:40mmφ
 スクリュー:一条フルフライトタイプ、表面窒化鋼
 スクリュー回転数:40rpm
 ダイス:550mm幅コートハンガーダイ
 リップ間隙:0.3mm
 シリンダー、ダイ温度設定:
  シリンダー部樹脂フィード口/シリンダー部/アダプター/ダイ
  =160/190/200/200(℃)
 冷却ロールの温度:30℃
 引き取り速度  :10m/分
 得られた単層フィルムの切断面を電子顕微鏡で観察したところ、ポリオクテニレンの1μm以下の粒子がEVOH(A-1)からなるマトリックス中に分散していた。
 (製造例7[ペレット(A-7)の製造])
 製造例1で得られたペレット(A-1)を80質量部、製造例4で得られたペレット(A-4)20質量部をドライブレンドし、東芝機械社製二軸押出機「TEM-35BS」(37mmφ、L/D=52.5)を使用し、下記押出条件にて押出しを行い、ペレット化した後、乾燥して、EVOH(A-1)、EVOH(A-4)を含むペレット(A-7)を得た。
 シリンダー、ダイ温度設定:
  シリンダー部樹脂フィード口/シリンダー部/アダプター/ダイ
   =160/200/220/220(℃)
 スクリュー回転数:200rpm
 フィード量:20kg/hr
 得られたペレット(A-7)のMFRは4.3g/10分(210℃、2160g荷重下)であった。また、ペレット(A-7)の酢酸含有量は160ppm、亜鉛イオン含有量は20ppm、ナトリウム含有量は135ppm、リン酸化合物含有量はリン酸根換算で40ppm、トリフルオロメタンスルホン酸イオンの含有量は55ppm、ホウ素化合物の含有量はホウ素換算値で210ppmであった。
 (製造例8[ペレット(A-8)の製造])
 製造例2において、エチレン単位含有量44.5モル%、けん化度99.5%のEVOH(A-2)を酢酸、およびリン酸を含む水溶液(水溶液1L中、酢酸0.3g、リン酸0.06g、オルトホウ酸0.03g溶解)を用い、浴比20で処理した以外は、製造例2と同様にしてペレット(A-8)を得た。ペレット(A-8)のMFRは11.6g/10分(210℃、2160g荷重下)であった。また、ペレット(A-8)の酢酸含有量は90ppm、リン酸化合物含有量はリン酸根換算で43ppm、ホウ素化合物の含有量はホウ素換算で10ppmであった。
 [実施例1]
 ペレット(A-1)を、ペレットを構成する樹脂組成物によってA層及びB層それぞれ交互にA層が8層及びB層が9層の多層構造体が形成されるように、17層フィードブロックにて、共押出機に210℃の溶融状態として供給し、共押出を行い合流させることによって、多層の積層体とした。合流するペレット(A-1)の溶融物は、フィードブロック内にて各層流路を表面側から中央側に向かうにつれ徐々に厚くなるように変化させることにより、押出された多層構造体の各層の厚みが均一になるように押出された。また、隣接するA層とB層の層厚みはほぼ同じになるようにスリット形状を設計した。このようにして得られた計17層からなる積層体を、表面温度80℃に保たれ静電印加したキャスティングドラム上で急冷固化し、巻取りを行った。なお、ペレット(A-1)の溶融物が合流してからキャスティングドラム上で急冷固化されるまでの時間が約4分となるように流路形状及び総吐出量を設定した。
 上記のようにして得られたキャストフィルムはDIGITAL  MICROSCOPE VHX-900(KEYENCE製)にて断面観察を行った結果、A層及びB層それぞれの平均厚みが1μm、全体の平均厚みが17μmである多層構造体であった。なお、各厚みはランダムに選択された9点での測定値の平均値とした。
 [比較例1]
 単層フィルム押出装置を用いて、ペレット(A-1)を単層のフィルムが形成されるように210℃の溶融状態として押出し、表面温度80℃に保たれ静電印加したキャスティングドラム上で急冷固化し、巻取りを行った。なお、ペレット(A-1)の溶融物が押出されてからキャスティングドラム上で急冷固化されるまでの時間が約4分となるように流路形状及び総吐出量を設定した。
 上記のようにして得られたキャストフィルムはDIGITAL  MICROSCOPE VHX-900(KEYENCE製)にて断面観察を行った結果、全体の平均厚みが20μmであった。
 [実施例2~23、比較例2、比較例4、比較例6、比較例8、比較例10、比較例12]
