WO2011105136A1 - 半導体レーザ装置及び光装置 - Google Patents

半導体レーザ装置及び光装置 Download PDF

Info

Publication number
WO2011105136A1
WO2011105136A1 PCT/JP2011/050955 JP2011050955W WO2011105136A1 WO 2011105136 A1 WO2011105136 A1 WO 2011105136A1 JP 2011050955 W JP2011050955 W JP 2011050955W WO 2011105136 A1 WO2011105136 A1 WO 2011105136A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor laser
laser element
electrode
terminal
package
Prior art date
Application number
PCT/JP2011/050955
Other languages
English (en)
French (fr)
Inventor
森 和思
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2011105136A1 publication Critical patent/WO2011105136A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/127Lasers; Multiple laser arrays
    • G11B7/1275Two or more lasers having different wavelengths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4043Edge-emitting structures with vertically stacked active layers
    • H01S5/405Two-dimensional arrays
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/0234Up-side down mountings, e.g. Flip-chip, epi-side down mountings or junction down mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0237Fixing laser chips on mounts by soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP

Definitions

  • the present invention relates to a semiconductor laser device and an optical device.
  • optical pickups for recording / reproducing BD Bru-ray Disc
  • DVD Digital Verstal Disc
  • CD Compact Disc
  • a three-wavelength semiconductor laser device in which three semiconductor laser elements capable of emitting laser light of three wavelengths of blue-violet, red, and infrared are arranged in one package (for example, (See Patent Documents 1 and 2).
  • the three semiconductor laser elements arranged in the three-wavelength semiconductor laser device are selected according to the type of the optical disc inserted into the optical disc device or the like, instead of emitting laser light of each wavelength simultaneously. Only one semiconductor laser element is driven.
  • Patent Document 1 describes wiring in a conventional three-wavelength semiconductor laser device.
  • the n-side electrodes of the blue-violet semiconductor laser element, the red semiconductor laser element, and the infrared semiconductor laser element are all connected to the ground, and the p-side electrodes are electrically connected to each other.
  • the conventional three-wavelength semiconductor laser device requires three terminals in addition to the ground terminal.
  • the blue-violet semiconductor laser element has a higher driving voltage than the red semiconductor laser element and the infrared semiconductor laser element, so that the three semiconductor laser elements are included in one package.
  • the p-side electrode and the n-side electrode of the blue-violet semiconductor laser element are not connected to the ground, and are wired (floating wiring) while being insulated from the package. That is, in the conventional three-wavelength semiconductor laser device, each of the n-side electrodes of the red semiconductor laser element and the infrared semiconductor laser element is grounded, and each p-side electrode is connected to each electrically insulated lead terminal. Since they are connected, it is not necessary to drive the three semiconductor laser elements at the same time, and four lead terminals are required in addition to the ground terminal even when they are used separately, for example, in an optical pickup.
  • the package of the semiconductor laser device becomes large, there is a problem that it is difficult to reduce the size of the optical device such as an optical pickup device or an optical disk device that mounts the semiconductor laser device.
  • the present invention has been made to solve the above-described problems, and a first object thereof is to provide a semiconductor laser device capable of downsizing a package on which three semiconductor laser elements are mounted. It is.
  • the second object of the present invention is to provide an optical device that can be miniaturized.
  • a semiconductor laser device includes a first semiconductor laser element, a second semiconductor laser element, a third semiconductor laser element, the first semiconductor laser element, and the second semiconductor laser element. And a package in which the third semiconductor laser element is disposed, and a first terminal, a second terminal, and a third terminal that are attached to the package and are electrically insulated from each other.
  • the terminals are electrodes on the first polarity side of the first semiconductor laser element, electrodes on the first polarity side of the second semiconductor laser element, and second polarity of the third semiconductor laser element.
  • the second terminal is electrically connected to the second polarity side electrode of the first semiconductor laser element
  • the third terminal is electrically connected to the second electrode.
  • the second semiconductor laser element Said second polarity side of the electrode, and are the third semiconductor laser of the first polarity side electrode electrically connected to the device.
  • the first polarity side electrode and the second polarity side electrode are electrodes on one side and the other side of the anode (positive electrode) and cathode (negative electrode) of each semiconductor laser element, respectively. I mean.
  • each electrode of each semiconductor laser element is connected to each terminal as described above, a voltage is applied to the first terminal and the second terminal.
  • the first semiconductor laser element can be driven without driving the second and third semiconductor laser elements.
  • the second and third semiconductor laser elements are connected with opposite polarities between the first and third terminals, by changing the polarity of the voltage applied between the first and third terminals, The second and third semiconductor lasers can be driven separately without driving the first semiconductor laser element.
  • the package in which each semiconductor laser element is arranged can be downsized. Can do.
  • any one of the first terminal, the second terminal, and the third terminal is electrically connected to the package.
  • the terminal electrically connected to the package can be grounded, the three semiconductor laser elements are driven separately by controlling the voltage applied to the remaining two terminals substantially. can do.
  • the light receiving element further preferably includes a light receiving element disposed in the package, and a fourth terminal attached to the package and electrically insulated from the package.
  • the first electrode is connected to the fourth terminal, and the second electrode of the light receiving element is connected to the package.
  • At least one of the first semiconductor laser element, the second semiconductor laser element, and the third semiconductor laser element is bonded onto the surface of the submount.
  • the light receiving element is disposed on the surface of the submount.
  • the first semiconductor laser element and the second semiconductor laser element include a common semiconductor substrate, and the back surface of the semiconductor substrate includes A shared electrode on the first polarity side shared by the first semiconductor laser element and the second semiconductor laser element is formed. That is, the first polarity side electrode of the first semiconductor laser element and the first polarity side electrode of the second semiconductor laser element are integrated as a first polarity side shared electrode on the back surface of the semiconductor substrate. Is formed. If comprised in this way, the connection of a 1st terminal and each 1st polarity side electrode of a 1st and 2nd semiconductor laser element can be connected by one connection means. Thereby, the structure and manufacturing process of the semiconductor laser device can be simplified.
  • the semiconductor laser device can be easily positioned when combining the semiconductor laser device and the external optical system.
  • the third semiconductor laser element is formed on the back surface of the semiconductor substrate such that the second polarity side electrode of the third semiconductor laser element and the shared electrode face each other. It is joined to. If comprised in this way, the connection of the electrode of the 2nd polarity side of a 3rd semiconductor laser element and a 1st terminal can be easily performed via the shared electrode of a 1st and 2nd semiconductor laser element. Can do. Further, for example, it is not necessary to connect the electrode on the second polarity side of the third semiconductor laser element and the shared electrode of the first and second semiconductor laser elements with a wire or the like. The process can be simplified.
  • the third semiconductor laser element includes a semiconductor laser element layer made of a nitride-based semiconductor, and the first terminal and the third terminal are , And electrically insulated from the package.
  • wiring floating wiring
  • both electrodes of the nitride semiconductor laser element (third semiconductor laser element) having a high driving voltage are electrically insulated from the package. It is possible to drive using the existing laser driver IC, and the third semiconductor laser element can be controlled well.
  • the first semiconductor laser element and the second semiconductor laser element include a semiconductor laser element layer made of a nitride-based semiconductor,
  • the terminal, the second terminal, and the third terminal are electrically insulated from the package.
  • wiring floating wiring
  • each electrode of the nitride semiconductor laser element (first and second semiconductor laser elements) having a high driving voltage is electrically insulated from the package. Therefore, the first and second semiconductor laser elements can be easily controlled.
  • An optical device includes a first semiconductor laser element, a second semiconductor laser element, a third semiconductor laser element, the first semiconductor laser element, the second semiconductor laser element, and A semiconductor laser device having a package in which the third semiconductor laser element is disposed; a first terminal attached to the package; a second terminal; and a third terminal; An optical system for controlling laser light, wherein the first terminal is an electrode on the first polarity side of the first semiconductor laser element, and an electrode on the first polarity side of the second semiconductor laser element , And a second polarity side electrode of the third semiconductor laser element, and the second terminal is an electrode on the second polarity side of the first semiconductor laser element. And electrically connected And the third terminal is electrically connected to the electrode on the second polarity side of the second semiconductor laser element and the electrode on the first polarity side of the third semiconductor laser element.
  • each electrode of each semiconductor laser element is connected to each terminal, a voltage is applied to the first terminal and the second terminal.
  • the first semiconductor laser element can be driven without driving the second and third semiconductor laser elements.
  • the second and third semiconductor laser elements are connected with opposite polarities between the first and third terminals, by changing the polarity of the voltage applied between the first and third terminals, The second and third semiconductor lasers can be driven separately without driving the first semiconductor laser element.
  • the semiconductor laser device capable of downsizing the package is used. Can do. Thereby, an optical apparatus can be reduced in size.
  • FIG. 1 is an external perspective view of a semiconductor laser device 100 according to a first embodiment of the present invention.
  • FIG. 3 is a front view of the semiconductor laser device 100 as viewed from the laser beam emission direction (X direction) with the cap 2 removed.
  • FIG. 3 is a top view when viewed from above (Z direction) perpendicular to the laser beam emission direction (X direction) with the cap 2 of the semiconductor laser device 100 removed.
  • FIG. 3 is an enlarged view of a main part of FIG. 2, and is a front view of a three-wavelength semiconductor laser element 101 arranged in the semiconductor laser device 100.
  • 3 is a wiring diagram of semiconductor laser elements LD1, LD2, and LD3 in the semiconductor laser device 100.
  • FIG. 3 is a wiring diagram of semiconductor laser elements LD1, LD2, and LD3 in the semiconductor laser device 110.
  • FIG. FIG. 6 is a top view of the three-wavelength semiconductor laser element 101 bonded on the submount 116 with the cap 2 of the semiconductor laser device 120 according to the second modification of the first embodiment of the present invention viewed from the Z direction. is there.
  • FIG. 9 is a cross-sectional view taken along line A2-A2 of FIG.
  • each semiconductor laser element LD1, LD2, and LD3 joined on the submount 106 in the state where the cap 2 of the semiconductor laser device 300 according to the third embodiment of the present invention is removed is viewed from the X direction.
  • It is a top view when each semiconductor laser element LD1, LD2, and LD3 joined on the submount 106 with the cap 2 of the semiconductor laser device 400 according to the fourth embodiment of the present invention removed is viewed from the Z direction.
  • It is a front view when each semiconductor laser element LD1, LD2, and LD3 joined on the submount 106 in the state where the cap 2 of the semiconductor laser device 400 according to the fourth embodiment of the present invention is removed is viewed from the X direction.
  • FIG. 4 is a wiring diagram of semiconductor laser elements LD1, LD2, and LD3 in the semiconductor laser device 400.
  • FIG. 10 is a table showing wiring states of semiconductor laser elements LD1, LD2 and LD3 in semiconductor laser devices 410, 420 and 430 according to first to third modifications of the fourth embodiment of the present invention.
  • 4 is a wiring diagram of semiconductor laser elements LD1, LD2, and LD3 in a semiconductor laser device 420.
  • FIG. It is a block diagram of the optical pick-up 1000 by 5th Embodiment of this invention. It is a block diagram of the optical disk apparatus 2000 by 6th Embodiment of this invention. It is a block diagram of the projector apparatus 3000 by 7th Embodiment of this invention. 5 is a timing chart of image signals given to projector device 3000.
  • the emission direction of the laser beam from the semiconductor laser device is referred to as the front direction (X direction), the X direction surface is referred to as the front surface, and the ⁇ X direction surface opposite to the X direction is referred to as the rear surface.
  • a direction orthogonal to the X direction is referred to as an upper surface direction (Z direction)
  • a surface in the Z direction is referred to as an upper surface
  • a surface in the ⁇ Z direction opposite to the Z direction is referred to as a lower surface.
  • a plane parallel to the X direction and the Z direction is referred to as a side surface.
  • FIG. 1 is an external perspective view of a semiconductor laser device 100 according to the first embodiment of the present invention.
  • 2 and 3 show the laser beam emission direction (X direction) and the direction perpendicular to the emission direction (Z direction) with the cap 2 of the semiconductor laser device 100 removed, respectively. It is the front view and top view of these.
  • FIG. 4 is an enlarged view of the main part of FIG. 2, and is a front view of the three-wavelength semiconductor laser element 101 disposed in the semiconductor laser device 100.
  • FIG. 5 is a wiring diagram of the semiconductor laser elements LD1, LD2, and LD3 in the semiconductor laser device 100.
  • the semiconductor laser device 100 includes a package P and a metal first lead T1, a second lead T2, and a third lead T3 attached to the package P. And a fourth lead T4.
  • the first lead T1, the second lead T2, and the third lead T3 are examples of the “first terminal”, the “second terminal”, and the “third terminal” in the present invention, respectively.
  • the package P includes a disk-shaped metal base 1 and a metal cap 2 attached to the front surface 1 a of the base 1, and a transparent optical material is provided in the opening 2 a on the front surface of the cap 2.
  • a window 3 is attached.
  • the first lead T1, the second lead T2, and the third lead T3 penetrate the base 1 from the rear surface 1b side of the base 1 and extend into the package P (in the cap 2).
  • the leads T1, T2, and T3 are electrically insulated from the base 1 by insulating members 5 filled in through holes 1c, 1d, and 1e that penetrate the front surface 1a and the rear surface 1b of the base 1, respectively. It is fixed to. Further, the leads T1, T2, and T3 are electrically insulated from each other.
  • the fourth lead T4 is a ground terminal, is integrally formed with the base 1 so as to extend rearward from the rear surface 1b of the base 1, and is used for grounding the package P.
  • a three-wavelength semiconductor laser element 101 to be described later is fixed on the upper surface 4 a of the header 4, and the three-wavelength semiconductor laser element 101 is sealed by the base 1 and the cap 2.
  • the three-wavelength semiconductor laser device 101 has a first laser disposed on a submount 106 made of n-type Si so as to emit each laser beam in the same direction (X direction).
  • a semiconductor laser element LD1, a second semiconductor laser element LD2, and a third semiconductor laser element LD3 are provided.
  • the first semiconductor laser element LD1 and the second semiconductor laser element LD2 are formed monolithically on the n-type GaAs substrate 11. That is, on the lower surface 11a of the n-type GaAs substrate 11, the first semiconductor laser element LD1 is formed in a region along one side surface 11c of the n-type GaAs substrate 11, and in the region along the other side surface 11d. A second semiconductor laser element LD2 is formed.
  • the n-type GaAs substrate 11 is an example of the “common semiconductor substrate” in the present invention.
  • the first semiconductor laser element LD1 includes an n-type AlGaInP cladding layer 12, an MQW active layer 13 made of GaInP / AlGaInP, and a p-type AlGaInP cladding layer 14 on the lower surface 11a of the n-type GaAs substrate 11.
  • a GaInP-based semiconductor laser element layer 15 is sequentially stacked. On the lower surface of the GaInP semiconductor laser element layer 15, a ridge 14a extending in a stripe shape in the X direction is formed.
  • a current blocking layer 16 made of an insulator is formed on the lower surface of the GaInP-based semiconductor laser element layer 15 other than the lower surface of the ridge 14a.
  • a p-side electrode p ⁇ b> 1 is formed on the lower surface of the current block layer 16, and is electrically connected to the GaInP-based semiconductor laser element layer 15 on the lower surface of the ridge 14 a exposed from the current block layer 16.
  • the p-side electrode p1 is an example of the “second polarity side electrode of the first semiconductor laser element” in the present invention.
  • the second semiconductor laser element LD2 is a GaAs semiconductor in which an n-type AlGaAs cladding layer 22, an MQW active layer 23 made of AlGaAs, and a p-type AlGaAs cladding layer 24 are stacked in this order on the lower surface 11a of the n-type GaAs substrate 11.
  • a laser element layer 25 is provided.
  • a ridge 24a extending in a stripe shape in the X direction is formed in parallel with the ridge 14a.
  • a groove 17 is formed between the GaInP based semiconductor laser element layer 15 and the GaAs based semiconductor laser element layer 25, and the GaInP based semiconductor laser element layer 15 and the GaAs based semiconductor laser element layer 25 are formed apart from each other.
  • the current blocking layer 16 is formed by extending on the surface of the groove portion 17, and the current blocking layer 16 is formed by extending on the lower surface of the GaAs semiconductor laser element layer 25 other than the lower surface of the ridge 24a.
  • a p-side electrode p ⁇ b> 2 is formed on the lower surface of the current blocking layer 16, and is electrically connected to the GaAs based semiconductor laser element layer 25 on the lower surface of the ridge 24 a exposed from the current blocking layer 16.
  • the p-side electrode p2 is an example of the “second polarity-side electrode of the second semiconductor laser element” in the present invention.
  • an n-side electrode n12 shared by the first semiconductor laser element LD1 and the second semiconductor laser element LD2 is formed on the upper surface (back surface) 11b opposite to the lower surface 11a of the n-type GaAs substrate 11, an n-side electrode n12 shared by the first semiconductor laser element LD1 and the second semiconductor laser element LD2 is formed.
  • the n-side electrode n12 is an example of the “first polarity side electrode of the first semiconductor laser element” and the “first polarity side electrode of the second semiconductor laser element” of the present invention, It is an example of a “first polarity side shared electrode”. That is, the n-side electrode n12 functions as an n-side electrode of the first semiconductor laser element LD1 and an n-side electrode of the second semiconductor laser element LD2.
  • An end face coating film made of a dielectric material that controls the reflectance of the laser beam is formed on the front surface (emission end surface) 15a and the rear surface (reflection end surface) 15b of the GaInP-based semiconductor laser element layer 15, respectively.
  • the first semiconductor laser element LD1 the light intensity of the laser light emitted in the X direction from the emission end face 15a is made larger than the light intensity of the laser light emitted in the ⁇ X direction from the reflection end face 15b.
  • red laser light having a wavelength of about 650 nm is emitted from the region (light emitting point) of the MQW active layer 13 in the vicinity of the ridge 14a on the emission end face 15a.
  • End face coat films made of a dielectric material for controlling the reflectance of the laser beam are formed on the front face (outgoing end face) 25a and the rear face (reflecting end face) 25b of the GaAs semiconductor laser element layer 25, respectively.
  • the light intensity of the laser light emitted from the emission end face 25a is made larger than the light intensity of the laser light emitted from the reflection end face 25b.
  • Infrared laser light having a wavelength of about 780 nm is emitted from the region (light emitting point) of the MQW active layer 23 in the vicinity of the ridge 24a.
  • the third semiconductor laser element LD3 is a GaN in which an n-type AlGaN cladding layer 32, an MQW active layer 33 made of InGaN / GaN, and a p-type AlGaN cladding layer 34 are stacked in this order on the lower surface 31a of the n-type GaN substrate 31.
  • the semiconductor laser element layer 35 is provided.
  • the GaN-based semiconductor laser element layer 35 is an example of the “semiconductor laser element layer made of a nitride-based semiconductor” in the present invention.
  • a ridge 34a On the lower surface of the GaN-based semiconductor laser element layer 35, a ridge 34a extending in a stripe shape in the X direction is formed.
  • a current blocking layer 36 made of an insulator is formed on the lower surface of the GaN-based semiconductor laser element layer 35 other than the lower surface of the ridge 34a.
  • a p-side electrode p3 is formed on the lower surface of the current block layer 36, and is electrically connected to the GaN-based semiconductor laser element layer 35 on the lower surface of the ridge 34a exposed from the current block layer 36.
  • the p-side electrode p3 is an example of the “second polarity side electrode of the third semiconductor laser element” in the present invention.
  • n-side electrode n3 is formed on the upper surface (back surface) 31b opposite to the lower surface 31a of the n-type GaN substrate 31.
  • the n-side electrode n3 is an example of the “electrode on the first polarity side of the third semiconductor laser element” in the present invention.
  • An end face coating film made of a dielectric that controls the reflectance of the laser beam is formed on the front surface (emission end surface) 35a and the rear surface (reflection end surface) 35b of the GaN-based semiconductor laser element layer 35, respectively. ing.
  • the light intensity of the laser light emitted from the emission end face 35a is made larger than the light intensity of the laser light emitted from the reflection end face 35b, and is on the emission end face 35a.
  • a blue-violet laser beam having a wavelength of about 405 nm is emitted from the region (light emitting point) of the MQW active layer 33 in the vicinity of the ridge 34a.
  • the third semiconductor laser element LD3 is configured such that the length in the X direction is shorter than that of the first semiconductor laser element LD1 and the second semiconductor laser element LD2.
  • the third semiconductor laser element can be provided at low cost by shortening the resonator length.
  • the reliability can be increased by increasing the resonator length.
  • An insulating layer 107 is formed on the upper surface 106a of the submount 106.
  • connection electrodes 118 and 128 extending in a strip shape in the X direction are formed apart from each other.
  • the connection electrodes 118 and 128 are longer in the X direction than the first semiconductor laser element LD1 and the second semiconductor laser element LD2.
  • the first semiconductor laser element LD1 and the second semiconductor laser element LD2 are arranged so that the p-side electrodes p1 and p2 face each other through the fusion layers 119 and 129 made of solder, respectively.
  • the front face 106c of the submount 106 and the emission end faces 15a and 25a of the first semiconductor laser element LD1 and the second semiconductor laser element LD2 are arranged on the same plane.
  • the third semiconductor laser element LD3 is arranged so that the p-side electrode p3 is opposed via the fusion layer 139 made of solder. It is joined with a junction-down structure.
  • the emission end faces 15a and 25a of the first semiconductor laser element LD1 and the second semiconductor laser element LD2 and the emission end face 35a of the third semiconductor laser element LD3 are arranged on the same plane, and the ridge 34a and the ridges 14a and 24a are arranged in parallel.
  • the lower surface (back surface) 106b opposite to the upper surface 106a of the submount 106 is joined to the upper surface 4a of the header 4 via a fusion layer (not shown).
