WO2011122216A1 - マイクロチップ - Google Patents

マイクロチップ Download PDF

Info

Publication number
WO2011122216A1
WO2011122216A1 PCT/JP2011/054730 JP2011054730W WO2011122216A1 WO 2011122216 A1 WO2011122216 A1 WO 2011122216A1 JP 2011054730 W JP2011054730 W JP 2011054730W WO 2011122216 A1 WO2011122216 A1 WO 2011122216A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
flow path
temperature adjusting
microchip
temperature
Prior art date
Application number
PCT/JP2011/054730
Other languages
English (en)
French (fr)
Inventor
直紀 清水
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2011122216A1 publication Critical patent/WO2011122216A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1838Means for temperature control using fluid heat transfer medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1838Means for temperature control using fluid heat transfer medium
    • B01L2300/185Means for temperature control using fluid heat transfer medium using a liquid as fluid

Definitions

  • the present invention relates to a microchip used for chemical analysis.
  • ⁇ -TAS Micro-Total Analysis System
  • a sample containing DNA is set on a microchip and reacted with a reagent or the like on the microchip for analysis.
  • this method is used.
  • it is necessary to amplify and cultivate a specific type of DNA (target DNA) using a PCR (polymerase chain reaction) method or the like as a pretreatment for analysis in order to improve analysis sensitivity.
  • PCR method a solution in which DNA (target DNA) to be amplified, DNA synthase (DNA polymerase) and a large amount of primers (oligonucleotide) are mixed in advance is prepared as a sample, and heating / cooling of this sample is repeated. This technique amplifies DNA.
  • a solution containing double-stranded DNA is denatured into single-stranded DNA by heating at a high temperature (eg, about 94 degrees), and then the solution that has become single-stranded DNA is cooled to, for example, about 60 degrees. I will do it.
  • a temperature suitable for the activity of the DNA polymerase eg, about 72 ° C.
  • PCR method by performing a heat cycle operation in which such heating / cooling steps are repeated in a short cycle, DNA synthesis can be repeated and target DNA can be amplified and cultured.
  • heating means 91 such as a heater using electrothermal conversion elements such as Peltier elements above and below the microchip 9, respectively.
  • a cooling unit 92 having a water cooling type (that is, for example, a water pipe is disposed at a contact portion with the microchip) or an air cooling type (that is, a cooling fan is disposed at a contact portion with the microchip, for example). It is common.
  • local heating or local cooling can be appropriately performed by switching ON / OFF of the heating unit 91 and the cooling unit 92.
  • a temperature change due to heating / cooling is transmitted to a region other than the region where temperature adjustment is necessary, for example, it may adversely affect a sample, a reagent, etc. that are easily deteriorated due to the temperature change, and the accuracy of inspection / analysis may be reduced.
  • microchips are widely molded from resin because of their ease of processing and the like, but since resin has low thermal conductivity, this problem is significant in the case of microchips by resin molding. It becomes.
  • the material layer of the microchip in the region where temperature adjustment is required is as thin as possible. It is necessary to.
  • a thin local portion on the microchip may be unevenly shaped in terms of molding, and requires an area that requires temperature adjustment (that is, a specimen accommodating section (chamber section for accommodating a specimen, for example). As the volume of)) increases, molding becomes more difficult, and depending on the thickness and area, molding may not be possible. Therefore, it has been difficult to provide a microchip capable of efficiently adjusting the temperature.
  • the present invention has been made in view of the circumstances as described above, and it is possible to easily and effectively adjust the temperature in the temperature adjustment region, and to perform a heat cycle operation in which the heating / cooling process is repeated in a short cycle. It is an object of the present invention to provide a microchip that can sufficiently cope with the above.
  • a first substrate having a test flow channel for introducing a sample and / or a reagent into at least one side thereof, and a surface on which the test flow channel is formed, and is laminated on the first substrate.
  • a microchip comprising a second substrate to be joined, At least one of the first substrate and the second substrate includes a temperature adjustment region that communicates with the test flow channel and adjusts the temperature of the specimen and / or reagent,
  • a temperature adjusting channel for allowing a temperature adjusting medium to pass therethrough is formed in the vicinity of the temperature adjusting region so as not to communicate with the inspection channel.
  • the temperature adjustment flow path that does not communicate with the inspection flow path is formed in the vicinity of the temperature adjustment area that requires temperature adjustment. Therefore, the temperature adjustment in the temperature adjustment area is easily and effectively performed. Therefore, it is possible to provide a microchip that can sufficiently cope with a heat cycle operation in which the heating / cooling process is repeated in a short cycle.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. It is the expanded sectional view which expanded the B section of FIG. It is sectional drawing which shows schematic structure of the modification of the microchip in 1st Embodiment shown in FIG. It is a top view which shows schematic structure of the microchip in the 2nd Embodiment of this invention.
  • FIG. 6 is a cross-sectional view taken along the line CC in FIG. 5.
  • FIG. 6 is a cross-sectional view taken along the line DD in FIG. 5. It is sectional drawing which shows schematic structure of the modification of the microchip in 2nd Embodiment shown in FIG.
  • a microchip (100) uses a microfabrication technique to form a fine channel or circuit on one surface of a resin substrate, and allows nucleic acid, protein, blood, etc.
  • a micro-analysis chip that performs chemical reaction, separation, and analysis of a liquid sample, or an apparatus called a ⁇ -TAS (Micro-Total Analysis System), and its practical application is in progress.
  • the microchip is described as being made of resin, but the material is not particularly limited, and materials such as glass can also be used. However, considering moldability, it is preferably made of resin.
  • FIG. 1 is a plan view of the microchip 100 according to the first embodiment
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • the microchip 100 has a substantially rectangular shape in plan view, and includes a rectangular first substrate 1 (the front side in FIG. 1 and a lower side in FIG. 2) and a second substrate 2 ( 1 is provided on the back side of the paper in FIG. 1, and the upper side in FIG.
  • the outer shape of the microchip 100 may be any shape that is easy to handle and analyze, and is preferably a square or a rectangle. As an example, the size may be 10 to 200 mm square. Further, the size may be 10 to 100 mm square.
  • the first substrate 1 is, for example, a resin plate member
  • the second substrate 2 is, for example, a resin film.
  • substrate 2 is not limited to a film, A sheet-like (plate-shaped) member may be sufficient.
  • the material for forming the first substrate 1 and the second substrate 2 is not particularly limited, but it is preferable to use a resin in consideration of moldability.
  • the resin for forming the first substrate 1 and the second substrate 2 has good moldability (transferability, releasability), high transparency, low self-fluorescence for ultraviolet light and visible light, etc. Are preferable conditions, and for example, a thermoplastic resin can be applied.
  • thermoplastic resin examples include polycarbonate, polymethyl methacrylate, polystyrene, polyacrylonitrile, polyvinyl chloride, polyethylene terephthalate, nylon 6, nylon 66, polyvinyl acetate, polyvinylidene chloride, polypropylene, polyisoprene, polyethylene, polydimethyl. It is preferable to use siloxane, cyclic polyolefin or the like. It is particularly preferable to use polymethyl methacrylate and cyclic polyolefin.
  • first substrate 1 and the second substrate 2 may be used.
  • the thickness of the first substrate 1 is not particularly limited, but is preferably 0.2 to 5 mm, more preferably 0.5 to 2 mm in consideration of moldability.
  • the thickness of the second substrate 2 is not particularly limited, but is preferably 30 ⁇ m to 300 ⁇ m, and more preferably 40 to 150 ⁇ m, for example.
  • the microchip 100 includes a plurality of microchannels 11 that are test channels for introducing an analysis sample or reagent as a specimen into the microchip 100 and temperature adjustment of the analysis sample or reagent in communication with the microchannel 11.
  • the accommodating part 13 which is a temperature adjustment area
  • the fine flow path 11 is a groove formed on the surface of the first substrate 1, and the accommodating portion 13 is a recess formed on the surface of the first substrate 1.
  • the second substrate 2 is laminated and bonded to the first substrate 1 in contact with the surface on which the fine flow path 11 and the accommodating portion 13 are formed. Thereby, the fine flow path 11 and the accommodating part 13 are sealed, and the second substrate 2 functions as a lid member (cover).
  • the grooves constituting the microchannel 11 and the recesses constituting the accommodating portion 13 are provided on the first substrate 1 side, but these are the second substrate 2 side which is a lid member. These grooves and recesses may be formed in both the first substrate 1 and the second substrate 2. Moreover, the microchannel 11 etc. may be formed by forming the groove part and recessed part corresponding to each of the 1st board
  • the shape of the microchannel 11 is within the range of 10 to 200 ⁇ m in both width and depth in consideration of the fact that the amount of analysis sample and reagent used can be reduced, and the fabrication accuracy of molds, transferability and mold release properties are taken into consideration. Although it is preferable that it is the value of, it does not specifically limit.
  • the width and depth of the fine channel 11 may be determined according to the use of the microchip 100 or the like.
  • the cross-sectional shape of the fine channel 11 may be a rectangular shape or a curved surface shape.
  • the shape, size and the like of the accommodating portion 13 are not particularly limited, and may be a square shape or the like in addition to the circular shape as shown in FIG.
  • the cross-sectional shape of the accommodating portion 13 may be a rectangular shape or a curved surface shape.
  • the microchip 100 is used for, for example, DNA analysis using a PCR (polymerase chain reaction) method, and in this case, DNA to be amplified (target DNA), DNA synthesis A solution in which an enzyme (DNA polymerase) and a large amount of primers (oligonucleotide) are mixed in advance is accommodated in the accommodating portion 13 which is a temperature adjustment region as an analysis sample (specimen).
  • DNA polymerase DNA polymerase
  • oligonucleotide oligonucleotide
  • the storage unit 13 stores various analysis samples (specimens), reagents, and the like that require temperature adjustment according to the purpose of inspection and analysis.
  • the microchip 100 is formed with a plurality of wells 12 communicating with the fine flow path 11.
  • the well 12 is a hole that opens on either side of the microchip 100 to inject and discharge the analysis sample and the reagent.
  • the accommodating portion 13 is also formed with a well communicating therewith.
  • the surface of the first substrate 1 and in the vicinity of the accommodating portion 13 that is the temperature adjustment region do not communicate with the fine channel 11 that is the inspection channel, and the temperature A temperature adjusting flow path 14 for passing the adjusting medium is formed so as to surround the accommodating portion 13.
  • the accommodating portion when viewed from a direction perpendicular to the flow path forming surface of the first substrate 1, the accommodating portion is located at a position surrounding the accommodating portion except for the vicinity of the connecting portion between the accommodating portion 13 and the fine channel 11.
  • a temperature adjusting flow path 14 is formed along the periphery of 13.
  • the temperature adjusting flow path 14 is a groove formed on the surface of the first substrate 1 and is sealed by laminating the second substrate 2 on the first substrate 1.
  • the width and depth of the temperature adjusting flow path 14 are not particularly limited, and may be determined according to the type of the temperature adjusting medium.
  • the width and depth of the temperature adjusting channel 14 may be the same as the width and depth of the fine channel 11 or may be larger and deeper than this.
  • the shape and the like of the temperature adjusting flow path 14 are not particularly limited, and the cross-sectional shape of the temperature adjusting flow path 14 may be rectangular or curved.
  • the temperature adjusting medium passed through the temperature adjusting flow path 14 is a heating medium for heating the temperature adjusting area or a cooling medium for cooling the temperature adjusting area.
  • the type of the temperature adjusting medium is not particularly limited.
  • hot water can be used as the heating medium, and cold water can be used as the cooling medium.
  • the temperature adjusting medium may be either liquid or gas. Further, a gas may be used as a temperature adjusting medium during heating, and a liquid may be used during cooling.
  • the well 15 which is a hole for injecting and discharging the temperature adjusting medium is formed in the temperature adjusting flow path 14.
  • the temperature adjusting flow path 14 bends in the vicinity of the connecting portion between the housing portion 13 and the fine flow path 11 and extends away from this portion, and the end portion of the temperature adjusting flow path 14 is the first substrate 1.
  • a well 15 is formed near the side.
  • the well 15 is connected to a pump or the like (not shown) so that the temperature adjusting medium is injected into and discharged from the temperature adjusting channel 14.
  • the temperature adjustment medium As information acquisition means for acquiring temperature and the like, time measuring means (timer) for measuring time, temperature sensor for measuring temperature (not shown) and the like are provided, and temperature adjustment related information acquired by these is provided. Based on this, injection / discharge of the temperature adjusting medium to / from the temperature adjusting flow path 14 by the pump is controlled.
  • the information acquisition means is not limited to those exemplified here.
  • the temperature adjustment related information acquired by the information acquisition means is not limited to the information shown here, but other information may be acquired, for example, only the elapsed time may be acquired. You may make it acquire only some of them.
  • DNA contained in the analysis sample is amplified and cultured as a pretreatment for the test.
  • the analysis sample accommodated in the accommodation unit 13 is heated at a high temperature of, for example, about 94 degrees to denature double-stranded DNA contained in the analysis sample into single-stranded DNA. Thereafter, the solution containing the single-stranded DNA is rapidly cooled to about 60 degrees, for example. Thereby, a primer couple
  • a temperature suitable for the activity of the DNA polymerase for example, about 72 ° C.
  • injection / discharge of the temperature adjustment medium to / from the temperature adjustment flow path 14 is controlled to perform a heat cycle operation in which the heating / cooling process is repeated in a short cycle.
  • DNA synthesis can be repeated and target DNA can be amplified and cultured.
  • FIG. 3 is an enlarged view of a portion B surrounded by an alternate long and short dash line in FIG.
  • the inner surface of the temperature adjusting flow path 14 is subjected to a permeation preventing process capable of preventing the temperature adjusting medium from penetrating into the first substrate 1 and the second substrate 2.
  • a coating process such as a fluorine coating process is performed as the permeation preventing process, and the coating film 141 is formed on the entire inner surface of the temperature adjusting flow path 14 as shown in FIG.
  • a peening process is performed on a mold when the first substrate 1 and the second substrate 2 are molded, or a fluorine coating process is performed on the first substrate 1 and the second substrate 2.
  • a water repellent treatment may be performed by performing a film treatment or a coating treatment, or a hydrophilic treatment may be performed by performing plasma treatment or corona discharge treatment on the surface of the first substrate 1 or the second substrate 2, for example. It is done.
  • the permeation prevention treatment may be at least one of water repellency treatment such as peening treatment or fluorine coating treatment shown here, and hydrophilic treatment such as plasma treatment or corona discharge treatment, or a combination thereof.
  • water repellency treatment such as peening treatment or fluorine coating treatment shown here
  • hydrophilic treatment such as plasma treatment or corona discharge treatment, or a combination thereof.
  • the present invention is not limited to those exemplified here. That is, it may be a combination of two or more peening treatments or fluorine coating treatments as a water repellent treatment, or may be a combination of two or more plasma treatments or corona discharge treatments that are hydrophilic treatments. A combination of two or more of the water-repellent treatment and one of the hydrophilic treatments.
  • water repellent treatment or hydrophilic treatment is performed as the permeation prevention treatment is appropriately selected depending on the type of temperature adjusting medium used, the first substrate, the material forming the second substrate 2, and the like. To do.
  • the permeation prevention treatment is not limited as long as it can prevent the temperature adjusting medium from permeating into the first substrate 1 and / or the second substrate 2, and is performed by a method other than the water repellent treatment and the hydrophilic treatment. May be.
  • the first substrate 1 and the second substrate 2 are formed by injection molding of a resin or the like.
  • a groove portion constituting the fine flow path 11 On one surface of the first substrate 1, a groove portion constituting the fine flow path 11, a groove portion constituting the temperature adjusting flow path 14, and an accommodating portion 13 communicating with the fine flow path 11 are formed. A recess is formed. Further, a well 12 that communicates with the fine flow path 11 and penetrates the first substrate 1 in the thickness direction of the substrate and a temperature adjustment flow path 14 and penetrates the first substrate 1 in the thickness direction of the substrate. 15. A well (not shown) communicating with the accommodating portion 13 is formed.
  • the second substrate 2 is laminated and bonded to the first substrate 1 so as to be in contact with the surface of the first substrate 1 on which the fine flow path 11 and the like are formed.
  • the groove part which comprises the fine flow path 11 the groove part which comprises the flow path 14 for temperature control, and the recessed part which comprises the accommodating part 13 connected with the fine flow path 11 are sealed by the 2nd board
  • an analysis sample or the like that requires temperature adjustment is stored in the storage unit 13.
  • a heating medium such as hot water is passed through the temperature adjusting channel 14 as a temperature adjusting medium.
  • a cooling medium such as cold water is passed through the temperature adjusting channel 14 as a temperature adjusting medium.
  • the accommodating portion 13 and the analysis sample accommodated therein are heated to about 94 ° C. through a heating medium such as hot water through the temperature adjusting channel 14. Thereafter, the storage unit 13 and the analysis sample stored in the storage unit 13 are passed through the cooling medium such as cold water through the temperature adjustment channel 14 to about 60 degrees, and the temperature adjustment channel 14 is again supplied with hot water or the like. Heat to about 72 degrees through the heating medium. Thereby, the DNA in the analysis sample can be amplified.
  • a heating medium such as hot water through the temperature adjusting channel 14.
  • a reagent or the like is injected into the fine channel 11 and reacted with the analysis sample to perform DNA analysis.
  • the storage portion 13 and the analysis sample (specimen) stored therein can be performed.
  • both heating / cooling can be performed using only one temperature adjusting flow path 14 by changing the temperature adjusting medium passed therethrough.
  • the temperature can be adjusted freely.
  • the temperature adjusting flow path 14 is provided in the vicinity of the accommodating portion 13 so as to surround the accommodating portion 13, it is not affected by the thickness of the substrate of the microchip 100, the thermal conductivity of the material, or the like. 13 and the analysis sample (specimen) accommodated therein can be effectively heated / cooled. For this reason, it can fully respond to heat cycle operation etc. which repeat a heating / cooling process with a short cycle.
  • the groove part constituting the fine flow path 11, the groove part constituting the temperature adjusting flow path 14, and the concave part constituting the accommodating part 13 communicating with the fine flow path 11 are all the first substrate.
  • the case where it is formed on one surface of 1 is taken as an example, these are not limited to the case where it is provided on the first substrate 1.
  • the concave portion constituting the accommodating portion 13 is formed in the first substrate 1, and the groove portion constituting the temperature adjusting flow path 31 is in contact with the first substrate 1 in the second substrate 3. It may be provided in a distributed manner such as being formed on the surface.
  • both the first substrate 1 and the second substrate 2 are formed of a resin
  • one or both are formed of a material other than a resin such as glass. May be.
  • the second substrate 2 is a simple plate-like member to be bonded to the first substrate 1
  • the first The two substrates 2 may be formed of glass.
  • FIG. 5 is a plan view of the microchip in the present embodiment
  • FIG. 6 is a cross-sectional view taken along the line CC in FIG. 5
  • FIG. 7 is a cross-sectional view taken along the line DD in FIG. is there.
  • the microchip 200 in this embodiment includes a first substrate 1 and second substrates 4 and 5 bonded to the front and back of the first substrate 1.
  • the accommodating portion 13 On the surface of the first substrate 1 (the upper surface in FIGS. 6 and 7), there are formed a recess that constitutes the accommodating portion 13 and a groove that constitutes the microchannel 11 that communicates therewith.
  • a groove portion constituting the temperature adjusting channel 16 is formed on the back surface (the lower surface in FIGS. 6 and 7) of the first substrate 1.
