JP2000125493A - Magnet-type motor and generator - Google Patents

Magnet-type motor and generator

Info

Publication number
JP2000125493A
JP2000125493A JP10330112A JP33011298A JP2000125493A JP 2000125493 A JP2000125493 A JP 2000125493A JP 10330112 A JP10330112 A JP 10330112A JP 33011298 A JP33011298 A JP 33011298A JP 2000125493 A JP2000125493 A JP 2000125493A
Authority
JP
Japan
Prior art keywords
magnet
generator
gap
magnets
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10330112A
Other languages
Japanese (ja)
Inventor
Yukio Kinoshita
幸雄 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP10330112A priority Critical patent/JP2000125493A/en
Priority to KR10-1999-0044900A priority patent/KR100373427B1/en
Publication of JP2000125493A publication Critical patent/JP2000125493A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • H02K17/20Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors having deep-bar rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate arrangement of magnets for flux increase in a gap, concentration of flux in a gap, the determination of the shape and structure of a core for improvement of productivity and controllability at the start and reduction in the change-over loss at polarity change in a high revolution state by noting that the improvement of flux density in a gap between the rotor and stator of a motor or a generator is directly related to improvement in performance. SOLUTION: In order to increase magnetic flux in a gap, radial slots into which magnets are inserted are formed in respective pole cores, so as to facilitate the adjustment of lengths of the magnets in the radial directions. For the increase in the intensity of flux in particular, a magnet which fills up the full length of the slot is used. Next, by employing a detachable construction, the performance of a motor or a generator can be changed or adjusted easily. Since a single magnet structure has limitation from a viewpoint of improvement of the construction and magnetic force, a plurality of magnets are combined effectively for the respective poles in order to increase the magnetic force in the gap.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[発明の属する技術分野]この発明は、磁
石を用いる電動機や発電機において、出力向上、効率向
上及び起動特性向上のための磁極構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic pole structure for improving output, efficiency and starting characteristics of a motor or a generator using a magnet.

【0002】[従来の技術]従来、磁石を用いる電動機
や発電機においては磁石の配置が円筒状、円盤状の材料
に着磁して磁石を形成したり、分離した磁石を円周状に
配置して使用いている為、磁石そのものの磁力に空隙の
磁界が左右され、自ずと其の出力、効率ガ決まってい
た。省資源、省エネルギー時代にはより高効率、省資源
が電動機や発電機分野にも例外なく強く要望されている
が満足のできる物になっていない。又磁石電動機や風車
発電機など特に推力型プロペラを用いるものは自力で通
電や風力では起動できず、複雑な制御回路を必要とし、
高価で複雑なシステム構成となっている。
2. Description of the Related Art Conventionally, in an electric motor or a generator using a magnet, the magnet is formed by magnetizing a cylindrical or disk-shaped material to form a magnet, or separated magnets are arranged circumferentially. Because of this, the magnetic field of the air gap was affected by the magnetic force of the magnet itself, and its output and efficiency were naturally determined. In the age of resource saving and energy saving, higher efficiency and resource saving are strongly demanded without exception in the field of electric motors and generators, but they have not been satisfactory. In addition, magnet motors and wind turbine generators, especially those that use thrust type propellers, cannot start by themselves or by wind power, and require complicated control circuits,
It has an expensive and complicated system configuration.

【0003】[発明が解決しようとする課題]そこでこ
の発明は、電動機や発電機の回転子と固定子の空隙部の
磁束密度の向上が性能向上に直接関係することに着目し
て、空隙の磁束増加のための磁石の配置、磁束の空
隙への集中、鉄心の形状と生産性及び起動時の制御
の簡易化のための鉄心の構造、高速時の極性転換時の
切り替え損失の低減などの課題を解決することを目的と
する。
[0003] Accordingly, the present invention focuses on the fact that the improvement of the magnetic flux density in the gap between the rotor and the stator of a motor or a generator is directly related to the improvement of the performance. Arrangement of magnets to increase magnetic flux, concentration of magnetic flux in air gaps, iron core shape and productivity to simplify core control at startup, reduction of switching loss during polarity switching at high speed, etc. The purpose is to solve the problem.