  • the front surface 106c of the submount 106 and the front surface 4c of the header 4 are disposed on the same surface.
  • One end of the Au wire W1 is bonded onto the first lead T1, and the other end of the Au wire W1 is exposed from the third semiconductor laser element LD3 when viewed from the Z direction. Bonded on the upper surface of the n-side electrode n12. One end portion of the Au wire W2 is bonded onto the second lead T2, and the other end portion of the Au wire W2 is exposed from the first semiconductor laser element LD1 when viewed from the Z direction. Bonding is performed on the upper surface of the connection electrode 118. One end of the Au wire W31 is bonded onto the third lead T3, and the other end of the Au wire W31 is exposed from the second semiconductor laser element LD2 when viewed from the Z direction. Bonding is performed on the upper surface of the connection electrode 128.
  • one end of the Au wire W32 is also bonded on the third lead T3, and the other end of the Au wire W32 is bonded on the n-side electrode n3.
  • Each wire is preferably wired to be as short as possible, but the bonding position on each semiconductor laser element side is in the vicinity of the center of the n-side electrode n12 or n-side electrode n3 in consideration of high-speed pulse response. It is preferable to be formed.
  • the first lead T1 is connected to the n-side electrode n12 of the first semiconductor laser element LD1 and the second semiconductor laser element LD2 as shown in FIG. Are electrically connected to the p-side electrode p3 of the third semiconductor laser element LD3.
  • the second lead T2 is electrically connected to the p-side electrode p1 of the first semiconductor laser element LD1
  • the third lead T3 is connected to the p-side electrode p2 of the second semiconductor laser element LD2.
  • it is electrically connected to the n-side electrode n3 of the third semiconductor laser element LD3.
  • a second semiconductor laser is applied by applying a voltage to the first lead T1 and the second lead T2 so that a forward voltage is applied to the first semiconductor laser element LD1.
  • the first semiconductor laser element LD1 can be driven without driving the element LD2 and the third semiconductor laser element LD3.
  • the first lead T1 and the third lead are applied so that a forward voltage is applied to the second semiconductor laser element LD2 (so that a reverse voltage is applied to the third semiconductor laser element LD3).
  • the second semiconductor laser element LD2 can be driven without driving the first semiconductor laser element LD1 and the third semiconductor laser element LD3.
  • first lead T1 and the third lead are applied so that a forward voltage is applied to the third semiconductor laser element LD3 (so that a reverse voltage is applied to the second semiconductor laser element LD2).
  • the third semiconductor laser element LD3 can be driven without driving the first semiconductor laser element LD1 and the second semiconductor laser element LD2.
  • the three semiconductor laser elements LD1, LD2, and LD3 can be driven separately by the three leads T1, T2, and T3, so that each of the semiconductor laser elements LD1, LD2, and LD3 is driven. It is possible to reduce the size of the package in which the device is disposed.
  • the first semiconductor laser element LD1 and the second semiconductor laser element LD2 have a common n-type GaAs substrate 11, and are formed on the back surface 11b of the n-type GaAs substrate 11.
  • the n-side electrode n12 is shared.
  • the first semiconductor laser element LD1 and the second semiconductor laser element LD2 are formed monolithically, when the first semiconductor laser element LD1 and the second semiconductor laser element LD2 are mounted on the package P, The light emitting point (laser beam emission position) of each semiconductor laser element does not relatively shift. As a result, the relative positional accuracy of the light emitting points of the first semiconductor laser element LD1 and the second semiconductor laser element LD2 can be improved. Therefore, when the semiconductor laser device 100 and the external optical system are combined, the semiconductor laser The apparatus 100 can be easily positioned.
  • the third semiconductor laser element LD3 has its p-side electrode p3 and the n-side electrode n12 of the first semiconductor laser element LD1 and the second semiconductor laser element LD2 facing each other.
  • the n-type GaAs substrate 11 is bonded to the back surface 11b.
  • the p-side electrode p3 of the third semiconductor laser element LD3 and the first lead T1 can be easily connected via the n-side electrode n12.
  • the configuration and manufacturing process of the laser device 100 can be simplified.
  • the third semiconductor laser element LD3 has a GaN-based semiconductor laser element layer 35, and the first lead T1 and the third lead T3 are electrically connected to the package P. Insulated.
  • wiring floating wiring
  • both electrodes p3 and n3 of the GaN-based semiconductor laser device (third semiconductor laser device LD3) having a high driving voltage are electrically insulated from the package P. It is possible to drive using the existing laser driver IC, and the third semiconductor laser element can be controlled well.
  • the GaN-based semiconductor laser element (third semiconductor laser element LD3) In order to drive the GaN-based semiconductor laser element (third semiconductor laser element LD3) in the state of the floating wiring as described above, the first semiconductor laser element LD1 and the second semiconductor laser element LD2 are driven. Therefore, it is necessary to be able to switch the GND line on the laser driver side to open.
  • FIG. 6 is a cross-sectional view of the semiconductor laser device 110 according to the first modification of the first embodiment of the present invention with the cap 2 removed, and corresponds to a cross-sectional view taken along the line A1-A1 of FIG. To do.
  • FIG. 6 only the approximate positions of the three-wavelength semiconductor laser element 101 and the submount 106 are indicated by a one-dot chain line, and the description of each Au wire is omitted.
  • FIG. 7 is a wiring diagram of the semiconductor laser elements LD1, LD2, and LD3 in the semiconductor laser device 110.
  • the same components as those of the semiconductor laser device 100 according to the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the configuration of the semiconductor laser device 110 according to the first modification of the first embodiment of the present invention is different from the semiconductor laser device 100 in that a photodiode PD1 is provided in the package P. That is, as shown in FIG. 6, the front surface 1a of the base 1 is formed with a recess 1f at a position facing each of the reflection end faces 15b, 25b and 35b (see FIG. 3) of the three-wavelength semiconductor laser element 101.
  • a photodiode PD1 is joined to the recess 1f by a fusion layer (not shown), and the n-side electrode n4 formed on the rear surface of the photodiode PD1 and the front surface 1a of the base 1 are electrically connected. It is connected.
  • the photodiode PD1 is an example of the “light receiving element” in the present invention.
  • the other end of Au wire W2 connected to connection electrode 118 in semiconductor laser device 100 is connected to p-side electrode p4 on the front surface of photodiode PD1.
  • one end of an Au wire W4 (not shown) is bonded to the upper surface of the connection electrode 118, and the other end of the Au wire W4 (not shown) is bonded to the upper surface 4a of the header 4. It is connected to the.
  • the p-side electrode p1 of the first semiconductor laser element LD1 is electrically connected to the fourth lead T4 via the package P.
  • the first lead T1, the fourth lead T4, the third lead T3, and the second lead T2 are the “first terminal”, “second terminal”, “third terminal” of the present invention, respectively. It is an example of “terminal” and “fourth terminal”.
  • Other configurations of the semiconductor laser device 110 are the same as those of the semiconductor laser device 100.
  • the first lead T1 is connected to the n-side electrode n12 of the first semiconductor laser element LD1 and the second semiconductor laser element LD2 as shown in FIG. Are connected to the p-side electrode p3 of the third semiconductor laser element LD3.
  • the p-side electrode p1 of the first semiconductor laser element LD1 is grounded via the package 1 and the fourth lead T4.
  • the third lead T3 is connected to the p-side electrode p2 of the second semiconductor laser element LD2 and the n-side electrode n3 of the third semiconductor laser element LD3.
  • the fourth lead T4 since the fourth lead T4 is electrically connected to the package P, the fourth lead T4 electrically connected to the package P can be grounded.
  • the three semiconductor laser elements LD1, LD2 and LD3 can be driven separately by controlling the voltage applied to the remaining two leads T1 and T3, so that the terminals insulated from the package P Need only be two (first lead T1 and third lead T3).
  • the second lead T2 is not necessary for the purpose of driving the semiconductor laser elements LD1, LD2, and LD3 (in the absence of the photodiode PD1), and thus the package P of the semiconductor laser device 110 is further reduced in size.
  • the semiconductor laser device 110 includes a photodiode PD1 disposed in the package P and a second lead T2 attached to the package P and electrically insulated from the package P. .
  • the p-side electrode p4 of the photodiode PD1 is connected to the second lead T2, and the n-side electrode n4 of the photodiode PD1 is connected to the package P.
  • the three semiconductor laser elements LD1, LD2, and LD3 and the photodiode PD1 can be operated by the package P (fourth lead T4) and the three leads T1, T3, and T2.
  • the photodiode PD1 capable of monitoring the light intensity of the laser light emitted from each of the semiconductor laser elements LD1, LD2, and LD3 can be disposed in the package P without increasing the size of the package P.
  • Other effects of the semiconductor laser device 110 are the same as the effects of the semiconductor laser device 100.
  • FIG. 8 shows the three-wavelength semiconductor laser device 101 bonded on the submount 116 with the cap 2 removed from the semiconductor laser device 120 according to the second modification of the first embodiment of the present invention when viewed from the Z direction.
  • FIG. FIG. 9 is a cross-sectional view taken along line A2-A2 of FIG.
  • the same components as those of the semiconductor laser device 110 according to the first modification are denoted by the same reference numerals and description thereof is omitted.
  • the configuration of the semiconductor laser device 120 according to the second modification of the first embodiment of the present invention is a submount in place of the photodiode PD1 attached to the front surface 1a of the base 1 as compared with the semiconductor laser device 110.
  • the difference is that the photodiode PD2 is arranged behind the upper surface 116a of the 116 (-X direction).
  • the photodiode PD2 is an example of the “light receiving element” in the present invention.
  • a p-type region 116p is formed in the rear region of the upper surface 116a of the submount 116 made of n-type Si, and constitutes a photodiode PD2 having the p-type region 116p as a light receiving surface.
  • a p-side electrode p5 is formed on one side end of the p-type region 116p (the end on the side close to the second lead T2).
  • An insulating film 117 is formed on the upper surface 116a of the submount 116 so as to cover a region in the front (X direction) of the p-type region 116p.
  • the insulating film 117 is formed to extend to the region where the p-side electrode p5 is formed on the upper surface 116a of the submount 116 so as to insulate the p-side electrode p5 from the upper surface 116a.
  • the other end of the Au wire W2 connected to the second lead T2 is bonded to the p-side electrode p5 of the photodiode PD2.
  • a lower surface (back surface) 116b opposite to the upper surface 116a of the submount 116 is joined to the upper surface 4a of the header 4 via a fusion layer (not shown).
  • the front surface 116c of the submount 116 and the front surface 4c of the header 4 are arranged on the same surface.
  • Other configurations of the semiconductor laser device 120 are the same as those of the semiconductor laser device 110.
  • this semiconductor laser device 120 since the photodiode PD2 is formed on the upper surface 116a of the submount 116, the light intensity of the laser light emitted from each of the semiconductor laser elements LD1, LD2, and LD3 can be easily monitored. In addition, it is not necessary to bond individual photodiodes to the recesses 1f (see FIG. 6) of the front surface 1a of the base 1, and the manufacturing process can be simplified. Other effects of the semiconductor laser device 120 are the same as the effects of the semiconductor laser device 110.
  • (Second Embodiment) 10 and 11 show the three-wavelength semiconductor laser device 201 bonded on the submount 106 with the cap 2 removed from the semiconductor laser device 200 according to the second embodiment of the present invention, respectively, from the Z direction and the X direction. It is the top view and front view when it sees.
  • the same components as those of the semiconductor laser device 100 according to the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the semiconductor laser device 200 differs from the semiconductor laser device 100 in the way of joining the semiconductor laser elements LD1, LD2 and LD3 constituting the three-wavelength semiconductor laser element 201. Yes. That is, the first semiconductor laser element LD1, the second semiconductor laser element LD2, and the third semiconductor laser element LD3 are joined so that the p-side electrode p1, the p-side electrode p2, and the p-side electrode p3 face each other. ing.
  • a groove portion 17 between the first semiconductor laser element LD1 and the second semiconductor laser element LD2 is embedded in the upper surfaces of the first semiconductor laser element LD1 and the second semiconductor laser element LD2.
  • An insulating layer 18 is formed, and the upper surface of the insulating layer 18 is formed flat.
  • a connection electrode 138 is formed on the insulating layer 18.
  • the p-side electrode p3 of the third semiconductor laser element LD3 is electrically connected to the connection electrode 138 via a fusion layer 139 made of solder.
  • the emission end face 35a of the third semiconductor laser element LD3 and the emission end faces 15a and 25a of the first semiconductor laser element LD1 and the second semiconductor laser element LD2 are disposed on the same plane, and the ridge 14a and 24a and the ridge 34a are arranged in parallel to each other.
  • the n-side electrode n12 shared by the first semiconductor laser element LD1 and the second semiconductor laser element LD2 is electrically connected to the connection electrode 218 on the submount 106 through a fusion layer 219 made of solder.
  • the front face 106c of the submount 106 and the emission end faces 15a and 25a of the first semiconductor laser element LD1 and the second semiconductor laser element LD2 are arranged on the same plane.
  • Au wires W11 and W12 are bonded on the first lead T1, and the other end of the Au wire W11 is seen from the Z direction, the first semiconductor laser element LD1 and the second semiconductor laser element. Bonded on the upper surface of the connection electrode 218 exposed from the LD 2, the other end of the Au wire W 12 is on the upper surface of the connection electrode 138 exposed from the third semiconductor laser element LD 3 when viewed from the Z direction. Bonded to.
  • An Au wire W2 is bonded on the second lead T2, and the other end of the Au wire W2 is on the p-side electrode p1 of the first semiconductor laser element LD1 exposed from the current blocking layer 16. Bonded.
  • Au wires W31 and W32 are bonded on the third lead T3, and the other end of the Au wire W31 is the p-side electrode p2 of the second semiconductor laser element LD2 exposed from the current blocking layer 16.
  • the other end of the Au wire W32 is bonded to the n-side electrode n3 of the third semiconductor laser element LD3.
  • the other configuration of the semiconductor laser device 200 is the same as that of the semiconductor laser device 100.
  • the first semiconductor laser element LD1, the second semiconductor laser element LD2, and the third semiconductor laser element LD3 are connected to each other as shown in FIG. Yes.
  • the p-side electrode p1 of the first semiconductor laser element LD1 and the p-side electrode p2 of the second semiconductor laser element LD2 are opposed to the p-side electrode p3 of the third semiconductor laser element LD3. Since they are bonded, the light emitting points of the semiconductor laser elements LD1, LD2, and LD3 can be brought close to each other. Thereby, when combining with an external optical system, it can adjust easily. Other effects of the semiconductor laser device 200 are the same as those of the semiconductor laser device 100.
  • FIG. 12 and 13 show the respective semiconductor laser elements LD1, LD2 and LD3 bonded on the submount 106 with the cap 2 removed from the semiconductor laser device 300 according to the third embodiment of the present invention. It is the top view and front view when it sees from a X direction.
  • the same components as those of the semiconductor laser device 100 according to the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the first semiconductor laser element LD1, the second semiconductor laser element LD2, and the third semiconductor laser element LD3 are respectively junction-down on the submount 106. It is joined with. That is, on the insulating layer 107 on the submount 106, connection electrodes 118, 128, and 138 are formed apart from each other along the X direction. The connection electrodes 118, 128, and 138 are configured such that the lengths in the X direction are longer than those of the first semiconductor laser element LD1, the second semiconductor laser element LD2, and the third semiconductor laser element LD3, respectively. ing.
  • connection electrodes 118, 128, and 138 the p-side electrode p1 of the first semiconductor laser element LD1 and the p-side of the second semiconductor laser element LD2, respectively, via the fusion layers 119, 129, and 139 made of solder.
  • the electrode p2 and the p-side electrode p3 of the third semiconductor laser element LD3 are joined.
  • the front face 106c of the submount 106 and the emission end faces 15a, 25a, and 35a of the first semiconductor laser element LD1, the second semiconductor laser element LD2, and the third semiconductor laser element LD3 are arranged on the same plane.
  • the ridges 14a and 24a and the ridge 34a are arranged in parallel to each other.
  • Au wires W11 and W12 are bonded on the first lead T1, and the other end of the Au wire W11 is an n-side electrode n12 of the first semiconductor laser element LD1 and the second semiconductor laser element LD2.
  • the other end of the Au wire W12 is bonded to the upper surface of the connection electrode 138 exposed from the third semiconductor laser element LD3 when viewed from the Z direction.
  • An Au wire W2 is bonded onto the second lead T2, and the other end of the Au wire W2 is on the connection electrode 118 exposed from the first semiconductor laser element LD1 when viewed from the Z direction. Bonded.
  • Au wires W31 and W32 are bonded onto the third lead T3, and the other end of the Au wire W31 is connected electrode 128 exposed from the second semiconductor laser element LD2 when viewed from the Z direction.
  • the other end of the Au wire W32 is bonded to the n-side electrode n3 of the third semiconductor laser element LD3.
  • Other configurations of the semiconductor laser device 300 are the same as those of the semiconductor laser device 100.
  • the first semiconductor laser element LD1, the second semiconductor laser element LD2, and the third semiconductor laser element LD3 are respectively connected as shown in FIG. Yes.
  • all of the first semiconductor laser element LD1, the second semiconductor laser element LD2, and the third semiconductor laser element LD3 are bonded onto the upper surface 106a of the submount 106 by junction-down.
  • the height of the light emitting point of each semiconductor laser element can be made substantially equal. Thereby, when combining with an external optical system, it can adjust easily.
  • each of the semiconductor laser elements LD1, LD2, and LD3 is joined on the submount 106 by junction down, the heat dissipation characteristics are improved and the reliability at high output is high.
  • Other effects of the semiconductor laser device 300 are the same as the effects of the semiconductor laser device 100.
  • FIG. 14 and 15 show the semiconductor laser elements LD1, LD2, and LD3 bonded on the submount 106 with the cap 2 removed from the semiconductor laser device 400 according to the fourth embodiment of the present invention. It is the top view and front view when it sees from a X direction.
  • FIG. 16 is a wiring diagram of the semiconductor laser elements LD1, LD2, and LD3 in the semiconductor laser device 400. In the following description, the same reference numerals are given to the same components as those of the semiconductor laser device 300 according to the third embodiment, and the description thereof is omitted.
  • the first semiconductor laser element LD1, the second semiconductor laser element LD2, and the third semiconductor laser element LD3, which are formed separately from each other, are joined together to increase the submount 106. Joined on top.
  • the first semiconductor laser element LD1 is a GaInP in which an n-type AlGaInP clad layer 52, an MQW active layer 53 made of GaInP / AlGaInP, and a p-type AlGaInP clad layer 54 are laminated on an upper surface 51a of an n-type GaAs substrate 51 in this order.
  • a semiconductor laser element layer 55 is provided.
  • On the upper surface of the GaInP semiconductor laser element layer 55 a ridge 54a extending in a stripe shape in the X direction is formed.
  • a current blocking layer 56 made of an insulator is formed on the upper surface of the GaInP-based semiconductor laser element layer 55 other than the upper surface of the ridge 54a.
  • a p-side electrode p ⁇ b> 1 is formed on the upper surface of the current block layer 56, and is electrically connected to the GaInP-based semiconductor laser element layer 55 on the upper surface of the ridge 54 a exposed from the current block layer 56.
  • the p-side electrode p1 is an example of the “second polarity side electrode of the first semiconductor laser element” in the present invention.
  • n-side electrode n1 is formed on the lower surface (back surface) 51b opposite to the upper surface 51a of the n-type GaAs substrate 51.
  • the n-side electrode n1 is an example of the “electrode on the first polarity side of the first semiconductor laser element” in the present invention.
  • An end face coating film made of a dielectric material that controls the reflectance of the laser beam is formed on the front surface (emission end surface) 55a and the rear surface (reflection end surface) 55b of the GaInP based semiconductor laser element layer 55, respectively. ing.
  • the light intensity of the laser light emitted from the emission end face 55a is made larger than the light intensity of the laser light emitted from the reflection end face 55b, and is on the emission end face 55a.
  • Red laser light having a wavelength of about 650 nm is emitted from the region (light emitting point) of the MQW active layer 53 in the vicinity of the ridge 54a.
  • the second semiconductor laser element LD2 is a GaN in which an n-type AlGaN cladding layer 62, an MQW active layer 63 made of InGaN / GaN, and a p-type AlGaN cladding layer 64 are stacked in this order on an upper surface 61a of an n-type GaN substrate 61.
  • a semiconductor laser element layer 65 is formed.
  • the GaN-based semiconductor laser element layer 65 is an example of the “semiconductor laser element layer made of a nitride-based semiconductor” in the present invention.
  • a ridge 64a extending in a stripe shape in the X direction is formed.
  • a current blocking layer 66 made of an insulator is formed on the upper surface of the GaN-based semiconductor laser element layer 65 other than the upper surface of the ridge 64a.
  • a p-side electrode p ⁇ b> 2 is formed on the upper surface of the current blocking layer 66, and is electrically connected to the GaN-based semiconductor laser element layer 65 on the upper surface of the ridge 64 a exposed from the current blocking layer 66.
  • the p-side electrode p2 is an example of the “second polarity-side electrode of the second semiconductor laser element” in the present invention.
  • n-side electrode n2 is formed on a lower surface (back surface) 61b opposite to the upper surface 61a of the n-type GaN substrate 61.
  • the n-side electrode n2 is an example of the “electrode on the first polarity side of the second semiconductor laser element” in the present invention.
  • An end face coating film made of a dielectric that controls the reflectance of the laser beam is formed on the front surface (emission end surface) 65a and the rear surface (reflection end surface) 65b of the GaN-based semiconductor laser element layer 65, respectively. ing.
  • the light intensity of the laser light emitted from the emission end face 65a is made larger than the light intensity of the laser light emitted from the reflection end face 65b.
  • a blue laser beam having a wavelength of about 460 nm is emitted from the region (light emitting point) of the MQW active layer 63 in the vicinity of the ridge 64a.
  • the third semiconductor laser element LD3 is a GaN in which an n-type AlGaN cladding layer 72, an MQW active layer 73 made of InGaN / GaN, and a p-type AlGaN cladding layer 74 are stacked in this order on an upper surface 71a of an n-type GaN substrate 71.
  • a semiconductor laser element layer 75 is formed.
  • the GaN-based semiconductor laser element layer 75 is an example of the “semiconductor laser element layer made of a nitride-based semiconductor” in the present invention.
  • a ridge 74a On the upper surface of the GaN-based semiconductor laser element layer 75, a ridge 74a extending in a stripe shape in the X direction is formed.
  • a current blocking layer 76 made of an insulator is formed on the upper surface of the GaN-based semiconductor laser element layer 75 other than the upper surface of the ridge 74a.
  • a p-side electrode p3 is formed on the upper surface of the current blocking layer 76, and is electrically connected to the GaN-based semiconductor laser element layer 75 on the upper surface of the ridge 74a exposed from the current blocking layer 76.
  • the p-side electrode p3 is an example of the “second polarity side electrode of the third semiconductor laser element” in the present invention.
  • n-side electrode n3 is formed on a lower surface (back surface) 71b opposite to the upper surface 71a of the n-type GaN substrate 71.
  • the n-side electrode n3 is an example of the “electrode on the first polarity side of the third semiconductor laser element” in the present invention.
  • An end face coating film made of a dielectric material that controls the reflectance of the laser beam is formed on the front surface (emission end surface) 75a and the rear surface (reflection end surface) 75b of the GaN-based semiconductor laser element layer 75, respectively. ing.
  • the light intensity of the laser light emitted from the emission end face 75a is made larger than the light intensity of the laser light emitted from the reflection end face 75b.
  • a green laser beam having a wavelength of about 550 nm is emitted from the region (light emitting point) of the MQW active layer 73 in the vicinity of the ridge 74a.
  • the first semiconductor laser element LD1 is configured to have a length in the X direction that is shorter than that of the second semiconductor laser element LD2, and the second semiconductor laser element LD2 has a length in the X direction. It is configured to be shorter than the third semiconductor laser element LD3.
  • connection electrodes 118, 128, and 138 the n-side electrode n1 of the first semiconductor laser element LD1 and the n-side of the second semiconductor laser element LD2, respectively, via the fusion layers 119, 129, and 139 made of solder.
  • the electrode n2 and the n-side electrode n3 of the third semiconductor laser element LD3 are joined.
  • the front surface 106c of the submount 106 and the emission end faces 55a, 65a, and 75a of the first semiconductor laser element LD1, the second semiconductor laser element LD2, and the third semiconductor laser element LD3 are disposed on the same plane.
  • the ridges 54a and 64a and the ridge 74a are arranged in parallel to each other.
  • One end of the Au wire W11 is bonded onto the first lead T1, and the other end of the Au wire W11 is bonded onto the upper surface of the p-side electrode p1 of the first semiconductor laser element LD1.
  • one end of the Au wire W12 is also bonded on the first lead T1, and the other end of the Au wire W12 is on the upper surface of the p-side electrode p2 of the second semiconductor laser element LD2. Bonded to.
  • one end of the Au wire W13 is also bonded on the first lead T1, and the other end of the Au wire W13 is exposed from the third semiconductor laser element LD3 when viewed from the Z direction. Bonding is performed on the upper surface of the connection electrode 138 formed.
  • One end portion of the Au wire W2 is bonded onto the second lead T2, and the other end portion of the Au wire W2 is exposed from the first semiconductor laser element LD1 when viewed from the Z direction. Bonding is performed on the upper surface of the connection electrode 118.
  • One end of the Au wire W31 is bonded onto the third lead T3, and the other end of the Au wire W31 is exposed from the second semiconductor laser element LD2 when viewed from the Z direction. Bonding is performed on the upper surface of the connection electrode 128.
  • On the third lead T3, one end of the Au wire W32 is also bonded, and the other end of the Au wire W32 is on the upper surface of the p-side electrode p3 of the third semiconductor laser element LD3. Bonded to.
  • the first lead T1 is provided to the p-side electrode p1 of the first semiconductor laser element LD1 and the second semiconductor laser element LD2 as shown in FIG.
  • the p-side electrode p2 and the n-side electrode n3 of the third semiconductor laser element LD3 are electrically connected.
  • the second lead T2 is electrically connected to the n-side electrode n1 of the first semiconductor laser element LD1
  • the third lead T3 is connected to the n-side electrode n2 of the second semiconductor laser element LD2.
  • it is electrically connected to the p-side electrode p3 of the third semiconductor laser element LD3.
  • Other configurations of the semiconductor laser device 400 are the same as those of the semiconductor laser device 300.
  • the three semiconductor laser elements LD1, LD2, and LD3 can be driven separately by applying a voltage to the leads T1, T2, and T3.
  • the first semiconductor laser element LD1, the second semiconductor laser element LD2, and the third semiconductor laser element LD3 are each configured separately, so that the light output of each semiconductor laser, etc.
  • the resonator length (length in the X direction) can be easily adjusted according to the characteristics. Thereby, when using for a display apparatus etc., ideal white light can be obtained easily.
  • Other effects of the semiconductor laser device 400 are the same as those of the semiconductor laser device 300.
  • FIG. 17 is a table showing wiring states of the semiconductor laser elements LD1, LD2, and LD3 in the semiconductor laser devices 410, 420, and 430 according to the first to third modifications of the fourth embodiment of the present invention.
  • FIG. 18 is a wiring diagram of the semiconductor laser elements LD1, LD2, and LD3 in the semiconductor laser device 420.
  • the semiconductor laser device 400 has the same configuration as that of the semiconductor laser device 400 of the fourth embodiment.
  • the semiconductor laser devices 420 and 430 are provided with the same photodiode PD1 as that of the semiconductor laser device 110 according to the first modification of the first embodiment with respect to the semiconductor laser devices 400 and 410, respectively. Has the same configuration as that of the semiconductor laser device 400 of the fourth embodiment.
  • the p-side electrode p1 of the first semiconductor laser element LD1 is connected to the second lead T2, and the n-side electrode n1 is connected to the first lead T1. .
  • the p-side electrode p2 of the second semiconductor laser element LD2 is connected to the third lead T3, and the n-side electrode n1 is connected to the first lead T1.
  • the p-side electrode p3 of the third semiconductor laser element LD3 is connected to the first lead T1, and the n-side electrode n3 is connected to the third lead T3.
  • the first semiconductor laser element LD1, the second semiconductor laser element LD2, and the third semiconductor laser element LD3 are connected to each other.
  • the three semiconductor laser elements LD1, LD2, and LD3 can be operated by the three leads T1, T2, and T3. .
  • the n-side electrode n1 of the first semiconductor laser element LD1 is connected to the fourth lead T4 via the package P, and the p-side electrode p1 is connected to the first lead T1. It is connected to the.
  • the p-side electrode p2 of the second semiconductor laser element LD2 is connected to the first lead T1, and the n-side electrode n1 is connected to the third lead T3.
  • the p-side electrode p3 of the third semiconductor laser element LD3 is connected to the third lead T3, and the n-side electrode n3 is connected to the first lead T1.
  • the p-side electrode p4 of the photodiode PD1 is connected to the second lead T2, and the n-side electrode n4 is connected to the fourth lead T4 through the package P.
  • the semiconductor laser device 420 as shown in FIG. 18, the first semiconductor laser element LD1, the second semiconductor laser element LD2, the third semiconductor laser element LD3, and the photodiode PD1 are connected to each other.
  • the package P fourth lead T4
  • the three leads T1, T3, and T2 The three semiconductor laser elements LD1, LD2, and LD3 and the photodiode PD1 can be operated.
  • the p-side electrode p1 of the first semiconductor laser element LD1 is connected to the fourth lead T4 through the package P, and the n-side electrode n1 is connected to the first lead T1. It is connected to the.
  • the p-side electrode p2 of the second semiconductor laser element LD2 is connected to the third lead T3, and the n-side electrode n1 is connected to the first lead T1.
  • the p-side electrode p3 of the third semiconductor laser element LD3 is connected to the first lead T1, and the n-side electrode n3 is connected to the third lead T3.
  • the p-side electrode p4 of the photodiode PD1 is connected to the second lead T2, and the n-side electrode n4 is connected to the fourth lead T4 through the package P.
  • the semiconductor laser device 430 referring to FIG. 7, the first semiconductor laser element LD1, the second semiconductor laser element LD2, the third semiconductor laser element LD3, and the photodiode PD1 are respectively connected.
  • the package P fourth lead T4
  • the package P (fourth lead T4) and the three leads T1, T3, and T2 The three semiconductor laser elements LD1, LD2, and LD3 and the photodiode PD1 can be operated.
  • FIG. 19 is a configuration diagram of an optical pickup 1000 according to the fifth embodiment of the present invention.
  • the optical pickup is an example of the “optical device” in the present invention.
  • an optical pickup 1000 includes a semiconductor laser device 110 according to a first modification of the first embodiment, and an optical system 500 that adjusts the laser light emitted from the semiconductor laser device 110. And a light detection unit 600 that receives the laser light.
  • the optical system 500 includes a polarization beam splitter (hereinafter abbreviated as polarization BS) 501, a collimator lens 502, a beam expander 503, a ⁇ / 4 plate 504, an objective lens 505, a cylindrical lens 506, and An optical axis correction element 507 is provided.
  • polarization BS polarization beam splitter
  • the polarization BS 501 totally transmits the laser light emitted from the semiconductor laser device 110 and totally reflects the laser light returning from the optical disk DI.
  • the collimator lens 502 converts the laser light transmitted through the polarization BS 501 into parallel light.
  • the beam expander 503 includes a concave lens, a convex lens, and an actuator (not shown). The actuator corrects the wavefront state of the laser light emitted from the semiconductor laser device 110 by changing the distance between the concave lens and the convex lens in accordance with a servo signal from a servo circuit described later.
  • the ⁇ / 4 plate 504 converts linearly polarized laser light converted into substantially parallel light by the collimator lens 502 into circularly polarized light.
  • the ⁇ / 4 plate 504 converts the circularly polarized laser beam returned from the optical disc DI into linearly polarized light.
  • the polarization direction of the linearly polarized light is orthogonal to the polarization direction of the linearly polarized light of the laser light emitted from the semiconductor laser device 110.
  • the objective lens 505 converges the laser light transmitted through the ⁇ / 4 plate 504 on the surface (recording layer) of the optical disc DI.
  • the objective lens 505 is moved in the focus direction, tracking direction, and tilt direction by an objective lens actuator (not shown) in accordance with servo signals (tracking servo signal, focus servo signal, and tilt servo signal) from a servo circuit described later. It has been made movable.
  • a cylindrical lens 506, an optical axis correction element 507, and a light detection unit 600 are arranged along the optical axis of the laser light totally reflected by the polarized light BS501.
  • the cylindrical lens 506 imparts astigmatism to the incident laser light.
  • the optical axis correction element 507 is configured by a diffraction grating, and a spot of zero-order diffracted light of each of blue-violet, red, and infrared laser beams that has passed through the cylindrical lens 506 is on a detection region of the light detection unit 600 described later. They are arranged to match.
  • the light detection unit 600 outputs a signal based on the intensity distribution of the received laser beam.
  • the light detection unit 600 has a detection area of a predetermined pattern so that a focus error signal, a tracking error signal, and a tilt error signal can be obtained together with the reproduction signal.
  • the optical pickup 1000 according to the fifth embodiment of the present invention is configured.
  • the optical pickup 1000 can selectively emit red, infrared, and blue-violet laser light from the semiconductor laser elements LD1, LD2, and LD3 (see FIG. 4) in the semiconductor laser device 110.
  • Laser light emitted from the semiconductor laser device 110 is adjusted by the polarization BS 501, the collimator lens 502, the beam expander 503, the ⁇ / 4 plate 504, the objective lens 505, the cylindrical lens 506, and the optical axis correction element 507 as described above. Then, the light is irradiated onto the detection region of the light detection unit 600.
  • the recording on the optical disc DI is performed in a state where the intensity of the laser light emitted from each of the semiconductor laser elements LD1, LD2, and LD3 is controlled to be constant.
  • the layer can be irradiated with laser light, and a reproduction signal output from the light detection unit 600 can be obtained.
  • it is monitored by the photodiode PD1 in the semiconductor laser device 110 and applied between the leads T1, T3, and T4.
  • the feedback control of the voltage is performed.
  • feedback control of the actuator of the beam expander 503 and the objective lens actuator that drives the objective lens 505 can be performed by the focus error signal, tracking error signal, and tilt error signal output from the light detection unit 600, respectively. .
  • the optical disc DI When recording information on the optical disc DI, the optical disc DI is irradiated with laser light while controlling the intensity of the laser light emitted from each of the semiconductor laser elements LD1, LD2, and LD3 based on the information to be recorded. As a result, information can be recorded on the recording layer of the optical disc DI.
  • feedback control is performed on the actuator of the beam expander 503 and the objective lens actuator that drives the objective lens 505 by the focus error signal, tracking error signal, and tilt error signal output from the light detection unit 600, respectively. be able to.
  • the optical pickup 1000 since the semiconductor laser device 110 according to the first modification of the first embodiment is mounted, the optical pickup 1000 can be easily downsized. Other effects of the optical pickup 1000 are the same as the effects of the semiconductor laser device 110 according to the first modification of the first embodiment.
  • FIG. 20 is a block diagram of an optical disc apparatus 2000 according to the sixth embodiment of the present invention.
  • the optical disk device is an example of the “optical device” in the present invention.
  • this optical disc apparatus 2000 includes an optical pickup 1000 according to the fifth embodiment, a drive system having a controller 1001 and a laser drive circuit 1002, a circuit system having a signal generation circuit 1003 and a servo circuit 1004, A disk drive motor 1005.
  • the controller 1001 receives recording data S1 generated based on information to be recorded on the optical disc DI.
  • the controller 1001 outputs a signal S2 to the laser drive circuit 1002 and outputs a signal S7 to the servo circuit 1004 in response to the recording data S1 and a first output signal S5 from a signal generation circuit 1003 described later. Output. Further, as will be described later, the controller 1001 outputs the reproduction data S10 based on the first output signal S5.
  • the laser drive circuit 1002 outputs a signal S3 for controlling the laser power emitted from the semiconductor laser device 300 in the optical pickup 1000 in response to the signal S2. That is, the semiconductor laser device 300 is driven by the controller 1001 and the laser drive circuit 1002.
  • the optical disc DI is irradiated with a laser beam controlled according to the signal S3.
  • a signal S 4 is output from the light detection unit 600 in the optical pickup 1000 toward the signal generation circuit 1003.
  • the optical system 500 (the actuator of the beam expander 503 and the objective lens actuator that drives the objective lens 505) in the optical pickup 1000 is controlled by a servo signal S8 from a servo circuit 1004 described later.
  • the signal generation circuit 1003 amplifies and calculates the signal S4 output from the optical pickup 1000, and outputs a first output signal S5 including a reproduction signal to the controller 1001, and performs feedback control of the optical pickup 1000 and A second output signal S6 for controlling the rotation of the optical disk DI described later is output to the servo circuit 1004.
  • the servo circuit 1004 is a motor that controls the servo signal S8 that controls the optical system 500 in the optical pickup 1000 and the disk drive motor 1005 in accordance with the second output signal S6 and the control signal S7 from the signal generation circuit 1003 and the controller 1001.
  • Servo signal S9 is output.
  • the disk drive motor 1005 controls the rotation speed of the optical disk DI according to the motor servo signal S9.
  • a laser having a wavelength to be irradiated by means for identifying the type (CD, DVD, BD, etc.) of the optical disc DI which is not described here. Light is selected.
  • a signal S2 is output from the controller 1001 to the laser drive circuit 1002 so that the intensity of the laser beam having a wavelength to be emitted from the semiconductor laser device 110 in the optical pickup 1000 is constant.
  • the function of the semiconductor laser device 110, the optical system 500, and the light detection unit 600 of the optical pickup 1000 allows the signal S4 including the reproduction signal to be generated from the light detection unit 600 as a signal generation circuit.
  • the signal generation circuit 1003 outputs the first output signal S5 including the reproduction signal to the controller 1001.
  • the controller 1001 processes the first output signal S5 to extract the reproduction signal recorded on the optical disc DI and output it as reproduction data S10.
  • this reproduction data S10 for example, information such as video and audio recorded on the optical disc DI can be output to a monitor, a speaker, or the like. Further, feedback control of each unit is also performed based on the signal S4 from the light detection unit 600.
  • laser light having a wavelength to be irradiated is selected by means for identifying the same type of optical disc DI (CD, DVD, .BR> AD, etc.) as described above.
  • a signal S2 is output from the controller 1001 to the laser driving circuit 1002 in accordance with the recording data S1 corresponding to the information to be recorded.
  • the semiconductor laser device 110, the optical system 500, and the light detection unit 600 of the optical pickup 1000 function to record information on the optical disc DI and Based on the signal S4, feedback control of each part is performed.
  • the optical disc device 2000 according to the sixth embodiment since the semiconductor laser device 110 according to the first modification of the first embodiment is mounted in the optical pickup 1000, the optical pickup 1000 can be easily downsized. Thereby, the optical disk device 2000 can be easily downsized. Other effects of the optical disc device 2000 are the same as those of the optical pickup 1000 according to the fifth embodiment.
  • FIG. 21 is a configuration diagram of a projector device 3000 according to the seventh embodiment of the present invention.
  • FIG. 22 is a timing chart of an image signal given to projector apparatus 3000.
  • the projector device is an example of the “optical device” in the present invention.
  • the projector device 3000 includes a semiconductor laser device 420 according to a second modification of the fourth embodiment of the present invention, and an optical system that is a modulation unit that modulates laser light emitted from the semiconductor laser device 420. 510, and a control unit 700 that controls the semiconductor laser device 420 and the optical system 510.
  • the laser light emitted from the semiconductor laser device 420 is converted into parallel light by the lens 511 and then incident on the light pipe 512.
  • the inner surface of the light pipe 512 is a mirror surface, and the laser light travels through the light pipe 512 while being repeatedly reflected by the inner surface of the light pipe 512. At this time, the intensity distribution of the laser light of each color emitted from the light pipe 512 is made uniform by the multiple reflection action in the light pipe 512.
  • the laser light emitted from the light pipe 512 is incident on a digital micromirror device (DMD) 514 via a relay optical system 513.
  • DMD digital micromirror device
  • the DMD 514 is composed of a group of minute mirrors arranged in a matrix.
  • the DMD 514 expresses (modulates) the gradation of each pixel by switching the light reflection direction at each pixel position between a first direction A toward the projection lens 515 and a second direction B deviating from the projection lens 515. ) Function.
  • the light (ON light) reflected in the first direction A is incident on the projection lens 515 and projected onto the projection surface (screen SC).
  • the light (OFF light) reflected in the second direction B by the DMD 514 is absorbed by the light absorber 516 without entering the projection lens 515.
  • the control unit 700 is controlled so that pulse power is supplied to the semiconductor laser device 420, whereby each semiconductor laser element LD1 (red semiconductor laser element) and LD2 (blue color) of the semiconductor laser device 420 is controlled.
  • the semiconductor laser element) and the LD3 (green semiconductor laser element) are configured to be divided in time series and periodically driven one by one.
  • the control unit 700 causes the DMD 514 of the optical system 510 to synchronize with the driving states of the semiconductor laser elements LD1, LD2, and LD3, and to detect each pixel (red (R), blue (B), and green (G)). The light is modulated in accordance with the gradations.
  • the R signal related to the driving of the first semiconductor laser element LD1 the B signal related to the driving of the second semiconductor laser element LD2, and the driving of the third semiconductor laser element LD3.
  • the G signal is supplied to the semiconductor laser elements LD1, LD2, and LD3 of the semiconductor laser device 420 by the control unit 700 in a state of being divided in time series so as not to overlap each other.
  • the B image signal, the G image signal, and the R image signal are respectively output from the control unit 700 to the DMD 514 in synchronization with the B signal, the G signal, and the R signal.
  • the blue light of the second semiconductor laser element LD2 is emitted based on the B signal in the timing chart shown in FIG. 22, and the blue light is modulated by the DMD 514 based on the B image signal at this timing. Is done.
  • the green light of the third semiconductor laser element LD3 is emitted based on the G signal output next to the B signal, and at this timing, the green light is modulated by the DMD 514 based on the G image signal.
  • the red light of the first semiconductor laser element LD1 is emitted based on the R signal output next to the G signal, and at this timing, the red light is modulated by the DMD 514 based on the R image signal.
  • the blue light of the second semiconductor laser element LD2 is emitted based on the B signal output next to the R signal, and at this timing, the blue light is again emitted by the DMD 514 based on the B image signal. Modulated.
  • an image by laser light irradiation based on the B image signal, the G image signal, and the R image signal is projected onto the projection surface (screen SC).
  • the projector device 3000 according to the seventh embodiment of the present invention is configured.
  • the projector device 3000 according to the seventh embodiment since the semiconductor laser device 420 according to the second modification of the fourth embodiment is mounted, the projector device 3000 can be easily downsized.
  • the other effects of the projector device 3000 are the same as those of the semiconductor laser device 420 according to the second modification of the fourth embodiment.
  • each of the leads T1, T2, and T3 is insulated from the package P.
  • the present invention is not limited to this, and any one lead is electrically connected to the package. May be.
  • the photodiode PD1 is connected to the second lead T2.
  • the present invention is not limited to this, and the photodiode PD1 is connected to another lead T1 or T3. Also good.
  • each Au wire connected to the lead T1 or T3 is wired to the package P.
  • the lead T4 (package P) is grounded.
  • the present invention is not limited to this, and may be insulated from the ground.
  • the three-wavelength semiconductor laser element emitting three colors of red, infrared, and blue-violet is used.
  • the present invention is not limited to this, and the fourth embodiment A three-wavelength semiconductor laser element that emits three colors of red, blue, and green may be used by using the material used in the embodiment and its modification.
  • each of the semiconductor laser elements LD1, LD2, and LD3 of the fourth embodiment and its modified examples uses the materials used in the first to third embodiments and its modified examples, so that red, infrared, and blue-violet colors can be obtained.
  • a semiconductor laser element that emits light may be used.
  • a semiconductor laser device according to another embodiment (and its modification) may be mounted.
  • the submounts 106 and 116 are made of conductive n-type Si.
  • the present invention is not limited to this, and may be made of an insulator such as high resistance Si or AlN. In this case, it is not necessary to form the insulating films 107 and 117 formed on the upper surface.
  • n-type GaAs substrate 100, 110, 120, 200, 300, 400, 410, 420, 430 Semiconductor laser device 101, 201 Three-wavelength semiconductor laser element 106, 116 Submount 500, 510 Optical system 1000 Optical pickup (optical device) 2000 Optical disk device (optical device) 3000 Projector device (optical device) LD1, LD2, LD3 Semiconductor laser element n1, n2, n3 n-side electrode n12 n-side electrode (shared electrode) P package p1, p2, p3 p-side electrode PD1, PD2 light receiving element T1, T2, T3, T4 Lead (terminal) W1, W11, W12, W13, W2, W31, W32, W4 Au wire

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)

Abstract

【課題】3つの半導体レーザ素子を搭載するパッケージを小型化することができる半導体レーザ装置を提供する。 【解決手段】この半導体レーザ装置100においては、第1のリードT1は、第1の半導体レーザ素子LD1及び第2の半導体レーザ素子LD2のn側電極n12と、第3の半導体レーザ素子LD3のp側電極p3とに電気的に接続されている。また、第2のリードT2は、第1の半導体レーザ素子LD1のp側電極p1に電気的に接続されており、第3のリードT3は、第2の半導体レーザ素子LD2のp側電極p2、及び、第3の半導体レーザ素子LD3のn側電極n3に電気的に接続されている。

Description

半導体レーザ装置及び光装置
 本発明は、半導体レーザ装置及び光装置に関する。
 従来、BD(Bru-ray Disc)、DVD(Digital Verstale Disc)及びCD(Comapct Disc)の記録・再生用の光ピックアップが知られている。この光ピックアップでは、青紫色、赤色及び赤外の3つの波長のレーザ光をそれぞれ出射可能な3つの半導体レーザ素子を1つのパッケージ内に配置した3波長半導体レーザ装置が知られている(例えば、特許文献1、2参照)。この光ピックアップにおいては、3波長半導体レーザ装置に配置された3つの半導体レーザ素子は同時に各波長のレーザ光を出射するのではなく、光ディスク装置等に挿入された光ディスクの種類に応じて選択された1つの半導体レーザ素子だけが駆動される。
 特許文献1には、従来の3波長半導体レーザ装置内の配線が記載されている。この従来の3波長半導体レーザ装置では、青紫色半導体レーザ素子、赤色半導体レーザ素子及び赤外半導体レーザ素子の各n側電極は、いずれもアースに接続され、各p側電極は、それぞれ、電気的に絶縁された各リード端子に接続されている。即ち、従来の3波長半導体レーザ装置では、接地端子以外に3つの端子が必要である。
 しかしながら、特許文献2に記載されているように、青紫色半導体レーザ素子は、赤色半導体レーザ素子及び赤外半導体レーザ素子よりも駆動電圧が高いので、上記3つの半導体レーザ素子を1つのパッケージ内に搭載する場合には、実際には、青紫色半導体レーザ素子のp側電極及びn側電極は、ともにアースに接続することなく、パッケージから絶縁した状態で配線(フローティング配線)が行われる。即ち、従来の3波長半導体レーザ装置では、赤色半導体レーザ素子及び赤外半導体レーザ素子の各n側電極はアースに接地され、各p側電極は、それぞれ、電気的に絶縁された各リード端子に接続されることから、3つの半導体レーザ素子を同時に駆動する必要がなく、別々に駆動する例えば光ピックアップに使用される場合においても、接地端子以外に4本のリード端子が必要である。
特開2004-304111号公報 特開2006-108168号公報
 従来の3つの半導体レーザ素子が集積化された半導体レーザ装置では、3つの半導体レーザ素子が別々に駆動する場合においても、上記のように、接地端子以外に4本のリード端子が必要となるので、パッケージのサイズをより小さくすることが困難であった。また、このパッケージ内に出射レーザ光の光強度をモニターするためのフォトダイオードを実装する場合には、さらにリード端子を追加する必要があるので、パッケージのサイズがさらに大きくなってしまうという不都合があった。
 また、半導体レーザ装置のパッケージが大きくなると、これらを実装する光ピックアップ装置や光ディスク装置等の光装置は、装置の小型化が困難になるという課題があった。
 本発明は、上記のような課題を解決するためになされたものであり、その第1の目的は、3つの半導体レーザ素子を搭載するパッケージを小型化することができる半導体レーザ装置を提供することである。
 また、本発明の第2の目的は、小型化が可能な光装置を提供することである。
 本発明の第1の局面による半導体レーザ装置は、第1の半導体レーザ素子、第2の半導体レーザ素子及び第3の半導体レーザ素子と、前記第1の半導体レーザ素子、前記第2の半導体レーザ素子及び前記第3の半導体レーザ素子が配置されたパッケージと、前記パッケージに取り付けられ、互いに電気的に絶縁された第1の端子、第2の端子及び第3の端子とを備え、前記第1の端子は、前記第1の半導体レーザ素子の第1の極性側の電極、前記第2の半導体レーザ素子の前記第1の極性側の電極、及び、前記第3の半導体レーザ素子の第2の極性側の電極と電気的に接続されており、前記第2の端子は、前記第1の半導体レーザ素子の前記第2の極性側の電極と電気的に接続されており、前記第3の端子は、前記第2の半導体レーザ素子の前記第2の極性側の電極、及び、前記第3の半導体レーザ素子の前記第1の極性側の電極と電気的に接続されている。なお、本発明では、第1の極性側の電極及び第2の極性側の電極は、それぞれ、各半導体レーザ素子の陽極(正極)及び陰極(負極)の内の一方側及び他方側の電極を意味している。
 本発明の第1の局面による半導体レーザ装置では、上記のように、各半導体レーザ素子の各電極が各端子に接続されているので、第1の端子及び第2の端子に電圧を印加することにより、第2及び第3の半導体レーザ素子を駆動することなく、第1の半導体レーザ素子を駆動することができる。また、第1及び第3の端子間に第2及び第3の半導体レーザ素子が互いに逆極性で接続されているので、第1及び第3の端子間に印加する電圧の極性を変えることにより、第1の半導体レーザ素子を駆動することなく、第2及び第3の半導体レーザを別々に駆動することができる。
 以上のように、本発明の第1の局面による半導体レーザ装置では、3つの端子で3つの半導体レーザ素子を別々に駆動することができるので、各半導体レーザ素子を配置するパッケージを小型化することができる。
 上記第1の局面による半導体レーザ装置において、好ましくは、前記第1の端子、前記第2の端子及び前記第3の端子のいずれか1つは、前記パッケージと電気的に接続されている。このように構成すれば、パッケージと電気的に接続された端子を接地することができるので、実質的に残りの2つの端子に印加する電圧を制御することにより3つの半導体レーザ素子を別々に駆動することができる。これにより、パッケージから絶縁された端子は2つあればよいので、パッケージをさらに小型化することができる。
 上記構成において、さらに好ましくは、前記パッケージに配置された受光素子と、前記パッケージに取り付けられているとともに、前記パッケージとは電気的に絶縁されている第4の端子とを備え、前記受光素子の第1の電極は前記第4の端子に接続されており、前記受光素子の第2の電極は前記パッケージに接続されている。このように構成すれば、パッケージと電気的に絶縁された3つの端子により、3つの半導体レーザ素子と受光素子とを動作させることができる。これにより、パッケージのサイズを大きくすることなく、各半導体レーザ素子から出射されるレーザ光の光強度をモニターすることが可能な受光素子をパッケージに配置することができる。
 上記構成において、さらに好ましくは、前記第1の半導体レーザ素子、前記第2の半導体レーザ素子、及び、前記第3の半導体レーザ素子の少なくともいずれか1つは、サブマウントの表面上に接合されており、前記受光素子は、前記サブマウントの表面上に配置されている。このように構成すれば、各半導体レーザ素子から出射されるレーザ光を受光するための受光素子の配置(位置決め)を容易に行うことができるとともに、受光素子の第2の電極とパッケージとの接続も容易に行うことができる。
 また、上記第1の局面による半導体レーザ装置において、好ましくは、前記第1の半導体レーザ素子及び前記第2の半導体レーザ素子は、共通の半導体基板を含み、前記半導体基板の裏面上には、前記第1の半導体レーザ素子及び前記第2の半導体レーザ素子が共有する前記第1の極性側の共有電極が形成されている。すなわち、第1の半導体レーザ素子の第1の極性側の電極及び第2の半導体レーザ素子の第1の極性側の電極は、半導体基板の裏面上に第1の極性側の共有電極として一体化して形成されている。このように構成すれば、第1の端子と第1及び第2の半導体レーザ素子の各第1の極性側の電極との接続を1つの接続手段により接続することができる。これにより、半導体レーザ装置の構成及び製造工程を簡略化することができる。
 また、第1及び第2の半導体レーザ素子がモノリシックに形成されているので、第1及び第2の半導体レーザ素子をパッケージに実装する際に、各半導体レーザ素子の発光点(レーザ光の出射位置)が相対的にずれることがない。これにより、各半導体レーザ素子の発光点の相対位置精度を向上させることができるので、半導体レーザ装置と外部の光学系とを組み合わせる際に、半導体レーザ装置の位置決めを容易に行うことができる。
 上記構成において、さらに好ましくは、前記第3の半導体レーザ素子は、前記第3の半導体レーザ素子の前記第2の極性側の電極と前記共有電極とが対向するように、前記半導体基板の裏面上に接合されている。このように構成すれば、第3の半導体レーザ素子の第2の極性側の電極と第1の端子との接続を、第1及び第2の半導体レーザ素子の共有電極を介して容易に行うことができる。また、例えば、第3の半導体レーザ素子の第2の極性側の電極と第1及び第2の半導体レーザ素子の共有電極とをワイヤ等で接続する必要もないので、半導体レーザ装置の構成及び製造工程を簡略化することができる。
 また、上記第1の局面による半導体レーザ装置において、好ましくは、前記第3の半導体レーザ素子は、窒化物系半導体からなる半導体レーザ素子層を含み、前記第1の端子及び前記第3の端子は、前記パッケージと電気的に絶縁されている。このように構成すれば、駆動電圧の大きい窒化物系半導体レーザ素子(第3の半導体レーザ素子)の両電極をパッケージと電気的に絶縁させた状態で配線(フローティング配線)を行うことができるので、既存のレーザドライバICを用いて駆動することが可能となり、第3の半導体レーザ素子の制御を良好に行うことができる。
 また、上記第1の局面による半導体レーザ装置において、好ましくは、前記第1の半導体レーザ素子及び前記第2の半導体レーザ素子は、窒化物系半導体からなる半導体レーザ素子層を含み、前記第1の端子、前記第2の端子及び前記第3の端子は、前記パッケージと電気的に絶縁されている。このように構成すれば、駆動電圧の大きい窒化物系半導体レーザ素子(第1及び第2の半導体レーザ素子)の各電極をパッケージと電気的に絶縁させた状態で配線(フローティング配線)を行うことができるので、第1及び第2の半導体レーザ素子の制御を容易に行うことができる。
 本発明の第2の局面による光装置は、第1の半導体レーザ素子、第2の半導体レーザ素子及び第3の半導体レーザ素子と、前記第1の半導体レーザ素子、前記第2の半導体レーザ素子及び前記第3の半導体レーザ素子が配置されたパッケージと、前記パッケージに取り付けられた第1の端子、第2の端子及び第3の端子とを有する半導体レーザ装置と、前記半導体レーザ装置から出射されるレーザ光を制御する光学系とを備え、前記第1の端子は、前記第1の半導体レーザ素子の第1の極性側の電極、前記第2の半導体レーザ素子の前記第1の極性側の電極、及び、前記第3の半導体レーザ素子の第2の極性側の電極と電気的に接続されており、前記第2の端子は、前記第1の半導体レーザ素子の前記第2の極性側の電極と電気的に接続されており、前記第3の端子は、前記第2の半導体レーザ素子の前記第2の極性側の電極、及び、前記第3の半導体レーザ素子の前記第1の極性側の電極と電気的に接続されている。
 本発明の第2の局面による光装置では、上記のように、各半導体レーザ素子の各電極が各端子に接続されているので、第1の端子及び第2の端子に電圧を印加することにより、第2及び第3の半導体レーザ素子を駆動することなく、第1の半導体レーザ素子を駆動することができる。また、第1及び第3の端子間に第2及び第3の半導体レーザ素子が互いに逆極性で接続されているので、第1及び第3の端子間に印加する電圧の極性を変えることにより、第1の半導体レーザ素子を駆動することなく、第2及び第3の半導体レーザを別々に駆動することができる。
 以上のように、本発明の第2の局面による光装置では、3つの端子で3つの半導体レーザ素子を別々に駆動することができるので、パッケージを小型化することができる半導体レーザ装置を用いることができる。これにより、光装置を小型化することができる。
 本発明によれば、小型化が容易な半導体レーザ装置及び光装置を提供することができる。
本発明の第1実施形態による半導体レーザ装置100の外観斜視図である。 半導体レーザ装置100のキャップ2を外した状態で、レーザ光の出射方向(X方向)から見たときの正面図である。 半導体レーザ装置100のキャップ2を外した状態で、レーザ光の出射方向(X方向)に対して直交する上方(Z方向)から見たときの上面図である。 図2の要部拡大図であって、半導体レーザ装置100内に配置されている3波長半導体レーザ素子101の正面図である。 半導体レーザ装置100における各半導体レーザ素子LD1、LD2及びLD3の配線図である。 本発明の第1実施形態の第1変形例による半導体レーザ装置110のキャップ2を外した状態での断面図である。 半導体レーザ装置110における各半導体レーザ素子LD1、LD2及びLD3の配線図である。 本発明の第1実施形態の第2変形例による半導体レーザ装置120のキャップ2を外した状態でサブマウント116上に接合された3波長半導体レーザ素子101をZ方向から見たときの上面図である。 図8のA2-A2線に沿った断面図である。 本発明の第2実施形態による半導体レーザ装置200のキャップ2を外した状態でサブマウント106上に接合された3波長半導体レーザ素子201をZ方向から見たときの上面図である。 本発明の第2実施形態による半導体レーザ装置200のキャップ2を外した状態でサブマウント106上に接合された3波長半導体レーザ素子201をX方向から見たときの正面図である。 本発明の第3実施形態による半導体レーザ装置300のキャップ2を外した状態でサブマウント106上に接合された各半導体レーザ素子LD1、LD2及びLD3をZ方向から見たときの上面図である。 本発明の第3実施形態による半導体レーザ装置300のキャップ2を外した状態でサブマウント106上に接合された各半導体レーザ素子LD1、LD2及びLD3をX方向から見たときの正面図である。 本発明の第4実施形態による半導体レーザ装置400のキャップ2を外した状態でサブマウント106上に接合された各半導体レーザ素子LD1、LD2及びLD3をZ方向から見たときの上面図である。 本発明の第4実施形態による半導体レーザ装置400のキャップ2を外した状態でサブマウント106上に接合された各半導体レーザ素子LD1、LD2及びLD3をX方向から見たときの正面図である。 半導体レーザ装置400における各半導体レーザ素子LD1、LD2及びLD3の配線図である。 本発明の第4実施形態の第1~第3変形例による半導体レーザ装置410、420及び430における各半導体レーザ素子LD1、LD2及びLD3の配線状態を示す表である。 半導体レーザ装置420における各半導体レーザ素子LD1、LD2及びLD3の配線図である。 本発明の第5実施形態による光ピックアップ1000の構成図である。 本発明の第6実施形態による光ディスク装置2000の構成図である。 本発明の第7実施形態によるプロジェクタ装置3000の構成図である。 プロジェクタ装置3000に与えられる画像信号のタイミングチャートである。
 以下、本発明の各実施形態を図面を用いて説明する。なお、以下の説明においては、半導体レーザ装置からのレーザ光の出射方向を正面方向(X方向)として、X方向の面を前面、X方向とは反対の-X方向の面を後面と呼ぶ。また、X方向と直交する方向を上面方向(Z方向)として、Z方向の面を上面、Z方向とは反対の-Z方向の面を下面と呼ぶ。また、X方向及びZ方向に平行な面を側面と呼ぶ。
 (第1実施形態)
 図1は、本発明の第1実施形態による半導体レーザ装置100の外観斜視図である。また、図2及び図3は、それぞれ、半導体レーザ装置100のキャップ2を外した状態で、レーザ光の出射方向(X方向)及び出射方向に対して直交する上方(Z方向)から見たときの正面図及び上面図である。また、図4は、図2の要部拡大図であって、半導体レーザ装置100内に配置されている3波長半導体レーザ素子101の正面図である。図5は、半導体レーザ装置100における各半導体レーザ素子LD1、LD2及びLD3の配線図である。
 本発明の第1実施形態による半導体レーザ装置100は、図1に示すように、パッケージPとパッケージPに取り付けられた金属製の第1のリードT1、第2のリードT2、第3のリードT3及び第4のリードT4とを備えている。なお、第1のリードT1、第2のリードT2及び第3のリードT3は、それぞれ、本発明の「第1の端子」、「第2の端子」及び「第3の端子」の一例である。パッケージPは、円板状の金属製のベース1と、ベース1の前面1aに取り付けられた金属製のキャップ2とを有し、キャップ2の前面の開口部2aには、透光性の光学窓3が取り付けられている。
 第1のリードT1、第2のリードT2及び第3のリードT3は、ベース1の後面1b側からベース1を貫通して、パッケージP内(キャップ2内)にまで延伸している。また、各リードT1、T2及びT3は、ベース1の前面1a及び後面1bを貫通する貫通穴1c、1d及び1e内にそれぞれ充填された絶縁部材5によって、ベース1と電気的に絶縁されるように固定されている。また、各リードT1、T2及びT3は、互いに電気的に絶縁されている。また、第4のリードT4は、接地端子であって、ベース1の後面1bから後方に向かって延伸するようにベース1と一体的に形成されており、パッケージPを接地するために用いられる。
 図2及び図3に示すように、キャップ2内には、ベース1の前面1aにベース1と一体的に形成されたヘッダ4が突出して形成されている。ヘッダ4の上面4a上には、後述する3波長半導体レーザ素子101が固定されており、ベース1とキャップ2とによって3波長半導体レーザ素子101は封止されている。
 3波長半導体レーザ素子101は、図3及び図4に示すように、同一方向(X方向)に各レーザ光を出射するように、n型Siからなるサブマウント106上に配置された第1の半導体レーザ素子LD1、第2の半導体レーザ素子LD2、及び、第3の半導体レーザ素子LD3を備えている。
 ここで、第1の半導体レーザ素子LD1及び第2の半導体レーザ素子LD2は、n型GaAs基板11上にモノリシックに形成されている。即ち、n型GaAs基板11の下面11a上において、n型GaAs基板11の一方の側面11cに沿った領域に第1の半導体レーザ素子LD1が形成されており、他方の側面11dに沿った領域に第2の半導体レーザ素子LD2が形成されている。なお、n型GaAs基板11は、本発明の「共通の半導体基板」の一例である。
 具体的には、第1の半導体レーザ素子LD1は、n型GaAs基板11の下面11a上に、n型AlGaInPクラッド層12、GaInP/AlGaInPからなるMQW活性層13、p型AlGaInPクラッド層14がこの順に積層されたGaInP系半導体レーザ素子層15を備えている。GaInP系半導体レーザ素子層15の下面には、X方向にストライプ状に延びるリッジ14aが形成されている。リッジ14aの下面以外のGaInP系半導体レーザ素子層15の下面上には、絶縁体からなる電流ブロック層16が形成されている。電流ブロック層16の下面上にはp側電極p1が形成されており、電流ブロック層16から露出されたリッジ14aの下面において、GaInP系半導体レーザ素子層15と電気的に接続されている。なお、p側電極p1は、本発明の「第1の半導体レーザ素子の第2の極性側の電極」の一例である。
 第2の半導体レーザ素子LD2は、n型GaAs基板11の下面11a上に、n型AlGaAsクラッド層22、AlGaAsからなるMQW活性層23、p型AlGaAsクラッド層24がこの順に積層されたGaAs系半導体レーザ素子層25を備えている。GaAs系半導体レーザ素子層25の下面には、リッジ14aと平行に、X方向にストライプ状に延びるリッジ24aが形成されている。GaInP系半導体レーザ素子層15とGaAs系半導体レーザ素子層25との間には溝部17が形成されており、GaInP系半導体レーザ素子層15とGaAs系半導体レーザ素子層25とは離れて形成されている。溝部17の表面には、上記電流ブロック層16が延伸して形成されており、リッジ24aの下面以外のGaAs系半導体レーザ素子層25の下面上にも電流ブロック層16が延伸して形成されている。電流ブロック層16の下面上にはp側電極p2が形成されており、電流ブロック層16から露出されたリッジ24aの下面において、GaAs系半導体レーザ素子層25と電気的に接続されている。なお、p側電極p2は、本発明の「第2の半導体レーザ素子の第2の極性側の電極」の一例である。
 n型GaAs基板11の下面11aとは反対側の上面(裏面)11b上には、第1の半導体レーザ素子LD1及び第2の半導体レーザ素子LD2が共有するn側電極n12が形成されている。なお、n側電極n12は、本発明の「第1の半導体レーザ素子の第1の極性側の電極」及び「第2の半導体レーザ素子の第1の極性側の電極」の一例であるとともに、「第1の極性側の共有電極」の一例である。すなわち、n側電極n12は、第1の半導体レーザ素子LD1のn側電極及び第2の半導体レーザ素子LD2のn側電極として機能する。
 GaInP系半導体レーザ素子層15の前面(出射端面)15a及び後面(反射端面)15bには、それぞれ、レーザ光の反射率を制御する誘電体からなる端面コート膜(図示せず)が形成されている。これにより、第1の半導体レーザ素子LD1では、出射端面15aからX方向に出射されるレーザ光の光強度は、反射端面15bから-X方向に出射されるレーザ光の光強度よりも大きくされており、出射端面15a上のリッジ14a近傍のMQW活性層13の領域(発光点)から、約650nmの波長を有する赤色光のレーザ光が出射される。
 GaAs系半導体レーザ素子層25の前面(出射端面)25a及び後面(反射端面)25bには、それぞれ、レーザ光の反射率を制御する誘電体からなる端面コート膜(図示せず)が形成されている。これにより、第2の半導体レーザ素子LD2では、出射端面25aから出射されるレーザ光の光強度は、反射端面25bから出射されるレーザ光の光強度よりも大きくされており、出射端面25a上のリッジ24a近傍のMQW活性層23の領域(発光点)から、約780nmの波長を有する赤外光のレーザ光が出射される。
 第3の半導体レーザ素子LD3は、n型GaN基板31の下面31a上に、n型AlGaNクラッド層32、InGaN/GaNからなるMQW活性層33、p型AlGaNクラッド層34がこの順に積層されたGaN系半導体レーザ素子層35を備えている。なお、GaN系半導体レーザ素子層35は、本発明の「窒化物系半導体からなる半導体レーザ素子層」の一例である。GaN系半導体レーザ素子層35の下面には、X方向にストライプ状に延びるリッジ34aが形成されている。リッジ34aの下面以外のGaN系半導体レーザ素子層35の下面上には、絶縁体からなる電流ブロック層36が形成されている。電流ブロック層36の下面上にはp側電極p3が形成されており、電流ブロック層36から露出されたリッジ34aの下面において、GaN系半導体レーザ素子層35と電気的に接続されている。なお、p側電極p3は、本発明の「第3の半導体レーザ素子の第2の極性側の電極」の一例である。
 n型GaN基板31の下面31aとは反対側の上面(裏面)31b上には、n側電極n3が形成されている。なお、n側電極n3は、本発明の「第3の半導体レーザ素子の第1の極性側の電極」の一例である。
 GaN系半導体レーザ素子層35の前面(出射端面)35a及び後面(反射端面)35bには、それぞれ、レーザ光の反射率を制御する誘電体からなる端面コート膜(図示せず)がそれぞれ形成されている。これにより、第3の半導体レーザ素子LD3では、出射端面35aから出射されるレーザ光の光強度は、反射端面35bから出射されるレーザ光の光強度よりも大きくされており、出射端面35a上のリッジ34a近傍のMQW活性層33の領域(発光点)から、約405nmの波長を有する青紫色光のレーザ光が出射される。
 なお、第3の半導体レーザ素子LD3は、X方向の長さが第1の半導体レーザ素子LD1及び第2の半導体レーザ素子LD2よりも短くなるように構成されている。ここで、第3の半導体レーザ素子LD3のn型GaN基板31は、比較的高価であることから、その共振器長を短くすることにより、第3の半導体レーザ素子を安価に提供することができる。また、第1の半導体レーザ素子LD1及び第2の半導体レーザ素子LD2のn型GaAs基板11では、その共振器長を長くすることにより、信頼性を高くすることができる。
 サブマウント106の上面106aには、絶縁層107が形成されており、絶縁層107上には、X方向に短冊状に延びる接続電極118及び128が互いに離れて形成されている。なお、接続電極118及び128は、X方向の長さが第1の半導体レーザ素子LD1及び第2の半導体レーザ素子LD2よりも長い。接続電極118及び128上には、それぞれ、半田からなる融着層119及び129を介してp側電極p1及びp2が対向するように、第1の半導体レーザ素子LD1及び第2の半導体レーザ素子LD2がジャンクションダウン構造で接合されている。ここで、サブマウント106の前面106cと第1の半導体レーザ素子LD1及び第2の半導体レーザ素子LD2の出射端面15a及び25aとは、同一面上に配置されている。
 n側電極n12上の第2の半導体レーザ素子LD2の上方に対応する領域には、半田からなる融着層139を介してp側電極p3が対向するように、第3の半導体レーザ素子LD3がジャンクションダウン構造で接合されている。ここで、第1の半導体レーザ素子LD1及び第2の半導体レーザ素子LD2の出射端面15a及び25aと第3の半導体レーザ素子LD3の出射端面35aとは、同一面上に配置されているとともに、リッジ34aとリッジ14a及び24aとは、平行に配置されている。
 サブマウント106の上面106aとは反対側の下面(裏面)106bは、融着層(図示せず)を介してヘッダ4の上面4aに接合されている。ここで、サブマウント106の前面106cとヘッダ4の前面4cとは、同一面上に配置されている。
 第1のリードT1上には、AuワイヤW1の一方の端部がボンディングされており、AuワイヤW1の他方の端部は、Z方向から見て、第3の半導体レーザ素子LD3から露出されたn側電極n12の上面上にボンディングされている。第2のリードT2上には、AuワイヤW2の一方の端部がボンディングされており、AuワイヤW2の他方の端部は、Z方向から見て、第1の半導体レーザ素子LD1から露出された接続電極118の上面上にボンディングされている。第3のリードT3上には、AuワイヤW31の一方の端部がボンディングされており、AuワイヤW31の他方の端部は、Z方向から見て、第2の半導体レーザ素子LD2から露出された接続電極128の上面上にボンディングされている。また、第3のリードT3上には、AuワイヤW32の一方の端部もボンディングされており、AuワイヤW32の他方の端部は、n側電極n3上にボンディングされている。なお、各ワイヤは、極力短くなるように配線されることが好ましいが、各半導体レーザ素子側のボンディング位置に関しては、高速パルス応答を考慮して、n側電極n12あるいはn側電極n3の中央付近に形成されることが好ましい。
 この半導体レーザ装置100においては、上記構成を備えることにより、図5に示すように、第1のリードT1は、第1の半導体レーザ素子LD1及び第2の半導体レーザ素子LD2のn側電極n12と、第3の半導体レーザ素子LD3のp側電極p3とに電気的に接続されている。また、第2のリードT2は、第1の半導体レーザ素子LD1のp側電極p1に電気的に接続されており、第3のリードT3は、第2の半導体レーザ素子LD2のp側電極p2、及び、第3の半導体レーザ素子LD3のn側電極n3に電気的に接続されている。
 この半導体レーザ装置100では、第1の半導体レーザ素子LD1に順方向の電圧が印加されるように、第1のリードT1及び第2のリードT2に電圧を印加することにより、第2の半導体レーザ素子LD2及び第3の半導体レーザ素子LD3を駆動することなく、第1の半導体レーザ素子LD1を駆動することができる。また、第2の半導体レーザ素子LD2に順方向の電圧が印加されるように(第3の半導体レーザ素子LD3に逆方向の電圧が印加されるように)、第1のリードT1及び第3のリードT3の間に電圧を印加することにより、第1の半導体レーザ素子LD1及び第3の半導体レーザ素子LD3を駆動することなく、第2の半導体レーザ素子LD2を駆動することができる。また、第3の半導体レーザ素子LD3に順方向の電圧が印加されるように(第2の半導体レーザ素子LD2に逆方向の電圧が印加されるように)、第1のリードT1及び第3のリードT3の間に電圧を印加することにより、第1の半導体レーザ素子LD1及び第2の半導体レーザ素子LD2を駆動することなく、第3の半導体レーザ素子LD3を駆動することができる。
 以上のように、この半導体レーザ装置100では、3つのリードT1、T2及びT3で3つの半導体レーザ素子LD1、LD2及びLD3を別々に駆動することができるので、各半導体レーザ素子LD1、LD2及びLD3を配置するパッケージを小型化することができる。
 また、この半導体レーザ装置100では、第1の半導体レーザ素子LD1及び第2の半導体レーザ素子LD2は、共通のn型GaAs基板11を有しており、n型GaAs基板11の裏面11b上に形成されているn側電極n12を共有している。これにより、第1のリードT1と第1の半導体レーザ素子LD1及び第2の半導体レーザ素子LD2のそれぞれのn側電極との接続を1つの接続手段(AuワイヤW1)により接続することができる。その結果、半導体レーザ装置100の構成及び製造工程を簡略化することができる。また、第1の半導体レーザ素子LD1及び第2の半導体レーザ素子LD2がモノリシックに形成されているので、第1の半導体レーザ素子LD1及び第2の半導体レーザ素子LD2をパッケージPに実装する際に、各半導体レーザ素子の発光点(レーザ光の出射位置)が相対的にずれることがない。これにより、第1の半導体レーザ素子LD1及び第2の半導体レーザ素子LD2の発光点の相対位置精度を向上させることができるので、半導体レーザ装置100と外部の光学系とを組み合わせる際に、半導体レーザ装置100の位置決めを容易に行うことができる。
 また、この半導体レーザ装置100では、第3の半導体レーザ素子LD3は、そのp側電極p3と第1の半導体レーザ素子LD1及び第2の半導体レーザ素子LD2のn側電極n12とが対向するように、n型GaAs基板11の裏面11b上に接合されている。このように構成すれば、第3の半導体レーザ素子LD3のp側電極p3と第1のリードT1との接続をn側電極n12を介して容易に行うことができる。また、例えば、第3の半導体レーザ素子LD3のp側電極p3と第1の半導体レーザ素子LD1及び第2の半導体レーザ素子LD2のn側電極n12とをワイヤ等で接続する必要もないので、半導体レーザ装置100の構成及び製造工程を簡略化することができる。
 また、この半導体レーザ装置100では、第3の半導体レーザ素子LD3は、GaN系半導体レーザ素子層35を有しており、第1のリードT1及び第3のリードT3は、パッケージPと電気的に絶縁されている。これにより、駆動電圧の大きいGaN系半導体レーザ素子(第3の半導体レーザ素子LD3)の両電極p3及びn3をパッケージPと電気的に絶縁させた状態で配線(フローティング配線)を行うことができるので、既存のレーザドライバICを用いて駆動することが可能となり、第3の半導体レーザ素子の制御を良好に行うことができる。なお、GaN系半導体レーザ素子(第3の半導体レーザ素子LD3)を上記のようにフローティング配線の状態で駆動するためには、第1の半導体レーザ素子LD1および第2の半導体レーザ素子LD2を駆動するためのレーザドライバ側のGNDラインをオープンに切替え可能であることが必要である。
 (第1実施形態の第1変形例)
 図6は、本発明の第1実施形態の第1変形例による半導体レーザ装置110のキャップ2を外した状態での断面図であって、図2のA1-A1線に沿った断面図に相当する。なお、図6では、3波長半導体レーザ素子101及びサブマウント106については概略の位置のみ1点鎖線で示し、各Auワイヤの記載は省略している。また、図7は、半導体レーザ装置110における各半導体レーザ素子LD1、LD2及びLD3の配線図である。なお、以下の説明においては、第1実施形態による半導体レーザ装置100と同様の構成については、同じ符号を付けて、その説明を省略する。
 本発明の第1実施形態の第1変形例による半導体レーザ装置110の構成は、上記半導体レーザ装置100と比較して、パッケージP内にフォトダイオードPD1を備えている点が相違している。即ち、図6に示すように、ベース1の前面1aには、3波長半導体レーザ素子101の各反射端面15b、25b及び35b(図3参照)と対向する位置に凹部1fが形成されている。凹部1f内には、融着層(図示せず)によりフォトダイオードPD1が接合されており、フォトダイオードPD1の後面上に形成されているn側電極n4とベース1の前面1aとが電気的に接続されている。なお、フォトダイオードPD1は、本発明の「受光素子」の一例である。
 図3を参照して、上記半導体レーザ装置100において接続電極118に接続されていたAuワイヤW2の他方の端部は、フォトダイオードPD1の前面上のp側電極p4に接続されている。接続電極118の上面には、代わりに、AuワイヤW4(図示せず)の一方の端部がボンディングされており、AuワイヤW4(図示せず)の他方の端部は、ヘッダ4の上面4aに接続されている。これにより、第1の半導体レーザ素子LD1のp側電極p1は、パッケージPを介して第4のリードT4と電気的に接続されている。なお、第1のリードT1、第4のリードT4、第3のリードT3及び第2のリードT2は、それぞれ、本発明の「第1の端子」、「第2の端子」、「第3の端子」及び「第4の端子」の一例である。この半導体レーザ装置110のその他の構成は、上記半導体レーザ装置100の構成と同様である。
 この半導体レーザ装置110においては、上記構成を備えることにより、図7に示すように、第1のリードT1は、第1の半導体レーザ素子LD1及び第2の半導体レーザ素子LD2のn側電極n12と、第3の半導体レーザ素子LD3のp側電極p3とに接続されている。また、第1の半導体レーザ素子LD1のp側電極p1は、パッケージ1及び第4のリードT4を介して接地されている。また、第3のリードT3は、第2の半導体レーザ素子LD2のp側電極p2、及び、第3の半導体レーザ素子LD3のn側電極n3に接続されている。
 この半導体レーザ装置110では、第4のリードT4がパッケージPと電気的に接続されているので、パッケージPと電気的に接続された第4のリードT4を接地することができる。これにより、実質的に残りの2つのリードT1及びT3に印加する電圧を制御することにより3つの半導体レーザ素子LD1、LD2及びLD3を別々に駆動することができるので、パッケージPから絶縁された端子は2つ(第1のリードT1及び第3のリードT3)あればよい。その結果、各半導体レーザ素子LD1、LD2及びLD3を駆動する目的においては(フォトダイオードPD1が無い場合には)、第2のリードT2は不要となるので、半導体レーザ装置110のパッケージPをさらに小型化することができる。
 また、この半導体レーザ装置110では、パッケージPに配置されたフォトダイオードPD1と、パッケージPに取り付けられているとともに、パッケージPとは電気的に絶縁されている第2のリードT2とを備えている。また、フォトダイオードPD1のp側電極p4は、第2のリードT2に接続されており、フォトダイオードPD1のn側電極n4は、パッケージPに接続されている。これにより、パッケージP(第4のリードT4)と3つのリードT1、T3及びT2とにより、3つの半導体レーザ素子LD1、LD2及びLD3とフォトダイオードPD1とを動作させることができる。これにより、パッケージPのサイズを大きくすることなく、各半導体レーザ素子LD1、LD2及びLD3から出射されるレーザ光の光強度をモニターすることが可能なフォトダイオードPD1をパッケージPに配置することができる。この半導体レーザ装置110のその他の効果は、上記半導体レーザ装置100の効果と同様である。
 (第1実施形態の第2変形例)
 図8は、本発明の第1実施形態の第2変形例による半導体レーザ装置120のキャップ2を外した状態でサブマウント116上に接合された3波長半導体レーザ素子101をZ方向から見たときの上面図である。また、図9は、図8のA2-A2線に沿った断面図である。なお、以下の説明においては、上記第1変形例による半導体レーザ装置110と同様の構成については、同じ符号を付けて、その説明を省略する。
 本発明の第1実施形態の第2変形例による半導体レーザ装置120の構成は、上記半導体レーザ装置110と比較して、ベース1の前面1aに取り付けられていたフォトダイオードPD1に代えて、サブマウント116の上面116aの後方(-X方向)にフォトダイオードPD2を配置している点が相違している。なお、フォトダイオードPD2は、本発明の「受光素子」の一例である。
 図9に示すように、n型Siからなるサブマウント116の上面116aの後方領域にはp型領域116pが形成されており、p型領域116pを受光面とするフォトダイオードPD2を構成している。p型領域116pの一方の側端部(第2のリードT2に近接している側の端部)上には、p側電極p5が形成されている。サブマウント116の上面116a上には、p型領域116pの前方(X方向)の領域を覆うように絶縁膜117が形成されている。また、絶縁膜117は、p側電極p5と上面116aとの間を絶縁するように、サブマウント116の上面116aのp側電極p5が形成されている領域にまで延伸して形成されている。
 半導体レーザ装置120では、第2のリードT2と接続されているAuワイヤW2の他方の端部は、フォトダイオードPD2のp側電極p5にボンディングされている。サブマウント116の上面116aとは反対側の下面(裏面)116bは、融着層(図示せず)を介してヘッダ4の上面4aに接合されている。また、サブマウント116の前面116cとヘッダ4の前面4cとは、同一面上に配置されている。この半導体レーザ装置120のその他の構成は、上記半導体レーザ装置110の構成と同様である。
 この半導体レーザ装置120では、フォトダイオードPD2をサブマウント116の上面116a上に形成しているので、各半導体レーザ素子LD1、LD2及びLD3から出射されるレーザ光の光強度を容易にモニターすることができるとともに、ベース1の前面1aの凹部1f(図6参照)に個別のフォトダイオードをボンディングする必要もなく、製造プロセスを簡略化することができる。この半導体レーザ装置120のその他の効果は、上記半導体レーザ装置110の効果と同様である。
 (第2実施形態)
 図10及び図11は、それぞれ、本発明の第2実施形態による半導体レーザ装置200のキャップ2を外した状態でサブマウント106上に接合された3波長半導体レーザ素子201をZ方向及びX方向から見たときの上面図及び正面図である。なお、以下の説明においては、上記第1実施形態による半導体レーザ装置100と同様の構成については、同じ符号を付けて、その説明を省略する。
 本発明の第2実施形態による半導体レーザ装置200は、上記半導体レーザ装置100と比較して、3波長半導体レーザ素子201を構成する各半導体レーザ素子LD1、LD2及びLD3の接合の仕方が相違している。即ち、第1の半導体レーザ素子LD1及び第2の半導体レーザ素子LD2と第3の半導体レーザ素子LD3とが、p側電極p1及びp側電極p2とp側電極p3とが対向するように接合されている。
 具体的には、第1の半導体レーザ素子LD1及び第2の半導体レーザ素子LD2の上面には、第1の半導体レーザ素子LD1と第2の半導体レーザ素子LD2との間の溝部17を埋め込むように絶縁層18が形成されており、絶縁層18の上面は平坦に形成されている。絶縁層18上には接続電極138が形成されている。第3の半導体レーザ素子LD3のp側電極p3は、半田からなる融着層139を介して接続電極138と電気的に接続されている。ここで、第3の半導体レーザ素子LD3の出射端面35aと第1の半導体レーザ素子LD1及び第2の半導体レーザ素子LD2の出射端面15a及び25aとは、同一面上に配置されているとともに、リッジ14a及び24aとリッジ34aとは互いに平行に配置されている。
 第1の半導体レーザ素子LD1及び第2の半導体レーザ素子LD2が共有するn側電極n12は、半田からなる融着層219を介してサブマウント106上の接続電極218と電気的に接続されている。ここで、サブマウント106の前面106cと第1の半導体レーザ素子LD1及び第2の半導体レーザ素子LD2の出射端面15a及び25aとは、同一面上に配置されている。
 第1のリードT1上には、AuワイヤW11及びW12がボンディングされており、AuワイヤW11の他方の端部は、Z方向から見て、第1の半導体レーザ素子LD1及び第2の半導体レーザ素子LD2から露出された接続電極218の上面上にボンディングされており、AuワイヤW12の他方の端部は、Z方向から見て、第3の半導体レーザ素子LD3から露出された接続電極138の上面上にボンディングされている。第2のリードT2上には、AuワイヤW2がボンディングされており、AuワイヤW2の他方の端部は、電流ブロック層16から露出された第1の半導体レーザ素子LD1のp側電極p1上にボンディングされている。第3のリードT3上には、AuワイヤW31及びW32がボンディングされており、AuワイヤW31の他方の端部は、電流ブロック層16から露出された第2の半導体レーザ素子LD2のp側電極p2上にボンディングされており、AuワイヤW32の他方の端部は、第3の半導体レーザ素子LD3のn側電極n3上にボンディングされている。この半導体レーザ装置200のその他の構成は、上記半導体レーザ装置100の構成と同様である。
 この半導体レーザ装置200においても、上記構成を備えることにより、図5に示すように、第1の半導体レーザ素子LD1、第2の半導体レーザ素子LD2及び第3の半導体レーザ素子LD3がそれぞれ接続されている。
 この半導体レーザ装置200では、第1の半導体レーザ素子LD1のp側電極p1及び第2の半導体レーザ素子LD2のp側電極p2と第3の半導体レーザ素子LD3のp側電極p3とを対向させて接合しているので、各半導体レーザ素子LD1、LD2及びLD3の発光点を近づけることができる。これにより、外部の光学系と組み合わせる際に、容易に調整を行うことができる。この半導体レーザ装置200のその他の効果は、上記半導体レーザ装置100の効果と同様である。
 (第3実施形態)
 図12及び図13は、それぞれ、本発明の第3実施形態による半導体レーザ装置300のキャップ2を外した状態でサブマウント106上に接合された各半導体レーザ素子LD1、LD2及びLD3をZ方向及びX方向から見たときの上面図及び正面図である。なお、以下の説明においては、上記第1実施形態による半導体レーザ装置100と同様の構成については、同じ符号を付けて、その説明を省略する。
 本発明の第3実施形態による半導体レーザ装置300では、第1の半導体レーザ素子LD1、第2の半導体レーザ素子LD2、及び、第3の半導体レーザ素子LD3が、それぞれ、サブマウント106上にジャンクションダウンで接合されている。即ち、サブマウント106上の絶縁層107上には、X方向に沿って互いに離れて、接続電極118、128及び138が形成されている。なお、接続電極118、128及び138は、それぞれ、X方向の長さが第1の半導体レーザ素子LD1、第2の半導体レーザ素子LD2及び第3の半導体レーザ素子LD3よりも長くなるように構成されている。接続電極118、128及び138上には、それぞれ、半田からなる融着層119、129及び139を介して第1の半導体レーザ素子LD1のp側電極p1、第2の半導体レーザ素子LD2のp側電極p2、及び、第3の半導体レーザ素子LD3のp側電極p3が接合されている。ここで、サブマウント106の前面106cと第1の半導体レーザ素子LD1、第2の半導体レーザ素子LD2及び第3の半導体レーザ素子LD3の出射端面15a、25a及び35aは、同一面上に配置されているとともに、リッジ14a及び24aとリッジ34aとは互いに平行に配置されている。
 第1のリードT1上には、AuワイヤW11及びW12がボンディングされており、AuワイヤW11の他方の端部は、第1の半導体レーザ素子LD1及び第2の半導体レーザ素子LD2のn側電極n12の上面上にボンディングされており、AuワイヤW12の他方の端部は、Z方向から見て、第3の半導体レーザ素子LD3から露出された接続電極138の上面上にボンディングされている。第2のリードT2上には、AuワイヤW2がボンディングされており、AuワイヤW2の他方の端部は、Z方向から見て、第1の半導体レーザ素子LD1から露出された接続電極118上にボンディングされている。第3のリードT3上には、AuワイヤW31及びW32がボンディングされており、AuワイヤW31の他方の端部は、Z方向から見て、第2の半導体レーザ素子LD2から露出された接続電極128上にボンディングされており、AuワイヤW32の他方の端部は、第3の半導体レーザ素子LD3のn側電極n3上にボンディングされている。この半導体レーザ装置300のその他の構成は、上記半導体レーザ装置100の構成と同様である。
 この半導体レーザ装置300においても、上記構成を備えることにより、図5に示すように、第1の半導体レーザ素子LD1、第2の半導体レーザ素子LD2及び第3の半導体レーザ素子LD3がそれぞれ接続されている。
 この半導体レーザ装置300では、第1の半導体レーザ素子LD1、第2の半導体レーザ素子LD2及び第3の半導体レーザ素子LD3の全てが、ジャンクションダウンでサブマウント106の上面106a上に接合しているので、各半導体レーザ素子の発光点の高さ(サブマウント106からの距離)を略等しくすることができる。これにより、外部の光学系と組み合わせる際に、容易に調整を行うことができる。
 また、各半導体レーザ素子LD1、LD2及びLD3がいずれもジャンクションダウンでサブマウント106上に接合されているので、放熱特性が向上しており、高出力時の信頼性が高い。この半導体レーザ装置300のその他の効果は、上記半導体レーザ装置100の効果と同様である。
 (第4実施形態)
 図14及び図15は、それぞれ、本発明の第4実施形態による半導体レーザ装置400のキャップ2を外した状態でサブマウント106上に接合された各半導体レーザ素子LD1、LD2及びLD3をZ方向及びX方向から見たときの上面図及び正面図である。また、図16は、半導体レーザ装置400における各半導体レーザ素子LD1、LD2及びLD3の配線図である。なお、以下の説明においては、上記第3実施形態による半導体レーザ装置300と同様の構成については、同じ符号を付けて、その説明を省略する。
 本発明の第4実施形態による半導体レーザ装置400では、それぞれ別個に形成された第1の半導体レーザ素子LD1、第2の半導体レーザ素子LD2及び第3の半導体レーザ素子LD3がジャンクションアップでサブマウント106上に接合されている。
 第1の半導体レーザ素子LD1は、n型GaAs基板51の上面51a上に、n型AlGaInPクラッド層52、GaInP/AlGaInPからなるMQW活性層53、p型AlGaInPクラッド層54がこの順に積層されたGaInP系半導体レーザ素子層55を備えている。GaInP系半導体レーザ素子層55の上面には、X方向にストライプ状に延びるリッジ54aが形成されている。リッジ54aの上面以外のGaInP系半導体レーザ素子層55の上面上には、絶縁体からなる電流ブロック層56が形成されている。電流ブロック層56の上面上にはp側電極p1が形成されており、電流ブロック層56から露出されたリッジ54aの上面において、GaInP系半導体レーザ素子層55と電気的に接続されている。なお、p側電極p1は、本発明の「第1の半導体レーザ素子の第2の極性側の電極」の一例である。
 n型GaAs基板51の上面51aとは反対側の下面(裏面)51b上には、n側電極n1が形成されている。なお、n側電極n1は、本発明の「第1の半導体レーザ素子の第1の極性側の電極」の一例である。
 GaInP系半導体レーザ素子層55の前面(出射端面)55a及び後面(反射端面)55bには、それぞれ、レーザ光の反射率を制御する誘電体からなる端面コート膜(図示せず)がそれぞれ形成されている。これにより、第1の半導体レーザ素子LD1では、出射端面55aから出射されるレーザ光の光強度は、反射端面55bから出射されるレーザ光の光強度よりも大きくされており、出射端面55a上のリッジ54a近傍のMQW活性層53の領域(発光点)から、約650nmの波長を有する赤色光のレーザ光が出射される。
 第2の半導体レーザ素子LD2は、n型GaN基板61の上面61a上に、n型AlGaNクラッド層62、InGaN/GaNからなるMQW活性層63、p型AlGaNクラッド層64がこの順に積層されたGaN系半導体レーザ素子層65が形成されている。なお、GaN系半導体レーザ素子層65は、本発明の「窒化物系半導体からなる半導体レーザ素子層」の一例である。GaN系半導体レーザ素子層65の上面には、X方向にストライプ状に延びるリッジ64aが形成されている。リッジ64aの上面以外のGaN系半導体レーザ素子層65の上面上には、絶縁体からなる電流ブロック層66が形成されている。電流ブロック層66の上面上にはp側電極p2が形成されており、電流ブロック層66から露出されたリッジ64aの上面において、GaN系半導体レーザ素子層65と電気的に接続されている。なお、p側電極p2は、本発明の「第2の半導体レーザ素子の第2の極性側の電極」の一例である。
 n型GaN基板61の上面61aとは反対側の下面(裏面)61b上には、n側電極n2が形成されている。なお、n側電極n2は、本発明の「第2の半導体レーザ素子の第1の極性側の電極」の一例である。
 GaN系半導体レーザ素子層65の前面(出射端面)65a及び後面(反射端面)65bには、それぞれ、レーザ光の反射率を制御する誘電体からなる端面コート膜(図示せず)がそれぞれ形成されている。これにより、第2の半導体レーザ素子LD2では、出射端面65aから出射されるレーザ光の光強度は、反射端面65bから出射されるレーザ光の光強度よりも大きくされており、出射端面65a上のリッジ64a近傍のMQW活性層63の領域(発光点)から、約460nmの波長を有する青色光のレーザ光が出射される。
 第3の半導体レーザ素子LD3は、n型GaN基板71の上面71a上に、n型AlGaNクラッド層72、InGaN/GaNからなるMQW活性層73、p型AlGaNクラッド層74がこの順に積層されたGaN系半導体レーザ素子層75が形成されている。なお、GaN系半導体レーザ素子層75は、本発明の「窒化物系半導体からなる半導体レーザ素子層」の一例である。GaN系半導体レーザ素子層75の上面には、X方向にストライプ状に延びるリッジ74aが形成されている。リッジ74aの上面以外のGaN系半導体レーザ素子層75の上面上には、絶縁体からなる電流ブロック層76が形成されている。電流ブロック層76の上面上にはp側電極p3が形成されており、電流ブロック層76から露出されたリッジ74aの上面において、GaN系半導体レーザ素子層75と電気的に接続されている。なお、p側電極p3は、本発明の「第3の半導体レーザ素子の第2の極性側の電極」の一例である。
 n型GaN基板71の上面71aとは反対側の下面(裏面)71b上には、n側電極n3が形成されている。なお、n側電極n3は、本発明の「第3の半導体レーザ素子の第1の極性側の電極」の一例である。
 GaN系半導体レーザ素子層75の前面(出射端面)75a及び後面(反射端面)75bには、それぞれ、レーザ光の反射率を制御する誘電体からなる端面コート膜(図示せず)がそれぞれ形成されている。これにより、第3の半導体レーザ素子LD3では、出射端面75aから出射されるレーザ光の光強度は、反射端面75bから出射されるレーザ光の光強度よりも大きくされており、出射端面75a上のリッジ74a近傍のMQW活性層73の領域(発光点)から、約550nmの波長を有する緑色光のレーザ光が出射される。
 なお、第1の半導体レーザ素子LD1は、X方向の長さが第2の半導体レーザ素子LD2よりも短くなるように構成されており、第2の半導体レーザ素子LD2は、X方向の長さが第3の半導体レーザ素子LD3よりも短くなるように構成されている。
 接続電極118、128及び138上には、それぞれ、半田からなる融着層119、129及び139を介して第1の半導体レーザ素子LD1のn側電極n1、第2の半導体レーザ素子LD2のn側電極n2、及び、第3の半導体レーザ素子LD3のn側電極n3が接合されている。ここで、サブマウント106の前面106cと第1の半導体レーザ素子LD1、第2の半導体レーザ素子LD2及び第3の半導体レーザ素子LD3の出射端面55a、65a及び75aとは、同一面上に配置されているとともに、リッジ54a及び64aとリッジ74aとは互いに平行に配置されている。
 第1のリードT1上には、AuワイヤW11の一方の端部がボンディングされており、AuワイヤW11の他方の端部は、第1の半導体レーザ素子LD1のp側電極p1の上面上にボンディングされている。また、第1のリードT1上には、AuワイヤW12の一方の端部もボンディングされており、AuワイヤW12の他方の端部は、第2の半導体レーザ素子LD2のp側電極p2の上面上にボンディングされている。また、第1のリードT1上には、AuワイヤW13の一方の端部もボンディングされており、AuワイヤW13の他方の端部は、Z方向から見て、第3の半導体レーザ素子LD3から露出された接続電極138の上面上にボンディングされている。第2のリードT2上には、AuワイヤW2の一方の端部がボンディングされており、AuワイヤW2の他方の端部は、Z方向から見て、第1の半導体レーザ素子LD1から露出された接続電極118の上面上にボンディングされている。第3のリードT3上には、AuワイヤW31の一方の端部がボンディングされており、AuワイヤW31の他方の端部は、Z方向から見て、第2の半導体レーザ素子LD2から露出された接続電極128の上面上にボンディングされている。また、第3のリードT3上には、AuワイヤW32の一方の端部もボンディングされており、AuワイヤW32の他方の端部は、第3の半導体レーザ素子LD3のp側電極p3の上面上にボンディングされている。
 この半導体レーザ装置400においては、上記構成を備えることにより、図16に示すように、第1のリードT1は、第1の半導体レーザ素子LD1のp側電極p1及び第2の半導体レーザ素子LD2のp側電極p2と、第3の半導体レーザ素子LD3のn側電極n3とに電気的に接続されている。また、第2のリードT2は、第1の半導体レーザ素子LD1のn側電極n1に電気的に接続されており、第3のリードT3は、第2の半導体レーザ素子LD2のn側電極n2、及び、第3の半導体レーザ素子LD3のp側電極p3に電気的に接続されている。この半導体レーザ装置400のその他の構成は、上記半導体レーザ装置300の構成と同様である。
 この半導体レーザ装置400においても、半導体レーザ装置100と同様に、各リードT1、T2及びT3に電圧を印加することにより、3つの半導体レーザ素子LD1、LD2及びLD3を別々に駆動することができる。
 また、この半導体レーザ装置400では、第1の半導体レーザ素子LD1、第2の半導体レーザ素子LD2及び第3の半導体レーザ素子LD3をそれぞれ、別々に構成しているので、各半導体レーザの光出力等の特性に応じて、共振器長(X方向の長さ)を容易に調整することができる。これにより、表示装置等に用いる際に、理想的な白色光を容易に得ることができる。この半導体レーザ装置400のその他の効果は、上記半導体レーザ装置300の効果と同様である。
 (第4実施形態の第1変形例~第3変形例)
 図17は、本発明の第4実施形態の第1~第3変形例による半導体レーザ装置410、420及び430における各半導体レーザ素子LD1、LD2及びLD3の配線状態を示す表である。また、図18は、半導体レーザ装置420における各半導体レーザ素子LD1、LD2及びLD3の配線図である。
 半導体レーザ装置410については、各リードT1、T2、T3及びT4と、各半導体レーザ素子LD1、LD2及びLD3のp側電極p1、p2、p3及びn側電極n1、n2、n3との接続先が相違する以外は、第4実施形態の半導体レーザ装置400と同様の構成を備えている。また、半導体レーザ装置420及び430については、それぞれ、半導体レーザ装置400及び410に対して、さらに、第1実施形態の第1変形例による半導体レーザ装置110と同様のフォトダイオードPD1を備えている以外は、第4実施形態の半導体レーザ装置400と同様の構成を備えている。
 半導体レーザ装置410では、図17に示すように、第1の半導体レーザ素子LD1のp側電極p1は第2のリードT2に接続され、n側電極n1は第1のリードT1に接続されている。第2の半導体レーザ素子LD2のp側電極p2は第3のリードT3に接続され、n側電極n1は第1のリードT1に接続されている。第3の半導体レーザ素子LD3のp側電極p3は第1のリードT1に接続され、n側電極n3は第3のリードT3に接続されている。これにより、半導体レーザ装置410では、図5を参照して、第1の半導体レーザ素子LD1、第2の半導体レーザ素子LD2及び第3の半導体レーザ素子LD3がそれぞれ接続される。その結果、この半導体レーザ装置410においても、第1実施形態による半導体レーザ装置100と同様に、3つのリードT1、T2及びT3により、3つの半導体レーザ素子LD1、LD2及びLD3を動作させることができる。
 半導体レーザ装置420では、図17に示すように、第1の半導体レーザ素子LD1のn側電極n1はパッケージPを介して第4のリードT4に接続され、p側電極p1は第1のリードT1に接続されている。第2の半導体レーザ素子LD2のp側電極p2は第1のリードT1に接続され、n側電極n1は第3のリードT3に接続されている。第3の半導体レーザ素子LD3のp側電極p3は第3のリードT3に接続され、n側電極n3は第1のリードT1に接続されている。また、フォトダイオードPD1のp側電極p4は第2のリードT2に接続され、n側電極n4はパッケージPを介して第4のリードT4に接続されている。これにより、半導体レーザ装置420では、図18に示すように、第1の半導体レーザ素子LD1、第2の半導体レーザ素子LD2及び第3の半導体レーザ素子LD3とフォトダイオードPD1とがそれぞれ接続される。その結果、この半導体レーザ装置420においても、第1実施形態の第1変形例による半導体レーザ装置110と同様に、パッケージP(第4のリードT4)と3つのリードT1、T3及びT2とにより、3つの半導体レーザ素子LD1、LD2及びLD3とフォトダイオードPD1とを動作させることができる。
 半導体レーザ装置430では、図17に示すように、第1の半導体レーザ素子LD1のp側電極p1はパッケージPを介して第4のリードT4に接続され、n側電極n1は第1のリードT1に接続されている。第2の半導体レーザ素子LD2のp側電極p2は第3のリードT3に接続され、n側電極n1は第1のリードT1に接続されている。第3の半導体レーザ素子LD3のp側電極p3は第1のリードT1に接続され、n側電極n3は第3のリードT3に接続されている。また、フォトダイオードPD1のp側電極p4は第2のリードT2に接続され、n側電極n4はパッケージPを介して第4のリードT4に接続されている。これにより、半導体レーザ装置430では、図7を参照して、第1の半導体レーザ素子LD1、第2の半導体レーザ素子LD2及び第3の半導体レーザ素子LD3とフォトダイオードPD1とがそれぞれ接続される。その結果、この半導体レーザ装置430においても、第1実施形態の第1変形例による半導体レーザ装置110と同様に、パッケージP(第4のリードT4)と3つのリードT1、T3及びT2とにより、3つの半導体レーザ素子LD1、LD2及びLD3とフォトダイオードPD1とを動作させることができる。
 この半導体レーザ装置410、420及び430のその他の効果は、上記半導体レーザ装置400の効果と同様である。
 (第5実施形態)
 図19は、本発明の第5実施形態による光ピックアップ1000の構成図である。なお、光ピックアップは、本発明の「光装置」の一例である。
 図19に示すように、第5実施形態による光ピックアップ1000は、第1実施形態の第1変形例による半導体レーザ装置110と、半導体レーザ装置110から出射されたレーザ光を調整する光学系500と、レーザ光を受光する光検出部600とを備えている。
 光学系500は、図19に示すように、偏光ビームスプリッタ(以下、偏光BSと略記する。)501、コリメータレンズ502、ビームエキスパンダ503、λ/4板504、対物レンズ505、シリンドリカルレンズ506及び光軸補正素子507を有する。
 偏光BS501は、半導体レーザ装置110から出射されるレーザ光を全透過するとともに、光ディスクDIから帰還するレーザ光を全反射する。コリメータレンズ502は、偏光BS501を透過したレーザ光を平行光に変換する。ビームエキスパンダ503は、凹レンズ、凸レンズ及びアクチュエータ(図示せず)から構成されている。アクチュエータは、後述するサーボ回路からのサーボ信号に応じて、凹レンズ及び凸レンズの距離を変化させることにより、半導体レーザ装置110から出射されたレーザ光の波面状態を補正する。
 λ/4板504は、コリメータレンズ502によって略平行光に変換された直線偏光のレーザ光を円偏光に変換する。また、λ/4板504は、光ディスクDIから帰還する円偏光のレーザ光を直線偏光に変換する。この場合の直線偏光の偏光方向は、半導体レーザ装置110から出射されるレーザ光の直線偏光の偏光方向に直交する。これにより、光ディスクDIから帰還するレーザ光は、偏光BS501によってほぼ全反射される。対物レンズ505は、λ/4板504を透過したレーザ光を光ディスクDIの表面(記録層)上に収束させる。なお、対物レンズ505は、対物レンズアクチュエータ(図示せず)により、後述するサーボ回路からのサーボ信号(トラッキングサーボ信号、フォーカスサーボ信号及びチルトサーボ信号)に応じて、フォーカス方向、トラッキング方向及びチルト方向に移動可能にされている。
 また、偏光BS501により全反射されるレーザ光の光軸に沿うように、シリンドリカルレンズ506、光軸補正素子507及び光検出部600が配置されている。シリンドリカルレンズ506は、入射されるレーザ光に非点収差作用を付与する。光軸補正素子507は、回折格子により構成されており、シリンドリカルレンズ506を透過した青紫色、赤色及び赤外の各レーザ光の0次回折光のスポットが後述する光検出部600の検出領域上で一致するように配置されている。
 光検出部600は、受光したレーザ光の強度分布に基づいた信号を出力する。ここで、光検出部600は、再生信号とともにフォーカスエラー信号、トラッキングエラー信号及びチルトエラー信号が得られるように、所定のパターンの検出領域を有する。このようにして、本発明の第5実施形態による光ピックアップ1000が構成される。
 この光ピックアップ1000では、半導体レーザ装置110内の各半導体レーザ素子LD1、LD2及びLD3(図4参照)から、赤色、赤外及び青紫色のレーザ光を選択的に出射することができる。半導体レーザ装置110から出射されたレーザ光は、上記のように、偏光BS501、コリメータレンズ502、ビームエキスパンダ503、λ/4板504、対物レンズ505、シリンドリカルレンズ506及び光軸補正素子507により調整された後、光検出部600の検出領域上に照射される。
 ここで、光ディスクDIに記録されている情報を再生する場合には、各半導体レーザ素子LD1、LD2及びLD3から出射されるレーザ光強度が一定になるように制御された状態で、光ディスクDIの記録層にレーザ光を照射し、光検出部600から出力される再生信号を得ることができる。ここで、各半導体レーザ素子LD1、LD2及びLD3から出射されるレーザ光強度を一定にするために、半導体レーザ装置110内のフォトダイオードPD1でモニターし、各リードT1、T3及びT4の間に印加する電圧のフィードバック制御を行う。また、光検出部600から出力されるフォーカスエラー信号、トラッキングエラー信号及びチルトエラー信号により、ビームエキスパンダ503のアクチュエータと対物レンズ505を駆動する対物レンズアクチュエータとを、それぞれ、フィードバック制御することができる。
 また、光ディスクDIに情報を記録する場合には、記録すべき情報に基づいて、各半導体レーザ素子LD1、LD2及びLD3から出射するレーザ光強度を制御しながら、光ディスクDIにレーザ光を照射する。これにより、光ディスクDIの記録層に情報を記録することができる。また、上記同様、光検出部600より出力されるフォーカスエラー信号、トラッキングエラー信号及びチルトエラー信号により、ビームエキスパンダ503のアクチュエータと対物レンズ505を駆動する対物レンズアクチュエータとを、それぞれ、フィードバック制御することができる。
 このようにして、本発明の第5実施形態による光ピックアップ1000を用いて、光ディスクDIへの記録及び再生を行うことができる。
 第5実施形態による光ピックアップ1000では、第1実施形態の第1変形例による半導体レーザ装置110が実装されているので、光ピックアップ1000を容易に小型化することができる。この光ピックアップ1000のその他の効果は、上記第1実施形態の第1変形例による半導体レーザ装置110の効果と同様である。
 (第6実施形態)
 図20は、本発明の第6実施形態による光ディスク装置2000の構成図である。なお、光ディスク装置は、本発明の「光装置」の一例である。
 図20に示すように、この光ディスク装置2000は、第5実施形態による光ピックアップ1000と、コントローラ1001及びレーザ駆動回路1002を有する駆動系と、信号生成回路1003及びサーボ回路1004を有する回路系と、ディスク駆動モータ1005とを備えている。
 コントローラ1001には、光ディスクDIに記録すべき情報に基づいて生成された記録データS1が入力される。また、コントローラ1001は、記録データS1及び後述する信号生成回路1003からの第1出力信号S5に応じて、レーザ駆動回路1002に向けて信号S2を出力するとともに、サーボ回路1004に向けて信号S7を出力する。また、コントローラ1001は、後述するように、第1出力信号S5を基に再生データS10を出力する。レーザ駆動回路1002は、上記信号S2に応じて、光ピックアップ1000内の半導体レーザ装置300から出射されるレーザパワーを制御する信号S3を出力する。即ち、半導体レーザ装置300は、コントローラ1001及びレーザ駆動回路1002により駆動される。
 光ピックアップ1000では、上記信号S3に応じて制御されたレーザ光を光ディスクDIに照射する。また、光ピックアップ1000内の光検出部600から、信号生成回路1003に向けて信号S4が出力される。また、後述するサーボ回路1004からのサーボ信号S8により、光ピックアップ1000内の光学系500(ビームエキスパンダ503のアクチュエータ及び対物レンズ505を駆動する対物レンズアクチュエータ)が制御される。信号生成回路1003は、光ピックアップ1000から出力された信号S4を増幅および演算処理して、再生信号を含む第1出力信号S5をコントローラ1001に向けて出力するとともに、上記光ピックアップ1000のフィードバック制御及び後述する光ディスクDIの回転制御を行う第2出力信号S6をサーボ回路1004に向けて出力する。
 サーボ回路1004は、信号生成回路1003及びコントローラ1001からの第2出力信号S6及び制御信号S7に応じて、光ピックアップ1000内の光学系500を制御するサーボ信号S8及びディスク駆動モータ1005を制御するモータサーボ信号S9を出力する。また、ディスク駆動モータ1005は、モータサーボ信号S9に応じて、光ディスクDIの回転速度を制御する。
 ここで、光ディスクDIに記録されている情報を再生する場合には、まず、ここでは説明を省略する光ディスクDIの種類(CD、DVD、BD等)を識別する手段により、照射すべき波長のレーザ光が選択される。次に、光ピックアップ1000内の半導体レーザ装置110から出射されるべき波長のレーザ光強度が一定になるように、コントローラ1001からレーザ駆動回路1002に向けて信号S2が出力される。さらに、第5実施形態で説明したように、光ピックアップ1000の半導体レーザ装置110、光学系500及び光検出部600が機能することにより、光検出部600から再生信号を含む信号S4が信号生成回路1003に向けて出力され、信号生成回路1003は、再生信号を含む第1出力信号S5をコントローラ1001に向けて出力する。コントローラ1001は、第1出力信号S5を処理することにより、光ディスクDIに記録されていた再生信号を抽出し、再生データS10として出力する。この再生データS10を用いて、例えば、光ディスクDIに記録されている映像、音声等の情報をモニターやスピーカ等に出力することができる。また、光検出部600からの信号S4を基に、各部のフィードバック制御も行う。
 また、光ディスクDIに情報を記録する場合には、まず、上記同様の光ディスクDIの種類(CD、DVD、・BR>AD等)を識別する手段により、照射すべき波長のレーザ光が選択される。次に、記録される情報に応じた記録データS1に応じて、コントローラ1001からレーザ駆動回路1002に向けて信号S2が出力される。さらに、第5実施形態で説明したように、光ピックアップ1000の半導体レーザ装置110、光学系500及び光検出部600が機能することにより、光ディスクDIに情報を記録するとともに、光検出部600からの信号S4を基に、各部のフィードバック制御を行う。
 このようにして、本発明の第6実施形態による光ディスク装置2000を用いて、光ディスクDIへの記録及び再生を行うことができる。
 第6実施形態による光ディスク装置2000では、光ピックアップ1000内に第1実施形態の第1変形例による半導体レーザ装置110が実装されているので、光ピックアップ1000を容易に小型化することができる。これにより、光ディスク装置2000の小型化も容易に行うことができる。この光ディスク装置2000のその他の効果は、上記第5実施形態による光ピックアップ1000の効果と同様である。
 (第7実施形態)
 図21は、本発明の第7実施形態によるプロジェクタ装置3000の構成図である。図22は、プロジェクタ装置3000に与えられる画像信号のタイミングチャートである。なお、プロジェクタ装置は、本発明の「光装置」の一例である。
 プロジェクタ装置3000は、図21に示すように、本発明の第4実施形態の第2変形例による半導体レーザ装置420と、半導体レーザ装置420から出射されるレーザ光を変調する変調手段である光学系510と、半導体レーザ装置420および光学系510を制御する制御部700とを備えている。
 光学系510において、半導体レーザ装置420から出射されたレーザ光は、それぞれ、レンズ511により平行光に変換された後、ライトパイプ512に入射される。
 ライトパイプ512は内面が鏡面となっており、レーザ光は、ライトパイプ512の内面で反射を繰り返しながらライトパイプ512内を進行する。この際、ライトパイプ512内での多重反射作用によって、ライトパイプ512から出射される各色のレーザ光の強度分布が均一化される。また、ライトパイプ512から出射されたレーザ光は、リレー光学系513を介してデジタルマイクロミラーデバイス(DMD)514に入射される。
 DMD514は、マトリクス状に配置された微小なミラー群からなる。また、DMD514は、各画素位置の光の反射方向を、投写レンズ515に向かう第1の方向Aと投写レンズ515から逸れる第2の方向Bとに切り替えることにより各画素の階調を表現(変調)する機能を有している。各画素位置に入射されるレーザ光のうち第1の方向Aに反射された光(ON光)は、投写レンズ515に入射されて被投写面(スクリーンSC)に投写される。また、DMD514によって第2の方向Bに反射された光(OFF光)は、投写レンズ515には入射されずに光吸収体516によって吸収される。
 また、プロジェクタ装置3000では、制御部700によりパルス電源が半導体レーザ装置420に供給されるように制御されることによって、半導体レーザ装置420の各半導体レーザ素子LD1(赤色半導体レーザ素子)、LD2(青色半導体レーザ素子)及びLD3(緑色半導体レーザ素子)(図15参照)は、時系列的に分割されて1素子ずつ周期的に駆動されるように構成されている。また、制御部700によって、光学系510のDMD514は、各半導体レーザ素子LD1、LD2及びLD3の駆動状態とそれぞれ同期しながら、各画素(赤色(R)、青色(B)及び緑色(G))の階調に合わせて光を変調するように構成されている。
 具体的には、図22に示すように、第1の半導体レーザ素子LD1の駆動に関するR信号、第2の半導体レーザ素子LD2の駆動に関するB信号、及び、第3の半導体レーザ素子LD3の駆動に関するG信号が、互いに重ならないように時系列的に分割された状態で、制御部700によって、半導体レーザ装置420の各半導体レーザ素子LD1、LD2及びLD3に供給される。また、このB信号、G信号およびR信号に同期して、制御部700からB画像信号、G画像信号、R画像信号がそれぞれDMD514に出力される。
 これにより、図22に示したタイミングチャートにおけるB信号に基づいて、第2の半導体レーザ素子LD2の青色光が発光されるとともに、このタイミングで、B画像信号に基づいて、DMD514により青色光が変調される。また、B信号の次に出力されるG信号に基づいて、第3の半導体レーザ素子LD3の緑色光が発光されるとともに、このタイミングで、G画像信号に基づいて、DMD514により緑色光が変調される。さらに、G信号の次に出力されるR信号に基づいて、第1の半導体レーザ素子LD1の赤色光が発光されるとともに、このタイミングで、R画像信号に基づいて、DMD514により赤色光が変調される。その後、R信号の次に出力されるB信号に基づいて、第2の半導体レーザ素子LD2の青色光が発光されるとともに、このタイミングで、再度、B画像信号に基づいて、DMD514により青色光が変調される。上記の動作が繰り返されることによって、B画像信号、G画像信号およびR画像信号に基づいたレーザ光照射による画像が、被投写面(スクリーンSC)に投写される。このようにして、本発明の第7実施形態によるプロジェクタ装置3000が構成されている。
 第7実施形態によるプロジェクタ装置3000では、第4実施形態の第2変形例による半導体レーザ装置420が実装されているので、プロジェクタ装置3000を容易に小型化することができる。このプロジェクタ装置3000のその他の効果は、上記第4実施形態の第2変形例による半導体レーザ装置420の効果と同様である。
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態及び実施例の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。
 例えば、第1実施形態では、各リードT1、T2及びT3は、いずれもパッケージPから絶縁されていたが、本発明はこれに限らず、いずれか1つのリードはパッケージと電気的に接続されていてもよい。
 また、第1実施形態の各変形例では、第2のリードT2にフォトダイオードPD1を接続していたが、本発明はこれに限らず、他のリードT1又はT3にフォトダイオードPD1を接続してもよい。この場合には、リードT1又はT3に接続されていた各AuワイヤをパッケージPに配線する。
 また、第1実施形態では、リードT4(パッケージP)は、アースに接地されていたが、本発明はこれに限らず、アースとは絶縁されていてもよい。
 また、第1~第3実施形態及びその変形例では、赤色、赤外、青紫色の3色を出射する3波長半導体レーザ素子を用いていたが、本発明はこれに限らず、第4実施形態及びその変形例で用いた材料を用いることにより、赤色、青色、緑色の3色を出射する3波長半導体レーザ素子としてもよい。同様に、第4実施形態及びその変形例の各半導体レーザ素子LD1、LD2及びLD3を第1~第3実施形態及びその変形例で用いた材料を用いることにより、赤色、赤外、青紫色を出射する半導体レーザ素子としてもよい。
 また、第5~第7の実施形態においては、それぞれ、他の実施形態(およびその変形例)による半導体レーザ装置を搭載してもよい。
 また、各実施形態において、サブマウント106及び116は導電性のn型Siで構成していたが、本発明はこれに限らず、高抵抗SiやAlN等の絶縁物で構成してもよい。この場合には、その上面に形成していた絶縁膜107及び117を形成する必要がない。
 11 n型GaAs基板(共通の半導体基板)
 100、110、120、200、300、400、410、420、430 半導体レーザ装置
 101、201 3波長半導体レーザ素子
 106、116 サブマウント
 500、510 光学系
 1000 光ピックアップ(光装置)
 2000 光ディスク装置(光装置)
 3000 プロジェクタ装置(光装置)
 LD1、LD2、LD3 半導体レーザ素子
 n1、n2、n3 n側電極
 n12 n側電極(共有電極)
 P パッケージ
 p1、p2、p3 p側電極
 PD1、PD2 受光素子
 T1、T2、T3、T4 リード(端子)
 W1、W11、W12、W13、W2、W31、W32、W4 Auワイヤ

Claims (20)

  1.  第1の半導体レーザ素子、第2の半導体レーザ素子及び第3の半導体レーザ素子と、
     前記第1の半導体レーザ素子、前記第2の半導体レーザ素子及び前記第3の半導体レーザ素子が配置されたパッケージと、
     前記パッケージに取り付けられ、互いに電気的に絶縁された第1の端子、第2の端子及び第3の端子とを備え、
     前記第1の端子は、前記第1の半導体レーザ素子の第1の極性側の電極、前記第2の半導体レーザ素子の前記第1の極性側の電極、及び、前記第3の半導体レーザ素子の第2の極性側の電極と電気的に接続されており、
     前記第2の端子は、前記第1の半導体レーザ素子の前記第2の極性側の電極と電気的に接続されており、
     前記第3の端子は、前記第2の半導体レーザ素子の前記第2の極性側の電極、及び、前記第3の半導体レーザ素子の前記第1の極性側の電極と電気的に接続されている、半導体レーザ装置。
  2.  前記第1の端子、前記第2の端子及び前記第3の端子のいずれか1つは、前記パッケージと電気的に接続されている、請求項1に記載の半導体レーザ装置。
  3.  前記パッケージに配置された受光素子と、
     前記パッケージに取り付けられているとともに、前記パッケージとは電気的に絶縁されている第4の端子とを備え、
     前記受光素子の第1の電極は、前記第4の端子に接続されており、
     前記受光素子の第2の電極は、前記パッケージに接続されている、請求項2に記載の半導体レーザ装置。
  4.  前記第1の半導体レーザ素子、前記第2の半導体レーザ素子、及び、前記第3の半導体レーザ素子の少なくともいずれか1つは、サブマウントの表面上に接合されており、
     前記受光素子は、前記サブマウントの表面上に配置されている、請求項3に記載の半導体レーザ装置。
  5.  前記第1の半導体レーザ素子及び前記第2の半導体レーザ素子は、共通の半導体基板を含み、
     前記第1の半導体レーザ素子の前記第1の極性側の電極及び前記第2の半導体レーザ素子の前記第1の極性側の電極は、前記半導体基板の裏面上に前記第1の極性側の共有電極として一体化して形成されている、請求項1に記載の半導体レーザ装置。
  6.  前記第3の半導体レーザ素子は、前記第3の半導体レーザ素子の前記第2の極性側の電極と前記共有電極とが対向するように、前記半導体基板の裏面上に接合されている、請求項5に記載の半導体レーザ装置。
  7.  前記第3の半導体レーザ素子は、窒化物系半導体からなる半導体レーザ素子層を含み、
     前記第1の端子及び前記第3の端子は、前記パッケージと電気的に絶縁されている、請求項1に記載の半導体レーザ装置。
  8.  前記第1の半導体レーザ素子及び前記第2の半導体レーザ素子は、窒化物系半導体からなる半導体レーザ素子層を含み、
     前記第1の端子、前記第2の端子及び前記第3の端子は、前記パッケージと電気的に絶縁されている、請求項1に記載の半導体レーザ装置。
  9.  前記共通の半導体基板は、GaN基板またはGaAs基板である、請求項5に記載の半導体レーザ装置。
  10.  前記第1の半導体レーザ素子、前記第2の半導体レーザ素子、及び、前記第3の半導体レーザ素子は、サブマウントの表面上に接合されている、請求項1に記載の半導体レーザ装置。
  11.  第1の半導体レーザ素子、第2の半導体レーザ素子及び第3の半導体レーザ素子と、前記第1の半導体レーザ素子、前記第2の半導体レーザ素子及び前記第3の半導体レーザ素子が配置されたパッケージと、前記パッケージに取り付けられた第1の端子、第2の端子及び第3の端子とを有する半導体レーザ装置と、
     前記半導体レーザ装置から出射されるレーザ光を制御する光学系とを備え、
     前記第1の端子は、前記第1の半導体レーザ素子の第1の極性側の電極、前記第2の半導体レーザ素子の前記第1の極性側の電極、及び、前記第3の半導体レーザ素子の第2の極性側の電極と電気的に接続されており、
     前記第2の端子は、前記第1の半導体レーザ素子の前記第2の極性側の電極と電気的に接続されており、
     前記第3の端子は、前記第2の半導体レーザ素子の前記第2の極性側の電極、及び、前記第3の半導体レーザ素子の前記第1の極性側の電極と電気的に接続されている、光装置。
  12.  前記第1の端子、前記第2の端子及び前記第3の端子のいずれか1つは、前記パッケージと電気的に接続されている、請求項11に記載の光装置。
  13.  前記パッケージに配置された受光素子と、
     前記パッケージに取り付けられているとともに、前記パッケージとは電気的に絶縁されている第4の端子とを備え、
     前記受光素子の第1の電極は前記第4の端子に接続されており、前記受光素子の第2の電極は前記パッケージに接続されている、請求項12に記載の光装置。
  14.  前記第1の半導体レーザ素子、前記第2の半導体レーザ素子、及び、前記第3の半導体レーザ素子の少なくともいずれか1つは、サブマウントの表面上に接合されており、
     前記受光素子は、前記サブマウントの表面上に配置されている、請求項13に記載の光装置。
  15.  前記第1の半導体レーザ素子及び前記第2の半導体レーザ素子は、共通の半導体基板を含み、
     前記第1の半導体レーザ素子の前記第1の極性側の電極及び前記第2の半導体レーザ素子の前記第1の極性側の電極は、前記半導体基板の裏面上に前記第1の極性側の共有電極として一体化して形成されている、請求項11に記載の光装置。
  16.  前記第3の半導体レーザ素子は、前記第3の半導体レーザ素子の前記第2の極性側の電極と前記共有電極とが対向するように、前記半導体基板の裏面上に接合されている、請求項15に記載の光装置。
  17.  前記第3の半導体レーザ素子は、窒化物系半導体からなる半導体レーザ素子層を含み、
     前記第1の端子及び前記第3の端子は、前記パッケージと電気的に絶縁されている、請求項11に記載の光装置。
  18.  前記第1の半導体レーザ素子及び前記第2の半導体レーザ素子は、窒化物系半導体からなる半導体レーザ素子層を含み、
     前記第1の端子、前記第2の端子及び前記第3の端子は、前記パッケージと電気的に絶縁されている、請求項11に記載の光装置。
  19.  前記共通の半導体基板は、GaN基板またはGaAs基板である、請求項15に記載の光装置。
  20.  前記第1の半導体レーザ素子、前記第2の半導体レーザ素子、及び、前記第3の半導体レーザ素子は、サブマウントの表面上に接合されている、請求項11に記載の光装置。
PCT/JP2011/050955 2010-02-25 2011-01-20 半導体レーザ装置及び光装置 WO2011105136A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010039519 2010-02-25
JP2010-039519 2010-02-25

Publications (1)

Publication Number Publication Date
WO2011105136A1 true WO2011105136A1 (ja) 2011-09-01

Family

ID=44506558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050955 WO2011105136A1 (ja) 2010-02-25 2011-01-20 半導体レーザ装置及び光装置

Country Status (1)

Country Link
WO (1) WO2011105136A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023099391A1 (de) * 2021-12-02 2023-06-08 Ams-Osram International Gmbh Laserbauelement und verfahren zur herstellung eines laserbauelements

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04365382A (ja) * 1991-06-13 1992-12-17 Toshiba Corp 半導体発光装置及びその駆動方法
JP2001230502A (ja) * 2000-02-15 2001-08-24 Sony Corp 発光装置およびそれを用いた光装置
JP2002076492A (ja) * 2000-08-24 2002-03-15 Sanyo Electric Co Ltd レーザ装置
JP2005317896A (ja) * 2004-03-30 2005-11-10 Sanyo Electric Co Ltd 半導体レーザ装置
JP2010016261A (ja) * 2008-07-04 2010-01-21 Sharp Corp 窒化物半導体レーザ素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04365382A (ja) * 1991-06-13 1992-12-17 Toshiba Corp 半導体発光装置及びその駆動方法
JP2001230502A (ja) * 2000-02-15 2001-08-24 Sony Corp 発光装置およびそれを用いた光装置
JP2002076492A (ja) * 2000-08-24 2002-03-15 Sanyo Electric Co Ltd レーザ装置
JP2005317896A (ja) * 2004-03-30 2005-11-10 Sanyo Electric Co Ltd 半導体レーザ装置
JP2010016261A (ja) * 2008-07-04 2010-01-21 Sharp Corp 窒化物半導体レーザ素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023099391A1 (de) * 2021-12-02 2023-06-08 Ams-Osram International Gmbh Laserbauelement und verfahren zur herstellung eines laserbauelements

Similar Documents

Publication Publication Date Title
US8064492B2 (en) Method of manufacturing semiconductor laser device, semiconductor laser device and light apparatus
JP4671728B2 (ja) 半導体レーザ装置および光ピックアップ装置
US7486712B2 (en) Semiconductor laser apparatus, method of manufacturing semiconductor laser apparatus, and optical pickup apparatus
JP2012033733A (ja) 半導体レーザ装置および光装置
US20110280270A1 (en) Semiconductor laser apparatus and optical apparatus
JP5521611B2 (ja) 光装置および光機器
US20100329296A1 (en) Method of manufacturing integrated semiconductor laser device, integrated semiconductor laser device and optical apparatus
JP2011204983A (ja) 集積型半導体レーザ装置の製造方法
JP2000244060A (ja) 半導体発光装置およびその製造方法
JP2012094765A (ja) 半導体レーザ装置および光装置
US20110280267A1 (en) Semiconductor laser apparatus and optical apparatus
JP2012044015A (ja) 半導体レーザ装置および光装置
US20110007771A1 (en) Semiconductor laser apparatus, method of manufacturing the same and optical apparatus
JP4844791B2 (ja) 半導体発光装置およびそれを用いた光装置
JP2011249714A (ja) 半導体レーザ装置および光装置
US20100193833A1 (en) Nitride-Based Semiconductor Device, Light Apparatus, and Method of Manufacturing Nitride-Based Semiconductor Device
JP2010192882A (ja) 半導体レーザ素子の製造方法、半導体レーザ素子および光装置
WO2011105136A1 (ja) 半導体レーザ装置及び光装置
JP2010166036A (ja) 半導体レーザ装置および表示装置
WO2011096512A1 (ja) 半導体発光装置、半導体発光装置の製造方法および光装置
JP2001250255A (ja) 光学装置及び光ディスク装置
WO2013038921A1 (ja) 半導体レーザ装置および光装置
JP2011159928A (ja) 半導体発光装置、半導体発光装置の製造方法および光装置
JP2011243600A (ja) 半導体レーザ装置および光装置
JP2012151182A (ja) 半導体レーザ装置および光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11747100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP