WO2011108363A1 - Permanent magnet synchronizing electric motor - Google Patents

Permanent magnet synchronizing electric motor Download PDF

Info

Publication number
WO2011108363A1
WO2011108363A1 PCT/JP2011/053376 JP2011053376W WO2011108363A1 WO 2011108363 A1 WO2011108363 A1 WO 2011108363A1 JP 2011053376 W JP2011053376 W JP 2011053376W WO 2011108363 A1 WO2011108363 A1 WO 2011108363A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
winding
rotor
cage
synchronous motor
Prior art date
Application number
PCT/JP2011/053376
Other languages
French (fr)
Japanese (ja)
Inventor
剛 樋口
Original Assignee
国立大学法人長崎大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人長崎大学 filed Critical 国立大学法人長崎大学
Priority to JP2012503057A priority Critical patent/JP5733583B2/en
Publication of WO2011108363A1 publication Critical patent/WO2011108363A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/46Motors having additional short-circuited winding for starting as an asynchronous motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/223Rotor cores with windings and permanent magnets

Definitions

  • the present invention relates to a permanent magnet synchronous motor in which a permanent magnet is attached to a rotor.
  • a squirrel-cage three-phase induction motor generates a rotating magnetic field by applying a three-phase alternating current to the stator side winding, and by placing a rotor with a squirrel-cage winding in this rotating magnetic field, A current is induced in the conductor of the squirrel-cage winding, and torque is generated between the current and the rotating magnetic field to rotate the rotor.
  • This type of induction motor self-starts by simply applying an alternating current to the stator winding and accelerates to near the synchronous speed.
  • frequency control by an inverter is generally used, but it rotates at a speed corresponding to the frequency, that is, a speed slightly slower than the synchronous speed, and further according to the load torque. The speed fluctuates. Therefore, in order to perform accurate speed control, the rotational speed of the rotor is detected, vector control calculation using the speed command and the detected rotational speed is performed, and the frequency, voltage and phase of the alternating current to be applied. Need to always control.
  • Permanent magnet synchronous motors have a permanent magnet attached to the rotor and a torque generated by the action of the rotating magnetic field generated by applying a three-phase alternating current to the stator winding and the magnetic field generated by the permanent magnet. It is intended to rotate. Since the rotation speed is the synchronous speed, the speed control is easy.
  • the permanent magnet synchronous motor since the permanent magnet synchronous motor generates torque only at the synchronous speed, it has a drawback that it cannot be self-started at rest at the commercial frequency. Also, in order to control the rotational speed without causing a loss of synchronization, generally, after acquiring information on the rotational position of the rotor, vector control calculation or the like is performed to determine the frequency, voltage, and phase of the alternating current to be applied. Need to control. In this way, it has the characteristics of an induction motor that can be self-started and the characteristics of a permanent magnet synchronous motor that rotates at a synchronous speed, and the motor can be speed controlled with a simple general-purpose variable voltage variable frequency inverter without performing complicated vector control. There was an expectation.
  • a winding for starting up as an induction motor is provided on the rotor separately from the permanent magnet, and after starting up as an induction motor.
  • various permanent magnet synchronous motors having a structure capable of constant speed operation as a synchronous motor.
  • Document 1 Japanese Patent Laid-Open No. 2009-153356 published by the Japan Patent Office
  • a squirrel-cage winding is disposed on the outer peripheral side of the rotor, and a plurality of permanent magnets are disposed on the inner peripheral side of the rotor.
  • a description of the structure is shown in FIG.
  • the squirrel-cage winding on the outer peripheral side of the rotor enables starting as an induction motor.
  • the system approaches the synchronous speed after being activated, it is rotated at the synchronous speed by the action of the permanent magnet, and the constant speed operation is performed as the synchronous motor.
  • An object of the present invention is to propose an electric motor capable of high-efficiency driving as a permanent magnet synchronous motor and capable of self-starting.
  • the present invention comprises a rotor having a permanent magnet attached to an iron core and a stator having a multiphase winding disposed around the rotor, and a multiphase AC is applied to the multiphase winding of the stator.
  • a multiphase AC is applied to the multiphase winding of the stator.
  • the configuration is such that at least these two permanent magnets are exposed at a predetermined position on the cylindrical surface of the rotor facing the stator and are arranged uniformly, and a position different from the arrangement position of the at least two permanent magnets.
  • a braking winding (cage winding) is arranged along the circumferential direction of the cylindrical surface.
  • the induction motor can be self-started as an induction motor using a brake winding, and when the synchronous speed is reached, it operates as a synchronous motor using a permanent magnet.
  • at least two permanent magnets are arranged so as to be exposed on the cylindrical surface of the rotor so as to be close to the stator core, and the brake winding portion is also close to the stator core. Therefore, the magnetic field generated by the permanent magnet is smoothly distributed, and a highly efficient synchronous motor can be obtained.
  • the braking winding arranged on the rotor is constituted by a split cage winding obtained by dividing the cage winding along the circumferential direction of the cylindrical surface, so that the permanent magnet and the braking are provided on the rotor cylindrical surface.
  • the windings can be arranged alternately and efficiently.
  • One end of the permanent magnet is held by the end of the conductor constituting the split cage winding adjacent to the one end, and the other end of the permanent magnet is divided adjacent to the other end.
  • the permanent magnets can be fixed to the rotor, so that the permanent magnets can be fixed using the conductors that make up the split-cage windings.
  • the conductor that plays a role of suppressing the magnet also plays a role of reducing a leakage magnetic field that returns to the other pole of the permanent magnet in the rotor through the rotor core without the magnetic field generated by the permanent magnet going to the stator.
  • the cage winding does not constitute the split cage winding, but is an end in which all conductors of the cage winding are arranged at both ends of the rotor like the cage winding of a normal induction motor. It can also be set as the structure short-circuited by an entanglement ring.
  • FIG. 1 It is sectional drawing which shows the example of the cross-sectional structure of the electric motor by one embodiment of this invention. It is a perspective view which shows the structural example of the rotor of the electric motor by one embodiment of this invention. It is a disassembled perspective view which decomposes
  • the electric motor according to the present embodiment includes a rotor 100 in which permanent magnets 110 a and 110 b are attached to an iron core 102, and a multiphase winding (three-phase winding) disposed around the rotor 100.
  • This is a permanent magnet synchronous motor constituted by a stator 200 having an AC winding 202).
  • a three-phase alternating current is applied to the three-phase alternating current winding 202, which is a multiphase winding, and a rotating magnetic field is generated.
  • the stator 200 has a plurality of slots 201 arranged annularly, and a three-phase AC winding 202 is arranged in each slot 201. .
  • an alternating current of another phase is applied every 30 ° as the three-phase AC winding 202 so that the winding ranges of the respective phases as U phase, V phase, and W phase are shown in FIG. It is.
  • FIG. 2 shows a state in which the rotor 100 is removed from the stator 200
  • FIG. 3 is an exploded view of each member constituting the rotor 100.
  • the rotor 100 has a rotating shaft 101 attached to the center of a cylindrical iron core 102.
  • Two permanent magnets 110a and 110b are arranged at equal intervals on the cylindrical surface which is the outer peripheral surface of the cylindrical iron core 102.
  • the two permanent magnets 110 a and 110 b have the same shape, are elongated strips having a length substantially equal to the length of the iron core 102 attached to the rotating shaft 101, and are curved along the cylindrical surface of the iron core 102. .
  • the outer peripheral surfaces of the curved permanent magnets 110a and 110b are exposed to the outside and face the slot 201 on the stator 200 side shown in FIG.
  • the outer side of each permanent magnet 110a, 110b is an N pole
  • the inner side is an S pole.
  • Cage-shaped winding portions 120a and 120b are disposed beside the strip-shaped permanent magnets 110a and 110b disposed on the cylindrical surface of the iron core 102.
  • the squirrel-cage winding portions 120a and 120b of the present embodiment are divided into two squirrel-cage windings.
  • the cage winding portion 120a has one end and the other end of eight conductor rods 121a and two conductor rods of the conductor frame 122a. The shape is supported by the support portion 123a.
  • the squirrel-cage winding portion is shown separated from the iron core 102 in FIG.
  • the eight conductor rods 121 a are actually provided on the iron core 102 at a position slightly inside from the outer peripheral surface of the iron core 102. It arrange
  • the conductor frame 122a of the squirrel-cage winding part 120a has a curved shape along the outer peripheral surface of the iron core 102, and is disposed on the outer peripheral surface of the iron core 102 continuously with the outer peripheral surface 111a of the permanent magnet. As shown in FIG. 3, a stepped portion 102a is provided on the outer peripheral surface of the iron core 102, and the conductor frame 122a is fitted into the stepped portion 102a.
  • the end face 124a of the conductor frame 122a of the cage-shaped winding part 120a is shaped to be joined to the end face 112a of the permanent magnet 110a.
  • the end faces 124a and 112a are inclined obliquely so that the conductor frame 122a presses the permanent magnet 110a from above.
  • the end face 124a on the opposite side of the conductor frame 122a (the tips of the two conductor rod support portions 123a) is shaped to be joined to the end face 112b of the permanent magnet 110b.
  • the other cage winding portions 120b have the same shape as the cage winding portion 120a. That is, the squirrel-cage winding portion 120b is configured to support one end and the other end of the eight conductor rods 121b with the two conductor rod support portions 123b of the conductor frame 122b.
  • the conductor rod 121b is also disposed in the through hole 103 provided in the iron core 102. As shown in the cross section of FIG. 1, the conductor rods 121a and 121b are evenly arranged at equal intervals.
  • the squirrel-cage winding portion 120 a is disposed on one side of the position where the permanent magnet 110 a is disposed on the outer peripheral surface of the iron core 102. Then, a squirrel-cage winding part 120b is arranged on the other side. In addition, a squirrel-cage winding part 120a is arranged on one side of another permanent magnet 110b arrangement position, and a squirrel-cage winding part 120b is arranged on the other side. Therefore, in the rotor 100, the arrangement state of the cylindrical surface is arranged in the order of the permanent magnet 110a, the squirrel-cage winding part 120a, the permanent magnet 110b, and the squirrel-cage winding part 120b.
  • the angle ranges ⁇ 1 and ⁇ 3 in which the conductor rods 121a and 121b of the cage winding portions 120a and 120b are arranged, the permanent magnets 110a and 110b, and the conductor frames 122a and 122b on the side thereof are arranged.
  • the angular ranges ⁇ 2 and ⁇ 4 are substantially equal. That is, as shown in FIG. 1, the angle range in which the eight conductor rods 121a are arranged is the angle ⁇ 1, and the angle range in which the permanent magnet 110b and the left and right side conductor frames 122a and 122b are arranged is the angle ⁇ 2.
  • An angle range in which the eight conductor rods 121b are arranged is an angle ⁇ 3, and an angle range in which the permanent magnet 110a and the left and right side conductor frames 122a and 122b are arranged is an angle ⁇ 4.
  • the four angles ⁇ 1 to ⁇ 4 are approximately equal at about 90 °.
  • one end face 112a and the other end face 112a of the permanent magnet 110a are pressed by the end face 124a of the squirrel-cage winding part 120a and the end face 124b of the squirrel-cage winding part 120b, so that the permanent magnet 110a has a surface side (N pole). It is fixed to the iron core 102 while being exposed to the outside.