 表1~6に記載されているとおりのペレットの種類、積層状態、並びに金属塩の種類及び含有量を採用した以外は、実施例1と同様にして、これらの実施例及び比較例に係る多層構造体を製造した。
 [比較例3、比較例5、比較例7、比較例9、比較例11]
 表1~6に記載されているとおりのペレットの種類、並びに金属塩の種類及び含有量を採用した以外は比較例1と同様にして、これらの比較例に係る単層フィルムを製造した。
 (多層構造体及び単層フィルムの特性評価方法)
 実施例1~23及び比較例1~12で得られた多層構造体及び単層フィルムの各特性は以下の記載の方法に従って評価した。これらの特性の評価結果を、A層及びB層における成分割合、物性等と共に表1~6に示す。
 (1)各層を構成する樹脂組成物の溶融粘度
 A層を構成する樹脂組成物及びB層を構成する樹脂組成物の所定温度における溶融粘度は、溶融させた対象ペレットについて、キャピログラフ(東洋精機製作所株式会社製IC型)を用いて測定した。
 (2)多層構造体及び単層フィルムの外観
 得られた多層構造物及び単層フィルムの流れ斑、ストリーク、及びフィッシュアイの有無を目視にて確認した。多層構造物及び単層フィルムの外観を、以下の基準に従って判断した。
 ◎:流れ斑、ストリーク、フィッシュアイは皆無に近かった。
 ○:流れ斑、ストリーク、フィッシュアイが存在するが、少なかった。
 △:流れ斑、ストリーク、フィッシュアイが、目立つ程度に存在した。
 ×:流れ斑、ストリークが著しく、フィッシュアイが多数存在した。
 (3)多層構造体及び単層フィルムのヘイズ
 得られた多層構造体及び単層フィルムの一部を切り取り、シリコンオイルを塗布して、村上色彩技術研究所製HR-100を用い、ASTM D1003-61に従ってヘイズ値を測定した。
 (4)多層構造体及び単層フィルムの酸素透過速度
 多層構造体を水系内容物を充填する包装材料に使用することを想定し、得られた多層構造体及び単層フィルムを、20℃で一方の片面を30%RH、もう一方の片面を高湿の95%RHで5日間調湿し、調湿済みの多層構造体及び単層フィルムのサンプルを2枚使用して、モダンコントロ-ル社製 MOCON OX-TRAN10/50A型を用い、それぞれ20℃-30%RH/100%RH条件下でJIS K7126(等圧法)に記載の方法に準じて、酸素透過速度を測定し、その平均値を求めた(単位:mL・20μm/m・day・atm)。
 (5)多層構造体及び単層フィルムの耐屈曲性
 ASTM-F392-74に準じて、理学工業(株)製「ゲルボフレックステスター」を使用し、屈曲を繰り返し、最初に貫通孔(ピンホール)が観察された屈曲回数を計測した。
 (6)多層構造体及び単層フィルムの屈曲後酸素透過速度
 ASTM-F392-74に準じて、理学工業(株)製「ゲルボフレックステスター」を使用し、屈曲を50回繰り返したのち、上記同様に多層構造体及び単層フィルムの酸素透過速度を測定し、平均値を求めた。なお、屈曲後の多層構造体又は単層フィルムに貫通孔(ピンホール)が観察された場合には評価結果を「測定不可」とした。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
 [実施例24]
 下記4種37層共押出装置を用いて、下記条件で多層構造体と熱可塑性樹脂層が積層された積層体(ポリプロピレン/接着性樹脂/エチレン-ビニルアルコール共重合体層(EVOH(A-2)及びEVOH(A-1)からなる交互構成の33層の多層構造体)/接着性樹脂/ポリプロピレン)を作製した。シートの構成は、エチレン-ビニルアルコール共重合体層(EVOH(A-2)及びEVOH(A-1)からなる交互構成の33層の多層構造体)が100μm、接着性樹脂層が50μm、ポリプロピレン層が800μmである。なお、交互構成の33層からなるエチレン-ビニルアルコール共重合体層は、ペレット(A-2)及びペレット(A-1)を、それぞれのペレットが構成する樹脂組成物によって交互にA層が17層及びB層が16層の多層構造体が形成されるように、33層フィードブロックにて、共押出機に220℃の溶融状態として供給し、共押出を行い合流させることによって、多層の積層体とした。合流したペレット(A-2)及びペレット(A-1)の溶融物は、フィードブロック内にて各層厚みが表面側から中央側に向かうにつれ徐々に厚くなるように変化させることにより、押出された多層構造体の各層の厚みが均一になるように押出された。また、隣接するA層とB層の層厚みはほぼ同じになるようにスリット形状を設計した。交互構成の33層からなるエチレン-ビニルアルコール共重合体層の最外層はペレット(A-2)からなるEVOH(A-2)となる構成で該積層体を作製した。