  • the concave portion constituting the accommodating portion 13 and the groove portion constituting the fine flow path 11 are sealed by the second substrate 4 being laminated and bonded to the surface of the first substrate 1, and the temperature adjusting flow path 16 is defined.
  • the groove portion to be configured is sealed by the second substrate 5 being laminated and bonded to the back surface of the first substrate 1.
  • the temperature adjusting flow path 16 is in the stacking direction of the first substrate 1 and the second substrates 4 and 5 with respect to all or part of the accommodating portion 13 that is the temperature adjusting region. It arrange
  • the position where the temperature adjusting flow path 16 is provided is not limited to this, and may be disposed above the accommodating portion 13.
  • the temperature adjusting flow path 16 has a crank shape which is bent back a plurality of times, and is provided corresponding to almost the entire area of the accommodating portion 13.
  • the temperature adjusting flow path 16 overlaps with the whole or a part of the accommodating portion 13 that is a temperature adjusting region so as to overlap above or below in the stacking direction of the first substrate and the second substrates 4 and 5.
  • the range in which the temperature adjusting flow path 16 is provided is not limited to the one corresponding to substantially the entire area of the accommodating portion 13.
  • microchip 200 is provided with a well 17 that communicates with the temperature adjusting flow path 16.
  • the first substrate 1 and the second substrates 4 and 5 are formed by injection molding of a resin or the like.
  • a groove part constituting the fine flow path 11 and a concave part constituting the accommodating part 13 are formed on the surface of the first substrate 1.
  • a groove portion constituting the temperature adjusting flow path 16 is formed on the back surface of the first substrate 1.
  • a well (not shown) communicating with the accommodating portion 13 is formed.
  • the second substrate 4 is laminated and bonded to the first substrate 1 so as to be in contact with the surface of the first substrate 1 on which the fine flow path 11 and the like are formed. Further, the second substrate 5 is laminated and bonded to the first substrate 1 so as to be in contact with the back surface of the first substrate 1 on which the temperature adjusting flow path 16 is formed.
  • the groove part constituting the fine flow path 11 and the concave part constituting the accommodating part 13 communicating with the fine flow path 11 are sealed by the second substrate 4, and the groove part constituting the temperature adjusting flow path 16 is
  • the microchip 200 is completed by being sealed by the second substrate 5.
  • the method of testing / analyzing an analysis sample (specimen) using the microchip 200 is the same as that in the first embodiment, and a description thereof will be omitted.
  • the storage portion 13 and the analysis sample (specimen) stored therein can be performed.
  • both the heating / cooling can be performed only by changing the temperature adjusting medium passed through the single temperature adjusting flow path 16, and therefore, with a simple configuration, the analysis sample (specimen), etc.
  • the temperature can be adjusted freely.
  • the temperature adjusting flow path 16 is provided in the vicinity of the accommodating portion 13 and below the accommodating portion 13 so as to correspond to substantially the entire area of the accommodating portion 13, the substrate of the microchip 200 is provided. It is possible to effectively heat / cool the accommodating portion 13 and the analysis sample (specimen) accommodated in the accommodating portion 13 without being influenced by the thickness, the thermal conductivity of the material, or the like. For this reason, it can fully cope with a heat cycle operation or the like in which the heating / cooling process is repeated in a short cycle.
  • the groove part constituting the fine flow path 11, the groove part constituting the temperature adjusting flow path 16, and the concave part constituting the accommodating part 13 communicating with the fine flow path 11 are all the first substrate. Although the case where it is formed on the front surface and the back surface of 1 is taken as an example, all of these may not be provided on the first substrate 1.
  • the microchip has a three-layer structure in which a first substrate 1, a second substrate 4, and a third substrate 6 are laminated, and a fine structure is formed on the surface of the first substrate 1.
  • a third substrate is formed on the surface side of the first substrate 1 via the second substrate 4 by forming a groove portion constituting the flow channel 11 and a concave portion constituting the accommodating portion 13 communicating with the fine flow channel 11.
  • 6 may be formed on the lower side surface (the lower surface in FIGS. 8 and 9), and in this case, a well 62 communicating with the temperature adjustment channel 61 is provided.
  • the third substrate 6 is formed so as to penetrate therethrough.
  • the temperature adjusting flow path 61 is provided in the vicinity of the accommodating portion 13 and above the accommodating portion 13 so as to correspond to the almost entire area of the accommodating portion 13.
  • heating / cooling of the accommodating portion 13 and the analysis sample (specimen) accommodated therein is effectively performed without being affected by the thickness or material of the microchip substrate. Can do. For this reason, it becomes possible to fully cope with a heat cycle operation or the like in which the heating / cooling process is repeated in a short cycle.
  • a third embodiment of the microchip according to the present invention will be described with reference to FIGS.
  • this embodiment is different from the first embodiment and the second embodiment in the configuration of the temperature adjusting flow path, the first embodiment and the second embodiment will be particularly described below. Different points will be described.
  • FIG. 10 is a plan view of the microchip in the present embodiment
  • FIG. 11 is a cross-sectional view taken along the line EE in FIG.
  • the microchip 300 in the present embodiment includes a first substrate 1 and second substrates 4 and 5 bonded to the front and back of the first substrate 1.
  • the concave portion that constitutes the accommodating portion 13 and a groove portion that constitutes the fine channel 11 that communicates therewith.
  • a groove portion constituting the temperature adjusting flow path 18 is formed on the back surface (the lower surface in FIG. 11) of the first substrate 1.
  • the concave portion constituting the accommodating portion 13 and the groove portion constituting the fine channel 11 are sealed by laminating the second substrate 4 on the surface of the first substrate 1 to constitute the temperature adjusting channel 18.
  • the groove is sealed by laminating the second substrate 5 on the back surface of the first substrate 1.
  • the temperature adjusting flow path 18 is lower in the stacking direction of the first substrate 1 and the second substrates 4, 5 than the whole or a part of the accommodating portion 13 that is the temperature adjusting region. It is arranged to overlap.
  • the position where the temperature adjusting flow path 18 is provided is not limited to this, and the temperature adjusting flow path 18 may be disposed above the accommodating portion 13.
  • the temperature adjusting flow path 18 has a crank shape which is bent back a plurality of times, and is provided corresponding to almost the entire area of the accommodating portion 13.
  • the temperature adjusting flow path 18 overlaps with the whole or a part of the accommodating portion 13 that is a temperature adjusting region above or below in the stacking direction of the first substrate 1 and the second substrates 4 and 5.
  • the range in which the temperature adjusting flow path 18 is provided is not limited to that corresponding to almost the entire region of the accommodating portion 13.
  • microchip 300 is provided with a well 19 that communicates with the temperature adjusting flow path 18.
  • a gap portion 20 is disposed as a heat insulating means between the temperature adjusting flow path 18 and the fine flow path 11 as the inspection flow path.
  • the gap 20 is a groove that separates the temperature adjusting flow path 18 and the fine flow path 11. Since air has a low thermal conductivity of about 0.03 W / m ⁇ k, a high heat insulating effect can be expected by providing the air gap 20 as an air layer.
  • the width, depth, shape, and the like of the gap 20 are not particularly limited. It is preferable that the gap portion 20 is provided as large as possible within the range of constraints such as layout because a heat insulating effect can be obtained.
  • the first substrate 1 and the second substrates 4 and 5 are formed by injection molding of a resin or the like.
  • a groove portion constituting the fine flow path 11, a recess portion constituting the accommodating portion 13, and a gap portion 20 are formed on the back surface of the first substrate 1.
  • the second substrate 4 is laminated and bonded to the first substrate 1 so as to be in contact with the surface of the first substrate 1 on which the fine flow path 11 and the like are formed. Further, the second substrate 5 is laminated and bonded to the first substrate 1 so as to be in contact with the back surface of the first substrate 1 on which the temperature adjusting flow path 18 is formed.
  • the groove part which comprises the fine flow path 11 the recessed part which comprises the accommodating part 13 connected with the fine flow path 11, and the space
  • the groove portion to be sealed is sealed by the second substrate 5 to complete the microchip 300.
  • the inspection / analysis method for the analysis sample (specimen) using the microchip 300 is the same as that in the first embodiment, and thus the description thereof is omitted.
  • the accommodating portion 13 and the analysis sample (specimen) accommodated therein are included. ) And the like can be performed.
  • both the heating / cooling can be performed only by changing the temperature adjusting medium passed through the single temperature adjusting flow path 18, so that the analysis sample (specimen) or the like can be made with a simple configuration.
  • the temperature can be adjusted freely.
  • the temperature adjustment flow path 18 is accommodated through the temperature adjustment medium.
  • the part 13 and the analysis sample (sample) accommodated therein are heated / cooled, this temperature change is not transmitted to the surrounding fine channel 11 or the like.
  • the reagent or the like is not affected by the temperature adjustment in the temperature adjustment flow path 18 and performs accurate inspection and analysis. be able to.
  • a heat insulating flow path may be formed by providing a groove portion that separates the temperature adjusting flow path 18 and the fine flow path 11 and enclosing a low thermal conductivity material in the groove section.
  • the low thermal conductivity material may be a material having a thermal conductivity lower than that of the resin forming the substrate.
  • an epoxy resin having a thermal conductivity lower than 0.3 W / m ⁇ k (thermal conductivity 0.21 W / m ⁇ k) or the like can be applied.
  • a heat insulating layer made of a low heat conductive material may be integrally disposed between the temperature adjusting flow path 18 and the fine flow path 11 in the first substrate or the second substrate.
  • heat insulating means shown in the third embodiment is arranged between the temperature adjustment flow path and the inspection flow path in the first embodiment and the second embodiment. It may be.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

