WO2011121892A1 - Refrigerator and electrostatic atomization device - Google Patents

Refrigerator and electrostatic atomization device Download PDF

Info

Publication number
WO2011121892A1
WO2011121892A1 PCT/JP2011/001198 JP2011001198W WO2011121892A1 WO 2011121892 A1 WO2011121892 A1 WO 2011121892A1 JP 2011001198 W JP2011001198 W JP 2011001198W WO 2011121892 A1 WO2011121892 A1 WO 2011121892A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
cooling
dew condensation
cooling unit
electrostatic atomizer
Prior art date
Application number
PCT/JP2011/001198
Other languages
French (fr)
Japanese (ja)
Inventor
卓 橋田
宗登 山田
久美子 鈴木
正人 渡邉
啓裕 上田
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2011800091151A priority Critical patent/CN102753920A/en
Publication of WO2011121892A1 publication Critical patent/WO2011121892A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/0255Discharge apparatus, e.g. electrostatic spray guns spraying and depositing by electrostatic forces only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/057Arrangements for discharging liquids or other fluent material without using a gun or nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/053Arrangements for supplying power, e.g. charging power
    • B05B5/0533Electrodes specially adapted therefor; Arrangements of electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/0012Apparatus for achieving spraying before discharge from the apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/04Treating air flowing to refrigeration compartments
    • F25D2317/041Treating air flowing to refrigeration compartments by purification
    • F25D2317/0413Treating air flowing to refrigeration compartments by purification by humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/04Treating air flowing to refrigeration compartments
    • F25D2317/041Treating air flowing to refrigeration compartments by purification
    • F25D2317/0416Treating air flowing to refrigeration compartments by purification using an ozone generator

Definitions

  • the present invention relates to a refrigerator in which an electrostatic atomizer is installed in the internal space of a storage room.
  • FIG. 12 is a cross-sectional view of the electrostatic atomizer provided in the storage room of the refrigerator, which is described in Patent Document 1.
  • the heat transfer cooling section 5 in the partition section (heat insulating material) 6 is cooled by the cold space 4 (for example, a cold air passage connected to the cooling chamber). Furthermore, the heat transfer cooling unit 5 cools the atomizing electrode 2 to condense water vapor around the atomizing electrode 2. And by applying a high voltage between the atomization electrode 2 and the counter electrode 3, the condensed water droplet is sprayed as fine mist. At this time, fine mist is sprayed into the atomization target space (storage chamber) 1 from the discharge opening 14 provided in front of the vicinity of the atomization electrode 2.
  • Such a configuration has the advantage that it is not necessary to use an expensive Peltier element to cool the atomizing electrode 2, and the apparatus can be simplified and made compact and inexpensive.
  • the heat-transfer cooling part (cooling pin) 5 has a part in the partition part (heat insulating material) 6, most of them are the outer case 11 by which the atomization electrode 2 side is not thermally insulated. It is installed inside. That is, the tip of the heat transfer cooling part (cooling pin) 5 is exposed in the space on the atomizing electrode 2 side.
  • the heat transfer cooling unit 5 for cooling the atomizing electrode 2 is cooled to a temperature lower than that of the atomizing electrode 2.
  • the above dew point reduction has caused the following problems especially when the inside of the storage is at low humidity.
  • the dew point in the vicinity of the atomizing electrode 2 is further lowered due to the condensation in the heat transfer cooling unit 5 in addition to the low dew point. Due to such a very low dew point, the temperature difference from the freezing temperature may become very small even if the dew point is lower than the freezing temperature or not. When the dew point is lower than the freezing temperature, the condensed water vapor is frozen, and the atomization does not proceed even when a high voltage is applied to the atomizing electrode 2. Further, when the temperature difference between the freezing temperature and the dew point is very small, the temperature range in which atomization proceeds at the atomizing electrode 2 is narrow, and stable atomization becomes difficult. This is a problem of the conventional configuration in a low humidity environment.
  • the present invention suppresses dew point reduction in the vicinity of the atomization electrode by suppressing dew condensation in the heat transfer cooling part even in a low humidity environment, and stably proceeds with dew condensation and atomization. It aims at providing the refrigerator which enables mist supply.
  • a refrigerator includes a storage chamber partitioned by a heat insulating partition, an electrostatic atomizer that sprays mist into the storage chamber, and the electrostatic atomization.
  • the electrostatic atomizer is embedded in the heat insulating partition, and is thermally connected to the heat transfer cooling unit that is cooled by the cooling unit and is transmitted from the heat transfer cooling unit.
  • a dew condensation preventing member that covers the surface of the heat transfer cooling unit facing the atomization front end of the heat transfer cooling unit. .
  • the electrostatic atomizer which concerns on one form of this invention is attached to the refrigerator which has the storage room divided by the heat insulation partition, and the cooling part which produces
  • a heat transfer cooling unit embedded in the heat insulating partition wall and cooled by the cooling unit, and thermally connected to the heat transfer cooling unit and surrounded by cold air conducted from the heat transfer cooling unit
  • a dew condensation preventing member that covers a surface of the heat transfer cooling unit that faces the atomization front end of the heat transfer cooling unit.
  • the portion exposed to the side connected to the atomization tip of the heat transfer cooling unit is covered with the condensation prevention member, so that the surface temperature of the side connected to the atomization tip of the heat transfer cooling unit is reduced.
  • the decrease is suppressed, and condensation on the side connected to the atomizing tip of the heat transfer cooling unit is suppressed.
  • unnecessary dew condensation and dew point reduction are suppressed, dew condensation proceeds efficiently to the cooled atomizing tip, and stable fine mist can be supplied to the storage room even in a low humidity environment.
  • the refrigerator and the electrostatic atomizer of the present invention can supply a stable fine mist to the storage room even in a low humidity environment. For this reason, after improving the reliability of a refrigerator, the quality of a refrigerator can be improved.
  • the electrostatic atomizer of this invention can be applied to household electrical appliances other than refrigerators, such as an air-conditioner and a washing machine, and can spray the fine mist stably.
  • FIG. 1 is a longitudinal sectional view of the refrigerator according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of a main part of the electrostatic atomizer in the refrigerator according to Embodiment 1 of the present invention.
  • FIG. 3 is a cross-sectional view of a main part of the electrostatic atomizer in the refrigerator according to the second embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a main part of the electrostatic atomizer in the refrigerator according to the second embodiment of the present invention.
  • FIG. 5A is an example of a fragmentary cross-sectional view of the electrostatic atomizer in the refrigerator according to Embodiment 2 of the present invention.
  • FIG. 5B is another example of a fragmentary cross-sectional view of the electrostatic atomizer in the refrigerator according to Embodiment 2 of the present invention.
  • FIG. 6A is another example of a fragmentary sectional view of the electrostatic atomizer in the refrigerator according to Embodiment 2 of the present invention.
  • FIG. 6B is another example of a fragmentary cross-sectional view of the electrostatic atomizer in the refrigerator according to Embodiment 2 of the present invention.
  • FIG. 7 is principal part sectional drawing of the electrostatic atomizer in the refrigerator of Embodiment 3 of this invention.
  • FIG. 8 is principal part sectional drawing of the electrostatic atomizer in the refrigerator of Embodiment 4 of this invention.
  • FIG. 9A is an example of a fragmentary cross-sectional view of the electrostatic atomizer in the refrigerator according to Embodiment 5 of the present invention.
  • FIG. 9B is an example of a fragmentary cross-sectional view of the electrostatic atomizer in the refrigerator according to Embodiment 5 of the present invention.
  • FIG. 10 is principal part sectional drawing of the electrostatic atomizer in the refrigerator of Embodiment 6 of this invention.
  • FIG. 11 is principal part sectional drawing of the electrostatic atomizer in the refrigerator of Embodiment 6 of this invention.
  • FIG. 12 is a cross-sectional view of a main part of an electrostatic atomizer in a conventional refrigerator.
  • the 1st invention is equipped with the storage chamber divided by the heat insulation partition, the electrostatic atomizer which sprays mist in the said storage chamber, and the cooling part which cools the said electrostatic atomizer.
  • the electrostatic atomizer is embedded in the heat insulating partition, and is thermally connected to the heat transfer cooling unit that is cooled by the cooling unit and is transmitted from the heat transfer cooling unit.
  • a dew condensation preventing member that covers the surface of the heat transfer cooling unit facing the atomization front end of the heat transfer cooling unit. .
  • the heat transfer cooling section can efficiently cool the atomization tip without taking heat from the surroundings by the action of the heat insulating partition.
  • the portion exposed to the side connected to the atomization tip of the heat transfer cooling unit is covered with the dew condensation prevention member, so that the effect of suppressing the decrease in surface temperature and the resulting decrease in dew condensation and dew point is achieved. can get. For this reason, dew condensation progresses efficiently to the cooled atomization front-end
  • excess water vapor in the storage chamber can be condensed easily and reliably at the atomizing tip.
  • the supplied mist is a nano-level fine mist, and when this fine mist is sprayed, it adheres uniformly to the surface of fruits and vegetables, such as vegetables, and can improve the freshness of food.
  • the generated fine mist contains ozone, OH radicals, etc., and these oxidizing powers can be used to deodorize and sterilize the vegetable surface, as well as pesticides and wax that adhere to the vegetable surface. It is possible to oxidatively decompose and remove harmful substances.
  • the area of the surface of the dew condensation prevention member exposed to the storage chamber may be larger than the area of the surface of the heat transfer cooling unit facing the dew condensation prevention member.
  • the electrostatic atomizer further intervenes between the heat transfer cooling unit and the dew condensation prevention member, and suppresses heat conduction from the heat transfer cooling unit to the dew condensation prevention member. You may have a heat conduction suppression part.
  • the refrigerator may further include a heating unit that selectively heats the dew condensation prevention member.
  • the electrostatic atomizer includes the atomizing tip portion that functions as an atomizing electrode, and a counter electrode provided at a position facing the atomizing tip portion. You may spray mist by applying a voltage between the said counter electrodes.
  • the counter electrode may be fixed to the dew condensation prevention member.
  • the electrostatic atomizer is more compactly formed, and the effect that the space of the storage room can be used more effectively is also obtained.
  • the electrostatic atomizer further includes an adhesion improving unit that seals a path from the position where the heat transfer cooling unit and the dew condensation prevention member face each other to the storage chamber. Also good.
  • This increases the adhesion between the refrigerator body and the condensation prevention part. In this way, it is possible to suppress the leakage of cold heat and efficiently cool the atomizing electrode, so that the effect of promoting dew condensation and spraying on the atomizing electrode is obtained.
  • the seventh aspect of the invention may be configured such that the end portion of the heat transfer cooling portion near the cooling portion has a smaller cross-sectional area in a cross section perpendicular to the heat transfer direction than other portions.
  • the tip of the heat transfer cooling part is thin, the atomization device can be easily inserted into the refrigerator body. As a result, the atomization device is firmly inserted, the adhesion with the refrigerator main body side is improved, and the leakage of cold heat is suppressed, so that the atomization electrode can be efficiently cooled. An effect of promoting condensation and spraying on the surface is obtained.
  • the cross-sectional shape in the cross section perpendicular to the heat transfer direction of the heat transfer cooling section may be a rectangular shape.
  • the cross section of the heat transfer cooling part is not circular, it can be inserted into the refrigerator body only in a certain direction, and rotation is not allowed in the inserted state. For this reason, the atomizing device is firmly inserted and fixed without deviation. Thus, leakage of cold heat is suppressed, the atomizing electrode can be efficiently cooled, and an effect of promoting condensation and spraying on the atomizing electrode is obtained.
  • the electrostatic atomizer further includes a buffer portion that covers an end portion of the heat transfer cooling portion near the cooling portion, a buffer portion that covers the buffer portion, and the heat transfer cooling portion. You may have the auxiliary heat-transfer cooling part connected thermally.
  • the adhesion between the heat transfer cooling part and the cooling part is enhanced.
  • the transfer of cold air from the cooling section to the heat transfer cooling section is promoted by the heat transfer action of the auxiliary heat transfer cooling section.
  • the cooling efficiency of the atomizing electrode is increased, and the effect of promoting condensation and spraying on the atomizing electrode is obtained.
  • the cooling section may be provided at a position adjacent to the storage chamber via the heat insulating partition.
  • the heat insulating partition may be formed with a protruding portion that protrudes toward the cooling portion.
  • the said heat-transfer cooling part may be embed
  • the contact area between the wall of the storage chamber serving as the cooling section and the heat transfer cooling section increases, and the cold air in the storage chamber collides with the projections, and the temperature of the projections is likely to decrease.
  • the heat transfer cooling unit is efficiently cooled, the cooling efficiency of the chemical electrode increases, and the effect of promoting condensation and spraying on the atomizing electrode is obtained.
  • An electrostatic atomizer is attached to a refrigerator having a storage room partitioned by a heat insulating partition and a cooling unit that generates cold air, and sprays mist into the storage room.
  • a heat transfer cooling unit embedded in the heat insulating partition wall and cooled by the cooling unit, and thermally connected to the heat transfer cooling unit and surrounded by cold air conducted from the heat transfer cooling unit
  • a dew condensation preventing member that covers a surface of the heat transfer cooling unit that faces the atomization front end of the heat transfer cooling unit.
  • FIG. 1 is a longitudinal sectional view of the refrigerator according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of a main part of the electrostatic atomizer installed in the refrigerator according to Embodiment 1 of the present invention.
  • the refrigerator 100 includes a heat insulating box 101, a plurality of storage rooms (refrigeration room 104, switching room 105, ice making room 106, freezing room 107, vegetable room 108)
  • the cooling chamber 110 and the electrostatic atomizer 131 are mainly provided.
  • a heat insulating box body 101 that is a refrigerator main body of a refrigerator 100 includes an outer box 102 mainly using a steel plate, an inner box 103 molded of a resin such as ABS, an outer box 102, and an inner box 103. It is comprised with foam heat insulating materials (not shown), such as hard foaming urethane, which is foam-filled in the space between. Further, the internal space of the heat insulating box 101 is insulated from the external space and is partitioned into a plurality of storage chambers by partition walls (heat insulating partition walls).
  • the inner space of the heat insulating box 101 includes a refrigerating room 104 as a first storage room at the top and a switching room 105 as a fourth storage room provided side by side below the refrigerating room 104. And an ice making room 106 as a fifth storage room, a freezing room 107 as a second storage room below the switching room 105 and the ice making room 106, and a vegetable room 108 as a third storage room at the bottom. It becomes the composition arranged.
  • the refrigerated room 104 is set to a refrigerated temperature zone that is a temperature that does not freeze for refrigerated storage.
  • the refrigeration temperature zone is, for example, 1 ° C. to 5 ° C.
  • the vegetable room 108 is set to a refrigeration temperature range equivalent to the refrigeration room 104 or a slightly higher temperature set vegetable temperature range.
  • the vegetable temperature zone is, for example, 2 ° C to 7 ° C.
  • the freezer compartment 107 is set to a freezing temperature zone.
  • the freezing temperature zone is usually set to -22 ° C to -15 ° C for frozen storage, but it should be set at a low temperature of -30 ° C to -25 ° C to improve frozen storage conditions. There is also.
  • the switching chamber 105 can be switched to a preset temperature zone between the refrigeration temperature zone and the freezing temperature zone in addition to the refrigeration temperature zone, vegetable temperature zone, and freezing temperature zone.
  • the switching room 105 is a storage room provided with an independent door arranged in parallel with the ice making room 106, and is often provided with a drawer-type door.
  • the switching chamber 105 is a storage chamber that can be switched to a temperature range including the refrigeration temperature range to the freezing temperature range.
  • the temperature zone may be entrusted to the freezer compartment 107 and may be a storage room specialized only in the intermediate temperature zone between the refrigeration temperature zone and the freezing temperature zone.
  • the storage room fixed to the specific temperature range may be sufficient.
  • the ice making chamber 106 creates ice with an automatic ice maker (not shown) provided in the upper part of the room with water sent from a water storage tank (not shown) in the refrigerated room 104, and an ice storage container ( (Not shown).
  • the top surface portion of the heat insulation box 101 has a shape in which a dent is provided stepwise toward the back of the refrigerator.
  • a machine room 101a is installed in the stepped recess.
  • the machine room 101a accommodates a compressor 109 and high-pressure side components of the refrigeration cycle such as a dryer (not shown) for removing moisture. That is, the machine room 101 a in which the compressor 109 is disposed is formed by biting into the uppermost rear region in the refrigerator compartment 104.
  • the compressor 109 is disposed in the conventional refrigerator.
  • the space in the machine room at the bottom of the easy-to-use heat insulation box 101 can be effectively converted as the storage room capacity. As a result, storability and usability can be greatly improved.
  • the refrigeration cycle is formed of a series of refrigerant flow passages including a compressor 109, a condenser (not shown), a capillary (not shown) as a decompressor, and a cooler 112 in this order. Further, for example, isobutane which is a hydrocarbon refrigerant is sealed in the refrigeration cycle.
  • the compressor 109 is a reciprocating compressor that compresses refrigerant by reciprocating a piston in a cylinder. Further, in the case of a refrigeration cycle using a three-way valve or a switching valve, those functional components may be arranged in the machine room 101a.
  • the decompressor constituting the refrigeration cycle is a capillary, but an electronic expansion valve that is driven by a pulse motor and can freely control the flow rate of the refrigerant may be used.
  • the matters relating to the main part of the invention described below are that the compressor 109 and the like are installed in the machine room provided in the rear region of the lowermost storage room of the heat insulating box 101, which has been generally used conventionally. You may apply to the refrigerator of the type to arrange
  • a cooling chamber 110 that generates cold air is provided on the back of the freezing chamber 107.
  • a conveyance air passage is formed between the cooling chamber 110 and the rear partition wall 111, which is a wall on the back side of each storage chamber, for conveying the cold air generated in the cooling chamber 110 to each storage chamber.
  • the rear partition wall 111 is formed with a discharge air passage for taking cold air flowing through the carrier air passage into the storage chamber.
  • the cooler 112 and the cold air cooled by the cooler 112 in the upper space of the cooler 112 by the forced convection method are stored in the refrigerating chamber 104, the switching chamber 105, the ice making chamber 106, the vegetable chamber 108, and the freezing chamber.
  • a cooling fan 113 for blowing air to 107 is arranged.
  • a radiant heater 114 made of a glass tube is provided for defrosting the frost and ice adhering to the cooler 112 and its periphery during cooling. Further, at the lower part of the radiant heater 114, a drain pan 115 for receiving defrost water generated at the time of defrosting, a drain tube 116 penetrating from the deepest part of the drain pan 115 to the outside of the chamber, and the outside of the chamber on the downstream side of the drain tube 116 The evaporating dish 117 is configured.
  • the second partition wall 125 is a heat insulating partition that separates the freezer compartment 107 and the vegetable compartment 108.
  • the second partition wall 125 is made of a heat insulating material such as polystyrene foam in order to ensure the heat insulating properties of each storage chamber.
  • the electrostatic atomizer 131 is in a state where the temperature is lower than other portions in the concave portion 125a and the deepest concave portion 125b formed on a part of the wall surface on the side facing the vegetable compartment 108 of the second partition wall 125. is set up.
  • the electrostatic atomizer 131 mainly includes a voltage application unit 133, a cooling pin 134 that is an example of a heat transfer cooling unit, an atomization unit 139, an outer case 137, and a dew condensation prevention member 142. Is done.
  • the outer case 137 is a hollow box, and houses some of the components of the electrostatic atomizer 131 inside. Further, a spray port 132, a humidity supply port 138, and a cooling pin receiving hole are formed in a part of the wall surface of the outer case 137. Specifically, the spray port 132 according to the present embodiment is provided on the wall surface of the outer case 137 in the mist spray direction (left side in FIG. 2). Further, the humidity supply port 138 according to the present embodiment is provided on the wall surface in the direction (lower side in FIG. 2) that intersects the mist spraying direction of the outer case 137. Further, the cooling pin receiving hole is provided on the wall surface (right side in FIG. 2) of the outer case 137 opposite to the mist spraying direction of the outer case 137.
  • the spray direction of mist may be expressed as “front” and the opposite direction as “rear”. That is, the spray port 132 is provided on the wall surface on the front side of the outer case 137.
  • the cooling pin receiving hole is provided on the rear wall surface of the outer case 137.
  • the atomization unit 139 is provided with an atomization electrode 135 that is an example of an atomization tip, and a counter electrode 136 at a position facing the atomization electrode 135 and at a predetermined distance from the atomization electrode 135. Has been.
  • the atomization electrode 135 and the counter electrode 136 are connected to the voltage application unit 133.
  • the atomizing electrode 135 is an electrode connecting member made of a good heat conducting member such as aluminum, stainless steel, or brass.
  • the atomizing electrode 135 is fixed to substantially the center of one end of the cooling pin 134 and is thermally connected to the cooling pin 134.
  • the material of the cooling pin 134 is preferably a high heat conductive member such as aluminum or copper. Further, in order to efficiently conduct cold air from one end to the other end by heat conduction, the periphery thereof is covered with a heat insulating material 152. Further, a dew condensation preventing member 142 is disposed on a portion exposed to the atomizing electrode 135 side, that is, a surface connected to the cooling pin 134.
  • the cooling pin 134 is cooled by cold air from the cooling unit, and further conducts this cold air to the atomizing electrode 135.
  • the cooling unit in the present embodiment is the freezer compartment 107 that is adjacent to the second partition wall 125. That is, the cold air in the freezer compartment 107 is indirectly transmitted to the atomizing electrode 135 via the cooling pin 134.
  • the dew condensation prevention member 142 is made of a material having a lower thermal conductivity than that of the cooling pin 134 made of metal, such as a resin or ceramic.
  • a resin having a low thermal conductivity, and more preferably a heat insulating material made of a porous material such as a foamed resin as long as the strength allows is suitably used.
  • complex which affixed the resin sheet or board which is not foamed on the surface of the heat insulating material consisting of a porous body is also used suitably.
  • one end portion (front end portion) of the cooling pin 134 is fixed to the cooling pin receiving hole of the outer case 137 and the atomizing electrode 135 is attached.
  • the cooling pin 134 is attached so as to protrude further rearward from the wall surface on the rear side of the outer case 137.
  • the dew condensation prevention member 142 is attached to the inner wall surface on the rear side of the outer case 137 and covers the surface of the cooling pin 134 that faces the atomizing electrode 135, that is, the front end surface.
  • the second partition wall 125 is configured by attaching the heat insulating material 152 and the second partition wall surface 151 to both surfaces of the heat insulating material 152.
  • the recessed part 125a and the deepest recessed part 125b are provided in the wall surface by the side of the vegetable compartment 108 of the 2nd partition wall 125. As shown in FIG.
  • the electrostatic atomizer 131 of the said structure is attached to the recessed part 125a and the deepest recessed part 125b of the 2nd partition wall 125.
  • the cooling pins 134 By embedding the cooling pins 134 in the heat insulating material 152, the diffusion of the cold air from the cooling pins 134 to the surroundings is avoided, and the cold air is intensively conducted to the atomizing electrode 135. As a result, the atomization electrode 135 can be efficiently cooled. Further, the portion of the cooling pin 134 facing the atomizing electrode 135 side is covered with the dew condensation prevention member 142 having a lower thermal conductivity, so that the temperature drop on the corresponding surface is suppressed, and dew condensation on that portion is avoided. Is done. For this reason, the fall of the dew point around the atomization electrode 135 is avoided, and dew condensation progresses efficiently to the cooled atomization electrode 135. As a result, it is possible to stably supply fine mist to the vegetable compartment 108 even in a low humidity atmosphere of about 0 ° C. and about 50%.
  • the area of the surface of the dew condensation prevention member 142 exposed to the vegetable compartment 108 side is compared with the area of the surface of the cooling pin 134 that faces (contacts) the dew condensation prevention member 142. It is getting bigger.
  • the cold air from the cooling pins 134 diffuses to a wider area of the dew condensation prevention member 142, and a local temperature drop on the surface of the dew condensation prevention member 142 is suppressed. As a result, it is possible to more reliably avoid that the corresponding surface is below the dew point. Thus, since unnecessary dew condensation is avoided, a dew point reduction in the vicinity of the atomizing electrode 135 is also avoided, and dew condensation proceeds efficiently on the cooled atomizing electrode 135. As a result, a stable fine mist can be supplied to the vegetable compartment 108 even in a low humidity environment.
  • the dew condensation preventing member 142 can have a flange function. That is, by bringing the outer case 137 and the dew condensation prevention member 142 into surface contact, it is possible to efficiently seal cold air leakage from the freezer compartment 107 side. Thereby, the effect that unnecessary dew condensation is avoided more completely is acquired.
  • an adhesive, a screw, or the like can be used as a method for fixing the dew condensation prevention member 142 in surface contact with the outer case 137. Further, as described later in the second embodiment, the counter electrode 136, the cooling pin 134, and the atomizing electrode 135 are fixed to the dew condensation prevention member 142, and these are collectively assembled and fixed to the outer case 137 with screws or the like. It is also possible. In this case, an effect that the replacement of the member at the time of maintenance becomes very easy is also obtained.
  • the atomizing electrode 135 and the cooling pin 134 may be fixed. Further, the atomizing electrode 135 may be fixed to the cooling pin 134 by press fitting or the like in order to reduce the thermal resistance.
  • the cooling pin 134 has a cylindrical shape with a diameter of about 10 mm and a length of about 20 mm, for example.
  • the cooling pin 134 has a large heat capacity of 50 times or more and 1000 times or less, preferably 100 times or more and 500 times or less, compared to the atomizing electrode 135 having a diameter of about 1 mm and a length of about 5 mm.
  • the temperature change of the freezer compartment 107 has a great influence directly on the atomizing electrode 135. Can be further relaxed, and the fluctuation load can be reduced and stable mist spraying can be realized.
  • the heat capacity of the cooling pin 134 is set to 1000 times or less, preferably 500 times or less than the heat capacity of the atomizing electrode 135. If the heat capacity is too large, a large amount of energy is required to cool the cooling pin 134, and it becomes difficult to cool the cooling pin 134 with energy saving.
  • the atomization electrode 135 can be cooled. Furthermore, by keeping the pressure within the above range, the time lag required for cooling the atomizing electrode 135 via the cooling pin 134 can be kept within the proper range. As a result, it is possible to prevent the rise of the atomizing electrode 135 from being cooled, that is, to delay the rise when supplying water to the electrostatic atomizer 131, and to stably cool the atomizing electrode 135 stably. It becomes.
  • the cooling pin 134 since the shape of the cooling pin 134 is a cylinder, when the cooling pin 134 is fitted into the deepest recess 125 b of the heat insulating material 152, the electrostatic atomizer 131 is used even if the fitting size is slightly tight. It can be attached by press-fitting while rotating. As a result, the cooling pin 134 can be attached to the second partition wall 125 without a gap.
  • the shape of the cooling pin 134 may be a rectangular parallelepiped or a regular polygon. When the cooling pin 134 is polygonal, it is easier to position compared to a cylinder, and the electrostatic atomizer 131 can be installed at an accurate position.
  • the cooling pin 134 is fixed to a cooling pin receiving hole provided in a wall on the rear side of the outer case 137 and protrudes rearward of the outer case 137.
  • the cooling pin 134 protrudes on the opposite side to the atomizing electrode 135 and is fitted into the deepest recess 125b deeper than the recess 125a of the second partition wall 125.
  • a recess 125a for receiving the outer case 137 and a deepest recess 125b for receiving the cooling pin 134 on the bottom wall of the recess 125a are formed on the wall surface of the second partition wall 125 on the vegetable compartment 108 side. Yes.
  • the thickness of the heat insulating material 152 at the position of the deepest recess 125b is thinner than other portions.
  • the thin heat insulating material 152 is used as a heat relaxation member so that the cold air in the freezer compartment 107 cools the cooling pins 134 via the heat insulating material 152.
  • the cooling pin 134 of the present embodiment protrudes on the opposite side to the atomizing electrode 135, the end on the rear side of the cooling pin 134 in the atomizing portion 139 is the most in the freezer compartment 107. Proximity. For this reason, the cooling pin 134 is cooled by the cool air in the freezer compartment 107 from the rear end side farthest from the atomizing electrode 135.
  • the counter electrode 136 is a donut-shaped (disc-shaped) electrode, and is a certain distance from the tip of the atomizing electrode 135 at a position on the vegetable chamber 108 side from the atomizing electrode 135 and facing the atomizing electrode 135. Is installed to keep. Further, a spray port 132 is formed on the extension of the counter electrode 136 in the direction opposite to the atomizing electrode 135.
  • the voltage application unit 133 is provided in the vicinity of the atomization unit 139, and the negative potential side of the voltage application unit 133 that generates a high voltage is electrically connected to the atomization electrode 135 and the positive potential side is electrically connected to the counter electrode 136. ing.
  • the tip of the atomizing electrode 135 may be worn. Since the refrigerator 100 is generally operated for a long period of 10 years or longer, the surface of the atomizing electrode 135 needs to have a tough surface treatment. For example, the surface of the atomizing electrode 135 is plated with nickel. It is desirable to apply gold plating or platinum plating.
  • the counter electrode 136 is made of stainless steel, for example.
  • the voltage application unit 133 is controlled by communicating with the control unit 146 of the main body of the refrigerator 100, and turns on / off the voltage by an input signal from the refrigerator 100 or the electrostatic atomizer 131.
  • the voltage application unit 133 is installed in the electrostatic atomizer 131. However, since the inside of the vegetable compartment 108 is in a low temperature and high humidity atmosphere, the voltage application unit 133 has a moisture-proof surface on the substrate surface. It is desirable to apply a bold material or a coating material.
  • the coating may not be performed.
  • the refrigeration cycle is operated by the signal from the control board (not shown) according to the set temperature in the cabinet, and the cooling operation is performed.
  • the high-temperature and high-pressure refrigerant discharged by the operation of the compressor 109 is condensed to some extent by a condenser (not shown), and further, the side surface and the rear surface of the heat insulation box body 101 which is the refrigerator main body, and the front opening of the heat insulation box body 101.
  • the refrigerant is condensed and liquefied while preventing condensation of the heat insulating box 101 through a refrigerant pipe (not shown) disposed in the tube and reaches a capillary tube (not shown). After that, the capillary tube is depressurized while exchanging heat with a suction pipe (not shown) to the compressor 109 to become a low-temperature and low-pressure liquid refrigerant and reaches the cooler 112.
  • cool air for cooling each storage room is generated in the cooling room 110.
  • the low-temperature cold air is diverted from the cooling fan 113 to the refrigerating room 104, the switching room 105, the ice making room 106, the vegetable room 108, and the freezing room 107 using a conveyance air passage or a damper, and cooled to the respective target temperature zones.
  • the vegetable compartment 108 is adjusted to be 2 ° C. to 7 ° C. by ON / OFF operation such as cold air distribution and a heating unit (not shown), and generally has no internal temperature detection means. There are many things.
  • the heat insulating material 152 has a thinner wall thickness than other parts.
  • the thickness of the heat insulating material 152 at the position of the deepest recess 125b that receives the rear end of the cooling pin 134 is configured to be, for example, about 0 mm to 10 mm at a thin portion. In the refrigerator 100 of the present embodiment, such a thickness is appropriate as a heat relaxation member positioned between the cooling pin 134 and the freezer compartment 107.
  • the electrostatic atomizer 131 having a shape in which the cooling pin 134 protrudes rearward is fitted into the recess 125a provided in the second partition wall 125 and the deepest recess 125b provided in the rearmost surface of the recess 125a. It is inserted and attached.
  • the cooling of the cooling pin 134 may be insufficient.
  • the bottom wall of the deepest recess 125b has a shape approaching the freezer compartment 107 side having a lower temperature.
  • the thickness of the heat insulating material 152 at the thinnest portion of the heat insulating material 152 becomes 0, the rear end of the cooling pin 134 is in direct contact with the second partition wall surface 151, and the second partition The wall surface 151 has a shape that is convex toward the freezer compartment 107.
  • the length that protrudes toward the freezer compartment 107 is preferably equal to or longer than the length corresponding to about 20% of the entire cooling pin 134 volume. For example, if the total length of the cooling pin 134 is 20 mm, it is about 4 mm or more.
  • the cooling pin 134 when the cooling pin 134 is in direct contact with the second partition wall surface 151, for example, when the cooling pin 134 is inserted with a slight inclination, or the surface flatness of the tip of the cooling pin 134 If this is bad, the contact area between them may be small. In this case, the conduction of cold air is deteriorated, and the cooling pins 134 are not sufficiently cooled.
  • a good heat conductor having flexibility between them. This increases the contact area between the cooling pin 134 and the second partition wall surface 151 and improves the conduction of cold air, so that the cooling pin 134 is sufficiently cooled.
  • the specific configuration of the good heat conductor is not particularly limited, but for example, a rubber in which a conductor such as carbon is dispersed, a sheet made of an elastomer material, and the like are preferable. It is also effective to apply grease or grease in which a good heat conductor is dispersed between the two. In addition to increasing the contact area and promoting heat conduction, rubber, elastomer, and grease are effective for stable spraying because abrupt temperature changes are suppressed by indirectly promoting heat conduction.
  • the cold air in the freezer compartment 107 which is an example of the cooling unit on the back surface of the cooling pin 134 is, for example, ⁇ 17 ° C. to ⁇ 20 ° C.
  • the cold air is transmitted to the cooling pin 134 through the heat insulating material 152, and the cooling pin 134 is cooled to, for example, about ⁇ 5 ° C. to ⁇ 10 ° C.
  • the cooling pin 134 which is a good heat conducting member is very easy to transmit cold air, so the atomizing electrode 135 is also indirectly cooled to about ⁇ 3 ° C. to ⁇ 8 ° C. through the cooling pin 134.
  • the surface of the cooling pin 134 facing the atomizing electrode 135 side is covered with the dew condensation prevention member 142. Since the heat conductivity of the dew condensation prevention member 142 is lower than that of the cooling pin 134, the conduction of cold air from the cooling pin 134 to the dew condensation prevention member 142 is suppressed, and the surface temperature of the dew condensation prevention member 142 is higher than the temperature of the cooling pin 134. Get higher. For example, it is about 3 ° C. to ⁇ 2 ° C.
  • the dew condensation preventing member 142 is spread over a wider area than the contact portion with the cooling pin 134, the cool air conducted from the cooling pin 134 is also diffused throughout the dew condensation preventing member 142. For this reason, the minimum temperature on the surface of the dew condensation prevention member 142 is increased by, for example, about 1 to 2 ° C. as compared with the cooling pin 134.
  • the dew condensation prevention member 142 extends over a wider area than the area in contact with the cooling pin 134 and is in surface contact with the outer case 137 in the expanded area. As a result, it is possible to completely seal the cold air that is about to flow into the vegetable compartment 108 from the freezer compartment 107 side.
  • the temperature of the vegetable compartment 108 is 2 ° C. to 7 ° C., and the humidity is relatively high due to transpiration from stored vegetables and the like. Therefore, when the atomization electrode 135 is at or below the dew point temperature, water droplets adhere to the periphery of the atomization electrode 135 including the tip.
  • the voltage application unit 133 applies a high voltage (for example, 4 to 10 kV) to the atomization electrode 135 to which water droplets have adhered. At this time, corona discharge occurs between the atomizing electrode 135 and the counter electrode 136, the water droplets at the tip of the atomizing electrode 135 are refined by electrostatic energy, and the droplets are further charged. A nano-level fine mist having an invisible charge on the order of several nanometers and accompanying ozone and OH radicals are generated.
  • the voltage applied between the electrodes is very high as 4 to 10 kV, but the discharge current value at that time is several ⁇ A level, and the input is very low as 0.5 to 1.5 W. .
  • the atomizing electrode 135 is set to the reference potential side (0 V) and the counter electrode 136 is set to the high voltage side (+7 kV)
  • atomization is caused by condensed water (water generated by condensation) attached to the tip of the atomizing electrode 135.
  • the air insulating layer between the electrode 135 and the counter electrode 136 is destroyed, and discharge occurs due to electrostatic force.
  • the condensed water adhering to the tip of the atomizing electrode 135 is charged and becomes fine particles.
  • the counter electrode 136 is on the plus side, the charged fine mist is drawn toward the counter electrode 136, and the droplets are further atomized.
  • the fine mist containing radicals and having an invisible charge of several nm level is sprayed toward the vegetable compartment 108 by its inertial force.
  • the cooling pin 134 without directly cooling the atomizing electrode 135, the atomizing electrode 135 connected to the cooling pin 134 can be indirectly cooled.
  • the cooling pin 134 have a larger heat capacity than the atomizing electrode 135, it is possible to mitigate the fact that the temperature change in the freezer compartment 107 directly exerts a great influence on the atomizing electrode 135.
  • the cooling pin 134 plays the role of cold storage, a rapid temperature fluctuation of the atomizing electrode 135 can be suppressed, and a mist spray with a stable spray amount can be realized.
  • the counter electrode 136 by arranging the counter electrode 136 at a position facing the atomizing electrode 135 and having a voltage application unit 133 that generates a high voltage potential difference between the atomizing electrode 135 and the counter electrode 136, the vicinity of the atomizing electrode 135 is obtained.
  • a stable electric field can be constructed. Thereby, the atomization phenomenon and the spraying direction are determined, and the precision of the fine mist to be sprayed can be further increased. That is, the accuracy of the atomization unit 139 can be improved, and the highly reliable electrostatic atomizer 131 can be provided.
  • the atomization electrode 135 is indirectly cooled by the cooling pin 134 as described above, and as a result, The atomizing electrode 135 is indirectly cooled by the double structure of the cooling pin 134 and the heat insulating material 152. As a result, the atomization electrode 135 can be prevented from being extremely cooled.
  • the temperature of the atomizing electrode 135 is lowered by 1K, the water generation speed at the tip thereof increases by about 10%.
  • the dew condensation speed increases rapidly. Accordingly, the amount of dew condensation becomes large, and there is a concern about an increase in input to the electrostatic atomizer 131 due to an increase in the load of the atomizing unit 139, freezing of the atomizing unit 139, and poor atomization. Therefore, as described above, by preventing overcooling of the atomizing electrode 135, it is possible to prevent problems due to an increase in the load of the atomizing section 139. As a result, an appropriate amount of dew condensation can be secured, and stable mist spraying can be realized with low input.
  • the shape of the cooling pin 134 may be a rectangular parallelepiped or a regular polygon in addition to a cylindrical shape.
  • the electrostatic atomizer 131 can be attached while being inclined. Conversely, in the case of a polygon, positioning is easier than a cylinder.
  • the atomizing electrode 135 is mounted on the central axis of the cooling pin 134, the distance between the counter electrode 136 and the atomizing electrode 135 can be kept constant even when the cooling pin 134 is rotated, which is stable. The discharge distance can be secured.
  • the cooling pin 134 is cooled by using the cold air in the freezer compartment 107, which cools the cooling pin 134 in the heat insulating material 152. Since the cooling pin 134 is formed of a metal piece having good thermal conductivity, necessary cooling can be suitably performed.
  • the cooling pin 134 of the present embodiment protrudes on the opposite side to the atomizing electrode 135. That is, the rear end of the cooling pin 134 among the constituent elements of the atomizing unit 139 is closest to the freezer compartment 107. Therefore, the rear end of the cooling pin 134 farthest from the atomizing electrode 135 among the cooling pins 134 is cooled by the cold air in the freezer compartment 107.
  • the cooling unit can be configured with such a simple structure, the electrostatic atomizer 131 with few failures and high reliability can be realized. Moreover, since the cooling pin 134 and the atomization electrode 135 can be cooled using the cooling source of a refrigerating cycle, atomization can be performed with energy saving. However, instead of the cold air in the freezer compartment 107, a cooling unit for cooling the cooling pins 134 may be provided separately.
  • the cooling pin 134 when cooling the cooling pin 134 by the cooling unit, the cooling pin 134 is cooled from the end portion on the rear side of the cooling pin 134 which is the portion farthest from the atomizing electrode 135 and the heat capacity of the cooling pin 134 is atomized.
  • the temperature change of the freezer compartment 107 can further alleviate the direct influence on the atomizing electrode 135 and realize a stable mist spray with a smaller fluctuation load. Can do.
  • the second partition wall 125 to which the atomizing portion 139 is attached is formed with a recess 125a and a deepest recess 125b in a part of the side facing the vegetable compartment 108.
  • the electrostatic atomizer 131 is inserted in this recessed part 125a and the deepest recessed part 125b.
  • the heat insulating material 152 constituting the second partition wall 125 can be used as a heat relaxation member. That is, even if a special heat relaxation member is not provided, by adjusting the thickness of the heat insulating material 152, a heat relaxation member that appropriately cools the atomization electrode 135 can be provided, and the electrostatic atomizer 131 can be provided. Can be made simpler.
  • the electrostatic atomizer 131 can be securely attached to the second partition wall 125 without rattling. Moreover, since it can suppress that the electrostatic atomizer 131 protrudes to the vegetable compartment 108 side, it is hard to touch a human hand and safety can be improved.
  • the electrostatic atomizer 131 does not protrude outside the vegetable compartment 108 across the second partition wall 125, the air passage cross-sectional area of the discharge air passage (not shown) of the freezer compartment 107 is not affected. In addition, it is possible to prevent the cooling amount from being lowered by increasing the air path resistance.
  • a recess 125a and a deepest recess 125b are provided in a part of the second partition wall 125 on the side of the vegetable compartment 108, and an electrostatic atomizer 131 is inserted into the recess 125a and vegetables for storing fruits and vegetables. There is no effect on the storage capacity of the chamber 108.
  • the cooling pin 134 is reliably cooled, and the wall thickness that can ensure heat insulation is secured for the other portions. It can be secured. As a result, condensation within the outer case 137 can be prevented, and reliability can be improved.
  • the cooling pin 134 can secure a certain amount of heat capacity and can relieve the response of heat conduction from the cold air in the freezer compartment 107, so that the temperature fluctuation of the atomizing electrode 135 can be suppressed. Moreover, since the cooling pin 134 has a function as a cold storage member, it is possible to secure the time for the condensation of the atomizing electrode 135 to occur and to prevent freezing.
  • the cooling pin 134 with good heat conductivity and the heat insulating material 152, it is possible to conduct cool air well without loss. Furthermore, since the thermal resistance at the joint between the cooling pin 134 and the atomizing electrode 135 is suppressed, the temperature fluctuation between the atomizing electrode 135 and the cooling pin 134 follows well. Further, since moisture cannot enter between the cooling pin 134 and the atomizing electrode 135, the thermal bondability is maintained for a long time.
  • the cooling pin 134 is a metal material having a corrosion resistance and rust resistance performance, or an alumite treatment. It is desirable to perform surface treatment and coating. Thereby, rust etc. do not generate
  • the surface of the atomizing electrode 135 is nickel-plated, gold-plated, or platinum-plated, wear due to discharge at the tip of the atomizing electrode 135 is suppressed, whereby the shape of the tip of the atomizing electrode 135 is reduced. Can be maintained. As a result, it becomes possible to spray fine mist over a long period of time, and the shape of the droplet at the tip is also stabilized.
  • the fine mist generated at the atomizing electrode 135 is very diffusible due to very small fine particles and reaches every corner of the vegetable compartment 108. Moreover, since the fine mist to be sprayed is generated by high-pressure discharge, it has a strong negative dispersibility and similarly reaches every corner of the vegetable compartment 108. Furthermore, the fine mist to be sprayed is generated by high-pressure discharge and has a negative charge.
  • the vegetables which are fruits and vegetables green vegetable leaves and fruits are also stored in the vegetable room 108, and these fruits and vegetables are more susceptible to wilt due to transpiration or transpiration during storage.
  • the vegetables and fruits stored in the vegetable room 108 usually include those that have been slightly deflated by transpiration at the time of return purchase or transpiration during storage, and have a positive charge. Have. Therefore, the atomized mist is easy to gather on the surface of vegetables, and this improves the freshness.
  • the nano-level fine mist adhering to the vegetable surface contains a lot of OH radicals and a small amount of ozone. Therefore, in addition to being effective for sterilization, antibacterial, sterilization, etc., it encourages vegetables to increase nutrients such as the removal of agricultural chemicals by oxidative degradation and the amount of vitamin C by antioxidants.
  • the voltage application unit 133 is installed at a relatively low temperature and high humidity in the vegetable compartment 108. Therefore, it is desirable that the voltage application unit 133 protect the circuit by adopting a moisture-proof and waterproof structure with a potting material or coating.
  • the first embodiment includes the storage compartment (the vegetable compartment 108 and the like) that is insulated and the electrostatic atomizer 131 that sprays mist into the vegetable compartment 108.
  • the atomizing unit 139 of the electrostatic atomizer 131 includes an atomizing tip (an atomizing electrode 135) that is electrically connected to a voltage applying unit 133 that generates a high voltage and sprays mist, and an atomizing electrode.
  • the counter electrode 136 disposed at a position facing the 135, the heat transfer cooling unit (cooling pin 134) connected to the atomizing electrode 135, and a dew point that is a temperature at which moisture in the air condenses the atomizing electrode 135
  • a cooling part cool air of freezer compartment 107 which cools cooling pin 134.
  • the cool air in the freezer compartment 107 cools the cooling pins 134 to indirectly cool the atomizing electrode 135 to a dew point or lower.
  • condensation is generated on the atomizing electrode 135 easily and reliably from excess water vapor.
  • the entire cooling pin 134 is substantially embedded in the heat insulating material 152, and the surface of the cooling pin 134 on the side connected to the atomizing electrode 135 is covered with the dew condensation prevention member 142. .
  • the surface area of the dew condensation prevention member 142 is larger than the surface area of the cooling pin 134, the cold air from the cooling pin 134 is conducted through the dew condensation prevention member 142 and diffuses to a wider area, and the dew condensation prevention member 142. The local temperature drop on the surface is suppressed.
  • the dew condensation prevention member 142 that has spread over a wider area than the cooling pin 134 is in surface contact with the outer case 137 so that the cold air that is about to flow from the freezer compartment 107 side to the vegetable compartment 108 side can be completely sealed. it can.
  • the cooling pin 134 can reach a temperature necessary for condensation in a low humidity atmosphere. It becomes possible to cool easily. As a result, it is possible to supply a stable fine mist.
  • a contact area is ensured, and the cooling pin 134 is cooled. The effect of proceeding efficiently is obtained. In addition, this effect can be further improved by combining a conductive material with grease, rubber, or elastomer.
  • the effects of deodorization, removal of harmful substances on food surfaces, and antifouling can be enhanced by ozone and OH radicals generated simultaneously with the generation of mist.
  • the sprayed mist can be directly sprayed on the food in the storage container of the vegetable compartment 108, and the mist can be attached to the vegetable surface using the potential difference between the mist and the vegetable. Efficiency is good.
  • the fine mist can be stably supplied to the vegetable compartment 108 with such a simple configuration, the possibility of failure of the refrigerator 100 can be greatly reduced, and the reliability is improved. That is, a higher quality refrigerator 100 can be provided.
  • the voltage application unit 133 is also embedded in the second partition wall 125 and cooled, the temperature rise of the substrate can be suppressed. Thereby, the temperature influence in the vegetable compartment 108 can be decreased.
  • a cooler 112 for cooling each storage room (refrigeration room 104, switching room 105, ice making room 106, freezer room 107, vegetable room 108) and a cooling room provided with the cooler 112 110 and a second partition wall 125 for thermally insulating the vegetable compartment 108, and an electrostatic atomizer 131 was attached to the second partition wall 125.
  • the electrostatic atomizer 131 is attached to the back surface of the vegetable compartment 108, since it cannot touch a human hand easily, safety is also improved.
  • This isobutane which is a hydrocarbon, has a specific gravity approximately twice that at normal temperature and atmospheric pressure compared with air (at 2.04 and 300K).
  • isobutane which is a flammable refrigerant
  • isobutane which is a flammable refrigerant
  • the refrigerant may leak into the cabinet.
  • the recessed part 125a and the deepest recessed part 125b are provided in a part of wall surface by the side of the vegetable compartment 108 of the 2nd partition wall 125, and the outline of the electrostatic atomizer 131 is provided in this recessed part 125a and the deepest recessed part 125b.
  • the case 137 and the cooling pin 134 are inserted. Thereby, it does not affect the storage capacity of the vegetable room 108 for storing fruits and vegetables.
  • the cooling pin 134 can be reliably cooled, and the heat insulating properties of other parts of the electrostatic atomizer 131 can be secured. Thickness can be secured. As a result, condensation within the outer case 137 can be prevented, and reliability can be improved.
  • the electrostatic atomizer 131 in this Embodiment applies a high voltage between the atomization electrode 135 and the counter electrode 136, ozone is also generated at the time of fine mist generation. Therefore, the ozone concentration in the vegetable compartment 108 can be adjusted by controlling (ON / OFF) the operation of the electrostatic atomizer 131. By adjusting the ozone concentration appropriately, deterioration such as yellowing of vegetables due to excessive ozone can be prevented, and the sterilization and antibacterial action of the vegetable surface can be enhanced.
  • the atomization electrode 135 is set to the reference potential side (0 V), and a positive potential (+7 kV) is applied to the counter electrode 136 to generate a high-voltage potential difference between the two electrodes. May be set to the reference potential side (0 V), and a negative potential ( ⁇ 7 kV) may be applied to the atomizing electrode 135 to generate a high voltage potential difference between the two electrodes.
  • a negative potential ⁇ 7 kV
  • a conductive storage container is disposed in the insulated vegetable compartment 108. Further, the conductive container is electrically connected to the conductive holding member, and the storage container and the holding member are detachable. Further, the holding member is connected to the reference potential portion to be grounded (0 V).
  • the atomizing section 139, the storage container, and the holding member always maintain a potential difference, thereby forming a stable electric field.
  • mist can be sprayed from the atomization part 139 stably.
  • the entire storage container is at the reference potential, the sprayed mist can be diffused throughout the storage container. Further, charging to surrounding objects can be prevented.
  • the entire storage container is at the reference potential, so that the sprayed mist can be diffused throughout the storage container. Further, charging to surrounding objects can be prevented.
  • the cooling unit that cools the cooling pins 134 is the cold air in the freezer compartment 107, but the cold air that is cooled by using the cooling source generated in the refrigeration cycle of the refrigerator 100, You may use the heat transfer from the cooling pipe using the cold air or cold temperature from a cooling source.
  • the cooling pin 134 can be cooled to an arbitrary temperature, and the temperature management when cooling the atomizing electrode 135 is facilitated.
  • cold air of a low temperature air passage such as a discharge air passage of the ice making chamber 106 or an air passage returning to the freezing chamber 107 may be used. Thereby, the installation place of the electrostatic atomizer 131 is expanded.
  • the water retention material is not provided around the atomization electrode 135 of the electrostatic atomizer 131, but a water retention material may be provided.
  • a water retention material may be provided.
  • generated in the vicinity of the atomization electrode 135 can be hold
  • maintained at the water retention material can be supplied to the atomization electrode 135 timely.
  • the storage room in which the mist is sprayed by the electrostatic atomizer 131 is the vegetable room 108, but it may be a storage room in another temperature zone such as the refrigerator room 104 or the switching room 105, In this case, it can be developed for various uses.
  • FIG. 3 is a cross-sectional view of a main part of the electrostatic atomizer in the refrigerator according to the first embodiment in Embodiment 2 of the present invention.
  • the electrostatic atomizer 131 is incorporated in the top surface of the vegetable compartment 108 and the heat transfer from the freezer compartment 107 is used as a cooling unit.
  • the electrostatic atomizer 131 is a cooling pin heat insulation region adjacent to the cooling pin 134 that the counter electrode 136 is fixed to the dew condensation prevention member 142.
  • the feature is that the heat conduction suppressing portion 153 is provided.
  • the electrostatic atomizer 131 shown in FIG. 3 is incorporated in the second partition wall 125 that secures heat insulation in order to divide the temperature zone between the vegetable compartment 108 and the freezer compartment 107.
  • the portion of the atomizing portion 139 that receives the cooling pin 134 has a concave shape or a through portion formed in the heat insulating material 152, and forms a mounting portion that has better thermal conductivity than other wall surface portions.
  • the counter electrode 136 is fixed to the dew condensation prevention member 142, and the heat conduction suppressing portion 153 is provided between the side surface of the cooling pin 134 and the outer case 137.
  • the heat conduction suppression unit 153 is configured by a cavity or a heat insulating material. Further, the heat conduction suppressing unit 153 can be configured to extend between the heat insulating material 152 and the cooling pin 134.
  • the distance between the atomization electrode 135 and the counter electrode 136 is influenced by the thermal expansion of the heat insulating box body 101 and the outer case 137 of the refrigerator 100. It becomes difficult to receive, and it becomes possible to control with higher accuracy. As a result, the effect of being able to more stably supply ozone and OH radicals in addition to the amount of fine mist is obtained. Moreover, since the electrostatic atomizer 131 is formed more compactly, the effect that the space of the vegetable compartment 108 can be used more effectively is also acquired.
  • the heat conduction suppressing portion 153 between the side surface of the cooling pin 134 and the outer case 137, diffusion of cold air from the cooling pin 134 to the dew condensation prevention member 142 through the outer case 137 is suppressed. .
  • unnecessary dew condensation due to a decrease in the temperature of the dew condensation prevention member 142 and a decrease in the dew point near the atomization electrode 135 are avoided, and more efficient dew condensation on the atomization electrode 135 and fine mist generation. It is possible to proceed.
  • the heat conduction suppressing part 153 When the heat conduction suppressing part 153 is hollow, when the cooling pin 134 is inserted into the deepest recess 125b of the heat insulating material 152, the entrance is widened so that the place is easily determined, and the insertion is facilitated. Is obtained. Further, in the case where the heat conduction suppressing portion 153 is configured to extend between the heat insulating material 152 and the cooling pin 134, the heat conduction suppressing portion 153 functions as a guide for inserting the cooling pin 134. It becomes easy.
  • a case that covers the entire cooling pin 134 may be provided at a position in contact with the heat insulating material 152 around the cooling pin 134 and the outer case 137. At this time, a cavity is provided between the case and the cooling pin 134. If this cavity (space) is used as the heat conduction suppressing portion 153, the insertion and removal of the atomizing portion 139 including the cooling pin 134 is remarkably facilitated, which is suitable for maintenance of the atomizing portion 139. From the viewpoint of maintenance, it is preferable in terms of handling that the cooling pin 134 is fixed to the dew condensation prevention member 142 in addition to the atomizing electrode 135 and the counter electrode 136.
  • the width of the heat conduction suppression unit 153 (the gap between the cooling pin 134 and the case covering the cooling pin 134) is about 1 mm or less, the convection of air therein can be suppressed. 153 also has a heat insulating action. For this reason, the diffusion of cold air from the cooling pins 134 is further suppressed, which is preferable. Moreover, when the width
  • the electrostatic atomizer 131 according to the second form is provided on the top surface of the vegetable compartment 108 and the counter electrode 136 is fixed to the dew condensation prevention member 142 as in the first form.
  • a heat conduction suppressing portion 153 is provided between the cooling pin 134 and the outer case 137 and the heat insulating material 152.
  • the heating unit 154 is characterized in that it is disposed at a position shielded from the cooling pin 134 by the heat conduction suppressing unit 153 and in the vicinity of the dew condensation preventing member 142.
  • the heating unit 154 is disposed in the vicinity of the dew condensation prevention member 142. Specifically, it is disposed in contact with the dew condensation prevention member 142 or in contact with the adjacent outer case 137. For this reason, the heat generated by the heating unit 154 is conducted to the dew condensation prevention member 142, the dew condensation prevention member 142 is appropriately heated, and it becomes easy to keep the surface temperature above the dew point.
  • the heat generated by the heating unit 154 does not cause heat conduction to the cooling pin 134 through the outer case 137 due to the action of the heat conduction suppressing unit 153. That is, the heating unit 154 selectively heats the heat conduction suppressing unit 153.
  • the temperature rise of the cooling pin 134 and the atomization electrode 135 by the heating part 154 is suppressed to the minimum.
  • prevention of unnecessary condensation on the surface of the condensation prevention member 142 and reduction of the dew point near the atomization electrode 135 can be avoided, and the atomization electrode 135 can be efficiently cooled below the dew point. It becomes.
  • FIG. 5A to 6B are cross-sectional views of the atomizing portion 139 according to the present embodiment. First, with reference to FIG. 5A and 5B, the structure and effect
  • the dew condensation preventing member 142 shown in FIG. 5A mainly includes a heat insulating layer 142b and a heat diffusion layer 142a formed on the surface of the heat insulating layer 142b. Moreover, it is preferable that the thermal diffusion layer 142a is disposed at a distance from the atomizing electrode 135.
  • the heat insulating layer 142b a material such as a resin or ceramic having a lower thermal conductivity than the cooling pin 134, preferably a heat insulating material made of a porous body of these materials is used.
  • the thermal diffusion layer 142a a thin metal plate, sheet, tape having excellent thermal conductivity, or a plate, sheet, tape, or the like made of a composite material in which a conductive material such as metal or carbon is dispersed in a resin or the like is used. .
  • the dew condensation preventing member 142 shown in FIG. 5B is composed of a thermal diffusion layer 142a and a heat insulating layer 142b, as in FIG. 5A.
  • the thermal diffusion layer 142a shown in FIG. 5B is characterized in that it is not exposed on the surface of the heat insulating layer 142b but is embedded in the vicinity of the surface of the heat insulating layer 142b.
  • the thermal diffusion layer 142a on or near the surface of the heat insulating layer 142b, the following effects can be obtained.
  • the conduction of cold air from the cooling pins 134 to the surface of the dew condensation prevention member 142 is suppressed by the heat insulating action of the heat insulating layer 142b.
  • the heat transfer action of the heat diffusion layer 142a promotes the diffusion of cold air that occurs in the horizontal direction on the surface of the dew condensation prevention member 142, and avoids a local temperature drop in a region near the cooling pin 134.
  • the thermal diffusion layer 142a is disposed at a distance from the atomizing electrode 135, so that the conduction of cold air from the atomizing electrode 135 to the thermal diffusion layer 142a.
  • the temperature rise of the atomizing electrode 135 which progresses is avoided.
  • the thermal diffusion layer 142a is made of an electron conductive material such as a metal, the risk of sparks due to a large potential difference with the atomizing electrode 135 and the cooling pin 134 is avoided, and high reliability is achieved. The effect that safety can be obtained is also obtained.
  • the distance between the heat diffusion layer 142a and the atomizing electrode 135 is preferably about several mm to 1 cm or more.
  • the above-described effect is further enhanced by adopting a configuration in which the thermal diffusion layer 142a does not appear on the surface of the heat insulating layer 142b.
  • a metal tape or a metal thin plate is attached to the surface of a resin plate or a heat insulating plate made of a porous body made of resin or ceramic, There are some which cover the surface with an insulator such as a resin plate, a resin sheet or a tape. Alternatively, it is also possible to obtain by integrally molding a plate containing a conductive material such as a metal so as to be sandwiched from above and below by a resin.
  • the cooling pin 134 is in contact with the outer wall surface on the rear side of the dew condensation prevention member 142. Moreover, in FIG. 5B, the part which contact
  • the cooling pin 134 is in contact with the outer wall surface on the rear side of the dew condensation prevention member 142, whereby the conduction of cold air to the inner wall surface of the dew condensation prevention member 142 is suppressed. Further, by making the portion of the cooling pin 134 in contact with the dew condensation prevention member 142 thinner than other portions, the total amount of cool air conducted to the dew condensation prevention member 142 is suppressed. For this reason, the temperature fall of the surface of the dew condensation prevention member 142 is suppressed, and unnecessary dew condensation is avoided.
  • FIG. 6A is characterized in that the heat transfer cooling portion insulating layer 155 is formed so as to be in contact with the front end of the cooling pin 134.
  • the heat transfer cooling portion insulating layer 155 has thermal conductivity and insulating properties, and a heat-resistant and non-flammable insulating material is preferably used.
  • a thin plate-like form is suitably used. Specifically, a thin plate of ceramics or flame retardant resin is used.
  • the heat transfer cooling part insulating layer 155 is formed, so that the cooling pin 134 is formed even when the atomizing electrode 135 is not a ground but a positive and negative high voltage is applied. It is avoided that the whole is charged, and a very favorable effect is obtained from the viewpoint of safety.
  • the cooling pin 134 shown in FIG. 6A is in contact with an area corresponding to a thickness of half or less, not the whole thickness direction of the cooling pin receiving hole provided in the dew condensation prevention member 142.
  • the cooling pin 134 is in contact with the wall surface on the rear side of the dew condensation prevention member 142.
  • a concave portion that does not contact the cooling pin 134 is provided on the wall surface on the rear side of the dew condensation prevention member 142 to reduce the contact area between the cooling pin 134 and the dew condensation prevention member 142.
  • a plurality of storage rooms are provided in the heat insulating box 101 as in the first embodiment, and the top surface side of the vegetable room 108 which is one of the storage rooms.
  • An electrostatic atomizer 131 is attached to the second partition wall 125, and a freezing room 107 which is a low-temperature storage room kept at a lower temperature than the vegetable room 108 is provided.
  • the counter electrode 136 is fixed to the dew condensation prevention member 142, and the heat conduction suppressing portion 153 is formed around the cooling pin 134.
  • the heating unit 154 is provided in the vicinity of the dew condensation prevention member 142.
  • the heat conduction suppressing portion 153 is formed around the cooling pin 134, conduction of cold air from the cooling pin 134 to the dew condensation preventing member 142 is further suppressed, and an effect of avoiding unnecessary dew condensation on the surface of the dew condensation preventing member 142 is achieved. Is obtained. As a result, a decrease in the dew point in the vicinity of the atomizing electrode 135 is also suppressed, and an effect that condensation and atomization proceed efficiently with the atomizing electrode 135 is obtained even in a low humidity atmosphere.
  • the heat conduction suppressing portion 153 is hollow, a gap is formed on the atomizing electrode 135 side around the cooling pin 134. In this case, it is easy to insert the electrostatic atomizer 131 including the cooling pin 134 into the heat insulating material 152, and the effect of facilitating the maintenance can be obtained.
  • the dew condensation prevention member 142 by forming the dew condensation prevention member 142 with the heat diffusion layer 142a and the heat insulation layer 142b, the conduction of cold air from the cooling pins 134 to the surface of the dew condensation prevention member 142 is suppressed, and the surface on the surface of the dew condensation prevention member 142 is suppressed. It becomes possible to promote the thermal diffusion occurring in the direction. As a result, a local temperature drop and condensation on the surface of the dew condensation preventing member 142 can be easily avoided, and the effect of efficient dew condensation and atomization by the atomization electrode 135 can be obtained even in a low humidity atmosphere.
  • the cooling pin 134 is fixed to the outer wall surface on the rear side of the dew condensation prevention member 142, or a cavity (concave portion) is provided in a portion where the dew condensation prevention member 142 and the cooling pin 134 are in contact.
  • a cavity concave portion
  • FIG. 7 is principal part sectional drawing of the electrostatic atomizer in the refrigerator of Embodiment 3 of this invention.
  • a feature of the configuration of the present embodiment is that an outer case 137 shields an area in the vicinity of the device where the fine mist is discharged from the electrostatic atomizer 131 to the storage chamber (the fine mist is installed in the installed storage chamber). No spraying port 132 for direct spraying).
  • the outer case 137 is connected to the air path to the cooling chamber 110.
  • the counter electrode 136 is fixed to the dew condensation prevention member 142
  • the heat conduction suppression unit 153 is provided around the cooling pin 134
  • the heating unit 154 is disposed in the vicinity of the dew condensation prevention member 142. This is the same as in the second embodiment.
  • upper surface of the vegetable compartment 108 is the same as that of Embodiment 1,2.
  • the electrostatic atomizer 131 is incorporated in the second partition wall 125 that secures heat insulation in order to separate the temperature zone between the vegetable compartment 108 and the freezer compartment 107.
  • This is the same as in Embodiments 1 and 2.
  • the humidity supply port 138 is formed, but the spray port 132 provided in the first and second embodiments is not formed, and one end thereof returns to the cooling chamber 110. It is different in that it is connected to the air path.
  • the outer case 137 that shields the vicinity of the apparatus and communicates with the air path to the cooling chamber 110 is provided by a fine mist, ozone in a storage room other than the vegetable room 108 in which the electrostatic atomizer 131 is installed. This is for supplying OH radicals.
  • the outer case 137 that does not have the spray port 132, the convection of the air around the atomizing electrode 135 is suppressed. For this reason, heat conduction from the outside is also suppressed, the temperature around the atomizing electrode 135 is lowered, and it is easy to reach the dew point. In this case, there is a possibility that the temperature of the dew condensation preventing member 142 is similarly lowered and easily reaches the dew point.
  • the cooling pin 134 is exposed to the air in the conventional art.
  • the corresponding temperature drop on the surface of the dew condensation prevention member 142 is suppressed.
  • the temperature of the surface of the dew condensation prevention member 142 is reduced by the action of the dew condensation prevention member 142, the heat conduction suppression unit 153, and the heating unit 154. It can be suppressed and unnecessary condensation can be avoided. As a result, a dew point decrease near the atomization electrode 135 is also avoided, and more stable atomization and fine mist supply are possible.
  • the generated fine mist reaches the cooling chamber 110 from the outer case 137 through the air passage, and is supplied to each storage chamber according to the air passage that carries cold air from the cooling chamber 110 to each storage chamber.
  • fine mist, ozone, and OH radicals are supplied to each storage room, and using one electrostatic atomizer 131, effects such as sterilization, preservation, and nutrient enhancement in each storage room can be realized at low cost.
  • ozone is stored in the storage room (the vegetable room 108 in the first and second embodiments) in which the electrostatic atomizer 131 is installed, and ozone odor is generated. It is also easy to avoid claims. In addition, it is easy to avoid harmful effects such as yellowing of vegetables due to an increase in ozone concentration.
  • a plurality of storage rooms are provided in the heat insulating box 101 as in the first embodiment, and the top surface side of the vegetable room 108 which is one of the storage rooms.
  • An electrostatic atomizer 131 is attached to the second partition wall 125, and a freezing room 107 which is a low-temperature storage room kept at a lower temperature than the vegetable room 108 is provided.
  • the electrostatic atomizer 131 has the counter electrode 136 fixed to the dew condensation prevention member 142 and the heating unit 154 disposed at a position not in contact with the cooling pin 134 in the vicinity of the dew condensation prevention member 142.
  • the heat conduction suppressing portion 153 is provided around the cooling pin 134.
  • the outer case 137 that does not have the spray port 132 is installed so as to shield the vicinity of the area where the fine mist is sprayed, and one end of the outer case 137 communicates with the cooling chamber 110. It is a feature.
  • the generated fine mist reaches the cooling chamber 110 through a space formed by the communication cover 160 of the return air path from the outer case 137 to the cooling chamber 110.
  • the air is supplied to each storage room according to a circulation mechanism such as an air passage for carrying cold air from the cooling room 110 to each storage room, a damper, a fan, or the like. In this way, fine mist, ozone, and OH radicals are supplied to each storage room, and using one electrostatic atomizer 131, effects such as sterilization, preservation, and nutrient enhancement in each storage room can be realized at low cost.
  • the generated ozone is distributed to each storage room, it is easy to avoid harmful effects such as generation of ozone odor and yellowing of vegetables due to ozone stored in the storage room where the electrostatic atomizer 131 is installed. be able to.
  • the counter electrode 136 is fixed to the dew condensation prevention member 142, the heat conduction suppression unit 153 is provided around the cooling pin 134, and the heating unit 154 is disposed in the vicinity of the dew condensation prevention member 142.
  • the present embodiment is not limited to these.
  • FIG. 8 is principal part sectional drawing of the electrostatic atomizer in the refrigerator of Embodiment 4 of this invention.
  • the feature of the present embodiment is that when the electrostatic atomizer 131 is incorporated in the refrigerator 100 main body, an adhesion improving portion 161 is provided between the refrigerator 100 main body side.
  • Other configurations are the same as those of the second embodiment shown in FIG.
  • the point that the electrostatic atomizer 131 is fixed to the top of the vegetable compartment 108 is the same as in the first to third embodiments.
  • an adhesion improving portion 161 is provided on the wall surface of the dew condensation prevention member 142 on the side in contact with the cooling pin 134. More specifically, in the electrostatic atomizer 131, an adhesion improving unit 161 is provided between the outer case 137 and the dew condensation prevention member 142 (on the cooling pin 134 side of the dew condensation prevention member 142).
  • the adhesion improving portion 161 has flexibility as described below, so that necessary deformation proceeds and this gap can be filled. For this reason, the sealing performance between the outer case 137 and the dew condensation prevention member 142 is enhanced, and unnecessary cooling air leakage from the cooling pins 134 is eliminated. Thus, the cooling of the atomizing electrode 135 by the cooling pin 134 proceeds efficiently, and condensation and spraying on the atomizing electrode 135 are promoted.
  • the adhesion improving portion 161 of the present embodiment needs to have flexibility, and resin foams such as urethane and polyolefin, various rubbers, elastomer sheets, and the like are used.
  • resin foams such as urethane and polyolefin, various rubbers, elastomer sheets, and the like are used.
  • silicon resin, vinyl chloride resin, chloroprene resin, polyolefin resin, and the like are preferably used because they have high resistance to active species (such as ozone) generated from the electrostatic atomizer 131.
  • Embodiment 5 are main part cross-sectional views of the electrostatic atomizer in the refrigerator according to Embodiment 5 of the present invention.
  • the feature of this embodiment is that the end on the rear side of the cooling pin 134 is thin, and the shape of the cross section perpendicular to the spraying direction of the cooling pin 134 is not a point-symmetric structure like a cylinder. . Further, the electrostatic atomizer 131 is fixed to the top surface of the vegetable compartment 108 in the same manner as in the first to fourth embodiments, and the specific electrostatic atomizer 131 is incorporated into the main body side. This is the same as in the fourth embodiment shown in FIG.
  • FIG. 9A is a cross-sectional view of the main part of the atomizing unit 139 in the refrigerator 100 according to Embodiment 5 of the present invention
  • the lower view of FIG. 9A is a cross-sectional view taken along the line AA of the upper view of FIG. 9A.
  • the upper diagram of FIG. 9B is a cross-sectional view of the main part of the atomizing section 139 in the refrigerator 100 according to the fifth embodiment of the present invention
  • the lower diagram of FIG. 9B is the BB line of the upper diagram of FIG. FIG.
  • FIG. 9A represents a cross section perpendicular to the heat transfer direction of the cooling pin 134. It can be seen that the shape shown in the lower part of FIG. 9A is not a point-symmetric shape but a rectangle. 9A, the cross-sectional area of the cross section perpendicular to the heat transfer direction at the rear end portion of the cooling pin 134 is smaller than the corresponding cross-sectional area other than the rear end portion of the cooling pin 134. It shows that. That is, one side of the rear end portion of the cooling pin 134 has a shape that is cut obliquely, and the tip end portion is thin.
  • the cross section perpendicular to the heat transfer direction of the cooling pin 134 is not point-symmetric but rectangular.
  • the cross-sectional area of the cross section perpendicular to the heat transfer direction at the rear end portion of the cooling pin 134 is smaller than the corresponding cross-sectional area other than the rear end portion of the cooling pin 134.
  • the cooling pin 134 has a shape in which both sides of the front end of the cooling pin 134 are cut off obliquely, and the rear end portion is also narrow.
  • the cooling pin 134 since the end on the rear side of the cooling pin 134 is thin, it is not caught when inserted, and the cooling pin 134 of the electrostatic atomizer 131 can be inserted into the refrigerator 100 main body side. It becomes easy. Furthermore, the cooling pin 134 is firmly inserted, the adhesiveness with the deepest recessed part 125b on the refrigerator 100 main body side is improved, and the transmission efficiency of the cold air from the freezer compartment 107 is improved. In this way, the atomizing electrode 135 can be efficiently cooled, and condensation and atomization at the atomizing electrode 135 are promoted.
  • the cross section of the cooling pin 134 is not point-symmetric as described above, it can be inserted into the deepest recess 125b on the refrigerator 100 main body side only in a certain direction. Also, rotation in the inserted state is not allowed. For this reason, the cooling pin 134 of the electrostatic atomizer 131 is firmly inserted and fixed in the deepest recess 125b on the refrigerator 100 main body side without deviation. Thus, the adhesion with the deepest recess 125b is improved, and the efficiency of transmitting cool air from the freezer compartment 107 is improved. For this reason, it becomes possible to cool the atomization electrode 135 efficiently, and the condensation and spraying to the atomization electrode 135 are accelerated
  • cooling pin 134 having a rectangular cross-sectional shape has been specifically described. However, if the cooling pin 134 is not point-symmetric (circle, square, etc.), it has the same action and effect. It is possible to use.
  • the configuration in which the rear end portion of the cooling pin 134 is thin has been described specifically for the configuration in which one surface or both surfaces are cut, but the cut surface is a flat surface. There is no need to have a curved surface. Further, if the tip is extremely thin, the adhesion with the deepest recess 125b in contact with the freezer compartment 107 is lowered, so that the area of the rear end of the cooling pin 134 is about 2/3 or more of the center area. It is preferable that
  • FIG.10 and FIG.11 is principal part sectional drawing of the electrostatic atomizer in the refrigerator of Embodiment 6 of this invention.
  • the first feature of the present embodiment is that a buffer portion 162 is provided at the rear end of the cooling pin 134, and the auxiliary heat transfer cooling portion 163 is fixed to the cooling pin 134 so as to cover the buffer portion 162. It has been done.
  • the second feature is that the portion of the wall of the storage chamber that serves as a cooling unit, such as the freezing chamber 107, is in contact with the cooling pin 134 and protrudes toward the inside of the freezing chamber 107.
  • electrostatic atomizer 131 is fixed to the top surface of the vegetable compartment 108 as in the first to fifth embodiments.
  • a buffer portion 162 is provided at the rear end of the cooling pin 134.
  • the auxiliary heat transfer cooling unit 163 is provided so as to cover the surface of the buffer unit 162 opposite to the surface in contact with the cooling pin 134. Further, the auxiliary heat transfer cooling unit 163 is in contact with the cooling pin 134 and is thermally coupled.
  • a slight gap is generated between the cooling pin 134 and the deepest recess 125b due to dimensional variation of each part, variation in flatness, or variation in position when the cooling pin 134 is inserted into the deepest recess 125b. Can be considered. Even in such a case, due to the buffering action of the buffering part 162, the buffering part 162 is deformed so as to be in close contact with the deepest concave part 125b, and as a result, conduction of cold air from the convex part 151a of the storage room of the freezing room 107 Is secured.
  • a part of the second partition wall 125 which is a wall of the freezer compartment 107 forms a storage chamber convex portion 151a having a convex structure on the freezer compartment 107 side, whereby the second partition wall 125 and the cooling pin are formed.
  • the contact area with 134 is increased, and the cold air circulating in the storage chamber collides with the convex portion 151a in the storage chamber, whereby the temperature of the convex portion 151a in the storage chamber is likely to decrease.
  • the cooling pin 134 is efficiently cooled, the cooling efficiency of the atomizing electrode 135 is increased, and condensation and spraying on the atomizing electrode 135 are promoted. As a result, even in a low-humidity atmosphere, fine mist, ozone, and OH radicals are stably supplied to the storage room, so that effects such as sterilization, preservation, and nutrient up in the storage room can be realized at low cost.
  • any one having appropriate flexibility and shape recovery force can be used as the buffer part 162 of the present embodiment.
  • various resin foams, elastomers, rubber sheets, fiber aggregates such as glass wool, and the like are used as the buffer part 162 of the present embodiment.
  • the auxiliary heat transfer cooling unit 163 is deformable and has a high thermal conductivity, and a thin metal plate, a metal tape, or the like is used.
  • the auxiliary heat transfer cooling unit 163 and the cooling pin 134 are in close contact and thermally coupled, but this may be performed by bonding with an adhesive or may be physically fixed.
  • an aluminum tape with an adhesive may be used as the auxiliary heat transfer cooling unit 163 and bonded to the cooling pin 134.
  • the refrigerator according to the present invention can supply fine mist stably to a plurality of storage rooms with a simple configuration even in a low humidity atmosphere by applying the electrostatic atomizer of the present invention. It can be applied not only to commercial refrigerators or vegetable vaults, but also to low temperature foods such as vegetables and warehouses. Furthermore, the electrostatic atomizer used in the present invention can be applied to an air conditioner or a heat pump type washing machine by using the low temperature side of the heat pump system as a cooling means. Furthermore, the same technical idea can be used when the space for spraying mist and the space provided with the heat transfer cooling part (cooling pin) have a large temperature difference. It can be used for various devices such as washing machines, rice cookers, and vacuum cleaners.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