 共押出成形条件は以下のとおりである。
 層構成:ポリプロピレン/接着性樹脂/エチレン-ビニルアルコール共重合体層(EVOH(A-2)及びEVOH(A-1)からなる交互構成の33層の多層構造体)/接着性樹脂/ポリプロピレン
 エチレン-ビニルアルコール共重合体(ペレット(A-2)及びペレット(A-1))の押出温度:
  シリンダー部樹脂フィード口/シリンダー上流部/シリンダー中央部/シリンダー下流部=175/210/220/220℃
 接着性樹脂の押出温度:
  シリンダー部樹脂フィード口/シリンダー上流部/シリンダー中央部/シリンダー下流部=170/170/220/220℃
 ポリプロピレンの押出温度:
  シリンダー部樹脂フィード口/シリンダー上流部/シリンダー中央部/シリンダー下流部=170/170/230/230℃
 アダプターの温度:230℃
 フィードブロックの温度:230℃
 ダイの温度:235℃
 各樹脂の押出機、Tダイ仕様:
 エチレン-ビニルアルコール共重合体(2台):
  40φ押出機 VSVE-40-24型(大阪精機工作株式会社製)
 接着性樹脂:
  40φ押出機 10VSE-40-22型(大阪精機工作株式会社製)
 ポリプロピレン:
  65φ押出機 20VS-65-22型(大阪精機工作株式会社製)
 Tダイ:
  650mm幅 (プラスチック工学研究所製)
 冷却ロールの温度:30℃
 引き取り速度  :2m/分
 なお、ポリプロピレン樹脂としては、日本ポリプロ(株)製ノバテックPP EA7A及びノバテックPP EG-7FTを85:15(質量比)の割合で混合したもの使用し、また接着性樹脂としては、三井化学製「アドマ-QF551」を使用した。
 上記作製した積層体を23℃、50%RHの雰囲気下で30日間調湿したのち、15mm幅の短冊状の切片を作成して、接着性樹脂層とA層との層間接着力を測定したところ、2,850g/15mmであり、良好な接着性を示した。なお、短冊状切片の測定試料は、23℃、50%RHの雰囲気下、株式会社島津製作所製オートグラフ「AGS-H型」を用いて、引張速度250mm/分にて、T型剥離強度を測定した。得られた値(単位:g/15mm)を、接着性樹脂層とA層との層間接着力とした。
 上記作製した積層体を東洋精機製パンタグラフ式二軸延伸機にかけ、140℃で延伸倍率3×3倍で同時二軸延伸を行い、多層延伸フィルムを得た。上記の多層シ-トは良好な延伸性を示し、延伸後、得られた多層延伸フィルムはクラック、ムラ、偏肉も少なく、外観(透明性、ゲル・ブツ)も良好であった。
 上記作製した多層延伸フィルムを、20℃で一方の片面を30%RH、もう一方の片面を高湿の95%RHで5日間調湿し、調湿済みの多層構造体のサンプルを2枚使用して、モダンコントロ-ル社製 MOCON OX-TRAN10/50A型を用い、それぞれ20℃-30%RH/100%RH条件下でJIS K7126(等圧法)に記載の方法に準じて、酸素透過速度を測定し、その平均値を求めた。本実施例の多層延伸フィルムの酸素透過量は、0.34cc/m・day・atmであり、良好なガスバリア性を示した。
 さらに、上記で得られた積層体を熱成形機(浅野製作所製:真空圧空深絞り成形機FX-0431-3型)にて、シ-ト温度を140℃にして、圧縮空気(気圧5kgf/cm)によりカップ形状(金型形状:上部75mmφ、下部60mmφ、深さ75mm、絞り比S=1.0)に熱成形することにより、熱成形容器を得た。成形条件を以下に示す。
ヒ-タ-温度:400℃
プラグ   :45φ×65mm
プラグ温度 :120℃
金型温度  :70℃
 得られた熱成形容器の外観を目視にて観察したところ、クラック、ムラおよび局部的偏肉はなく均一に延伸されており、また透明性に優れており、外観についても良好だった。
 [参考例1]
 ペレット(A-2)に代えてペレット(A-8)を用いた以外は実施例20と同様にして積層体を得た。得られた積層体を用いて実施例20と同様にして接着性樹脂層とA層との層間接着力を測定したところ、160g/15mmであった。
 以上のように、本発明の多層構造体及び積層体は、非常に高いガスバリア性等の特性が屈曲や延伸等の変形に対しても維持されるので、食品包装材、各種容器などに好適に用いられる。