 温度調整領域の温度調整を、簡易かつ効果的に行うことができ、加熱/冷却工程を短周期で繰り返すヒートサイクル操作等に十分に対応することができるマイクロチップを提供することを目的とし、少なくとも片側面に検体及び/又は試薬を内部に導入する微細流路11が形成された第1の基板1と、この微細流路11が形成されている面に接して第1の基板1に積層され接合される第2の基板2とを備えるマイクロチップ100において、第1の基板1及び第2の基板2の少なくともいずれか一方に、微細流路11と連通し検体及び/又は試薬の温度調整を行う収容部13を備え、この収容部13の近傍に、微細流路11と連通せず温度調整用媒体を通すための温度調整用流路14が形成されている。

Description

マイクロチップ
 本発明は化学分析に用いられるマイクロチップに関するものである。
 近年、医療や環境測定の分野において、検体の分析を行うためのデバイスとして、検体の前処理から測定・検出までをチップ上で行うことを目的としたμ-TAS(Micro-Total Analysis System)やラボ・オン・チップ(lab-on-a-chip)など各種のマイクロチップ及びこれを用いた検体分析システムが注目されている。
 このようなマイクロチップにおいては、検体の前処理等のため、局所的に加熱/冷却等の温度調整を行うことが必要となる場合がある。
 例えば、DNA分析を行う場合、DNAを含む検体をマイクロチップにセットし、マイクロチップ上で試薬等と反応させて分析を行うが、検体に存在する標的DNAは通常微量であるため、この方法を用いる場合、分析感度を向上させるために、分析の前処理としてPCR(ポリメラーゼ連鎖反応、polymerase chain reaction)法等を利用して特定種類のDNA(標的DNA)を増幅・培養する必要がある。
 このPCR法は、増幅対象であるDNA(標的DNA)、DNA合成酵素(DNAポリメラーゼ)及び大量のプライマー(オリゴヌクレオチド)を予め混合した溶液を検体として用意し、この検体に対する加熱/冷却を繰り返すことによりDNAを増幅する技術である。
 PCR法では、2本鎖DNAを含む溶液を高温(例えば94度程度)で加熱することにより1本鎖DNAに変性させ、その後、この1本鎖DNAとなった溶液を例えば60度程度まで冷却していく。これにより、長い1本鎖DNAの一部にプライマーが結合する(アニーリング)。この状態で、プライマーの分離が起きずかつDNAポリメラーゼの活性に適した温度(例えば72度程度)まで加熱すると、プライマーが結合した部分を起点として1本鎖部分と相補的なDNAが合成される。
 PCR法では、このような加熱/冷却工程を短周期で繰り返すヒートサイクル操作を行うことにより、DNA合成を繰り返し、標的DNAを増幅・培養することができる。
 検体に対してのこのようなヒートサイクル操作を行うためには、従来、例えば図12に示すように、マイクロチップ9の上下にそれぞれペルチェ素子等の電熱変換素子を用いたヒータ等の加熱手段91と、水冷式(すなわち、例えばマイクロチップとの接触部分に水管を配置)又は空冷式(すなわち、例えばマイクロチップとの接触部分に冷却ファンを配置)の冷却手段92とを配置したチップユニットを用いるのが一般的である。
 このようなチップユニットでは、この加熱手段91と冷却手段92とのON/OFFを切り替えることにより、適宜局所加熱又は局所冷却を行うことができる。
 なお、加熱/冷却による温度変化が温度調整の必要な領域以外に伝達されると、例えば温度変化により変質しやすい検体、試薬等に悪影響を及ぼし、検査・分析の精度が低下するおそれがある。
 そこで、異なる種類の温度領域の境界に断熱手段を施すことも提案されている(例えば特許文献1参照)。
特開2007-120399号公報
 しかしながら、マイクロチップの外部に加熱/冷却用の加熱手段と冷却手段とを設けた場合には、加熱手段による熱や冷却手段による温度低下が十分にマイクロチップ内部の温度調整が必要な領域まで伝達されず、又は伝達されるまでに時間を要し、例えば加熱/冷却工程を短周期で繰り返すヒートサイクル操作等に十分に対応することができないという問題がある。
 特に、マイクロチップは、加工等のし易さから樹脂により成形されることが広く行われているが、樹脂は熱伝導率が低いため、樹脂成形によるマイクロチップの場合には、この問題が顕著となる。
 そこで、マイクロチップの外部に設けられた加熱手段による熱や冷却手段による温度低下をマイクロチップ内部に十分に伝達させるためには、温度調整を必要とする領域におけるマイクロチップの材料層をできる限り薄肉とする必要がある。
 しかし、マイクロチップに局所的な薄肉部を設けることは、成形的には、偏肉成形となることもあり、温度調整を必要とする領域(すなわち、例えば検体を収容する検体収容部(チャンバー部))の容積が大きくなればなるほど成形が困難となり、肉厚と面積によっては、成形が不可能な場合も発生する。従って、温度調整を効率的に行えるマイクロチップの提供が難しかった。
 そこで、本発明は以上のような事情に鑑みてなされたものであり、温度調整領域の温度調整を、簡易かつ効果的に行うことができ、加熱/冷却工程を短周期で繰り返すヒートサイクル操作等に十分に対応することができるマイクロチップを提供することを目的とするものである。
 上記課題を解決するため、本発明によれば、
 少なくとも片側面に検体及び/又は試薬を内部に導入する検査用流路が形成された第1の基板と、前記検査用流路が形成されている面に接して前記第1の基板に積層され接合される第2の基板とを備えるマイクロチップにおいて、
 前記第1の基板及び前記第2の基板の少なくともいずれか一方に、前記検査用流路と連通し前記検体及び/又は試薬の温度調整を行う温度調整領域を備え、
 この温度調整領域の近傍に、前記検査用流路と連通せず温度調整用媒体を通すための温度調整用流路が形成されていることを特徴とするマイクロチップが提供される。
 本発明によれば、温度調整を要する温度調整領域の近傍に、検査用流路と連通しない温度調整用流路が形成されているため、温度調整領域の温度調整を、簡易かつ効果的に行うことができ、加熱/冷却工程を短周期で繰り返すヒートサイクル操作等にも十分に対応することができるマイクロチップを提供することができる。
本発明の第1の実施形態におけるマイクロチップの概略構成を示す平面図である。 図1のA-A線に沿う断面図である。 図2のB部分を拡大した拡大断面図である。 図2に示す第1の実施形態におけるマイクロチップの一変形例の概略構成を示す断面図である。 本発明の第2の実施形態におけるマイクロチップの概略構成を示す平面図である。 図5のC-C線に沿う断面図である。 図5のD-D線に沿う断面図である。 図6に示す第2の実施形態におけるマイクロチップの一変形例の概略構成を示す断面図である。 図7に示す第2の実施形態におけるマイクロチップの一変形例の概略構成を示す断面図である。 本発明の第3の実施形態におけるマイクロチップの概略構成を示す平面図である。 図10のE-E線に沿う断面図である。 従来のマイクロチップの一例の概略構成を示す断面図である。
 以下、本発明に係るマイクロチップの実施の形態について、図面を参照して説明する。
 以下の実施形態にかかるマイクロチップ(100)は、微細加工技術を利用して樹脂製の基板の片方の面に微細な流路や回路を形成し、微小空間で核酸、タンパク質、又は血液などの液体試料の化学反応や、分離、分析などを行うマイクロ分析チップ、あるいはμ-TAS(Micro-Total Analysis System)と称される装置であり、実用化が進められている。ここでは、マイクロチップを樹脂製として記載するが、その素材は特に限定はなく、ガラス等の材料も使用可能である。但し、成形性を考慮すると樹脂製であることが好ましい。
 このようなマイクロチップの利点としては、サンプルや試薬の使用量又は廃液の排出量が軽減され、省スペースで持ち運び可能な安価なシステムの実現が考えられる。
[第1の実施形態]
 まず、図1から図3を参照しつつ、本発明に係るマイクロチップの第1の実施形態について説明する。
 図1は、第1の実施形態におけるマイクロチップ100の平面図であり、図2は、図1におけるA-A線に沿う断面図である。
 図1に示す通り、マイクロチップ100は平面視してほぼ長方形状を呈しており、矩形状の第1の基板1(図1において紙面表側、図2において下側)と第2の基板2(図1において紙面裏側、図2において上側)とを備えている。
 マイクロチップ100の外形形状は、ハンドリング、分析しやすい形状であればよく、正方形や長方形などの形状が好ましい。一例として、10~200mm角の大きさであればよい。また、10~100mm角の大きさであってもよい。
 第1の基板1は、例えば樹脂製の板状部材であり、第2の基板2は、例えば、樹脂製のフィルムである。なお、第2の基板2は、フィルムに限定されず、シート状(板状)の部材でもよい。
 なお、第1の基板1及び第2の基板2を形成する材料は特に限定されないが、成形性を考慮して、樹脂が用いられることが好ましい。
 第1の基板1及び第2の基板2を形成する樹脂としては、成形性(転写性、離型性)が良いこと、透明性が高いこと、紫外線や可視光に対する自己蛍光性が低いことなどが好ましい条件として挙げられ、例えば、熱可塑性樹脂を適用することができる。
 熱可塑性樹脂としては、例えば、ポリカーボネート、ポリメタクリル酸メチル、ポリスチレン、ポリアクリロニトリル、ポリ塩化ビニル、ポリエチレンテレフタレート、ナイロン6、ナイロン66、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリプロピレン、ポリイソプレン、ポリエチレン、ポリジメチルシロキサン、環状ポリオレフィンなどを用いることが好ましい。特に好ましいのは、ポリメタクリル酸メチル、環状ポリオレフィンを用いることである。
 なお、第1の基板1と第2の基板2とで、同じ材料を用いてもよいし、異なる材料を用いてもよい。
 第1の基板1の板厚は特に限定されないが、成形性を考慮して、0.2~5mmが好ましく、0.5~2mmがより好ましい。
 また、第2の基板2の厚みについても特に限定されないが、例えば30μm~300μmであることが好ましく、40~150μmであることがより好ましい。
 マイクロチップ100には、検体である分析試料や試薬をマイクロチップ100の内部に導入する検査用流路である複数の微細流路11及びこの微細流路11と連通し分析試料や試薬の温度調整を行う温度調整領域である収容部13が形成されている。
 本実施形態において、微細流路11は、第1の基板1の表面に形成された溝部であり、収容部13は、第1の基板1の表面に形成された凹部である。
 第2の基板2は、微細流路11及び収容部13が形成されている面に接して第1の基板1に積層され接合されている。これにより、微細流路11及び収容部13が封止されるようになっており、第2の基板2は蓋部材(カバー)として機能している。
 なお、本実施の形態では、微細流路11を構成する溝部及び収容部13を構成する凹部が第1の基板1側に設けられているが、これらは蓋部材である第2の基板2側に設けられていてもよく、第1の基板1及び第2の基板2の両方にこの溝部及び凹部が形成されていてもよい。また、第1の基板1と第2の基板2とにそれぞれ対応する溝部及び凹部を形成し、両者を重ね合わせることによって微細流路11等が形成されるようにしてもよい。
 微細流路11の形状は、分析試料、試薬の使用量を少なくできること、成形金型の作製精度、転写性、離型性などを考慮して、幅、深さともに、10~200μmの範囲内の値であることが好ましいが、特に限定されるものではない。
 微細流路11の幅及び深さは、マイクロチップ100の用途等によって決定されればよい。
 なお、微細流路11の断面形状は矩形状でもよいし、曲面状でもよい。
 収容部13の形状・大きさ等は、特に限定されず、図1に示すような円形状の他、四角形状等でもよい。
 また、収容部13の断面形状は矩形状でもよいし、曲面状でもよい。
 本実施形態では、マイクロチップ100は、例えば、PCR(ポリメラーゼ連鎖反応、polymerase chain reaction)法を用いたDNA分析等に用いられ、この場合には、増幅対象であるDNA(標的DNA)、DNA合成酵素(DNAポリメラーゼ)及び大量のプライマー(オリゴヌクレオチド)を予め混合した溶液が分析試料(検体)として温度調整領域である収容部13に収容される。
 なお、以下では、PCR法を用いたDNA分析を行う場合を例とし、上記溶液を収容部13に収容して温度調整を行う場合について説明するが、収容部13に収容されるものはこれに限定されない。収容部13には、検査・分析の用途に応じて、温度調整を必要とされる各種の分析試料(検体)や試薬等が収容される。
 また、マイクロチップ100には、微細流路11と連通する複数のウェル12が形成されている。
 ウェル12は、マイクロチップ100のいずれかの面に開口し、分析試料や試薬の注入・排出を行うための孔である。なお、図1等には図示していないが、収容部13にもこれに連通するウェルが形成されている。
 図1及び図2に示すように、第1の基板1の表面であって、温度調整領域である収容部13の近傍には、検査用流路である微細流路11と連通せず、温度調整用媒体を通すための温度調整用流路14が、収容部13を囲むように形成されている。具体的には、第1の基板1の流路形成面に垂直な方向から見たときに、収容部13と微細流路11との接続部近傍を除いて収容部を囲む位置に、収容部13の周縁に沿って温度調整用流路14が形成されている。
 温度調整用流路14は、第1の基板1の表面に形成された溝部であり、第1の基板1に第2の基板2が積層されることにより封止されるようになっている。
 温度調整用流路14の幅及び深さは、特に限定されず、温度調整用媒体の種類等によって決定されればよい。温度調整用流路14の幅及び深さは、微細流路11の幅及び深さと同じであってもよいし、これより大きく深いものであってもよい。
 また、温度調整用流路14の形状等は、特に限定されず、温度調整用流路14の断面形状は矩形状でもよいし、曲面状でもよい。
 温度調整用流路14に通す温度調整用媒体は、温度調整領域を加熱する加熱用媒体又は前記温度調整領域を冷却する冷却用媒体である。
 温度調整用媒体の種類は特に限定されず、例えば加熱用媒体として熱水を用い、冷却用媒体として冷水を用いることができる。
 なお、温度調整用媒体は、液体、気体いずれでもよい。また、加熱時には温度調整用媒体として気体を用い、冷却時には液体を用いる等であってもよい。
 温度調整用流路14には、温度調整用媒体の注入・排出を行うための孔であるウェル15が形成されている。本実施形態においては、温度調整用流路14は、収容部13と微細流路11との接続部近傍で屈曲しこの部位から離れるように延在し、その端部が第1の基板1の側部付近でウェル15を形成している。
 ウェル15には、図示しないポンプ等が接続されており、温度調整用流路14への温度調整用媒体の注入・排出を行うようになっている。
 なお、本実施形態では、例えば、温度調整関連情報として、温度調整用媒体の注入開始からの経過時間や収容部13やこれに収容されている分析試料(検体)の温度、温度調整用媒体の温度等を取得する情報取得手段として、時間を計測する計時手段(タイマー)や温度を計測する温度センサ等(いずれも図示せず)が設けられており、これらによって取得された温度調整関連情報に基づいて、ポンプによる温度調整用流路14への温度調整用媒体の注入・排出を制御するようになっている。
 なお、情報取得手段はここに例示したものに限定されない。また、情報取得手段によって取得される温度調整関連情報はここに示したものに限定されず、これ以外のものを取得してもよいし、例えば経過時間のみを取得する等、ここに挙げたもののうちの一部のみを取得するようにしてもよい。
 例えば、PCR法を用いたDNA分析を行う場合、分析感度を向上させるために、検査の前処理として、分析試料に含まれるDNAの増幅・培養を行う。
 具体的には、まず、収容部13に収容された分析試料を、例えば94度程度の高温で加熱し、分析試料に含まれる2本鎖DNAを1本鎖DNAに変性させる。その後、この1本鎖DNAを含む溶液を例えば60度程度まで急速に冷却する。これにより、長い1本鎖DNAの一部にプライマーが結合する(アニーリング)。さらに、この状態で、プライマーの分離が起きずかつDNAポリメラーゼの活性に適した温度(例えば72度程度)まで分析試料を一定時間加熱する。これにより、プライマーが結合した部分を起点として1本鎖部分と相補的なDNAが合成される。
 本実施形態では、このような時間及び温度管理の下、温度調整用流路14への温度調整用媒体の注入・排出を制御して、加熱/冷却工程を短周期で繰り返すヒートサイクル操作を行うことにより、DNA合成を繰り返し、標的DNAを増幅・培養することができる。
 図3は、図2において一点鎖線で囲まれているB部分の拡大図である。
 温度調整用流路14の内面には、第1の基板1及び第2の基板2に温度調整用媒体が浸透することを防止することのできる浸透防止処理が施されている。
 本実施形態では、浸透防止処理としてフッ素コーティング処理等の被膜処理が施されており、図3に示すように、温度調整用流路14の内面全体に被膜141が形成されている。