A refrigerator (100) is provided with a storage compartment (108) divided by a heat-insulating partition wall (125), an electrostatic atomization device (131) for spraying mist into the storage compartment (108), and a cooling unit (107) for cooling the electrostatic atomization device (131). The electrostatic atomization device (131) comprises a heat transfer cooling unit (134) which is buried in the heat-insulating partition wall (125) and cooled by the cooling unit (107), an atomization tip (135) which is thermally connected to the heat transfer cooling unit (134) and sprays, as the mist, dew condensation water generated therearound by cold air conducted from the heat transfer cooling unit (134) into the storage compartment (108), and a dew condensation prevention member (142) which covers the surface on the side facing the atomization tip (135) of the heat transfer cooling unit (134).

Description

冷蔵庫及び静電霧化装置Refrigerator and electrostatic atomizer
 本発明は、貯蔵室の内部空間に静電霧化装置を設置した冷蔵庫に関するものである。 The present invention relates to a refrigerator in which an electrostatic atomizer is installed in the internal space of a storage room.
 近年、家庭用冷蔵庫では、野菜等の食品保存を目的とし、庫内を高湿化することで食品の水分低下を抑制し、保存性を高めているものがある。この高湿化手段として、ミストを噴霧するものがある。 In recent years, some refrigerators for home use have the purpose of preserving foods such as vegetables, and reducing the moisture content of foods by increasing the humidity in the cabinet, thereby improving the preservability. As this humidifying means, there is one that sprays mist.
 例えば、上記のような霧化高湿化手段として、周辺空間の過剰水蒸気を霧化電極に結露させ、この結露した水に高電圧を印加することで、微細なミストとして噴霧し、貯蔵室内に供給する静電霧化装置が知られている(例えば、特許文献1参照)。 For example, as an atomizing and humidifying means as described above, excess water vapor in the surrounding space is condensed on the atomizing electrode, and a high voltage is applied to the condensed water, so that it is sprayed as a fine mist and is stored in the storage chamber. An electrostatic atomizer to be supplied is known (see, for example, Patent Document 1).
 図12は、特許文献1に記載されたものであり、冷蔵庫の貯蔵室に備えられた静電霧化装置の断面図である。 FIG. 12 is a cross-sectional view of the electrostatic atomizer provided in the storage room of the refrigerator, which is described in Patent Document 1.
 図12に示すように、冷空間4(例えば、冷却室に繋がる冷気通路)により、仕切り部(断熱材)6中の伝熱冷却部5が冷却される。さらに、この伝熱冷却部5が、霧化電極2を冷やすことで、霧化電極2周辺の水蒸気を結露させる。そして、霧化電極2と対向電極3との間に高電圧を印加することにより、結露した水滴を微細なミストとして噴霧する。この際、霧化電極2の近傍前方に設けられた放出用開口14より、霧化対象空間(貯蔵室内)1中に微細ミストが噴霧される。 As shown in FIG. 12, the heat transfer cooling section 5 in the partition section (heat insulating material) 6 is cooled by the cold space 4 (for example, a cold air passage connected to the cooling chamber). Furthermore, the heat transfer cooling unit 5 cools the atomizing electrode 2 to condense water vapor around the atomizing electrode 2. And by applying a high voltage between the atomization electrode 2 and the counter electrode 3, the condensed water droplet is sprayed as fine mist. At this time, fine mist is sprayed into the atomization target space (storage chamber) 1 from the discharge opening 14 provided in front of the vicinity of the atomization electrode 2.
 このような構成には、霧化電極2を冷却するために高価なペルチェ素子を使う必要がなく、装置を簡略化、コンパクト化できるとともに、安価となるという利点がある。 Such a configuration has the advantage that it is not necessary to use an expensive Peltier element to cool the atomizing electrode 2, and the apparatus can be simplified and made compact and inexpensive.
 また、上記従来の構成では、伝熱冷却部(冷却ピン)5は、一部が仕切り部(断熱材)6中にあるが、そのほとんどが霧化電極2側の断熱されていない外郭ケース11中に設置されている。すなわち、伝熱冷却部(冷却ピン)5の先端は、霧化電極2側の空間に露出している。 Moreover, in the said conventional structure, although the heat-transfer cooling part (cooling pin) 5 has a part in the partition part (heat insulating material) 6, most of them are the outer case 11 by which the atomization electrode 2 side is not thermally insulated. It is installed inside. That is, the tip of the heat transfer cooling part (cooling pin) 5 is exposed in the space on the atomizing electrode 2 side.
特開2008-149242号公報JP 2008-149242 A
 しかしながら、上記従来の構成は、以下のような課題を有していた。 However, the above conventional configuration has the following problems.
 霧化電極2で結露を進行させるため、霧化電極2を冷却するための伝熱冷却部5は、霧化電極2より低い温度に冷却されている。 In order to cause condensation to proceed with the atomizing electrode 2, the heat transfer cooling unit 5 for cooling the atomizing electrode 2 is cooled to a temperature lower than that of the atomizing electrode 2.
 従って、伝熱冷却部5の一部が空気中に露出している従来の構成では、伝熱冷却部5の露出部においても必然的に結露が生じる。この伝熱冷却部5での結露のために、空気中の水蒸気量が減少し、伝熱冷却部5の近くにある霧化電極2近傍の露点が低下する。 Therefore, in the conventional configuration in which a part of the heat transfer cooling unit 5 is exposed to the air, condensation is inevitably generated even in the exposed part of the heat transfer cooling unit 5. Due to the condensation in the heat transfer cooling unit 5, the amount of water vapor in the air decreases, and the dew point near the atomization electrode 2 near the heat transfer cooling unit 5 decreases.
 上記の露点低下は、貯蔵庫内が特に低湿度の場合には、以下の課題を生じさせていた。 The above dew point reduction has caused the following problems especially when the inside of the storage is at low humidity.
 貯蔵庫内が低湿度の場合は、もともと露点が低いことに加え、伝熱冷却部5での結露のために、霧化電極2の近傍での露点がさらに低下する。このように非常に低い露点のために、露点が凍結温度より低くなるか、低くならないまでも凍結温度との温度差が非常に小さくなる場合がある。露点が凍結温度より低い場合には、結露した水蒸気は凍結し、霧化電極2に高電圧を印加しても霧化が進行しなくなる。また、凍結温度と露点との温度差が非常に小さい場合には、霧化電極2で霧化が進行する温度範囲が狭く、安定した霧化が困難となる。これが、低湿度環境における従来の構成の課題であった。 When the inside of the storage is low in humidity, the dew point in the vicinity of the atomizing electrode 2 is further lowered due to the condensation in the heat transfer cooling unit 5 in addition to the low dew point. Due to such a very low dew point, the temperature difference from the freezing temperature may become very small even if the dew point is lower than the freezing temperature or not. When the dew point is lower than the freezing temperature, the condensed water vapor is frozen, and the atomization does not proceed even when a high voltage is applied to the atomizing electrode 2. Further, when the temperature difference between the freezing temperature and the dew point is very small, the temperature range in which atomization proceeds at the atomizing electrode 2 is narrow, and stable atomization becomes difficult. This is a problem of the conventional configuration in a low humidity environment.
 本発明は、低湿度環境でも、伝熱冷却部での結露を抑制することにより、霧化電極の近傍での露点低下を抑制し、結露および霧化を安定に進行させ、貯蔵室への微細ミスト供給を可能にする冷蔵庫を提供することを目的とする。 The present invention suppresses dew point reduction in the vicinity of the atomization electrode by suppressing dew condensation in the heat transfer cooling part even in a low humidity environment, and stably proceeds with dew condensation and atomization. It aims at providing the refrigerator which enables mist supply.
 上記従来の課題を解決するために、本発明の一形態に係る冷蔵庫は、断熱隔壁で区画された貯蔵室と、前記貯蔵室内にミストを噴霧する静電霧化装置と、前記静電霧化装置を冷却する冷却部とを備える。そして、前記静電霧化装置は、前記断熱隔壁内に埋設され、前記冷却部によって冷却される伝熱冷却部と、前記伝熱冷却部に熱的に接続され、前記伝熱冷却部から伝導される冷気によって周辺に生じる結露水を、ミストとして前記貯蔵室に噴霧する霧化先端部と、前記伝熱冷却部の前記霧化先端部に対面する側の面を覆う結露防止部材とを有する。 In order to solve the above-described conventional problems, a refrigerator according to an embodiment of the present invention includes a storage chamber partitioned by a heat insulating partition, an electrostatic atomizer that sprays mist into the storage chamber, and the electrostatic atomization. A cooling unit for cooling the apparatus. The electrostatic atomizer is embedded in the heat insulating partition, and is thermally connected to the heat transfer cooling unit that is cooled by the cooling unit and is transmitted from the heat transfer cooling unit. And a dew condensation preventing member that covers the surface of the heat transfer cooling unit facing the atomization front end of the heat transfer cooling unit. .
 また、上記従来の課題を解決するために、本発明の一形態に係る静電霧化装置は、断熱隔壁で区画された貯蔵室と、冷気を生成する冷却部とを有する冷蔵庫に取り付けられ、前記貯蔵室にミストを噴霧する。具体的には、前記断熱隔壁内に埋設され、前記冷却部によって冷却される伝熱冷却部と、前記伝熱冷却部に熱的に接続され、前記伝熱冷却部から伝導される冷気によって周辺に生じる結露水を、ミストとして前記貯蔵室に噴霧する霧化先端部と、前記伝熱冷却部の前記霧化先端部に対面する側の面を覆う結露防止部材とを有する。 Moreover, in order to solve the said conventional subject, the electrostatic atomizer which concerns on one form of this invention is attached to the refrigerator which has the storage room divided by the heat insulation partition, and the cooling part which produces | generates cold air, Mist is sprayed on the storage chamber. Specifically, a heat transfer cooling unit embedded in the heat insulating partition wall and cooled by the cooling unit, and thermally connected to the heat transfer cooling unit and surrounded by cold air conducted from the heat transfer cooling unit And a dew condensation preventing member that covers a surface of the heat transfer cooling unit that faces the atomization front end of the heat transfer cooling unit.
 このように、伝熱冷却部の霧化先端部と接続される側に露出した部分が結露防止部材により覆われることにより、伝熱冷却部の霧化先端部と接続される側の表面温度の低下が抑制され、伝熱冷却部の霧化先端部と接続される側での結露が抑制される。こうして、不要な結露と露点低下とが抑制され、冷却された霧化先端部に効率的に結露が進行し、低い湿度環境でも安定した微細ミストを貯蔵室に供給することが可能となる。 In this way, the portion exposed to the side connected to the atomization tip of the heat transfer cooling unit is covered with the condensation prevention member, so that the surface temperature of the side connected to the atomization tip of the heat transfer cooling unit is reduced. The decrease is suppressed, and condensation on the side connected to the atomizing tip of the heat transfer cooling unit is suppressed. In this way, unnecessary dew condensation and dew point reduction are suppressed, dew condensation proceeds efficiently to the cooled atomizing tip, and stable fine mist can be supplied to the storage room even in a low humidity environment.
 本発明の冷蔵庫と静電霧化装置とは、低い湿度環境でも安定した微細ミストを貯蔵室に供給することが可能である。このため、冷蔵庫の信頼性をより高めた上で、冷蔵庫の品質を向上させることができる。また、本発明の静電霧化装置は、エアコン、洗濯機等の冷蔵庫以外の家庭用電気製品に適用することが可能であり、安定した微細ミストの噴霧が可能である。 The refrigerator and the electrostatic atomizer of the present invention can supply a stable fine mist to the storage room even in a low humidity environment. For this reason, after improving the reliability of a refrigerator, the quality of a refrigerator can be improved. Moreover, the electrostatic atomizer of this invention can be applied to household electrical appliances other than refrigerators, such as an air-conditioner and a washing machine, and can spray the fine mist stably.
図1は、本発明の実施の形態1における冷蔵庫の縦断面図である。FIG. 1 is a longitudinal sectional view of the refrigerator according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態1の冷蔵庫における静電霧化装置の要部断面図である。FIG. 2 is a cross-sectional view of a main part of the electrostatic atomizer in the refrigerator according to Embodiment 1 of the present invention. 図3は、本発明の実施の形態2の冷蔵庫における静電霧化装置の要部断面図である。FIG. 3 is a cross-sectional view of a main part of the electrostatic atomizer in the refrigerator according to the second embodiment of the present invention. 図4は、本発明の実施の形態2の冷蔵庫における静電霧化装置の要部断面図である。FIG. 4 is a cross-sectional view of a main part of the electrostatic atomizer in the refrigerator according to the second embodiment of the present invention. 図5Aは、本発明の実施の形態2の冷蔵庫における静電霧化装置の要部断面図の一例である。FIG. 5A is an example of a fragmentary cross-sectional view of the electrostatic atomizer in the refrigerator according to Embodiment 2 of the present invention. 図5Bは、本発明の実施の形態2の冷蔵庫における静電霧化装置の要部断面図の他の例である。FIG. 5B is another example of a fragmentary cross-sectional view of the electrostatic atomizer in the refrigerator according to Embodiment 2 of the present invention. 図6Aは、本発明の実施の形態2の冷蔵庫における静電霧化装置の要部断面図の他の例である。FIG. 6A is another example of a fragmentary sectional view of the electrostatic atomizer in the refrigerator according to Embodiment 2 of the present invention. 図6Bは、本発明の実施の形態2の冷蔵庫における静電霧化装置の要部断面図の他の例である。FIG. 6B is another example of a fragmentary cross-sectional view of the electrostatic atomizer in the refrigerator according to Embodiment 2 of the present invention. 図7は、本発明の実施の形態3の冷蔵庫における静電霧化装置の要部断面図である。FIG. 7: is principal part sectional drawing of the electrostatic atomizer in the refrigerator of Embodiment 3 of this invention. 図8は、本発明の実施の形態4の冷蔵庫における静電霧化装置の要部断面図である。FIG. 8: is principal part sectional drawing of the electrostatic atomizer in the refrigerator of Embodiment 4 of this invention. 図9Aは、本発明の実施の形態5の冷蔵庫における静電霧化装置の要部断面図の一例である。FIG. 9A is an example of a fragmentary cross-sectional view of the electrostatic atomizer in the refrigerator according to Embodiment 5 of the present invention. 図9Bは、本発明の実施の形態5の冷蔵庫における静電霧化装置の要部断面図の一例である。FIG. 9B is an example of a fragmentary cross-sectional view of the electrostatic atomizer in the refrigerator according to Embodiment 5 of the present invention. 図10は、本発明の実施の形態6の冷蔵庫における静電霧化装置の要部断面図である。FIG. 10: is principal part sectional drawing of the electrostatic atomizer in the refrigerator of Embodiment 6 of this invention. 図11は、本発明の実施の形態6の冷蔵庫における静電霧化装置の要部断面図である。FIG. 11: is principal part sectional drawing of the electrostatic atomizer in the refrigerator of Embodiment 6 of this invention. 図12は、従来の冷蔵庫における静電霧化装置の要部断面図である。FIG. 12 is a cross-sectional view of a main part of an electrostatic atomizer in a conventional refrigerator.
 第1の発明は、断熱隔壁で区画された貯蔵室と、前記貯蔵室内にミストを噴霧する静電霧化装置と、前記静電霧化装置を冷却する冷却部とを備える。そして、前記静電霧化装置は、前記断熱隔壁内に埋設され、前記冷却部によって冷却される伝熱冷却部と、前記伝熱冷却部に熱的に接続され、前記伝熱冷却部から伝導される冷気によって周辺に生じる結露水を、ミストとして前記貯蔵室に噴霧する霧化先端部と、前記伝熱冷却部の前記霧化先端部に対面する側の面を覆う結露防止部材とを有する。 1st invention is equipped with the storage chamber divided by the heat insulation partition, the electrostatic atomizer which sprays mist in the said storage chamber, and the cooling part which cools the said electrostatic atomizer. The electrostatic atomizer is embedded in the heat insulating partition, and is thermally connected to the heat transfer cooling unit that is cooled by the cooling unit and is transmitted from the heat transfer cooling unit. And a dew condensation preventing member that covers the surface of the heat transfer cooling unit facing the atomization front end of the heat transfer cooling unit. .
 これにより、伝熱冷却部は、断熱隔壁の作用により周辺から冷熱を奪われることなく、霧化先端部を効率的に冷却することが可能となる。また、伝熱冷却部の霧化先端部と接続される側に露出した部分が結露防止部材により覆われることにより、表面温度の低下と、それに伴う結露および露点の低下とが抑制される効果が得られる。このため、冷却された霧化先端部に効率的に結露が進行し、低い湿度環境でも安定して微細ミストを貯蔵室に供給することが可能となる。 Thereby, the heat transfer cooling section can efficiently cool the atomization tip without taking heat from the surroundings by the action of the heat insulating partition. In addition, the portion exposed to the side connected to the atomization tip of the heat transfer cooling unit is covered with the dew condensation prevention member, so that the effect of suppressing the decrease in surface temperature and the resulting decrease in dew condensation and dew point is achieved. can get. For this reason, dew condensation progresses efficiently to the cooled atomization front-end | tip part, and it becomes possible to supply fine mist to a storage chamber stably also in a low humidity environment.
 また、貯蔵室内の余剰な水蒸気を、容易且つ確実に、霧化先端部で結露させることができる。また、供給されるミストがナノレベルの微細ミストであり、この微細ミストが噴霧されることで野菜等の青果物の表面に均一に付着し、食品の保鮮性を向上させることができる。 Also, excess water vapor in the storage chamber can be condensed easily and reliably at the atomizing tip. Moreover, the supplied mist is a nano-level fine mist, and when this fine mist is sprayed, it adheres uniformly to the surface of fruits and vegetables, such as vegetables, and can improve the freshness of food.
 さらに、発生した微細ミストに、オゾンやOHラジカルなどが含まれ、これらの酸化力により、野菜室内の脱臭や野菜表面を抗菌、殺菌することができると同時に、野菜表面に付着する農薬やワックスなどの有害物質を酸化分解・除去することが可能となる。 In addition, the generated fine mist contains ozone, OH radicals, etc., and these oxidizing powers can be used to deodorize and sterilize the vegetable surface, as well as pesticides and wax that adhere to the vegetable surface. It is possible to oxidatively decompose and remove harmful substances.
 第2の発明は、前記結露防止部材の前記貯蔵室に露出する面の面積は、前記伝熱冷却部の前記結露防止部材に対面する面の面積より大きくてもよい。 In the second invention, the area of the surface of the dew condensation prevention member exposed to the storage chamber may be larger than the area of the surface of the heat transfer cooling unit facing the dew condensation prevention member.
 このことにより、伝熱冷却部からの冷気が結露防止部材のより広い領域に拡散する。このため、結露防止部材の伝熱冷却部と接する領域近傍の表面温度が局所的に低下することが回避される。こうして、対応する表面での結露が抑制され、冷却された霧化先端部での露点低下も回避されるため、霧化先端部での結露と微細ミストの噴霧とが効率的に進行する。この結果、低い湿度環境でも、安定した微細ミストを貯蔵室に供給することが可能となる。 This causes the cold air from the heat transfer cooling unit to diffuse into a wider area of the dew condensation prevention member. For this reason, it is avoided that the surface temperature of the area | region vicinity of the heat-transfer cooling part of a dew condensation prevention member falls locally. In this way, dew condensation on the corresponding surface is suppressed and dew point lowering at the cooled atomizing tip is avoided, so that dew condensation on the atomizing tip and fine mist spray proceed efficiently. As a result, it is possible to supply stable fine mist to the storage room even in a low humidity environment.
 第3の発明は、前記静電霧化装置は、さらに、前記伝熱冷却部と前記結露防止部材との間に介在し、前記伝熱冷却部から前記結露防止部材への熱伝導を抑制する熱伝導抑制部を有してもよい。 In a third aspect of the invention, the electrostatic atomizer further intervenes between the heat transfer cooling unit and the dew condensation prevention member, and suppresses heat conduction from the heat transfer cooling unit to the dew condensation prevention member. You may have a heat conduction suppression part.
 このことにより、伝熱冷却部からの冷気による結露防止部材の温度低下がさらに抑制される。その結果、伝熱冷却部表面に対応する領域への結露と、霧化電極近傍での露点低下抑制とが、より容易に実現される効果が得られる。 This further suppresses the temperature decrease of the dew condensation prevention member due to the cold air from the heat transfer cooling section. As a result, it is possible to obtain the effect that the condensation on the region corresponding to the surface of the heat transfer cooling section and the suppression of the dew point lowering in the vicinity of the atomizing electrode can be realized more easily.
 第4の発明は、該冷蔵庫は、さらに、前記結露防止部材を選択的に加熱する加熱部を備えてもよい。 In the fourth aspect of the invention, the refrigerator may further include a heating unit that selectively heats the dew condensation prevention member.
 このことにより、加熱部を用いて、伝熱冷却部を加熱することなく、結露防止部材が露点以上になるように選択的に加熱することが可能となる。こうして、伝熱冷却部表面に対応する領域への結露および、霧化電極近傍での露点低下抑制が、さらに容易に実現される効果が得られる。 This makes it possible to selectively heat the dew condensation preventing member to a dew point or higher without heating the heat transfer cooling unit using the heating unit. In this way, it is possible to obtain the effect that the condensation on the region corresponding to the surface of the heat transfer cooling unit and the suppression of the dew point reduction near the atomizing electrode can be realized more easily.
 第5の発明は、前記静電霧化装置は、霧化電極として機能する前記霧化先端部と、前記霧化先端部に対向する位置に設けられる対向電極とを備え、前記霧化電極と前記対向電極との間に電圧を印加することによってミストを噴霧するものであってもよい。そして、前記対向電極は、前記結露防止部材に固定されてもよい。 In a fifth aspect of the present invention, the electrostatic atomizer includes the atomizing tip portion that functions as an atomizing electrode, and a counter electrode provided at a position facing the atomizing tip portion. You may spray mist by applying a voltage between the said counter electrodes. The counter electrode may be fixed to the dew condensation prevention member.
 このことにより、霧化先端部と対向電極との距離を、より高い精度で制御することが可能となり、より安定な微細ミストの供給が実現される効果が得られる。 This makes it possible to control the distance between the atomizing tip and the counter electrode with higher accuracy, and the effect of realizing more stable supply of fine mist can be obtained.
 また、静電霧化装置がよりコンパクトに形成され、貯蔵室の空間がより有効に使用できる効果も得られる。 Also, the electrostatic atomizer is more compactly formed, and the effect that the space of the storage room can be used more effectively is also obtained.
 第6の発明は、前記静電霧化装置は、さらに、前記伝熱冷却部と前記結露防止部材とが対面する位置から前記貯蔵室に至る経路を封止する密着性向上部を有してもよい。 In a sixth aspect of the present invention, the electrostatic atomizer further includes an adhesion improving unit that seals a path from the position where the heat transfer cooling unit and the dew condensation prevention member face each other to the storage chamber. Also good.
 このことにより、冷蔵庫本体側と結露防止部との密着性が高まる。こうして、冷熱のリークを抑制し、霧化電極を効率的に冷却することが可能となるので、霧化電極への結露と噴霧とが促進される効果が得られる。 This increases the adhesion between the refrigerator body and the condensation prevention part. In this way, it is possible to suppress the leakage of cold heat and efficiently cool the atomizing electrode, so that the effect of promoting dew condensation and spraying on the atomizing electrode is obtained.
 第7の発明は、前記伝熱冷却部の前記冷却部に近い側の端部は、伝熱方向に垂直な断面における断面積が他の部分より小さくなるように構成されていてもよい。 The seventh aspect of the invention may be configured such that the end portion of the heat transfer cooling portion near the cooling portion has a smaller cross-sectional area in a cross section perpendicular to the heat transfer direction than other portions.
 上記のように、伝熱冷却部の先端が細くなっているために、霧化装置の冷蔵庫本体側への挿入が容易になる。この結果、霧化装置はしっかりと挿入され、冷蔵庫本体側との密着性が向上し、冷熱のリークが抑制されることで、霧化電極を効率的に冷却することが可能となり、霧化電極への結露と噴霧とが促進される効果が得られる。 As mentioned above, since the tip of the heat transfer cooling part is thin, the atomization device can be easily inserted into the refrigerator body. As a result, the atomization device is firmly inserted, the adhesion with the refrigerator main body side is improved, and the leakage of cold heat is suppressed, so that the atomization electrode can be efficiently cooled. An effect of promoting condensation and spraying on the surface is obtained.
 第8の発明は、前記伝熱冷却部の伝熱方向に垂直な断面における断面形状は、矩形状であってもよい。 In the eighth invention, the cross-sectional shape in the cross section perpendicular to the heat transfer direction of the heat transfer cooling section may be a rectangular shape.
 上記のように、伝熱冷却部の断面が円形でないために、ある決まった向きにしか冷蔵庫本体側に挿入することができず、また、挿入した状態で回転は許されない。このため、霧化装置は、ずれなく、しっかりと挿入固定される。こうして、冷熱のリークが抑制され、霧化電極を効率的に冷却することが可能となり、霧化電極への結露と噴霧とが促進される効果が得られる。 As mentioned above, since the cross section of the heat transfer cooling part is not circular, it can be inserted into the refrigerator body only in a certain direction, and rotation is not allowed in the inserted state. For this reason, the atomizing device is firmly inserted and fixed without deviation. Thus, leakage of cold heat is suppressed, the atomizing electrode can be efficiently cooled, and an effect of promoting condensation and spraying on the atomizing electrode is obtained.
 第9の発明は、前記静電霧化装置は、さらに、前記伝熱冷却部の前記冷却部に近い側の端部を覆う緩衝部と、前記緩衝部を覆い、且つ前記伝熱冷却部に熱的に接続される補助伝熱冷却部とを有してもよい。 According to a ninth aspect of the present invention, the electrostatic atomizer further includes a buffer portion that covers an end portion of the heat transfer cooling portion near the cooling portion, a buffer portion that covers the buffer portion, and the heat transfer cooling portion. You may have the auxiliary heat-transfer cooling part connected thermally.
 上記の緩衝部の緩衝作用により、伝熱冷却部と冷却部との密着性が高まる。これに加え、補助伝熱冷却部の伝熱作用により、冷却部から伝熱冷却部への冷気の伝達が促進される。この結果、霧化電極の冷却効率が上昇し、霧化電極への結露と噴霧とが促進される効果が得られる。 Due to the buffering action of the buffer part, the adhesion between the heat transfer cooling part and the cooling part is enhanced. In addition, the transfer of cold air from the cooling section to the heat transfer cooling section is promoted by the heat transfer action of the auxiliary heat transfer cooling section. As a result, the cooling efficiency of the atomizing electrode is increased, and the effect of promoting condensation and spraying on the atomizing electrode is obtained.
 第10の発明は、前記冷却部は、前記断熱隔壁を介して前記貯蔵室に隣接する位置に設けられてもよい。前記断熱隔壁には、前記冷却部に向かって突出する凸部が形成されてもよい。そして、前記伝熱冷却部は、前記断熱隔壁の前記凸部が形成されている位置に埋設されてもよい。 In the tenth invention, the cooling section may be provided at a position adjacent to the storage chamber via the heat insulating partition. The heat insulating partition may be formed with a protruding portion that protrudes toward the cooling portion. And the said heat-transfer cooling part may be embed | buried in the position in which the said convex part of the said heat insulation partition is formed.
 このため、冷熱部となる貯蔵室の壁と伝熱冷却部との接触面積が大きくなり、さらに貯蔵室内の冷気が凸部に衝突し、凸部の温度が低下し易くなる。この結果、伝熱冷却部は効率的に冷却されるので、化電極の冷却効率が上昇し、霧化電極への結露と噴霧とが促進される効果が得られる。 For this reason, the contact area between the wall of the storage chamber serving as the cooling section and the heat transfer cooling section increases, and the cold air in the storage chamber collides with the projections, and the temperature of the projections is likely to decrease. As a result, since the heat transfer cooling unit is efficiently cooled, the cooling efficiency of the chemical electrode increases, and the effect of promoting condensation and spraying on the atomizing electrode is obtained.
 第11の発明に係る静電霧化装置は、断熱隔壁で区画された貯蔵室と、冷気を生成する冷却部とを有する冷蔵庫に取り付けられ、前記貯蔵室にミストを噴霧する。具体的には、前記断熱隔壁内に埋設され、前記冷却部によって冷却される伝熱冷却部と、前記伝熱冷却部に熱的に接続され、前記伝熱冷却部から伝導される冷気によって周辺に生じる結露水を、ミストとして前記貯蔵室に噴霧する霧化先端部と、前記伝熱冷却部の前記霧化先端部に対面する側の面を覆う結露防止部材とを有する。 An electrostatic atomizer according to an eleventh aspect of the invention is attached to a refrigerator having a storage room partitioned by a heat insulating partition and a cooling unit that generates cold air, and sprays mist into the storage room. Specifically, a heat transfer cooling unit embedded in the heat insulating partition wall and cooled by the cooling unit, and thermally connected to the heat transfer cooling unit and surrounded by cold air conducted from the heat transfer cooling unit And a dew condensation preventing member that covers a surface of the heat transfer cooling unit that faces the atomization front end of the heat transfer cooling unit.
 すでに第1から第11の発明で説明した作用により、霧化電極の冷却効率が上昇し、霧化電極への結露と噴霧が促進される効果が得られる。 The action already explained in the first to eleventh inventions increases the cooling efficiency of the atomizing electrode, and the effect of promoting condensation and spraying on the atomizing electrode is obtained.
 以下、本発明の実施の形態について、図面を参照しながら説明するが、従来例または先に説明した実施の形態と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the same reference numerals are given to the same configurations as those of the conventional examples or the embodiments described above, and detailed description thereof will be omitted. The present invention is not limited to the embodiments.
 (実施の形態1)
 図1は、本発明の実施の形態1における冷蔵庫の縦断面図である。図2は、本発明の実施の形態1の冷蔵庫に設置される静電霧化装置の要部断面図である。
(Embodiment 1)
FIG. 1 is a longitudinal sectional view of the refrigerator according to Embodiment 1 of the present invention. FIG. 2 is a cross-sectional view of a main part of the electrostatic atomizer installed in the refrigerator according to Embodiment 1 of the present invention.
 実施の形態1に係る冷蔵庫100は、図1に示されるように、断熱箱体101と、複数の貯蔵室(冷蔵室104、切換室105、製氷室106、冷凍室107、野菜室108)と、冷却室110と、静電霧化装置131とを主に備える。 As shown in FIG. 1, the refrigerator 100 according to the first embodiment includes a heat insulating box 101, a plurality of storage rooms (refrigeration room 104, switching room 105, ice making room 106, freezing room 107, vegetable room 108) The cooling chamber 110 and the electrostatic atomizer 131 are mainly provided.
 図1において、冷蔵庫100の冷蔵庫本体である断熱箱体101は、主に鋼板を用いた外箱102と、ABSなどの樹脂で成型された内箱103と、外箱102と内箱103との間の空間に発泡充填される硬質発泡ウレタンなどの発泡断熱材(図示せず)とで構成される。また、断熱箱体101の内部空間は、外部空間に対して断熱され、仕切り壁(断熱隔壁)によって複数の貯蔵室に断熱区画されている。 In FIG. 1, a heat insulating box body 101 that is a refrigerator main body of a refrigerator 100 includes an outer box 102 mainly using a steel plate, an inner box 103 molded of a resin such as ABS, an outer box 102, and an inner box 103. It is comprised with foam heat insulating materials (not shown), such as hard foaming urethane, which is foam-filled in the space between. Further, the internal space of the heat insulating box 101 is insulated from the external space and is partitioned into a plurality of storage chambers by partition walls (heat insulating partition walls).
 具体的には、断熱箱体101の内部空間は、最上部に第一の貯蔵室としての冷蔵室104と、冷蔵室104の下部に横並びに設けられた第四の貯蔵室としての切換室105及び第五の貯蔵室としての製氷室106と、切換室105及び製氷室106の下部に第二の貯蔵室としての冷凍室107と、最下部に第三の貯蔵室としての野菜室108とが配置される構成となっている。 Specifically, the inner space of the heat insulating box 101 includes a refrigerating room 104 as a first storage room at the top and a switching room 105 as a fourth storage room provided side by side below the refrigerating room 104. And an ice making room 106 as a fifth storage room, a freezing room 107 as a second storage room below the switching room 105 and the ice making room 106, and a vegetable room 108 as a third storage room at the bottom. It becomes the composition arranged.
 冷蔵室104は、冷蔵保存のために凍らない温度である冷蔵温度帯に設定されている。冷蔵温度帯は、例えば、1℃~5℃である。野菜室108は、冷蔵室104と同等の冷蔵温度帯もしくは若干高い温度設定の野菜温度帯に設定されている。野菜温度帯は、例えば、2℃~7℃である。冷凍室107は、冷凍温度帯に設定されている。冷凍温度帯は、例えば、冷凍保存のために通常-22℃~-15℃に設定されているが、冷凍保存状態の向上のために、-30℃~-25℃の低温で設定されることもある。 The refrigerated room 104 is set to a refrigerated temperature zone that is a temperature that does not freeze for refrigerated storage. The refrigeration temperature zone is, for example, 1 ° C. to 5 ° C. The vegetable room 108 is set to a refrigeration temperature range equivalent to the refrigeration room 104 or a slightly higher temperature set vegetable temperature range. The vegetable temperature zone is, for example, 2 ° C to 7 ° C. The freezer compartment 107 is set to a freezing temperature zone. For example, the freezing temperature zone is usually set to -22 ° C to -15 ° C for frozen storage, but it should be set at a low temperature of -30 ° C to -25 ° C to improve frozen storage conditions. There is also.
 切換室105は、冷蔵温度帯、野菜温度帯、冷凍温度帯以外に、冷蔵温度帯から冷凍温度帯の間の予め設定された温度帯に切り換えることができる。切換室105は、製氷室106に並設された独立扉を備えた貯蔵室であり、引き出し式の扉を備えることが多い。 The switching chamber 105 can be switched to a preset temperature zone between the refrigeration temperature zone and the freezing temperature zone in addition to the refrigeration temperature zone, vegetable temperature zone, and freezing temperature zone. The switching room 105 is a storage room provided with an independent door arranged in parallel with the ice making room 106, and is often provided with a drawer-type door.
 なお、本実施の形態では、切換室105を、冷蔵温度帯から冷凍温度帯までを含めた温度帯に切換え可能な貯蔵室としているが、冷蔵温度帯は冷蔵室104と野菜室108に、冷凍温度帯は冷凍室107に委ねて、冷蔵温度帯と冷凍温度帯との中間の温度帯のみに特化した貯蔵室としても構わない。また、特定の温度帯に固定された貯蔵室でも構わない。 In the present embodiment, the switching chamber 105 is a storage chamber that can be switched to a temperature range including the refrigeration temperature range to the freezing temperature range. The temperature zone may be entrusted to the freezer compartment 107 and may be a storage room specialized only in the intermediate temperature zone between the refrigeration temperature zone and the freezing temperature zone. Moreover, the storage room fixed to the specific temperature range may be sufficient.
 製氷室106は、冷蔵室104内の貯水タンク(図示せず)から送られた水で室内上部に設けられた自動製氷機(図示せず)で氷を作り、室内下部に配置した貯氷容器(図示せず)に貯蔵する。 The ice making chamber 106 creates ice with an automatic ice maker (not shown) provided in the upper part of the room with water sent from a water storage tank (not shown) in the refrigerated room 104, and an ice storage container ( (Not shown).
 断熱箱体101の天面部は、冷蔵庫の背面方向に向かって階段状に凹みを設けた形状となっている。この階段状の凹部には、機械室101aが設置される。機械室101aには、圧縮機109と、水分除去を行うドライヤ(図示せず)等の冷凍サイクルの高圧側構成部品とが収容されている。すなわち、圧縮機109を配設する機械室101aは、冷蔵室104内の最上部の後方領域に食い込んで形成されることになる。 The top surface portion of the heat insulation box 101 has a shape in which a dent is provided stepwise toward the back of the refrigerator. A machine room 101a is installed in the stepped recess. The machine room 101a accommodates a compressor 109 and high-pressure side components of the refrigeration cycle such as a dryer (not shown) for removing moisture. That is, the machine room 101 a in which the compressor 109 is disposed is formed by biting into the uppermost rear region in the refrigerator compartment 104.
 このように、手が届きにくくデッドスペースとなっていた断熱箱体101の最上部の貯蔵室後方領域に機械室101aを設けて圧縮機109を配置することにより、従来の冷蔵庫で、使用者が使いやすい断熱箱体101の最下部にあった機械室のスペースを貯蔵室容量として有効に転化することができる。その結果、収納性や使い勝手を大きく改善することができる。 Thus, by providing the machine room 101a in the rear region of the uppermost storage room of the heat insulation box 101 that has become a dead space that is difficult to reach, the compressor 109 is disposed in the conventional refrigerator. The space in the machine room at the bottom of the easy-to-use heat insulation box 101 can be effectively converted as the storage room capacity. As a result, storability and usability can be greatly improved.
 冷凍サイクルは、圧縮機109と、凝縮器(図示省略)と、減圧器であるキャピラリー(図示省略)と、冷却器112とを順に備えた一連の冷媒流路から形成されている。また、冷凍サイクルには、例えば、炭化水素系冷媒であるイソブタンが封入されている。 The refrigeration cycle is formed of a series of refrigerant flow passages including a compressor 109, a condenser (not shown), a capillary (not shown) as a decompressor, and a cooler 112 in this order. Further, for example, isobutane which is a hydrocarbon refrigerant is sealed in the refrigeration cycle.
 圧縮機109は、ピストンがシリンダ内を往復運動することで冷媒の圧縮を行う往復動型圧縮機である。また、三方弁や切替弁を用いる冷凍サイクルの場合は、それらの機能部品が機械室101a内に配設されている場合もある。 The compressor 109 is a reciprocating compressor that compresses refrigerant by reciprocating a piston in a cylinder. Further, in the case of a refrigeration cycle using a three-way valve or a switching valve, those functional components may be arranged in the machine room 101a.
 また、本実施の形態では冷凍サイクルを構成する減圧器をキャピラリーとしたが、パルスモーターで駆動し、冷媒の流量を自由に制御できる電子膨張弁を用いてもよい。 In this embodiment, the decompressor constituting the refrigeration cycle is a capillary, but an electronic expansion valve that is driven by a pulse motor and can freely control the flow rate of the refrigerant may be used.
 なお、本実施の形態における、以下に述べる発明の要部に関する事項は、従来一般的であった断熱箱体101の最下部の貯蔵室後方領域に設けられた機械室に、圧縮機109等を配置するタイプの冷蔵庫に適用しても構わない。 In this embodiment, the matters relating to the main part of the invention described below are that the compressor 109 and the like are installed in the machine room provided in the rear region of the lowermost storage room of the heat insulating box 101, which has been generally used conventionally. You may apply to the refrigerator of the type to arrange | position.
 冷凍室107の背面には、冷気を生成する冷却室110が設けられている。また、冷却室110と各貯蔵室の背面側の壁である背面仕切り壁111との間には、冷却室110で生成された冷気を各貯蔵室に搬送するための搬送風路が形成されている。さらに、背面仕切り壁111には、搬送風路を流れる冷気を貯蔵室内に取り入れるための吐出風路が形成されている。 A cooling chamber 110 that generates cold air is provided on the back of the freezing chamber 107. In addition, a conveyance air passage is formed between the cooling chamber 110 and the rear partition wall 111, which is a wall on the back side of each storage chamber, for conveying the cold air generated in the cooling chamber 110 to each storage chamber. Yes. Further, the rear partition wall 111 is formed with a discharge air passage for taking cold air flowing through the carrier air passage into the storage chamber.
 冷却室110内には、冷却器112と、冷却器112の上部空間に、強制対流方式により冷却器112で冷却した冷気を冷蔵室104、切換室105、製氷室106、野菜室108、冷凍室107に送風する冷却ファン113とが配置される。 In the cooling chamber 110, the cooler 112 and the cold air cooled by the cooler 112 in the upper space of the cooler 112 by the forced convection method are stored in the refrigerating chamber 104, the switching chamber 105, the ice making chamber 106, the vegetable chamber 108, and the freezing chamber. A cooling fan 113 for blowing air to 107 is arranged.
 また、冷却器112の下部空間には、冷却時に冷却器112やその周辺に付着する霜や氷を除霜するためのガラス管製のラジアントヒータ114が設けられている。さらに、ラジアントヒータ114の下部には、除霜時に生じる除霜水を受けるためのドレンパン115と、ドレンパン115の最深部から庫外に貫通したドレンチューブ116と、ドレンチューブ116の下流側の庫外に蒸発皿117とが構成されている。 Further, in the lower space of the cooler 112, a radiant heater 114 made of a glass tube is provided for defrosting the frost and ice adhering to the cooler 112 and its periphery during cooling. Further, at the lower part of the radiant heater 114, a drain pan 115 for receiving defrost water generated at the time of defrosting, a drain tube 116 penetrating from the deepest part of the drain pan 115 to the outside of the chamber, and the outside of the chamber on the downstream side of the drain tube 116 The evaporating dish 117 is configured.
 第二の仕切り壁125は、冷凍室107と野菜室108とを隔離する断熱隔壁である。この第二の仕切り壁125は、各貯蔵室の断熱性を確保するために、発泡スチロールなどの断熱材で構成されている。 The second partition wall 125 is a heat insulating partition that separates the freezer compartment 107 and the vegetable compartment 108. The second partition wall 125 is made of a heat insulating material such as polystyrene foam in order to ensure the heat insulating properties of each storage chamber.
 次に、図2を用いて、静電霧化装置131について説明する。静電霧化装置131は、第二の仕切り壁125の野菜室108に対面する側の壁面の一部に形成された凹部125a及び最深凹部125bに、他の箇所より低温になるような状態で設置されている。 Next, the electrostatic atomizer 131 will be described with reference to FIG. The electrostatic atomizer 131 is in a state where the temperature is lower than other portions in the concave portion 125a and the deepest concave portion 125b formed on a part of the wall surface on the side facing the vegetable compartment 108 of the second partition wall 125. is set up.
 また、静電霧化装置131は、主に、電圧印加部133と、伝熱冷却部の一例である冷却ピン134と、霧化部139と、外郭ケース137と、結露防止部材142とで構成される。 In addition, the electrostatic atomizer 131 mainly includes a voltage application unit 133, a cooling pin 134 that is an example of a heat transfer cooling unit, an atomization unit 139, an outer case 137, and a dew condensation prevention member 142. Is done.
 外郭ケース137は、中空の箱体であって、内部に静電霧化装置131の構成要素の一部を収納する。また、外郭ケース137の壁面の一部には、噴霧口132と、湿度供給口138と、冷却ピン受入孔とが形成されている。本実施の形態に係る噴霧口132は、具体的には、外郭ケース137のミストの噴霧方向(図2の左側)の壁面に設けられている。また、本実施の形態に係る湿度供給口138は、外郭ケース137のミストの噴霧方向に交差する方向(図2の下側)の壁面に設けられている。さらに、冷却ピン受入孔は、外郭ケース137の外郭ケース137のミストの噴霧方向と反対側の壁面(図2の右側)に設けられている。 The outer case 137 is a hollow box, and houses some of the components of the electrostatic atomizer 131 inside. Further, a spray port 132, a humidity supply port 138, and a cooling pin receiving hole are formed in a part of the wall surface of the outer case 137. Specifically, the spray port 132 according to the present embodiment is provided on the wall surface of the outer case 137 in the mist spray direction (left side in FIG. 2). Further, the humidity supply port 138 according to the present embodiment is provided on the wall surface in the direction (lower side in FIG. 2) that intersects the mist spraying direction of the outer case 137. Further, the cooling pin receiving hole is provided on the wall surface (right side in FIG. 2) of the outer case 137 opposite to the mist spraying direction of the outer case 137.
 なお、本明細書中では、ミストの噴霧方向を「前方」、その反対方向を「後方」と表現することがある。すなわち、噴霧口132は、外郭ケース137の前方側の壁面に設けられている。冷却ピン受入孔は、外郭ケース137の後方側の壁面に設けられている。 In this specification, the spray direction of mist may be expressed as “front” and the opposite direction as “rear”. That is, the spray port 132 is provided on the wall surface on the front side of the outer case 137. The cooling pin receiving hole is provided on the rear wall surface of the outer case 137.
 霧化部139には、霧化先端部の一例である霧化電極135と、霧化電極135に対向する位置で、且つ霧化電極135と所定の距離離隔した位置に対向電極136とが設置されている。霧化電極135及び対向電極136は、電圧印加部133に接続されている。 The atomization unit 139 is provided with an atomization electrode 135 that is an example of an atomization tip, and a counter electrode 136 at a position facing the atomization electrode 135 and at a predetermined distance from the atomization electrode 135. Has been. The atomization electrode 135 and the counter electrode 136 are connected to the voltage application unit 133.
 霧化電極135は、例えば、アルミニウム、ステンレス、又は真鍮などの良熱伝導部材からなる電極接続部材である。霧化電極135は、冷却ピン134の一端のほぼ中心部に固定され、冷却ピン134と熱的に接続されている。 The atomizing electrode 135 is an electrode connecting member made of a good heat conducting member such as aluminum, stainless steel, or brass. The atomizing electrode 135 is fixed to substantially the center of one end of the cooling pin 134 and is thermally connected to the cooling pin 134.
 また、冷却ピン134の素材は、アルミや銅などの高熱伝導部材が好ましい。また、一端から他端に冷気を熱伝導で効率よく伝導させるため、その周囲は断熱材152で覆われている。さらに、霧化電極135側に露出した部分、すなわち冷却ピン134と接続される側の表面には結露防止部材142が配置されている。 Further, the material of the cooling pin 134 is preferably a high heat conductive member such as aluminum or copper. Further, in order to efficiently conduct cold air from one end to the other end by heat conduction, the periphery thereof is covered with a heat insulating material 152. Further, a dew condensation preventing member 142 is disposed on a portion exposed to the atomizing electrode 135 side, that is, a surface connected to the cooling pin 134.
 冷却ピン134は、冷却部からの冷気で冷却され、さらにこの冷気を霧化電極135に伝導する。本実施の形態における冷却部は、第二の仕切り壁125を隔てて隣接する冷凍室107である。すなわち、冷凍室107の冷気が冷却ピン134を経由して、間接的に霧化電極135に伝達される。 The cooling pin 134 is cooled by cold air from the cooling unit, and further conducts this cold air to the atomizing electrode 135. The cooling unit in the present embodiment is the freezer compartment 107 that is adjacent to the second partition wall 125. That is, the cold air in the freezer compartment 107 is indirectly transmitted to the atomizing electrode 135 via the cooling pin 134.