Claims (21)

  1.  エチレン-ビニルアルコール共重合体を含む樹脂組成物からなる樹脂層が4層以上隣接して積層されている多層構造体。
  2.  上記樹脂層の一層の平均厚みが0.01μm以上10μm以下である請求項1に記載の多層構造体。
  3.  平均厚みが0.1μm以上1,000μm以下である請求項1又は請求項2に記載の多層構造体。
  4.  上記エチレン-ビニルアルコール共重合体のエチレン単位含有量が3モル%以上70モル%以下、けん化度が80モル%以上である請求項1、請求項2又は請求項3に記載の多層構造体。
  5.  上記エチレン-ビニルアルコール共重合体が、下記構造単位(I)及び(II)からなる群より選ばれる少なくとも1種を有し、
     これらの構造単位(I)又は(II)の全構造単位に対する含有量が0.5モル%以上30モル%以下である請求項1から請求項4のいずれか1項に記載の多層構造体。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (式(I)中、R、R及びRは、それぞれ独立に、水素原子、炭素数1~10の脂肪族炭化水素基、炭素数3~10の脂環式炭化水素基、炭素数6~10の芳香族炭化水素基又は水酸基を表す。また、R、R及びRのうちの一対が結合していてもよい(但し、R、R及びRのうちの一対が共に水素原子の場合は除く)。また、上記炭素数1~10の脂肪族炭化水素基、炭素数3~10の脂環式炭化水素基又は炭素数6~10の芳香族炭化水素基は、水酸基、カルボキシル基又はハロゲン原子を有していてもよい。
     式(II)中、R、R、R及びRは、それぞれ独立に、水素原子、炭素数1~10の脂肪族炭化水素基、炭素数3~10の脂環式炭化水素基、炭素数6~10の芳香族炭化水素基又は水酸基を表す。また、RとR又はRとRとは結合していてもよい(但し、RとR又はRとRが共に水素原子の場合は除く)。また、上記炭素数1~10の脂肪族炭化水素基、炭素数3~10の脂環式炭化水素基又は炭素数6~10の芳香族炭化水素基は、水酸基、アルコキシ基、カルボキシル基又はハロゲン原子を有していてもよい。)
  6.  上記樹脂組成物が、酸素掃去能を有する熱可塑性樹脂を含有する請求項1から請求項5のいずれか1項に記載の多層構造体。
  7.  上記樹脂組成物が、乾燥剤を含有する請求項1から請求項6のいずれか1項に記載の多層構造体。
  8.  上記樹脂組成物の温度210℃、剪断速度10/秒での溶融粘度(η)が1×10Pa・s以上1×10Pa・s以下、温度210℃、剪断速度1,000/秒での溶融粘度(η)が1×10Pa・s以上1×10Pa・s以下であり、かつ、これらの溶融粘度比(η/η)が下記式(1)を満たす請求項1から請求項7のいずれか1項に記載の多層構造体。
      -0.8≦(1/2)log10(η/η)≦-0.1 ・・・(1)
  9.  上記樹脂層として、組成、配合比及びエチレン-ビニルアルコール共重合体の構造からなる群より選ばれる少なくとも1種が互いに異なる樹脂組成物からなるA層及びB層を有する請求項1から請求項8のいずれか1項に記載の多層構造体。
  10.  上記A層及びB層が交互に積層されている請求項9に記載の多層構造体。
  11.  上記A層を構成するエチレン-ビニルアルコール共重合体と上記B層を構成するエチレン-ビニルアルコール共重合体とのエチレン単位含有量の差が3モル%以上50モル%以下である請求項9又は請求項10に記載の多層構造体。
  12.  上記A層及びB層のうち一方の樹脂組成物にのみ、酸素掃去能を有する熱可塑性樹脂を含有する請求項9、請求項10又は請求項11に記載の多層構造体。
  13.  上記A層及びB層のうち一方の樹脂組成物にのみ、乾燥剤を含有する請求項9から請求項12のいずれか1項に記載の多層構造体。
  14.  温度210℃、剪断速度1,000/秒でA層の樹脂組成物の溶融粘度(η2A)とB層の樹脂組成物の溶融粘度溶融粘度(η2A)との比(η2B/η2A)が、0.1以上10以下である請求項9から請求項13のいずれか1項に記載の多層構造体。
  15.  上記4層以上の樹脂層を構成する樹脂組成物が同一である請求項1から請求項8のいずれか1項に記載の多層構造体。
  16.  請求項1から請求項15のいずれか1項に記載の多層構造体にさらにエチレン-ビニルアルコール共重合体以外の熱可塑性樹脂層が積層されてなる積層体。
  17.  平均厚みが1μm以上5,000μm以下である請求項16に記載の積層体。
  18.  上記多層構造体の最外層に位置する層の樹脂組成物に、アルカリ金属塩、アルカリ土類金属塩及び周期律表第4周期dブロック金属塩からなる群より選ばれる少なくとも1種の金属塩を含有し、
     上記多層構造体の最外層と上記熱可塑性樹脂層とが接するように積層されている請求項16又は請求項17に記載の積層体。
  19.  食品包装用である請求項16、請求項17又は請求項18に記載の積層体。
  20.  請求項1から請求項15のいずれか1項に記載の多層構造体の製造方法であって、
     エチレン-ビニルアルコール共重合体を含む樹脂組成物を用いた多層共押出法により成形することを特徴とする多層構造体の製造方法。
  21.  請求項16から請求項19のいずれか1項に記載の積層体の製造方法であって、
     エチレン-ビニルアルコール共重合体を含む樹脂組成物と熱可塑性樹脂とを用いた多層共押出法により成形することを特徴とする積層体の製造方法。
PCT/JP2011/058010 2010-03-31 2011-03-30 多層構造体、積層体及びその製造方法 WO2011125739A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012509515A JP5882197B2 (ja) 2010-03-31 2011-03-30 多層構造体、積層体及びその製造方法
EP11765639.7A EP2554372B1 (en) 2010-03-31 2011-03-30 Multilayered structure and laminate and method for production of the same
US13/638,753 US9744748B2 (en) 2010-03-31 2011-03-30 Multilayered structure and laminate, and method for production of the same
CA2794706A CA2794706C (en) 2010-03-31 2011-03-30 Multilayered structure and laminate, and method for production of the same
CN201180017332.5A CN103097129B (zh) 2010-03-31 2011-03-30 多层结构体、层叠体及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-084719 2010-03-31
JP2010084719 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011125739A1 true WO2011125739A1 (ja) 2011-10-13