  • one and the other end face 112b are pressed by the end face 124a of the squirrel-cage winding part 120a and the end face 124b of the squirrel-cage winding part 120b, so that the permanent magnet 110b has a surface side (N pole). It is fixed to the iron core 102 while being exposed to the outside.
  • Each of the squirrel-cage winding portions 120a and 120b is fixed to the iron core 102 side by inserting the conductor rods 121a and 121b through the through holes 103 of the iron core 102.
  • the magnetic field generated by the thus configured rotor 100 will be described later.
  • FIG. 4 is a diagram showing an example of a drive circuit configuration of the electric motor according to the present embodiment.
  • a three-phase alternating current is generated by the inverter circuit 2 capable of changing the voltage and frequency.
  • the frequency of the three-phase alternating current generated by the inverter circuit 2 is set by a command from the frequency command generation unit 5.
  • the frequency command in the frequency command generator 5 is generated based on the speed command obtained at the speed command input terminal 4.
  • the three-phase alternating current of U phase, V phase, and W phase generated by the inverter circuit 2 is supplied to the electric motor 3.
  • the electric motor 3 is the electric motor shown in cross section in FIG. 1, and three-phase alternating current is supplied from the inverter circuit 2 to the three-phase alternating current winding 202 of the stator 200, and a rotating magnetic field corresponding to the frequency of the three-phase alternating current is generated. Is done.
  • FIG. 7 is a diagram showing an outline of the generation state of these four rotating magnetic fields.
  • a rotating magnetic field H 21, H 22, H 23, H 24 can be generated by causing a three-phase AC current to flow through the three-phase AC winding 202 on the stator 200 side.
  • FIG. 8 shows the magnetic field generated by the permanent magnets 110a and 110b.
  • Two magnetic fields H 11 and H 12 are generated around the permanent magnet 110a, and two magnetic fields are centered around the other permanent magnet 110b.
  • H 13 and H 14 are generated.
  • the magnetic field generated by the permanent magnets 110a and 110b acts on the rotating magnetic field to function as a synchronous motor.
  • FIG. 5 shows the slip characteristics and torque of the electric motor according to the present embodiment.
  • the characteristic is in the state of synchronous operation
  • the curve between the slip s of 1 and 0 is the characteristic when operating as an induction motor.
  • the slip s approaches 0, and when the value Ta approaches 0 to some extent, it is drawn into the value Tb in the synchronous operation, and the synchronous operation state Then, the slip state s is 0 and a predetermined torque is generated, resulting in an efficient operation state.
  • This characteristic curve can be freely set by designing the width and thickness of the magnet, the squirrel-cage winding, and the like.
  • FIG. 6 shows the slip characteristics and torque when the magnet width (angle) and magnet thickness are changed.
  • the characteristic T1 shows the torque [Nm] and slip s of a general induction motor.
  • the induction motor shown as characteristic T1 is an example having a rated torque of 23.6 Nm.
  • the characteristics T2, T3, and T4 show the torque [Nm] and the slip s of the electric motor in the example of the present embodiment, and both are 23.6 Nm, which is the same rated torque as the induction machine of the characteristic T1. This is an example of the configuration.
  • the characteristic T2 is an example of the characteristic when the magnet arrangement angle is 30 degrees and the magnet thickness is 5 mm.
  • the characteristic T3 is an example of the characteristic when the magnet arrangement angle is 40 degrees and the magnet thickness is 2.3 mm.
  • the characteristic T4 is an example of the characteristic when the magnet arrangement angle is 50 degrees and the magnet thickness is 1.9 mm. In each example of the present embodiment, it can be seen that all can be started as an induction machine and operated as a synchronous motor.
  • the rotation speed at the time of rotation at the synchronous speed is represented by (120 ⁇ frequency / number of poles) [rpm].
  • the frequency is a three-phase AC frequency applied to the three-phase AC winding 202.
  • the number of poles is the number of magnetic poles on the circumferential surface of the stator winding 202 and the rotor 100, and in this example, it is four.
  • the rotational speed proportional to the frequency of the three-phase alternating current applied to the three-phase alternating current winding 202 is the synchronous speed. For this reason, the rotational speed can be freely and accurately controlled only by controlling the frequency of the three-phase alternating current generated by the inverter circuit 2.
  • the permanent magnet and the squirrel-cage winding that is the brake winding are alternately arranged on the cylindrical surface of the rotor, so that the magnetic field and the rotating magnetic field by the magnet are excellent and smooth. It becomes possible to distribute. Therefore, the output and efficiency can be improved as compared with a conventionally proposed motor combining a permanent magnet and a braking winding, and a self-starting and highly efficient synchronous motor can be obtained.
  • the magnet arranged in an exposed state on the surface of the cylindrical surface of the iron core is sandwiched between the conductors of the squirrel-cage windings arranged on both sides thereof, so that it is held and fixed on the iron core side. Therefore, it is possible to easily and satisfactorily hold the permanent magnet in a state of being arranged on the surface of the cylindrical surface of the iron core.
  • Conventionally proposed rotors combining permanent magnets and braking windings have a structure in which the permanent magnets are embedded and fixed inside the iron core, and there is a problem that the configuration is complicated and the embedding work is troublesome.
  • the permanent magnet can be arranged at a good position without requiring such a complicated structure.
  • the conductor that acts as a permanent magnet suppressor has a leakage magnetic field that returns from the N pole of the permanent magnets 110a and 110b to the S pole of the permanent magnet through the rotor core 102 without going to the stator 200. It also has a mitigating effect.
  • FIG. 9 shows an example of a 6-pole rotor in which three permanent magnets are arranged uniformly.
  • the permanent magnets 310a, 310b, and 310c are evenly arranged on the circumferential surface, and the cage winding 320a is provided between the permanent magnet 310a and the permanent magnet 310b.
  • the cage-shaped winding part 320b is disposed between the permanent magnet 310b and the permanent magnet 310c, and the cage-shaped winding part 320c is disposed between the permanent magnet 310c and the permanent magnet 310a.
  • Each of the cage winding portions 320a to 320c includes conductor rods 321a, 321b, and 321c and conductor frames 322a, 322b, and 322c, respectively, and has the same shape as the cage winding portion shown in FIG.
  • Each permanent magnet 310a, 310b, 310c is also held and fixed by being sandwiched between adjacent cage windings 320a to 320c. In this case, as shown in FIG.
  • the angle ranges ⁇ 12, ⁇ 14, and ⁇ 16 in which the conductor rods 321a, 321b, and 321c of 320b and 320c are disposed are substantially equal.
  • FIG. 10 shows an example of an 8-pole rotor in which four permanent magnets are arranged uniformly.
  • the rotor 400 shown in cross section in FIG. 10 has permanent magnets 410a, 410b, 410c, and 410d arranged uniformly on the circumferential surface, and a squirrel-cage winding portion between the permanent magnet 410a and the permanent magnet 410b.
  • 420a is disposed
  • a cage winding 420b is disposed between the permanent magnet 410b and the permanent magnet 410c
  • a cage winding 420c is disposed between the permanent magnet 410c and the permanent magnet 410d.
  • a cage winding portion 420d is arranged between the magnet 410d and the permanent magnet 410a, and a total of four cage winding portions 420a to 420d are arranged.
  • Each of the cage winding parts 420a to 420d includes a conductor rod 421a, 421b, 421c, 421d and a conductor frame 422a, 422b, 422c, 422d, respectively, which is the same as the cage winding part shown in FIG. As a shape.
  • Each permanent magnet 410a, 410b, 410c, 410d is also held and fixed by being sandwiched between adjacent cage windings 420a to 420d. In this case, as shown in FIG.
  • the angle ranges ⁇ 22, ⁇ 24, ⁇ 26, and ⁇ 28 in which the conductor rods 421a, 421b, 421c, and 421d of the shape winding portions 420a, 420b, 420c, and 420d are disposed are substantially equal.
  • the squirrel-cage winding is composed of a plurality of conductor rods and a conductor frame supporting the conductor rods as a split cage winding.
  • the length of the permanent magnet 141 is the same as that of the conductor rods 121a and 121b, and each conductor rod (for example, 121a, 121b, 122a and 122b in the case of FIG. 2) is connected to one end and the other end. It is good also as a shape short-circuited by the rings 134 and 135.
  • the plate-shaped portions 131 and 132 of the squirrel-cage winding portion that are in contact with the permanent magnet 141 are also configured to be in contact with the end rings 134 and 135 as having the same length as the permanent magnet 141.
  • a brake winding having another shape may be used. Skew can also be applied to reduce torque ripple.
  • the ratio of the rotor cage winding and the permanent magnet in the circumferential direction is shown, for example, in the case where ⁇ 1, ⁇ 3, ⁇ 2, and ⁇ 4 in FIG. 1 are substantially equal, but this ratio is changed depending on the application. As a result, the characteristics of the induction motor can be enhanced, and the characteristics of the permanent magnet motor can be enhanced.
  • the three-phase winding 202 arranged in the slot 201 shown in FIG. 1 is an example, and other winding structures such as a concentrated winding may be used.
  • the motor structure a rotary motor is exemplified, but a linear motor structure may be used.
  • the supplied AC signal in principle, it is possible to supply multi-phase AC other than three-phase to the stator windings, but in reality it is possible to generate three-phase AC that can be generated by a general-purpose inverter circuit. It is common to use.
  • specific embodiments such as the number, size, and shape of conductors and the number, size, and shape of permanent magnets are shown by way of illustration, and the present invention is limited to these illustrated examples. It is not meant to be expressed.
  • DESCRIPTION OF SYMBOLS 1 Power supply input part, 2 ... Inverter circuit, 3 ... Electric motor, 4 ... Speed command input terminal, 5 ... Frequency command generation part, 100 ... Rotor, 101 ... Rotary shaft, 102 ... Iron core, 102a, 102b ... Step part DESCRIPTION OF SYMBOLS 103 ... Through-hole, 110a, 110b ... Permanent magnet, 111a, 111b ... Outer peripheral surface, 112a, 112b ... End surface, 120a, 120b ... Cage-shaped winding part, 121a, 121b ... Conductor rod, 122a, 122b ... Conductor frame, 123a , 123b ...
  • conductor rod support part 124a, 124b ... end face, 131, 132 ... plate-like part, 134, 135 ... end winding ring, 141 ... permanent magnet, 200 ... stator, 201 ... slot, 202 ... three-phase AC winding 300, rotor, 301, rotating shaft, 310a, 310b, 310c ... permanent magnet, 320a, 320b, 320c ... squirrel-cage winding part, 321a, 3 1b, 321c ... conductor rod, 322a, 322b, 322c ... conductor frame, 400 ... rotor, 401 ... rotating shaft, 410a, 410b, 410c, 410d ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

Disclosed is an electric motor capable of highly efficient driving, as well as self-starting, as a permanent magnet synchronizing electric motor. A permanent magnet synchronizing electric motor is configured from a rotating element (100) wherein permanent magnets are attached to an iron core, and a fixed element (200), further comprising a polyphase winding (202), which is positioned upon the periphery of the rotating element. A polyphase current is applied to the polyphase winding (202) of the fixed element (200) that is applied to the permanent magnet synchronizing electric motor. As a configuration thereof, at least two permanent magnets (110a, 110b) are positioned exposed equidistantly in prescribed positions upon the cylindrical face of the rotating element (100) and in opposition to the fixed element (200). Damping windings (basket-shaped windings) (121a, 122a, 121b, 122b) are positioned in different locations from the positioning locations of the permanent magnets (110a, 110b) in the circumference direction of the cylindrical face. When activated, the motor starts up as an induction motor using the damping windings, and rotates as a synchronized electric motor by way of the permanent magnets when a synchronization velocity is reached.