 上記の結露防止部材142は、金属で構成される冷却ピン134よりも熱伝導率が低い材料、例えば樹脂、セラミック等により構成される。この中でも熱伝導率の低い樹脂、さらに好ましくは、強度が許す範囲で発泡樹脂等の多孔体からなる断熱材が好適に用いられる。また、多孔体からなる断熱材の表面に発泡していない樹脂シートあるいは板を貼り付けた複合体も好適に用いられる。 The dew condensation prevention member 142 is made of a material having a lower thermal conductivity than that of the cooling pin 134 made of metal, such as a resin or ceramic. Among them, a resin having a low thermal conductivity, and more preferably a heat insulating material made of a porous material such as a foamed resin as long as the strength allows is suitably used. Moreover, the composite_body | complex which affixed the resin sheet or board which is not foamed on the surface of the heat insulating material consisting of a porous body is also used suitably.
 すなわち、冷却ピン134の一方側端部(前方側の端部)は、外郭ケース137の冷却ピン受入孔に固定されると共に、霧化電極135が取り付けられる。そして、冷却ピン134は、外郭ケース137の後方側の壁面からさらに後方に突出するように取り付けられている。また、結露防止部材142は、外郭ケース137の後方側の内壁面に取り付けられ、冷却ピン134の霧化電極135に対面する面、すなわち、前方側の端面を覆う。 That is, one end portion (front end portion) of the cooling pin 134 is fixed to the cooling pin receiving hole of the outer case 137 and the atomizing electrode 135 is attached. The cooling pin 134 is attached so as to protrude further rearward from the wall surface on the rear side of the outer case 137. The dew condensation prevention member 142 is attached to the inner wall surface on the rear side of the outer case 137 and covers the surface of the cooling pin 134 that faces the atomizing electrode 135, that is, the front end surface.
 一方、第二の仕切り壁125は、断熱材152と、断熱材152の両面に第二の仕切り壁表面151を貼り付けて構成される。そして、第二の仕切り壁125の野菜室108側の壁面には、凹部125aと、最深凹部125bとが設けられている。 On the other hand, the second partition wall 125 is configured by attaching the heat insulating material 152 and the second partition wall surface 151 to both surfaces of the heat insulating material 152. And the recessed part 125a and the deepest recessed part 125b are provided in the wall surface by the side of the vegetable compartment 108 of the 2nd partition wall 125. As shown in FIG.
 そして、上記構成の静電霧化装置131は、第二の仕切り壁125の凹部125a及び最深凹部125bに取り付けられる。より具体的には、外郭ケース137が凹部125aに挿入され、外郭ケース137から突出する冷却ピン134が最深凹部125bに挿入される。すなわち、冷却ピン134は、図2に示されるように、第二の仕切り壁125の断熱材152に埋設された状態となる。 And the electrostatic atomizer 131 of the said structure is attached to the recessed part 125a and the deepest recessed part 125b of the 2nd partition wall 125. FIG. More specifically, the outer case 137 is inserted into the recess 125a, and the cooling pin 134 protruding from the outer case 137 is inserted into the deepest recess 125b. That is, the cooling pin 134 is embedded in the heat insulating material 152 of the second partition wall 125 as shown in FIG.
 冷却ピン134を断熱材152中に埋設することで、冷却ピン134から周辺への冷気の放散が回避され、霧化電極135に集中的に冷気が伝導される。その結果、霧化電極135を効率的に冷却することが可能となる。また、冷却ピン134の霧化電極135側に対面する部分が、より熱伝導率の低い結露防止部材142で覆われることにより、対応する表面の温度低下が抑制され、その部分での結露が回避される。このため、霧化電極135の周辺の露点の低下が回避され、冷却された霧化電極135に効率良く結露が進行する。その結果、0℃、50%程度の低湿度雰囲気でも、安定して微細ミストを野菜室108に供給することが可能となる。 By embedding the cooling pins 134 in the heat insulating material 152, the diffusion of the cold air from the cooling pins 134 to the surroundings is avoided, and the cold air is intensively conducted to the atomizing electrode 135. As a result, the atomization electrode 135 can be efficiently cooled. Further, the portion of the cooling pin 134 facing the atomizing electrode 135 side is covered with the dew condensation prevention member 142 having a lower thermal conductivity, so that the temperature drop on the corresponding surface is suppressed, and dew condensation on that portion is avoided. Is done. For this reason, the fall of the dew point around the atomization electrode 135 is avoided, and dew condensation progresses efficiently to the cooled atomization electrode 135. As a result, it is possible to stably supply fine mist to the vegetable compartment 108 even in a low humidity atmosphere of about 0 ° C. and about 50%.
 また、図2にからわかるように、結露防止部材142の野菜室108側に露出する面の面積は、冷却ピン134の結露防止部材142に対面(当接)する面の面積と比較して、大きくなっている。 Further, as can be seen from FIG. 2, the area of the surface of the dew condensation prevention member 142 exposed to the vegetable compartment 108 side is compared with the area of the surface of the cooling pin 134 that faces (contacts) the dew condensation prevention member 142. It is getting bigger.
 このことにより、冷却ピン134からの冷気は、結露防止部材142のより広い領域に拡散し、結露防止部材142の表面の局所的な温度低下は抑制される。この結果、対応する表面が露点以下になることを、より確実に回避することが可能となる。このように、不要な結露が回避されるため、霧化電極135の近傍での露点低下も回避され、冷却された霧化電極135に効率的に結露が進行する。この結果、低い湿度環境でも安定した微細ミストを野菜室108に供給することが可能となる。 Thus, the cold air from the cooling pins 134 diffuses to a wider area of the dew condensation prevention member 142, and a local temperature drop on the surface of the dew condensation prevention member 142 is suppressed. As a result, it is possible to more reliably avoid that the corresponding surface is below the dew point. Thus, since unnecessary dew condensation is avoided, a dew point reduction in the vicinity of the atomizing electrode 135 is also avoided, and dew condensation proceeds efficiently on the cooled atomizing electrode 135. As a result, a stable fine mist can be supplied to the vegetable compartment 108 even in a low humidity environment.
 また、結露防止部材142の面積が広くなることで、結露防止部材142にフランジの機能を持たせることが可能となる。つまり、外郭ケース137と結露防止部材142とを面接触させることで、冷凍室107側からの冷気漏れを効率よくシールすることができる。これにより、不要な結露が、より完全に回避される効果が得られる。 In addition, since the area of the dew condensation preventing member 142 is increased, the dew condensation preventing member 142 can have a flange function. That is, by bringing the outer case 137 and the dew condensation prevention member 142 into surface contact, it is possible to efficiently seal cold air leakage from the freezer compartment 107 side. Thereby, the effect that unnecessary dew condensation is avoided more completely is acquired.
 結露防止部材142を外郭ケース137と面接触させて固定する方法としては、具体的には、接着剤やねじ等を用いることができる。また、実施の形態2で後述するように、対向電極136、冷却ピン134、及び霧化電極135を結露防止部材142に固定し、これらを一まとめにして、ねじ等により外郭ケース137に固定することも可能である。この場合、メンテナンス時の部材の交換が非常に容易となる効果も得られる。 As a method for fixing the dew condensation prevention member 142 in surface contact with the outer case 137, specifically, an adhesive, a screw, or the like can be used. Further, as described later in the second embodiment, the counter electrode 136, the cooling pin 134, and the atomizing electrode 135 are fixed to the dew condensation prevention member 142, and these are collectively assembled and fixed to the outer case 137 with screws or the like. It is also possible. In this case, an effect that the replacement of the member at the time of maintenance becomes very easy is also obtained.
 また、長期的に霧化電極135と冷却ピン134との熱伝導の維持も必要であるので、接続部に湿度等の侵入を防止するためにエポキシ部材などを流しこんで熱抵抗を抑え、さらに、霧化電極135と冷却ピン134とを固定してもよい。また、熱抵抗を低下させるために、霧化電極135を冷却ピン134に圧入等により固定してもよい。 In addition, since it is necessary to maintain heat conduction between the atomizing electrode 135 and the cooling pin 134 for a long period of time, an epoxy member or the like is poured into the connecting portion to prevent intrusion of humidity, etc. The atomizing electrode 135 and the cooling pin 134 may be fixed. Further, the atomizing electrode 135 may be fixed to the cooling pin 134 by press fitting or the like in order to reduce the thermal resistance.
 冷却ピン134は、例えば、直径10mm程度、長さが20mm程度の円柱形状で構成されている。この冷却ピン134は、直径1mm程度、長さが5mm程度の霧化電極135に比べて、50倍以上1000倍以下、好ましくは100倍以上500倍以下の大きな熱容量を有するものである。 The cooling pin 134 has a cylindrical shape with a diameter of about 10 mm and a length of about 20 mm, for example. The cooling pin 134 has a large heat capacity of 50 times or more and 1000 times or less, preferably 100 times or more and 500 times or less, compared to the atomizing electrode 135 having a diameter of about 1 mm and a length of about 5 mm.
 このように、冷却ピン134の熱容量を霧化電極135の熱容量に対して50倍以上、好ましくは100倍以上にすることで、冷凍室107の温度変化が霧化電極135に直接的に大きな影響を与えることをさらに緩和し、より変動負荷が小さく、安定したミスト噴霧を実現できる。 Thus, by making the heat capacity of the cooling pin 134 50 times or more, preferably 100 times or more than the heat capacity of the atomizing electrode 135, the temperature change of the freezer compartment 107 has a great influence directly on the atomizing electrode 135. Can be further relaxed, and the fluctuation load can be reduced and stable mist spraying can be realized.
 また、この熱容量の上限値として、冷却ピン134の熱容量を霧化電極135の熱容量に対して1000倍以下、好ましくは500倍以下にする。熱容量が大きすぎると、冷却ピン134を冷やすために大きなエネルギを要することとなり、省エネルギで冷却ピン134の冷却を行うことが困難となる。 Further, as the upper limit value of the heat capacity, the heat capacity of the cooling pin 134 is set to 1000 times or less, preferably 500 times or less than the heat capacity of the atomizing electrode 135. If the heat capacity is too large, a large amount of energy is required to cool the cooling pin 134, and it becomes difficult to cool the cooling pin 134 with energy saving.
 そこで、この条件を満たす上記の値の範囲に抑えることで、冷凍室107からの熱変動負荷が変わった場合に、霧化電極135に大きな影響が生じるのを緩和した上で、省エネルギで安定して霧化電極135の冷却を行うことが可能となる。さらに、上記のような範囲内に抑えることで、冷却ピン134を介して霧化電極135が冷却されるのに要するタイムラグを適正な範囲内に収めることができる。その結果、霧化電極135の冷却、すなわち静電霧化装置131への水分供給を行う際の立ち上がりが遅くなることを防止し、適正な霧化電極135の冷却を安定して行うことが可能となる。 Therefore, by suppressing the condition within the above value range that satisfies this condition, when the thermal fluctuation load from the freezer compartment 107 is changed, it is possible to reduce the large influence on the atomizing electrode 135 and to save energy and to be stable. Thus, the atomization electrode 135 can be cooled. Furthermore, by keeping the pressure within the above range, the time lag required for cooling the atomizing electrode 135 via the cooling pin 134 can be kept within the proper range. As a result, it is possible to prevent the rise of the atomizing electrode 135 from being cooled, that is, to delay the rise when supplying water to the electrostatic atomizer 131, and to stably cool the atomizing electrode 135 stably. It becomes.
 また、本実施の形態では、冷却ピン134の形状を円柱としたので、断熱材152の最深凹部125bに冷却ピン134を嵌め込む際に、少し嵌め合い寸法がきつくても静電霧化装置131を回転させながら圧入することで、取り付けることができる。その結果、より隙間無く冷却ピン134を第二の仕切り壁125に取り付けることができる。また、冷却ピン134の形状は直方体や正多角形体でもよい。冷却ピン134が多角形の場合は、円柱と比較して位置決めがしやすく、正確な位置に静電霧化装置131を設置することができる。 In the present embodiment, since the shape of the cooling pin 134 is a cylinder, when the cooling pin 134 is fitted into the deepest recess 125 b of the heat insulating material 152, the electrostatic atomizer 131 is used even if the fitting size is slightly tight. It can be attached by press-fitting while rotating. As a result, the cooling pin 134 can be attached to the second partition wall 125 without a gap. The shape of the cooling pin 134 may be a rectangular parallelepiped or a regular polygon. When the cooling pin 134 is polygonal, it is easier to position compared to a cylinder, and the electrostatic atomizer 131 can be installed at an accurate position.
 冷却ピン134は、外郭ケース137の後方側の壁面に設けられた冷却ピン受入孔に固定され、外郭ケース137の後方に突出している。この冷却ピン134は、霧化電極135と逆側に突出しており、第二の仕切り壁125の凹部125aよりもさらに深い最深凹部125bに嵌めあわされている。 The cooling pin 134 is fixed to a cooling pin receiving hole provided in a wall on the rear side of the outer case 137 and protrudes rearward of the outer case 137. The cooling pin 134 protrudes on the opposite side to the atomizing electrode 135 and is fitted into the deepest recess 125b deeper than the recess 125a of the second partition wall 125.
 よって、第二の仕切り壁125の野菜室108側の壁面には、外郭ケース137を受け入れるための凹部125aと、凹部125aの底壁に冷却ピン134を受け入れるための最深凹部125bとが形成されている。最深凹部125bの位置における断熱材152の厚みは、他の部分よりも薄くなっている。そして、この薄い断熱材152を熱緩和部材として、冷凍室107の冷気が断熱材152を介して冷却ピン134を冷却するように構成されている。 Therefore, a recess 125a for receiving the outer case 137 and a deepest recess 125b for receiving the cooling pin 134 on the bottom wall of the recess 125a are formed on the wall surface of the second partition wall 125 on the vegetable compartment 108 side. Yes. The thickness of the heat insulating material 152 at the position of the deepest recess 125b is thinner than other portions. The thin heat insulating material 152 is used as a heat relaxation member so that the cold air in the freezer compartment 107 cools the cooling pins 134 via the heat insulating material 152.
 また、この時、本実施の形態の冷却ピン134は、霧化電極135と逆側に突出しているので、霧化部139の中で冷却ピン134の後方側の端部が冷凍室107に最も近接する。このため、冷却ピン134の中でも霧化電極135から最も遠い後方側の端部側から冷凍室107の冷気によって冷却されることとなる。 At this time, since the cooling pin 134 of the present embodiment protrudes on the opposite side to the atomizing electrode 135, the end on the rear side of the cooling pin 134 in the atomizing portion 139 is the most in the freezer compartment 107. Proximity. For this reason, the cooling pin 134 is cooled by the cool air in the freezer compartment 107 from the rear end side farthest from the atomizing electrode 135.
 また、対向電極136は、ドーナツ形状(円盤形状)の電極であって、霧化電極135より野菜室108側で、且つ霧化電極135に対向する位置で、霧化電極135の先端と一定距離を保つように取付けられている。また、対向電極136の霧化電極135と反対方向の延長上には、噴霧口132が構成されている。 Further, the counter electrode 136 is a donut-shaped (disc-shaped) electrode, and is a certain distance from the tip of the atomizing electrode 135 at a position on the vegetable chamber 108 side from the atomizing electrode 135 and facing the atomizing electrode 135. Is installed to keep. Further, a spray port 132 is formed on the extension of the counter electrode 136 in the direction opposite to the atomizing electrode 135.
 さらに、電圧印加部133は、霧化部139の近傍に設けられ、高電圧を発生する電圧印加部133の負電位側が霧化電極135に、正電位側が対向電極136にそれぞれ電気的に接続されている。 Further, the voltage application unit 133 is provided in the vicinity of the atomization unit 139, and the negative potential side of the voltage application unit 133 that generates a high voltage is electrically connected to the atomization electrode 135 and the positive potential side is electrically connected to the counter electrode 136. ing.
 霧化電極135の近傍では、ミスト噴霧のため、常に放電が起こる。このため、霧化電極135の先端は、磨耗を生じる可能性がある。冷蔵庫100は、一般に10年以上の長期間に渡って運転することになるので、霧化電極135の表面は、強靭な表面処理が必要であり、例えば、霧化電極135の表面に、ニッケルメッキ、金メッキ、又は白金メッキを施すことが望ましい。 In the vicinity of the atomizing electrode 135, discharge always occurs due to mist spraying. For this reason, the tip of the atomizing electrode 135 may be worn. Since the refrigerator 100 is generally operated for a long period of 10 years or longer, the surface of the atomizing electrode 135 needs to have a tough surface treatment. For example, the surface of the atomizing electrode 135 is plated with nickel. It is desirable to apply gold plating or platinum plating.
 対向電極136は、例えば、ステンレスで構成されている。また、対向電極136の長期信頼性を確保するため、特に異物付着防止や汚れを防止するために、例えば、対向電極136の表面に白金メッキなどの表面処理をすることが望ましい。 The counter electrode 136 is made of stainless steel, for example. In addition, in order to ensure long-term reliability of the counter electrode 136, it is desirable to treat the surface of the counter electrode 136 with, for example, platinum plating in order to prevent foreign matter adhesion and contamination.
 電圧印加部133は、冷蔵庫100本体の制御部146と通信することによって制御され、冷蔵庫100もしくは静電霧化装置131からの入力信号で電圧のON/OFFを行う。 The voltage application unit 133 is controlled by communicating with the control unit 146 of the main body of the refrigerator 100, and turns on / off the voltage by an input signal from the refrigerator 100 or the electrostatic atomizer 131.
 本実施の形態では、電圧印加部133を静電霧化装置131内に設置しているが、野菜室108内が低温高湿雰囲気なるため、電圧印加部133の基板表面上には、防湿のためのボールド材やコーティング材を塗布するのが望ましい。 In the present embodiment, the voltage application unit 133 is installed in the electrostatic atomizer 131. However, since the inside of the vegetable compartment 108 is in a low temperature and high humidity atmosphere, the voltage application unit 133 has a moisture-proof surface on the substrate surface. It is desirable to apply a bold material or a coating material.
 ただし、電圧印加部133を貯蔵室外の高温部に設置した場合には、コーティングを行わなくてもよい。 However, when the voltage application unit 133 is installed in a high temperature part outside the storage room, the coating may not be performed.
 以上のように構成された本実施の形態の冷蔵庫100と静電霧化装置131とについて、以下その動作とを説明する。 The operation of the refrigerator 100 and the electrostatic atomizer 131 of the present embodiment configured as described above will be described below.
 まず、冷凍サイクルの動作について説明する。庫内の設定された温度に応じて制御基板(図示せず)からの信号により、冷凍サイクルが動作して冷却運転が行われる。圧縮機109の動作により吐出された高温高圧の冷媒は、凝縮器(図示せず)である程度凝縮液化し、さらに冷蔵庫本体である断熱箱体101の側面や背面、また断熱箱体101の前面間口に配設された冷媒配管(図示せず)などを経由し、断熱箱体101の結露を防止しながら凝縮液化し、キャピラリーチューブ(図示せず)に至る。その後、キャピラリーチューブでは圧縮機109への吸入管(図示せず)と熱交換しながら減圧されて低温低圧の液冷媒となって冷却器112に至る。 First, the operation of the refrigeration cycle will be described. The refrigeration cycle is operated by the signal from the control board (not shown) according to the set temperature in the cabinet, and the cooling operation is performed. The high-temperature and high-pressure refrigerant discharged by the operation of the compressor 109 is condensed to some extent by a condenser (not shown), and further, the side surface and the rear surface of the heat insulation box body 101 which is the refrigerator main body, and the front opening of the heat insulation box body 101. The refrigerant is condensed and liquefied while preventing condensation of the heat insulating box 101 through a refrigerant pipe (not shown) disposed in the tube and reaches a capillary tube (not shown). After that, the capillary tube is depressurized while exchanging heat with a suction pipe (not shown) to the compressor 109 to become a low-temperature and low-pressure liquid refrigerant and reaches the cooler 112.
 この時、冷却室110内で各貯蔵室を冷却するための冷気を生成する。低温の冷気は冷却ファン113から冷蔵室104、切換室105、製氷室106、野菜室108、及び冷凍室107に搬送風路やダンパを用いて分流させ、それぞれの目的温度帯に冷却する。特に、野菜室108は、冷気の配分や加熱部(図示せず)などのON/OFF運転により、2℃から7℃になるように調整され、一般的には庫内温度検知手段を持たないものが多い。 At this time, cool air for cooling each storage room is generated in the cooling room 110. The low-temperature cold air is diverted from the cooling fan 113 to the refrigerating room 104, the switching room 105, the ice making room 106, the vegetable room 108, and the freezing room 107 using a conveyance air passage or a damper, and cooled to the respective target temperature zones. In particular, the vegetable compartment 108 is adjusted to be 2 ° C. to 7 ° C. by ON / OFF operation such as cold air distribution and a heating unit (not shown), and generally has no internal temperature detection means. There are many things.
 第二の仕切り壁125の比較的高湿度環境である箇所の一部について、断熱材152が、他の箇所より壁厚が薄くなっている。特に、冷却ピン134の後方側の端部を受け入れる最深凹部125bの位置における断熱材152の厚みは、薄い部分で例えば0mm~10mm程度で構成されている。本実施の形態の冷蔵庫100においては、この程度の厚みが冷却ピン134と冷凍室107との間に位置する熱緩和部材として適切なものとなる。これにより、第二の仕切り壁125に設けられた凹部125aと、凹部125aの最背面に設けられた最深凹部125bとに、冷却ピン134が後方に突出した形状の静電霧化装置131が嵌めこまれて、取り付けられている。 In the part of the second partition wall 125 that has a relatively high humidity environment, the heat insulating material 152 has a thinner wall thickness than other parts. In particular, the thickness of the heat insulating material 152 at the position of the deepest recess 125b that receives the rear end of the cooling pin 134 is configured to be, for example, about 0 mm to 10 mm at a thin portion. In the refrigerator 100 of the present embodiment, such a thickness is appropriate as a heat relaxation member positioned between the cooling pin 134 and the freezer compartment 107. As a result, the electrostatic atomizer 131 having a shape in which the cooling pin 134 protrudes rearward is fitted into the recess 125a provided in the second partition wall 125 and the deepest recess 125b provided in the rearmost surface of the recess 125a. It is inserted and attached.
 また、第二の仕切り壁125が厚い場合、あるいは冷却ピン134が細い場合等は、冷却ピン134の冷却が不十分となる場合もある。この場合、冷凍室107の冷気により、より効率的に冷却ピン134を冷やすために、最深凹部125bの底壁が、より温度の低い冷凍室107側に近づいた形状となっていることが好ましい。具体的には、断熱材152の最薄部におおける断熱材152の厚みが0となり、冷却ピン134の後方側の端部が、第二の仕切り壁表面151に直接接し、第二の仕切り壁表面151が冷凍室107側に凸となる形状を有している構成である。冷凍室107側に凸となる長さは、冷却ピン134全体の体積の2割程度に相当する長さ以上であることが好ましい。例えば、冷却ピン134の全長が20mmであれば、4mm程度以上である。 Also, when the second partition wall 125 is thick or the cooling pin 134 is thin, the cooling of the cooling pin 134 may be insufficient. In this case, in order to cool the cooling pin 134 more efficiently by the cold air in the freezer compartment 107, it is preferable that the bottom wall of the deepest recess 125b has a shape approaching the freezer compartment 107 side having a lower temperature. Specifically, the thickness of the heat insulating material 152 at the thinnest portion of the heat insulating material 152 becomes 0, the rear end of the cooling pin 134 is in direct contact with the second partition wall surface 151, and the second partition The wall surface 151 has a shape that is convex toward the freezer compartment 107. The length that protrudes toward the freezer compartment 107 is preferably equal to or longer than the length corresponding to about 20% of the entire cooling pin 134 volume. For example, if the total length of the cooling pin 134 is 20 mm, it is about 4 mm or more.
 なお、上記のように、冷却ピン134が、第二の仕切り壁表面151に直接接する際には、例えば冷却ピン134が僅かに傾いて挿入されている場合、あるいは冷却ピン134先端の表面平坦性が悪い場合に、両者間の接触面積が小さくなる可能性がある。この場合、冷気の伝導が悪くなり、冷却ピン134が十分に冷却されない。 As described above, when the cooling pin 134 is in direct contact with the second partition wall surface 151, for example, when the cooling pin 134 is inserted with a slight inclination, or the surface flatness of the tip of the cooling pin 134 If this is bad, the contact area between them may be small. In this case, the conduction of cold air is deteriorated, and the cooling pins 134 are not sufficiently cooled.
 このような場合、柔軟性を有する良熱伝導体を、両者の間に設置することが好ましい。このことにより、冷却ピン134と第二の仕切り壁表面151との接触面積が大きくなり、冷気の伝導が改善されるため、冷却ピン134が十分に冷却されるようになる。良熱伝導体の具体的な構成は特に限定されないが、例えば、カーボン等の伝導体を分散させたゴム、エラストマ材料からなるシート等が好ましい。また、両者の間にグリースあるいは、良熱伝導体を分散したグリース等を塗布することも有効である。また、ゴム、エラストマ、グリースは、接触面積を増やして熱伝導を促進することに加え、間接的に熱伝導を進めることで、急激な温度変化が抑制されるため、安定噴霧に有効である。 In such a case, it is preferable to install a good heat conductor having flexibility between them. This increases the contact area between the cooling pin 134 and the second partition wall surface 151 and improves the conduction of cold air, so that the cooling pin 134 is sufficiently cooled. The specific configuration of the good heat conductor is not particularly limited, but for example, a rubber in which a conductor such as carbon is dispersed, a sheet made of an elastomer material, and the like are preferable. It is also effective to apply grease or grease in which a good heat conductor is dispersed between the two. In addition to increasing the contact area and promoting heat conduction, rubber, elastomer, and grease are effective for stable spraying because abrupt temperature changes are suppressed by indirectly promoting heat conduction.
 冷却ピン134の背面にある冷却部の一例である冷凍室107の冷気は、例えば-17℃~-20℃である。そして、この冷気は、断熱材152を通して、冷却ピン134に伝達され、冷却ピン134を例えば-5℃~-10℃程度に冷却する。 The cold air in the freezer compartment 107 which is an example of the cooling unit on the back surface of the cooling pin 134 is, for example, −17 ° C. to −20 ° C. The cold air is transmitted to the cooling pin 134 through the heat insulating material 152, and the cooling pin 134 is cooled to, for example, about −5 ° C. to −10 ° C.
 このとき、良熱伝導部材である冷却ピン134は、冷気を非常に伝えやすいので、冷却ピン134を介して、霧化電極135も-3℃~-8℃程度に間接的に冷却される。 At this time, the cooling pin 134 which is a good heat conducting member is very easy to transmit cold air, so the atomizing electrode 135 is also indirectly cooled to about −3 ° C. to −8 ° C. through the cooling pin 134.
 このとき、冷却ピン134の霧化電極135側を向く面は、結露防止部材142に覆われている。結露防止部材142の熱伝導率は冷却ピン134よりも低いために、冷却ピン134から結露防止部材142への冷気の伝導が抑制され、結露防止部材142の表面温度は、冷却ピン134の温度より高くなる。例えば、3℃~-2℃程度となる。 At this time, the surface of the cooling pin 134 facing the atomizing electrode 135 side is covered with the dew condensation prevention member 142. Since the heat conductivity of the dew condensation prevention member 142 is lower than that of the cooling pin 134, the conduction of cold air from the cooling pin 134 to the dew condensation prevention member 142 is suppressed, and the surface temperature of the dew condensation prevention member 142 is higher than the temperature of the cooling pin 134. Get higher. For example, it is about 3 ° C. to −2 ° C.
 また、結露防止部材142は、冷却ピン134との接触部分よりも広い領域に広がっているために、冷却ピン134から伝導される冷気も、結露防止部材142の全体に拡散する。このため、結露防止部材142の表面の最低温度は、冷却ピン134と比較して、例えば1~2℃程度上昇する。また、結露防止部材142は、冷却ピン134と接する領域よりも広い領域に広がり、広がった領域で外郭ケース137と面接触している。その結果、冷凍室107側から野菜室108に流入しようとする冷気を完全にシールすることができる。 Also, since the dew condensation preventing member 142 is spread over a wider area than the contact portion with the cooling pin 134, the cool air conducted from the cooling pin 134 is also diffused throughout the dew condensation preventing member 142. For this reason, the minimum temperature on the surface of the dew condensation prevention member 142 is increased by, for example, about 1 to 2 ° C. as compared with the cooling pin 134. In addition, the dew condensation prevention member 142 extends over a wider area than the area in contact with the cooling pin 134 and is in surface contact with the outer case 137 in the expanded area. As a result, it is possible to completely seal the cold air that is about to flow into the vegetable compartment 108 from the freezer compartment 107 side.
 ここで、野菜室108の温度は2℃~7℃であり、かつ保存されている野菜などからの蒸散により比較的高湿状態である。そこで、霧化電極135が露点温度以下となれば、先端を含む霧化電極135の周辺に水滴が付着する。 Here, the temperature of the vegetable compartment 108 is 2 ° C. to 7 ° C., and the humidity is relatively high due to transpiration from stored vegetables and the like. Therefore, when the atomization electrode 135 is at or below the dew point temperature, water droplets adhere to the periphery of the atomization electrode 135 including the tip.
 電圧印加部133は、水滴が付着した霧化電極135に、高電圧(例えば4~10kV)を印加する。このとき、霧化電極135と対向電極136との間にコロナ放電が起こり、霧化電極135の先端の水滴が、静電エネルギにより微細化され、さらに液滴が帯電しているためレイリー***により数nmレベルの目視できない電荷をもったナノレベルの微細ミストと、それに付随してオゾンやOHラジカル等とが発生する。電極間に印加される電圧は4~10kVと非常に高電圧であるが、そのときの放電電流値は数μAレベルであり、入力としては0.5~1.5Wと非常に低入力である。 The voltage application unit 133 applies a high voltage (for example, 4 to 10 kV) to the atomization electrode 135 to which water droplets have adhered. At this time, corona discharge occurs between the atomizing electrode 135 and the counter electrode 136, the water droplets at the tip of the atomizing electrode 135 are refined by electrostatic energy, and the droplets are further charged. A nano-level fine mist having an invisible charge on the order of several nanometers and accompanying ozone and OH radicals are generated. The voltage applied between the electrodes is very high as 4 to 10 kV, but the discharge current value at that time is several μA level, and the input is very low as 0.5 to 1.5 W. .
 具体的には、霧化電極135を基準電位側(0V)、対向電極136を高電圧側(+7kV)とすると、霧化電極135先端に付着した結露水(結露によって生じた水分)によって霧化電極135と対向電極136との間の空気絶縁層が破壊され、静電気力で放電が起こる。このとき霧化電極135の先端に付着した結露水は帯電し、微細な粒子となる。さらに対向電極136がプラス側のため、帯電した微細ミストは対向電極136側に引き寄せられ、液滴がさらに微粒化される。そして、ラジカルを含んだ数nmレベルの目視できない電荷をもった微細ミストは、その慣性力により、野菜室108に向けて噴霧される。 Specifically, when the atomizing electrode 135 is set to the reference potential side (0 V) and the counter electrode 136 is set to the high voltage side (+7 kV), atomization is caused by condensed water (water generated by condensation) attached to the tip of the atomizing electrode 135. The air insulating layer between the electrode 135 and the counter electrode 136 is destroyed, and discharge occurs due to electrostatic force. At this time, the condensed water adhering to the tip of the atomizing electrode 135 is charged and becomes fine particles. Further, since the counter electrode 136 is on the plus side, the charged fine mist is drawn toward the counter electrode 136, and the droplets are further atomized. The fine mist containing radicals and having an invisible charge of several nm level is sprayed toward the vegetable compartment 108 by its inertial force.
 なお、霧化電極135に水滴が付着していないときは、放電距離が離れ、空気の絶縁層を破壊することができず、放電現象が起こらない。これにより霧化電極135と対向電極136との間に電流が流れない。 It should be noted that when water droplets are not attached to the atomizing electrode 135, the discharge distance is increased, the air insulating layer cannot be destroyed, and the discharge phenomenon does not occur. As a result, no current flows between the atomizing electrode 135 and the counter electrode 136.
 また、霧化電極135を直接冷却することなく、冷却ピン134を冷却することで、冷却ピン134に接続された霧化電極135を間接的に冷却することができる。このとき、冷却ピン134を霧化電極135よりも大きな熱容量を有するようにすることで、冷凍室107の温度変化が霧化電極135に直接的に大きな影響を与えることを緩和することができる。また、冷却ピン134が蓄冷の役割を果たすことにより、霧化電極135の急激な温度変動を抑え、安定した噴霧量のミスト噴霧を実現することができる。 Further, by cooling the cooling pin 134 without directly cooling the atomizing electrode 135, the atomizing electrode 135 connected to the cooling pin 134 can be indirectly cooled. At this time, by making the cooling pin 134 have a larger heat capacity than the atomizing electrode 135, it is possible to mitigate the fact that the temperature change in the freezer compartment 107 directly exerts a great influence on the atomizing electrode 135. Moreover, when the cooling pin 134 plays the role of cold storage, a rapid temperature fluctuation of the atomizing electrode 135 can be suppressed, and a mist spray with a stable spray amount can be realized.
 また、霧化電極135に対向する位置に対向電極136を配置し、霧化電極135と対向電極136との間に高圧電位差を発生させる電圧印加部133を有することで、霧化電極135の近傍に安定した電界を構築することができる。これにより、微粒化現象、噴霧方向が定まり、噴霧する微細ミストの精度をより高めることができる。すなわち、霧化部139の精度を向上させることができ、信頼性の高い静電霧化装置131を提供することができる。 Further, by arranging the counter electrode 136 at a position facing the atomizing electrode 135 and having a voltage application unit 133 that generates a high voltage potential difference between the atomizing electrode 135 and the counter electrode 136, the vicinity of the atomizing electrode 135 is obtained. A stable electric field can be constructed. Thereby, the atomization phenomenon and the spraying direction are determined, and the precision of the fine mist to be sprayed can be further increased. That is, the accuracy of the atomization unit 139 can be improved, and the highly reliable electrostatic atomizer 131 can be provided.
 さらに、冷却ピン134が断熱材152を介して冷凍室107の冷気で冷却される場合には、上記のように霧化電極135は冷却ピン134で間接的に冷却されているので、結果として、霧化電極135は、冷却ピン134と断熱材152との二重構造で間接的に冷却されることになる。その結果、霧化電極135が極度に冷却されることを防ぐことができる。 Furthermore, when the cooling pin 134 is cooled by the cool air of the freezer compartment 107 through the heat insulating material 152, the atomization electrode 135 is indirectly cooled by the cooling pin 134 as described above, and as a result, The atomizing electrode 135 is indirectly cooled by the double structure of the cooling pin 134 and the heat insulating material 152. As a result, the atomization electrode 135 can be prevented from being extremely cooled.
 霧化電極135の温度が1K下がれば、その先端の水生成スピードは約10%程度上昇する。しかし、霧化電極135が極度に冷却されると結露スピードが急激に上昇する。それに伴い結露量が多大となり、霧化部139の負荷の増大による静電霧化装置131への入力の増大、および霧化部139の凍結、霧化不良が懸念される。そこで、上記のように、霧化電極135の過冷却を防止することにより、霧化部139の負荷増大による不具合を防ぐことができる。その結果、適切な結露量を確保することができ、低入力で安定的なミスト噴霧を実現することができる。 If the temperature of the atomizing electrode 135 is lowered by 1K, the water generation speed at the tip thereof increases by about 10%. However, when the atomization electrode 135 is extremely cooled, the dew condensation speed increases rapidly. Accordingly, the amount of dew condensation becomes large, and there is a concern about an increase in input to the electrostatic atomizer 131 due to an increase in the load of the atomizing unit 139, freezing of the atomizing unit 139, and poor atomization. Therefore, as described above, by preventing overcooling of the atomizing electrode 135, it is possible to prevent problems due to an increase in the load of the atomizing section 139. As a result, an appropriate amount of dew condensation can be secured, and stable mist spraying can be realized with low input.
 また、冷却ピン134の形状は、円柱状の他、直方体や正多角形体でもよい。円柱の方が断熱材152の最深凹部125bに嵌め込むとき、静電霧化装置131を傾けながら取り付けることができる。逆に、多角形の場合は、円柱より位置決めがしやすい。 The shape of the cooling pin 134 may be a rectangular parallelepiped or a regular polygon in addition to a cylindrical shape. When the cylinder is fitted into the deepest recess 125b of the heat insulating material 152, the electrostatic atomizer 131 can be attached while being inclined. Conversely, in the case of a polygon, positioning is easier than a cylinder.
 さらに、冷却ピン134の中心軸上に霧化電極135を取り付けることより、冷却ピン134を取り付ける時、回転させても対向電極136と霧化電極135との距離を一定に保つことができ、安定した放電距離を確保できる。 Furthermore, since the atomizing electrode 135 is mounted on the central axis of the cooling pin 134, the distance between the counter electrode 136 and the atomizing electrode 135 can be kept constant even when the cooling pin 134 is rotated, which is stable. The discharge distance can be secured.
 また、冷却ピン134の冷却には、冷凍室107中の冷気を用いており、これが断熱材152中の冷却ピン134を冷却する。冷却ピン134は、熱伝導性のよい金属片で形成したので、必要な冷却を好適に行うことができる。 Further, the cooling pin 134 is cooled by using the cold air in the freezer compartment 107, which cools the cooling pin 134 in the heat insulating material 152. Since the cooling pin 134 is formed of a metal piece having good thermal conductivity, necessary cooling can be suitably performed.
 また、この時、本実施の形態の冷却ピン134は、霧化電極135と逆側に突出している。すなわち、霧化部139の構成要素の中で冷却ピン134の後方側の端部が冷凍室107に最も近接する。このため、冷却ピン134の中でも霧化電極135から最も遠い位置の冷却ピン134の後方側の端部が冷凍室107の冷気によって冷却されることとなる。 At this time, the cooling pin 134 of the present embodiment protrudes on the opposite side to the atomizing electrode 135. That is, the rear end of the cooling pin 134 among the constituent elements of the atomizing unit 139 is closest to the freezer compartment 107. Therefore, the rear end of the cooling pin 134 farthest from the atomizing electrode 135 among the cooling pins 134 is cooled by the cold air in the freezer compartment 107.
 このように簡単な構造で冷却部を構成することができるので、故障が少なく信頼性が高い静電霧化装置131を実現することができる。また、冷凍サイクルの冷却源を利用して冷却ピン134および霧化電極135の冷却を行うことができるので、省エネルギで霧化を行うことができる。但し、冷凍室107の冷気に代えて、冷却ピン134を冷却するための冷却部を別途設けてもよい。 Since the cooling unit can be configured with such a simple structure, the electrostatic atomizer 131 with few failures and high reliability can be realized. Moreover, since the cooling pin 134 and the atomization electrode 135 can be cooled using the cooling source of a refrigerating cycle, atomization can be performed with energy saving. However, instead of the cold air in the freezer compartment 107, a cooling unit for cooling the cooling pins 134 may be provided separately.
 このように冷却部によって冷却ピン134を冷却する際に、霧化電極135から最も距離の離れた部分である冷却ピン134の後方側の端部から冷却すると共に、冷却ピン134の熱容量を霧化電極135と比較して大きくすることで、冷凍室107の温度変化が霧化電極135に直接的に大きな影響を与えることをさらに緩和し、より変動負荷の小さく安定的なミスト噴霧を実現することができる。 Thus, when cooling the cooling pin 134 by the cooling unit, the cooling pin 134 is cooled from the end portion on the rear side of the cooling pin 134 which is the portion farthest from the atomizing electrode 135 and the heat capacity of the cooling pin 134 is atomized. By enlarging compared with the electrode 135, the temperature change of the freezer compartment 107 can further alleviate the direct influence on the atomizing electrode 135 and realize a stable mist spray with a smaller fluctuation load. Can do.
 また、霧化部139が取り付けられている第二の仕切り壁125には、野菜室108に対面する側の一部に凹部125a及び最深凹部125bが形成されている。そして、この凹部125aおよび最深凹部125bに静電霧化装置131が挿入される。その結果、第二の仕切り壁125を構成する断熱材152を熱緩和部材として用いることができる。すなわち、特別な熱緩和部材を備えなくとも、断熱材152の厚みを調整することで、霧化電極135が適度に冷却されるような熱緩和部材を備えることができ、静電霧化装置131をより簡単な構成にすることができる。 Also, the second partition wall 125 to which the atomizing portion 139 is attached is formed with a recess 125a and a deepest recess 125b in a part of the side facing the vegetable compartment 108. And the electrostatic atomizer 131 is inserted in this recessed part 125a and the deepest recessed part 125b. As a result, the heat insulating material 152 constituting the second partition wall 125 can be used as a heat relaxation member. That is, even if a special heat relaxation member is not provided, by adjusting the thickness of the heat insulating material 152, a heat relaxation member that appropriately cools the atomization electrode 135 can be provided, and the electrostatic atomizer 131 can be provided. Can be made simpler.
 また、凹部125a及び最深凹部125bに冷却ピン134及び外郭ケース137を挿入することで、静電霧化装置131をガタツキなく確実に第二の仕切り壁125に取り付けることができる。また、静電霧化装置131が野菜室108側への出っ張るのを抑えることができるので、人の手にも触れにくく、安全性を向上させることができる。 Further, by inserting the cooling pin 134 and the outer case 137 into the recess 125a and the deepest recess 125b, the electrostatic atomizer 131 can be securely attached to the second partition wall 125 without rattling. Moreover, since it can suppress that the electrostatic atomizer 131 protrudes to the vegetable compartment 108 side, it is hard to touch a human hand and safety can be improved.
 また、野菜室108の第二の仕切り壁125を挟んだ外側に静電霧化装置131が出っ張らないので、冷凍室107の吐出風路(図示せず)の風路断面積に影響を与えず、風路抵抗を増加させることによる冷却量の低下を防ぐことができる。 Moreover, since the electrostatic atomizer 131 does not protrude outside the vegetable compartment 108 across the second partition wall 125, the air passage cross-sectional area of the discharge air passage (not shown) of the freezer compartment 107 is not affected. In addition, it is possible to prevent the cooling amount from being lowered by increasing the air path resistance.
 また、第二の仕切り壁125の野菜室108側の一部に凹部125a及び最深凹部125bを設け、そこに静電霧化装置131を挿入することにより、青果物や食品などを収納するための野菜室108の収納量に影響することがない。また、冷却ピン134が埋設されている部分の断熱材152の厚みを選択的に薄くすることにより、冷却ピン134を確実に冷やすとともに、それ以外の部分については、断熱性が確保できる壁厚を確保できる。その結果、外郭ケース137内の結露を防止することができ、信頼性を向上することができる。 In addition, a recess 125a and a deepest recess 125b are provided in a part of the second partition wall 125 on the side of the vegetable compartment 108, and an electrostatic atomizer 131 is inserted into the recess 125a and vegetables for storing fruits and vegetables. There is no effect on the storage capacity of the chamber 108. In addition, by selectively reducing the thickness of the heat insulating material 152 in the portion where the cooling pin 134 is embedded, the cooling pin 134 is reliably cooled, and the wall thickness that can ensure heat insulation is secured for the other portions. It can be secured. As a result, condensation within the outer case 137 can be prevented, and reliability can be improved.
 また、冷却ピン134は、ある程度の熱容量を確保できており、冷凍室107の冷気からの熱伝導の応答を緩和することができるので、霧化電極135の温度変動を抑制することができる。また、冷却ピン134は蓄冷部材としての働きを有することになるので、霧化電極135の結露発生の時間を確保し、凍結も防止することができる。 Further, the cooling pin 134 can secure a certain amount of heat capacity and can relieve the response of heat conduction from the cold air in the freezer compartment 107, so that the temperature fluctuation of the atomizing electrode 135 can be suppressed. Moreover, since the cooling pin 134 has a function as a cold storage member, it is possible to secure the time for the condensation of the atomizing electrode 135 to occur and to prevent freezing.
 さらに、良熱伝導性の冷却ピン134と断熱材152とを組み合わせることにより、損失なく良好に冷気を伝導することができる。さらに、冷却ピン134と霧化電極135との接合部における熱抵抗を抑えているので、霧化電極135と冷却ピン134との温度変動が良好に追従する。また、冷却ピン134と霧化電極135との間に湿気が侵入することができないので、長期的に熱接合性が維持される。 Furthermore, by combining the cooling pin 134 with good heat conductivity and the heat insulating material 152, it is possible to conduct cool air well without loss. Furthermore, since the thermal resistance at the joint between the cooling pin 134 and the atomizing electrode 135 is suppressed, the temperature fluctuation between the atomizing electrode 135 and the cooling pin 134 follows well. Further, since moisture cannot enter between the cooling pin 134 and the atomizing electrode 135, the thermal bondability is maintained for a long time.
 また、野菜室108が高湿環境下にあり、その湿度が冷却ピン134に影響する可能性があるので、冷却ピン134は耐腐食性、耐錆性の性能を持った金属材料、もしくはアルマイト処理などの表面処理、コーティングを行っておくのが望ましい。これにより、冷却ピン134にさび等が発生せず、表面熱抵抗の増加が抑制され、安定した熱伝導が確保できる。 Further, since the vegetable room 108 is in a high humidity environment and the humidity may affect the cooling pin 134, the cooling pin 134 is a metal material having a corrosion resistance and rust resistance performance, or an alumite treatment. It is desirable to perform surface treatment and coating. Thereby, rust etc. do not generate | occur | produce in the cooling pin 134, the increase in surface thermal resistance is suppressed, and the stable heat conduction can be ensured.
 さらに、霧化電極135の表面にニッケルメッキ、金メッキ、又は白金メッキが施されているので、霧化電極135の先端の放電による磨耗が抑制され、これにより、霧化電極135の先端の形状が維持できる。その結果、長期に微細ミストを噴霧することが可能となり、また、その先端の液滴形状も安定する。 Furthermore, since the surface of the atomizing electrode 135 is nickel-plated, gold-plated, or platinum-plated, wear due to discharge at the tip of the atomizing electrode 135 is suppressed, whereby the shape of the tip of the atomizing electrode 135 is reduced. Can be maintained. As a result, it becomes possible to spray fine mist over a long period of time, and the shape of the droplet at the tip is also stabilized.
 霧化電極135から微細ミストが噴霧されるとき、イオン風が発生する。このとき、外郭ケース137に設けられた湿度供給口138より、新たに高湿な空気が外郭ケース137内の霧化電極135に流入するため、連続して噴霧することができる。 When the fine mist is sprayed from the atomizing electrode 135, an ion wind is generated. At this time, since highly humid air newly flows into the atomizing electrode 135 in the outer case 137 from the humidity supply port 138 provided in the outer case 137, it can be continuously sprayed.
 霧化電極135で発生した微細ミストは、非常に小さい微粒子のため拡散性が強く、野菜室108の隅々まで到達する。また、噴霧される微細ミストは、高圧放電で生成されたため、マイナスの散性が強く、同様に野菜室108の隅々まで到達する。さらに、噴霧される微細ミストは、高圧放電で生成され、マイナスの電荷を帯びている。一方、野菜室108内には青果物である野菜の中でも緑の菜っ葉ものや果物等も保存されており、これらの青果物は蒸散あるいは保存中の蒸散によってより萎れやすいものである。そこで、野菜室108内に保存されている野菜や果物の中には、通常、購入帰路時での蒸散あるいは保存中の蒸散によってやや萎れかけた状態のものが含まれており、プラスの電荷をもつ。よって、霧化されたミストは、野菜の表面に集まりやすく、これにより保鮮性が向上する。 The fine mist generated at the atomizing electrode 135 is very diffusible due to very small fine particles and reaches every corner of the vegetable compartment 108. Moreover, since the fine mist to be sprayed is generated by high-pressure discharge, it has a strong negative dispersibility and similarly reaches every corner of the vegetable compartment 108. Furthermore, the fine mist to be sprayed is generated by high-pressure discharge and has a negative charge. On the other hand, among the vegetables which are fruits and vegetables, green vegetable leaves and fruits are also stored in the vegetable room 108, and these fruits and vegetables are more susceptible to wilt due to transpiration or transpiration during storage. Therefore, the vegetables and fruits stored in the vegetable room 108 usually include those that have been slightly deflated by transpiration at the time of return purchase or transpiration during storage, and have a positive charge. Have. Therefore, the atomized mist is easy to gather on the surface of vegetables, and this improves the freshness.
 また、野菜表面に付着したナノレベルの微細ミストは、OHラジカルと微量ではあるがオゾンなどとを多く含んでいる。そのため、殺菌、抗菌、除菌などに効果がある他、酸化分解による農薬除去や抗酸化によるビタミンC量などの栄養素の増加を野菜に促す。 Also, the nano-level fine mist adhering to the vegetable surface contains a lot of OH radicals and a small amount of ozone. Therefore, in addition to being effective for sterilization, antibacterial, sterilization, etc., it encourages vegetables to increase nutrients such as the removal of agricultural chemicals by oxidative degradation and the amount of vitamin C by antioxidants.
 ここで、霧化電極135に水滴が付着していないときは、霧化電極135と対向電極136との間の放電距離が離れ、空気の絶縁層を破壊することができず、放電現象が起こらない。これにより、霧化電極135と対向電極136との間に電流が流れない。この現象を冷蔵庫100の制御部146で検知することにより、電圧印加部133の電圧をON/OFFすることもできる。 Here, when water droplets are not attached to the atomizing electrode 135, the discharge distance between the atomizing electrode 135 and the counter electrode 136 is increased, the air insulating layer cannot be destroyed, and a discharge phenomenon occurs. Absent. As a result, no current flows between the atomizing electrode 135 and the counter electrode 136. By detecting this phenomenon by the control unit 146 of the refrigerator 100, the voltage of the voltage application unit 133 can be turned on / off.
 また、本実施の形態において、電圧印加部133は、野菜室108内の比較的低温で高湿の位置に設置されている。そこで、電圧印加部133は、ポッティング材やコーティングにより防湿及び防水構造をとることにより、回路を保護するのが望ましい。 In this embodiment, the voltage application unit 133 is installed at a relatively low temperature and high humidity in the vegetable compartment 108. Therefore, it is desirable that the voltage application unit 133 protect the circuit by adopting a moisture-proof and waterproof structure with a potting material or coating.
 なお、電圧印加部133を野菜室108の外に設置する場合は、上記対応を行わなくてもよい。 In addition, when installing the voltage application part 133 outside the vegetable compartment 108, it is not necessary to perform the said correspondence.
 以上のように、本実施の形態1においては、断熱区画された貯蔵室(野菜室108等)と、野菜室108内にミストを噴霧させる静電霧化装置131とを備える。また、静電霧化装置131の霧化部139は、高電圧を発生する電圧印加部133に電気的に接続されてミストを噴霧する霧化先端部(霧化電極135)と、霧化電極135に対向する位置に配置された対向電極136と、霧化電極135に接続された伝熱冷却部(冷却ピン134)と、霧化電極135を空気中の水分が結露する温度である露点以下にするため冷却ピン134を冷却する冷却部(冷凍室107の冷気)とを有する。そして、冷凍室107の冷気が冷却ピン134を冷却することで間接的に霧化電極135を露点以下に冷却する。その結果、余剰な水蒸気から容易に且つ確実に霧化電極135に結露を発生させるものである。 As described above, the first embodiment includes the storage compartment (the vegetable compartment 108 and the like) that is insulated and the electrostatic atomizer 131 that sprays mist into the vegetable compartment 108. The atomizing unit 139 of the electrostatic atomizer 131 includes an atomizing tip (an atomizing electrode 135) that is electrically connected to a voltage applying unit 133 that generates a high voltage and sprays mist, and an atomizing electrode. The counter electrode 136 disposed at a position facing the 135, the heat transfer cooling unit (cooling pin 134) connected to the atomizing electrode 135, and a dew point that is a temperature at which moisture in the air condenses the atomizing electrode 135 In order to make it cool, it has a cooling part (cool air of freezer compartment 107) which cools cooling pin 134. Then, the cool air in the freezer compartment 107 cools the cooling pins 134 to indirectly cool the atomizing electrode 135 to a dew point or lower. As a result, condensation is generated on the atomizing electrode 135 easily and reliably from excess water vapor.
 また、本実施の形態においては、冷却ピン134全体が、ほぼ断熱材152中に埋設され、さらに冷却ピン134の霧化電極135と接続される側の面が結露防止部材142により覆われている。 Further, in the present embodiment, the entire cooling pin 134 is substantially embedded in the heat insulating material 152, and the surface of the cooling pin 134 on the side connected to the atomizing electrode 135 is covered with the dew condensation prevention member 142. .
 このような構成をとることにより、冷却ピン134からの冷気の散逸を抑制し、効率的に霧化電極135を冷却することが可能となる。また、冷却ピン134表面での不要な結露が回避されるため、霧化電極135近傍での露点は下がらず、霧化電極135において効率的に結露が進行する。この結果、低湿度雰囲気でもナノレベルの微細ミストが生成され、噴霧された微細ミストが野菜等の青果物の表面に均一に付着し、青果物からの蒸散を抑制し、保鮮性を向上させることができる。また、青果物表面の細胞間隙や気孔等から、組織内に浸透し、萎んだ細胞内に水分が供給され、シャキッとした状態に復帰させることができる。 By adopting such a configuration, it is possible to suppress the dissipation of the cold air from the cooling pins 134 and to cool the atomizing electrode 135 efficiently. In addition, since unnecessary condensation on the surface of the cooling pin 134 is avoided, the dew point in the vicinity of the atomizing electrode 135 does not decrease, and condensation proceeds efficiently in the atomizing electrode 135. As a result, nano-level fine mist is generated even in a low-humidity atmosphere, and the sprayed fine mist uniformly adheres to the surface of vegetables and other fruits and vegetables, and can suppress transpiration from the fruits and vegetables and improve freshness. . Moreover, it can penetrate | invade in a structure | tissue from the cell space | gap, pores, etc. on the surface of fruit and vegetables, and a water | moisture content is supplied to the deflated cell, It can return to a crispy state.
 また、結露防止部材142の表面積が、冷却ピン134の表面積より広くなっていることにより、冷却ピン134からの冷気は、結露防止部材142を伝導してより広い領域に拡散し、結露防止部材142表面の局所的な温度低下は抑制される。また、冷却ピン134よりも広い領域に広がった結露防止部材142は、外郭ケース137と面接触することで、冷凍室107側から野菜室108側に流入しようとする冷気を完全にシールすることができる。 Further, since the surface area of the dew condensation prevention member 142 is larger than the surface area of the cooling pin 134, the cold air from the cooling pin 134 is conducted through the dew condensation prevention member 142 and diffuses to a wider area, and the dew condensation prevention member 142. The local temperature drop on the surface is suppressed. In addition, the dew condensation prevention member 142 that has spread over a wider area than the cooling pin 134 is in surface contact with the outer case 137 so that the cold air that is about to flow from the freezer compartment 107 side to the vegetable compartment 108 side can be completely sealed. it can.
 この結果、結露防止部材142の表面が露点以下になることを、より確実に回避できる。このように不要な結露が回避されるため、霧化電極135近傍での露点低下も回避され、冷却された霧化電極135の表面で効率的に結露が進行する。その結果、低い湿度環境でも安定した微細ミストを野菜室108に供給することが可能となる。 As a result, it is possible to more surely avoid that the surface of the dew condensation prevention member 142 is below the dew point. Since unnecessary dew condensation is avoided in this way, a decrease in dew point near the atomizing electrode 135 is also avoided, and dew condensation proceeds efficiently on the surface of the cooled atomizing electrode 135. As a result, a stable fine mist can be supplied to the vegetable compartment 108 even in a low humidity environment.
 また、冷却ピン134の後方側の端部が、より温度の低い冷凍室107側に突き出た形状を有している構成をとれば、冷却ピン134を低湿度雰囲気での結露に必要な温度まで、容易に冷却することが可能となる。その結果、安定した微細ミストの供給が可能となる。このとき、第二の仕切壁表面151と冷却ピン134の後方側の端部との間に、グリース、ゴム、又はエラストマ等を挿入することで、接触面積が確保され、冷却ピン134の冷却が効率的に進む効果が得られる。また、グリース、ゴム、又はエラストマに導電性材料を複合化させることにより、この効果はより優れたものとなる。 In addition, if the rear end of the cooling pin 134 has a shape protruding toward the freezer compartment 107 having a lower temperature, the cooling pin 134 can reach a temperature necessary for condensation in a low humidity atmosphere. It becomes possible to cool easily. As a result, it is possible to supply a stable fine mist. At this time, by inserting grease, rubber, elastomer, or the like between the second partition wall surface 151 and the rear end of the cooling pin 134, a contact area is ensured, and the cooling pin 134 is cooled. The effect of proceeding efficiently is obtained. In addition, this effect can be further improved by combining a conductive material with grease, rubber, or elastomer.
 また、霧化電極135と対向電極136との間で放電させるため、安定した電界が構築できる。このことにより、噴霧方向が定まり、収納容器内に微細ミストをより精度良く噴霧することができる。 Also, since a discharge is caused between the atomizing electrode 135 and the counter electrode 136, a stable electric field can be constructed. As a result, the spraying direction is determined, and the fine mist can be sprayed more accurately into the storage container.
 また、ミスト発生と同時に発生するオゾンやOHラジカルにより、脱臭、食品表面の有害物質除去、防汚などの効果を高めることができる。 Also, the effects of deodorization, removal of harmful substances on food surfaces, and antifouling can be enhanced by ozone and OH radicals generated simultaneously with the generation of mist.
 また、噴霧されたミストは、野菜室108の収納容器内の食品に直接噴霧することができ、ミストと野菜との電位差を利用して、野菜表面にミストを付着させることができるので、保鮮の効率がよい。 The sprayed mist can be directly sprayed on the food in the storage container of the vegetable compartment 108, and the mist can be attached to the vegetable surface using the potential difference between the mist and the vegetable. Efficiency is good.
 このように簡単な構成で安定的に野菜室108へ微細ミストを供給することができるので、冷蔵庫100の故障の可能性を大幅に低減することができ、信頼性が向上する。すなわち、より高品質の冷蔵庫100を提供することができる。 Since the fine mist can be stably supplied to the vegetable compartment 108 with such a simple configuration, the possibility of failure of the refrigerator 100 can be greatly reduced, and the reliability is improved. That is, a higher quality refrigerator 100 can be provided.
 さらに、電圧印加部133も第二の仕切り壁125に埋め込まれて冷却されているので、基板の温度上昇を抑えることができる。これにより、野菜室108内の温度影響を少なくすることができる。 Furthermore, since the voltage application unit 133 is also embedded in the second partition wall 125 and cooled, the temperature rise of the substrate can be suppressed. Thereby, the temperature influence in the vegetable compartment 108 can be decreased.
 また、本実施の形態では、各貯蔵室(冷蔵室104、切換室105、製氷室106、冷凍室107、野菜室108)を冷却するための冷却器112と、冷却器112を備えた冷却室110と、野菜室108を断熱区画するための第二の仕切り壁125とを備え、静電霧化装置131を第二の仕切り壁125に取り付けた。このように、静電霧化装置131を野菜室108内の間隙に設置することで、野菜室108の収納容積が減少することがない。また、静電霧化装置131が野菜室108の奥面に取り付けられていることで、容易に人の手に触れることができないので安全性も向上する。 In the present embodiment, a cooler 112 for cooling each storage room (refrigeration room 104, switching room 105, ice making room 106, freezer room 107, vegetable room 108) and a cooling room provided with the cooler 112 110 and a second partition wall 125 for thermally insulating the vegetable compartment 108, and an electrostatic atomizer 131 was attached to the second partition wall 125. Thus, by installing the electrostatic atomizer 131 in the gap in the vegetable compartment 108, the storage volume of the vegetable compartment 108 does not decrease. Moreover, since the electrostatic atomizer 131 is attached to the back surface of the vegetable compartment 108, since it cannot touch a human hand easily, safety is also improved.
 また、現在、冷凍サイクルの冷媒としては、地球環境保全の観点から地球温暖化係数が小さい可燃性冷媒であるイソブタンが使用されているものが主流になっている。 In addition, at present, as the refrigerant for the refrigeration cycle, the one that uses isobutane, which is a flammable refrigerant with a low global warming potential, has become the mainstream from the viewpoint of global environmental conservation.
 この、炭化水素であるイソブタンは空気と比較して常温、大気圧下で約2倍の比重である(2.04、300Kにおいて)。 This isobutane, which is a hydrocarbon, has a specific gravity approximately twice that at normal temperature and atmospheric pressure compared with air (at 2.04 and 300K).
 仮に、圧縮機109の停止時に冷凍システムから可燃性冷媒であるイソブタンが漏洩した場合、空気よりも重いイソブタンは、下方に漏洩することになる。このとき、庫内に冷媒が漏洩する可能性がある。 If isobutane, which is a flammable refrigerant, leaks from the refrigeration system when the compressor 109 is stopped, isobutane heavier than air leaks downward. At this time, the refrigerant may leak into the cabinet.
 しかしながら、仮に可燃性冷媒(イソブタン)が冷却器112から野菜室108に漏洩したとしても、空気より重いイソブタンは野菜室108の下部に滞留する。一方、静電霧化装置131は野菜室108の天面に設置されているため、静電霧化装置131付近が可燃濃度になる可能性を極めて低くすることができる。すなわち、静電霧化装置131に高電圧を印加する場合でも、安全性を確保することができる。 However, even if flammable refrigerant (isobutane) leaks from the cooler 112 to the vegetable compartment 108, isobutane heavier than air remains in the lower portion of the vegetable compartment 108. On the other hand, since the electrostatic atomizer 131 is installed on the top of the vegetable compartment 108, the possibility that the vicinity of the electrostatic atomizer 131 becomes a flammable concentration can be extremely reduced. That is, safety can be ensured even when a high voltage is applied to the electrostatic atomizer 131.
 また、本実施の形態では、第二の仕切り壁125の野菜室108側の壁面の一部に凹部125a及び最深凹部125bを設け、この凹部125a及び最深凹部125bに静電霧化装置131の外郭ケース137及び冷却ピン134を挿入する。これにより、青果物や食品などを収納する野菜室108の収納量に影響することがない。また、冷却ピン134の位置での断熱材152の厚みを選択的に薄くすることにより、冷却ピン134を確実に冷やすとともに、静電霧化装置131におけるそれ以外の部分の断熱性が確保できる壁厚が確保できる。その結果、外郭ケース137内の結露を防止することができ、信頼性を向上することができる。 Moreover, in this Embodiment, the recessed part 125a and the deepest recessed part 125b are provided in a part of wall surface by the side of the vegetable compartment 108 of the 2nd partition wall 125, and the outline of the electrostatic atomizer 131 is provided in this recessed part 125a and the deepest recessed part 125b. The case 137 and the cooling pin 134 are inserted. Thereby, it does not affect the storage capacity of the vegetable room 108 for storing fruits and vegetables. In addition, by selectively reducing the thickness of the heat insulating material 152 at the position of the cooling pin 134, the cooling pin 134 can be reliably cooled, and the heat insulating properties of other parts of the electrostatic atomizer 131 can be secured. Thickness can be secured. As a result, condensation within the outer case 137 can be prevented, and reliability can be improved.
 なお、本実施の形態における静電霧化装置131は、霧化電極135と対向電極136との間に高電圧を印加するため、微細ミスト発生時にオゾンも発生する。そこで、静電霧化装置131の運転を制御(ON/OFF)することにより、野菜室108内のオゾン濃度を調整することが出来る。オゾン濃度を適度に調整することにより、オゾン過多による野菜の黄化などの劣化を防止し、かつ、野菜表面の殺菌、抗菌作用を高めることが出来る。 In addition, since the electrostatic atomizer 131 in this Embodiment applies a high voltage between the atomization electrode 135 and the counter electrode 136, ozone is also generated at the time of fine mist generation. Therefore, the ozone concentration in the vegetable compartment 108 can be adjusted by controlling (ON / OFF) the operation of the electrostatic atomizer 131. By adjusting the ozone concentration appropriately, deterioration such as yellowing of vegetables due to excessive ozone can be prevented, and the sterilization and antibacterial action of the vegetable surface can be enhanced.
 なお、本実施の形態では、霧化電極135を基準電位側(0V)とし、対向電極136に正電位(+7kV)を印加して、両電極間に高圧電位差を発生させたが、対向電極136を基準電位側(0V)とし、霧化電極135に負電位(-7kV)を印加して、両電極間に高圧電位差を発生させてもよい。この場合、野菜室108に近い対向電極136が基準電位側になるので、冷蔵庫100の使用者の手が対向電極136に近づいても感電等を起こさない。また、霧化電極135を-7kVの負電位にした場合、野菜室108側を基準電位側とすれば、特に対向電極136を設けなくてもよい場合もある。 In this embodiment, the atomization electrode 135 is set to the reference potential side (0 V), and a positive potential (+7 kV) is applied to the counter electrode 136 to generate a high-voltage potential difference between the two electrodes. May be set to the reference potential side (0 V), and a negative potential (−7 kV) may be applied to the atomizing electrode 135 to generate a high voltage potential difference between the two electrodes. In this case, since the counter electrode 136 close to the vegetable compartment 108 is on the reference potential side, no electric shock or the like is caused even if the user of the refrigerator 100 approaches the counter electrode 136. In addition, when the atomizing electrode 135 is set to a negative potential of −7 kV, the counter electrode 136 may not be provided if the vegetable compartment 108 side is set to the reference potential side.
 この場合は、例えば、断熱された野菜室108の中に導電性の収納容器を配置する。また、導電性の収納容器を導電性の保持部材と電気的に接続し、且つ収納容器と保持部材とを脱着可能な構成とする。さらに、保持部材を基準電位部と接続し、アース(0V)にするのである。 In this case, for example, a conductive storage container is disposed in the insulated vegetable compartment 108. Further, the conductive container is electrically connected to the conductive holding member, and the storage container and the holding member are detachable. Further, the holding member is connected to the reference potential portion to be grounded (0 V).
 これにより、霧化部139と収納容器および保持部材が常に電位差を保つため、安定的な電界が構成される。これにより、安定的に霧化部139からミストを噴霧できる。また、収納容器全体が基準電位になっているので、噴霧されるミストを収納容器全体に拡散することができる。さらに、周辺の物体への帯電も防止することができる。 Thereby, the atomizing section 139, the storage container, and the holding member always maintain a potential difference, thereby forming a stable electric field. Thereby, mist can be sprayed from the atomization part 139 stably. Further, since the entire storage container is at the reference potential, the sprayed mist can be diffused throughout the storage container. Further, charging to surrounding objects can be prevented.
 このように、特に対向電極136を設けなくても、野菜室108側の一部にアースされた保持部材を備えることで、霧化電極135との間に電位差を発生させて、ミスト噴霧を行うことができる。すなわち、より簡単な構成で安定的な電界が構成されることにより、静電霧化装置131から安定的にミストを噴霧できる。 In this way, even if the counter electrode 136 is not particularly provided, a potential difference is generated between the atomizing electrode 135 and the mist spraying by providing a grounded holding member at a part of the vegetable compartment 108 side. be able to. That is, by forming a stable electric field with a simpler configuration, mist can be stably sprayed from the electrostatic atomizer 131.
 また、収納容器側に保持部材を取り付けると、収納容器全体が基準電位になっているので、噴霧されるミストを収納容器全体に拡散させることができる。さらに、周辺の物体への帯電も防止することができる。 Also, when the holding member is attached to the storage container side, the entire storage container is at the reference potential, so that the sprayed mist can be diffused throughout the storage container. Further, charging to surrounding objects can be prevented.
 なお、本実施の形態では、冷却ピン134を冷却する冷却部は、冷凍室107の冷気であったが、冷蔵庫100の冷凍サイクルで生成された冷却源を用いて冷却された冷気、冷蔵庫100の冷却源からの冷気もしくは冷温を用いた冷却管からの熱伝達を用いるものであってもよい。これにより、この冷却管の温度を調節することで、冷却ピン134を任意の温度に冷却することができ、霧化電極135を冷却する際の温度管理を行いやすくなる。また、冷却部として、製氷室106の吐出風路や、冷凍室107に戻る風路などの低温風路の冷気を用いても構わない。これにより、静電霧化装置131の設置可能場所が拡大する。 In the present embodiment, the cooling unit that cools the cooling pins 134 is the cold air in the freezer compartment 107, but the cold air that is cooled by using the cooling source generated in the refrigeration cycle of the refrigerator 100, You may use the heat transfer from the cooling pipe using the cold air or cold temperature from a cooling source. Thus, by adjusting the temperature of the cooling pipe, the cooling pin 134 can be cooled to an arbitrary temperature, and the temperature management when cooling the atomizing electrode 135 is facilitated. Further, as the cooling unit, cold air of a low temperature air passage such as a discharge air passage of the ice making chamber 106 or an air passage returning to the freezing chamber 107 may be used. Thereby, the installation place of the electrostatic atomizer 131 is expanded.
 なお、本実施の形態では、静電霧化装置131の霧化電極135の周囲に保水材を設けなかったが、保水材を配設してもよい。これにより、霧化電極135の近傍で生成された結露水を霧化電極135の周囲に保持することができる。そして、保水材に保持された結露水は、霧化電極135に適時に供給することができる。 In this embodiment, the water retention material is not provided around the atomization electrode 135 of the electrostatic atomizer 131, but a water retention material may be provided. Thereby, the dew condensation water produced | generated in the vicinity of the atomization electrode 135 can be hold | maintained around the atomization electrode 135. FIG. And the dew condensation water hold | maintained at the water retention material can be supplied to the atomization electrode 135 timely.
 なお、本実施の形態において、静電霧化装置131でミストが噴霧される貯蔵室を、野菜室108としたが、冷蔵室104や切換室105などの他の温度帯の貯蔵室でもよく、この場合、様々な用途に展開が可能となる。 In the present embodiment, the storage room in which the mist is sprayed by the electrostatic atomizer 131 is the vegetable room 108, but it may be a storage room in another temperature zone such as the refrigerator room 104 or the switching room 105, In this case, it can be developed for various uses.
 (実施の形態2)
 図3は、本発明の実施の形態2における一つ目の形態の冷蔵庫における静電霧化装置の要部断面図である。
(Embodiment 2)
FIG. 3 is a cross-sectional view of a main part of the electrostatic atomizer in the refrigerator according to the first embodiment in Embodiment 2 of the present invention.
 なお、以下では、実施の形態1と同様の構成および同様の技術思想が適用できる部分については、説明を省略する。また、実施の形態1の構成に本実施の形態を組み合わせて実施することで不具合がない限り、これらを組み合わせて適用することが可能である。 In the following description, description of parts that can be applied with the same configuration and technical idea as those of the first embodiment will be omitted. In addition, the present embodiment can be applied in combination as long as there is no problem by combining the present embodiment with the configuration of the first embodiment.
 なお、以下の本実施の形態の構成では、実施の形態1と同様に、静電霧化装置131が野菜室108の天面に組み込まれ、冷凍室107からの伝熱を冷却部としている。 In the following configuration of the present embodiment, as in the first embodiment, the electrostatic atomizer 131 is incorporated in the top surface of the vegetable compartment 108 and the heat transfer from the freezer compartment 107 is used as a cooling unit.
 これに加えて、一つ目の形態に係る静電霧化装置131は、対向電極136が結露防止部材142に固定されていることと、冷却ピン134に隣接して冷却ピン遮熱領域である熱伝導抑制部153を有している点が特徴である。 In addition to this, the electrostatic atomizer 131 according to the first form is a cooling pin heat insulation region adjacent to the cooling pin 134 that the counter electrode 136 is fixed to the dew condensation prevention member 142. The feature is that the heat conduction suppressing portion 153 is provided.
 図3に示される静電霧化装置131は、実施の形態1と同様に、野菜室108と冷凍室107との温度帯を区切るために断熱性を確保した第二の仕切り壁125に組み込まれている。特に、霧化部139の冷却ピン134を受け入れる部分は、断熱材152に凹形状もしくは貫通部が形成され、他の壁面部分より熱伝導性を良好とした取付部を形成している。 As in the first embodiment, the electrostatic atomizer 131 shown in FIG. 3 is incorporated in the second partition wall 125 that secures heat insulation in order to divide the temperature zone between the vegetable compartment 108 and the freezer compartment 107. ing. In particular, the portion of the atomizing portion 139 that receives the cooling pin 134 has a concave shape or a through portion formed in the heat insulating material 152, and forms a mounting portion that has better thermal conductivity than other wall surface portions.
 また、実施の形態2は、対向電極136が結露防止部材142に固定されており、冷却ピン134の側面と外郭ケース137との間に、熱伝導抑制部153を有していることが実施の形態1と異なる点である。ここで、熱伝導抑制部153は、空洞か断熱材により構成される。また、熱伝導抑制部153は、断熱材152と冷却ピン134との間まで延びた構成もとることが可能である。 In the second embodiment, the counter electrode 136 is fixed to the dew condensation prevention member 142, and the heat conduction suppressing portion 153 is provided between the side surface of the cooling pin 134 and the outer case 137. This is different from the first embodiment. Here, the heat conduction suppression unit 153 is configured by a cavity or a heat insulating material. Further, the heat conduction suppressing unit 153 can be configured to extend between the heat insulating material 152 and the cooling pin 134.
 以上のように構成された本実施の形態の一つ目の形態の冷蔵庫100と静電霧化装置131とについて、以下その動作及び作用を説明する。実施の形態1と同じ動作及び作用については記載を省略する。 The operation and action of the refrigerator 100 and the electrostatic atomizer 131 according to the first embodiment of the present embodiment configured as described above will be described below. The description of the same operation and action as in the first embodiment is omitted.
 上記のように、結露防止部材142に対向電極136が固定されていることで、霧化電極135と対向電極136との距離は、冷蔵庫100の断熱箱体101や外郭ケース137の熱膨張の影響を受け難くなり、より高い精度で制御することが可能となる。この結果、微細ミストの量の他オゾン、OHラジカルをより安定に供給することが可能となる効果が得られる。また、静電霧化装置131がよりコンパクトに形成されるため、野菜室108の空間がより有効に使用できる効果も得られる。 As described above, since the counter electrode 136 is fixed to the dew condensation prevention member 142, the distance between the atomization electrode 135 and the counter electrode 136 is influenced by the thermal expansion of the heat insulating box body 101 and the outer case 137 of the refrigerator 100. It becomes difficult to receive, and it becomes possible to control with higher accuracy. As a result, the effect of being able to more stably supply ozone and OH radicals in addition to the amount of fine mist is obtained. Moreover, since the electrostatic atomizer 131 is formed more compactly, the effect that the space of the vegetable compartment 108 can be used more effectively is also acquired.
 さらに、冷却ピン134の側面と外郭ケース137との間に、熱伝導抑制部153を配置することにより、冷却ピン134から結露防止部材142への、外郭ケース137を通しての冷気の拡散が抑制される。この結果、結露防止部材142の温度低下による不要な結露と、霧化電極135近傍での露点の低下とが回避され、より効率的に、霧化電極135への結露と微細ミストの生成とを進めることが可能となる。 Furthermore, by disposing the heat conduction suppressing portion 153 between the side surface of the cooling pin 134 and the outer case 137, diffusion of cold air from the cooling pin 134 to the dew condensation prevention member 142 through the outer case 137 is suppressed. . As a result, unnecessary dew condensation due to a decrease in the temperature of the dew condensation prevention member 142 and a decrease in the dew point near the atomization electrode 135 are avoided, and more efficient dew condensation on the atomization electrode 135 and fine mist generation. It is possible to proceed.
 熱伝導抑制部153が空洞である場合は、冷却ピン134を断熱材152の最深凹部125bに挿入する場合に、入り口が広くなっているために容易に場所が決められ、挿入が容易になる効果が得られる。また、熱伝導抑制部153が断熱材152と冷却ピン134との間まで延ばされる構成の場合には、熱伝導抑制部153が冷却ピン134を挿入のためのガイドとして機能するので、さらに挿入が容易となる。 When the heat conduction suppressing part 153 is hollow, when the cooling pin 134 is inserted into the deepest recess 125b of the heat insulating material 152, the entrance is widened so that the place is easily determined, and the insertion is facilitated. Is obtained. Further, in the case where the heat conduction suppressing portion 153 is configured to extend between the heat insulating material 152 and the cooling pin 134, the heat conduction suppressing portion 153 functions as a guide for inserting the cooling pin 134. It becomes easy.
 また、図には示していないが、冷却ピン134の周囲の断熱材152と外郭ケース137とに接する位置に、冷却ピン134全体を覆うケースを設けることもできる。このとき、ケースと冷却ピン134との間に空洞を設ける。そして、この空洞(空間)を熱伝導抑制部153とすれば、冷却ピン134を備えた霧化部139の挿入及び取り出しが格段に容易となり、霧化部139のメンテナンスにも好適となる。また、メンテナンスの観点からは、霧化電極135、対向電極136に加え、冷却ピン134が結露防止部材142に固定されていることが取り扱い上容易で好ましい。 Although not shown in the drawing, a case that covers the entire cooling pin 134 may be provided at a position in contact with the heat insulating material 152 around the cooling pin 134 and the outer case 137. At this time, a cavity is provided between the case and the cooling pin 134. If this cavity (space) is used as the heat conduction suppressing portion 153, the insertion and removal of the atomizing portion 139 including the cooling pin 134 is remarkably facilitated, which is suitable for maintenance of the atomizing portion 139. From the viewpoint of maintenance, it is preferable in terms of handling that the cooling pin 134 is fixed to the dew condensation prevention member 142 in addition to the atomizing electrode 135 and the counter electrode 136.
 このとき、熱伝導抑制部153の幅(冷却ピン134と、冷却ピン134を覆うケースとの隙間)を1mm程度以下にすれば、その中での空気の対流が抑えられるため、熱伝導抑制部153が断熱作用をも有するようになる。このため、冷却ピン134からの冷気の拡散が、より抑制されることになり好ましい。また、熱伝導抑制部153の幅が1mm程度以上になる場合は、軟質フォーム等を挿入することにより、相当する断熱性を得ることも可能である。 At this time, if the width of the heat conduction suppression unit 153 (the gap between the cooling pin 134 and the case covering the cooling pin 134) is about 1 mm or less, the convection of air therein can be suppressed. 153 also has a heat insulating action. For this reason, the diffusion of cold air from the cooling pins 134 is further suppressed, which is preferable. Moreover, when the width | variety of the heat conduction suppression part 153 becomes about 1 mm or more, it is also possible to obtain corresponding heat insulation by inserting a flexible foam etc.
 次に、本実施の形態の二つ目の形態について、図4を用いて説明する。 Next, a second embodiment of the present embodiment will be described with reference to FIG.
 二つ目の形態に係る静電霧化装置131は、図4に示すように、一つ目の形態と同様に、野菜室108天面に設けられ、対向電極136が結露防止部材142に固定されるとともに、冷却ピン134と、外郭ケース137及び断熱材152との間に、熱伝導抑制部153が設けられている。さらに、これに加え、加熱部154が、熱伝導抑制部153により冷却ピン134から遮蔽される位置で、且つ結露防止部材142の近傍に配置されていることが特徴である。 As shown in FIG. 4, the electrostatic atomizer 131 according to the second form is provided on the top surface of the vegetable compartment 108 and the counter electrode 136 is fixed to the dew condensation prevention member 142 as in the first form. In addition, a heat conduction suppressing portion 153 is provided between the cooling pin 134 and the outer case 137 and the heat insulating material 152. Further, in addition to this, the heating unit 154 is characterized in that it is disposed at a position shielded from the cooling pin 134 by the heat conduction suppressing unit 153 and in the vicinity of the dew condensation preventing member 142.
 以上のように構成された二つ目の形態の冷蔵庫100と静電霧化装置131とについて、以下その動作及び作用を説明する。既述の実施の形態と同じ動作及び作用については、記載を省略する。 The operation and effect of the refrigerator 100 and the electrostatic atomizer 131 in the second form configured as described above will be described below. The description of the same operation and action as those of the above-described embodiment is omitted.
 加熱部154は、結露防止部材142の近傍に配置されている。具体的には、結露防止部材142に接するか、隣接する外郭ケース137に接して配置されている。このため、加熱部154によって生成される熱が結露防止部材142に伝導され、結露防止部材142が適度に加熱され、その表面温度を露点以上に保つことが容易となる。 The heating unit 154 is disposed in the vicinity of the dew condensation prevention member 142. Specifically, it is disposed in contact with the dew condensation prevention member 142 or in contact with the adjacent outer case 137. For this reason, the heat generated by the heating unit 154 is conducted to the dew condensation prevention member 142, the dew condensation prevention member 142 is appropriately heated, and it becomes easy to keep the surface temperature above the dew point.
 一方、加熱部154で生成される熱は、熱伝導抑制部153の作用により、外郭ケース137を通して冷却ピン134への熱伝導を生じない。すなわち、加熱部154は、熱伝導抑制部153を選択的に加熱する。 On the other hand, the heat generated by the heating unit 154 does not cause heat conduction to the cooling pin 134 through the outer case 137 due to the action of the heat conduction suppressing unit 153. That is, the heating unit 154 selectively heats the heat conduction suppressing unit 153.
 このため、加熱部154による冷却ピン134および霧化電極135の温度上昇は最低限に抑制される。こうして、結露防止部材142の表面への不要な結露の防止と、霧化電極135近傍での露点の低下とが回避されると共に、霧化電極135を露点以下に効率的に冷却することが可能となる。この結果、効率的に霧化電極135への結露を進行させ、野菜室108へ微細ミストを供給することが可能となる効果が得られる。 For this reason, the temperature rise of the cooling pin 134 and the atomization electrode 135 by the heating part 154 is suppressed to the minimum. In this way, prevention of unnecessary condensation on the surface of the condensation prevention member 142 and reduction of the dew point near the atomization electrode 135 can be avoided, and the atomization electrode 135 can be efficiently cooled below the dew point. It becomes. As a result, it is possible to efficiently advance the condensation on the atomizing electrode 135 and to supply fine mist to the vegetable compartment 108.
 ここで、さらに結露防止部材142の好ましい構成について詳しく説明する。 Here, a preferable configuration of the dew condensation preventing member 142 will be described in detail.
 図5A~図6Bは、本実施の形態の霧化部139の断面図である。まず、図5A及び図5Bを参照して、霧化部139の構成及び作用を説明する。 5A to 6B are cross-sectional views of the atomizing portion 139 according to the present embodiment. First, with reference to FIG. 5A and 5B, the structure and effect | action of the atomization part 139 are demonstrated.
 図5Aに示される結露防止部材142は、主として断熱層142bと、断熱層142bの表面に形成される熱拡散層142aとで構成されている。また、熱拡散層142aは、霧化電極135から距離をおいて配置されていることが好ましい。 The dew condensation preventing member 142 shown in FIG. 5A mainly includes a heat insulating layer 142b and a heat diffusion layer 142a formed on the surface of the heat insulating layer 142b. Moreover, it is preferable that the thermal diffusion layer 142a is disposed at a distance from the atomizing electrode 135.
 ここで、断熱層142bとしては、冷却ピン134に比較して熱伝導率の低い樹脂やセラミックス等の材料、好ましくは、これらの材料の多孔体よりなる断熱材等が用いられる。一方、熱拡散層142aとしては、熱伝導性に優れた金属薄板、シート、テープあるいは、金属やカーボン等の導電性材料を樹脂等に分散した複合材料よりなる板、シート、テープ等が用いられる。 Here, as the heat insulating layer 142b, a material such as a resin or ceramic having a lower thermal conductivity than the cooling pin 134, preferably a heat insulating material made of a porous body of these materials is used. On the other hand, as the thermal diffusion layer 142a, a thin metal plate, sheet, tape having excellent thermal conductivity, or a plate, sheet, tape, or the like made of a composite material in which a conductive material such as metal or carbon is dispersed in a resin or the like is used. .
 また、図5Bに示される結露防止部材142は、図5Aと同じく、熱拡散層142aと断熱層142bとで構成されている。しかしながら、図5Bに示される熱拡散層142aは、断熱層142bの表面には露出せず、断熱層142bの表面近傍に埋め込まれていることが特徴である。 Further, the dew condensation preventing member 142 shown in FIG. 5B is composed of a thermal diffusion layer 142a and a heat insulating layer 142b, as in FIG. 5A. However, the thermal diffusion layer 142a shown in FIG. 5B is characterized in that it is not exposed on the surface of the heat insulating layer 142b but is embedded in the vicinity of the surface of the heat insulating layer 142b.
 このように、断熱層142bの表面あるいは表面近傍に、熱拡散層142aが形成されることで、以下のような効果を奏する。まず、断熱層142bの断熱作用により、冷却ピン134から結露防止部材142表面への冷気の伝導が抑制される。また、熱拡散層142aの伝熱作用により、結露防止部材142表面で水平方向に起こる冷気の拡散が促進されて、冷却ピン134に近い領域の局所的な温度低下が回避される。 Thus, by forming the thermal diffusion layer 142a on or near the surface of the heat insulating layer 142b, the following effects can be obtained. First, the conduction of cold air from the cooling pins 134 to the surface of the dew condensation prevention member 142 is suppressed by the heat insulating action of the heat insulating layer 142b. Further, the heat transfer action of the heat diffusion layer 142a promotes the diffusion of cold air that occurs in the horizontal direction on the surface of the dew condensation prevention member 142, and avoids a local temperature drop in a region near the cooling pin 134.
 この結果、結露防止部材142の表面での不要な結露が回避され、霧化電極135の近傍の露点の低下も回避される。こうして、霧化電極135での結露が効率的に進行し、霧化および微細ミストの供給が、低湿度下でも安定に実現される効果が得られる。 As a result, unnecessary dew condensation on the surface of the dew condensation preventing member 142 is avoided, and a decrease in the dew point in the vicinity of the atomizing electrode 135 is also avoided. In this way, the dew condensation at the atomizing electrode 135 proceeds efficiently, and the effect that the atomization and the supply of fine mist are stably realized even at low humidity can be obtained.
 また、図5A及び図5Bに示されるように、熱拡散層142aが、霧化電極135と距離をおいて配置されていることにより、霧化電極135から熱拡散層142aへの冷気の伝導により進行する、霧化電極135の温度上昇が回避される。さらに、熱拡散層142aが金属等の電子伝導性の材料から構成される場合にでも、霧化電極135や冷却ピン134との電位差が大きくなることに対するスパークの危険性が回避され、高い信頼性と安全性が得られるという効果も得られる。このように熱拡散層142aが金属等の電子伝導性材料から構成されている場合において、熱拡散層142aと霧化電極135との距離は、数mmから1cm程度以上であることが好ましい。 Further, as shown in FIGS. 5A and 5B, the thermal diffusion layer 142a is disposed at a distance from the atomizing electrode 135, so that the conduction of cold air from the atomizing electrode 135 to the thermal diffusion layer 142a. The temperature rise of the atomizing electrode 135 which progresses is avoided. Further, even when the thermal diffusion layer 142a is made of an electron conductive material such as a metal, the risk of sparks due to a large potential difference with the atomizing electrode 135 and the cooling pin 134 is avoided, and high reliability is achieved. The effect that safety can be obtained is also obtained. As described above, when the heat diffusion layer 142a is made of an electron conductive material such as a metal, the distance between the heat diffusion layer 142a and the atomizing electrode 135 is preferably about several mm to 1 cm or more.
 さらに、図5Bに相当するように、熱拡散層142aが、断熱層142bの表面に出ない構成とすることにより、上記の効果はさらに大きくなる。 Furthermore, as shown in FIG. 5B, the above-described effect is further enhanced by adopting a configuration in which the thermal diffusion layer 142a does not appear on the surface of the heat insulating layer 142b.
 図5Bに相当する結露防止部材142の具体的な構成としては、樹脂の板あるいは、樹脂、セラミックスからなる多孔体からなる断熱性の板の表面に、金属テープあるいは金属薄板を貼り付け、さらに、その表面を樹脂板や、樹脂シートあるいはテープ等の絶縁体で覆うものがある。あるいは、金属等の導電性材料を含む板を、樹脂で上下から挟むように、一体成型することによっても得ることも可能である。 As a specific configuration of the dew condensation prevention member 142 corresponding to FIG. 5B, a metal tape or a metal thin plate is attached to the surface of a resin plate or a heat insulating plate made of a porous body made of resin or ceramic, There are some which cover the surface with an insulator such as a resin plate, a resin sheet or a tape. Alternatively, it is also possible to obtain by integrally molding a plate containing a conductive material such as a metal so as to be sandwiched from above and below by a resin.
 また、図5A及び図5Bに示したように、冷却ピン134は、結露防止部材142の後方側の外壁面に接している。また、図5Bでは、冷却ピン134の結露防止部材142と接する部分が他の部分と比較して細くなっている。すなわち、冷却ピン134の結露防止部材142に接する面の面積が、その他の部分における伝熱方向に垂直な断面の断面積より小さくなっている。 5A and 5B, the cooling pin 134 is in contact with the outer wall surface on the rear side of the dew condensation prevention member 142. Moreover, in FIG. 5B, the part which contact | connects the dew condensation prevention member 142 of the cooling pin 134 is thin compared with another part. That is, the area of the surface of the cooling pin 134 that contacts the dew condensation prevention member 142 is smaller than the cross-sectional area of the cross section perpendicular to the heat transfer direction in the other portions.
 このように、冷却ピン134が、結露防止部材142の後方側の外壁面で接することにより、結露防止部材142の内壁面への冷気の伝導が抑制される。また、冷却ピン134の結露防止部材142と接する部分を、他の部分より細くすることにより、結露防止部材142に伝導する冷気の総量が抑制される。このため、結露防止部材142の表面の温度低下が抑制され、不要な結露が回避される。この結果、霧化電極135の近傍での露点の低下も抑制され、霧化電極135で結露が効率的に進行するため、霧化の進行および微細ミスト供給が、低湿度下でも安定に実現される効果が得られる。 As described above, the cooling pin 134 is in contact with the outer wall surface on the rear side of the dew condensation prevention member 142, whereby the conduction of cold air to the inner wall surface of the dew condensation prevention member 142 is suppressed. Further, by making the portion of the cooling pin 134 in contact with the dew condensation prevention member 142 thinner than other portions, the total amount of cool air conducted to the dew condensation prevention member 142 is suppressed. For this reason, the temperature fall of the surface of the dew condensation prevention member 142 is suppressed, and unnecessary dew condensation is avoided. As a result, a decrease in the dew point in the vicinity of the atomizing electrode 135 is also suppressed, and dew condensation proceeds efficiently at the atomizing electrode 135, so that the atomization progress and fine mist supply can be stably realized even under low humidity. Effects can be obtained.
 次に、図6A及び図6Bを用いて、霧化部139の構成及び作用を説明する。 Next, the configuration and operation of the atomization unit 139 will be described with reference to FIGS. 6A and 6B.
 図6Aでは、冷却ピン134の前方側の先端に接するように、伝熱冷却部絶縁層155が形成されていることが特徴である。伝熱冷却部絶縁層155は、熱伝導性と絶縁性とを有するものであり、耐熱、不燃性の絶縁材料が好適に用いられる。また、冷却ピン134からの冷気を霧化電極135に伝えるための熱伝導性を確保するために薄板状の形態が好適に用いられる。具体的には、セラミックスや難燃性の樹脂の薄板等が用いられる。 FIG. 6A is characterized in that the heat transfer cooling portion insulating layer 155 is formed so as to be in contact with the front end of the cooling pin 134. The heat transfer cooling portion insulating layer 155 has thermal conductivity and insulating properties, and a heat-resistant and non-flammable insulating material is preferably used. Moreover, in order to ensure the thermal conductivity for conveying the cold air from the cooling pin 134 to the atomizing electrode 135, a thin plate-like form is suitably used. Specifically, a thin plate of ceramics or flame retardant resin is used.
 図6A及び図6Bに示されるように、伝熱冷却部絶縁層155が形成されることにより、特に、霧化電極135がグランドではなく、正負の高電圧が印加される場合でも、冷却ピン134全体が電荷を帯びることが回避され、安全性の観点から非常に好ましい効果が得られる。 As shown in FIGS. 6A and 6B, the heat transfer cooling part insulating layer 155 is formed, so that the cooling pin 134 is formed even when the atomizing electrode 135 is not a ground but a positive and negative high voltage is applied. It is avoided that the whole is charged, and a very favorable effect is obtained from the viewpoint of safety.
 また、図6Aに示される冷却ピン134は、結露防止部材142に設けられた冷却ピン受入孔の厚み方向全体ではなく、半分以下の厚みに相当する領域で接している。一方、図6Bでは、冷却ピン134は、結露防止部材142の後方側の壁面に接している。但し、結露防止部材142の後方側の壁面に冷却ピン134と接触しない凹部を設け、冷却ピン134と結露防止部材142との接触面積を小さくしている。 Further, the cooling pin 134 shown in FIG. 6A is in contact with an area corresponding to a thickness of half or less, not the whole thickness direction of the cooling pin receiving hole provided in the dew condensation prevention member 142. On the other hand, in FIG. 6B, the cooling pin 134 is in contact with the wall surface on the rear side of the dew condensation prevention member 142. However, a concave portion that does not contact the cooling pin 134 is provided on the wall surface on the rear side of the dew condensation prevention member 142 to reduce the contact area between the cooling pin 134 and the dew condensation prevention member 142.
 このように、冷却ピン134と結露防止部材142とが接触する面積を小さくすることで、冷却ピン134から結露防止部材142への冷気の伝導が抑制される。この結果、結露防止部材142の前方側の壁面での温度低下と不要な結露とが回避され、霧化電極135近傍での露点低下も抑制される。こうして、霧化電極135での結露が効率的に進行し、霧化および微細ミストの供給が、低湿度下でも安定に実現される効果が得られる。 Thus, by reducing the area where the cooling pin 134 and the dew condensation prevention member 142 are in contact with each other, conduction of cold air from the cooling pin 134 to the dew condensation prevention member 142 is suppressed. As a result, a temperature decrease and unnecessary dew condensation on the wall surface on the front side of the dew condensation prevention member 142 are avoided, and a dew point decrease near the atomization electrode 135 is also suppressed. In this way, the dew condensation at the atomizing electrode 135 proceeds efficiently, and the effect that the atomization and the supply of fine mist are stably realized even at low humidity can be obtained.
 以上のように、本実施の形態に係る冷蔵庫100は、実施の形態1と同様に、断熱箱体101に複数の貯蔵室が設けられ、貯蔵室の1つである野菜室108の天面側の第二の仕切り壁125に静電霧化装置131が取り付けられ、野菜室108よりも低温に保たれた低温貯蔵室である冷凍室107を備える。これに加え、本実施の形態に係る静電霧化装置131は、その対向電極136が結露防止部材142に固定されていること、また、熱伝導抑制部153が冷却ピン134周辺に形成されていること、さらに結露防止部材142の近傍に加熱部154が設けられていることが特徴である。 As described above, in the refrigerator 100 according to the present embodiment, a plurality of storage rooms are provided in the heat insulating box 101 as in the first embodiment, and the top surface side of the vegetable room 108 which is one of the storage rooms. An electrostatic atomizer 131 is attached to the second partition wall 125, and a freezing room 107 which is a low-temperature storage room kept at a lower temperature than the vegetable room 108 is provided. In addition to this, in the electrostatic atomizer 131 according to the present embodiment, the counter electrode 136 is fixed to the dew condensation prevention member 142, and the heat conduction suppressing portion 153 is formed around the cooling pin 134. Further, the heating unit 154 is provided in the vicinity of the dew condensation prevention member 142.
 対向電極136を結露防止部材142に固定することで、両電極及び結露防止部材142以外の部分の熱膨張等による影響が低減される。その結果、両電極間の距離を精密に制御することが可能となり、安定な霧化が可能となる効果が得られる。 By fixing the counter electrode 136 to the dew condensation prevention member 142, the influence due to thermal expansion or the like of parts other than both electrodes and the dew condensation prevention member 142 is reduced. As a result, it is possible to precisely control the distance between both electrodes, and an effect of enabling stable atomization can be obtained.
 また、熱伝導抑制部153が冷却ピン134周辺に形成されることで、冷却ピン134から結露防止部材142への冷気の伝導がさらに抑制され、結露防止部材142表面での不要な結露回避の効果が得られる。この結果、霧化電極135近傍での露点の低下も抑制され、低湿度雰囲気でも、霧化電極135で効率的に結露、霧化が進行する効果が得られる。これに加え、熱伝導抑制部153が空洞である場合には、冷却ピン134周辺の霧化電極135側に隙間が形成されることになる。この場合、冷却ピン134を含む静電霧化装置131の断熱材152への挿入が容易になり、メンテナンスの実施が容易になるという効果も得られる。 Further, since the heat conduction suppressing portion 153 is formed around the cooling pin 134, conduction of cold air from the cooling pin 134 to the dew condensation preventing member 142 is further suppressed, and an effect of avoiding unnecessary dew condensation on the surface of the dew condensation preventing member 142 is achieved. Is obtained. As a result, a decrease in the dew point in the vicinity of the atomizing electrode 135 is also suppressed, and an effect that condensation and atomization proceed efficiently with the atomizing electrode 135 is obtained even in a low humidity atmosphere. In addition, when the heat conduction suppressing portion 153 is hollow, a gap is formed on the atomizing electrode 135 side around the cooling pin 134. In this case, it is easy to insert the electrostatic atomizer 131 including the cooling pin 134 into the heat insulating material 152, and the effect of facilitating the maintenance can be obtained.
 また、結露防止部材142を、熱拡散層142aと、断熱層142bとで構成することにより、冷却ピン134から結露防止部材142表面への冷気の伝導は抑制され、結露防止部材142表面での平面方向に起こる熱拡散を促進することが可能となる。この結果、結露防止部材142表面での局所的な温度低下と結露とが容易に回避され、低湿度雰囲気でも、霧化電極135で効率的に結露、霧化が進行する効果が得られる。 Further, by forming the dew condensation prevention member 142 with the heat diffusion layer 142a and the heat insulation layer 142b, the conduction of cold air from the cooling pins 134 to the surface of the dew condensation prevention member 142 is suppressed, and the surface on the surface of the dew condensation prevention member 142 is suppressed. It becomes possible to promote the thermal diffusion occurring in the direction. As a result, a local temperature drop and condensation on the surface of the dew condensation preventing member 142 can be easily avoided, and the effect of efficient dew condensation and atomization by the atomization electrode 135 can be obtained even in a low humidity atmosphere.
 さらに、冷却ピン134を結露防止部材142の後方側の外壁面に固定する構成とすることにより、あるいは、結露防止部材142と冷却ピン134とが接触する部分に空洞部(凹部)を設けたり、接触領域を限定することにより、冷却ピン134から結露防止部材142の表面への冷気の伝導が抑制される。このため、結露防止部材142表面への結露回避がより容易になると同時に、霧化電極135に対しては不必要な加熱による温度上昇を回避し、効率的に結露を進行させることが可能となる。 Furthermore, by adopting a configuration in which the cooling pin 134 is fixed to the outer wall surface on the rear side of the dew condensation prevention member 142, or a cavity (concave portion) is provided in a portion where the dew condensation prevention member 142 and the cooling pin 134 are in contact, By limiting the contact area, the conduction of cold air from the cooling pin 134 to the surface of the dew condensation prevention member 142 is suppressed. For this reason, it is easier to avoid condensation on the surface of the condensation prevention member 142, and at the same time, it is possible to avoid the temperature increase due to unnecessary heating of the atomizing electrode 135 and to efficiently cause condensation. .
 これらの結果、低湿度雰囲気でも、安定して微細ミスト、オゾン、OHラジカルが貯蔵室へ供給され、貯蔵室における除菌、保鮮、栄養素アップ等の効果を低コストで実現できる効果が得られる。 As a result, even in a low-humidity atmosphere, fine mist, ozone, and OH radicals are stably supplied to the storage room, so that effects such as sterilization, preservation and nutrient up in the storage room can be realized at low cost.
 (実施の形態3)
 図7は、本発明の実施の形態3の冷蔵庫における静電霧化装置の要部断面図である。
(Embodiment 3)
FIG. 7: is principal part sectional drawing of the electrostatic atomizer in the refrigerator of Embodiment 3 of this invention.
 なお、実施の形態1、2と同様の構成および同様の技術思想が適用できる部分については、説明を省略する。また、実施の形態1、2の構成に本実施の形態を組み合わせて実施することは、不具合がない限り可能である。 In addition, description is abbreviate | omitted about the part which can apply the structure similar to Embodiment 1, 2 and the same technical idea. Further, it is possible to combine the present embodiment with the configurations of the first and second embodiments as long as there is no problem.
 本実施の形態の構成の特徴は、静電霧化装置131から微細ミストが貯蔵室に放出される装置近傍の領域を、外郭ケース137が遮蔽している(設置された貯蔵室に、微細ミストを直接噴霧するための噴霧口132を有さない)。そして、この外郭ケース137が冷却室110への風路に接続されている点である。また、対向電極136が結露防止部材142に固定されていること、冷却ピン134周辺に熱伝導抑制部153が設けられていること、さらに、加熱部154が結露防止部材142の近傍に配置されている点は実施の形態2と同じである。また、静電霧化装置131が野菜室108の天面に固定されている点も実施の形態1、2と同様である。 A feature of the configuration of the present embodiment is that an outer case 137 shields an area in the vicinity of the device where the fine mist is discharged from the electrostatic atomizer 131 to the storage chamber (the fine mist is installed in the installed storage chamber). No spraying port 132 for direct spraying). The outer case 137 is connected to the air path to the cooling chamber 110. In addition, the counter electrode 136 is fixed to the dew condensation prevention member 142, the heat conduction suppression unit 153 is provided around the cooling pin 134, and the heating unit 154 is disposed in the vicinity of the dew condensation prevention member 142. This is the same as in the second embodiment. Moreover, the point which the electrostatic atomizer 131 is being fixed to the top | upper surface of the vegetable compartment 108 is the same as that of Embodiment 1,2.
 図7に示すように、野菜室108と冷凍室107との温度帯を区切るために断熱性を確保した第二の仕切り壁125に静電霧化装置131が組み込まれていることは、実施の形態1、2と同様である。一方、外郭ケース137には、湿度供給口138は形成されているものの、実施の形態1、2で設けられていた噴霧口132は形成されておらず、その一端が、冷却室110への戻り風路に接続されている点が異なる。 As shown in FIG. 7, the electrostatic atomizer 131 is incorporated in the second partition wall 125 that secures heat insulation in order to separate the temperature zone between the vegetable compartment 108 and the freezer compartment 107. This is the same as in Embodiments 1 and 2. On the other hand, in the outer case 137, the humidity supply port 138 is formed, but the spray port 132 provided in the first and second embodiments is not formed, and one end thereof returns to the cooling chamber 110. It is different in that it is connected to the air path.
 以上のように構成された本実施の形態の冷蔵庫100と静電霧化装置131とについて、以下その動作を説明する。 The operation of the refrigerator 100 and the electrostatic atomizer 131 of the present embodiment configured as described above will be described below.
 以下で述べるように、装置近傍を遮蔽し、冷却室110への風路と通じる外郭ケース137を設けるのは、静電霧化装置131を設置する野菜室108以外の貯蔵室に微細ミスト、オゾン、OHラジカルを供給するためである。 As described below, the outer case 137 that shields the vicinity of the apparatus and communicates with the air path to the cooling chamber 110 is provided by a fine mist, ozone in a storage room other than the vegetable room 108 in which the electrostatic atomizer 131 is installed. This is for supplying OH radicals.
 このように噴霧口132を有しない外郭ケース137を設けることで、霧化電極135周辺での外部との空気の対流が抑制される。このため、外部からの熱伝導も抑制され、霧化電極135周辺の温度も低下し、露点への到達が容易となる。この場合、結露防止部材142の温度も同様に低下し、露点に到達し易くなる可能性がある。 Thus, by providing the outer case 137 that does not have the spray port 132, the convection of the air around the atomizing electrode 135 is suppressed. For this reason, heat conduction from the outside is also suppressed, the temperature around the atomizing electrode 135 is lowered, and it is easy to reach the dew point. In this case, there is a possibility that the temperature of the dew condensation preventing member 142 is similarly lowered and easily reaches the dew point.
 しかし、このような場合でも、実施の形態2で既に述べたように、本発明の結露防止部材142および熱伝導抑制部153の作用により、従来冷却ピン134が空気中に露出していた部分に対応する、結露防止部材142の表面の温度低下は抑制される。また、加熱部154を用いて結露防止部材142を選択的に加熱することが可能であり、このことにより、さらに結露防止部材142を露点以上の温度に保つことが容易となる。 However, even in such a case, as already described in the second embodiment, due to the action of the dew condensation preventing member 142 and the heat conduction suppressing portion 153 of the present invention, the cooling pin 134 is exposed to the air in the conventional art. The corresponding temperature drop on the surface of the dew condensation prevention member 142 is suppressed. In addition, it is possible to selectively heat the dew condensation preventing member 142 using the heating unit 154, which further facilitates keeping the dew condensation preventing member 142 at a temperature higher than the dew point.
 こうして、霧化電極135近傍の空気対流を抑制する外郭ケース137を設けた場合でも、結露防止部材142、熱伝導抑制部153、及び加熱部154の作用により、結露防止部材142表面の温度低下を抑制し、不要な結露を回避することができる。その結果、霧化電極135近傍での露点低下も回避され、より安定な霧化と微細ミストの供給とが可能となる。 Thus, even when the outer case 137 that suppresses air convection in the vicinity of the atomizing electrode 135 is provided, the temperature of the surface of the dew condensation prevention member 142 is reduced by the action of the dew condensation prevention member 142, the heat conduction suppression unit 153, and the heating unit 154. It can be suppressed and unnecessary condensation can be avoided. As a result, a dew point decrease near the atomization electrode 135 is also avoided, and more stable atomization and fine mist supply are possible.
 また、発生した微細ミストは、外郭ケース137から風路を通って冷却室110に到達し、冷却室110から各貯蔵室に冷気を運ぶ風路に従って、各貯蔵室に供給される。こうして、微細ミスト、オゾン、OHラジカルが各貯蔵室へ供給され、一つの静電霧化装置131を用いて各貯蔵室における除菌、保鮮、栄養素アップ等の効果を低コストで実現できる。 Further, the generated fine mist reaches the cooling chamber 110 from the outer case 137 through the air passage, and is supplied to each storage chamber according to the air passage that carries cold air from the cooling chamber 110 to each storage chamber. In this way, fine mist, ozone, and OH radicals are supplied to each storage room, and using one electrostatic atomizer 131, effects such as sterilization, preservation, and nutrient enhancement in each storage room can be realized at low cost.
 また、発生したオゾンは、各貯蔵室へ分配されるため、静電霧化装置131を設置した貯蔵室(実施の形態1、2では野菜室108)にオゾンが貯まり、オゾン臭が発生するというクレームを回避することも容易となる。また、オゾン濃度上昇による野菜の黄化等の弊害の回避も容易となる。 In addition, since the generated ozone is distributed to each storage room, ozone is stored in the storage room (the vegetable room 108 in the first and second embodiments) in which the electrostatic atomizer 131 is installed, and ozone odor is generated. It is also easy to avoid claims. In addition, it is easy to avoid harmful effects such as yellowing of vegetables due to an increase in ozone concentration.
 以上のように、本実施の形態に係る冷蔵庫100は、実施の形態1と同様に、断熱箱体101に複数の貯蔵室が設けられ、貯蔵室の1つである野菜室108の天面側の第二の仕切り壁125に静電霧化装置131が取り付けられ、野菜室108よりも低温に保たれた低温貯蔵室である冷凍室107を備える。また、静電霧化装置131は、実施の形態2と同様に、その対向電極136が結露防止部材142に固定され、結露防止部材142近傍の冷却ピン134に接しない位置に加熱部154が配置され、冷却ピン134の周辺に熱伝導抑制部153が設けられている構成を有している。これに加えて、噴霧口132を有しない外郭ケース137が、微細ミストが噴霧される近傍領域を遮蔽するように設置され、この外郭ケース137の一端が冷却室110に通じる構成を有していることが特徴である。 As described above, in the refrigerator 100 according to the present embodiment, a plurality of storage rooms are provided in the heat insulating box 101 as in the first embodiment, and the top surface side of the vegetable room 108 which is one of the storage rooms. An electrostatic atomizer 131 is attached to the second partition wall 125, and a freezing room 107 which is a low-temperature storage room kept at a lower temperature than the vegetable room 108 is provided. Similarly to the second embodiment, the electrostatic atomizer 131 has the counter electrode 136 fixed to the dew condensation prevention member 142 and the heating unit 154 disposed at a position not in contact with the cooling pin 134 in the vicinity of the dew condensation prevention member 142. In addition, the heat conduction suppressing portion 153 is provided around the cooling pin 134. In addition, the outer case 137 that does not have the spray port 132 is installed so as to shield the vicinity of the area where the fine mist is sprayed, and one end of the outer case 137 communicates with the cooling chamber 110. It is a feature.
 このように、噴霧口132を有しない外郭ケース137を、霧化電極135の近傍領域を遮蔽するように設置することで、温度の高い外郭ケース137の外からの過度の空気流入が抑えられ、外郭ケース137内にある霧化電極135近傍の温度が速やかに低下する。このことにより、霧化電極135を効率的に冷却することが可能となる。しかし、このように外郭ケース137内の冷却が進む場合でも、本発明の結露防止部材142熱伝導抑制部153、及び加熱部154による既に説明した作用により、結露防止部材142表面の温度は霧化電極135の温度に比較して高く保持される。 Thus, by installing the outer case 137 that does not have the spray port 132 so as to shield the region near the atomization electrode 135, excessive air inflow from the outside of the outer case 137 having a high temperature can be suppressed, The temperature in the vicinity of the atomizing electrode 135 in the outer case 137 quickly decreases. This makes it possible to cool the atomizing electrode 135 efficiently. However, even when the cooling inside the outer case 137 proceeds in this way, the temperature of the surface of the dew condensation prevention member 142 is atomized by the action already described by the dew condensation prevention member 142 heat conduction suppressing unit 153 and the heating unit 154 of the present invention. It is kept high compared to the temperature of the electrode 135.
 このように、噴霧口132を有しない霧化電極135近傍の空気対流を抑制する外郭ケース137を設けた場合には、より効率的に霧化電極135を冷却することが可能となり、低湿度時に必要な霧化電極135の冷却性能を実現することが容易となる。また、同時に、結露防止部材142表面の温度低下を抑制し、霧化電極135での露点低下と、結露および噴霧とを促進することで、安定な微細ミストの供給がより容易になる。 Thus, when the outer case 137 that suppresses the air convection in the vicinity of the atomizing electrode 135 that does not have the spray port 132 is provided, it becomes possible to cool the atomizing electrode 135 more efficiently, and at low humidity. It becomes easy to realize the required cooling performance of the atomizing electrode 135. At the same time, the temperature decrease on the surface of the dew condensation preventing member 142 is suppressed, and the dew point decrease on the atomizing electrode 135 and the dew condensation and spraying are promoted, thereby making it easier to supply a stable fine mist.
 また、発生した微細ミストは、外郭ケース137から冷却室110に至る戻り風路の連絡カバー160で形成される空間を経て冷却室110に到達する。さらに、冷却室110から各貯蔵室に冷気を運ぶ風路やダンパやファン等の循環機構に従って、各貯蔵室に供給される。こうして、微細ミスト、オゾン、OHラジカルが各貯蔵室へ供給され、一つの静電霧化装置131を用いて各貯蔵室における除菌、保鮮、栄養素アップ等の効果を低コストで実現できる。 Further, the generated fine mist reaches the cooling chamber 110 through a space formed by the communication cover 160 of the return air path from the outer case 137 to the cooling chamber 110. Further, the air is supplied to each storage room according to a circulation mechanism such as an air passage for carrying cold air from the cooling room 110 to each storage room, a damper, a fan, or the like. In this way, fine mist, ozone, and OH radicals are supplied to each storage room, and using one electrostatic atomizer 131, effects such as sterilization, preservation, and nutrient enhancement in each storage room can be realized at low cost.
 また、発生したオゾンが各貯蔵室へ分配されるため、静電霧化装置131を設置した貯蔵室にオゾンが貯まることによるオゾン臭の発生や、野菜の黄化等の弊害を容易に回避することができる。 In addition, since the generated ozone is distributed to each storage room, it is easy to avoid harmful effects such as generation of ozone odor and yellowing of vegetables due to ozone stored in the storage room where the electrostatic atomizer 131 is installed. be able to.
 なお、本実施の形態では、対向電極136が結露防止部材142に固定され、冷却ピン134周辺に熱伝導抑制部153が設けられ、さらに、加熱部154が結露防止部材142に近傍に配置されている場合について述べたが、本実施の形態が、これらに限定されるものではないことは言うまでもない。 In the present embodiment, the counter electrode 136 is fixed to the dew condensation prevention member 142, the heat conduction suppression unit 153 is provided around the cooling pin 134, and the heating unit 154 is disposed in the vicinity of the dew condensation prevention member 142. However, it goes without saying that the present embodiment is not limited to these.
 (実施の形態4)
 図8は、本発明の実施の形態4の冷蔵庫における静電霧化装置の要部断面図である。
(Embodiment 4)
FIG. 8: is principal part sectional drawing of the electrostatic atomizer in the refrigerator of Embodiment 4 of this invention.
 なお、実施の形態1~3と同様の構成および同様の技術思想が適用できる部分に関しては、説明を省略する。また、実施の形態1~3の構成に本実施の形態を組み合わせて実施することは、不具合がない限り可能である。 It should be noted that the description of the parts to which the same configuration and the same technical idea as those of the first to third embodiments can be applied is omitted. Further, it is possible to combine the present embodiment with the configurations of the first to third embodiments as long as there is no problem.
 本実施の形態の特徴は、静電霧化装置131が、冷蔵庫100本体に組み込まれる際に、冷蔵庫100本体側との間に、密着性向上部161が設けられている点である。その他の構成に関しては、図4に示される実施の形態2と同様である。また、静電霧化装置131が、野菜室108の天面に固定されている点も実施の形態1~3と同様である。 The feature of the present embodiment is that when the electrostatic atomizer 131 is incorporated in the refrigerator 100 main body, an adhesion improving portion 161 is provided between the refrigerator 100 main body side. Other configurations are the same as those of the second embodiment shown in FIG. The point that the electrostatic atomizer 131 is fixed to the top of the vegetable compartment 108 is the same as in the first to third embodiments.
 図8に示すように、結露防止部材142の冷却ピン134に接する側の壁面に、密着性向上部161が設けられている。さらに具体的には、静電霧化装置131において、外郭ケース137と結露防止部材142との間(結露防止部材142の冷却ピン134側)に、密着性向上部161が設けられている。 As shown in FIG. 8, an adhesion improving portion 161 is provided on the wall surface of the dew condensation prevention member 142 on the side in contact with the cooling pin 134. More specifically, in the electrostatic atomizer 131, an adhesion improving unit 161 is provided between the outer case 137 and the dew condensation prevention member 142 (on the cooling pin 134 side of the dew condensation prevention member 142).
 以上のように構成された本実施の形態の冷蔵庫100と静電霧化装置131とについて、以下その動作及び作用を説明する。 The operation and action of the refrigerator 100 and the electrostatic atomizer 131 of the present embodiment configured as described above will be described below.
 冷蔵庫100及び静電霧化装置131の各部の寸法誤差等により、外郭ケース137と結露防止部材142との間に僅かに隙間が生じる場合がある。このような場合でも、上記の密着性向上部161が、以下で述べるように柔軟性を有しているため、必要な変形が進行し、この隙間を埋めることができる。このため、外郭ケース137と結露防止部材142とのシール性が高まり、冷却ピン134から無駄な冷気の漏れがなくなる。こうして、冷却ピン134による霧化電極135の冷却が効率よく進み、霧化電極135への結露と噴霧が促進される。 There may be a slight gap between the outer case 137 and the dew condensation prevention member 142 due to dimensional errors of the respective parts of the refrigerator 100 and the electrostatic atomizer 131. Even in such a case, the adhesion improving portion 161 has flexibility as described below, so that necessary deformation proceeds and this gap can be filled. For this reason, the sealing performance between the outer case 137 and the dew condensation prevention member 142 is enhanced, and unnecessary cooling air leakage from the cooling pins 134 is eliminated. Thus, the cooling of the atomizing electrode 135 by the cooling pin 134 proceeds efficiently, and condensation and spraying on the atomizing electrode 135 are promoted.
 この結果、低湿度雰囲気でも、安定して微細ミスト、オゾン、OHラジカルが貯蔵室へ供給され、貯蔵室における除菌、保鮮、栄養素アップ等の効果を低コストで実現できる効果が得られる。 As a result, even in a low-humidity atmosphere, fine mist, ozone, and OH radicals are stably supplied to the storage room, so that effects such as sterilization, preservation, and nutrient enhancement in the storage room can be realized at low cost.
 また、密着性向上部161がない場合には、外郭ケース137と結露防止部材142との間に隙間が生じた場合に、この隙間から冷却ピン134周辺に霧化電極135周辺の空気が侵入することで結露が生じて水がたまることも考えられる。これが進行すると、高電圧が印加される対向電極136と霧化電極135と冷却ピン134とが水でつながり、電流リークが生じる。そして、極端な場合には、トラッキング等により発火、発煙に至ることも考えられる。しかし、密着性向上部161が形成されていれば、冷気、水に対するシール性が保たれているために、上記の不安全事象は起こらず充分な安全性が確保される効果が得られる。 Further, when there is no adhesion improving portion 161, when a gap is generated between the outer case 137 and the dew condensation prevention member 142, air around the atomizing electrode 135 enters the periphery of the cooling pin 134 from this gap. Condensation may occur and water may accumulate. As this progresses, the counter electrode 136, the atomizing electrode 135, and the cooling pin 134 to which a high voltage is applied are connected by water, causing current leakage. In extreme cases, it may be possible to ignite or emit smoke by tracking or the like. However, if the adhesion improving portion 161 is formed, the sealing performance against cold air and water is maintained, so that the above-mentioned unsafe event does not occur and the effect of ensuring sufficient safety is obtained.
 本実施の形態の密着性向上部161は、柔軟性を有していることが必要であり、ウレタンやポリオレフィン等の樹脂フォーム、各種ゴム、エラストマのシート等が用いられる。具体的な材料としては、シリコン樹脂、塩化ビニール樹脂、クロロプレン樹脂、ポリオレフィン樹脂等が、静電霧化装置131から発生する活性種(オゾン等)に対する耐性が高いため好適に用いられる。 The adhesion improving portion 161 of the present embodiment needs to have flexibility, and resin foams such as urethane and polyolefin, various rubbers, elastomer sheets, and the like are used. As specific materials, silicon resin, vinyl chloride resin, chloroprene resin, polyolefin resin, and the like are preferably used because they have high resistance to active species (such as ozone) generated from the electrostatic atomizer 131.
 (実施の形態5)
 図9A及び図9Bは、本発明の実施の形態5の冷蔵庫における静電霧化装置の要部断面図である。
(Embodiment 5)
9A and 9B are main part cross-sectional views of the electrostatic atomizer in the refrigerator according to Embodiment 5 of the present invention.
 なお、実施の形態1~4と同様の構成および同様の技術思想が適用できる部分に関しては、説明を省略する。また、実施の形態1~4の構成に本実施の形態を組み合わせて実施することは、不具合がない限り可能である。 It should be noted that the description of the same configuration as in Embodiments 1 to 4 and the portion to which the same technical idea can be applied will be omitted. Further, it is possible to combine the present embodiment with the configurations of the first to fourth embodiments as long as there is no problem.
 本実施の形態の特徴は、冷却ピン134の後方側の端部が細くなっていること、および冷却ピン134の噴霧方向に垂直な断面の形状が円柱のような点対称な構造でないことである。また、静電霧化装置131が、野菜室108の天面に固定されている点は実施の形態1~4と同様であり、具体的な静電霧化装置131の本体側への組み込まれ方は、図8に示される実施の形態4と同様である。 The feature of this embodiment is that the end on the rear side of the cooling pin 134 is thin, and the shape of the cross section perpendicular to the spraying direction of the cooling pin 134 is not a point-symmetric structure like a cylinder. . Further, the electrostatic atomizer 131 is fixed to the top surface of the vegetable compartment 108 in the same manner as in the first to fourth embodiments, and the specific electrostatic atomizer 131 is incorporated into the main body side. This is the same as in the fourth embodiment shown in FIG.
 具体的な構成を、図9A及び図9Bを用いて説明する。 Specific configuration will be described with reference to FIGS. 9A and 9B.
 図9Aの上図は、本発明の実施の形態5の冷蔵庫100における霧化部139の要部断面図であり、図9Aの下図は、図9Aの上図のA-A線での断面図である。同様に、図9Bの上図は、本発明の実施の形態5の冷蔵庫100における霧化部139の要部断面図であり、図9Bの下図は、図9Bの上図のB-B線での断面図である。 9A is a cross-sectional view of the main part of the atomizing unit 139 in the refrigerator 100 according to Embodiment 5 of the present invention, and the lower view of FIG. 9A is a cross-sectional view taken along the line AA of the upper view of FIG. 9A. It is. Similarly, the upper diagram of FIG. 9B is a cross-sectional view of the main part of the atomizing section 139 in the refrigerator 100 according to the fifth embodiment of the present invention, and the lower diagram of FIG. 9B is the BB line of the upper diagram of FIG. FIG.
 図9Aの下図は、冷却ピン134の伝熱方向に垂直な断面を表す。図9Aの下図に示される形状は点対称な形状ではなく、長方形となっていることが分かる。また、図9Aの上図及び下図は、冷却ピン134の後方側の端部における伝熱方向に垂直な断面の断面積が、冷却ピン134の後方側端部以外の対応する断面積より小さくなっていることを示している。つまり、冷却ピン134の後方側の端部の片側が斜めに切り取られたような形状となり先端部が細い構成となっている。 The lower drawing of FIG. 9A represents a cross section perpendicular to the heat transfer direction of the cooling pin 134. It can be seen that the shape shown in the lower part of FIG. 9A is not a point-symmetric shape but a rectangle. 9A, the cross-sectional area of the cross section perpendicular to the heat transfer direction at the rear end portion of the cooling pin 134 is smaller than the corresponding cross-sectional area other than the rear end portion of the cooling pin 134. It shows that. That is, one side of the rear end portion of the cooling pin 134 has a shape that is cut obliquely, and the tip end portion is thin.
 同様に、図9Bの下図に示されるように、冷却ピン134の伝熱方向に垂直な断面が点対称な形状ではなく、長方形となっていることが分かる。また、図9Bの上図及び下図より、冷却ピン134の後方側の端部における伝熱方向に垂直な断面の断面積が、冷却ピン134の後方側端部以外の対応する断面積より小さくなっていることが分かる。つまり、冷却ピン134の先端の両側が斜めに切り取られたような形状となり、やはり後方側の端部が細い構成となっている。 Similarly, as shown in the lower diagram of FIG. 9B, it can be seen that the cross section perpendicular to the heat transfer direction of the cooling pin 134 is not point-symmetric but rectangular. 9B, the cross-sectional area of the cross section perpendicular to the heat transfer direction at the rear end portion of the cooling pin 134 is smaller than the corresponding cross-sectional area other than the rear end portion of the cooling pin 134. I understand that That is, the cooling pin 134 has a shape in which both sides of the front end of the cooling pin 134 are cut off obliquely, and the rear end portion is also narrow.
 以上のように構成された本実施の形態の冷蔵庫100と、静電霧化装置131とについて、以下その作用及び効果を説明する。 The operation and effect of the refrigerator 100 and the electrostatic atomizer 131 of the present embodiment configured as described above will be described below.
 上記のように、冷却ピン134の後方側の端部が細くなっているために、挿入する際の引っかかりがなくなり、静電霧化装置131の冷却ピン134を冷蔵庫100本体側に挿入することが容易になる。さらに、冷却ピン134がしっかりと挿入され、冷蔵庫100本体側の最深凹部125bとの密着性が向上し、冷凍室107からの冷気の伝達効率が向上する。こうして、霧化電極135を効率的に冷却することが可能となり、霧化電極135での結露と噴霧とが促進される。この結果、低湿度雰囲気でも、安定して微細ミスト、オゾン、OHラジカルが貯蔵室へ供給され、貯蔵室における除菌、保鮮、栄養素アップ等の効果を低コストで実現できる効果が得られる。 As described above, since the end on the rear side of the cooling pin 134 is thin, it is not caught when inserted, and the cooling pin 134 of the electrostatic atomizer 131 can be inserted into the refrigerator 100 main body side. It becomes easy. Furthermore, the cooling pin 134 is firmly inserted, the adhesiveness with the deepest recessed part 125b on the refrigerator 100 main body side is improved, and the transmission efficiency of the cold air from the freezer compartment 107 is improved. In this way, the atomizing electrode 135 can be efficiently cooled, and condensation and atomization at the atomizing electrode 135 are promoted. As a result, even in a low-humidity atmosphere, fine mist, ozone, and OH radicals are stably supplied to the storage room, so that effects such as sterilization, preservation, and nutrient up in the storage room can be realized at low cost.
 また、上記のように冷却ピン134の断面が点対称な形状でないために、ある決まった向きにしか冷蔵庫100本体側の最深凹部125bに挿入することができない。また、挿入した状態での回転は許されない。このため、静電霧化装置131の冷却ピン134は、ずれなく、しっかりと冷蔵庫100本体側の最深凹部125bに挿入固定される。こうして、最深凹部125bとの密着性が向上し、冷凍室107からの冷気の伝達効率が向上する。このため、霧化電極135を効率的に冷却することが可能となり、霧化電極135への結露と噴霧とが促進される。この結果、低湿度雰囲気でも、安定して微細ミスト、オゾン、OHラジカルが貯蔵室へ供給され、貯蔵室における除菌、保鮮、栄養素アップ等の効果を低コストで実現できる効果が得られる。 In addition, since the cross section of the cooling pin 134 is not point-symmetric as described above, it can be inserted into the deepest recess 125b on the refrigerator 100 main body side only in a certain direction. Also, rotation in the inserted state is not allowed. For this reason, the cooling pin 134 of the electrostatic atomizer 131 is firmly inserted and fixed in the deepest recess 125b on the refrigerator 100 main body side without deviation. Thus, the adhesion with the deepest recess 125b is improved, and the efficiency of transmitting cool air from the freezer compartment 107 is improved. For this reason, it becomes possible to cool the atomization electrode 135 efficiently, and the condensation and spraying to the atomization electrode 135 are accelerated | stimulated. As a result, even in a low-humidity atmosphere, fine mist, ozone, and OH radicals are stably supplied to the storage room, so that effects such as sterilization, preservation, and nutrient up in the storage room can be realized at low cost.
 ここでは、冷却ピン134の断面形状が長方形であるものについて具体的に述べたが、点対称(円、正方形等)でなければ、同様の作用、効果を有するため、その他の点対称でない形状も用いることが可能である。 Here, the cooling pin 134 having a rectangular cross-sectional shape has been specifically described. However, if the cooling pin 134 is not point-symmetric (circle, square, etc.), it has the same action and effect. It is possible to use.
 また、冷却ピン134の後方側の端部が細くなっている構成については、片方の面、両方の面がカットされたような構成について具体的に述べたが、カットされた面は、平面である必要はなく、曲面でもよい。また、先が極端に細くなると、冷凍室107に接した最深凹部125bとの密着性が低下するため、冷却ピン134の後方側の端部の面積が中心部の面積の2/3程度以上となっていることが好ましい。 In addition, the configuration in which the rear end portion of the cooling pin 134 is thin has been described specifically for the configuration in which one surface or both surfaces are cut, but the cut surface is a flat surface. There is no need to have a curved surface. Further, if the tip is extremely thin, the adhesion with the deepest recess 125b in contact with the freezer compartment 107 is lowered, so that the area of the rear end of the cooling pin 134 is about 2/3 or more of the center area. It is preferable that
 (実施の形態6)
 図10及び図11は、本発明の実施の形態6の冷蔵庫における静電霧化装置の要部断面図である。
(Embodiment 6)
FIG.10 and FIG.11 is principal part sectional drawing of the electrostatic atomizer in the refrigerator of Embodiment 6 of this invention.
 なお、実施の形態1~5と同様の構成および同様の技術思想が適用できる部分に関しては、説明を省略する。また、実施の形態1~5の構成に本実施の形態を組み合わせて実施することは、不具合がない限り可能である。 It should be noted that the description of the parts to which the same configuration and the same technical idea as in the first to fifth embodiments can be applied will be omitted. Further, it is possible to combine the present embodiment with the configurations of the first to fifth embodiments as long as there is no problem.
 本実施の形態の特徴の一つ目は、冷却ピン134の後方側の端部に緩衝部162が設けられ、さらに補助伝熱冷却部163が、緩衝部162を覆うように冷却ピン134に固定されていることである。二つ目の特徴は、冷凍室107のように冷却部となる貯蔵室の壁のうち、冷却ピン134が接する部分が、冷凍室107の内側に向かって突出していることである。 The first feature of the present embodiment is that a buffer portion 162 is provided at the rear end of the cooling pin 134, and the auxiliary heat transfer cooling portion 163 is fixed to the cooling pin 134 so as to cover the buffer portion 162. It has been done. The second feature is that the portion of the wall of the storage chamber that serves as a cooling unit, such as the freezing chamber 107, is in contact with the cooling pin 134 and protrudes toward the inside of the freezing chamber 107.
 また、静電霧化装置131が、野菜室108の天面に固定されている点は、実施の形態1~5と同様である。 Further, the electrostatic atomizer 131 is fixed to the top surface of the vegetable compartment 108 as in the first to fifth embodiments.
 具体的な構成を図10及び図11を用いて説明する。 Specific configuration will be described with reference to FIGS.
 図10に示すように、冷却ピン134の後方側の端部に緩衝部162が設けられている。また、緩衝部162の表面のうち冷却ピン134と接する表面とは反対側の表面を覆うように、補助伝熱冷却部163が設けられている。さらに、この補助伝熱冷却部163は、冷却ピン134と接しており、熱的に結合している。 As shown in FIG. 10, a buffer portion 162 is provided at the rear end of the cooling pin 134. In addition, the auxiliary heat transfer cooling unit 163 is provided so as to cover the surface of the buffer unit 162 opposite to the surface in contact with the cooling pin 134. Further, the auxiliary heat transfer cooling unit 163 is in contact with the cooling pin 134 and is thermally coupled.
 また、図11に示すように、冷凍室107の壁(第二の仕切り壁125)のうち冷却ピン134が接する部分が、冷凍室107の内側に向かって突出し、貯蔵室内凸部151aを形成している。そして、最深凹部125bは、貯蔵室内凸部151aの内側に形成されている。すなわち、冷却ピン134が、実施の形態1~5と比較して、冷凍室107側に食い込んだ位置まで侵入していることがわかる。 In addition, as shown in FIG. 11, the portion of the wall (second partition wall 125) of the freezer compartment 107 that is in contact with the cooling pin 134 protrudes toward the inside of the freezer compartment 107 to form a storage chamber convex portion 151 a. ing. And deepest recessed part 125b is formed inside storage room convex part 151a. That is, it can be seen that the cooling pin 134 has penetrated to the position where it has bitten into the freezer compartment 107 side as compared with the first to fifth embodiments.
 以上のように構成された本実施の形態の冷蔵庫100と、静電霧化装置131とについて、以下その作用及び効果を説明する。 The operation and effect of the refrigerator 100 and the electrostatic atomizer 131 of the present embodiment configured as described above will be described below.
 各部の寸法ばらつきや、平坦度のばらつき、あるいは、冷却ピン134を最深凹部125bに挿入する場合の位置のバラツキ等のために、冷却ピン134と最深凹部125bとの間に僅かな隙間が生じることが考えられる。このような場合でも、上記の緩衝部162が有する緩衝作用のために、緩衝部162が最深凹部125bに密着するように変形し、結果として冷凍室107の貯蔵室内凸部151aからの冷気の伝導が確保される。 A slight gap is generated between the cooling pin 134 and the deepest recess 125b due to dimensional variation of each part, variation in flatness, or variation in position when the cooling pin 134 is inserted into the deepest recess 125b. Can be considered. Even in such a case, due to the buffering action of the buffering part 162, the buffering part 162 is deformed so as to be in close contact with the deepest concave part 125b, and as a result, conduction of cold air from the convex part 151a of the storage room of the freezing room 107 Is secured.
 また、冷凍室107の壁である第二の仕切り壁125の一部が、冷凍室107側に凸の構造となる貯蔵室内凸部151aを形成することで、第二の仕切り壁125と冷却ピン134との接触面積が大きくなり、さらに貯蔵室内で循環する冷風が、貯蔵室内凸部151aに衝突することにより、貯蔵室内凸部151aの温度が低下し易くなる。 Further, a part of the second partition wall 125 which is a wall of the freezer compartment 107 forms a storage chamber convex portion 151a having a convex structure on the freezer compartment 107 side, whereby the second partition wall 125 and the cooling pin are formed. The contact area with 134 is increased, and the cold air circulating in the storage chamber collides with the convex portion 151a in the storage chamber, whereby the temperature of the convex portion 151a in the storage chamber is likely to decrease.
 こうして、冷却ピン134は効率的に冷却されるので、霧化電極135の冷却効率が上昇し、霧化電極135への結露と噴霧とが促進される。この結果、低湿度雰囲気でも、安定して微細ミスト、オゾン、OHラジカルが貯蔵室へ供給され、貯蔵室における除菌、保鮮、栄養素アップ等の効果を低コストで実現できる効果が得られる。 Thus, since the cooling pin 134 is efficiently cooled, the cooling efficiency of the atomizing electrode 135 is increased, and condensation and spraying on the atomizing electrode 135 are promoted. As a result, even in a low-humidity atmosphere, fine mist, ozone, and OH radicals are stably supplied to the storage room, so that effects such as sterilization, preservation, and nutrient up in the storage room can be realized at low cost.
 また、本実施の形態の緩衝部162としては、適切な柔軟性と形状回復力を持つものならば用いることが可能である。例えば、各種の樹脂フォーム、エラストマ、ゴムシート、グラスウールのような繊維集合体等が用いられる。 In addition, as the buffer part 162 of the present embodiment, any one having appropriate flexibility and shape recovery force can be used. For example, various resin foams, elastomers, rubber sheets, fiber aggregates such as glass wool, and the like are used.
 また、補助伝熱冷却部163は、変形可能で熱伝導率の高いものが用いられ、金属薄板、金属テープ等が用いられる。補助伝熱冷却部163と冷却ピン134とは密着して熱的に結合しているが、これは、接着剤による接着によってもよいし、物理的に固定することも可能である。簡単には、接着剤のついたアルミテープを補助伝熱冷却部163として用いて、冷却ピン134に接着することもできる。 Also, the auxiliary heat transfer cooling unit 163 is deformable and has a high thermal conductivity, and a thin metal plate, a metal tape, or the like is used. The auxiliary heat transfer cooling unit 163 and the cooling pin 134 are in close contact and thermally coupled, but this may be performed by bonding with an adhesive or may be physically fixed. In brief, an aluminum tape with an adhesive may be used as the auxiliary heat transfer cooling unit 163 and bonded to the cooling pin 134.
 本発明にかかる冷蔵庫は、本発明の静電霧化装置を適用することにより、低湿度雰囲気でも簡単な構成で安定して複数の貯蔵室へ微細ミストを供給することができるので、家庭用又は業務用冷蔵庫もしくは野菜専用庫に対して実施することはもちろん、野菜などの食品低温流通、倉庫などの用途にも適用できる。さらには、本発明で用いた静電霧化装置は、エアコンやヒートポンプ式の洗濯機に関して、ヒートポンプシステムの低温側を冷却手段として用いることで、適用が可能となる。さらに、これらに限らずミストを噴霧する空間と、伝熱冷却部(冷却ピン)を備える空間とが大きな温度差を有する場合には同様の技術思想を用いることができ、例えば食器洗浄機、食器洗浄機、炊飯器、掃除機など、各種機器に用いることができる。 The refrigerator according to the present invention can supply fine mist stably to a plurality of storage rooms with a simple configuration even in a low humidity atmosphere by applying the electrostatic atomizer of the present invention. It can be applied not only to commercial refrigerators or vegetable vaults, but also to low temperature foods such as vegetables and warehouses. Furthermore, the electrostatic atomizer used in the present invention can be applied to an air conditioner or a heat pump type washing machine by using the low temperature side of the heat pump system as a cooling means. Furthermore, the same technical idea can be used when the space for spraying mist and the space provided with the heat transfer cooling part (cooling pin) have a large temperature difference. It can be used for various devices such as washing machines, rice cookers, and vacuum cleaners.
 1 霧化対象空間
 2,135 霧化電極
 3,136 対向電極
 4 冷空間
 5 伝熱冷却部
 6 仕切り部
 11,137 外郭ケース
 100 冷蔵庫
 101 断熱箱体
 102 外箱
 103 内箱
 104 冷蔵室
 105 切換室
 106 製氷室
 107 冷凍室
 108 野菜室
 109 圧縮機
 110 冷却室
 112 冷却器
 113 冷却ファン
 114 ラジアントヒータ
 115 ドレンパン
 116 ドレンチューブ
 117 蒸発皿
 125 第二の仕切り壁
 125a 凹部
 125b 最深凹部
 131 静電霧化装置
 132 噴霧口
 133 電圧印加部
 134 冷却ピン
 138 湿度供給口
 139 霧化部
 142 結露防止部材
 142a 熱拡散層
 142b 断熱層
 146 制御部
 151a 貯蔵室内凸部
 152 断熱材
 153 熱伝導抑制部
 154 加熱部
 155 伝熱冷却部絶縁層
 160 連絡カバー
 161 密着性向上部
 162 緩衝部
 163 補助伝熱冷却部
DESCRIPTION OF SYMBOLS 1 Atomization object space 2,135 Atomization electrode 3,136 Opposite electrode 4 Cold space 5 Heat transfer cooling part 6 Partition part 11,137 Outer case 100 Refrigerator 101 Heat insulation box 102 Outer box 103 Inner box 104 Refrigeration room 105 Switching room 106 Ice making room 107 Freezing room 108 Vegetable room 109 Compressor 110 Cooling room 112 Cooler 113 Cooling fan 114 Radiant heater 115 Drain pan 116 Drain tube 117 Evaporating dish 125 Second partition wall 125a Recess 125b Deepest recess 131 Electrostatic atomizer 132 Spray port 133 Voltage application unit 134 Cooling pin 138 Humidity supply port 139 Atomization unit 142 Condensation prevention member 142a Thermal diffusion layer 142b Thermal insulation layer 146 Control unit 151a Convex portion in storage room 152 Thermal insulation material 153 Thermal conduction suppression unit 154 Heating unit 155 Heat transfer Cooling part insulation layer 60 Contact cover 161 adhesion enhancing section 162 buffer unit 163 auxiliary heat transfer cooling unit

Claims (11)

  1.  断熱隔壁で区画された貯蔵室と、
     前記貯蔵室内にミストを噴霧する静電霧化装置と、
     前記静電霧化装置を冷却する冷却部とを備え、
     前記静電霧化装置は、
     前記断熱隔壁内に埋設され、前記冷却部によって冷却される伝熱冷却部と、
     前記伝熱冷却部に熱的に接続され、前記伝熱冷却部から伝導される冷気によって周辺に生じる結露水を、ミストとして前記貯蔵室に噴霧する霧化先端部と、
     前記伝熱冷却部の前記霧化先端部に対面する側の面を覆う結露防止部材とを有する
     冷蔵庫。
    A storage room partitioned by an insulating partition;
    An electrostatic atomizer for spraying mist into the storage chamber;
    A cooling unit for cooling the electrostatic atomizer,
    The electrostatic atomizer is
    A heat transfer cooling section embedded in the heat insulating partition and cooled by the cooling section;
    An atomizing tip that is thermally connected to the heat transfer cooling unit and sprays condensed water generated in the vicinity by cold air conducted from the heat transfer cooling unit as a mist to the storage chamber;
    A dew condensation prevention member that covers a surface of the heat transfer cooling unit that faces the atomizing tip.
  2.  前記結露防止部材の前記貯蔵室に露出する面の面積は、前記伝熱冷却部の前記結露防止部材に対面する面の面積より大きい
     請求項1に記載の冷蔵庫。
    The refrigerator according to claim 1, wherein an area of a surface of the dew condensation prevention member exposed to the storage chamber is larger than an area of a surface of the heat transfer cooling unit facing the dew condensation prevention member.
  3.  前記静電霧化装置は、さらに、前記伝熱冷却部と前記結露防止部材との間に介在し、前記伝熱冷却部から前記結露防止部材への熱伝導を抑制する熱伝導抑制部を有する
     請求項1又は2に記載の冷蔵庫。
    The electrostatic atomizer further includes a heat conduction suppression unit that is interposed between the heat transfer cooling unit and the dew condensation prevention member and suppresses heat conduction from the heat transfer cooling unit to the dew condensation prevention member. The refrigerator according to claim 1 or 2.
  4.  該冷蔵庫は、さらに、前記結露防止部材を選択的に加熱する加熱部を備える
     請求項1~3のいずれか1項に記載の冷蔵庫。
    The refrigerator according to any one of claims 1 to 3, further comprising a heating unit that selectively heats the dew condensation prevention member.
  5.  前記静電霧化装置は、霧化電極として機能する前記霧化先端部と、前記霧化先端部に対向する位置に設けられる対向電極とを備え、前記霧化電極と前記対向電極との間に電圧を印加することによってミストを噴霧するものであり、
     前記対向電極は、前記結露防止部材に固定される
     請求項1~4のいずれか1項に記載の冷蔵庫。
    The electrostatic atomizer includes the atomizing tip portion that functions as an atomizing electrode, and a counter electrode provided at a position facing the atomizing tip portion, between the atomizing electrode and the counter electrode. The mist is sprayed by applying a voltage to
    The refrigerator according to any one of claims 1 to 4, wherein the counter electrode is fixed to the dew condensation prevention member.
  6.  前記静電霧化装置は、さらに、前記伝熱冷却部と前記結露防止部材とが対面する位置から前記貯蔵室に至る経路を封止する密着性向上部を有する
     請求項1~5のいずれか1項に記載の冷蔵庫。
    6. The electrostatic atomizer further includes an adhesion improving unit that seals a path from the position where the heat transfer cooling unit and the dew condensation prevention member face each other to the storage chamber. The refrigerator according to item 1.
  7.  前記伝熱冷却部の前記冷却部に近い側の端部は、伝熱方向に垂直な断面における断面積が他の部分より小さくなるように構成されている
     請求項1~6のいずれか1項に記載の冷蔵庫。
    The end portion of the heat transfer cooling unit on the side close to the cooling unit is configured such that a cross-sectional area in a cross section perpendicular to the heat transfer direction is smaller than other portions. Refrigerator.
  8.  前記伝熱冷却部の伝熱方向に垂直な断面における断面形状は、矩形状である
     請求項1~7のいずれか1項に記載の冷蔵庫。
    The refrigerator according to any one of claims 1 to 7, wherein a cross-sectional shape in a cross section perpendicular to the heat transfer direction of the heat transfer cooling unit is a rectangular shape.
  9.  前記静電霧化装置は、さらに、
     前記伝熱冷却部の前記冷却部に近い側の端部を覆う緩衝部と、
     前記緩衝部を覆い、且つ前記伝熱冷却部に熱的に接続される補助伝熱冷却部とを有する
     請求項1~8のいずれか1項に記載の冷蔵庫。
    The electrostatic atomizer further comprises:
    A buffer portion covering an end portion of the heat transfer cooling portion close to the cooling portion;
    The refrigerator according to any one of claims 1 to 8, further comprising an auxiliary heat transfer cooling unit that covers the buffer unit and is thermally connected to the heat transfer cooling unit.
  10.  前記冷却部は、前記断熱隔壁を介して前記貯蔵室に隣接する位置に設けられ、
     前記断熱隔壁には、前記冷却部に向かって突出する凸部が形成され、
     前記伝熱冷却部は、前記断熱隔壁の前記凸部が形成されている位置に埋設される
     請求項1~9のいずれか1項に記載の冷蔵庫。
    The cooling unit is provided at a position adjacent to the storage chamber via the heat insulating partition,
    The heat insulating partition wall is formed with a protruding portion that protrudes toward the cooling portion,
    The refrigerator according to any one of claims 1 to 9, wherein the heat transfer cooling unit is embedded in a position where the convex portion of the heat insulating partition is formed.
  11.  断熱隔壁で区画された貯蔵室と、冷気を生成する冷却部とを有する冷蔵庫に取り付けられ、前記貯蔵室にミストを噴霧する静電霧化装置であって、
     前記断熱隔壁内に埋設され、前記冷却部によって冷却される伝熱冷却部と、
     前記伝熱冷却部に熱的に接続され、前記伝熱冷却部から伝導される冷気によって周辺に生じる結露水を、ミストとして前記貯蔵室に噴霧する霧化先端部と、
     前記伝熱冷却部の前記霧化先端部に対面する側の面を覆う結露防止部材とを有する
     静電霧化装置。
    An electrostatic atomizer that is attached to a refrigerator having a storage compartment partitioned by a heat insulating partition and a cooling unit that generates cold air, and sprays mist on the storage compartment,
    A heat transfer cooling section embedded in the heat insulating partition and cooled by the cooling section;
    An atomizing tip that is thermally connected to the heat transfer cooling unit and sprays condensed water generated in the vicinity by cold air conducted from the heat transfer cooling unit as a mist to the storage chamber;
    An electrostatic atomizer comprising: a dew condensation prevention member that covers a surface of the heat transfer cooling unit facing the atomization tip.
PCT/JP2011/001198 2010-03-29 2011-03-02 Refrigerator and electrostatic atomization device WO2011121892A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011800091151A CN102753920A (en) 2010-03-29 2011-03-02 Refrigerator and electrostatic atomization device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010074698 2010-03-29
JP2010-074698 2010-03-29
JP2010-204172 2010-09-13
JP2010204172A JP5609457B2 (en) 2010-03-29 2010-09-13 refrigerator

Publications (1)

Publication Number Publication Date
WO2011121892A1 true WO2011121892A1 (en) 2011-10-06

Family

ID=44711663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001198 WO2011121892A1 (en) 2010-03-29 2011-03-02 Refrigerator and electrostatic atomization device

Country Status (3)

Country Link
JP (1) JP5609457B2 (en)
CN (1) CN102753920A (en)
WO (1) WO2011121892A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103193033A (en) * 2012-01-09 2013-07-10 桂雷珠 High-voltage electrostatic field fruit and vegetable fresh-keeping box provided with ozone generator
GB2500665A (en) * 2012-03-29 2013-10-02 Peter Holmes Refrigerator Food Spoilage Inhibitor Utilising an Ozone Generating Device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6411753B2 (en) * 2013-03-12 2018-10-24 東芝ライフスタイル株式会社 Refrigerator and camera device
JP6498866B2 (en) * 2013-03-12 2019-04-10 東芝ライフスタイル株式会社 Refrigerator, camera device
JP6391943B2 (en) 2013-03-12 2018-09-19 東芝ライフスタイル株式会社 Refrigerator, camera device, internal image display program
CN105026857B (en) * 2013-03-14 2017-08-29 夏普株式会社 Refrigerator
CN104279622B (en) * 2013-07-03 2019-07-12 海尔集团公司 Air conditioner indoor unit and air-conditioning
JP2018105613A (en) * 2018-02-13 2018-07-05 東芝ライフスタイル株式会社 refrigerator
JP2020068930A (en) * 2018-10-30 2020-05-07 パナソニックIpマネジメント株式会社 rice cooker
CN113028700A (en) * 2019-12-24 2021-06-25 博西华电器(江苏)有限公司 Water mist generating device, refrigerator and water mist generating method
JP2021116933A (en) * 2020-01-22 2021-08-10 パナソニックIpマネジメント株式会社 refrigerator
KR102459290B1 (en) * 2021-09-29 2022-11-14 대영전자 주식회사 Vehicle center console with refrigeration function

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006205013A (en) * 2005-01-26 2006-08-10 Matsushita Electric Works Ltd Apparatus for electrostatic aerification
JP2007313459A (en) * 2006-05-26 2007-12-06 Matsushita Electric Works Ltd Electrostatic atomizer
JP2008018404A (en) * 2006-07-14 2008-01-31 Matsushita Electric Works Ltd Electrostatic atomizer
JP2008149242A (en) * 2006-12-15 2008-07-03 Matsushita Electric Works Ltd Electrostatic atomizer
JP2008155144A (en) * 2006-12-25 2008-07-10 Matsushita Electric Works Ltd Electrostatic atomizing device
JP2009264665A (en) * 2007-04-26 2009-11-12 Panasonic Corp Refrigerator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07230741A (en) * 1994-02-17 1995-08-29 Honda Motor Co Ltd Supporting device for change switch
JP2003056786A (en) * 2001-08-09 2003-02-26 Hoshizaki Electric Co Ltd Drain plug
JP4625267B2 (en) * 2004-04-08 2011-02-02 パナソニック電工株式会社 Electrostatic atomizer
WO2008139704A1 (en) * 2007-04-26 2008-11-20 Panasonic Corporation Refrigerator, and electric device
JP5326285B2 (en) * 2008-01-25 2013-10-30 パナソニック株式会社 refrigerator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006205013A (en) * 2005-01-26 2006-08-10 Matsushita Electric Works Ltd Apparatus for electrostatic aerification
JP2007313459A (en) * 2006-05-26 2007-12-06 Matsushita Electric Works Ltd Electrostatic atomizer
JP2008018404A (en) * 2006-07-14 2008-01-31 Matsushita Electric Works Ltd Electrostatic atomizer
JP2008149242A (en) * 2006-12-15 2008-07-03 Matsushita Electric Works Ltd Electrostatic atomizer
JP2008155144A (en) * 2006-12-25 2008-07-10 Matsushita Electric Works Ltd Electrostatic atomizing device
JP2009264665A (en) * 2007-04-26 2009-11-12 Panasonic Corp Refrigerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103193033A (en) * 2012-01-09 2013-07-10 桂雷珠 High-voltage electrostatic field fruit and vegetable fresh-keeping box provided with ozone generator
GB2500665A (en) * 2012-03-29 2013-10-02 Peter Holmes Refrigerator Food Spoilage Inhibitor Utilising an Ozone Generating Device
GB2500665B (en) * 2012-03-29 2016-03-23 Peter Holmes Food spoilage inhibitor

Also Published As

Publication number Publication date
CN102753920A (en) 2012-10-24
JP5609457B2 (en) 2014-10-22
JP2011226760A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
WO2011121892A1 (en) Refrigerator and electrostatic atomization device
EP2199714B9 (en) Refrigerator
US7966842B2 (en) Refrigerator, and electric device
EP2476490B1 (en) Refrigerator
WO2011024438A1 (en) Refrigerator
JP2007192539A (en) Storage box and refrigerator
WO2011024454A1 (en) Refrigerator
JP5251228B2 (en) refrigerator
JP4151743B1 (en) refrigerator
CN103119384B (en) The control method of atomising device, the control method of electric discharge device and freezer
JP5239456B2 (en) refrigerator
JP4151739B1 (en) refrigerator
JP5589698B2 (en) refrigerator
JP4179398B1 (en) refrigerator
JP2009293895A (en) Refrigerator
JP2011069604A (en) Refrigerator
JP2009264665A (en) Refrigerator
JP4196128B2 (en) refrigerator
JP5167840B2 (en) refrigerator
JP5326285B2 (en) refrigerator
JP5239455B2 (en) refrigerator
JP2011047549A (en) Refrigerator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180009115.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762146

Country of ref document: EP

Kind code of ref document: A1