Family

ID=44762681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058010 WO2011125739A1 (ja) 2010-03-31 2011-03-30 多層構造体、積層体及びその製造方法

Country Status (6)

Country Link
US (1) US9744748B2 (ja)
EP (1) EP2554372B1 (ja)
JP (2) JP5882197B2 (ja)
CN (1) CN103097129B (ja)
CA (1) CA2794706C (ja)
WO (1) WO2011125739A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018109170A (ja) * 2016-12-28 2018-07-12 日本合成化学工業株式会社 エチレン−ビニルアルコール系共重合体ペレットおよび、エチレン−ビニルアルコール系共重合体ペレットの製造方法
JP2018109171A (ja) * 2016-12-28 2018-07-12 日本合成化学工業株式会社 エチレン−ビニルアルコール系共重合体ペレットおよび、エチレン−ビニルアルコール系共重合体ペレットの製造方法
JP2018109169A (ja) * 2016-12-28 2018-07-12 日本合成化学工業株式会社 エチレン−ビニルアルコール系共重合体ペレットおよび、エチレン−ビニルアルコール系共重合体ペレットの製造方法
JP2018145396A (ja) * 2016-12-20 2018-09-20 日本合成化学工業株式会社 エチレン−ビニルアルコール系共重合体樹脂組成物および多層構造体
JP2019509380A (ja) * 2016-03-08 2019-04-04 株式会社クラレ 粒状ポリビニルアルコール、その製造方法及び用途
WO2019130799A1 (ja) * 2017-12-27 2019-07-04 株式会社クラレ エチレン-ビニルアルコール共重合体含有樹脂組成物、成形体及び包装材料
WO2020213046A1 (ja) * 2019-04-15 2020-10-22 株式会社クラレ エチレン-ビニルアルコール共重合体及びその製造方法
WO2020262667A1 (ja) * 2019-06-26 2020-12-30 株式会社クラレ 樹脂組成物、およびそれを用いた多層構造体および包装材
US11267941B2 (en) 2016-12-28 2022-03-08 Mitsubishi Chemical Corporation Ethylene-vinyl alcohol copolymer composition pellets, and production method for ethylene-vinyl alcohol copolymer composition pellets
KR102380546B1 (ko) * 2021-03-18 2022-03-29 장 춘 페트로케미컬 컴퍼니 리미티드 개선된 산소 장벽 특성을 가지는 에틸렌-비닐알코올 코폴리머 조성물
WO2023120705A1 (ja) * 2021-12-24 2023-06-29 株式会社クラレ 変性エチレン-ビニルアルコール共重合体の製造方法及びそれを含む樹脂組成物
JP7419734B2 (ja) 2019-10-07 2024-01-23 Toppanホールディングス株式会社 積層体、包装体及び包装物品
US11884806B2 (en) 2016-12-20 2024-01-30 Mitsubishi Chemical Corporation Ethylene-vinyl alcohol copolymer resin composition, and multilayer structure

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3053840B1 (en) * 2013-10-02 2018-12-12 Kuraray Co., Ltd. Blow-molded container, fuel container, blow-molded bottle container, and method for producing blow-molded container
CN105934477B (zh) * 2014-01-31 2019-04-12 株式会社可乐丽 乙烯-乙烯醇共聚物树脂组合物及其制造方法
US10549510B2 (en) 2015-07-03 2020-02-04 Amcor Flexibles Kreuzlingen Ag Flexible multilayer packaging film with ultra-high barrier properties
JP6684474B2 (ja) 2015-10-28 2020-04-22 三菱ケミカル株式会社 エチレン−ビニルエステル系共重合体ケン化物ペレット及びその製造方法
SG11201804720PA (en) 2015-12-28 2018-07-30 Nippon Synthetic Chem Ind Co Ltd Ethylene-vinyl alcohol copolymer composition and multilayer structure
SG11201804378UA (en) * 2015-12-28 2018-07-30 Nippon Synthetic Chem Ind Co Ltd Ethylene-vinyl alcohol copolymer composition, multilayer structure produced by using the composition, and hot-water sterilizable package
US11718074B2 (en) 2016-05-31 2023-08-08 Kuraray Co., Ltd. Film, molded product, and method for producing film
JP6835667B2 (ja) * 2016-05-31 2021-02-24 株式会社クラレ インナーライナー、空気入りタイヤ、及びそれらの製造方法
CN112292408B (zh) * 2018-04-17 2022-11-22 株式会社可乐丽 乙烯-乙烯醇共聚物、其制造方法及其用途
US11813825B2 (en) * 2019-09-24 2023-11-14 Kuraray Co., Ltd. Laminate
CN112552591A (zh) * 2020-12-09 2021-03-26 重庆普利特新材料有限公司 一种无针眼缺陷、高性能聚丙烯薄壁保险杠材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02261847A (ja) 1989-03-31 1990-10-24 Kuraray Co Ltd 組成物および多層構造体
JPH0531863A (ja) 1991-07-29 1993-02-09 Kuraray Co Ltd 多層構造体および包装体
WO2003072653A1 (fr) * 2002-02-26 2003-09-04 Kuraray Co., Ltd. Composition de resine et structures multicouches
JP2005089483A (ja) * 2003-08-08 2005-04-07 Kuraray Co Ltd エチレン−ビニルアルコール共重合体樹脂組成物及びその製造方法
JP2008201432A (ja) * 2007-02-19 2008-09-04 Kuraray Co Ltd レトルト用包装材および包装体
JP2009544495A (ja) * 2006-07-27 2009-12-17 ストラ エンソ ユルキネン オサケユキチュア ポリマー被覆されたヒートシール可能な包装用材料及びこれから製造された封止パッケージ
JP2010007041A (ja) * 2007-12-28 2010-01-14 Nippon Synthetic Chem Ind Co Ltd:The エチレン−ビニルアルコール共重合体組成物の製造方法、およびエチレン−ビニルアルコール共重合体ペレットの製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040966B2 (ja) * 1983-06-30 1985-09-13 キヨ−ラク株式会社 多層容器の製造方法
JPS6317022A (ja) * 1986-07-10 1988-01-25 Showa Denko Kk 積層体及びその製造方法
US4853265A (en) * 1987-09-02 1989-08-01 W. R. Grace & Co.-Conn. Eva based multi-layer, heat-shrinkable, packaging film and bags made therefrom
FR2657070A1 (fr) 1990-01-15 1991-07-19 Atochem Film barriere constitue d'un alliage a base d'un copolymere ethylene-alcool vinylique, sa preparation, son utilisation notamment dans l'emballage.
JPH08156065A (ja) * 1994-12-02 1996-06-18 Okura Ind Co Ltd エチレン−酢酸ビニル共重合体ケン化物の延伸用原反の製造方法
JP4249520B2 (ja) 2003-03-19 2009-04-02 大日本印刷株式会社 ガスバリア性積層材の製造方法
EP2508343B1 (en) * 2009-12-01 2020-03-11 Kuraray Co., Ltd. Multilayer structure and method for producing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02261847A (ja) 1989-03-31 1990-10-24 Kuraray Co Ltd 組成物および多層構造体
JPH0531863A (ja) 1991-07-29 1993-02-09 Kuraray Co Ltd 多層構造体および包装体
WO2003072653A1 (fr) * 2002-02-26 2003-09-04 Kuraray Co., Ltd. Composition de resine et structures multicouches
JP2005089483A (ja) * 2003-08-08 2005-04-07 Kuraray Co Ltd エチレン−ビニルアルコール共重合体樹脂組成物及びその製造方法
JP2009544495A (ja) * 2006-07-27 2009-12-17 ストラ エンソ ユルキネン オサケユキチュア ポリマー被覆されたヒートシール可能な包装用材料及びこれから製造された封止パッケージ
JP2008201432A (ja) * 2007-02-19 2008-09-04 Kuraray Co Ltd レトルト用包装材および包装体
JP2010007041A (ja) * 2007-12-28 2010-01-14 Nippon Synthetic Chem Ind Co Ltd:The エチレン−ビニルアルコール共重合体組成物の製造方法、およびエチレン−ビニルアルコール共重合体ペレットの製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S. ANIYA ET AL., ANALYTICAL SCIENCE, vol. 1, 1985, pages 91
See also references of EP2554372A4