Description

永久磁石同期電動機Permanent magnet synchronous motor
 本発明は、回転子に永久磁石が取り付けられた永久磁石同期電動機に関する。 The present invention relates to a permanent magnet synchronous motor in which a permanent magnet is attached to a rotor.
 従来、交流電動機として広く普及している電動機の1つに、かご形三相誘導電動機がある。かご形三相誘導電動機は、固定子側の巻線に三相交流を印加することで回転磁界を生じさせ、この回転磁界の中にかご形巻線を備えた回転子を配置することで、かご形巻線の導体に電流を誘導し、この電流と回転磁界との間でトルクを発生して、回転子を回転させるものである。 Conventionally, one of the motors widely used as an AC motor is a cage type three-phase induction motor. A squirrel-cage three-phase induction motor generates a rotating magnetic field by applying a three-phase alternating current to the stator side winding, and by placing a rotor with a squirrel-cage winding in this rotating magnetic field, A current is induced in the conductor of the squirrel-cage winding, and torque is generated between the current and the rotating magnetic field to rotate the rotor.
 この種の誘導電動機は、固定子側の巻線に交流を印加するだけで自己始動し、同期速度近くまで加速する。この誘導電動機で回転速度の制御を行うためには、インバータによる周波数制御が一般的であるが、周波数に対応した速度、すなわち同期速度よりも少し遅い速度で回転し、さらに負荷トルクに応じて回転速度が変動する。したがって、正確な速度制御を行うためには、回転子の回転速度を検出し、速度指令と、検出した回転速度とを使ったベクトル制御演算等を行って、印加する交流の周波数と電圧や位相を常に制御する必要がある。 This type of induction motor self-starts by simply applying an alternating current to the stator winding and accelerates to near the synchronous speed. In order to control the rotational speed with this induction motor, frequency control by an inverter is generally used, but it rotates at a speed corresponding to the frequency, that is, a speed slightly slower than the synchronous speed, and further according to the load torque. The speed fluctuates. Therefore, in order to perform accurate speed control, the rotational speed of the rotor is detected, vector control calculation using the speed command and the detected rotational speed is performed, and the frequency, voltage and phase of the alternating current to be applied. Need to always control.
 一方、誘導電動機とは異なる構造の電動機として、誘導電動機よりも小型で5~10%程度効率の高い電動機である、永久磁石同期電動機が近年注目され、普及しつつある。永久磁石同期電動機は、回転子に永久磁石を取り付け、固定子側の巻線に三相交流を印加することによる回転磁界と永久磁石による磁界との作用で、トルクを発生させて、回転子を回転させるものである。回転速度は前記同期速度であるため、速度制御が容易である。 On the other hand, as a motor having a structure different from that of an induction motor, a permanent magnet synchronous motor, which is smaller than an induction motor and is about 5 to 10% more efficient, has recently attracted attention and is becoming popular. Permanent magnet synchronous motors have a permanent magnet attached to the rotor and a torque generated by the action of the rotating magnetic field generated by applying a three-phase alternating current to the stator winding and the magnetic field generated by the permanent magnet. It is intended to rotate. Since the rotation speed is the synchronous speed, the speed control is easy.
 しかしながら、永久磁石同期電動機は、同期速度でしかトルクを発生しないので、商用周波数では静止時に自己始動できない欠点がある。また、同期はずれを起こさずに回転速度を制御するためには、一般には回転子の回転位置の情報を取得した上で、ベクトル制御演算等を行って、印加する交流の周波数と電圧や位相を制御する必要がある。このように自己始動できる誘導電動機の特徴と同期速度で回転する永久磁石同期電動機の特徴を併せ持ち、複雑なベクトル制御を行わなくても簡単な汎用の可変電圧可変周波数インバータで速度制御できる電動機への期待があった。 However, since the permanent magnet synchronous motor generates torque only at the synchronous speed, it has a drawback that it cannot be self-started at rest at the commercial frequency. Also, in order to control the rotational speed without causing a loss of synchronization, generally, after acquiring information on the rotational position of the rotor, vector control calculation or the like is performed to determine the frequency, voltage, and phase of the alternating current to be applied. Need to control. In this way, it has the characteristics of an induction motor that can be self-started and the characteristics of a permanent magnet synchronous motor that rotates at a synchronous speed, and the motor can be speed controlled with a simple general-purpose variable voltage variable frequency inverter without performing complicated vector control. There was an expectation.
 永久磁石同期電動機が自己始動できない問題点を解決するために、従来から、誘導電動機として起動させるための巻線を永久磁石とは別に回転子に設けて、誘導電動機として起動させて、起動した後は、同期電動機として定速運転ができる構造の永久磁石同期電動機が、各種提案されている。例えば、文献1(日本国特許庁発行の特開2009-153356号公報)には、回転子の外周側にかご形巻線を配置し、回転子の内周側に複数の永久磁石を配置する構造についての記載が、図1などにある。回転子外周側のかご形巻線により、誘導電動機としての起動を可能としている。また、起動して同期速度に近づいたときには、永久磁石による作用で、同期速度で回転し、同期電動機として定速運転を行うようにしてある。 In order to solve the problem that the permanent magnet synchronous motor cannot self-start, conventionally, a winding for starting up as an induction motor is provided on the rotor separately from the permanent magnet, and after starting up as an induction motor. Have proposed various permanent magnet synchronous motors having a structure capable of constant speed operation as a synchronous motor. For example, in Document 1 (Japanese Patent Laid-Open No. 2009-153356 published by the Japan Patent Office), a squirrel-cage winding is disposed on the outer peripheral side of the rotor, and a plurality of permanent magnets are disposed on the inner peripheral side of the rotor. A description of the structure is shown in FIG. The squirrel-cage winding on the outer peripheral side of the rotor enables starting as an induction motor. In addition, when the system approaches the synchronous speed after being activated, it is rotated at the synchronous speed by the action of the permanent magnet, and the constant speed operation is performed as the synchronous motor.
 文献1以外にも、回転子に誘導電動機として作用させる巻線と同期電動機として作用させる永久磁石を組み込む構造は、各種提案されている。しかしながら従来から提案されている構造は、いずれも、永久磁石とかご形巻線の双方の回転子への配置が適正ではなかった。このため、特に固定子で発生させた回転磁界の流れがスムーズではなく誘導電動機としての特性が十分でなかったり、永久磁石による磁界の流れがスムーズではなく永久磁石同期電動機としての特性が十分に発揮できない問題があった。 In addition to Document 1, various structures have been proposed in which a winding that acts as an induction motor on a rotor and a permanent magnet that acts as a synchronous motor are incorporated. However, none of the conventionally proposed structures is appropriate in arranging the permanent magnet and the squirrel-cage winding on the rotor. For this reason, especially the flow of the rotating magnetic field generated by the stator is not smooth and the characteristics as an induction motor are not sufficient, or the magnetic field flow by the permanent magnet is not smooth, and the characteristics as a permanent magnet synchronous motor are sufficiently exhibited. There was a problem that could not be done.
 本発明は、永久磁石同期電動機として高効率な駆動ができると共に、自己始動が可能な電動機を提案することを目的とする。 An object of the present invention is to propose an electric motor capable of high-efficiency driving as a permanent magnet synchronous motor and capable of self-starting.
 本発明は、鉄心に永久磁石が取り付けられた回転子と、回転子の周囲に配置された多相巻線を備えた固定子とで構成され、固定子の多相巻線に多相交流が印加される永久磁石同期電動機に適用される。
 その構成としては、少なくともこれら2個の永久磁石を、固定子と対向する回転子の円筒面の所定位置に露出させて均等に配置し、少なくとも2個の永久磁石の配置位置とは別の位置の円筒面の円周方向に沿って、制動巻線(かご形巻線)を配置したものである。
The present invention comprises a rotor having a permanent magnet attached to an iron core and a stator having a multiphase winding disposed around the rotor, and a multiphase AC is applied to the multiphase winding of the stator. Applied to the applied permanent magnet synchronous motor.
The configuration is such that at least these two permanent magnets are exposed at a predetermined position on the cylindrical surface of the rotor facing the stator and are arranged uniformly, and a position different from the arrangement position of the at least two permanent magnets. A braking winding (cage winding) is arranged along the circumferential direction of the cylindrical surface.
 このように構成したことで、始動時には、制動巻線を使った誘導電動機として始動し、同期速度になると、永久磁石による同期電動機として動作する。 With such a configuration, at the time of starting, it starts as an induction motor using a braking winding, and when it reaches a synchronous speed, it operates as a synchronous motor using a permanent magnet.
 本発明によると、始動時には、制動巻線を使った誘導電動機として自己始動が可能であると共に、同期速度になると、永久磁石による同期電動機として動作するようなる。この場合、少なくとも2個の永久磁石を、回転子の円筒面に露出して配置して、固定子の鉄心に近接させた構成とし、制動巻線の部分も固定子の鉄心に対して近接させた構成としたため、永久磁石による磁界がスムーズに分布し、高効率の同期電動機が得られる。 According to the present invention, at the time of start-up, the induction motor can be self-started as an induction motor using a brake winding, and when the synchronous speed is reached, it operates as a synchronous motor using a permanent magnet. In this case, at least two permanent magnets are arranged so as to be exposed on the cylindrical surface of the rotor so as to be close to the stator core, and the brake winding portion is also close to the stator core. Therefore, the magnetic field generated by the permanent magnet is smoothly distributed, and a highly efficient synchronous motor can be obtained.
 この場合、回転子に配置した制動巻線は、かご形巻線を円筒面の円周方向に沿って分割した分割かご形巻線で構成することで、回転子の円筒面に永久磁石と制動巻線とを交互に効率よく配置できるようになる。 In this case, the braking winding arranged on the rotor is constituted by a split cage winding obtained by dividing the cage winding along the circumferential direction of the cylindrical surface, so that the permanent magnet and the braking are provided on the rotor cylindrical surface. The windings can be arranged alternately and efficiently.
 また、永久磁石の一方及び他方の端部に隣接して、それぞれ個別の分割かご形巻線を配置し、永久磁石と同数の分割かご形巻線を配置したことで、分割かご形巻線の部分はギャップを小さく保つことができるため、固定子巻線による回転磁界をスムーズに分布させることができる。従って、制動巻線を使った誘導電動機としての始動状態から、固定子を加速し,永久磁石による同期運転状態への切り替わりをスムーズに行えるようになる。 In addition, adjacent to one and the other end of the permanent magnet, separate split-cage windings are arranged, and the same number of split-cage windings as the permanent magnets are arranged. Since the portion can keep the gap small, the rotating magnetic field generated by the stator winding can be distributed smoothly. Therefore, the stator can be accelerated from the starting state as the induction motor using the braking winding, and the switching to the synchronous operation state by the permanent magnet can be smoothly performed.
 永久磁石の一方の端部を、その一方の端部と隣接した分割かご形巻線を構成する導体の端部で押え、永久磁石の他方の端部を、その他方の端部と隣接した分割かご形巻線を構成する導体の端部で押えることで、永久磁石を回転子に固定させることで、分割かご形巻線を構成する導体を使って永久磁石を固定させることができ、回転子の円筒面に永久磁石を固定することが確実かつ良好に行える効果を有する。この磁石抑えの役割をする導体は、永久磁石による磁界が固定子に行かずに回転子鉄心を通って回転子中の永久磁石の他極に戻る漏れ磁界を軽減する役割も担っている。 One end of the permanent magnet is held by the end of the conductor constituting the split cage winding adjacent to the one end, and the other end of the permanent magnet is divided adjacent to the other end. By pressing the ends of the conductors that make up the squirrel-cage winding, the permanent magnets can be fixed to the rotor, so that the permanent magnets can be fixed using the conductors that make up the split-cage windings. There is an effect that the permanent magnet can be fixed securely and satisfactorily on the cylindrical surface. The conductor that plays a role of suppressing the magnet also plays a role of reducing a leakage magnetic field that returns to the other pole of the permanent magnet in the rotor through the rotor core without the magnetic field generated by the permanent magnet going to the stator.
 なお、前記かご形巻線は、前記分割かご形巻線を構成しなくても、通常の誘導電動機のかご形巻線のようにかご形巻線の全ての導体を回転子両端に配置した端絡環で短絡する構成とすることもできる。 In addition, the cage winding does not constitute the split cage winding, but is an end in which all conductors of the cage winding are arranged at both ends of the rotor like the cage winding of a normal induction motor. It can also be set as the structure short-circuited by an entanglement ring.