【0004】[課題を解決するための手段]この発明は
上記の目的を達成する為に課題の解決手段を順を追って
説明する。 空隙の磁束増加のための磁石の配置 空隙の磁束増加のため極毎の単一磁石で行う場合と複数
の磁石を組み合わせて行う場合がある。まず単一磁石に
ついて説明すると、各極鉄心に磁石を挿入する放射状の
スロットを設け磁石が放射方向に長さを調整できる様に
し、特に磁束を強くする時は強い磁石やスロットいっぱ
いの磁石を使うようにする。又着脱自在の構造にするこ
とにより、電動機や発電機の特性の変更や調整を容易に
することが可能となる。次に、単一の磁石では構造、磁
力に限界がありさらに空隙の磁力を強くしたい場合に極
ごとに複数の磁石を効果的に組み合わせて行う。 磁束の空隙への集中 各極鉄心に磁石を挿入する放射状のスロットを設ける場
合空隙部の一極当たりの円周方向の長さに対しスロット
の放射方向の長さを長くすることにより磁石自身の持つ
磁力より強くすることが可能になる。それには各極の鉄
心を分離構造又は機械的に必要最小限の結合にとどめた
り、結合を非磁性体にすること等により空隙以外に磁束
が出来るだけ漏れないようにする。 鉄心の形状と生産性 鉄心は通常、量産の場合一体構造ガ一般的である。しか
し空隙の磁束の集中をより効果的にするため各極毎の分
離構造にする。また、薄皮の連結構造は取り扱い、寸法
管理に手数がかかり得策ではない。 起動時の制御の簡易化のための鉄心の構造 磁石式電動機や駆動トルクが大きい発電機(例えば風力
発電機等)などはブラシや電子回路にて駆動する必要が
ある。本発明では鉄心に誘導電動機でよく使用されてい
る駕籠型導体や巻線が形成出来るように空隙側に数個の
スロットを設けて、高価なブラシや電子回路を不要にし
ている。 高速時の極性転換時の切り替え損失の低減 磁石式電動機や発電機は固定子の巻線中には常に交流電
流ガ流れ機能を発揮している。従って+から−、−から
+と電流の方向が替わる度に転換損失が発生している。
特に高速回転時にはそれが顕著になり、効率を大幅に低
下させる要因となる。本発明では高価複雑な電子回路に
よらず鉄心の空隙部の形状のみで達成させようとするも
ので、電機の機能にあわせ鉄心の両端部を次式の角度だ
けカットする。 カット部の電気角=180度−{2π×励磁しようとす
る相数/(回転子の極数×電動機の相数)}(度)
[Means for Solving the Problems] In the present invention, means for solving the problems will be described step by step to achieve the above object. Arrangement of Magnets for Increasing Magnetic Flux in Air Gap In order to increase magnetic flux in the air gap, a single magnet for each pole may be used, or a combination of a plurality of magnets may be used. First, a single magnet is explained. Radial slots for inserting magnets in each pole core are provided so that the length of the magnets can be adjusted in the radial direction, especially when the magnetic flux is strong, use a strong magnet or a magnet full of slots. To do. Further, by adopting a detachable structure, it is possible to easily change and adjust the characteristics of the electric motor and the generator. Next, a single magnet has a limited structure and magnetic force, and when it is desired to further increase the magnetic force in the air gap, a plurality of magnets are effectively combined for each pole. Concentration of magnetic flux in the air gap When radial slots for inserting magnets are provided in each pole core, the length of the slots in the radial direction is made longer than the circumferential length of one pole in the air gap to reduce the It is possible to make it stronger than the magnetic force it has. To this end, the magnetic cores of the respective poles are separated or mechanically kept to the minimum necessary coupling, or the coupling is made non-magnetic so as to prevent magnetic flux from leaking out of the gap as much as possible. Iron Core Shape and Productivity Iron cores are generally common in monolithic construction for mass production. However, in order to more effectively concentrate the magnetic flux in the air gap, a separation structure is provided for each pole. In addition, the thin-skin connection structure is troublesome in handling and dimensional management, which is not an advantageous measure. Structure of Iron Core for Simplified Control at Startup A magnet type electric motor or a generator having a large driving torque (for example, a wind power generator) needs to be driven by a brush or an electronic circuit. In the present invention, several slots are provided on the gap side so that a peg-shaped conductor and a winding often used in an induction motor can be formed in an iron core, thereby eliminating the need for expensive brushes and electronic circuits. Reduction of switching loss during polarity switching at high speeds Magnet motors and generators always exhibit the function of alternating current flow during the winding of the stator. Therefore, a conversion loss occurs every time the direction of the current changes from + to-and from-to +.
In particular, at the time of high-speed rotation, this becomes remarkable, which causes a significant reduction in efficiency. In the present invention, an attempt is made to achieve only the shape of the void portion of the iron core without using an expensive and complicated electronic circuit, and both ends of the iron core are cut by the following angle according to the function of the electric machine. Electric angle of cut portion = 180 degrees− {2π × number of phases to be excited / (number of poles of rotor × number of phases of electric motor)} (degree)

【0005】[実施の形態]以下、この発明の実施の形
態を図面を参照して発電機を例に説明する。図1は外転
型の発電機で図1aが本発明の磁石式回転子2を有する
発電機の断面構造を示し、図1bは従来の円筒型磁石回
転子2’を有する発電機の断面構造を示す。回転子を動
力源により外から駆動されると固定子に巻き込んでいる
コイルに回転数に応じ電圧が発生し、電気取り出しコー
ド7に抵抗等負荷をつなげば電流が流れ電力を供給す
る。コイルの発生電圧は固定子と回転子との空隙の磁束
密度に比例し、又回転数にも比例する。空隙の磁束密度
をいかに高めるかが発電機の性能向上、効率向上に大き
く関係していることに着目して、本発明は特性を飛躍的
に向上出来る構造を考案した。
[Embodiment] An embodiment of the present invention will be described below with reference to the drawings, taking a generator as an example. FIG. 1 shows an abduction type generator, FIG. 1a shows a cross-sectional structure of a generator having a magnet type rotor 2 of the present invention, and FIG. 1b shows a cross-sectional structure of a generator having a conventional cylindrical type magnet rotor 2 '. Is shown. When the rotor is driven from the outside by a power source, a voltage is generated in accordance with the number of revolutions in a coil wound on the stator, and when a load such as a resistor is connected to the electric extraction cord 7, a current flows to supply power. The voltage generated by the coil is proportional to the magnetic flux density in the air gap between the stator and the rotor, and is also proportional to the number of revolutions. Focusing on how the magnetic flux density of the air gap is greatly related to the improvement of the performance and efficiency of the generator, the present invention has devised a structure capable of dramatically improving the characteristics.

【0006】次に空隙の磁束密度向上策について図2及
び図3にて説明する。図2は外転型発電機、図3は内転
型発電機の実施例を示す。外転型発電機断面図2aにお
いて、回転子材質が非磁性体の動力伝達外枠10、6個
の分割鉄心(本例では6分割)13及び6個の磁石14
より構成されている。この際磁石の固定子及び側外枠の
a,b部と外枠10と鉄心13に挟まれた空間16は空
気か非磁性体で構成されているか、回転子構成上鉄心や
側板(強磁性体で構成せざるを得ない場合)の一部でこ
の部分を構成せざるを得ない場合も極力磁束の漏洩がな
い様に磁気抵抗を大きくして、磁石端部からの磁束の漏
洩をふせぐ構成になっている。磁石14の半径方向の長
さの2倍が鉄心13の空隙部の一極あたりの円周方向の
長さより大きくすることにより磁石14の磁束より空隙
部の磁束を大きく出来ることになる。いわゆる本案の磁
束集中効果が達成でき発電機の飛躍的性能アップに繋が
るわけである。磁石14の極性は一つの鉄心13に対し
図面に示す如く同極に対峙するように隣合わせの2つの
鉄心13により形成されるスリットに着脱自在に殆ど鉄
心13とのギャップが生じないように挿入されている。
ちなみにa,b部に鉄等の強磁性体が有、無の性能差は
発電機の一例ではあるが2〜3倍の出力差のデータがあ
る。有りの場合600Wであったものが無の場合で18
00wに向上した。又空間16も大いに磁束集中に一役
かっている。磁石部の着脱自在構造にすることにより、
磁力の同じものは半径方向の長さを変え、長さの同じも
のは磁力の強さを変えて容易に特性の変更や調整が出来
るようになる。図2bは強さの異なる磁石14a,bを
スリットに入れた例で空隙の磁束分布の変化やより磁力
を強くするのに有効である。図2cは空隙の磁束分布を
均質にするのに有効で断面が台形になっている。図2d
は強さの同じ磁石を一極当たり2枚に増し空隙のいっそ
うの磁力アップに有効でさらに飛躍的な性能向上が期待
出来る。図2eは2種類の磁石で主体は14a’で空隙
の磁界は決定し、14b’で磁界の微調整をおこなう。
図2fは従来の円筒磁石に本案の磁石を組み合わせるこ
とにより強力な空隙磁界を期待出来る構成例である。
Next, measures for improving the magnetic flux density in the air gap will be described with reference to FIGS. FIG. 2 shows an embodiment of an everting type generator, and FIG. 3 shows an embodiment of an inside out type generator. 2a, a rotor is made of a non-magnetic material, a power transmission outer frame 10, six divided iron cores (six divided in this example) 13 and six magnets 14.
It is composed of At this time, the space 16 sandwiched between the a and b portions of the magnet stator and side outer frame, the outer frame 10 and the iron core 13 is made of air or a non-magnetic material, or the iron core or the side plate (ferromagnetic) Even if this part must be formed by a part of the body), increase the magnetic resistance so as to minimize the leakage of magnetic flux and minimize the leakage of magnetic flux from the magnet end. It has a configuration. By making twice the radial length of the magnet 14 larger than the circumferential length of one pole of the gap of the iron core 13, the magnetic flux in the gap can be made larger than the magnetic flux of the magnet 14. The so-called magnetic flux concentration effect of the present invention can be achieved, which leads to a dramatic increase in the performance of the generator. As shown in the drawing, the polarity of the magnet 14 is detachably inserted into a slit formed by two iron cores 13 adjacent to each other so as to face one iron core 13 so as to face the same polarity so that a gap with the iron core 13 hardly occurs. ing.
Incidentally, there is a ferromagnetic material such as iron in the portions a and b, and there is data of a two- to three-fold output difference although the performance difference is an example of a generator. What was 600W when there was, 18 when there was no
00w. The space 16 also contributes to the magnetic flux concentration. By making the magnet part detachable structure,
With the same magnetic force, the length in the radial direction is changed, and with the same length, the characteristics can be easily changed or adjusted by changing the magnetic force. FIG. 2B shows an example in which magnets 14a and 14b having different strengths are provided in a slit, which is effective for changing the magnetic flux distribution in the air gap and increasing the magnetic force. FIG. 2c is effective for homogenizing the magnetic flux distribution in the air gap and has a trapezoidal cross section. FIG.
The number of magnets with the same strength is increased to two per pole, which is effective for further increasing the magnetic force in the air gap, and a further dramatic improvement in performance can be expected. FIG. 2e shows two types of magnets, mainly 14a ', which determine the magnetic field of the air gap, and 14b', which performs fine adjustment of the magnetic field.
FIG. 2F shows a configuration example in which a strong air gap magnetic field can be expected by combining the conventional cylindrical magnet with the magnet of the present invention.

【0007】図3a〜fは内転型発電機のものである
が、図2の外転型発電機の反転構造となっていて基本的
には同じなので説明は割愛する。又説明は発電機を例に
行なったが同じ技術はそのまま電動機にも当然適用可能
であることはいうまでもない。又この磁力集中の原理は
他の磁石を用いるあらゆる電機に適用出来るのはいうま
でもない。例えばパンケーキタイプ電機、リニアーモー
ター、磁石機器等。
FIGS. 3a to 3f show an adduction type generator, but the structure is basically the same as that of the adduction type generator shown in FIG. 2 and its explanation is omitted. Although the description has been made with reference to a generator as an example, it is needless to say that the same technology can be applied to a motor as it is. Needless to say, this principle of magnetic force concentration can be applied to any electric machine using another magnet. For example, pancake type electric machines, linear motors, magnet devices, etc.

【0008】図4は前述の外転型発電機の回転子の分割
鉄心部の一例で平面図を示しているが、図4a,bも固
定子との空隙に面してスロット(図では3個)31を設
けてある。これは同期電動機や推力型プロペラを使用す
る風車発電機などに磁石回転子を使う場合、複雑高価な
電子回路を使わなくても、自力で起動出来るようにする
ため、簡単な誘導電動機等に使用されている駕籠型ロー
ターや巻線型ローターを形成するためのものである。起
動を単相または多相誘導電動機として起動させる。起動
トルクを上げるためにスロットの形状を種々変えて、例
えば深溝スロットなど必要に応じた対応も可能である。
図4bはさらに鉄心31の両端部をカットしてこのカッ
ト部32の空隙の磁束の発生を極端に少なくし、高速回
転時の固定子のコイル中を流れる交番電流による反転時
の渦電流損等に代表される反転損失を鉄心の簡単なカッ
ト形状にて達成出来るものである。これと同じ効果を電
子回路で行わせようとすると制御回路が高価になるばか
りでなく、非常に微妙なスイッチイング回路を伴いシス
テム全体の安定性を確保するのに多大の費用と労力を要
するわけで、このカット方式は非常に有用といえる。カ
ット部の角度は次式にて求められる。 カット部の電気角=180度−{2π×励磁しようとす
る相数/(回転子の極数×電動機の相数)}(度) 又、カットに伴い磁極部の180度/(180−カット
部の電機角)度の比率で磁束密度の増加の可能性もでて
特性の大きなダウンを伴わずに損失を下げられる。
FIG. 4 is a plan view showing an example of the split core portion of the rotor of the above-mentioned epicyclic generator. FIGS. 4A and 4B also show slots (3 in FIG. 4) facing the gap with the stator. ) 31 are provided. When a magnet rotor is used for a synchronous motor or a wind turbine generator using a thrust type propeller, it is used for a simple induction motor etc. so that it can be started by itself without using complicated and expensive electronic circuits. To form a lantern-type rotor or a wound-type rotor. Start as a single-phase or multi-phase induction motor. In order to increase the starting torque, the shape of the slot is variously changed, and for example, it is possible to cope with a need such as a deep groove slot.
FIG. 4b further cuts both ends of the iron core 31 to extremely reduce the generation of magnetic flux in the air gap of the cut portion 32, and to reduce eddy current loss during reversal due to an alternating current flowing in the stator coil during high-speed rotation. Can be achieved with a simple cut shape of the iron core. To achieve the same effect in an electronic circuit, not only would the control circuit become expensive, but also very delicate switching circuits would be required, and a great deal of cost and labor would be required to ensure the stability of the entire system. Thus, this cutting method is very useful. The angle of the cut portion is obtained by the following equation. Electric angle of cut portion = 180 degrees− {2π × number of phases to be excited / (number of poles of rotor × number of phases of electric motor)} (degree) Also, 180 degrees of the magnetic pole portion / (180−cut) With the possibility of increasing the magnetic flux density at the ratio of the (electrical angle of the section), the loss can be reduced without greatly reducing the characteristics.

【0009】図5は図4aを用いて外転型発電機に駕籠
型ローターを形成した例で、駕籠型ローター部の構成は
図5bのようになっており、アルミや黄銅等の導体で作
られ、2枚の側板18と複数のバー19によりかしめや
ダイキャストなどでローターの一体化を図っている。ロ
ーターバーをスキュウさせて起動特性を改善したり、固
定子をスキュウさせて改善することも当然可能である。
FIG. 5 shows an example in which a palanquin-type rotor is formed in an abduction type generator using FIG. 4a. The configuration of the palanquin-type rotor is as shown in FIG. 5b, and a conductor such as aluminum or brass is used. The rotor is integrated by caulking or die-casting using two side plates 18 and a plurality of bars 19. It is of course possible to improve the starting characteristics by skewing the rotor bar or skewing the stator.

【0010】[発明の効果]以上説明したようにこの発
明は磁石式回転子の磁石、鉄心等の形状、配置及び構成
等により空隙の磁束を大幅に向上し、発電機や電動機の
性能や効率をを飛躍的に向上した技術を提供出来る。
[Effects of the Invention] As described above, according to the present invention, the magnetic flux in the air gap is greatly improved by the shape, arrangement and configuration of the magnet and iron core of the magnet type rotor, and the performance and efficiency of the generator and motor are improved. Technology can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す発電機の構造図と従来
の発電機の構造説明図
FIG. 1 is a structural view of a generator showing an embodiment of the present invention and a structural explanatory view of a conventional generator.

【図2】外転型発電機の磁石式回転子の断面説明図で、
空隙の磁束集中の説明図で6通りの実施例を示めす図。
FIG. 2 is an explanatory cross-sectional view of a magnet rotor of an abduction type generator,
FIG. 9 is a diagram illustrating six examples in an explanatory view of magnetic flux concentration in an air gap.

【図3】内転型発電機の磁石式回転子の断面説明図で、
空隙の磁束集中の説明図で6実施例を示めす図。
FIG. 3 is an explanatory sectional view of a magnet rotor of an adduction type generator,
The figure which shows 6 Example in the explanatory view of the magnetic flux concentration of an air gap.

【図4】外転型発電機の磁石式回転子の分割鉄心構造の
2つの実施例を示す図。
FIG. 4 is a view showing two embodiments of a split iron core structure of a magnet type rotor of an abduction type generator.

【図5】外転型発電機の駕籠型回転子を形成した例を示
す図。
FIG. 5 is a diagram showing an example in which a palanquin-type rotor of an everting type generator is formed.

【符号の説明】 1、1’ : 回転子 2 : 磁石回転子 2’ : 円筒型磁石回転子 3、3’ : 固定子 4、4’ : シャフト 5、5’ : 軸受け 6、6’ : 軸受け保持パイプ 7、7’ : 電源コード 8、8’ : エンドブラケット 10 : 外枠 12 : 固定子 13 : 分割鉄心 14、14’,14a,14b,14a’,14b’,
14a’’,14b’’ :磁石 15 : シャフト 16,a,b:非磁性空間 18 : 側板 19 : バー N,S : 磁石の極性 20 : ハウジング 21 : 非磁性ホルダー 22 : 固定子 23 : 分割鉄心 24、24’,24a,24b,24a’,24b’,
24a’’,24b’’ :磁石 25 : シャフト 26、a,b:非磁性空間 30,30’:分割鉄心 31 : スロット 32 :鉄心切り欠き部
[Description of References] 1, 1 ': Rotor 2: Magnet rotor 2': Cylindrical magnet rotor 3, 3 ': Stator 4, 4': Shaft 5, 5 ': Bearing 6, 6': Bearing Holding pipe 7, 7 ': Power cord 8, 8': End bracket 10: Outer frame 12: Stator 13: Split core 14, 14 ', 14a, 14b, 14a', 14b ',
14a '', 14b '': Magnet 15: Shaft 16, a, b: Non-magnetic space 18: Side plate 19: Bar N, S: Polarity of magnet 20: Housing 21: Non-magnetic holder 22: Stator 23: Split iron core 24, 24 ', 24a, 24b, 24a', 24b ',
24a ″, 24b ″: magnet 25: shaft 26, a, b: non-magnetic space 30, 30 ′: split core 31: slot 32: cutout of core

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】磁石による固定子と回転子間の空隙の磁束
の増加や調節のため、各極鉄心に単数または複数の磁石
を挿入する放射状のスリットを設け、磁石の放射方向の
長さの調節や磁石の着脱が自在に出来るようにし、磁石
の強さや長さの変更、複数の磁石の組み合わせ等により
電動機及び発電機の特性の変更や調節を容易に出来るよ
うに構成したことを特徴とする磁石式電動機及び発電
機。
In order to increase or adjust the magnetic flux in the air gap between the stator and the rotor by means of a magnet, a radial slit for inserting one or more magnets is provided in each pole core, and the radial length of the magnet is reduced. It is characterized in that it can be adjusted and the magnet can be freely attached and detached, and it is possible to easily change and adjust the characteristics of the motor and generator by changing the strength and length of the magnet, combining multiple magnets, etc. Magnetic motors and generators.
【請求項2】磁石を挿入する放射状のスリットの長さの
2倍が固定子と回転子間の空隙の一極あたりの円周方向
の長さより大きくしたことを特徴とする磁石式電動機及
び発電機。
2. A magnet type electric motor and a power generator, wherein a length of a radial slit for inserting a magnet is twice as long as a circumferential length per one pole of a gap between a stator and a rotor. Machine.
【請求項3】空隙部の磁束を有効に発生させるため、磁
石配置部の鉄心を完全に分離構造としたことを特徴とす
る請求項1記載の磁石式電動機及び発電機。
3. The magnet type electric motor and generator according to claim 1, wherein the core of the magnet arrangement part is completely separated in order to effectively generate magnetic flux in the gap.
【請求項4】回転磁界により駆動させる為の導体部を形
成するためのスロットを設けたことを特徴とする請求項
3の分離鉄心。
4. The separated core according to claim 3, wherein a slot for forming a conductor portion driven by a rotating magnetic field is provided.
【請求項5】磁石配置の鉄心部に磁極の一部をカット
し、其のカット部が電気角で次の式で示される角度と
し、磁極切り替え時の転換損失を鉄心の構造のみで低減
するようにした鉄心。 カット部の電気角=180度−{2π×励磁しようとす
る相数/(回転子の極数×電動機の相数)}(度)
5. A part of a magnetic pole is cut at an iron core portion of a magnet arrangement, and the cut portion has an electrical angle represented by the following formula, so that conversion loss at the time of switching magnetic poles is reduced only by the structure of the iron core. Like iron core. Electric angle of cut portion = 180 degrees− {2π × number of phases to be excited / (number of poles of rotor × number of phases of electric motor)} (degree)
JP10330112A 1998-10-16 1998-10-16 Magnet-type motor and generator Pending JP2000125493A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10330112A JP2000125493A (en) 1998-10-16 1998-10-16 Magnet-type motor and generator
KR10-1999-0044900A KR100373427B1 (en) 1998-10-16 1999-10-16 A magnet type motor and generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10330112A JP2000125493A (en) 1998-10-16 1998-10-16 Magnet-type motor and generator

Publications (1)

Publication Number Publication Date
JP2000125493A true JP2000125493A (en) 2000-04-28

Family

ID=18228940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10330112A Pending JP2000125493A (en) 1998-10-16 1998-10-16 Magnet-type motor and generator

Country Status (2)

Country Link
JP (1) JP2000125493A (en)
KR (1) KR100373427B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1237262A1 (en) * 2000-05-24 2002-09-04 Toshiba Carrier Corporation Permanent magnet type dynamo-electric machine
WO2003055045A1 (en) * 2001-12-20 2003-07-03 Mitsubishi Denki Kabushiki Kaisha Permanent magnet type dynamo-electric machine and wind power generation-use permanent magnet type synchronous generator
CN101860152A (en) * 2010-05-19 2010-10-13 南阳防爆集团新普电机有限公司 Three-phase AC asynchronous motor for YDAX series of electric automobiles
CN101895179A (en) * 2010-07-13 2010-11-24 南阳防爆集团新普电机有限公司 Alternating current frequency conversion high-speed asynchronous motor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007003618T8 (en) * 2007-08-21 2010-09-30 Sung Sik Yang Permanent magnet generator
JP6095685B2 (en) 2011-11-30 2017-03-15 アーベーベー・リサーチ・リミテッドAbb Research Ltd. Electromechanical and electromechanical rotor
JP6007593B2 (en) 2012-05-25 2016-10-12 株式会社ジェイテクト Rotor, rotating electric machine provided with the same, and method of manufacturing rotor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1237262A1 (en) * 2000-05-24 2002-09-04 Toshiba Carrier Corporation Permanent magnet type dynamo-electric machine
EP1237262A4 (en) * 2000-05-24 2003-01-07 Tokyo Shibaura Electric Co Permanent magnet type dynamo-electric machine
US6803692B2 (en) 2000-05-24 2004-10-12 Kabushiki Kaisha Toshiba Permanent magnet type electric motor
WO2003055045A1 (en) * 2001-12-20 2003-07-03 Mitsubishi Denki Kabushiki Kaisha Permanent magnet type dynamo-electric machine and wind power generation-use permanent magnet type synchronous generator
US6894413B2 (en) 2001-12-20 2005-05-17 Mitsubishi Denki Kabushiki Kaisha Permanent magnet dynamo electric machine, and permanent magnet synchronous generator for wind power generation
CN101860152A (en) * 2010-05-19 2010-10-13 南阳防爆集团新普电机有限公司 Three-phase AC asynchronous motor for YDAX series of electric automobiles
CN101895179A (en) * 2010-07-13 2010-11-24 南阳防爆集团新普电机有限公司 Alternating current frequency conversion high-speed asynchronous motor
CN101895179B (en) * 2010-07-13 2013-02-13 南阳防爆集团新普电机有限公司 Alternating current frequency conversion high-speed asynchronous motor

Also Published As

Publication number Publication date
KR100373427B1 (en) 2003-02-25
KR20000029130A (en) 2000-05-25

Similar Documents

Publication Publication Date Title
US9537362B2 (en) Electrical machine with improved stator flux pattern across a rotor for providing high torque density
JP2000156947A (en) Magnet-type motor and power generator
Qu et al. Dual-rotor, radial-flux, toroidally wound, permanent-magnet machines
US6924574B2 (en) Dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine
US6800977B1 (en) Field control in permanent magnet machine
US4556809A (en) Combination synchronous and asynchronous electric motor
US4831300A (en) Brushless alternator and synchronous motor with optional stationary field winding
JP3466591B2 (en) Rotating electric machine
JP2009247046A (en) Rotary electric machine
Zulu et al. Topologies for wound-field three-phase segmented-rotor flux-switching machines
JP6388611B2 (en) Hybrid field double gap synchronous machine
JP2000197325A (en) Reluctance motor
US20220123635A1 (en) Induction machines without permanent magnets
US5187401A (en) Combination hysteresis-reluctance-permanent-magnet motor
CN110838779B (en) Mixed excitation wound rotor and mixed excitation wound synchronous motor
JP3172504B2 (en) Rotor of permanent magnet type reluctance type rotating electric machine
JP2000125493A (en) Magnet-type motor and generator
JPH0638475A (en) Permanent magnet rotary electric machine, controlling method therefor, controller and electric motor vehicle using the same
JPH04210758A (en) Permanent magnet rotor
JP2002272067A (en) Squirrel-cage rotor and motor using the squirrel-cage rotor
KR19990065127A (en) Rotor of embedded permanent magnet synchronous motor
JPH05122877A (en) Rotor for permanent magnet type synchronous motor
CN110620484A (en) Double-air-gap motor
JP2014197957A (en) Multi-gap type synchronous motor
CN219436839U (en) Axial magnetic flux hybrid excitation motor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050126