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019509380A (ja) * 2016-03-08 2019-04-04 株式会社クラレ 粒状ポリビニルアルコール、その製造方法及び用途
JP2018145396A (ja) * 2016-12-20 2018-09-20 日本合成化学工業株式会社 エチレン−ビニルアルコール系共重合体樹脂組成物および多層構造体
US11884806B2 (en) 2016-12-20 2024-01-30 Mitsubishi Chemical Corporation Ethylene-vinyl alcohol copolymer resin composition, and multilayer structure
JP7119357B2 (ja) 2016-12-20 2022-08-17 三菱ケミカル株式会社 エチレン-ビニルアルコール系共重合体樹脂組成物および多層構造体
JP7031302B2 (ja) 2016-12-28 2022-03-08 三菱ケミカル株式会社 エチレン-ビニルアルコール系共重合体ペレットおよび、エチレン-ビニルアルコール系共重合体ペレットの製造方法
JP2018109171A (ja) * 2016-12-28 2018-07-12 日本合成化学工業株式会社 エチレン−ビニルアルコール系共重合体ペレットおよび、エチレン−ビニルアルコール系共重合体ペレットの製造方法
JP2018109169A (ja) * 2016-12-28 2018-07-12 日本合成化学工業株式会社 エチレン−ビニルアルコール系共重合体ペレットおよび、エチレン−ビニルアルコール系共重合体ペレットの製造方法
US11267941B2 (en) 2016-12-28 2022-03-08 Mitsubishi Chemical Corporation Ethylene-vinyl alcohol copolymer composition pellets, and production method for ethylene-vinyl alcohol copolymer composition pellets
JP2018109170A (ja) * 2016-12-28 2018-07-12 日本合成化学工業株式会社 エチレン−ビニルアルコール系共重合体ペレットおよび、エチレン−ビニルアルコール系共重合体ペレットの製造方法
JPWO2019130799A1 (ja) * 2017-12-27 2021-01-07 株式会社クラレ エチレン−ビニルアルコール共重合体含有樹脂組成物、成形体及び包装材料
JP7079270B2 (ja) 2017-12-27 2022-06-01 株式会社クラレ エチレン-ビニルアルコール共重合体含有樹脂組成物の製造方法
WO2019130799A1 (ja) * 2017-12-27 2019-07-04 株式会社クラレ エチレン-ビニルアルコール共重合体含有樹脂組成物、成形体及び包装材料
WO2020213046A1 (ja) * 2019-04-15 2020-10-22 株式会社クラレ エチレン-ビニルアルコール共重合体及びその製造方法
EP3957658A4 (en) * 2019-04-15 2022-12-14 Kuraray Co., Ltd. ETHYLENE COPOLYMER (VINYL ALCOHOL) AND METHOD FOR PRODUCTION THEREOF
WO2020262667A1 (ja) * 2019-06-26 2020-12-30 株式会社クラレ 樹脂組成物、およびそれを用いた多層構造体および包装材
JP7419734B2 (ja) 2019-10-07 2024-01-23 Toppanホールディングス株式会社 積層体、包装体及び包装物品
KR102380546B1 (ko) * 2021-03-18 2022-03-29 장 춘 페트로케미컬 컴퍼니 리미티드 개선된 산소 장벽 특성을 가지는 에틸렌-비닐알코올 코폴리머 조성물
WO2023120705A1 (ja) * 2021-12-24 2023-06-29 株式会社クラレ 変性エチレン-ビニルアルコール共重合体の製造方法及びそれを含む樹脂組成物
JP7318153B1 (ja) * 2021-12-24 2023-07-31 株式会社クラレ 変性エチレン-ビニルアルコール共重合体の製造方法

Also Published As

Publication number Publication date
CN103097129A (zh) 2013-05-08
EP2554372A4 (en) 2013-09-04
US9744748B2 (en) 2017-08-29
CA2794706A1 (en) 2011-10-13
EP2554372B1 (en) 2020-01-08
EP2554372A1 (en) 2013-02-06
CA2794706C (en) 2018-05-22
JPWO2011125739A1 (ja) 2013-07-08
JP6043854B2 (ja) 2016-12-14
CN103097129B (zh) 2016-09-07
JP5882197B2 (ja) 2016-03-09
JP2016026121A (ja) 2016-02-12
US20130017383A1 (en) 2013-01-17

Similar Documents

Publication Publication Date Title
JP6043854B2 (ja) 多層構造体、積層体及びそれらの製造方法
EP2862897B1 (en) Ethylene-vinyl alcohol resin composition, multilayer sheet, packaging material, and container
US9453094B2 (en) Resin composition containing ethylene-vinyl alcohol copolymer
JP5702733B2 (ja) 多層構造体及びその製造方法
EP2554590B1 (en) Resin composition and multilayered structure using same
WO2015050223A1 (ja) 樹脂組成物、多層シート、包装材及び容器
JP2020090646A (ja) 樹脂組成物、その製造方法、成形体、及び多層構造体
US9074088B2 (en) Adhesive resin composition, and laminate using the same
JP2015071711A (ja) 樹脂組成物、多層構造体及びそれからなる熱成形容器
JP6473563B2 (ja) 樹脂組成物、多層シート、包装材及び容器
JP6454464B2 (ja) エチレン−ビニルアルコール樹脂組成物、多層構造体、多層シート、容器及び包装材
JP2021181548A (ja) 樹脂組成物、成形体及び多層パイプ
JP2023053942A (ja) 樹脂組成物、多層構造体、一軸延伸多層構造体、二軸延伸多層構造体、包装材及び容器
JP6653728B2 (ja) 樹脂組成物、多層構造体、熱成形容器及びその製造方法
JP2023058468A (ja) 樹脂組成物、その製造方法、成形体、及び多層構造体
JP2023058035A (ja) 熱成形容器及びその製造方法
JP2023084664A (ja) 樹脂組成物、単層フィルム及び積層体
JP2023084665A (ja) 蒸着フィルム、包装材及び真空断熱体
JP2023104870A (ja) 樹脂組成物、成形体、積層体、パイプ、温水循環用パイプ、断熱多層パイプ、及び燃料用パイプ
JP5164915B2 (ja) 多層構造体の製造方法及び紙容器の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180017332.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765639

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012509515

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2794706

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13638753

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011765639

Country of ref document: EP