本発明の一実施の形態による電動機の断面構成の例を示す断面図である。It is sectional drawing which shows the example of the cross-sectional structure of the electric motor by one embodiment of this invention. 本発明の一実施の形態による電動機の回転子の構成例を示す斜視図である。It is a perspective view which shows the structural example of the rotor of the electric motor by one embodiment of this invention. 図2の回転子を分解して示す分解斜視図である。It is a disassembled perspective view which decomposes | disassembles and shows the rotor of FIG. 本発明の一実施の形態による電動機の駆動回路構成例を示すブロック図である。It is a block diagram which shows the drive circuit structural example of the electric motor by one embodiment of this invention. 本発明の一実施の形態によるすべり特性とトルクの関係の例を示す特性図である。It is a characteristic view which shows the example of the relationship between the slip characteristic and torque by one Embodiment of this invention. 本発明の一実施の形態によるすべり特性とトルクの関係の例を示す特性図である。It is a characteristic view which shows the example of the relationship between the slip characteristic and torque by one Embodiment of this invention. 本発明の一実施の形態による固定子巻線による磁界の例を示す説明図である。It is explanatory drawing which shows the example of the magnetic field by the stator winding | coil by one embodiment of this invention. 本発明の一実施の形態による永久磁石による磁界の例を示す説明図である。It is explanatory drawing which shows the example of the magnetic field by the permanent magnet by one embodiment of this invention. 本発明の一実施の形態の変形例による永久磁石を3個配置した6極構造の回転子を示す断面図である。It is sectional drawing which shows the rotor of the 6 pole structure which has arrange | positioned three permanent magnets by the modification of one embodiment of this invention. 本発明の一実施の形態の変形例による永久磁石を4個配置した8極構造の回転子を示す断面図である。It is sectional drawing which shows the rotor of the octupole structure which has arrange | positioned four permanent magnets by the modification of one embodiment of this invention. 本発明の一実施の形態の変形例による電動機の端絡環を用いた回転子の構成例を示す斜視図である。It is a perspective view which shows the structural example of the rotor using the end-entanglement ring of the electric motor by the modification of one embodiment of this invention.
 本発明の一実施の形態を、以下の順序で説明する。
1.電動機の構成の説明(図1~図3)
2.駆動回路の説明(図4)
3.回転動作の説明(図5~図8)
4.変形例の説明(図9,図10,図11)
An embodiment of the present invention will be described in the following order.
1. Explanation of motor configuration (Figs. 1 to 3)
2. Explanation of drive circuit (FIG. 4)
3. Explanation of rotation operation (Figs. 5-8)
4). Description of modification (FIGS. 9, 10, and 11)
[1.電動機の構成の説明]
 まず、図1~図3を参照して、本実施の形態の電動機の構成について説明する。
 本実施の形態の電動機は、図1に断面で示すように、鉄心102に永久磁石110a,110bが取り付けられた回転子100と、回転子100の周囲に配置された多相巻線(3相交流巻線202)を備えた固定子200とで構成された永久磁石同期電動機としたものである。多相巻線である3相交流巻線202には、3相交流が印加されて、回転磁界が生成される。
[1. Description of motor configuration]
First, the configuration of the electric motor according to the present embodiment will be described with reference to FIGS.
As shown in a cross section in FIG. 1, the electric motor according to the present embodiment includes a rotor 100 in which permanent magnets 110 a and 110 b are attached to an iron core 102, and a multiphase winding (three-phase winding) disposed around the rotor 100. This is a permanent magnet synchronous motor constituted by a stator 200 having an AC winding 202). A three-phase alternating current is applied to the three-phase alternating current winding 202, which is a multiphase winding, and a rotating magnetic field is generated.
 固定子200側の構成について説明すると、図1に示すように、固定子200は、環状にスロット201を複数配置してあり、それぞれのスロット201内に3相交流巻線202を配置してある。この例では、図1にU相、V相、W相として各相の巻線の範囲を示すように、3相交流巻線202として、30°ごとに別の相の交流を印加させるようにしてある。但し、二層分布短節巻を施す時のように、相の境界となる位置付近のスロット201については、1つのスロット201内に、隣接する2つの相の巻線が配置される場合もある。 The configuration on the stator 200 side will be described. As shown in FIG. 1, the stator 200 has a plurality of slots 201 arranged annularly, and a three-phase AC winding 202 is arranged in each slot 201. . In this example, an alternating current of another phase is applied every 30 ° as the three-phase AC winding 202 so that the winding ranges of the respective phases as U phase, V phase, and W phase are shown in FIG. It is. However, as in the case of performing a two-layer distributed short-pitch winding, there may be a case where two adjacent phase windings are arranged in one slot 201 for the slot 201 near the phase boundary. .
 次に、回転子100の構成について説明する。
 図2は、回転子100を固定子200から外した状態で示してあり、図3はさらにその回転子100を構成する各部材を分解して示した図である。
 図2に示すように、回転子100は、回転軸101を、円筒形の鉄心102の中心に取り付けてある。円筒形の鉄心102の外周面である円筒面には、2つの永久磁石110a,110bを、等間隔に配置してある。2つの永久磁石110a,110bは、同一形状であり、回転軸101に取り付けられた鉄心102の長さとほぼ等しい長さの細長い短冊状としてあり、鉄心102の円筒面に沿って湾曲した形状としてある。そして、湾曲した永久磁石110a,110bの外周面が外側に露出し、図1に示した固定子200側のスロット201と対向する。この例では、図1に示したように、各永久磁石110a,110bの外側をN極とし、内側(鉄心102と接する側)をS極としてある。
Next, the configuration of the rotor 100 will be described.
FIG. 2 shows a state in which the rotor 100 is removed from the stator 200, and FIG. 3 is an exploded view of each member constituting the rotor 100.
As shown in FIG. 2, the rotor 100 has a rotating shaft 101 attached to the center of a cylindrical iron core 102. Two permanent magnets 110a and 110b are arranged at equal intervals on the cylindrical surface which is the outer peripheral surface of the cylindrical iron core 102. The two permanent magnets 110 a and 110 b have the same shape, are elongated strips having a length substantially equal to the length of the iron core 102 attached to the rotating shaft 101, and are curved along the cylindrical surface of the iron core 102. . The outer peripheral surfaces of the curved permanent magnets 110a and 110b are exposed to the outside and face the slot 201 on the stator 200 side shown in FIG. In this example, as shown in FIG. 1, the outer side of each permanent magnet 110a, 110b is an N pole, and the inner side (the side in contact with the iron core 102) is an S pole.
 鉄心102の円筒面に配置される短冊状の永久磁石110a,110bの脇には、かご形巻線部120a,120bが配置してある。本実施の形態のかご形巻線部120a,120bは、2つに分割された分割かご形巻線としてある。
 かご形巻線部120a,120bの形状としては、例えばかご形巻線部120aは、図3に示すように、8本の導体棒121aの一端及び他端を、導体枠122aの2つの導体棒支持部123aで支持する形状としてある。但し、図3ではかご形巻線部を鉄心102から離して示してあるが、実際には8本の導体棒121aは、鉄心102の外周面から若干内側に入った位置の鉄心102に設けた透孔103内に配置してあり、導体棒121aと導体枠122aとが接合した状態で鉄心102から離すことはできない。
Cage-shaped winding portions 120a and 120b are disposed beside the strip-shaped permanent magnets 110a and 110b disposed on the cylindrical surface of the iron core 102. The squirrel- cage winding portions 120a and 120b of the present embodiment are divided into two squirrel-cage windings.
As the shape of the cage winding portions 120a and 120b, for example, as shown in FIG. 3, the cage winding portion 120a has one end and the other end of eight conductor rods 121a and two conductor rods of the conductor frame 122a. The shape is supported by the support portion 123a. However, although the squirrel-cage winding portion is shown separated from the iron core 102 in FIG. 3, the eight conductor rods 121 a are actually provided on the iron core 102 at a position slightly inside from the outer peripheral surface of the iron core 102. It arrange | positions in the through-hole 103, and cannot leave | separate from the iron core 102 in the state which the conductor rod 121a and the conductor frame 122a joined.
 かご形巻線部120aの導体枠122aは、鉄心102の外周面に沿って湾曲した形状としてあり、永久磁石外周面111aと連続して、鉄心102の外周面に配置される。なお、図3に示すように、鉄心102の外周面には段差部102aを設けてあり、その段差部102aに導体枠122aが嵌る形状としてある。 The conductor frame 122a of the squirrel-cage winding part 120a has a curved shape along the outer peripheral surface of the iron core 102, and is disposed on the outer peripheral surface of the iron core 102 continuously with the outer peripheral surface 111a of the permanent magnet. As shown in FIG. 3, a stepped portion 102a is provided on the outer peripheral surface of the iron core 102, and the conductor frame 122a is fitted into the stepped portion 102a.
 かご形巻線部120aの導体枠122aの端面124aは、永久磁石110aの端面112aと接合する形状としてある。この場合、導体枠122aが上から永久磁石110aを押えるように、端面124a及び112aを斜めに傾斜させてある。導体枠122aの反対側の端面124a(2つの導体棒支持部123aの先端)は、永久磁石110bの端面112bと接合する形状としてある。 The end face 124a of the conductor frame 122a of the cage-shaped winding part 120a is shaped to be joined to the end face 112a of the permanent magnet 110a. In this case, the end faces 124a and 112a are inclined obliquely so that the conductor frame 122a presses the permanent magnet 110a from above. The end face 124a on the opposite side of the conductor frame 122a (the tips of the two conductor rod support portions 123a) is shaped to be joined to the end face 112b of the permanent magnet 110b.
 他のかご形巻線部120bについても、かご形巻線部120aと同様の形状である。即ち、かご形巻線部120bは、8本の導体棒121bの一端及び他端を、導体枠122bの2つの導体棒支持部123bで支持する構成としてある。導体棒121bについても、鉄心102に設けた透孔103内に配置される。各導体棒121a,121bは、図1の断面で示されるように、等間隔で均等に配置してある。 The other cage winding portions 120b have the same shape as the cage winding portion 120a. That is, the squirrel-cage winding portion 120b is configured to support one end and the other end of the eight conductor rods 121b with the two conductor rod support portions 123b of the conductor frame 122b. The conductor rod 121b is also disposed in the through hole 103 provided in the iron core 102. As shown in the cross section of FIG. 1, the conductor rods 121a and 121b are evenly arranged at equal intervals.
 このように構成したことで、回転子100として組み立てられた状態では、図2に示すように、鉄心102の外周面の永久磁石110a配置位置の一方の脇に、かご形巻線部120aが配置され、他方の脇に、かご形巻線部120bが配置される。また、もう1つの永久磁石110b配置位置の一方の脇に、かご形巻線部120aが配置され、他方の脇に、かご形巻線部120bが配置される。
 従って、回転子100は、円筒面の配置状態が、永久磁石110a,かご形巻線部120a,永久磁石110b,かご形巻線部120bの順序で配置され、永久磁石とかご形巻線とが円筒面に交互に配置された状態となる。
 図1に示すように、かご形巻線部120a,120bの導体棒121a,121bが配置される角度範囲θ1,θ3と、各永久磁石110a,110bとその脇の導体枠122a,122bが配置される角度範囲θ2,θ4とは、ほぼ等しくしてある。即ち、図1に示すように、8本の導体棒121aが配置された角度範囲を角度θ1とし、永久磁石110bとその左右の脇の導体枠122a,122bとが配置された角度範囲を角度θ2とし、8本の導体棒121bが配置された角度範囲を角度θ3とし、永久磁石110aとその左右の脇の導体枠122a,122bとが配置された角度範囲を角度θ4とする。このとき、この4つの角度θ1~θ4は、約90°でほぼ等しくする。
With this configuration, in the assembled state as the rotor 100, as shown in FIG. 2, the squirrel-cage winding portion 120 a is disposed on one side of the position where the permanent magnet 110 a is disposed on the outer peripheral surface of the iron core 102. Then, a squirrel-cage winding part 120b is arranged on the other side. In addition, a squirrel-cage winding part 120a is arranged on one side of another permanent magnet 110b arrangement position, and a squirrel-cage winding part 120b is arranged on the other side.
Therefore, in the rotor 100, the arrangement state of the cylindrical surface is arranged in the order of the permanent magnet 110a, the squirrel-cage winding part 120a, the permanent magnet 110b, and the squirrel-cage winding part 120b. It will be in the state where it was alternately arranged on the cylindrical surface.
As shown in FIG. 1, the angle ranges θ1 and θ3 in which the conductor rods 121a and 121b of the cage winding portions 120a and 120b are arranged, the permanent magnets 110a and 110b, and the conductor frames 122a and 122b on the side thereof are arranged. The angular ranges θ2 and θ4 are substantially equal. That is, as shown in FIG. 1, the angle range in which the eight conductor rods 121a are arranged is the angle θ1, and the angle range in which the permanent magnet 110b and the left and right side conductor frames 122a and 122b are arranged is the angle θ2. An angle range in which the eight conductor rods 121b are arranged is an angle θ3, and an angle range in which the permanent magnet 110a and the left and right side conductor frames 122a and 122b are arranged is an angle θ4. At this time, the four angles θ1 to θ4 are approximately equal at about 90 °.
 そして、永久磁石110aの一方及び他方の端面112aが、かご形巻線部120aの端面124a及びかご形巻線部120bの端面124bで押えられて、永久磁石110aが、表面側(N極)を外側に露出させた状態で鉄心102に固定される。永久磁石110bについても、一方及び他方の端面112bが、かご形巻線部120aの端面124a及びかご形巻線部120bの端面124bで押えられて、永久磁石110bが、表面側(N極)を外側に露出させた状態で鉄心102に固定される。各かご形巻線部120a,120bについては、各導体棒121a,121bを鉄心102の透孔103に挿通させてあることで、鉄心102側に固定される。
 このように構成した回転子100で生成される磁界については後述する。
Then, one end face 112a and the other end face 112a of the permanent magnet 110a are pressed by the end face 124a of the squirrel-cage winding part 120a and the end face 124b of the squirrel-cage winding part 120b, so that the permanent magnet 110a has a surface side (N pole). It is fixed to the iron core 102 while being exposed to the outside. In the permanent magnet 110b as well, one and the other end face 112b are pressed by the end face 124a of the squirrel-cage winding part 120a and the end face 124b of the squirrel-cage winding part 120b, so that the permanent magnet 110b has a surface side (N pole). It is fixed to the iron core 102 while being exposed to the outside. Each of the squirrel- cage winding portions 120a and 120b is fixed to the iron core 102 side by inserting the conductor rods 121a and 121b through the through holes 103 of the iron core 102.
The magnetic field generated by the thus configured rotor 100 will be described later.
[2.駆動回路の説明]
 図4は、本実施の形態の電動機の駆動回路構成例を示した図である。
 電源入力部1から供給された電源に基づいて、電圧と周波数を変化できるインバータ回路2で3相交流を生成させる。インバータ回路2で生成される3相交流の周波数は、周波数指令生成部5からの指令で設定される。周波数指令生成部5での周波数指令は、速度指令入力端子4に得られる速度指令に基づいて生成される。
[2. Explanation of drive circuit]
FIG. 4 is a diagram showing an example of a drive circuit configuration of the electric motor according to the present embodiment.
Based on the power supplied from the power input unit 1, a three-phase alternating current is generated by the inverter circuit 2 capable of changing the voltage and frequency. The frequency of the three-phase alternating current generated by the inverter circuit 2 is set by a command from the frequency command generation unit 5. The frequency command in the frequency command generator 5 is generated based on the speed command obtained at the speed command input terminal 4.
 インバータ回路2で生成されたU相、V相、W相の3相交流は、電動機3に供給される。電動機3が図1に断面で示した電動機であり、固定子200の3相交流巻線202にインバータ回路2から3相交流が供給されて、その3相交流の周波数に対応した回転磁界が生成される。 The three-phase alternating current of U phase, V phase, and W phase generated by the inverter circuit 2 is supplied to the electric motor 3. The electric motor 3 is the electric motor shown in cross section in FIG. 1, and three-phase alternating current is supplied from the inverter circuit 2 to the three-phase alternating current winding 202 of the stator 200, and a rotating magnetic field corresponding to the frequency of the three-phase alternating current is generated. Is done.
 速度指令入力端子4からの起動指令として、比較的低い周波数の3相交流を与えたり、回転子の位置を検出しながら駆動する必要がなく、望みの速度に応じた電圧と周波数の3相交流を生成すれば良い。 There is no need to give a relatively low frequency three-phase alternating current as a start command from the speed command input terminal 4 or drive while detecting the position of the rotor, and a three-phase alternating current of voltage and frequency according to the desired speed. Should be generated.
[3.回転動作の説明]
 次に、本実施の形態の電動機を回転させる際の動作例について、図5~図9を参照して説明する。
 電動機を回転駆動させる起動時には、一定の周波数の3相交流を3相交流巻線202に印加する。この3相交流巻線202への3相交流の印加で、回転磁界H21,22,23,24が発生する。
 図7は、この4つの回転磁界の生成状態の概要を示した図である。回転子100が静止した状態で、固定子200側で3相交流巻線202に3相交流電流を流すことで回転磁界H21,22,23,24を生成させることができ、かご形巻線部120a,120bに電流I11~I18が誘導される。図7の状態では,電流I11,I13,I15,I17と電流I12,I14,I16,I18の流れる方向は逆方向となる。
 この4つの固定子巻線による回転磁界H21,22,23,24と電流I11~I18との間で電磁力が発生して回転子100が回転をするようになり、誘導電動機として始動して加速する。
[3. Explanation of rotation operation]
Next, an example of operation when rotating the electric motor of the present embodiment will be described with reference to FIGS.
At the time of starting to rotate the electric motor, a three-phase alternating current having a constant frequency is applied to the three-phase alternating current winding 202. In the application of three-phase alternating current to the three-phase alternating-current windings 202, rotating magnetic field H 21, H 22, H 23 , H 24 occurs.
FIG. 7 is a diagram showing an outline of the generation state of these four rotating magnetic fields. In a state where the rotor 100 is stationary, a rotating magnetic field H 21, H 22, H 23, H 24 can be generated by causing a three-phase AC current to flow through the three-phase AC winding 202 on the stator 200 side. Currents I 11 to I 18 are induced in the winding sections 120a and 120b. In the state of FIG. 7, the currents I 11 , I 13 , I 15 , I 17 and the currents I 12 , I 14 , I 16 , I 18 flow in opposite directions.
An electromagnetic force is generated between the rotating magnetic fields H 21, H 22, H 23, H 24 and the currents I 11 to I 18 due to the four stator windings, so that the rotor 100 rotates and is induced. Start as an electric motor and accelerate.
 そして、回転速度が同期速度に近づくと、回転磁界H21,22,23,24と永久磁石110a,110bによる磁界との間に引き入れトルクが発生して、常に同期速度で回転するようになる。
 図8は、永久磁石110a,110bによる磁界を示したものであり、永久磁石110aを中心として、2つの磁界H11,H12が生成され、もう1つの永久磁石110bを中心として、2つの磁界H13,H14が生成される。
 同期運転状態では、この永久磁石110a,110bによる磁界が回転磁界と作用して、同期電動機として機能するようになる。
 なお、負荷変動により速度が変化しても、制動巻線であるかご形巻線の効果で、同期はずれを起こすことなく直ぐに同期運転状態に復帰できる。また、高速回転で定電圧運転領域に入るとしばらくは進み電流で動作するが、トルクが不足すると誘導電動機として動作するようになり、周波数が増加すると弱め界磁運転が自動的に行われる。
When the rotational speed approaches the synchronous speed, a drawing torque is generated between the rotating magnetic fields H 21, H 22, H 23, and H 24 and the magnetic field generated by the permanent magnets 110a and 110b so that the rotational speed always rotates at the synchronous speed. become.
FIG. 8 shows the magnetic field generated by the permanent magnets 110a and 110b. Two magnetic fields H 11 and H 12 are generated around the permanent magnet 110a, and two magnetic fields are centered around the other permanent magnet 110b. H 13 and H 14 are generated.
In the synchronous operation state, the magnetic field generated by the permanent magnets 110a and 110b acts on the rotating magnetic field to function as a synchronous motor.
Even if the speed changes due to load fluctuations, the effect of the squirrel-cage winding, which is a braking winding, can immediately return to the synchronous operation state without causing a loss of synchronization. In addition, when the motor enters the constant voltage operation region at high speed rotation, it proceeds for a while and operates with current. However, when the torque is insufficient, it operates as an induction motor, and when the frequency increases, field-weakening operation is automatically performed.
 図5は、本実施の形態の電動機のすべり特性とトルクを示したものである。すべりsが0のときが同期運転している状態の特性であり、すべりsが1から0までの間の曲線は、誘導電動機として運転しているときの特性である。
 起動時の誘導電動機としては、回転速度が同期速度に近づくことで、すべりsが0に近づき、ある程度0に近づいた値Taになったとき、同期運転での値Tbに引き込まれ、同期運転状態では、すべりsが0で所定のトルクが発生した効率のよい運転状態となる。この特性曲線は、磁石の幅や厚さ、かご形巻線などの設計により自由に設定することができる。
FIG. 5 shows the slip characteristics and torque of the electric motor according to the present embodiment. When the slip s is 0, the characteristic is in the state of synchronous operation, and the curve between the slip s of 1 and 0 is the characteristic when operating as an induction motor.
As an induction motor at start-up, when the rotational speed approaches the synchronous speed, the slip s approaches 0, and when the value Ta approaches 0 to some extent, it is drawn into the value Tb in the synchronous operation, and the synchronous operation state Then, the slip state s is 0 and a predetermined torque is generated, resulting in an efficient operation state. This characteristic curve can be freely set by designing the width and thickness of the magnet, the squirrel-cage winding, and the like.
 図6は、磁石幅(角度)と磁石厚さを変化させた場合のすべり特性とトルクを示したものである。図6において、特性T1は、一般的な誘導電動機のトルク[N-m]とすべりsを示したものである。特性T1として示す誘導電動機は、定格トルクが23.6N-mの例である。
 特性T2,T3,T4は、本実施の形態の例の電動機のトルク[N-m]とすべりsを示したものであり、いずれも特性T1の誘導機と同じ定格トルクである、23.6N-mとなるように構成した例である。
 特性T2は、磁石の配置角度30度で磁石厚さ5mmの場合の特性例である。特性T3は、磁石の配置角度40度で磁石厚さ2.3mmの場合の特性例である。特性T4は、磁石の配置角度50度で磁石厚さ1.9mmの場合の特性例である。
 本実施の形態の各例の場合、いずれも誘導機として始動し同期電動機として運転することができることがわかる。
FIG. 6 shows the slip characteristics and torque when the magnet width (angle) and magnet thickness are changed. In FIG. 6, the characteristic T1 shows the torque [Nm] and slip s of a general induction motor. The induction motor shown as characteristic T1 is an example having a rated torque of 23.6 Nm.
The characteristics T2, T3, and T4 show the torque [Nm] and the slip s of the electric motor in the example of the present embodiment, and both are 23.6 Nm, which is the same rated torque as the induction machine of the characteristic T1. This is an example of the configuration.
The characteristic T2 is an example of the characteristic when the magnet arrangement angle is 30 degrees and the magnet thickness is 5 mm. The characteristic T3 is an example of the characteristic when the magnet arrangement angle is 40 degrees and the magnet thickness is 2.3 mm. The characteristic T4 is an example of the characteristic when the magnet arrangement angle is 50 degrees and the magnet thickness is 1.9 mm.
In each example of the present embodiment, it can be seen that all can be started as an induction machine and operated as a synchronous motor.
 同期速度での回転時の回転速度は、(120×周波数/極数)[rpm]で示される。周波数は、3相交流巻線202に印加する3相交流の周波数である。極数は固定子巻線202と回転子100の円周面の磁極の数であり、本例の場合には4極である。上述した式から判るように、3相交流巻線202に印加する3相交流の周波数に比例した回転速度が同期速度となる。
 このため、インバータ回路2で生成させる3相交流の周波数を制御するだけで、回転速度を自由にかつ正確に制御できる。従来、同期電動機で回転速度制御をするためには回転位置を検出してベクトル制御演算等をして周波数と電圧や位相を制御する必要があったが、そのような複雑な構成は全く必要なく、3相交流の電圧と周波数だけを可変させれば対処でき、廉価な汎用インバータを使用したオープンループ運転が可能になる。
The rotation speed at the time of rotation at the synchronous speed is represented by (120 × frequency / number of poles) [rpm]. The frequency is a three-phase AC frequency applied to the three-phase AC winding 202. The number of poles is the number of magnetic poles on the circumferential surface of the stator winding 202 and the rotor 100, and in this example, it is four. As can be seen from the above formula, the rotational speed proportional to the frequency of the three-phase alternating current applied to the three-phase alternating current winding 202 is the synchronous speed.
For this reason, the rotational speed can be freely and accurately controlled only by controlling the frequency of the three-phase alternating current generated by the inverter circuit 2. Conventionally, in order to control the rotational speed with a synchronous motor, it has been necessary to detect the rotational position and perform vector control calculations to control the frequency, voltage and phase, but such a complicated configuration is not necessary at all. This can be dealt with by changing only the voltage and frequency of the three-phase alternating current, and open-loop operation using an inexpensive general-purpose inverter becomes possible.
 そして本実施の形態の同期電動機によると、永久磁石と制動巻線であるかご形巻線とを、回転子の円筒面に交互に配置したことで、磁石による磁界及び回転磁界を良好かつスムーズに分布させることが可能になる。従って、従来提案されている永久磁石と制動巻線を組み合わせた電動機に比べて、出力や効率を向上させることが可能になり、自己始動が可能で高効率の同期電動機が得られる。 According to the synchronous motor of the present embodiment, the permanent magnet and the squirrel-cage winding that is the brake winding are alternately arranged on the cylindrical surface of the rotor, so that the magnetic field and the rotating magnetic field by the magnet are excellent and smooth. It becomes possible to distribute. Therefore, the output and efficiency can be improved as compared with a conventionally proposed motor combining a permanent magnet and a braking winding, and a self-starting and highly efficient synchronous motor can be obtained.
 しかも本実施の形態の場合には、鉄心の円筒面表面に露出状態で配置した磁石を、その両脇に配置したかご形巻線の導体で挟むことで、鉄心側に保持・固定させるようにしたので、永久磁石を鉄心の円筒面表面に配置した状態で保持させることが、簡単かつ良好に行える。従来提案されている永久磁石と制動巻線を組み合わせた回転子は、いずれも永久磁石を鉄心内部に埋め込んで固定させる構造であり、構成が複雑であると共に埋め込む作業に手間がかかる問題があったが、本実施の形態の場合には、そのような複雑な構造を必要としないで、良好な位置に永久磁石を配置できる効果を有する。なお、この永久磁石抑えの役割をする導体は、永久磁石110a,110bのN極から発生する磁界が固定子200に行かずに回転子鉄心102を通って永久磁石のS極に戻る漏れ磁界を軽減する効果を併せ持つ。 Moreover, in the case of the present embodiment, the magnet arranged in an exposed state on the surface of the cylindrical surface of the iron core is sandwiched between the conductors of the squirrel-cage windings arranged on both sides thereof, so that it is held and fixed on the iron core side. Therefore, it is possible to easily and satisfactorily hold the permanent magnet in a state of being arranged on the surface of the cylindrical surface of the iron core. Conventionally proposed rotors combining permanent magnets and braking windings have a structure in which the permanent magnets are embedded and fixed inside the iron core, and there is a problem that the configuration is complicated and the embedding work is troublesome. However, in the case of the present embodiment, there is an effect that the permanent magnet can be arranged at a good position without requiring such a complicated structure. The conductor that acts as a permanent magnet suppressor has a leakage magnetic field that returns from the N pole of the permanent magnets 110a and 110b to the S pole of the permanent magnet through the rotor core 102 without going to the stator 200. It also has a mitigating effect.
[4.変形例の説明]
 なお、図1~図3に示した構成の回転子100は、4極構造の回転子としたが、他の極数の構造の回転子として構成させてもよい。
 図9は、3個の永久磁石を均等に配置した6極構成の回転子の例である。
 図9に断面で示した回転子300は、円周面に永久磁石310a,310b,310cを均等に配置してあり、永久磁石310aと永久磁石310bとの間に、かご形巻線部320aを配置し、永久磁石310bと永久磁石310cとの間に、かご形巻線部320bを配置し、永久磁石310cと永久磁石310aとの間に、かご形巻線部320cを配置して、合計で3個のかご形巻線部320a~320cを配置した例である。
[4. Description of modification]
Although the rotor 100 having the configuration shown in FIGS. 1 to 3 is a quadrupole rotor, it may be configured as a rotor having another pole number.
FIG. 9 shows an example of a 6-pole rotor in which three permanent magnets are arranged uniformly.
In the rotor 300 shown in cross section in FIG. 9, the permanent magnets 310a, 310b, and 310c are evenly arranged on the circumferential surface, and the cage winding 320a is provided between the permanent magnet 310a and the permanent magnet 310b. The cage-shaped winding part 320b is disposed between the permanent magnet 310b and the permanent magnet 310c, and the cage-shaped winding part 320c is disposed between the permanent magnet 310c and the permanent magnet 310a. This is an example in which three squirrel-cage winding portions 320a to 320c are arranged.
 各かご形巻線部320a~320cは、それぞれ導体棒321a,321b,321cと、導体枠322a,322b,322cとを備えて、図3に示したかご形巻線部と同様の形状としてある。各永久磁石310a,310b,310cの保持固定についても、隣接したかご形巻線部320a~320cで挟むことで行われるようにしてある。
 この場合、図9に示すように、各永久磁石310a,310b,310cとその脇の導体枠322a,322b,322cが配置される角度範囲θ11,θ13,θ15と、各かご形巻線部320a,320b,320cの導体棒321a,321b,321cが配置される角度範囲θ12,θ14,θ16とは、ほぼ等しくしてある。
Each of the cage winding portions 320a to 320c includes conductor rods 321a, 321b, and 321c and conductor frames 322a, 322b, and 322c, respectively, and has the same shape as the cage winding portion shown in FIG. Each permanent magnet 310a, 310b, 310c is also held and fixed by being sandwiched between adjacent cage windings 320a to 320c.
In this case, as shown in FIG. 9, the angular ranges θ11, θ13, θ15 in which the permanent magnets 310a, 310b, 310c and the side conductor frames 322a, 322b, 322c are arranged, and the cage windings 320a, The angle ranges θ12, θ14, and θ16 in which the conductor rods 321a, 321b, and 321c of 320b and 320c are disposed are substantially equal.
 図10は、4個の永久磁石を均等に配置した8極構成の回転子の例である。
 図10に断面で示した回転子400は、円周面に永久磁石410a,410b,410c,410dを均等に配置してあり、永久磁石410aと永久磁石410bとの間に、かご形巻線部420aを配置し、永久磁石410bと永久磁石410cとの間に、かご形巻線部420bを配置し、永久磁石410cと永久磁石410dとの間に、かご形巻線部420cを配置し、永久磁石410dと永久磁石410aとの間に、かご形巻線部420dを配置して、合計で4個のかご形巻線部420a~420dを配置した例である。
FIG. 10 shows an example of an 8-pole rotor in which four permanent magnets are arranged uniformly.
The rotor 400 shown in cross section in FIG. 10 has permanent magnets 410a, 410b, 410c, and 410d arranged uniformly on the circumferential surface, and a squirrel-cage winding portion between the permanent magnet 410a and the permanent magnet 410b. 420a is disposed, a cage winding 420b is disposed between the permanent magnet 410b and the permanent magnet 410c, and a cage winding 420c is disposed between the permanent magnet 410c and the permanent magnet 410d. In this example, a cage winding portion 420d is arranged between the magnet 410d and the permanent magnet 410a, and a total of four cage winding portions 420a to 420d are arranged.
 各かご形巻線部420a~420dは、それぞれ導体棒421a,421b,421c,421dと、導体枠422a,422b,422c,422dとを備えて、図3に示したかご形巻線部と同様の形状としてある。各永久磁石410a,410b,410c,410dの保持固定についても、隣接したかご形巻線部420a~420dで挟むことで行われるようにしてある。
 この場合、図10に示すように、各永久磁石410a,410b,410c,410dとその脇の導体枠422a,422b,422c,422dが配置される角度範囲θ21,θ23,θ25,θ27と、各かご形巻線部420a,420b,420c,420dの導体棒421a,421b,421c,421dが配置される角度範囲θ22,θ24,θ26,θ28とは、ほぼ等しくしてある。
Each of the cage winding parts 420a to 420d includes a conductor rod 421a, 421b, 421c, 421d and a conductor frame 422a, 422b, 422c, 422d, respectively, which is the same as the cage winding part shown in FIG. As a shape. Each permanent magnet 410a, 410b, 410c, 410d is also held and fixed by being sandwiched between adjacent cage windings 420a to 420d.
In this case, as shown in FIG. 10, the angular ranges θ21, θ23, θ25, θ27 in which the permanent magnets 410a, 410b, 410c, 410d and the side conductor frames 422a, 422b, 422c, 422d are arranged, and the respective cages. The angle ranges θ22, θ24, θ26, and θ28 in which the conductor rods 421a, 421b, 421c, and 421d of the shape winding portions 420a, 420b, 420c, and 420d are disposed are substantially equal.
 このように、種々の極数の回転子の構成が可能である。
 なお、制動巻線であるかご形巻線は、図3に示したように複数本の導体棒と、その導体棒を支える導体枠で分割かご形巻線として構成させたが、分割せずに、図11に示すように永久磁石141の長さを導体棒121a,121bと同じにし、各導体棒(例えば図2の場合の121a,121b,122a,122b)を、一端及び他端の端絡環134,135で短絡する形状としてもよい。この場合、永久磁石141と接するかご形巻線部の板状部分131,132についても、永久磁石141の長さと同じとして、端絡環134,135と接する構成としてある。あるいは、その他の形状の制動巻線でもよい。トルクリップルを抑えるためにスキューを施すこともできる。また、回転子のかご形巻線と永久磁石の円周方向に占める割合について、例えば図1のθ1、θ3とθ2、θ4がほぼ等しい場合を示しているが、用途に応じてこの割合を変えることにより誘導電動機の特性を強くしたり、永久磁石電動機の特性を強くすることができる。
 固定子側で回転磁界を生成させる巻線についても、図1に示したスロット201に配置した3相巻線202は一例であり、集中巻線など,その他の巻線構造でもよい。モータ構造も回転形モータを例示したがリニアモータ構造でも良い。供給する交流信号についても、原理的には3相以外の多相交流を固定子の巻線に供給することでも可能であるが、現実的には汎用のインバータ回路で生成が可能な3相交流を使うのが一般的である。
 なお、本実施の形態では、導体の数や寸法,形,永久磁石の数や寸法,形などの特定の実施形態が例証によって示されているものであり、この例示したものに本発明が制限される意味で示されたものではない。
In this way, rotors with various pole numbers are possible.
As shown in FIG. 3, the squirrel-cage winding is composed of a plurality of conductor rods and a conductor frame supporting the conductor rods as a split cage winding. 11, the length of the permanent magnet 141 is the same as that of the conductor rods 121a and 121b, and each conductor rod (for example, 121a, 121b, 122a and 122b in the case of FIG. 2) is connected to one end and the other end. It is good also as a shape short-circuited by the rings 134 and 135. In this case, the plate-shaped portions 131 and 132 of the squirrel-cage winding portion that are in contact with the permanent magnet 141 are also configured to be in contact with the end rings 134 and 135 as having the same length as the permanent magnet 141. Alternatively, a brake winding having another shape may be used. Skew can also be applied to reduce torque ripple. Further, the ratio of the rotor cage winding and the permanent magnet in the circumferential direction is shown, for example, in the case where θ1, θ3, θ2, and θ4 in FIG. 1 are substantially equal, but this ratio is changed depending on the application. As a result, the characteristics of the induction motor can be enhanced, and the characteristics of the permanent magnet motor can be enhanced.
Also for the winding for generating the rotating magnetic field on the stator side, the three-phase winding 202 arranged in the slot 201 shown in FIG. 1 is an example, and other winding structures such as a concentrated winding may be used. As the motor structure, a rotary motor is exemplified, but a linear motor structure may be used. As for the supplied AC signal, in principle, it is possible to supply multi-phase AC other than three-phase to the stator windings, but in reality it is possible to generate three-phase AC that can be generated by a general-purpose inverter circuit. It is common to use.
In the present embodiment, specific embodiments such as the number, size, and shape of conductors and the number, size, and shape of permanent magnets are shown by way of illustration, and the present invention is limited to these illustrated examples. It is not meant to be expressed.
1…電源入力部、2…インバータ回路、3…電動機、4…速度指令入力端子、5…周波数指令生成部、100…回転子、101…回転軸、102…鉄心、102a,102b…段差部、103…透孔、110a,110b…永久磁石、111a,111b…外周面、112a,112b…端面、120a,120b…かご形巻線部、121a,121b…導体棒、122a,122b…導体枠、123a,123b…導体棒支持部、124a,124b…端面、131,132…板状部分、134,135…端絡環、141…永久磁石、200…固定子、201…スロット、202…3相交流巻線、300…回転子、301…回転軸、310a,310b,310c…永久磁石、320a,320b,320c…かご形巻線部、321a,321b,321c…導体棒、322a,322b,322c…導体枠、400…回転子、401…回転軸、410a,410b,410c,410d…永久磁石、420a,420b,420c,420d…かご形巻線部、421a,421b,421c,421d…導体棒、422a,422b,422c,422d…導体枠 DESCRIPTION OF SYMBOLS 1 ... Power supply input part, 2 ... Inverter circuit, 3 ... Electric motor, 4 ... Speed command input terminal, 5 ... Frequency command generation part, 100 ... Rotor, 101 ... Rotary shaft, 102 ... Iron core, 102a, 102b ... Step part DESCRIPTION OF SYMBOLS 103 ... Through-hole, 110a, 110b ... Permanent magnet, 111a, 111b ... Outer peripheral surface, 112a, 112b ... End surface, 120a, 120b ... Cage-shaped winding part, 121a, 121b ... Conductor rod, 122a, 122b ... Conductor frame, 123a , 123b ... conductor rod support part, 124a, 124b ... end face, 131, 132 ... plate-like part, 134, 135 ... end winding ring, 141 ... permanent magnet, 200 ... stator, 201 ... slot, 202 ... three-phase AC winding 300, rotor, 301, rotating shaft, 310a, 310b, 310c ... permanent magnet, 320a, 320b, 320c ... squirrel-cage winding part, 321a, 3 1b, 321c ... conductor rod, 322a, 322b, 322c ... conductor frame, 400 ... rotor, 401 ... rotating shaft, 410a, 410b, 410c, 410d ... permanent magnet, 420a, 420b, 420c, 420d ... cage winding part , 421a, 421b, 421c, 421d ... conductor rod, 422a, 422b, 422c, 422d ... conductor frame

Claims (5)

  1.  鉄心に永久磁石が取り付けられた回転子と、前記回転子の周囲に配置された多相巻線を備えた固定子とで構成され、前記固定子の多相巻線に多相交流が印加される永久磁石同期電動機において、
     少なくとも2個の永久磁石を、前記固定子と対向する前記回転子の円筒面の所定位置に露出させて均等に配置し、
     前記少なくとも2個の永久磁石の配置位置とは別の位置の前記円筒面の円周方向に沿って、制動巻線としてのかご形巻線を配置したことを特徴とする永久磁石同期電動機。
    It is composed of a rotor having a permanent magnet attached to an iron core and a stator having multiphase windings arranged around the rotor, and multiphase alternating current is applied to the multiphase windings of the stator. Permanent magnet synchronous motor
    At least two permanent magnets are exposed at predetermined positions on the cylindrical surface of the rotor facing the stator, and are evenly arranged;
    A permanent magnet synchronous motor characterized in that a squirrel-cage winding as a braking winding is arranged along a circumferential direction of the cylindrical surface at a position different from the arrangement position of the at least two permanent magnets.
  2.  請求項1記載の永久磁石同期電動機において、
     前記回転子に配置した制動巻線は、かご形巻線を前記円筒面の円周方向に沿って分割した分割かご形巻線で構成したことを特徴とする永久磁石同期電動機。
    In the permanent magnet synchronous motor according to claim 1,
    The permanent magnet synchronous motor according to claim 1, wherein the braking winding disposed on the rotor is a split cage winding obtained by dividing a cage winding along a circumferential direction of the cylindrical surface.
  3.  請求項2記載の永久磁石同期電動機において、
     分割かご形巻線は、一端及び他端の端絡環で全てのかご形巻線導体を短絡する構成とすることができることを特徴とする永久磁石同期電動機。
    In the permanent magnet synchronous motor according to claim 2,
    The split squirrel-cage winding is a permanent magnet synchronous motor characterized in that all the squirrel-cage winding conductors can be short-circuited by the end ring at one end and the other end.
  4.  請求項3記載の永久磁石同期電動機において、
     永久磁石の一方及び他方の端部に隣接して、それぞれ独立もしくは並列に接続された個別の分割かご形巻線を配置し、永久磁石と同数の分割かご形巻線を配置したことを特徴とする永久磁石同期電動機。
    In the permanent magnet synchronous motor according to claim 3,
    Adjacent to one end and the other end of the permanent magnet, individual divided cage windings connected independently or in parallel are arranged, and the same number of divided cage windings as permanent magnets are arranged. Permanent magnet synchronous motor.
  5.  請求項4記載の永久磁石同期電動機において、
     前記永久磁石の一方の端部を、その一方の端部と隣接した分割かご形巻線を構成する導体の端部で押え、前記永久磁石の他方の端部を、その他方の端部と隣接した分割かご形巻線を構成する導体の端部で押えることで、前記永久磁石を前記回転子に固定させ、さらに漏れ磁束を軽減させることを特徴とする永久磁石同期電動機。
                    
    In the permanent magnet synchronous motor according to claim 4,
    One end of the permanent magnet is held by the end of the conductor constituting the split cage winding adjacent to the one end, and the other end of the permanent magnet is adjacent to the other end. A permanent magnet synchronous motor characterized in that the permanent magnet is fixed to the rotor and the leakage magnetic flux is further reduced by being pressed by an end portion of a conductor constituting the divided cage winding.
PCT/JP2011/053376 2010-03-02 2011-02-17 Permanent magnet synchronizing electric motor WO2011108363A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012503057A JP5733583B2 (en) 2010-03-02 2011-02-17 Permanent magnet synchronous motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010045913 2010-03-02
JP2010-045913 2010-03-02

Publications (1)

Publication Number Publication Date
WO2011108363A1 true WO2011108363A1 (en) 2011-09-09

Family

ID=44542025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053376 WO2011108363A1 (en) 2010-03-02 2011-02-17 Permanent magnet synchronizing electric motor

Country Status (2)

Country Link
JP (1) JP5733583B2 (en)
WO (1) WO2011108363A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103390984A (en) * 2013-07-30 2013-11-13 别红成 Efficient and energy-saving permanent-magnet electric motor
CN103580428A (en) * 2013-11-12 2014-02-12 大连东利伟业环保节能科技有限公司 Half-magnetic-sheet outer-rotor type asynchronous starting permanent-magnet synchronous motor
CN103580429A (en) * 2013-11-21 2014-02-12 大连东利伟业环保节能科技有限公司 Asynchronous starting method of half magnetic sheet type permanent-magnet synchronous motor
CN104184292A (en) * 2014-06-02 2014-12-03 赵晓东 Hybrid-type asynchronous-starting permanent magnet synchronous motor and pole-changing and speed-changing method
CN104184291A (en) * 2014-03-16 2014-12-03 赵晓东 Double half-pole asynchronous-start permanent magnet synchronous motor and pole-changing speed- changing method
CN104184293A (en) * 2014-07-16 2014-12-03 赵晓东 Adjusting-type pole-changing speed-changing permanent-magnet synchronous motor
CN104578643A (en) * 2015-02-03 2015-04-29 大连碧蓝节能环保科技有限公司 Variable-pole variable-speed stator winding control method
JP2015515254A (en) * 2012-04-20 2015-05-21 フィンクル ルイFINKLE, Louie Hybrid induction motor with self-adjustable permanent magnet type inner rotor
CN105268365A (en) * 2015-11-09 2016-01-27 江南大学 Blender screw blade scale prevention method
CN105490418A (en) * 2016-01-20 2016-04-13 尚勤贵 Self-starting permanent magnet synchronous motor rotor
CN106297507A (en) * 2016-08-18 2017-01-04 华北电力大学 A kind of simulate rotor of steam turbo generator conduction slot wedge structure and the prototype of damping action thereof
CN106505817A (en) * 2016-11-25 2017-03-15 大连碧蓝节能环保科技有限公司 Power frequency starts weak magnetic speedup permasyn morot
CN108696013A (en) * 2017-04-07 2018-10-23 章宪 AC magnetoelectric machine
US20220329178A1 (en) * 2021-04-12 2022-10-13 Hyundai Motor Company Apparatus for controlling variable magnetic flux motor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101905512B1 (en) * 2018-03-02 2018-10-08 노순창 Permanent magnet single phase motor without starting device
CN111725924B (en) * 2020-08-04 2023-05-16 珠海格力电器股份有限公司 Single-phase permanent magnet self-starting motor and electric equipment with same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09322444A (en) * 1996-05-29 1997-12-12 Toshiba Corp Permanent magnet motor with controller
JP2002238194A (en) * 2001-02-14 2002-08-23 Toyo Electric Mfg Co Ltd Structure of rotor of permanent-magnet motor
JP2009153356A (en) * 2007-12-25 2009-07-09 Hitachi Ltd Self-initiating permanent-magnet synchronous electric motor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004357489A (en) * 2003-05-28 2004-12-16 Akira Chiba Unidirectionally magnetized permanent magnet motor
EP2107668A1 (en) * 2007-01-22 2009-10-07 Tokyo University Of Science Educational Foundation Administrative Organization Rotating electric machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09322444A (en) * 1996-05-29 1997-12-12 Toshiba Corp Permanent magnet motor with controller
JP2002238194A (en) * 2001-02-14 2002-08-23 Toyo Electric Mfg Co Ltd Structure of rotor of permanent-magnet motor
JP2009153356A (en) * 2007-12-25 2009-07-09 Hitachi Ltd Self-initiating permanent-magnet synchronous electric motor

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015515254A (en) * 2012-04-20 2015-05-21 フィンクル ルイFINKLE, Louie Hybrid induction motor with self-adjustable permanent magnet type inner rotor
CN103390984A (en) * 2013-07-30 2013-11-13 别红成 Efficient and energy-saving permanent-magnet electric motor
CN103580428A (en) * 2013-11-12 2014-02-12 大连东利伟业环保节能科技有限公司 Half-magnetic-sheet outer-rotor type asynchronous starting permanent-magnet synchronous motor
CN103580429A (en) * 2013-11-21 2014-02-12 大连东利伟业环保节能科技有限公司 Asynchronous starting method of half magnetic sheet type permanent-magnet synchronous motor
CN104184291A (en) * 2014-03-16 2014-12-03 赵晓东 Double half-pole asynchronous-start permanent magnet synchronous motor and pole-changing speed- changing method
CN104184291B (en) * 2014-03-16 2016-06-08 大连碧蓝节能环保科技有限公司 Two half 4 pole asynchronous starting permanent magnet synchronous motors and pole-changing windings method
CN104184292A (en) * 2014-06-02 2014-12-03 赵晓东 Hybrid-type asynchronous-starting permanent magnet synchronous motor and pole-changing and speed-changing method
CN104184292B (en) * 2014-06-02 2016-07-13 大连碧蓝节能环保科技有限公司 Hybrid asynchronous starting permanent magnet synchronous motor and pole-changing windings method
CN104184293B (en) * 2014-07-16 2016-05-18 大连碧蓝节能环保科技有限公司 Adjustable type pole-changing windings permasyn morot
CN104184293A (en) * 2014-07-16 2014-12-03 赵晓东 Adjusting-type pole-changing speed-changing permanent-magnet synchronous motor
CN104578643A (en) * 2015-02-03 2015-04-29 大连碧蓝节能环保科技有限公司 Variable-pole variable-speed stator winding control method
CN105268365A (en) * 2015-11-09 2016-01-27 江南大学 Blender screw blade scale prevention method
CN105490418A (en) * 2016-01-20 2016-04-13 尚勤贵 Self-starting permanent magnet synchronous motor rotor
CN106297507A (en) * 2016-08-18 2017-01-04 华北电力大学 A kind of simulate rotor of steam turbo generator conduction slot wedge structure and the prototype of damping action thereof
CN106297507B (en) * 2016-08-18 2019-05-03 华北电力大学 A kind of prototype for simulating rotor of steam turbo generator conduction slot wedge structure and its damping action
CN106505817A (en) * 2016-11-25 2017-03-15 大连碧蓝节能环保科技有限公司 Power frequency starts weak magnetic speedup permasyn morot
CN106505817B (en) * 2016-11-25 2018-10-23 大连碧蓝节能环保科技有限公司 Power frequency starts weak magnetic speedup permasyn morot
CN108696013A (en) * 2017-04-07 2018-10-23 章宪 AC magnetoelectric machine
US20220329178A1 (en) * 2021-04-12 2022-10-13 Hyundai Motor Company Apparatus for controlling variable magnetic flux motor
US11757383B2 (en) * 2021-04-12 2023-09-12 Hyundai Motor Company Apparatus for controlling variable magnetic flux motor

Also Published As

Publication number Publication date
JP5733583B2 (en) 2015-06-10
JPWO2011108363A1 (en) 2013-06-24

Similar Documents

Publication Publication Date Title
JP5733583B2 (en) Permanent magnet synchronous motor
JP4926107B2 (en) Rotating electric machine
US6924574B2 (en) Dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine
US6800977B1 (en) Field control in permanent magnet machine
JP4480720B2 (en) Permanent magnet excitation synchronous motor
US9000648B2 (en) Asymmetrical reluctance machine
JP2008061485A (en) Permanent magnet electric motor capable of self-starting with ac power supply
JP2014533086A (en) Rotor having permanent magnets with different thicknesses and motor including the same
JP2012029540A (en) Single-phase brushless motor
Ueda et al. Cogging torque reduction on transverse-flux motor with multilevel skew configuration of toothed cores
TW416179B (en) Permanent magnet type electric motor
US5187401A (en) Combination hysteresis-reluctance-permanent-magnet motor
JP6138075B2 (en) 2-phase synchronous motor
JP2011223676A (en) Permanent magnet type motor
JP6497173B2 (en) Switched reluctance rotating machine
JP2011055619A (en) Permanent magnet type dynamo-electric machine
JP2002272067A (en) Squirrel-cage rotor and motor using the squirrel-cage rotor
KR20130019112A (en) 4/5 two phase srm
KR101209631B1 (en) Rotor having different length and LSPM(Line-Start Permanent Magnet) motor comprising the rotor
JP5619522B2 (en) 3-phase AC rotating machine
JP2001186736A (en) Synchronous reluctance motor and its drive system
JP6096646B2 (en) motor
JP2000125493A (en) Magnet-type motor and generator
JP2006020416A (en) Apparatus and method of controlling synchronous motor
JP2611291B2 (en) Permanent magnet field two-phase multi-pole synchronous machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750475

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012503057

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11750475

Country of ref document: EP

Kind code of ref document: A1