WO2011105451A1 - Positive electrode current collector for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and process for production of positive electrode current collector for lithium ion secondary battery - Google Patents

Positive electrode current collector for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and process for production of positive electrode current collector for lithium ion secondary battery Download PDF

Info

Publication number
WO2011105451A1
WO2011105451A1 PCT/JP2011/054034 JP2011054034W WO2011105451A1 WO 2011105451 A1 WO2011105451 A1 WO 2011105451A1 JP 2011054034 W JP2011054034 W JP 2011054034W WO 2011105451 A1 WO2011105451 A1 WO 2011105451A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
surface layer
current collector
secondary battery
lithium ion
Prior art date
Application number
PCT/JP2011/054034
Other languages
French (fr)
Japanese (ja)
Inventor
翔生 桂
佐藤 俊樹
鈴木 順
護 細川
大西 隆
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201180010391.XA priority Critical patent/CN102763253B/en
Publication of WO2011105451A1 publication Critical patent/WO2011105451A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode current collector used for a lithium ion secondary battery, a positive electrode, and a method for producing the positive electrode current collector.
  • lithium ion secondary batteries (hereinafter abbreviated as secondary batteries as appropriate) are widely used as power sources for portable devices because they exhibit higher voltage and higher energy density than nickel cadmium secondary batteries and nickel hydrogen secondary batteries. It is starting to be used.
  • secondary batteries lithium ion secondary batteries
  • the long battery life means that the secondary battery does not deteriorate and the battery performance such as the charge / discharge capacity and the battery output does not deteriorate even when the charge / discharge cycle is repeated.
  • a factor that determines the charge / discharge rate of a lithium ion secondary battery is the internal resistance of the battery.
  • the internal resistance of a battery consists of the resistance of the member itself used for a battery, and the interface resistance which arises between members.
  • Examples of the member used in the lithium ion secondary battery include a current collector, an active material, a conductive additive, and an electrolytic solution.
  • LiCoO 2 serving as an active material on an aluminum foil serving as a current collector
  • Al foil serving as a current collector
  • a positive electrode is used.
  • an aluminum fluoride layer is formed on the surface of the current collector of the positive electrode produced in this manner by causing a reaction with the electrolyte under the influence of the high voltage of the lithium ion battery.
  • aluminum fluoride exhibits high corrosion resistance.
  • the current collector and the active material layer are in point contact at the interface, so the area of the charge transfer site is small and the current density is partially It becomes high, and the current collector is likely to elute into the electrolyte.
  • the contact area at the interface between the current collector and the active material layer in a point contact state is further reduced, and the adhesion between them is lowered. Therefore, the amount of active material that can participate in charge / discharge is inevitably reduced, and the charge / discharge capacity is reduced.
  • the electrical resistance (internal resistance) at the interface between the current collector and the active material layer also increases.
  • the charging speed is reduced during charging.
  • the current collector surface becomes a fluoride, which inhibits electron conduction between the current collector and the active material layer. This increases the internal resistance of the battery.
  • Patent Document 1 a current collector formed of a conductive material is provided with a carbon intermediate film or an intermediate film of a metal that is more noble than a conductive material, and an active material layer is coated on the intermediate film.
  • the structure was such that elution into the electrolytic solution was prevented and the adhesion at the interface between the current collector and the active material layer was improved.
  • Patent Document 2 discloses a method for preventing fluorination and oxidation on the surface of the current collector foil by coating the surface of the current collector foil with an amorphous carbon layer in which graphite particles are dispersed.
  • a thin natural oxide film (hereinafter referred to as an oxide film) formed by a reaction with oxygen in the atmosphere is usually present on the surface of the current collector. Since such an oxide film and carbon (carbon) generally have poor adhesion, a carbon intermediate film is formed on the surface of the current collector as in the inventions according to Patent Document 1 and Patent Document 2.
  • the problem that the said carbon intermediate film will peel from a collector with charging / discharging arose Furthermore, when the carbon intermediate film is peeled from the current collector in this way, the active material layer coated thereon is also peeled at the same time, which causes a decrease in battery life. Therefore, the inventions according to Patent Document 1 and Patent Document 2 cannot improve the adhesion at the interface between the current collector and the active material layer.
  • the present invention has been made in view of such problems, and in addition to preventing elution of the current collector into the electrolyte, it improves the adhesion at the interface between the current collector and the active material layer. It is an object of the present invention to provide a positive electrode current collector for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, and a method for producing a positive electrode current collector for a lithium ion secondary battery that can increase the battery life. .
  • a positive electrode current collector for a lithium ion secondary battery includes an aluminum foil made of pure aluminum or an aluminum alloy, and a surface layer formed on one or both surfaces of the aluminum foil, A positive electrode current collector for a lithium ion secondary battery, wherein the surface layer contains 10 to 95 atomic% of C, and in addition, any one or two of group 4 elements to group 6 elements
  • the composition contains more than 5 to 90 atomic% of seeds.
  • the positive electrode current collector for a lithium ion secondary battery having such a structure is one of Group 4 to Group 6 elements having a strong binding force with oxygen on the surface layer provided on the surface of the aluminum foil.
  • the surface layer contains 30 to 95 atomic% of C, and any one of Group 4 to Group 6 elements. Alternatively, it is preferable that the composition contains two or more of 5 to 70 atomic%.
  • the positive electrode current collector for a lithium ion secondary battery having such a configuration can suppress a decrease in wettability on the surface of the aluminum foil, it is uniform during the application of the active material-containing slurry during the production of the positive electrode. Coating is possible.
  • the thickness of the surface layer is preferably 10 nm to 1 ⁇ m.
  • the positive electrode current collector for a lithium ion secondary battery having such a configuration can improve the corrosion resistance of the aluminum foil by setting the thickness of the surface layer within a predetermined range.
  • the positive electrode for lithium ion secondary batteries according to the present invention includes the positive electrode current collector for lithium ion secondary batteries described above, and a positive electrode active material layer covering the surface layer of the positive electrode current collector for lithium ion secondary batteries, It was set as the structure provided with.
  • the positive electrode for a lithium ion secondary battery having such a configuration prevents the aluminum foil from being eluted into the electrolyte by the above-described current collector. Accordingly, adhesion at the interface between the current collector and the active material layer can be improved.
  • the method for producing a positive electrode current collector for a lithium ion secondary battery according to the present invention contains 10 to 95 atomic% of C on the surface of the aluminum foil by vapor phase film formation, and in addition, a Group 4 element.
  • a surface layer forming step of depositing a surface layer containing 5 to 90 atomic% of any one or more of group 6 elements is performed.
  • the manufacturing method of the positive electrode current collector for a lithium ion secondary battery having such a configuration can uniformly deposit the surface layer on the surface of the aluminum foil by using a vapor phase film forming method.
  • the positive electrode current collector for a lithium ion secondary battery and the positive electrode for a lithium ion secondary battery using the current collector according to the present invention a group 4 element to a group 6 element on the surface of the aluminum foil.
  • a predetermined amount of any one or two or more and forming a surface layer containing a predetermined amount of C By containing a predetermined amount of any one or two or more and forming a surface layer containing a predetermined amount of C, elution of the aluminum foil into the electrolyte solution is prevented, and the interface between the current collector and the active material layer
  • the adhesiveness in can be improved. Therefore, it is possible to provide a current collector and a positive electrode that have an improved battery life compared to conventional ones.
  • the electrical power collector which has an above described characteristic can be manufactured easily and reliably.
  • a positive electrode current collector for a lithium ion secondary battery according to an embodiment (hereinafter abbreviated as a current collector as appropriate) and a positive electrode for a lithium ion secondary battery including the current collector (hereinafter abbreviated as a positive electrode as appropriate),
  • a positive electrode for a lithium ion secondary battery including the current collector (hereinafter abbreviated as a positive electrode as appropriate)
  • a lithium ion secondary battery refers to a secondary battery in which lithium ions in an electrolyte solution conduct charge.
  • a lithium ion secondary battery operates by forming an active material layer capable of inserting and extracting lithium ions in each of a positive electrode and a negative electrode, which are electrodes, and the lithium ions move in the electrolyte. The detailed configuration of the lithium ion secondary battery will be described later.
  • the current collector 10 is a base material of the positive electrode 100 described later, and is a terminal for taking out electricity.
  • the material constituting the current collector 10 needs to satisfy the requirements such as excellent electrical conductivity, stable presence within the secondary battery, and ease of processing. Therefore, in the present embodiment, an aluminum foil 1 obtained by rolling an aluminum plate that satisfies these requirements is used as a material.
  • the aluminum foil 1 is a main member of the current collector 10.
  • the aluminum foil 1 is made of pure aluminum because it can be easily processed into a foil. However, from the viewpoint of strength and corrosion resistance, it is also possible to use an aluminum alloy foil to which various alloy elements are added. In addition, the area of the aluminum foil 1 is suitably changed according to the use application of a secondary battery.
  • the thickness of the aluminum foil 1 is preferably 1 to 100 ⁇ m.
  • the thickness of the aluminum foil 1 is less than 1 ⁇ m, the strength of the foil is weak. Therefore, at the time of forming the surface layer 2 or the positive electrode active material layer 20 described later, and further in the manufacturing stage of the secondary battery, Breakage can occur.
  • the thickness of the aluminum foil 1 can be increased to increase the strength of the foil.
  • the current collector 10 occupies a larger volume in the secondary battery, and the secondary battery The energy density of the battery may be reduced.
  • the surface layer 2 is a layer formed on the surface of the aluminum foil 1 as shown in FIG.
  • the surface layer 2 is also an intermediate layer formed between the aluminum foil 1 and a positive electrode active material layer 20 described later, as shown in FIG.
  • the surface layer 2 is composed of C (carbon) and any one or more of Group 4 to Group 6 elements.
  • Ti (titanium), Zr (zirconium), and Hf (hafnium) are used as Group 4 elements
  • V (Vanadium), Nb (niobium), Ta (tantalum), and Db (Group 5 elements are used as Group 5 elements.
  • Group 6 elements of Dobnium include Cr (chromium), Mo (molybdenum), and W (tungsten). And among these, it is preferable that the surface layer 2 contains Ti as a Group 4 element, V as a Group 5 element, and Cr as a Group 6 element.
  • the current collector 10 includes the surface layer 2 containing a predetermined amount of any one or two or more of Group 4 to Group 6 elements having strong binding force with oxygen.
  • the content of C having poor adhesion to the thin oxide film formed on the surface of the aluminum foil 1 can be reduced, and the adhesion between the oxide film and the surface layer 2 can be improved. That is, since the surface layer 2 becomes difficult to peel from the aluminum foil 1, the elution of the aluminum foil 1 into the electrolytic solution can be indirectly prevented. Therefore, even after the secondary battery has been used for a long time, conduction between the current collector 10 and the positive electrode active material layer 20 described later is maintained, and as a result, deterioration of the battery performance of the secondary battery can be prevented.
  • the content of Group 4 to Group 6 elements contained in the surface layer 2 is 5 to 90 atomic% (the C content is 10 to 95 atomic%). That is, when the content of the group 4 element to the group 6 element contained in the surface layer 2 is less than 5 atomic% (the C content exceeds 95 atomic%), the metal elements in the surface layer 2 are not sufficient. Therefore, the effect of improving the adhesion between the surface layer 2 and the oxide film is thin. On the other hand, when the content of the group 4 element to the group 6 element contained in the surface layer 2 exceeds 90 atomic% (the content of C is less than 10 atomic%), the properties of the surface layer 2 are close to metals. Thus, an oxide film is formed on the surface of the surface layer 2 itself. The oxide film becomes a factor that hinders adhesion between the surface layer 2 and the positive electrode active material layer 20.
  • the content of the Group 4 element to the Group 6 element contained in the surface layer 2 is 5 to 70 atomic% (the C content is 30 to 95 atomic%). That is, when the content of the group 4 element to the group 6 element contained in the surface layer 2 is less than 5 atomic% (the C content exceeds 95 atomic%), the metal elements in the surface layer 2 are not sufficient. Therefore, the effect of improving the adhesion between the surface layer 2 and the oxide film is thin.
  • the inclusion of group 4 elements to group 6 elements contained in the surface layer 2 is preferably 70 atomic% or less (the C content is 30 atomic% or more).
  • the content of the Group 4 to Group 6 elements contained in the surface layer 2 is more preferably 10 to 65 atomic% (the C content is 35 to 90 atomic%).
  • the surface layer 2 contains 30 to 95 atomic% of C, and additionally contains 5 to 70 atomic% of Group 4 to Group 6 elements. Since it becomes possible to suppress the wettability fall on the surface of an aluminum foil, a uniform coating becomes possible at the time of the active material containing slurry coating at the time of positive electrode preparation.
  • the purpose of adding a predetermined amount of Group 4 element to Group 6 element in the surface layer 2 is to increase the content of the Group 4 element to Group 6 element that helps the adhesion between the oxide film and the surface layer 2. It is to reduce the content of C that hinders adhesion between the oxide film and the surface layer 2. Therefore, when the surface layer 2 contains two kinds of Group 4 to Group 6 elements or when two or more kinds of Group 4 to Group 6 elements are contained. However, if the amount of C in the surface layer 2 can be regulated, the same effect as when only one of the Group 4 to Group 6 elements is contained in the surface layer 2 can be obtained. Play.
  • AES Alger Electron Spectroscopy
  • the thickness (film thickness) of the surface layer 2 is 10 nm to 1 ⁇ m. If the thickness of the surface layer 2 is less than 10 nm, the aluminum component derived from the aluminum foil 1 diffuses into the surface layer 2 and can easily reach the current collector surface, resulting in sufficient corrosion resistance. Can not demonstrate. On the other hand, when the thickness of the surface layer 2 exceeds 1 ⁇ m, productivity is lowered, which is not desirable.
  • the thickness of the surface layer 2 is more preferably 15 nm to 0.5 ⁇ m.
  • the surface layer 2 may be formed not only on one side of the aluminum foil 1 as shown in FIG. 1 (a) but also on both sides of the aluminum foil 1 as shown in FIG. 1 (b). Thus, by forming the surface layer 2 on both surfaces of the aluminum foil 1, even when the positive electrode active material layer 20 is formed on both surfaces, the elution of the aluminum foil 1 into the electrolytic solution is effectively prevented. be able to.
  • the surface layer 2 can be formed by a vapor deposition method such as sputtering, and the detailed formation method will be described later.
  • the surface layer 2 may contain inevitable impurities such as Al and O in addition to C and Group 4 to Group 6 elements within a range that does not impede the effects of the invention.
  • the form of the surface layer 2 can be changed depending on the composition ratio of the Group 4 to Group 6 element and C contained therein, but if the range has corrosion resistance, the entire surface layer 2 is crystalline. Either a form of metal carbide or a form in which metal carbide is dispersed in amorphous carbon may be used.
  • the positive electrode 100 is one of the main members constituting the secondary battery, and functions as an electrode together with the negative electrode to be paired.
  • the positive electrode 100 is responsible for charge / discharge reactions of the secondary battery by inserting or extracting lithium ions through the electrolytic solution.
  • the positive electrode 100 includes the current collector 10 and the positive electrode active material layer 20.
  • the positive electrode active material layer 20 is a layer having a material that occludes / releases lithium ions, and plays a central role in the charge / discharge reaction in the lithium ion secondary battery.
  • the positive electrode active material layer 20 is made of LiCoO 2 , LiMn 2 O 4 , LiNiO 2, etc., which are active materials that occlude and release lithium ions, and is particularly preferably made of LiCoO 2 .
  • the positive electrode active material layer 20 is formed by mixing the above-mentioned active material together with a conductive additive and a binder in a solvent, applying the mixture so as to cover the surface layer 2, and drying.
  • a conductive additive for example, acetylene black can be used as the conductive aid, polyvinylidene fluoride can be used as the binder, and 1-methyl-2-pyrrolidone can be used as the solvent, and the mixing ratio of these components is not particularly limited.
  • the thickness of the positive electrode active material layer 20 is preferably 0.1 to 100 ⁇ m from the viewpoint of the volume capacity of the secondary battery.
  • the current collector 10 and the positive electrode 100 include one or more of Group 4 to Group 6 elements having strong binding force with oxygen on the surface of the aluminum foil 1.
  • the surface layer 2 containing a predetermined amount and containing a predetermined amount of C, elution of the aluminum foil 1 into the electrolytic solution is prevented, and adhesion at the interface between the current collector 10 and the positive electrode active material layer 20 is prevented. Can be improved. Therefore, the amount of the active material that can participate in charging / discharging can be maintained, and the battery life of the secondary battery can be improved as compared with the prior art.
  • the manufacturing method of the current collector 10 according to the embodiment is characterized by performing a surface layer forming step. Moreover, the aluminum foil manufacturing process is performed as the premise.
  • an aluminum plate 1 is rolled to produce an aluminum foil 1 having a predetermined thickness and a predetermined area.
  • the final thickness of the aluminum foil 1 manufactured from the aluminum plate is preferably 1 to 100 ⁇ m from the viewpoint of the foil strength and the volume capacity of the secondary battery.
  • This step is a step of forming the surface layer 2 on one side or both sides of the aluminum foil 1 as shown in FIG.
  • vapor deposition method is used to deposit C, which is a film-forming element, and one or more of Group 4 to Group 6 elements on one or both surfaces of aluminum foil 1.
  • the vapor deposition method refers to a deposition method in which atoms are deposited and deposited on the surface of a substrate in a vapor phase to form a solid thin film.
  • sputtering is a method of depositing atoms on the substrate (surface) by sputtering ions on the target and knocking out the atoms.
  • Vacuum evaporation is evaporation by heating the target to a high temperature. This is a method of depositing atoms on a substrate.
  • a vapor deposition method used in this step a thin film having a stronger bonding force than vacuum deposition is used. It is preferable to use sputtering that can be formed.
  • an aluminum foil 1, a C target corresponding to a constituent element of the surface layer 2, and a group 4-6 element target are accommodated in a chamber of a sputtering apparatus (not shown), and the internal pressure is set. It is preferable to sputter the surface of each target while introducing a sputtering gas (Ar gas) at 1 ⁇ 10 ⁇ 3 Pa or less and maintaining the film forming pressure at 0.2 to 0.3 Pa.
  • the sputtering power is preferably 1 to 2 kW.
  • a surface layer 2 having a predetermined thickness is formed on an aluminum foil 1 as shown in FIG. Further, the components of the surface layer 2 are controlled so that at least C is 10 to 95 atomic% and Group 4 to Group 6 elements are 5 to 90 atomic%. The components of the surface layer 2 are preferably controlled so that C is 30 to 95 atomic% and Group 4 to Group 6 elements are 5 to 70 atomic%. Further, for example, Ti can be used as the Group 4 element, V can be used as the Group 5 element, and Cr can be used as the Group 6 element.
  • the thickness of the surface layer 2 is 10 nm or more from the viewpoint of exhibiting sufficient corrosion resistance, and 1 ⁇ m or less from the viewpoint of improving productivity.
  • the thickness of the surface layer 2 is more preferably 15 nm to 0.5 ⁇ m.
  • the positive electrode 100 provided with the electrical power collector 10 can also be manufactured by performing a positive electrode active material layer formation process after performing an above-described aluminum foil manufacturing process and a surface layer formation process.
  • This step is a step of forming the positive electrode active material layer 20 on the surface layer 2 as shown in FIG.
  • the active material is mixed with a conductive additive and a binder in a solvent, and the mixture is applied onto the surface layer 2 and dried to form the positive electrode active material layer 20.
  • LiCoO 2 can be used as the active material
  • acetylene black can be used as the conductive auxiliary agent
  • polyvinylidene fluoride can be used as the binder
  • 1-methyl-2-pyrrolidone can be used as the solvent.
  • the compounding ratio of the components is not particularly limited.
  • the drying temperature is, for example, 100 to 150 ° C.
  • the thickness of the positive electrode active material layer 20 is preferably 0.1 to 100 ⁇ m from the viewpoint of the volume capacity of the secondary battery.
  • the positive electrode 100 manufactured through these steps is formed on the aluminum foil 1, the surface layer 2 formed on one surface of the aluminum foil 1, and the surface layer 2, as shown in FIG. A positive electrode active material layer 20. Further, the components of the surface layer 2 are controlled so that at least C is 10 to 95 atomic%, Group 4 to Group 6 elements are controlled to 5 to 90 atomic%, preferably C is 30 to 95 atomic%. Group 4 to Group 6 elements are controlled to 5 to 70 atomic%. The thickness of the surface layer 2 is controlled to 10 nm to 1 ⁇ m.
  • the surface layer 2 containing a predetermined amount of any one or two or more of Group 4 to Group 6 elements having strong binding force with oxygen is formed on the surface of the aluminum foil 1.
  • the elution of the aluminum foil 1 into the electrolytic solution can be prevented, and the adhesion at the interface between the current collector 10 and the positive electrode active material layer 20 can be improved.
  • the amount of active material that can participate in charging / discharging can be maintained, and the battery life of the secondary battery can be improved as compared with the prior art.
  • any one or two or more of Group 4 to Group 6 elements contained in the surface layer 2 is suppressed. Therefore, uniform coating can be performed during the application of the active material-containing slurry during the production of the positive electrode. Furthermore, the corrosion resistance of the aluminum foil 1 can be improved by setting the thickness of the surface layer 2 within a predetermined range.
  • a separator is sandwiched between the positive electrode 100 and a negative electrode (not shown), and these are wound and hermetically stored in a cylindrical, square, and laminate type case filled with an electrolyte solution.
  • a secondary battery can be constituted.
  • the configuration of the secondary battery other than the positive electrode 100 will be briefly described.
  • the negative electrode like the positive electrode 100, is one of the main members constituting the secondary battery, and functions as an electrode together with the positive electrode 100 as a pair.
  • the negative electrode is responsible for the charge / discharge reaction of the secondary battery by inserting or extracting lithium ions through the electrolytic solution.
  • the negative electrode includes a current collector made of aluminum foil or copper foil, and a negative electrode active material layer made of graphite, Si, Ge, Ag, In, Sn, lithium titanate, etc., formed on the current collector. It is configured.
  • the separator is a porous film disposed between the positive electrode 100 and the negative electrode, and is a member for preventing an internal short circuit and holding an electrolytic solution.
  • the separator closes each micropore that forms the porous membrane and increases the internal impedance, thereby preventing the movement of the charge carried by lithium ions.
  • a porous insulating film capable of moving lithium ions for example, a polypropylene or polyolefin based porous film can be used.
  • Electrolytic solution is a liquid filled in the case of the secondary battery, and is a medium for the lithium ions to carry electric charges.
  • a lithium solution as the electrolytic solution. That is, as the electrolytic solution, it is preferable to use a mixed organic solution obtained by adding a lower chain carbonate such as dimethyl carbonate and a lithium fluorophosphate salt to a cyclic ester such as ethylene carbonate or propylene carbonate.
  • the surface layer 2 may be peeled off by an oxide film formed on the surface of the aluminum foil 1.
  • the surface layer 2 contains any one of the Group 4 to Group 6 elements having a strong binding force with oxygen, so that the electrolytic solution of the aluminum foil 1 can be obtained. Elution is prevented, and adhesion at the interface between the current collector 10 and the positive electrode active material layer 20 is improved. Therefore, the amount of the active material that can participate in charging / discharging can be maintained, and the battery life of the secondary battery can be improved as compared with the prior art.
  • Comparative Example 8 no coating (surface treatment) was applied on the aluminum foil.
  • the thickness of the surface layer was changed variously by changing the film formation time.
  • the form of the surface layer was such that the whole was a mixture of crystalline metal or metal carbide and amorphous carbon.
  • the surface layer contains only a predetermined amount of any one of Group 4 elements to Group 6 elements.
  • the surface layer includes Group 4 elements to Group 6 elements.
  • the purpose of adding a predetermined amount of the element is to increase the content of the Group 4 to Group 6 elements that help the adhesion between the oxide film and the surface layer, as described above, and to improve the adhesion between the oxide film and the surface layer. It is to reduce the content of C to be hindered. Accordingly, even when the surface layer contains two kinds of elements of Group 4 to Group 6 or when two or more kinds of elements of Group 4 to Group 6 are contained. If the amount of C in the surface layer can be regulated, the same effect as when only one of the Group 4 to Group 6 elements is contained in the surface layer can be obtained.
  • an aluminum foil, a C target ( ⁇ 100 mm ⁇ thickness 5 mm), a Ti target, a V target, and a Cr target ( ⁇ 100 mm ⁇ thickness 5 mm) are accommodated in the chamber of the sputtering apparatus.
  • sputtering gas Ar gas
  • the sputtering power was 1.5 kW.
  • Positive electrode active material layer forming step In the positive electrode active material layer forming step, the same treatment was performed in Examples 1 to 12 and Comparative Examples 1 to 10. That is, the positive electrode active material layer was formed on the surface layer of the current collectors according to Examples 1 to 12 and Comparative Examples 1 to 10. Specifically, LiCoO 2 is used as an active material, acetylene black is used as a conductive additive, polyvinylidene fluoride is used as a binder, and these are mixed with 1-methyl-2-pyrrolidone as a solvent to form a paste. It was uniformly coated on the layer and dried at 120 ° C.
  • the SAICAS method is a method of measuring the adhesion force between the substrate and the adherend by cutting along the interface between the sample substrate and the adherend using a sharp cutting edge.
  • Table 1 shows the relationship between the composition of the surface layer and the adhesion of the active material layer in Examples and Comparative Examples.
  • M [atomic%] indicates the amount of the fourth to sixth elements.
  • the amount of any one of C and Ti, V, Cr (Group 4 to Group 6) contained in the surface layer is within the scope of the present invention. Since it is inside, it turns out that contact
  • the state where the adhesion force is 0 kN / m refers to a state where the positive electrode active material layer easily peels off when the adhesion force is measured by the SAICAS method, and the adhesion force cannot be measured.
  • the surface layer consists only of C in the comparative example 4, it turns out that the adhesiveness of Al collector and a surface layer is bad, and peeling occurs easily.
  • the Ti, V, and Cr contents in the surface layer and the adhesion are in a correlation. That is, according to the graph of FIG. 3, it can be seen that the content of Ti, V, and Cr should be approximately 5 to 90 atomic% in order to achieve an adhesion of 0.20 kN / m. Therefore, according to this example, it is proved that the positive electrode satisfying the requirements of the present invention has higher adhesion to the current collector of the positive electrode active material layer than the positive electrode not satisfying the requirements of the present invention, that is, the battery life is high. It was done.
  • the contact angle means the angle between the solid surface and the tangent line at the contact point with the solid on the surface of the liquid droplet that is formed when the liquid is dropped on the solid surface, and it is easy for the liquid to spread on the solid surface. It becomes an index that expresses.
  • Table 2 shows the relationship between the composition of the surface layer and the wettability in Examples and Comparative Examples.
  • the amount of any one of C and Ti, V, Cr (Group 4 to Group 6) contained in the surface layer is 5 to 70 atoms. It can be seen that the water contact angle falls within a suitable range because it is within the range of%. On the other hand, in Comparative Examples 1 to 3, and 5 to 8, the amount of Ti, V, and Cr is out of the range of 5 to 70 atomic% or there is no coating, so that the wettability of the current collector surface is poor. Recognize.
  • the contents of Ti, V, Cr in the surface layer and the wettability (water contact angle) of the current collector surface are in a correlation. Therefore, it can be seen that in order to make the water contact angle better than that of the untreated foil, the content of Ti, V, and Cr should be about 5 to 70 atomic%.
  • Table 3 shows the evaluation results of corrosion resistance for each coating film thickness (surface layer thickness) in Examples and Comparative Examples.
  • Examples 3 to 5, 8, 9, and 13 have good corrosion resistance because the thickness of the surface layer is in the range of 10 nm to 1 ⁇ m.
  • Comparative Examples 8 to 10 have poor corrosion resistance because the thickness of the surface layer is out of the range of 10 nm to 1 ⁇ m or there is no coating.
  • the surface of the aluminum foil contains 5 to 90 atomic% of any one or more of Group 4 to Group 6 elements and 10 to 10% of C. It can be seen that the adhesion at the interface between the current collector and the active material layer can be improved by forming the surface layer containing 95 atomic%.
  • the surface of the aluminum foil contains 5 to 70 atomic% of any one or more of Group 4 to Group 6 elements and 30 to 95 C. It can be seen that wettability can be improved by forming a surface layer containing atomic%.
  • the corrosion resistance can be improved by setting the thickness of the surface layer of the aluminum foil to 10 nm to 1 ⁇ m.
  • the positive electrode collector for lithium ion secondary batteries As mentioned above, about the manufacturing method of the positive electrode collector for lithium ion secondary batteries which concerns on this invention, the positive electrode for lithium ion secondary batteries, and the positive electrode collector for lithium ion secondary batteries, form and Example for inventing
  • the gist of the present invention is not limited to these descriptions and should be broadly interpreted based on the description of the scope of claims. Needless to say, various changes and modifications based on these descriptions are also included in the spirit of the present invention.
  • the present invention is useful for lithium ion secondary batteries mounted on electric vehicles, hybrid vehicles, and the like.

Abstract

Disclosed is a positive electrode current collector for a lithium ion secondary battery, which is characterized by comprising an aluminum foil comprising pure aluminum or an aluminum alloy and a surface layer formed on one surface or both surfaces of the aluminum foil, wherein the surface layer contains C in an amount of 10 to 95 at.% and additionally contains at least one element selected from Group 4 to Group 6 elements in an amount of 5 to 90 at.%. Also disclosed is a positive electrode for a lithium ion secondary battery, which is characterized by having a positive electrode active material layer that covers the surface layer of the positive electrode current collector for a lithium ion secondary battery. It becomes possible to prevent the elution of the current collector into an electrolytic solution to improve the adhesion between the current collector and the active material in the interface therebetween and increase the service life of a battery.

Description

リチウムイオン二次電池用正極集電体、リチウムイオン二次電池用正極およびリチウムイオン二次電池用正極集電体の製造方法Positive electrode current collector for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and method for producing positive electrode current collector for lithium ion secondary battery
 本発明は、リチウムイオン二次電池に用いられる正極集電体、正極および正極集電体の製造方法に関する。 The present invention relates to a positive electrode current collector used for a lithium ion secondary battery, a positive electrode, and a method for producing the positive electrode current collector.
 近年、携帯機器の小型化や高性能化によって、当該携帯機器に搭載される二次電池のエネルギー密度(充放電容量)に対する要求は益々高まっている。その中でもリチウムイオン二次電池(以下、適宜二次電池と略す)は、ニッケルカドミウム二次電池やニッケル水素二次電池等と比べて高い電圧と高いエネルギー密度を示すため、携帯機器の電源として広く使用され始めている。また、環境意識の高まりとともに、現在の化石燃料を用いる自動車からCO排出量の少ない電気自動車、あるいはハイブリッド自動車への移行が望まれており、これらに搭載される電池としてリチウムイオン二次電池への期待が高まっている。 In recent years, the demand for the energy density (charge / discharge capacity) of a secondary battery mounted on a portable device has been increasing due to the downsizing and high performance of the portable device. Among them, lithium ion secondary batteries (hereinafter abbreviated as secondary batteries as appropriate) are widely used as power sources for portable devices because they exhibit higher voltage and higher energy density than nickel cadmium secondary batteries and nickel hydrogen secondary batteries. It is starting to be used. In addition, with increasing environmental awareness, there is a demand for a shift from automobiles that currently use fossil fuels to electric cars that emit less CO 2 or hybrid cars, and lithium ion secondary batteries are being installed in these vehicles. Expectations are growing.
 電気自動車、ハイブリッド自動車等に搭載される二次電池に求められる特性としては、エネルギー密度が高いこと(一充電当たりの走行距離の延長、充電必要回数の減少)、充放電速度が高速であること(最大出力=加速性能の向上、充電時間の短縮、回生ブレーキの効率化)、電池寿命が長いこと、等が挙げられる。ここで、電池寿命が長いとは、充放電のサイクルを繰り返した場合であっても、二次電池が劣化せず、充放電容量・電池出力等の電池性能が低下しない性質のことを指す。 The characteristics required for secondary batteries mounted on electric vehicles, hybrid vehicles, etc. are high energy density (extension of mileage per charge, reduction of the number of required charging), and high charge / discharge speed. (Maximum output = improved acceleration performance, shortened charging time, increased efficiency of regenerative braking), long battery life, and the like. Here, the long battery life means that the secondary battery does not deteriorate and the battery performance such as the charge / discharge capacity and the battery output does not deteriorate even when the charge / discharge cycle is repeated.
 リチウムイオン二次電池の充放電速度を決定する要因としては、電池としての内部抵抗が挙げられる。電池の内部抵抗は、電池に使用される部材自身の抵抗と、部材同士の間で生じる界面抵抗からなる。リチウムイオン二次電池に使用される部材としては、集電体、活物質、導電助剤、電解液などが挙げられる。 A factor that determines the charge / discharge rate of a lithium ion secondary battery is the internal resistance of the battery. The internal resistance of a battery consists of the resistance of the member itself used for a battery, and the interface resistance which arises between members. Examples of the member used in the lithium ion secondary battery include a current collector, an active material, a conductive additive, and an electrolytic solution.
 また、リチウムイオン二次電池の電池寿命を決定する要因としては、集電体と活物質層の界面における密着性が挙げられる。現在市販されているリチウムイオン二次電池の大部分は、集電体となるアルミニウム箔(以下、適宜Al箔という)上に、活物質となるLiCoO等のLiを吸蔵するセラミックの粉末と、導電助剤(導電材)となるアセチレンブラック等の微粉炭素と、バインダとなるPVdF(ポリビニリデンフッ化物)等のフッ化物と、を溶媒中で混合したスラリーものを塗布後乾燥することにより作製した正極を使用している。 In addition, as a factor that determines the battery life of the lithium ion secondary battery, there is an adhesive property at the interface between the current collector and the active material layer. Most of the lithium ion secondary batteries currently on the market are made of ceramic powder that occludes Li such as LiCoO 2 serving as an active material on an aluminum foil serving as a current collector (hereinafter referred to as Al foil as appropriate), It was prepared by applying and drying a slurry obtained by mixing fine carbon such as acetylene black as a conductive additive (conductive material) and fluoride such as PVdF (polyvinylidene fluoride) as a binder in a solvent. A positive electrode is used.
 もし、上記のスラリーが集電体表面において均一に濡れ広がることができない場合、電極の面内不均一(電池寿命の低下)、活物質の剥離(歩留まりの悪化、充放電容量の低下、安全性の低下)等の原因となり、望ましくない。そのため、電極表面の濡れ性も重要となる。 If the above slurry cannot spread evenly on the current collector surface, electrode in-plane non-uniformity (decrease in battery life), active material peeling (deterioration of yield, reduction of charge / discharge capacity, safety) This is undesirable because it causes a decrease in Therefore, the wettability of the electrode surface is also important.
 また、このようにして作製される正極の集電体表面には、リチウムイオン電池の高い電圧の影響により電解液と反応を起こすことでフッ化アルミニウムの層が形成されている。通常、フッ化アルミニウムは高い耐食性を示す。しかしながら、リチウムイオン二次電池に使用される正極においては集電体と活物質層とが界面において点接触の状態となっているため、電荷の移動部位の面積が小さく、電流密度が部分的に高くなり、集電体が電解液へと溶出し易い。そして、このように集電体が電解液へと溶出すると、点接触状態となっている集電体と活物質層の界面における接触面積がさらに減少し、両者の密着性が低下する。従って、充放電に関与できる活物質の量が必然的に減少し、充放電容量が減少することになる。 Also, an aluminum fluoride layer is formed on the surface of the current collector of the positive electrode produced in this manner by causing a reaction with the electrolyte under the influence of the high voltage of the lithium ion battery. In general, aluminum fluoride exhibits high corrosion resistance. However, in the positive electrode used in the lithium ion secondary battery, the current collector and the active material layer are in point contact at the interface, so the area of the charge transfer site is small and the current density is partially It becomes high, and the current collector is likely to elute into the electrolyte. When the current collector elutes into the electrolytic solution in this way, the contact area at the interface between the current collector and the active material layer in a point contact state is further reduced, and the adhesion between them is lowered. Therefore, the amount of active material that can participate in charge / discharge is inevitably reduced, and the charge / discharge capacity is reduced.
 また、集電体と活物質層との接触面積が減少すると、集電体と活物質層の界面における電気抵抗(内部抵抗)も増大するため、放電時に大電流を放電すると、二次電池内部における電圧降下が増大して電池出力が低下する。さらに、充電時においても、充電速度が低下することになる。 In addition, if the contact area between the current collector and the active material layer decreases, the electrical resistance (internal resistance) at the interface between the current collector and the active material layer also increases. The voltage drop at increases and the battery output decreases. Furthermore, the charging speed is reduced during charging.
 さらに、集電体表面に形成されるフッ化アルミニウムの電子伝導性は低いため、集電体表面がフッ化物となることで集電体と活物質層の間において電子の伝導を阻害してしまい、電池の内部抵抗を増大させる原因となる。 Furthermore, since the electronic conductivity of aluminum fluoride formed on the current collector surface is low, the current collector surface becomes a fluoride, which inhibits electron conduction between the current collector and the active material layer. This increases the internal resistance of the battery.
 二次電池内部における電気抵抗が大きいと、放電時におけるジュール熱が増加するため、エネルギー損失の増加を招くとともに、発生した熱によって電池の温度が上昇し、活物質や電解液の分解、あるいは、発火・熱暴走等を引き起こすこともあり、安全性に重大な影響を与えることになる。 If the electrical resistance inside the secondary battery is large, the Joule heat at the time of discharge increases, leading to an increase in energy loss, the temperature of the battery rises due to the generated heat, decomposition of the active material and electrolyte, or It may cause ignition, thermal runaway, etc., which will seriously affect safety.
 そこで、特許文献1では、導電材料で形成された集電体にカーボンの中間膜または導電材料よりも貴な金属の中間膜を設けその上に活物質層を被覆することで、集電体の電解液への溶出を防止して集電体と活物質層の界面における密着性を向上させる構成とした。 Therefore, in Patent Document 1, a current collector formed of a conductive material is provided with a carbon intermediate film or an intermediate film of a metal that is more noble than a conductive material, and an active material layer is coated on the intermediate film. The structure was such that elution into the electrolytic solution was prevented and the adhesion at the interface between the current collector and the active material layer was improved.
 また、特許文献2では、集電体箔の表面にグラファイト粒子が分散したアモルファスカーボン層を被覆することで、集電体箔表面のフッ化および酸化を防ぐ方法が示されている。 Patent Document 2 discloses a method for preventing fluorination and oxidation on the surface of the current collector foil by coating the surface of the current collector foil with an amorphous carbon layer in which graphite particles are dispersed.
日本国特開2000-164466号公報Japanese Unexamined Patent Publication No. 2000-164466 日本国特開2009-187772号公報Japanese Unexamined Patent Publication No. 2009-188772
 しかしながら、集電体の表面には、通常、大気中の酸素との反応によって形成された薄い自然酸化皮膜(以下、酸化皮膜という)が存在する。そして、このような酸化皮膜とカーボン(炭素)とは、一般的には密着性が悪いため、特許文献1および特許文献2に係る発明のように集電体の表面にカーボン中間膜を形成したとしても、充放電に伴って当該カーボン中間膜が集電体から剥離してしまうという問題が生じた。さらに、このようにカーボン中間膜が集電体から剥離すると、その上に被覆した活物質層も同時に剥離してしまうため、電池寿命が低下する要因ともなる。従って、特許文献1および特許文献2に係る発明は、集電体と活物質層の界面における密着性を向上させることができなかった。 However, a thin natural oxide film (hereinafter referred to as an oxide film) formed by a reaction with oxygen in the atmosphere is usually present on the surface of the current collector. Since such an oxide film and carbon (carbon) generally have poor adhesion, a carbon intermediate film is formed on the surface of the current collector as in the inventions according to Patent Document 1 and Patent Document 2. However, the problem that the said carbon intermediate film will peel from a collector with charging / discharging arose. Furthermore, when the carbon intermediate film is peeled from the current collector in this way, the active material layer coated thereon is also peeled at the same time, which causes a decrease in battery life. Therefore, the inventions according to Patent Document 1 and Patent Document 2 cannot improve the adhesion at the interface between the current collector and the active material layer.
 本発明はこのような問題点に鑑みてなされたものであって、集電体の電解液への溶出を防止することに加えて、集電体と活物質層の界面における密着性を向上させることで電池寿命を増大させることができるリチウムイオン二次電池用正極集電体、リチウムイオン二次電池用正極およびリチウムイオン二次電池用正極集電体の製造方法を提供することを課題とする。 The present invention has been made in view of such problems, and in addition to preventing elution of the current collector into the electrolyte, it improves the adhesion at the interface between the current collector and the active material layer. It is an object of the present invention to provide a positive electrode current collector for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, and a method for producing a positive electrode current collector for a lithium ion secondary battery that can increase the battery life. .
 前記した課題を解決するために本発明に係るリチウムイオン二次電池用正極集電体は、純アルミニウムまたはアルミニウム合金からなるアルミニウム箔と、前記アルミニウム箔の片面または両面に形成された表面層と、を備えるリチウムイオン二次電池用正極集電体であって、前記表面層が、Cを10~95原子%含有し、その他に第4族元素~第6族元素のうちのいずれか一種または二種以上を5~90原子%含有する構成とした。 In order to solve the above problems, a positive electrode current collector for a lithium ion secondary battery according to the present invention includes an aluminum foil made of pure aluminum or an aluminum alloy, and a surface layer formed on one or both surfaces of the aluminum foil, A positive electrode current collector for a lithium ion secondary battery, wherein the surface layer contains 10 to 95 atomic% of C, and in addition, any one or two of group 4 elements to group 6 elements The composition contains more than 5 to 90 atomic% of seeds.
 このような構成からなるリチウムイオン二次電池用正極集電体は、アルミニウム箔の表面に設けた表面層に、酸素との結合力が強い第4族元素~第6族元素のうちのいずれか一種または二種以上を所定量含有させることにより、当該表面層と、アルミニウム箔の表面に形成された薄い酸化皮膜と、の密着力を向上させることができる。従って、表面層が剥離しにくくなるため、アルミニウム箔の電解液への溶出を防止することができる。 The positive electrode current collector for a lithium ion secondary battery having such a structure is one of Group 4 to Group 6 elements having a strong binding force with oxygen on the surface layer provided on the surface of the aluminum foil. By containing a predetermined amount of one or two or more kinds, the adhesion between the surface layer and the thin oxide film formed on the surface of the aluminum foil can be improved. Therefore, since the surface layer is difficult to peel off, the elution of the aluminum foil into the electrolytic solution can be prevented.
 また、本発明に係るリチウムイオン二次電池用正極集電体は、前記表面層が、Cを30~95原子%含有し、その他に第4族元素~第6族元素のうちのいずれか一種または二種以上を5~70原子%含有する構成とすることが好ましい。 In the positive electrode current collector for a lithium ion secondary battery according to the present invention, the surface layer contains 30 to 95 atomic% of C, and any one of Group 4 to Group 6 elements. Alternatively, it is preferable that the composition contains two or more of 5 to 70 atomic%.
 このような構成からなるリチウムイオン二次電池用正極集電体は、アルミニウム箔表面の濡れ性低下を抑えることが可能となるため、正極作製時における活物質含有スラリー塗工の際に、均一な塗工が可能となる。 Since the positive electrode current collector for a lithium ion secondary battery having such a configuration can suppress a decrease in wettability on the surface of the aluminum foil, it is uniform during the application of the active material-containing slurry during the production of the positive electrode. Coating is possible.
 また、本発明に係るリチウムイオン二次電池用正極集電体は、前記表面層の厚さを10nm~1μmとすることが好ましい。 In the positive electrode current collector for a lithium ion secondary battery according to the present invention, the thickness of the surface layer is preferably 10 nm to 1 μm.
 このような構成からなるリチウムイオン二次電池用正極集電体は、表面層の厚さを所定範囲内とすることで、アルミニウム箔の耐食性を高めることができる。 The positive electrode current collector for a lithium ion secondary battery having such a configuration can improve the corrosion resistance of the aluminum foil by setting the thickness of the surface layer within a predetermined range.
 また、本発明に係るリチウムイオン二次電池用正極は、前記したリチウムイオン二次電池用正極集電体と、前記リチウムイオン二次電池用正極集電体の表面層を覆う正極活物質層と、を備える構成とした。 Moreover, the positive electrode for lithium ion secondary batteries according to the present invention includes the positive electrode current collector for lithium ion secondary batteries described above, and a positive electrode active material layer covering the surface layer of the positive electrode current collector for lithium ion secondary batteries, It was set as the structure provided with.
 このような構成からなるリチウムイオン二次電池用正極は、前記した集電体によってアルミニウム箔の電解液への溶出が防止される。従って、集電体と活物質層の界面における密着性を向上させることができる。 The positive electrode for a lithium ion secondary battery having such a configuration prevents the aluminum foil from being eluted into the electrolyte by the above-described current collector. Accordingly, adhesion at the interface between the current collector and the active material layer can be improved.
 さらに、本発明に係るリチウムイオン二次電池用正極集電体の製造方法は、気相成膜法によって、アルミニウム箔の表面に、Cを10~95原子%含有し、その他に第4族元素~第6族元素のうちのいずれか一種または二種以上を5~90原子%含有する表面層を堆積させる表面層形成工程を行うこととした。 Furthermore, the method for producing a positive electrode current collector for a lithium ion secondary battery according to the present invention contains 10 to 95 atomic% of C on the surface of the aluminum foil by vapor phase film formation, and in addition, a Group 4 element. A surface layer forming step of depositing a surface layer containing 5 to 90 atomic% of any one or more of group 6 elements is performed.
 このような構成からなるリチウムイオン二次電池用正極集電体の製造方法は、気相成膜法を用いることで、アルミニウム箔の表面に表面層を均一に堆積させることができる。 The manufacturing method of the positive electrode current collector for a lithium ion secondary battery having such a configuration can uniformly deposit the surface layer on the surface of the aluminum foil by using a vapor phase film forming method.
 本発明に係るリチウムイオン二次電池用正極集電体および当該集電体を用いたリチウムイオン二次電池用正極によれば、アルミニウム箔の表面に第4族元素~第6族元素のうちのいずれか一種または二種以上を所定量含有するとともに、Cを所定量含有する表面層を形成することで、当該アルミニウム箔の電解液への溶出を防止し、集電体と活物質層の界面における密着性を向上させることができる。従って、従来よりも電池寿命が向上した集電体および正極を提供することができる。また、本発明に係るリチウムイオン二次電池用正極集電体の製造方法によれば、前記した特性を有する集電体を容易かつ確実に製造することができる。 According to the positive electrode current collector for a lithium ion secondary battery and the positive electrode for a lithium ion secondary battery using the current collector according to the present invention, a group 4 element to a group 6 element on the surface of the aluminum foil. By containing a predetermined amount of any one or two or more and forming a surface layer containing a predetermined amount of C, elution of the aluminum foil into the electrolyte solution is prevented, and the interface between the current collector and the active material layer The adhesiveness in can be improved. Therefore, it is possible to provide a current collector and a positive electrode that have an improved battery life compared to conventional ones. Moreover, according to the manufacturing method of the positive electrode electrical power collector for lithium ion secondary batteries which concerns on this invention, the electrical power collector which has an above described characteristic can be manufactured easily and reliably.
実施形態に係るリチウムイオン二次電池用正極集電体を備える正極を示す概略図であり、(a)は、アルミニウム箔の片面に表面層を形成したリチウムイオン二次電池用正極集電体およびこれを備えるリチウムイオン二次電池用正極の断面図、(b)は、アルミニウム箔の両面に表面層を形成したリチウムイオン二次電池用正極集電体の断面図、である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic which shows a positive electrode provided with the positive electrode collector for lithium ion secondary batteries which concerns on embodiment, (a) is the positive electrode collector for lithium ion secondary batteries which formed the surface layer in the single side | surface of aluminum foil, and Sectional drawing of the positive electrode for lithium ion secondary batteries provided with this, (b) is sectional drawing of the positive electrode electrical power collector for lithium ion secondary batteries which formed the surface layer on both surfaces of aluminum foil. 実施形態に係るリチウムイオン二次電池用正極集電体およびこれを備えるリチウムイオン二次電池用正極の製造方法を示す概略図であり、(a)は、アルミニウム箔製造工程を示す図、(b)は、表面層形成工程を示す図、(c)は、正極活物質層形成工程を示す図、である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic which shows the manufacturing method of the positive electrode electrical power collector for lithium ion secondary batteries which concerns on embodiment, and the positive electrode for lithium ion secondary batteries provided with this, (a) is a figure which shows an aluminum foil manufacturing process, (b) (A) is a figure which shows a surface layer formation process, (c) is a figure which shows a positive electrode active material layer formation process. 実施例に係るリチウムイオン二次電池用正極における表面層のTi(第4族元素)、V(第5族元素)、Cr(第6族元素)の含有量と、活物質層の密着力との関係を示すグラフである。The content of Ti (Group 4 element), V (Group 5 element), Cr (Group 6 element) in the surface layer of the positive electrode for a lithium ion secondary battery according to the example, and the adhesion strength of the active material layer It is a graph which shows the relationship. 実施例に係るリチウムイオン二次電池用正極における表面層のTi(第4族元素)、V(第5族元素)、Cr(第6族元素)の含有量と、水接触角との関係を示すグラフである。The relationship between the content of Ti (Group 4 element), V (Group 5 element) and Cr (Group 6 element) in the surface layer of the positive electrode for a lithium ion secondary battery according to the example and the water contact angle It is a graph to show. 実施例に係るリチウムイオン二次電池用正極における実施例3の表面層の断面TEM観察像である。It is a cross-sectional TEM observation image of the surface layer of Example 3 in the positive electrode for lithium ion secondary batteries which concerns on an Example. 実施例に係るリチウムイオン二次電池用正極における実施例13の表面層の断面TEM観察像である。It is a cross-sectional TEM observation image of the surface layer of Example 13 in the positive electrode for lithium ion secondary batteries which concerns on an Example. 実施例に係るリチウムイオン二次電池用正極における比較例9の表面層の断面TEM観察像である。It is a cross-sectional TEM observation image of the surface layer of the comparative example 9 in the positive electrode for lithium ion secondary batteries which concerns on an Example.
 以下、実施形態に係るリチウムイオン二次電池用正極集電体(以下、適宜集電体と略す)および当該集電体を備えるリチウムイオン二次電池用正極(以下、適宜正極と略す)について、図面を参照しながら詳細に説明する。なお、各図に示した構成の寸法・縮尺は、説明の便宜上誇張して示している。 Hereinafter, a positive electrode current collector for a lithium ion secondary battery according to an embodiment (hereinafter abbreviated as a current collector as appropriate) and a positive electrode for a lithium ion secondary battery including the current collector (hereinafter abbreviated as a positive electrode as appropriate), This will be described in detail with reference to the drawings. Note that the dimensions and scales of the configurations shown in the drawings are exaggerated for convenience of explanation.
 まず、リチウムイオン二次電池とは、電解液中のリチウムイオンが電荷の伝導を担う二次電池のことをいう。リチウムイオン二次電池は、電極である正極および負極のそれぞれに、リチウムイオンを吸蔵・放出することができる活物質層を形成し、電解液内をリチウムイオンが移動することによって動作する。なお、リチウムイオン二次電池の詳細な構成については、後記する。 First, a lithium ion secondary battery refers to a secondary battery in which lithium ions in an electrolyte solution conduct charge. A lithium ion secondary battery operates by forming an active material layer capable of inserting and extracting lithium ions in each of a positive electrode and a negative electrode, which are electrodes, and the lithium ions move in the electrolyte. The detailed configuration of the lithium ion secondary battery will be described later.
(集電体)
 集電体10は、後記する正極100の基材であり、電気を取り出すための端子である。集電体10を構成する素材としては、導電性に優れていること、二次電池内部で安定に存在すること、加工が容易であること、等の要件を満たしている必要がある。そこで、本実施形態においては、これらの要件を満たすアルミニウム板を圧延したアルミニウム箔1を素材として用いている。
(Current collector)
The current collector 10 is a base material of the positive electrode 100 described later, and is a terminal for taking out electricity. The material constituting the current collector 10 needs to satisfy the requirements such as excellent electrical conductivity, stable presence within the secondary battery, and ease of processing. Therefore, in the present embodiment, an aluminum foil 1 obtained by rolling an aluminum plate that satisfies these requirements is used as a material.
 アルミニウム箔1は、集電体10の主要部材である。アルミニウム箔1は、箔への加工が容易であるという理由から、純アルミニウムで構成されている。但し、強度および耐食性等の観点から、種々の合金元素を添加したアルミニウム合金箔を用いることも可能である。なお、アルミニウム箔1の面積は、二次電池の使用用途に応じて適宜変更される。 The aluminum foil 1 is a main member of the current collector 10. The aluminum foil 1 is made of pure aluminum because it can be easily processed into a foil. However, from the viewpoint of strength and corrosion resistance, it is also possible to use an aluminum alloy foil to which various alloy elements are added. In addition, the area of the aluminum foil 1 is suitably changed according to the use application of a secondary battery.
 アルミニウム箔1の厚さとしては、1~100μmとすることが好ましい。アルミニウム箔1の厚さが1μm未満の場合、箔の強度が弱いため、表面層2の形成時、または後記する正極活物質層20の形成時、さらには二次電池の製造段階において、箔の破断が生じる可能性がある。一方、アルミニウム箔1を厚くすることで箔の強度を上げることができるが、アルミニウム箔1の厚さが100μmを超える場合、集電体10が二次電池全体に占める体積が大きくなり、二次電池のエネルギー密度が低下してしまう可能性がある。 The thickness of the aluminum foil 1 is preferably 1 to 100 μm. When the thickness of the aluminum foil 1 is less than 1 μm, the strength of the foil is weak. Therefore, at the time of forming the surface layer 2 or the positive electrode active material layer 20 described later, and further in the manufacturing stage of the secondary battery, Breakage can occur. On the other hand, the thickness of the aluminum foil 1 can be increased to increase the strength of the foil. However, when the thickness of the aluminum foil 1 exceeds 100 μm, the current collector 10 occupies a larger volume in the secondary battery, and the secondary battery The energy density of the battery may be reduced.
 表面層2は、図1(a)に示すように、アルミニウム箔1の表面に形成された層である。また、表面層2は、図1(a)に示すように、アルミニウム箔1と後記する正極活物質層20との中間に形成された中間層でもある。表面層2は、C(炭素)と、第4族元素~第6族元素のうちのいずれか一種または二種以上と、から構成されている。ここで、第4族元素としては、Ti(チタン)、Zr(ジルコニウム)、Hf(ハフニウム)が、第5族元素としては、V(バナジウム)、Nb(ニオブ)、Ta(タンタル)、Db(ドブニウム)が、第6族元素としては、Cr(クロム)、Mo(モリブデン)、W(タングステン)が、挙げられる。そして、表面層2は、これらの中でも第4族元素としてTiを、第5族元素としてVを、第6族元素としてCrを含有していることが好ましい。 The surface layer 2 is a layer formed on the surface of the aluminum foil 1 as shown in FIG. The surface layer 2 is also an intermediate layer formed between the aluminum foil 1 and a positive electrode active material layer 20 described later, as shown in FIG. The surface layer 2 is composed of C (carbon) and any one or more of Group 4 to Group 6 elements. Here, Ti (titanium), Zr (zirconium), and Hf (hafnium) are used as Group 4 elements, and V (Vanadium), Nb (niobium), Ta (tantalum), and Db (Group 5 elements are used as Group 5 elements. Examples of Group 6 elements of Dobnium include Cr (chromium), Mo (molybdenum), and W (tungsten). And among these, it is preferable that the surface layer 2 contains Ti as a Group 4 element, V as a Group 5 element, and Cr as a Group 6 element.
 前記したように、通常、集電体10の表面(アルミニウム箔1の表面)には、大気中の酸素との反応によって形成された薄い酸化皮膜が存在する(図示省略)。そして、この酸化皮膜とCとは密着性が悪いため、表面層2をCのみで構成すると表面層2がアルミニウム箔1から剥離して耐食性が失われ、アルミニウム箔1が電解液に溶出する可能性がある。 As described above, usually, a thin oxide film formed by reaction with oxygen in the atmosphere is present on the surface of the current collector 10 (the surface of the aluminum foil 1) (not shown). And since this oxide film and C have poor adhesion, if the surface layer 2 is composed of C only, the surface layer 2 is peeled off from the aluminum foil 1 and the corrosion resistance is lost, and the aluminum foil 1 can be eluted into the electrolyte. There is sex.
 しかし、実施形態に係る集電体10は、表面層2に、酸素との結合力が強い第4族元素~第6族元素のうちのいずれか一種または二種以上を所定量含有させることにより、アルミニウム箔1の表面に形成された薄い酸化皮膜と密着力の悪いCの含有量を減少させ、当該酸化皮膜と表面層2との密着力を向上させることができる。すなわち、アルミニウム箔1から表面層2が剥離しにくくなることで、アルミニウム箔1の電解液への溶出を間接的に防止することができる。従って、二次電池を長時間使用した後も集電体10と後記する正極活物質層20の間の導通が保たれ、結果的に二次電池の電池性能の劣化を防ぐことができる。 However, the current collector 10 according to the embodiment includes the surface layer 2 containing a predetermined amount of any one or two or more of Group 4 to Group 6 elements having strong binding force with oxygen. The content of C having poor adhesion to the thin oxide film formed on the surface of the aluminum foil 1 can be reduced, and the adhesion between the oxide film and the surface layer 2 can be improved. That is, since the surface layer 2 becomes difficult to peel from the aluminum foil 1, the elution of the aluminum foil 1 into the electrolytic solution can be indirectly prevented. Therefore, even after the secondary battery has been used for a long time, conduction between the current collector 10 and the positive electrode active material layer 20 described later is maintained, and as a result, deterioration of the battery performance of the secondary battery can be prevented.
 ここで、表面層2に含有される第4族元素~第6族元素の含有量は、5~90原子%(Cの含有量が10~95原子%)とする。すなわち、表面層2に含有される第4族元素~第6族元素の含有量が5原子%未満(Cの含有量が95原子%超)の場合、表面層2中の金属元素が十分でないため、表面層2と酸化皮膜との密着力の向上効果が薄い。一方、表面層2に含有される第4族元素~第6族元素の含有量が90原子%を超える(Cの含有量が10原子%未満の)場合、表面層2の性状が金属に近くなり、表面層2自体の表面に酸化皮膜が形成されてしまう。そして、当該酸化皮膜が表面層2と正極活物質層20との密着を妨げる要因となる。 Here, the content of Group 4 to Group 6 elements contained in the surface layer 2 is 5 to 90 atomic% (the C content is 10 to 95 atomic%). That is, when the content of the group 4 element to the group 6 element contained in the surface layer 2 is less than 5 atomic% (the C content exceeds 95 atomic%), the metal elements in the surface layer 2 are not sufficient. Therefore, the effect of improving the adhesion between the surface layer 2 and the oxide film is thin. On the other hand, when the content of the group 4 element to the group 6 element contained in the surface layer 2 exceeds 90 atomic% (the content of C is less than 10 atomic%), the properties of the surface layer 2 are close to metals. Thus, an oxide film is formed on the surface of the surface layer 2 itself. The oxide film becomes a factor that hinders adhesion between the surface layer 2 and the positive electrode active material layer 20.
 また、さらに望ましい形態として、表面層2に含有される第4族元素~第6族元素の含有量は、5~70原子%(Cの含有量が30~95原子%)とする。すなわち、表面層2に含有される第4族元素~第6族元素の含有量が5原子%未満(Cの含有量が95原子%超)の場合、表面層2中の金属元素が十分でないため、表面層2と酸化皮膜との密着力の向上効果が薄い。一方、表面層2の濡れ性を考慮し、活物質層形成工程でのスラリー塗工性をより良好にするためには、表面層2に含有される第4族元素~第6族元素の含有量を70原子%以下(Cの含有量が30原子%以上)とすることが好ましい。なお、表面層2に含有される第4族元素~第6族元素の含有量は、10~65原子%(Cの含有量は35~90原子%)とすることがより好ましい。 Further, as a more desirable form, the content of the Group 4 element to the Group 6 element contained in the surface layer 2 is 5 to 70 atomic% (the C content is 30 to 95 atomic%). That is, when the content of the group 4 element to the group 6 element contained in the surface layer 2 is less than 5 atomic% (the C content exceeds 95 atomic%), the metal elements in the surface layer 2 are not sufficient. Therefore, the effect of improving the adhesion between the surface layer 2 and the oxide film is thin. On the other hand, in consideration of the wettability of the surface layer 2, in order to improve the slurry coatability in the active material layer forming step, the inclusion of group 4 elements to group 6 elements contained in the surface layer 2 The amount is preferably 70 atomic% or less (the C content is 30 atomic% or more). The content of the Group 4 to Group 6 elements contained in the surface layer 2 is more preferably 10 to 65 atomic% (the C content is 35 to 90 atomic%).
 このように、実施形態に係る集電体10は、表面層2がCを30~95原子%含有し、その他に第4族元素~第6族元素を5~70原子%含有することで、アルミニウム箔表面の濡れ性低下を抑えることが可能となるため、正極作製時における活物質含有スラリー塗工の際に、均一な塗工が可能となる。 Thus, in the current collector 10 according to the embodiment, the surface layer 2 contains 30 to 95 atomic% of C, and additionally contains 5 to 70 atomic% of Group 4 to Group 6 elements. Since it becomes possible to suppress the wettability fall on the surface of an aluminum foil, a uniform coating becomes possible at the time of the active material containing slurry coating at the time of positive electrode preparation.
 なお、表面層2に第4族元素~第6族元素を所定量含有させる目的は、酸化皮膜と表面層2との密着を助ける第4族元素~第6族元素の含有量を増加させるとともに、酸化皮膜と表面層2との密着を妨げるCの含有量を減少させることにある。従って、表面層2に第4族元素~第6族元素のうちの二種を含有させた場合や、第4族元素~第6族元素のうちの二種以上を含有させた場合であっても、表面層2中におけるCの含有量の量に規制することができれば、表面層2に第4族元素~第6族元素のうちのいずれか一種のみを含有させた場合と同様の効果を奏する。 The purpose of adding a predetermined amount of Group 4 element to Group 6 element in the surface layer 2 is to increase the content of the Group 4 element to Group 6 element that helps the adhesion between the oxide film and the surface layer 2. It is to reduce the content of C that hinders adhesion between the oxide film and the surface layer 2. Therefore, when the surface layer 2 contains two kinds of Group 4 to Group 6 elements or when two or more kinds of Group 4 to Group 6 elements are contained. However, if the amount of C in the surface layer 2 can be regulated, the same effect as when only one of the Group 4 to Group 6 elements is contained in the surface layer 2 can be obtained. Play.
 表面層2に含有されるCおよび第4族元素~第6族元素の含有量は、例えばAES(Auger Electron Spectroscopy:オージェ電子分光法)によって測定することができる。AESとは、電子線の照射によって固体表面から放出されたオージェ電子を検出することで、固体表面の組成を測定する方法のことをいう。 The contents of C and Group 4 to Group 6 elements contained in the surface layer 2 can be measured by, for example, AES (Auger Electron Spectroscopy). AES refers to a method for measuring the composition of a solid surface by detecting Auger electrons emitted from the solid surface by irradiation with an electron beam.
 表面層2の厚さ(膜厚)は、10nm~1μmとする。表面層2の厚さが10nm未満であると、アルミニウム箔1に由来するアルミニウム成分が表面層2の中に拡散し、集電体表面に容易に到達することができるため、結果として充分な耐食性を発揮することができない。また、表面層2の厚さが1μmを超えると、生産性が低下するため望ましくない。なお、表面層2の厚さは、15nm~0.5μmとすることがより好ましい。 The thickness (film thickness) of the surface layer 2 is 10 nm to 1 μm. If the thickness of the surface layer 2 is less than 10 nm, the aluminum component derived from the aluminum foil 1 diffuses into the surface layer 2 and can easily reach the current collector surface, resulting in sufficient corrosion resistance. Can not demonstrate. On the other hand, when the thickness of the surface layer 2 exceeds 1 μm, productivity is lowered, which is not desirable. The thickness of the surface layer 2 is more preferably 15 nm to 0.5 μm.
 表面層2は、図1(a)に示すようなアルミニウム箔1の片面のみではなく、図1(b)に示すようにアルミニウム箔1の両面に形成してもよい。このように、表面層2をアルミニウム箔1の両面に形成することで、正極活物質層20を両面に形成する場合であっても、アルミニウム箔1の電解液への溶出を効果的に防止することができる。 The surface layer 2 may be formed not only on one side of the aluminum foil 1 as shown in FIG. 1 (a) but also on both sides of the aluminum foil 1 as shown in FIG. 1 (b). Thus, by forming the surface layer 2 on both surfaces of the aluminum foil 1, even when the positive electrode active material layer 20 is formed on both surfaces, the elution of the aluminum foil 1 into the electrolytic solution is effectively prevented. be able to.
 表面層2は、スパッタリング等の気相成膜法によって形成することができるが、その詳しい形成方法については後記する。また、表面層2は、Cおよび第4族元素~第6族元素の他に、Al、O等の不可避的不純物を発明の効果を妨げない範囲内で含有してもよい。 The surface layer 2 can be formed by a vapor deposition method such as sputtering, and the detailed formation method will be described later. The surface layer 2 may contain inevitable impurities such as Al and O in addition to C and Group 4 to Group 6 elements within a range that does not impede the effects of the invention.
 また、表面層2の形態は、その中に含まれる第4族~第6族元素とCとの組成の比によって変化させることができるが、耐食性をもつ範囲であれば、全体が結晶性の金属炭化物になっている形態でも、非晶質炭素中に金属炭化物が分散している形態のいずれでもよい。 Further, the form of the surface layer 2 can be changed depending on the composition ratio of the Group 4 to Group 6 element and C contained therein, but if the range has corrosion resistance, the entire surface layer 2 is crystalline. Either a form of metal carbide or a form in which metal carbide is dispersed in amorphous carbon may be used.
(正極)
 正極100は、二次電池を構成する主要部材の一つであり、対となる負極とともに電極として機能するものである。正極100は、電解液を介してリチウムイオンを吸蔵あるいは放出することで、二次電池の充放電反応を担っている。正極100は、図1(a)に示すように、前記した集電体10と、正極活物質層20と、で構成されている。
(Positive electrode)
The positive electrode 100 is one of the main members constituting the secondary battery, and functions as an electrode together with the negative electrode to be paired. The positive electrode 100 is responsible for charge / discharge reactions of the secondary battery by inserting or extracting lithium ions through the electrolytic solution. As shown in FIG. 1A, the positive electrode 100 includes the current collector 10 and the positive electrode active material layer 20.
 正極活物質層20は、リチウムイオンを吸蔵・放出する物質を有する層であり、リチウムイオン二次電池における充放電反応の中心的役割を担うものである。正極活物質層20は、リチウムイオンを吸蔵・放出する活物質であるLiCoO,LiMn,LiNiO等で構成されるが、特に、LiCoOで構成することが好ましい。 The positive electrode active material layer 20 is a layer having a material that occludes / releases lithium ions, and plays a central role in the charge / discharge reaction in the lithium ion secondary battery. The positive electrode active material layer 20 is made of LiCoO 2 , LiMn 2 O 4 , LiNiO 2, etc., which are active materials that occlude and release lithium ions, and is particularly preferably made of LiCoO 2 .
 正極活物質層20は、前記した活物質を導電助剤およびバインダとともに溶媒中で混合し、当該混合物を表面層2上を覆うように塗布し、乾燥することで形成する。ここで、導電助剤としては例えばアセチレンブラックを、バインダとしては例えばポリフッ化ビニリデンを、溶媒としては例えば1-メチル-2-ピロリドン等を用いることができ、これらの成分の配合比は特に限定されない。なお、正極活物質層20の厚さは、二次電池の体積容量の観点から0.1~100μmとすることが好ましい。 The positive electrode active material layer 20 is formed by mixing the above-mentioned active material together with a conductive additive and a binder in a solvent, applying the mixture so as to cover the surface layer 2, and drying. Here, for example, acetylene black can be used as the conductive aid, polyvinylidene fluoride can be used as the binder, and 1-methyl-2-pyrrolidone can be used as the solvent, and the mixing ratio of these components is not particularly limited. . The thickness of the positive electrode active material layer 20 is preferably 0.1 to 100 μm from the viewpoint of the volume capacity of the secondary battery.
 このように、実施形態に係る集電体10および正極100は、アルミニウム箔1の表面に酸素との結合力の強い第4族元素~第6族元素のうちのいずれか一種または二種以上を所定量含有するとともに、Cを所定量含有する表面層2を形成することで、当該アルミニウム箔1の電解液への溶出を防止し、集電体10と正極活物質層20の界面における密着性を向上させることができる。従って、充放電に関与できる活物質の量を維持することができ、従来よりも二次電池の電池寿命を向上させることができる。 As described above, the current collector 10 and the positive electrode 100 according to the embodiment include one or more of Group 4 to Group 6 elements having strong binding force with oxygen on the surface of the aluminum foil 1. By forming the surface layer 2 containing a predetermined amount and containing a predetermined amount of C, elution of the aluminum foil 1 into the electrolytic solution is prevented, and adhesion at the interface between the current collector 10 and the positive electrode active material layer 20 is prevented. Can be improved. Therefore, the amount of the active material that can participate in charging / discharging can be maintained, and the battery life of the secondary battery can be improved as compared with the prior art.
(集電体の製造方法)
 以下、実施形態に係る集電体10の製造方法について、図2を参照しながら説明する。実施形態に係る集電体10の製造方法は、表面層形成工程を行うことを特徴としている。また、その前提としてアルミニウム箔製造工程を行う。
(Current collector manufacturing method)
Hereinafter, the manufacturing method of the current collector 10 according to the embodiment will be described with reference to FIG. The manufacturing method of the current collector 10 according to the embodiment is characterized by performing a surface layer forming step. Moreover, the aluminum foil manufacturing process is performed as the premise.
(1)アルミニウム箔製造工程 
 本工程は、図2(a)に示すように、アルミニウム板を圧延して所定厚さおよび所定面積を有するアルミニウム箔1を製造する工程である。ここで、アルミニウム板から製造するアルミニウム箔1の最終的な厚さは、箔強度および二次電池の体積容量の観点から、1~100μmとすることが好ましい。
(1) Aluminum foil manufacturing process
In this step, as shown in FIG. 2A, an aluminum plate 1 is rolled to produce an aluminum foil 1 having a predetermined thickness and a predetermined area. Here, the final thickness of the aluminum foil 1 manufactured from the aluminum plate is preferably 1 to 100 μm from the viewpoint of the foil strength and the volume capacity of the secondary battery.
(2)表面層形成工程 
 本工程は、図2(b)に示すように、アルミニウム箔1上の片面または両面に表面層2を形成する工程である。本工程では、気相成膜法を用いてアルミニウム箔1上の片面または両面に成膜元素であるCと、第4族元素~第6族元素のうちのいずれか一種または二種以上を堆積させて表面層2を形成する。なお、気相成膜法とは、気相中で基材表面に原子を析出堆積させて固体の薄膜を形成する成膜法のことをいう。
(2) Surface layer forming process
This step is a step of forming the surface layer 2 on one side or both sides of the aluminum foil 1 as shown in FIG. In this step, vapor deposition method is used to deposit C, which is a film-forming element, and one or more of Group 4 to Group 6 elements on one or both surfaces of aluminum foil 1. Thus, the surface layer 2 is formed. The vapor deposition method refers to a deposition method in which atoms are deposited and deposited on the surface of a substrate in a vapor phase to form a solid thin film.
 気相成膜法の具体例としては、例えば、スパッタリングや真空蒸着等が挙げられる。ここで、スパッタリングとは、ターゲットにイオンをスパッタリングしてその原子を叩き出すことで基材上(表面)に原子を堆積させる方法であり、真空蒸着とは、ターゲットを高温に加熱して蒸発気化させることで、基材上に原子を堆積させる方法である。ここで、表面層2とアルミニウム箔1との結合が弱いと、表面層2が剥離するおそれがあるため、本工程で用いる気相成膜法としては、真空蒸着よりも結合力の強い薄膜を形成することができるスパッタリングを用いることが好ましい。 Specific examples of the vapor phase film forming method include sputtering and vacuum deposition. Here, sputtering is a method of depositing atoms on the substrate (surface) by sputtering ions on the target and knocking out the atoms. Vacuum evaporation is evaporation by heating the target to a high temperature. This is a method of depositing atoms on a substrate. Here, if the bonding between the surface layer 2 and the aluminum foil 1 is weak, the surface layer 2 may be peeled off. Therefore, as a vapor deposition method used in this step, a thin film having a stronger bonding force than vacuum deposition is used. It is preferable to use sputtering that can be formed.
 スパッタリングの条件としては、図示しないスパッタリング装置のチャンバ内にアルミニウム箔1、表面層2の構成元素に対応するCターゲットおよび第4族元素~第6族元素のターゲット、をそれぞれ収容し、内部圧力を1×10-3Pa以下としてスパッタリングガス(Arガス)を導入し、成膜圧力を0.2~0.3Paに維持しながら各ターゲットの表面をスパッタリングすることが好ましい。また、スパッタリングパワーは、1~2kWとすることが好ましい。 As sputtering conditions, an aluminum foil 1, a C target corresponding to a constituent element of the surface layer 2, and a group 4-6 element target are accommodated in a chamber of a sputtering apparatus (not shown), and the internal pressure is set. It is preferable to sputter the surface of each target while introducing a sputtering gas (Ar gas) at 1 × 10 −3 Pa or less and maintaining the film forming pressure at 0.2 to 0.3 Pa. The sputtering power is preferably 1 to 2 kW.
 これらの工程を経ることによって製造された集電体10は、図2(b)に示すように、アルミニウム箔1上に、所定厚さの表面層2が形成されている。また、当該表面層2の成分は、少なくともCが10~95原子%に、第4族元素~第6族元素が5~90原子%に制御されている。なお、表面層2の成分は、Cを30~95原子%に、第4族元素~第6族元素を5~70原子%に制御することが好ましい。また、例えば前記した第4族元素としてはTiを、第5族元素としてはVを、第6族元素としてはCrを用いることができる。 In the current collector 10 manufactured through these steps, a surface layer 2 having a predetermined thickness is formed on an aluminum foil 1 as shown in FIG. Further, the components of the surface layer 2 are controlled so that at least C is 10 to 95 atomic% and Group 4 to Group 6 elements are 5 to 90 atomic%. The components of the surface layer 2 are preferably controlled so that C is 30 to 95 atomic% and Group 4 to Group 6 elements are 5 to 70 atomic%. Further, for example, Ti can be used as the Group 4 element, V can be used as the Group 5 element, and Cr can be used as the Group 6 element.
 また、表面層2の厚さは、充分な耐食性を発揮させる観点から10nm以上、生産性を向上させる観点から1μm以下としている。表面層2の厚さは、より好ましくは、15nm~0.5μmである。 The thickness of the surface layer 2 is 10 nm or more from the viewpoint of exhibiting sufficient corrosion resistance, and 1 μm or less from the viewpoint of improving productivity. The thickness of the surface layer 2 is more preferably 15 nm to 0.5 μm.
(正極の製造方法)
 また、前記したアルミニウム箔製造工程と、表面層形成工程と、を行った後に、正極活物質層形成工程を行うことで、集電体10を備える正極100を製造することもできる。
(Production method of positive electrode)
Moreover, the positive electrode 100 provided with the electrical power collector 10 can also be manufactured by performing a positive electrode active material layer formation process after performing an above-described aluminum foil manufacturing process and a surface layer formation process.
(3)正極活物質層形成工程 
 本工程は、図2(c)に示すように、表面層2上に正極活物質層20を形成する工程である。本工程では、活物質を導電助剤とバインダとともに溶媒中で混合し、当該混合物を表面層2上に塗布し、乾燥して正極活物質層20を形成する。ここで、活物質としては例えばLiCoOを、導電助剤としては例えばアセチレンブラックを、バインダとしては例えばポリフッ化ビニリデンを、溶媒としては例えば1-メチルー2-ピロリドン等を用いることができ、これらの成分の配合比は特に限定されない。また、乾燥温度は、例えば100~150℃とする。なお、正極活物質層20の厚さは、二次電池の体積容量の観点から0.1~100μmとすることが好ましい。
(3) Positive electrode active material layer forming step
This step is a step of forming the positive electrode active material layer 20 on the surface layer 2 as shown in FIG. In this step, the active material is mixed with a conductive additive and a binder in a solvent, and the mixture is applied onto the surface layer 2 and dried to form the positive electrode active material layer 20. Here, for example, LiCoO 2 can be used as the active material, acetylene black can be used as the conductive auxiliary agent, polyvinylidene fluoride can be used as the binder, and 1-methyl-2-pyrrolidone can be used as the solvent. The compounding ratio of the components is not particularly limited. The drying temperature is, for example, 100 to 150 ° C. The thickness of the positive electrode active material layer 20 is preferably 0.1 to 100 μm from the viewpoint of the volume capacity of the secondary battery.
 これらの工程を経ることによって製造された正極100は、図2(c)に示すように、アルミニウム箔1と、アルミニウム箔1の片面に形成された表面層2と、表面層2上に形成された正極活物質層20と、を備えている。また、表面層2の成分は、少なくともCが10~95原子%に、第4族元素~第6族元素が5~90原子%に制御され、好ましくはCが30~95原子%に、第4族元素~第6族元素が5~70原子%に制御されている。また、表面層2の厚さは、10nm~1μmに制御されている。 The positive electrode 100 manufactured through these steps is formed on the aluminum foil 1, the surface layer 2 formed on one surface of the aluminum foil 1, and the surface layer 2, as shown in FIG. A positive electrode active material layer 20. Further, the components of the surface layer 2 are controlled so that at least C is 10 to 95 atomic%, Group 4 to Group 6 elements are controlled to 5 to 90 atomic%, preferably C is 30 to 95 atomic%. Group 4 to Group 6 elements are controlled to 5 to 70 atomic%. The thickness of the surface layer 2 is controlled to 10 nm to 1 μm.
 従って、アルミニウム箔1の表面に、酸素との結合力の強い第4族元素~第6族元素のうちのいずれか一種または二種以上を所定量含有する表面層2が形成されているため、アルミニウム箔1の電解液への溶出を防止し、集電体10と正極活物質層20の界面における密着性を向上させることができる。また、充放電に関与できる活物質の量を維持することができ、従来よりも二次電池の電池寿命を向上させることができる。 Therefore, the surface layer 2 containing a predetermined amount of any one or two or more of Group 4 to Group 6 elements having strong binding force with oxygen is formed on the surface of the aluminum foil 1. The elution of the aluminum foil 1 into the electrolytic solution can be prevented, and the adhesion at the interface between the current collector 10 and the positive electrode active material layer 20 can be improved. In addition, the amount of active material that can participate in charging / discharging can be maintained, and the battery life of the secondary battery can be improved as compared with the prior art.
 また、表面層2に含有される第4族元素~第6族元素のうちのいずれか一種または二種以上を5~70原子%に制御することで、アルミニウム箔1表面の濡れ性低下を抑えることが可能となるため、正極作製時における活物質含有スラリー塗工の際に、均一な塗工が可能となる。さらに、表面層2の厚さを所定範囲内とすることで、アルミニウム箔1の耐食性を高めることができる。 Further, by controlling any one or two or more of Group 4 to Group 6 elements contained in the surface layer 2 to 5 to 70 atomic%, a decrease in wettability on the surface of the aluminum foil 1 is suppressed. Therefore, uniform coating can be performed during the application of the active material-containing slurry during the production of the positive electrode. Furthermore, the corrosion resistance of the aluminum foil 1 can be improved by setting the thickness of the surface layer 2 within a predetermined range.
(リチウムイオン二次電池)
 実施形態に係る正極100は、当該正極100と図示しない負極との間にセパレータを挟んでこれらを巻回し、電解液が充填された円筒状・角型・ラミネート型ケースに密閉収納することで、二次電池を構成することができる。以下、正極100以外の二次電池の構成について、簡単に説明する。
(Lithium ion secondary battery)
In the positive electrode 100 according to the embodiment, a separator is sandwiched between the positive electrode 100 and a negative electrode (not shown), and these are wound and hermetically stored in a cylindrical, square, and laminate type case filled with an electrolyte solution. A secondary battery can be constituted. Hereinafter, the configuration of the secondary battery other than the positive electrode 100 will be briefly described.
 負極は、正極100と同様に、二次電池を構成する主要部材の一つであり、対となる正極100とともに電極として機能するものである。負極は、電解液を介してリチウムイオンを吸蔵あるいは放出することで、二次電池の充放電反応を担っている。また負極は、アルミニウム箔または銅箔からなる集電体と、集電体の上に形成された、グラファイト、Si、Ge、Ag、In、Sn、チタン酸リチウム等からなる負極活物質層とで構成されている。 The negative electrode, like the positive electrode 100, is one of the main members constituting the secondary battery, and functions as an electrode together with the positive electrode 100 as a pair. The negative electrode is responsible for the charge / discharge reaction of the secondary battery by inserting or extracting lithium ions through the electrolytic solution. The negative electrode includes a current collector made of aluminum foil or copper foil, and a negative electrode active material layer made of graphite, Si, Ge, Ag, In, Sn, lithium titanate, etc., formed on the current collector. It is configured.
 セパレータは、正極100と負極との間に挟んで配置される多孔膜であり、内部短絡を防止するとともに、電解液を保持するための部材である。セパレータは、二次電池内部で微小短絡が起きて温度が上昇すると、多孔膜を構成する各微小孔を閉じて内部のインピーダンスを増大させることで、リチウムイオンが運ぶ電荷の移動を阻止する機能を有している。セパレータとしては、リチウムイオンが移動できる多孔質の絶縁膜であって、例えば、ポリプロピレンやポリオレフィン系の多孔膜を用いることができる。 The separator is a porous film disposed between the positive electrode 100 and the negative electrode, and is a member for preventing an internal short circuit and holding an electrolytic solution. When the temperature rises due to the occurrence of a short circuit inside the secondary battery, the separator closes each micropore that forms the porous membrane and increases the internal impedance, thereby preventing the movement of the charge carried by lithium ions. Have. As the separator, a porous insulating film capable of moving lithium ions, for example, a polypropylene or polyolefin based porous film can be used.
 電解液は、二次電池のケース内に充填される液体であり、リチウムイオンが電荷を運ぶための媒質である。二次電池では、リチウムイオンの量が多ければ多いほど電荷を多く取り出せるため、電解液にもリチウムの溶液を用いることが好ましい。すなわち、電解液としては、エチレンカーボネート、プロピレンカーボネート、等の環状エステルにジメチルカーボネート等の低級鎖状炭酸エステルと、フッ化リン酸リチウム塩を加えた混合有機溶液を用いることが好ましい。 Electrolytic solution is a liquid filled in the case of the secondary battery, and is a medium for the lithium ions to carry electric charges. In the secondary battery, since the more the amount of lithium ions is, the more charge can be taken out, it is preferable to use a lithium solution as the electrolytic solution. That is, as the electrolytic solution, it is preferable to use a mixed organic solution obtained by adding a lower chain carbonate such as dimethyl carbonate and a lithium fluorophosphate salt to a cyclic ester such as ethylene carbonate or propylene carbonate.
(リチウムイオン二次電池の動作)
 以下、実施形態に係る正極100を備える二次電池の充放電時における動作について、正極100が奏する作用を踏まえながら説明する。
(Operation of lithium ion secondary battery)
Hereinafter, the operation at the time of charging / discharging of the secondary battery including the positive electrode 100 according to the embodiment will be described based on the effect of the positive electrode 100.
 二次電池が充電を行なうと、正極100側のリチウムイオンが電解液を介して負極側に移動し、負極活物質層に吸蔵される。一方、二次電池が放電を行なうと、負極活物質層に吸蔵されたリチウムイオンが放出され、電解液を介して再度正極100側に吸蔵される。そしてこのような充放電を繰り返すことにより、従来であれば、正極100のアルミニウム箔1が電解液に溶出するおそれがある。しかし、実施形態に係る正極100を備える二次電池は、正極100のアルミニウム箔1と正極活物質層20との間に表面層2が形成されているため、アルミニウム箔1の電解液への溶出が防止される。 When the secondary battery is charged, lithium ions on the positive electrode 100 side move to the negative electrode side through the electrolytic solution and are occluded in the negative electrode active material layer. On the other hand, when the secondary battery discharges, lithium ions occluded in the negative electrode active material layer are released and are occluded again on the positive electrode 100 side through the electrolytic solution. And by repeating such charging / discharging, conventionally, there is a possibility that the aluminum foil 1 of the positive electrode 100 may be eluted into the electrolytic solution. However, in the secondary battery including the positive electrode 100 according to the embodiment, since the surface layer 2 is formed between the aluminum foil 1 of the positive electrode 100 and the positive electrode active material layer 20, the elution of the aluminum foil 1 into the electrolytic solution is performed. Is prevented.
 また、従来であれば、アルミニウム箔1の表面に形成された酸化皮膜によって表面層2が剥離するおそれがある。しかし、実施形態における二次電池は、表面層2に酸素との結合力の強い第4族元素~第6族元素のうちのいずれか一種が含有されることで、アルミニウム箔1の電解液への溶出が防止され、集電体10と正極活物質層20の界面における密着性が向上する。従って、充放電に関与できる活物質の量を維持することができ、従来よりも二次電池の電池寿命を向上させることができる。 Further, conventionally, the surface layer 2 may be peeled off by an oxide film formed on the surface of the aluminum foil 1. However, in the secondary battery according to the embodiment, the surface layer 2 contains any one of the Group 4 to Group 6 elements having a strong binding force with oxygen, so that the electrolytic solution of the aluminum foil 1 can be obtained. Elution is prevented, and adhesion at the interface between the current collector 10 and the positive electrode active material layer 20 is improved. Therefore, the amount of the active material that can participate in charging / discharging can be maintained, and the battery life of the secondary battery can be improved as compared with the prior art.
[第1実施例]
 次に、本発明の要件を満たす正極と本発明の要件を満たさない正極について、集電体と正極活物質層の界面における密着力を比較した実施例を示す。まず、本実施例で用いた正極について、製造工程に沿って説明する。なお、本実施例における比較例4は、前記した特許文献1に記載された、導電材料で形成された集電体にカーボンの中間膜を形成した正極を想定したものである。
[First embodiment]
Next, an example is shown in which the adhesion strength at the interface between the current collector and the positive electrode active material layer is compared for the positive electrode that satisfies the requirements of the present invention and the positive electrode that does not satisfy the requirements of the present invention. First, the positive electrode used in this example will be described along the manufacturing process. In addition, Comparative Example 4 in this example assumes a positive electrode described in Patent Document 1 described above, in which a carbon intermediate film is formed on a current collector formed of a conductive material.
(1)アルミニウム箔製造工程 
 アルミニウム箔製造工程は、実施例1~12と比較例1~10とで同様の処理を行った。すなわち、アルミニウム板を圧延して縦50mm×横50mm×厚さ15μmのアルミニウム箔を製造した。
(1) Aluminum foil manufacturing process
In the aluminum foil manufacturing process, the same treatment was performed in Examples 1 to 12 and Comparative Examples 1 to 10. That is, the aluminum plate was rolled to produce an aluminum foil having a length of 50 mm × width of 50 mm × thickness of 15 μm.
(2)表面層形成工程 
 表面層形成工程は、実施例1~12と比較例1~10とで異なる処理を施した。すなわち、実施例1~12および比較例5~7,9~10では、アルミニウム箔上にスパッタリングによってCと、第4族元素~第6族元素のうちのいずれか一種からなる表面層を形成した。ここで、第4族元素としては、Tiを、第5族元素としてはVを、第6族元素としてはCrを用いた。一方、比較例1~3では、アルミニウム箔上にスパッタリングによってTi、V、Crのいずれか一種のみからなる表面層を形成した。また、比較例4では、アルミニウム箔上にスパッタリングによってCのみからなる表面層を形成した。また、比較例8では、アルミニウム箔上にコーティング(表面処理)を施さなかった。なお、表面層の厚さはそれぞれ成膜時間を変えることにより種々に変化させた。また、表面層の形態は、全体が結晶性の金属または金属炭化物と非晶質炭素との混合物になっている形態のものとした。
(2) Surface layer forming process
In the surface layer forming step, different treatments were performed in Examples 1 to 12 and Comparative Examples 1 to 10. That is, in Examples 1 to 12 and Comparative Examples 5 to 7 and 9 to 10, a surface layer made of C and any one of Group 4 to Group 6 elements was formed on the aluminum foil by sputtering. . Here, Ti was used as the Group 4 element, V was used as the Group 5 element, and Cr was used as the Group 6 element. On the other hand, in Comparative Examples 1 to 3, a surface layer made of only one of Ti, V, and Cr was formed on the aluminum foil by sputtering. Moreover, in the comparative example 4, the surface layer which consists only of C was formed on aluminum foil by sputtering. In Comparative Example 8, no coating (surface treatment) was applied on the aluminum foil. The thickness of the surface layer was changed variously by changing the film formation time. The form of the surface layer was such that the whole was a mixture of crystalline metal or metal carbide and amorphous carbon.
 なお、本実施例では、表面層に第4族元素~第6族元素のうちのいずれか一種のみを所定量含有させた例を示しているが、表面層に第4族元素~第6族元素を所定量含有させる目的は、前記したように、酸化皮膜と表面層との密着を助ける第4族元素~第6族元素の含有量を増加させるとともに、酸化皮膜と表面層との密着を妨げるCの含有量を減少させることにある。従って、表面層に第4族元素~第6族元素のうちの二種を含有させた場合や、第4族元素~第6族元素のうちの二種以上を含有させた場合であっても、表面層中におけるCの含有量の量に規制することができれば、表面層に第4族元素~第6族元素のうちのいずれか一種のみを含有させた場合と同様の効果を奏する。 In this embodiment, an example is shown in which the surface layer contains only a predetermined amount of any one of Group 4 elements to Group 6 elements. However, the surface layer includes Group 4 elements to Group 6 elements. The purpose of adding a predetermined amount of the element is to increase the content of the Group 4 to Group 6 elements that help the adhesion between the oxide film and the surface layer, as described above, and to improve the adhesion between the oxide film and the surface layer. It is to reduce the content of C to be hindered. Accordingly, even when the surface layer contains two kinds of elements of Group 4 to Group 6 or when two or more kinds of elements of Group 4 to Group 6 are contained. If the amount of C in the surface layer can be regulated, the same effect as when only one of the Group 4 to Group 6 elements is contained in the surface layer can be obtained.
 スパッタリングの条件としては、スパッタリング装置のチャンバ内にアルミニウム箔、Cターゲット(φ100mm×厚さ5mm)、Tiターゲット・Vターゲット・Crターゲットのうちのいずれか一種(φ100mm×厚さ5mm)、を収容し、内部圧力を1×10-3Pa以下としてスパッタリングガス(Arガス)を導入し、成膜圧力を0.26Paに維持しながらCターゲットおよびTiターゲット・Vターゲット・Crターゲットの表面をスパッタリングした。また、スパッタリングパワーは、1.5kWとした。 As sputtering conditions, an aluminum foil, a C target (φ100 mm × thickness 5 mm), a Ti target, a V target, and a Cr target (φ100 mm × thickness 5 mm) are accommodated in the chamber of the sputtering apparatus. Then, sputtering gas (Ar gas) was introduced at an internal pressure of 1 × 10 −3 Pa or less, and the surfaces of the C target, Ti target, V target, and Cr target were sputtered while maintaining the film forming pressure at 0.26 Pa. The sputtering power was 1.5 kW.
(3)正極活物質層形成工程 
 正極活物質層形成工程は、実施例1~12と比較例1~10とで同様の処理を行った。すなわち、実施例1~12と比較例1~10に係る集電体の表面層上に、正極活物質層を形成した。具体的には、活物質としてLiCoOを、導電助剤としてアセチレンブラックを、バインダとしてポリフッ化ビニリデンを、用い、これらを溶媒である1-メチル-2-ピロリドンと混合してペースト状にして表面層上に均一に塗布し、120℃で乾燥した。
(3) Positive electrode active material layer forming step
In the positive electrode active material layer forming step, the same treatment was performed in Examples 1 to 12 and Comparative Examples 1 to 10. That is, the positive electrode active material layer was formed on the surface layer of the current collectors according to Examples 1 to 12 and Comparative Examples 1 to 10. Specifically, LiCoO 2 is used as an active material, acetylene black is used as a conductive additive, polyvinylidene fluoride is used as a binder, and these are mixed with 1-methyl-2-pyrrolidone as a solvent to form a paste. It was uniformly coated on the layer and dried at 120 ° C.
(4)表面層の組成の測定 
 前記した表面層形成工程の直後に、表面層の組成をAESによって測定した。 
(4) Measurement of surface layer composition
Immediately after the surface layer forming step described above, the composition of the surface layer was measured by AES.
(5)密着力の測定および評価 
 前記した正極活物質層形成工程の直後に、正極活物質層の集電体に対する密着力の大きさをSAICAS(Surface and Interfacial CuttingAnalysis System:サイカス)法によって測定した。ここで、SAICAS法とは、鋭利な切刃を用いて試料の基材と被着体の界面に沿って切削を行うことで、基材と被着体との密着力を測定する方法のことをいう。
(5) Measurement and evaluation of adhesion
Immediately after the positive electrode active material layer forming step, the magnitude of the adhesion of the positive electrode active material layer to the current collector was measured by a SAICAS (Surface and Interface Cutting Analysis System) method. Here, the SAICAS method is a method of measuring the adhesion force between the substrate and the adherend by cutting along the interface between the sample substrate and the adherend using a sharp cutting edge. Say.
 本実施例では、「ダイプラ・ウィンテス社製 SAICAS DN-20」を用いて、集電体と正極活物質層の界面に沿って切削を行い、密着力を測定した。そして、密着力が0.20kN/m以上のものを合格(表中に「○」と表記)と評価し、0.20kN/m未満のものを不合格(表中に「×」と表記)と評価した。なお、評価の基準とした密着力の値(0.20kN/m)は、活物質層の剥離を防ぐとともにアルミニウム箔の電解液への溶出を防止し、電池の寿命を延長することができる基準として、実験的に求めた値である。  In this example, cutting was performed along the interface between the current collector and the positive electrode active material layer using “SAICAS DN-20 manufactured by Daipura Wintes Co., Ltd.”, and the adhesion was measured. Those having an adhesion strength of 0.20 kN / m or more were evaluated as acceptable (indicated as “◯” in the table), and those with less than 0.20 kN / m were rejected (indicated as “x” in the table). It was evaluated. In addition, the value (0.20 kN / m) of the adhesion strength used as an evaluation standard is a standard that can prevent the active material layer from peeling and prevent the aluminum foil from eluting into the electrolyte, thereby extending the life of the battery. Is a value obtained experimentally.
 実施例と比較例における表面層の組成と活物質層の密着力との関係を表1に示す。なお、以下に示す表中における「M[原子%]」は、第4元素~第6元素の量を示している。  Table 1 shows the relationship between the composition of the surface layer and the adhesion of the active material layer in Examples and Comparative Examples. In the table below, “M [atomic%]” indicates the amount of the fourth to sixth elements.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~12は、表面層に含有されるCと、Ti,V,Cr(第4族元素~第6族元素)のいずれか一つの量が本発明の範囲内であるため、密着力は合格となることがわかる。一方、比較例1~3は、Cが全く含有されていないため、後述する濡れ性が悪い影響か、密着力が0kN/mであることがわかる。ここで、密着力が0kN/mの状態とは、SAICAS法による密着力測定の際に正極活物質層が容易に剥離し、密着力が測定できない状態を指す。そして、比較例4は、表面層がCのみからなるため、Al集電体と表面層の密着性が悪く、容易に剥離が起こることがわかる。 As shown in Table 1, in Examples 1-12, the amount of any one of C and Ti, V, Cr (Group 4 to Group 6) contained in the surface layer is within the scope of the present invention. Since it is inside, it turns out that contact | adhesion power passes. On the other hand, since Comparative Examples 1 to 3 do not contain C at all, it can be seen that the wettability described later has an adverse effect or the adhesion is 0 kN / m. Here, the state where the adhesion force is 0 kN / m refers to a state where the positive electrode active material layer easily peels off when the adhesion force is measured by the SAICAS method, and the adhesion force cannot be measured. And since the surface layer consists only of C in the comparative example 4, it turns out that the adhesiveness of Al collector and a surface layer is bad, and peeling occurs easily.
 また、図3を参照すると、表面層におけるTi、V、Cr含有量と密着力とが相関関係にあることもわかる。すなわち、図3のグラフによれば、密着力を0.20kN/mとするには、Ti、V、Crの含有量を概ね5~90原子%とすればよいことがわかる。従って、本実施例により、本発明の要件を満たす正極は、本発明の要件を満たさない正極と比較して正極活物質層の集電体に対する密着力が大きい、すなわち電池寿命が高いことが証明された。 Referring to FIG. 3, it can also be seen that the Ti, V, and Cr contents in the surface layer and the adhesion are in a correlation. That is, according to the graph of FIG. 3, it can be seen that the content of Ti, V, and Cr should be approximately 5 to 90 atomic% in order to achieve an adhesion of 0.20 kN / m. Therefore, according to this example, it is proved that the positive electrode satisfying the requirements of the present invention has higher adhesion to the current collector of the positive electrode active material layer than the positive electrode not satisfying the requirements of the present invention, that is, the battery life is high. It was done.
[第2実施例]
 次に、本発明に係る集電体および正極のさらに望ましい形態について調べるため、集電体表面の濡れ性を比較した実施例を示す。なお、この特性は、本発明としてはあくまで望ましい特性に過ぎないため、この特性を満たさない場合でも、第1実施例の密着力を満たしているものは、本発明の最低限の目的は達するものである。本実施例では、前記した第1実施例と同様の製造工程によって製造された実施例1~12と比較例1~3、5~8を用いて以下のような測定および評価を行った。
[Second Embodiment]
Next, in order to investigate further desirable forms of the current collector and the positive electrode according to the present invention, examples in which the wettability of the current collector surface is compared will be shown. Note that this characteristic is only a desirable characteristic for the present invention. Therefore, even if this characteristic is not satisfied, the minimum object of the present invention can be achieved if the adhesion force of the first embodiment is satisfied. It is. In this example, the following measurements and evaluations were performed using Examples 1 to 12 and Comparative Examples 1 to 3 and 5 to 8 manufactured by the same manufacturing process as the first example.
(1)表面層の組成の測定 
 前記した表面層形成工程の直後に、表面層の組成をAESによって測定した。 
(1) Measurement of surface layer composition
Immediately after the surface layer forming step described above, the composition of the surface layer was measured by AES.
(2)水接触角の測定および評価 
 前記した表面層形成工程の直後に、集電体表面の水濡れ性を評価するために水接触角測定を行った。接触角とは、液体を固体表面に滴下した際に形成される液滴表面における、固体との接触部における接線と固体表面のなす角を意味しており、固体表面上での液体の拡がり易さを表す指標となる。
(2) Measurement and evaluation of water contact angle
Immediately after the surface layer forming step described above, water contact angle measurement was performed in order to evaluate the water wettability of the current collector surface. The contact angle means the angle between the solid surface and the tangent line at the contact point with the solid on the surface of the liquid droplet that is formed when the liquid is dropped on the solid surface, and it is easy for the liquid to spread on the solid surface. It becomes an index that expresses.
 本実施例では、「協和界面工業製接触角計CA-A型」を用いて、各集電体のアルミニウム箔表面にイオン交換水を2μL滴下し、30秒経過した後の水接触角を測定した。そして、水接触角が、コーティング(表面処理)を施していない比較例8に係るアルミニウム箔よりも小さい(濡れ性が良好)ものを合格(表中に「○」と表記)と評価し、比較例8に係るアルミニウムAl箔よりも大きい(濡れ性が不良)ものを不合格(表中に「△」と表記)と評価した。 In this example, using a “contact angle meter CA-A type manufactured by Kyowa Interface Industry”, 2 μL of ion-exchanged water was dropped on the surface of the aluminum foil of each current collector, and the water contact angle after 30 seconds had been measured. did. And, the water contact angle is smaller than the aluminum foil according to Comparative Example 8 that is not coated (surface treatment) (wetability is good) and evaluated as a pass (indicated as “◯” in the table). Those larger than the aluminum Al foil according to Example 8 (having poor wettability) were evaluated as rejected (denoted as “Δ” in the table).
 実施例と比較例における表面層の組成と濡れ性との関係を表2に示す。 Table 2 shows the relationship between the composition of the surface layer and the wettability in Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例1~12は、表面層に含有されるCと、Ti、V、Cr(第4族元素~第6族元素)のいずれか一つの量が5~70原子%の範囲内であるため、水接触角は好適な範囲に収まることがわかる。一方、比較例1~3、5~8は、Ti、V、Crの量が5~70原子%の範囲から外れている、またはコーティングがないため、集電体表面の濡れ性が悪いことがわかる。 As shown in Table 2, in Examples 1-12, the amount of any one of C and Ti, V, Cr (Group 4 to Group 6) contained in the surface layer is 5 to 70 atoms. It can be seen that the water contact angle falls within a suitable range because it is within the range of%. On the other hand, in Comparative Examples 1 to 3, and 5 to 8, the amount of Ti, V, and Cr is out of the range of 5 to 70 atomic% or there is no coating, so that the wettability of the current collector surface is poor. Recognize.
 また、図4を参照すると、表面層におけるTi、V、Cr含有量と集電体表面の濡れ性(水接触角)とが相関関係にあることがわかる。従って、水接触角を未処理箔よりも良好にするためには、Ti、V、Crの含有量を概ね5~70原子%とすればよいことがわかる。 Referring to FIG. 4, it can be seen that the contents of Ti, V, Cr in the surface layer and the wettability (water contact angle) of the current collector surface are in a correlation. Therefore, it can be seen that in order to make the water contact angle better than that of the untreated foil, the content of Ti, V, and Cr should be about 5 to 70 atomic%.
[第3実施例]
 次に、本発明に係る集電体および正極のさらに望ましい形態について調べるため、耐食性を比較した実施例を示す。なお、この特性は本発明としてはあくまで望ましい特性に過ぎないため、この特性を満たさない場合でも、第1実施例の密着力を満たしているものは、本発明の最低限の目的は達するものである。本実施例では、前記した第1実施例と同様の製造工程によって製造された実施例3~5、8、9、13と比較例8~10を用いて以下のような処理を行った。
[Third embodiment]
Next, in order to investigate further desirable forms of the current collector and the positive electrode according to the present invention, examples in which corrosion resistance is compared are shown. Since this characteristic is only a desirable characteristic for the present invention, even if this characteristic is not satisfied, the one satisfying the adhesion force of the first embodiment achieves the minimum object of the present invention. is there. In this example, the following processes were performed using Examples 3 to 5, 8, 9, and 13 and Comparative Examples 8 to 10 manufactured by the same manufacturing process as that of the first example.
(1)表面層の組成の測定 
 前記した表面層形成工程の直後に、表面層の組成をAESによって測定した。 
(1) Measurement of surface layer composition
Immediately after the surface layer forming step described above, the composition of the surface layer was measured by AES.
(2)耐食性の評価 
 前記した方法で作製した正極を用いて電池セルを作製し、充放電試験を実施した後、電池セルを分解して得られた電極の耐食性を評価するとともに、TEM(透過型電子顕微鏡)を用いて活物質層と集電体の界面の観察を行った。
(2) Evaluation of corrosion resistance
After producing a battery cell using the positive electrode produced by the above-described method and conducting a charge / discharge test, the corrosion resistance of the electrode obtained by disassembling the battery cell is evaluated, and a TEM (transmission electron microscope) is used. The interface between the active material layer and the current collector was observed.
 実施例と比較例におけるコーティング膜厚(表面層の厚さ)ごとの耐食性の評価結果を表3に示す。  Table 3 shows the evaluation results of corrosion resistance for each coating film thickness (surface layer thickness) in Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、実施例3~5、8、9、13は、表面層の厚さが10nm~1μmの範囲内であるため、良好な耐食性を示していることがわかる。一方、比較例8~10は、表面層の厚さが10nm~1μmの範囲から外れている、またはコーティングがないため、耐食性が不良であることがわかる。 As shown in Table 3, it can be seen that Examples 3 to 5, 8, 9, and 13 have good corrosion resistance because the thickness of the surface layer is in the range of 10 nm to 1 μm. On the other hand, it can be seen that Comparative Examples 8 to 10 have poor corrosion resistance because the thickness of the surface layer is out of the range of 10 nm to 1 μm or there is no coating.
 また、図5、6を参照すると、実施例3,13は、表面層の厚さが10nm~1μmの範囲内であるため、充放電試験後に箔の表面が腐食していないことがわかる。一方、図7を参照すると、比較例9は、表面層の厚さが10nm~1μmの範囲内でないため、充放電試験後に箔の表面が腐食していることがわかる。 5 and 6, in Examples 3 and 13, since the thickness of the surface layer is in the range of 10 nm to 1 μm, it can be seen that the surface of the foil is not corroded after the charge / discharge test. On the other hand, referring to FIG. 7, it can be seen that in Comparative Example 9, the surface of the foil is corroded after the charge / discharge test because the thickness of the surface layer is not in the range of 10 nm to 1 μm.
 以上の結果から、集電体および正極において、アルミニウム箔の表面に第4族元素~第6族元素のうちのいずれか一種または二種以上を5~90原子%含有するとともに、Cを10~95原子%含有する表面層を形成することで、集電体と活物質層の界面における密着性を向上させることができることがわかる。 From the above results, in the current collector and the positive electrode, the surface of the aluminum foil contains 5 to 90 atomic% of any one or more of Group 4 to Group 6 elements and 10 to 10% of C. It can be seen that the adhesion at the interface between the current collector and the active material layer can be improved by forming the surface layer containing 95 atomic%.
 また、さらに、集電体および正極において、アルミニウム箔の表面に第4族元素~第6族元素のうちのいずれか一種または二種以上を5~70原子%含有するとともに、Cを30~95原子%含有する表面層を形成することで、濡れ性を向上させることができることがわかる。 Further, in the current collector and the positive electrode, the surface of the aluminum foil contains 5 to 70 atomic% of any one or more of Group 4 to Group 6 elements and 30 to 95 C. It can be seen that wettability can be improved by forming a surface layer containing atomic%.
 また、さらに、集電体および正極において、アルミニウム箔の表面層の厚さを10nm~1μmとすることで、耐食性を向上させることができることがわかる。  Furthermore, it can be seen that, in the current collector and the positive electrode, the corrosion resistance can be improved by setting the thickness of the surface layer of the aluminum foil to 10 nm to 1 μm.
 以上、本発明に係るリチウムイオン二次電池用正極集電体、リチウムイオン二次電池用正極およびリチウムイオン二次電池用正極集電体の製造方法について、発明を実施するための形態および実施例により具体的に説明したが、本発明の趣旨はこれらの記載に限定されるものではなく、特許請求の範囲の記載に基づいて広く解釈されなければならない。また、これらの記載に基づいて種々変更、改変等したものも本発明の趣旨に含まれることはいうまでもない。 As mentioned above, about the manufacturing method of the positive electrode collector for lithium ion secondary batteries which concerns on this invention, the positive electrode for lithium ion secondary batteries, and the positive electrode collector for lithium ion secondary batteries, form and Example for inventing However, the gist of the present invention is not limited to these descriptions and should be broadly interpreted based on the description of the scope of claims. Needless to say, various changes and modifications based on these descriptions are also included in the spirit of the present invention.
 本出願は、2010年2月25日出願の日本特許出願(特願2010-039629)、2010年12月2日出願の日本特許出願(特願2010-269224)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed on February 25, 2010 (Japanese Patent Application No. 2010-039629) and a Japanese patent application filed on December 2, 2010 (Japanese Patent Application No. 2010-269224). Incorporated herein by reference.
 本発明は、電気自動車、ハイブリッド自動車等に搭載されるリチウムイオン二次電池に有用である。 The present invention is useful for lithium ion secondary batteries mounted on electric vehicles, hybrid vehicles, and the like.
1 アルミニウム箔
2 表面層
10 リチウムイオン二次電池用正極集電体(集電体)
20 正極活物質層
100 リチウムイオン二次電池用正極(正極)
DESCRIPTION OF SYMBOLS 1 Aluminum foil 2 Surface layer 10 Positive electrode collector (current collector) for lithium ion secondary batteries
20 Positive electrode active material layer 100 Positive electrode for lithium ion secondary battery (positive electrode)

Claims (5)

  1.  純アルミニウムまたはアルミニウム合金からなるアルミニウム箔と、前記アルミニウム箔の片面または両面に形成された表面層と、を備えるリチウムイオン二次電池用正極集電体であって、
     前記表面層は、Cを10~95原子%含有し、その他に第4族元素~第6族元素のうちのいずれか一種または二種以上を5~90原子%含有することを特徴とするリチウムイオン二次電池用正極集電体。
    A positive electrode current collector for a lithium ion secondary battery, comprising: an aluminum foil made of pure aluminum or an aluminum alloy; and a surface layer formed on one or both surfaces of the aluminum foil,
    The surface layer contains 10 to 95 atomic percent of C, and further contains 5 to 90 atomic percent of any one or more of Group 4 to Group 6 elements. A positive electrode current collector for an ion secondary battery.
  2.  前記表面層は、Cを30~95原子%含有し、その他に第4族元素~第6族元素のうちのいずれか一種または二種以上を5~70原子%含有することを特徴とする請求項1に記載のリチウムイオン二次電池用正極集電体。 The surface layer contains 30 to 95 atomic percent of C, and additionally contains 5 to 70 atomic percent of any one or more of Group 4 to Group 6 elements. Item 2. A positive electrode current collector for a lithium ion secondary battery according to Item 1.
  3.  前記表面層は、厚さが10nm~1μmであることを特徴とする請求項1または請求項2に記載のリチウムイオン二次電池用正極集電体。 3. The positive electrode current collector for a lithium ion secondary battery according to claim 1, wherein the surface layer has a thickness of 10 nm to 1 μm.
  4.  請求項1から請求項3のいずれか一項に記載のリチウムイオン二次電池用正極集電体と、 
     前記リチウムイオン二次電池用正極集電体の表面層を覆う正極活物質層と、 
    を備えることを特徴とするリチウムイオン二次電池用正極。
    The positive electrode current collector for a lithium ion secondary battery according to any one of claims 1 to 3,
    A positive electrode active material layer covering a surface layer of the positive electrode current collector for the lithium ion secondary battery;
    A positive electrode for a lithium ion secondary battery.
  5.  請求項1から請求項3のいずれか一項に記載のリチウムイオン二次電池用正極集電体の製造方法であって、 
     気相成膜法によって、アルミニウム箔の表面に、Cを10~95原子%含有し、その他に第4族元素~第6族元素のうちのいずれか一種または二種以上を5~90原子%含有する表面層を堆積させる表面層形成工程を行うことを特徴とするリチウムイオン二次電池用正極集電体の製造方法。
    It is a manufacturing method of the positive electrode electrical power collector for lithium ion secondary batteries as described in any one of Claims 1-3,
    By vapor phase film formation, the surface of the aluminum foil contains 10 to 95 atomic% of C, and in addition, any one or more of group 4 to group 6 elements is 5 to 90 atomic%. The manufacturing method of the positive electrode electrical power collector for lithium ion secondary batteries characterized by performing the surface layer formation process which deposits the surface layer to contain.
PCT/JP2011/054034 2010-02-25 2011-02-23 Positive electrode current collector for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and process for production of positive electrode current collector for lithium ion secondary battery WO2011105451A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180010391.XA CN102763253B (en) 2010-02-25 2011-02-23 Lithium ion secondary battery anode collector body, the manufacture method of lithium ion secondary battery anode and lithium ion secondary battery anode collector body

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010039629 2010-02-25
JP2010-039629 2010-02-25
JP2010-269224 2010-12-02
JP2010269224A JP5097260B2 (en) 2010-02-25 2010-12-02 Method for producing positive electrode for lithium ion secondary battery and positive electrode current collector for lithium ion secondary battery

Publications (1)

Publication Number Publication Date
WO2011105451A1 true WO2011105451A1 (en) 2011-09-01

Family

ID=44506853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054034 WO2011105451A1 (en) 2010-02-25 2011-02-23 Positive electrode current collector for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and process for production of positive electrode current collector for lithium ion secondary battery

Country Status (3)

Country Link
JP (1) JP5097260B2 (en)
CN (1) CN102763253B (en)
WO (1) WO2011105451A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101691757B1 (en) * 2012-09-26 2016-12-30 쇼와 덴코 가부시키가이샤 Negative electrode for secondary batteries, and secondary battery
CN105765010B (en) * 2013-11-27 2019-07-05 捷恩智株式会社 Photo-hardening ink-jet ink, cured film, insulating film, electromagnetic wave shielding material, component and secondary cell
CN108649192B (en) * 2018-04-08 2019-08-16 河南大学 A method of the uniform decorative layer of electrode material surface is prepared based on contact angle test

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164466A (en) * 1998-11-26 2000-06-16 Toyota Motor Corp Manufacture of electrode used for capacitor or cell
JP2003109582A (en) * 2001-09-27 2003-04-11 Hitachi Metals Ltd Laminated strip material, laminated strip material for battery using the same, and manufacturing method of the same
JP2007265852A (en) * 2006-03-29 2007-10-11 Matsushita Electric Ind Co Ltd Compound current collector and its manufacturing method
JP2009187772A (en) * 2008-02-06 2009-08-20 Toyota Motor Corp Manufacturing method of electrode foil for nonaqueous electrolyte battery, and manufacturing method of electrode plate for nonaqueous electrolyte battery
JP2010021075A (en) * 2008-07-11 2010-01-28 Toyota Motor Corp Electrode foil for battery, positive electrode plate, battery, vehicle, battery-equipped apparatus, method of manufacturing electrode foil for battery, and method of manufacturing positive electrode plate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7521153B2 (en) * 2004-03-16 2009-04-21 Toyota Motor Engineering & Manufacturing North America, Inc. Corrosion protection using protected electron collector
JP5239311B2 (en) * 2006-11-27 2013-07-17 株式会社デンソー Current collector, electrode and power storage device
JP5145794B2 (en) * 2007-06-29 2013-02-20 株式会社デンソー Electrode manufacturing method
JP2010086866A (en) * 2008-10-01 2010-04-15 Toyota Motor Corp Electrode sheet and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164466A (en) * 1998-11-26 2000-06-16 Toyota Motor Corp Manufacture of electrode used for capacitor or cell
JP2003109582A (en) * 2001-09-27 2003-04-11 Hitachi Metals Ltd Laminated strip material, laminated strip material for battery using the same, and manufacturing method of the same
JP2007265852A (en) * 2006-03-29 2007-10-11 Matsushita Electric Ind Co Ltd Compound current collector and its manufacturing method
JP2009187772A (en) * 2008-02-06 2009-08-20 Toyota Motor Corp Manufacturing method of electrode foil for nonaqueous electrolyte battery, and manufacturing method of electrode plate for nonaqueous electrolyte battery
JP2010021075A (en) * 2008-07-11 2010-01-28 Toyota Motor Corp Electrode foil for battery, positive electrode plate, battery, vehicle, battery-equipped apparatus, method of manufacturing electrode foil for battery, and method of manufacturing positive electrode plate

Also Published As

Publication number Publication date
JP2011198743A (en) 2011-10-06
JP5097260B2 (en) 2012-12-12
CN102763253A (en) 2012-10-31
CN102763253B (en) 2016-02-17

Similar Documents

Publication Publication Date Title
JP5357565B2 (en) Negative electrode material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery
JP5595349B2 (en) Positive electrode current collector for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and method for producing positive electrode current collector for lithium ion secondary battery
JP4910297B2 (en) Negative electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the same
JP4986077B2 (en) Current collector foil for secondary battery and method for producing the same
WO2012115050A1 (en) Electrode foil, current collector, electrode, and energy storage element using same
WO2013099441A1 (en) Negative electrode active material for electrical device
JP2006114454A (en) Battery
JP2008077993A (en) Electrode and non-aqueous secondary battery
WO2012160866A1 (en) Negative electrode active material for electrical devices
JP5351618B2 (en) Negative electrode material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery
JP5181585B2 (en) Method for producing negative electrode for lithium secondary battery
JP5097260B2 (en) Method for producing positive electrode for lithium ion secondary battery and positive electrode current collector for lithium ion secondary battery
JP2013165250A (en) Collector and electrode, and power storage element using the same
JP3707617B2 (en) Negative electrode and battery using the same
JP5058381B1 (en) Current collector and electrode, and power storage device using the same
JP4929763B2 (en) Lithium secondary battery
EP3699315A1 (en) Metal strap for electrochemical element electrode comprising a material made of ti, c and h
WO2014003034A1 (en) Positive electrode for secondary batteries, secondary battery, and method for producing positive electrode for secondary batteries
JP5303057B2 (en) Current collector, electrode and secondary battery
WO2013122146A1 (en) Lithium secondary battery and electrolyte for lithium secondary battery
JP5330903B2 (en) Negative electrode material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery
JP2008053214A (en) Anode for lithium ion secondary battery, its manufacturing method, and lithium ion secondary battery
JP2014241259A (en) Current collector, method for manufacturing current collector, electrode, and secondary battery
KR20060067459A (en) Silicon containing multi-layered thin film electrodes for lithium secondary battery and preparation thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180010391.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11747411

Country of ref document: EP

Kind code of ref document: A1