 浸透防止処理としては、例えば、第1の基板1、第2の基板2を成形する際の金型にピーニング処理を施したり、第1の基板1、第2の基板2にフッ素コーティング処理等の被膜処理・コーティング処理を行うことにより撥水処理を施したり、或いは例えば第1の基板1、第2の基板2の表面にプラズマ処理又はコロナ放電処理等を行うことにより親水処理を施すことが考えられる。
 なお、浸透防止処理は、ここに示したピーニング処理又はフッ素コーティング処理等による撥水処理、及びプラズマ処理又はコロナ放電処理等による親水処理のうち少なくともいずれか一つでもよいし、あるいはこれらを複数組み合わせて行うものでもよく、ここに例示したものに限定されない。すなわち、撥水処理としてのピーニング処理やフッ素コーティング処理等を2つ以上組み合わせたものでもよいし、親水処理であるプラズマ処理やコロナ放電処理等を2つ以上組み合わせたものでもよく、また、いずれかの撥水処理といずれかの親水処理とを2つ以上組み合わせたものでもよい。
 浸透防止処理として撥水処理を行うか親水処理を行うか等は、用いられる温度調整用媒体の種類、第1の基板、第2の基板2を形成する材料等により適宜好適な処理手法を選択する。
 また、浸透防止処理は、温度調整用媒体が第1の基板1及び/又は第2の基板2に浸透することを防止できるものであればよく、撥水処理、親水処理以外の手法によって行われてもよい。
 次に、本実施形態の作用について説明する。
 まず、マイクロチップ100を形成する際には、樹脂を射出成形する等により、第1の基板1、第2の基板2を成形する。
 このとき、第1の基板1の一方側の面には、微細流路11を構成する溝部、温度調整用流路14を構成する溝部、及び微細流路11と連通する収容部13を構成する凹部が形成される。また、微細流路11と連通し、第1の基板1を基板の厚み方向に貫通するウェル12、温度調整用流路14と連通し、第1の基板1を基板の厚み方向に貫通するウェル15、収容部13と連通する図示しないウェルが形成される。
 次に、第2の基板2を、第1の基板1における微細流路11等が形成されている面に接するように第1の基板1に積層し接合させる。
 これにより、微細流路11を構成する溝部、温度調整用流路14を構成する溝部、及び微細流路11と連通する収容部13を構成する凹部が、第2の基板2によって封止され、マイクロチップ100が完成する。
 マイクロチップ100を用いて、分析試料(検体)の検査・分析を行う場合には、収容部13に温度調整を要する分析試料等を収容する。そして、分析試料等を加熱したい場合には、温度調整用流路14に温度調整用媒体として熱水等の加熱用媒体を通す。また、分析試料等を冷却したい場合には、温度調整用流路14に温度調整用媒体として冷水等の冷却用媒体を通す。
 例えばPCR法によるDNA分析を行う場合には、まず温度調整用流路14に熱水等の加熱用媒体を通して収容部13及びこれに収容されている分析試料を94度程度まで加熱する。その後、温度調整用流路14に冷水等の冷却用媒体を通して収容部13及びこれに収容されている分析試料を60度程度まで冷却し、さらに、再度温度調整用流路14に熱水等の加熱用媒体を通して72度程度まで加熱する。これにより分析試料中のDNAを増幅させることができる。
 そして、このような加熱/冷却工程を繰り返して所望の量までDNAを増幅した後、微細流路11に試薬等を注入し、分析試料と反応させて、DNA分析を行う。
 以上のように、本実施形態によれば、温度調整用流路14に温度調整用媒体として加熱用媒体又は冷却用媒体を通すことにより、収容部13及びこれに収容されている分析試料(検体)等の加熱/冷却を行うことができる。
 このように、1つの温度調整用流路14を用いて、これに通す温度調整用媒体を変えるだけで加熱/冷却の両方を行うことができるため、簡易な構成で、分析試料(検体)等の温度調整を自由に行うことができる。
 また、温度調整用流路14は、収容部13の近傍に収容部13を囲むように設けられているため、マイクロチップ100の基板の厚みや材料の熱伝導率等に影響されず、収容部13及びこれに収容されている分析試料(検体)等の加熱/冷却を効果的に行うことができる。このため、加熱/冷却工程を短周期で繰り返すヒートサイクル操作等に十分に対応することができる。
 なお、本実施形態では、微細流路11を構成する溝部、温度調整用流路14を構成する溝部、及び微細流路11と連通する収容部13を構成する凹部が、いずれも第1の基板1の一方側の面に形成されている場合を例としているが、これらは第1の基板1に設けられる場合に限定されない。
 例えば、図4に示すように、収容部13を構成する凹部が第1の基板1に形成され、温度調整用流路31を構成する溝部が第2の基板3における第1の基板1と接する面に形成されているというように、分散して設けられていてもよい。
 また、本実施形態では、第1の基板1及び第2の基板2がいずれも樹脂で形成されている場合を例として説明したが、一方又は双方がガラス等の樹脂以外の材料で形成されていてもよい。
 構造が複雑な基板については樹脂で形成する方が加工するのに容易であり好ましいが、例えば第2の基板2が第1の基板1に貼り合わせる単なる板状部材である場合等には、第2の基板2をガラスで形成してもよい。
[第2の実施の形態]
 次に、図5から図7を参照しつつ、本発明に係るマイクロチップの第2の実施形態について説明する。なお、本実施形態は、温度調整用流路の構成等が第1の実施形態と異なるものであるため、以下においては、特に第1の実施形態と異なる点について説明する。
 図5は、本実施形態におけるマイクロチップの平面図であり、図6は、図5におけるC-C線に沿う断面図であり、図7は、図5におけるD-D線に沿う断面図である。
 図5から図7に示すように、本実施形態におけるマイクロチップ200は、第1の基板1と、第1の基板1の表裏に貼り合わされた第2の基板4,5とを備えている。
 第1の基板1の表面(図6及び図7において上側の面)には、収容部13を構成する凹部及びこれと連通する微細流路11を構成する溝部とが形成されている。
 また、第1の基板1の裏面(図6及び図7において下側の面)には、温度調整用流路16を構成する溝部が形成されている。
 収容部13を構成する凹部及び微細流路11を構成する溝部は、第2の基板4が第1の基板1の表面に積層され接合されることにより封止され、温度調整用流路16を構成する溝部は、第2の基板5が第1の基板1の裏面に積層され接合されることにより封止されるようになっている。
 図7等に示すように、温度調整用流路16は、温度調整領域である収容部13の全部又は一部に対して、第1の基板1及び第2の基板4,5の積層方向における下方に重なり合うように配置されている。
 なお、温度調整用流路16の設けられる位置はこれに限定されず、収容部13の上方に配置されていてもよい。
 本実施形態では、温度調整用流路16は、複数回折り返されたクランク形状となっており、収容部13のほぼ全域に対応して設けられている。
 なお、温度調整用流路16は、温度調整領域である収容部13の全部又は一部に対して、第1の基板及び第2の基板4,5の積層方向における上方又は下方に重なり合うように配置されていればよく、温度調整用流路16の設けられる範囲は収容部13のほぼ全域に対応するものに限定されない。
 また、マイクロチップ200には、温度調整用流路16に連通するウェル17が設けられている。
 なお、その他の構成は、第1の実施形態で説明したものとほぼ同様であるため、同じ部材には同一の符号を付して、その説明を省略する。
 次に、本実施形態の作用について説明する。
 まず、マイクロチップ200を形成する際には、樹脂を射出成形する等により、第1の基板1、第2の基板4,5を成形する。
 このとき、第1の基板1の表面には、微細流路11を構成する溝部、収容部13を構成する凹部が形成される。また、第1の基板1の裏面には、温度調整用流路16を構成する溝部が形成される。また、微細流路11と連通し、第1の基板1を基板の厚み方向に貫通するウェル12、温度調整用流路16と連通し、第1の基板1を基板の厚み方向に貫通するウェル17、収容部13と連通する図示しないウェルが形成される。
 次に、第2の基板4を、第1の基板1における微細流路11等が形成されている表面に接するように第1の基板1に積層し接合させる。また、第2の基板5を、第1の基板1における温度調整用流路16が形成されている裏面に接するように第1の基板1に積層し接合させる。
 これにより、微細流路11を構成する溝部、微細流路11と連通する収容部13を構成する凹部が、第2の基板4によって封止され、温度調整用流路16を構成する溝部が、第2の基板5によって封止されて、マイクロチップ200が完成する。
 マイクロチップ200を用いた分析試料(検体)の検査・分析の手法は、第1の実施形態と同様であるため、その説明を省略する。
 以上のように、本実施形態によれば、温度調整用流路16に温度調整用媒体として加熱用媒体又は冷却用媒体を通すことにより、収容部13及びこれに収容されている分析試料(検体)等の加熱/冷却を行うことができる。
 このように、1つの温度調整用流路16を用いて、これに通す温度調整用媒体を変えるだけで加熱/冷却の両方を行うことができるため、簡易な構成で、分析試料(検体)等の温度調整を自由に行うことができる。
 また、温度調整用流路16は、収容部13の近傍であって収容部13の下方に収容部13のほぼ全域に対応してこれと重なり合うように設けられているため、マイクロチップ200の基板の厚みや材料の熱伝導率等に影響されず、収容部13及びこれに収容されている分析試料(検体)等の加熱/冷却を効果的に行うことができる。このため、加熱/冷却工程を短周期で繰り返すヒートサイクル操作等にも十分に対応することができる。
 なお、本実施形態では、微細流路11を構成する溝部、温度調整用流路16を構成する溝部、及び微細流路11と連通する収容部13を構成する凹部が、いずれも第1の基板1の表面及び裏面に形成されている場合を例としているが、これらはすべてが第1の基板1に設けられていなくてもよい。
 例えば、図8及び図9に示すように、マイクロチップを第1の基板1、第2の基板4及び第3の基板6を積層した3層構造とし、第1の基板1の表面に、微細流路11を構成する溝部及び微細流路11と連通する収容部13を構成する凹部を形成し、第1の基板1の表面側に第2の基板4を介して積層される第3の基板6の下側面(図8及び図9における下側の面)に温度調整用流路61を構成する溝部を形成してもよい、この場合、この温度調整用流路61に連通するウェル62を、第3の基板6を貫通するように形成する。
 この場合、温度調整用流路61は、収容部13の近傍であって収容部13の上方に収容部13のほぼ全域に対応して設けられているため、温度調整用流路61を収容部13の下方に設けた場合と同様、マイクロチップの基板の厚みや材料等に影響されず、収容部13及びこれに収容されている分析試料(検体)等の加熱/冷却を効果的に行うことができる。このため、加熱/冷却工程を短周期で繰り返すヒートサイクル操作等にも十分に対応することが可能となる。
[第3の実施の形態]
 次に、図10及び図11を参照しつつ、本発明に係るマイクロチップの第3の実施形態について説明する。なお、本実施形態は、温度調整用流路の構成等が第1の実施形態及び第2の実施形態と異なるものであるため、以下においては、特に第1の実施形態及び第2の実施形態と異なる点について説明する。
 図10は、本実施形態におけるマイクロチップの平面図であり、図11は、図10におけるE-E線に沿う断面図である。
 図10及び図11に示すように、本実施形態におけるマイクロチップ300は、第1の基板1と、第1の基板1の表裏に貼り合わされた第2の基板4,5とを備えている。
 第1の基板1の表面(図11において上側の面)には、収容部13を構成する凹部及びこれと連通する微細流路11を構成する溝部とが形成されている。
 また、第1の基板1の裏面(図11において下側の面)には、温度調整用流路18を構成する溝部が形成されている。
 収容部13を構成する凹部及び微細流路11を構成する溝部は、第2の基板4が第1の基板1の表面に積層されることにより封止され、温度調整用流路18を構成する溝部は、第2の基板5が第1の基板1の裏面に積層されることにより封止されるようになっている。
 図11に示すように、温度調整用流路18は、温度調整領域である収容部13の全部又は一部に対して、第1の基板1及び第2の基板4,5の積層方向における下方に重なり合うように配置されている。
 なお、温度調整用流路18の設けられる位置はこれに限定されず、収容部13の上方に配置されていてもよい。
 本実施形態では、温度調整用流路18は、複数回折り返されたクランク形状となっており、収容部13のほぼ全域に対応して設けられている。
 なお、温度調整用流路18は、温度調整領域である収容部13の全部又は一部に対して、第1の基板1及び第2の基板4,5の積層方向における上方又は下方に重なり合うように配置されていればよく、温度調整用流路18の設けられる範囲は収容部13のほぼ全域に対応するものに限定されない。
 また、マイクロチップ300には、温度調整用流路18に連通するウェル19が設けられている。
 また、マイクロチップ300には、温度調整用流路18と検査用流路である微細流路11との間に、断熱手段としての空隙部20が配置されている。空隙部20は、温度調整用流路18と微細流路11とを隔てる溝部である。空気は熱伝導率が0.03W/m・k程度と低いため、空気の層である空隙部20を設けることにより、高い断熱効果が期待できる。
 なお、空隙部20の幅や深さ、形状等は特に限定されない。空隙部20は、レイアウト等の制約の範囲内で、できるだけ大きく設けた方がより断熱効果を得られて好ましい。
 なお、その他の構成は、第1の実施形態で説明したものとほぼ同様であるため、同じ部材には同一の符号を付して、その説明を省略する。
 次に、本実施形態の作用について説明する。
 まず、マイクロチップ300を形成する際には、樹脂を射出成形する等により、第1の基板1、第2の基板4,5を成形する。
 このとき、第1の基板1の表面には、微細流路11を構成する溝部、収容部13を構成する凹部、及び空隙部20が形成される。また、第1の基板1の裏面には、温度調整用流路18を構成する溝部が形成される。また、微細流路11と連通し、第1の基板1を基板の厚み方向に貫通するウェル12、温度調整用流路18と連通し、第1の基板1を基板の厚み方向に貫通するウェル19、収容部13と連通する図示しないウェルが形成される。
 次に、第2の基板4を、第1の基板1における微細流路11等が形成されている表面に接するように第1の基板1に積層し接合させる。また、第2の基板5を、第1の基板1における温度調整用流路18が形成されている裏面に接するように第1の基板1に積層し接合させる。
 これにより、微細流路11を構成する溝部、微細流路11と連通する収容部13を構成する凹部、空隙部20が、第2の基板4によって封止され、温度調整用流路18を構成する溝部が、第2の基板5によって封止されて、マイクロチップ300が完成する。
 マイクロチップ300を用いた分析試料(検体)の検査・分析の手法は、第1の実施形態と同様であるため、その説明を省略する。
 以上のように、本実施形態によれば、温度調整用流路18に温度調整用媒体として加熱用媒体又は冷却用媒体を通すことにより、収容部13及びこれに収容されている分析試料(検体)等の加熱/冷却を行うことができる。
 このように、1つの温度調整用流路18を用いて、これに通す温度調整用媒体を変えるだけで加熱/冷却の両方を行うことができるため、簡易な構成で、分析試料(検体)等の温度調整を自由に行うことができる。
 そして、本実施形態では、温度調整用流路18と微細流路11との間に、断熱手段としての空隙部20が配置されているため、温度調整用流路18に温度調整用媒体を通して収容部13及びこれに収容されている分析試料(検体)等の加熱/冷却を行った際に、この温度変化が周囲の微細流路11等に伝達されない。これにより、加熱/冷却により変質等するような試薬等を検査や分析に用いる場合でも、こうした試薬等が温度調整用流路18における温度調整の影響を受けず、精度のよい検査・分析を行うことができる。
 なお、本実施形態では、断熱手段が温度調整用流路18と微細流路11とを隔てる空隙部20である場合を例として説明したが、断熱手段はこれに限定されない。例えば、温度調整用流路18と微細流路11とを隔てる溝部を設けた上で、この溝部に低熱伝導率材料を封入することにより断熱用流路を形成してもよい。
 この場合、低熱伝導率材料は、基板を形成する樹脂の熱伝導率より低い熱伝導率の材料を用いればよい。
 好ましくは、熱伝導率0.3W/m・kより低い熱伝率のエポキシ樹脂(熱伝導率0.21W/m・k)等を適用することができる。
 また、第1の基板又は第2の基板における温度調整用流路18と微細流路11との間に、低熱伝導材料で構成される断熱層を一体的に配置してもよい。
 なお、第3の実施形態で示した断熱手段を、第1の実施形態、第2の実施形態において、温度調整用流路と検査用流路である微細流路との間に、配置するようにしてもよい。
 なお、その他、本発明が上記実施形態に限らず適宜変更可能であるのは勿論である。
 1 第1の基板
 2 第2の基板
 11 微細流路
 13 収容部
 14 温度調整用流路
 20 空隙部
 100 マイクロチップ
 141 被膜

Claims (13)

  1.  少なくとも片側面に検体及び/又は試薬を内部に導入する検査用流路が形成された第1の基板と、前記検査用流路が形成されている面に接して前記第1の基板に積層され接合される第2の基板とを備えるマイクロチップにおいて、
     前記第1の基板及び前記第2の基板の少なくともいずれか一方に、前記検査用流路と連通し前記検体及び/又は試薬の温度調整を行う温度調整領域を備え、
     この温度調整領域の近傍に、前記検査用流路と連通せず温度調整用媒体を通すための温度調整用流路が形成されていることを特徴とするマイクロチップ。
  2.  前記温度調整用流路は、前記温度調整領域の周囲を囲うように配置されていることを特徴とする請求項1に記載のマイクロチップ。
  3.  前記温度調整用流路は、前記温度調整領域の全部又は一部に対して、前記第1の基板及び前記第2の基板の積層方向における上方又は下方に重なり合うように配置されていることを特徴とする請求項1に記載のマイクロチップ。
  4.  前記温度調整用流路の、前記温度調整領域に対して、前記第1の基板及び前記第2の基板の積層方向において重なり合う部分が、複数回折り返された形状を有することを特徴とする請求項1に記載のマイクロチップ。
  5.  前記温度調整用媒体は、前記温度調整領域を加熱する加熱用媒体又は前記温度調整領域を冷却する冷却用媒体であることを特徴とする請求項1から請求項4のいずれか一項に記載のマイクロチップ。
  6.  前記温度調整用媒体は、液体又は気体であることを特徴とする請求項1から請求項5のいずれか一項に記載のマイクロチップ。
  7.  前記第1の基板及び前記第2の基板の少なくともいずれか一方は、樹脂により形成されていることを特徴とする請求項1から請求項6のいずれか一項に記載のマイクロチップ。
  8.  前記温度調整用流路の内面には、前記第1の基板及び/又は前記第2の基板への前記温度調整用媒体の浸透を防止可能な浸透防止処理が施されていることを特徴とする請求項1から請求項7のいずれか一項に記載のマイクロチップ。
  9.  前記浸透防止処理は、撥水処理及び親水処理のうち少なくともいずれか一つ、或いはこれらの組合せであることを特徴とする請求項8に記載のマイクロチップ。
  10.  前記撥水処理は、ピーニング処理及びフッ素コーティング処理のうち少なくとも一つであることを特徴とする請求項9に記載のマイクロチップ。
  11.  前記親水処理は、プラズマ処理及びコロナ放電処理のうち少なくともいずれか一つであることを特徴とする請求項9に記載のマイクロチップ。
  12.  前記温度調整用流路と前記検査用流路との間に、断熱手段を配置したことを特徴とする請求項1から請求項11のいずれか一項に記載のマイクロチップ。
  13.  前記断熱手段は、前記温度調整用流路と前記検査用流路とを隔てる空隙、前記温度調整用流路と前記検査用流路とを隔てる溝部に低熱伝導材料が封入された断熱用流路、及び、前記第1の基板又は前記第2の基板における前記温度調整用流路と前記検査用流路との間に低熱伝導材料を一体的に配置した断熱層のうちの少なくとも一つであることを特徴とする請求項12に記載のマイクロチップ。
PCT/JP2011/054730 2010-03-31 2011-03-02 マイクロチップ WO2011122216A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-080675 2010-03-31
JP2010080675 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011122216A1 true WO2011122216A1 (ja) 2011-10-06

Family

ID=44711945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054730 WO2011122216A1 (ja) 2010-03-31 2011-03-02 マイクロチップ

Country Status (1)

Country Link
WO (1) WO2011122216A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122735A (ja) * 2004-10-26 2006-05-18 Dainippon Screen Mfg Co Ltd 流路構造体および流体混合装置
JP2006527369A (ja) * 2003-06-06 2006-11-30 マイクロニクス, インコーポレイテッド 微小流体デバイス上の加熱、冷却および熱サイクリングのためのシステムおよび方法
JP2007120399A (ja) * 2005-10-27 2007-05-17 Konica Minolta Medical & Graphic Inc マイクロ流体チップおよびマイクロ総合分析システム
WO2007099736A1 (ja) * 2006-03-03 2007-09-07 Konica Minolta Medical & Graphic, Inc. マイクロ検査チップ、光学的検出装置およびマイクロ総合分析システム
JP2007268490A (ja) * 2006-03-31 2007-10-18 Fujifilm Corp マイクロデバイス及びそれを用いた触媒反応方法
JP2009008478A (ja) * 2007-06-27 2009-01-15 Konica Minolta Medical & Graphic Inc マイクロチップ検査システム
JP2010043928A (ja) * 2008-08-12 2010-02-25 Seiko Epson Corp バイオチップの製造方法およびバイオチップ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006527369A (ja) * 2003-06-06 2006-11-30 マイクロニクス, インコーポレイテッド 微小流体デバイス上の加熱、冷却および熱サイクリングのためのシステムおよび方法
JP2006122735A (ja) * 2004-10-26 2006-05-18 Dainippon Screen Mfg Co Ltd 流路構造体および流体混合装置
JP2007120399A (ja) * 2005-10-27 2007-05-17 Konica Minolta Medical & Graphic Inc マイクロ流体チップおよびマイクロ総合分析システム
WO2007099736A1 (ja) * 2006-03-03 2007-09-07 Konica Minolta Medical & Graphic, Inc. マイクロ検査チップ、光学的検出装置およびマイクロ総合分析システム
JP2007268490A (ja) * 2006-03-31 2007-10-18 Fujifilm Corp マイクロデバイス及びそれを用いた触媒反応方法
JP2009008478A (ja) * 2007-06-27 2009-01-15 Konica Minolta Medical & Graphic Inc マイクロチップ検査システム
JP2010043928A (ja) * 2008-08-12 2010-02-25 Seiko Epson Corp バイオチップの製造方法およびバイオチップ

Similar Documents

Publication Publication Date Title
JP7167102B2 (ja) 流体検査用カセット
US9023639B2 (en) Apparatus for amplifying nucleic acids
DK2562247T3 (en) PCR device having two heating blocks
KR20200015896A (ko) 유체 테스트 카세트
US9387478B2 (en) Micro-fluidic modules on a chip for diagnostic applications
JP4705504B2 (ja) マイクロ流体チップ
US20210276009A1 (en) Micro chamber plate
Hitzbleck et al. Capillary soft valves for microfluidics
Yu et al. 3-D microarrays biochip for DNA amplification in polydimethylsiloxane (PDMS) elastomer
KR100758273B1 (ko) 플라스틱 기반 미소 가열기 및 그 제조방법, 이를 이용한dna 증폭칩 및 그 제조방법
CA2799676C (en) Reaction vessel for pcr device and method of performing pcr
EP2021128A2 (en) Fluid sample transport device with reduced dead volume for processing, controlling and/or detecting a fluid sample
KR100535817B1 (ko) 바이오 칩을 위한 플라스틱 구조체, 그를 이용한 미소가열기, 미소 반응기, 미소 반응기 어레이 및 마이크로어레이
KR100900956B1 (ko) 일회용 폴리머 칩을 이용한 자연대류 pcr 장치 및 그방법
KR101513273B1 (ko) 회전형 pcr 장치 및 pcr 칩
Kulkarni et al. A review on recent advancements in chamber-based microfluidic PCR devices
CN102741408B (zh) 用于核酸扩增反应的微芯片及其制造方法
KR100452946B1 (ko) 저전력형 미세 열순환 소자 및 그 제조 방법
Padmanabhan et al. Enhanced sample filling and discretization in thermoplastic 2D microwell arrays using asymmetric contact angles
JP2007244389A (ja) 核酸増幅基板
WO2011122216A1 (ja) マイクロチップ
CN101855018A (zh) 用于热隔离检定卡的腔室的设备及方法
JP5973350B2 (ja) マイクロチップ
KR102363458B1 (ko) 모듈형 미세 유체 장치 및 이를 이용한 유전자 증폭 방법
Spitzack et al. Polymerase chain reaction in miniaturized systems: big progress in little devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP