WO2011104786A1 - パイプライン型a/dコンバータおよびa/d変換方法、ならびにダイナミック型差動増幅器 - Google Patents

パイプライン型a/dコンバータおよびa/d変換方法、ならびにダイナミック型差動増幅器 Download PDF

Info

Publication number
WO2011104786A1
WO2011104786A1 PCT/JP2010/005929 JP2010005929W WO2011104786A1 WO 2011104786 A1 WO2011104786 A1 WO 2011104786A1 JP 2010005929 W JP2010005929 W JP 2010005929W WO 2011104786 A1 WO2011104786 A1 WO 2011104786A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
input
circuit
terminal
amplifier
Prior art date
Application number
PCT/JP2010/005929
Other languages
English (en)
French (fr)
Inventor
松澤昭
宮原正也
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Priority to CN201080064684.1A priority Critical patent/CN102844987B/zh
Priority to JP2012501538A priority patent/JP5515126B2/ja
Publication of WO2011104786A1 publication Critical patent/WO2011104786A1/ja
Priority to US13/593,868 priority patent/US8947287B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/14Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
    • H03M1/16Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps
    • H03M1/164Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps the steps being performed sequentially in series-connected stages
    • H03M1/165Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps the steps being performed sequentially in series-connected stages in which two or more residues with respect to different reference levels in a stage are used as input signals for the next stage, i.e. multi-residue type

Definitions

  • the present invention relates to a pipeline type A / D converter.
  • FIGS. 1A to 1C are a block diagram and input / output characteristics showing a configuration of a general pipeline type A / D converter.
  • the A / D converter 1100 includes a plurality (n stages) of unit conversion circuits UC 1 to UC n connected in cascade.
  • the unit conversion circuits UC 1 to UC n sequentially perform A / D conversion by m bits from the most significant bit MSB to the least significant bit LSB.
  • FIG. 1B shows the configuration of the unit conversion circuit UC.
  • the unit conversion circuit UC includes an operational amplifier OA1, a switch circuit SW, and a sub A / D converter SADC, and alternately repeats the sampling state ⁇ 0 and the differential amplification state ⁇ 1 in a time-division manner in synchronization with the clock signal.
  • the unit conversion circuit UC of a certain stage is in the sampling state ⁇ 0
  • the unit conversion circuit UC of the stage adjacent to it is in the differential amplification state ⁇ 1.
  • the input terminal Pi the input voltage V in from the preceding stage is input.
  • the input voltage range is ⁇ V ref to + V ref .
  • sub A / D converter SADC compares the input voltage V in and a plurality of reference voltages, and generates comparison data D1 indicating the comparison result k.
  • it has a redundant configuration of the 6 values, i.e. about 2.5 bits, the input voltage V in is sampled (quantized) as follows.
  • switch S 1 is turned on, the switch S 2 is turned to the input terminal Pi side.
  • the switch circuit SW selects the input voltage V in, is applied to one end of the input capacitor C s1 ⁇ C s3.
  • the feedback capacitor Cf and the input capacitors C s1 ⁇ C s3 is charged by the same input voltage V in.
  • the sub A / D converter SADC outputs the comparison result to the switch circuit SW.
  • the switch circuit SW applies one of the reference voltage string + V ref , ⁇ V ref , and GND to one end of each of the input capacitors C s1 to C s3 according to the comparison result.
  • the conversion value k indicating the comparison result can take seven values between -3 and +3.
  • the switch circuit SW applies the reference voltage + V ref to the k input capacitors C s and applies the ground voltage GND to the rest.
  • V out 4 (V in ⁇ k / 4 ⁇ V ref ) / ⁇ 1+ (k + 1) / G ⁇ (3)
  • FIG. 1C shows the input / output characteristics of the unit conversion circuit UC given by equation (3).
  • a white circle indicates a reference voltage of the sub A / D converter SADC.
  • the black circles indicate the offset voltage in the X-axis direction given by (k ⁇ V ref ) in the second term on the right side in equation (3 ′). That unit conversion circuit UC amplifies the input voltage V in, the difference between the offset voltage gain 4.
  • the output signal V out is supplied as an input voltage V in of the next-stage unit conversion circuit UC.
  • V in As shown in FIG. 1A, when a plurality of unit conversion circuits UC perform a pipeline operation in synchronization with a clock signal, data D1, D2,... Is output. Note that the unit conversion circuit UC at the final stage does not require differential amplification processing, and thus can be configured by only a comparator array (sub A / D converter).
  • the conversion accuracy of the conventional pipelined A / D converter 1100 as shown in FIG. 1 depends on the accuracy of the gain of the circuit system, and specifically, the ratio of the capacitors C f and Cs 1 to Cs 3 . It depends on the accuracy and the gain of the operational amplifier OA1. In the description so far, it is assumed that the gain G of the operational amplifier OA1 is infinite. However, the actual operational amplifier has a finite gain, and the gain decreases with the recent miniaturization of semiconductor processes. There is a tendency. The required gain G when the resolution is N bits and the conversion error is 1/4 LSB is G (dB)> 6N + 10 (4) It will be about.
  • the necessary gain G is 70 dB or more, and when the resolution is 12 bits, the necessary gain G is 82 dB or more.
  • the gain of an operational amplifier using a miniaturized CMOS device in recent years is about 60 dB at most, and it is difficult to obtain such a high gain.
  • this conversion method presupposes negative feedback amplification using an operational amplifier.
  • the negative feedback circuit is configured so that the accuracy of the circuit system is determined by the specific accuracy of the capacitance by increasing the gain of the operational amplifier.
  • the negative feedback circuit is likely to cause an increase in oscillation and settling time. This is a major obstacle to speeding up the converter.
  • the present invention has been made in view of the above-mentioned problems, and one of exemplary purposes of an aspect thereof is to provide a pipeline type A / D converter that does not use a negative feedback circuit.
  • One embodiment of the present invention relates to an A / D conversion method for converting an analog input voltage into digital data.
  • This method performs the following processing. 1.
  • 2. a second step of generating a first voltage and a second voltage across the segment to which the input voltage belongs; 3.
  • Fourth step of generating a fourth voltage by amplifying the difference between the second voltage and the input voltage with reference to the common voltage. 5.
  • the fifth step to the eighth step are repeatedly executed, and the eighth step to the fifth step.
  • the seventh voltage obtained in the previous seventh step is used as the third voltage in the next fifth step
  • the eighth voltage obtained in the previous eighth step is used as the fourth voltage in the next fifth step. Use as voltage.
  • the fifth voltage and the sixth voltage may be generated by interpolating the third voltage and the fourth voltage, respectively.
  • the first voltage to the eighth voltage may be generated as differential signals.
  • the fifth voltage and the sixth voltage may be generated by extrapolating the third voltage and the fourth voltage.
  • the A / D converter includes an A-type conversion circuit, at least one B-type conversion circuit, and a comparator row connected in series.
  • the A-type conversion circuit compares the input voltage with a plurality of threshold voltages and determines which one of the plurality of segments belongs to, and a voltage level equal to or higher than the upper limit of the segment to which the input voltage belongs
  • a first amplifying circuit for generating a third voltage by amplifying a difference between the first voltage and an input voltage with a predetermined common voltage as a reference, and outputting the third voltage to a B-type conversion circuit at a subsequent stage; Generating a second voltage having a voltage level equal to or lower than the lower limit of the segment to which the input voltage belongs, amplifying a difference between the second voltage and the input voltage with reference to a predetermined common voltage, and generating a fourth voltage; And a second amplifier circuit for outputting to the B-type conversion
  • the B-type conversion circuit divides a portion between the third voltage and the fourth voltage from the previous stage into a plurality of segments, and determines a common sub-voltage belonging to the plurality of segments, a second sub A / D converter,
  • the seventh voltage is generated by amplifying the difference between the fifth voltage and the common voltage having a voltage level equal to or higher than the upper limit of the segment to which the voltage belongs, and output as the third voltage to the B-type conversion circuit in the subsequent stage.
  • an eighth voltage is generated by amplifying a difference between the sixth voltage having a voltage level equal to or lower than the lower limit of the segment to which the common voltage belongs and the common voltage with reference to the common voltage.
  • a fourth amplifier circuit that outputs a fourth voltage to the conversion circuit.
  • the comparator row divides the third voltage and the fourth voltage from the B-type conversion circuit in the previous stage into a plurality of segments, and determines which of the plurality of segments the common voltage belongs to.
  • the first amplifier circuit applies an input voltage to a first capacitor row including a plurality of first capacitors, each of which has a first terminal connected in common, and a second terminal of the first capacitor row in a sampling state, and performs interpolation.
  • a first switch circuit that applies a reference voltage to the second terminals of the number of first capacitors according to the determination result by the first sub A / D converter in the first capacitor array, and the first capacitor array A first switch that is turned on in the sampling state and turned off in the interpolation amplification state, a common voltage is input to the first input terminal, and the second input terminal is And a first amplifier connected to the first terminal of the first capacitor row.
  • the second amplifier circuit may be configured similarly to the first amplifier circuit.
  • the third amplifier circuit and the fourth amplifier circuit may generate the fifth voltage and the sixth voltage by interpolating the third voltage and the fourth voltage.
  • the third amplifier circuit includes a third capacitor array including a plurality of third capacitors, each having a first terminal connected in common, and each first terminal connected in common to the first terminal of the third capacitor array. Applying a third voltage to the second capacitor array including a plurality of fourth capacitors and the second terminal of the third capacitor array in the sampling state, and in the interpolation amplification state, the second sub-A / A third switch circuit that applies a fixed voltage to the second terminals of the number of third capacitors according to the determination result by the D converter; and a fourth voltage that is applied to the second terminal of the fourth capacitor row in the sampling state; A fourth switch circuit for applying a fixed voltage to the second terminals of the number of fourth capacitors corresponding to the determination result by the second sub A / D converter in the fourth capacitor row in the interpolation amplification state; A third switch that is provided between a first terminal and a fixed voltage terminal that are commonly connected to the third capacitor row and the fourth capacitor row, and is turned on in the sampling state and turned off in the interpolation
  • the third switch circuit applies a fixed voltage to the third capacitor row in the interpolation amplification state
  • the third switch circuit applies the third voltage from the previous stage as the fixed voltage
  • the fourth switch circuit operates in the interpolation amplification state.
  • the offset voltage of the amplifier of the conversion circuit in the previous stage may be canceled by applying the fourth voltage from the previous stage as the fixed voltage.
  • a high-speed A / D converter is provided.
  • FIGS. 1A to 1C are a block diagram and input / output characteristics showing a configuration of a general pipeline type A / D converter. It is a block diagram which shows the structure of the pipeline type A / D converter which concerns on embodiment. It is a figure explaining the function of an A type conversion circuit. It is a figure which shows the input-output characteristic of an A type conversion circuit. It is a circuit diagram which shows the structure of an A type conversion circuit. It is a figure explaining the function of a B type conversion circuit. It is a figure which shows the input / output characteristic of an A / D converter. It is a circuit diagram which shows the structure of a B-type conversion circuit. It is a circuit diagram which shows the structure of the B-type conversion circuit which concerns on a modification.
  • FIG. 11A and 11B are diagrams illustrating the operation of the B-type conversion circuit of FIG.
  • FIGS. 12A and 12B are diagrams illustrating input / output characteristics of the A-type conversion circuit and the B-type conversion circuit when a differential amplifier is used. It is a circuit diagram which shows a part of structure of the B-type conversion circuit which concerns on a 3rd modification. It is a figure which shows the input-output characteristic of the B type conversion circuit of FIG. It is a circuit diagram which shows the structure of a dynamic type differential amplifier.
  • FIG. 16 is a waveform diagram showing an operation of the dynamic differential amplifier of FIG. 15.
  • FIG. 16 is a circuit diagram showing a modification of the dynamic differential amplifier of FIG. 15.
  • the state in which the member A is connected to the member B means that the member A and the member B are electrically connected in addition to the case where the member A and the member B are physically directly connected. It includes the case of being indirectly connected through another member that does not affect the connection state.
  • the state in which the member C is provided between the member A and the member B refers to the case where the member A and the member C or the member B and the member C are directly connected, as well as an electrical condition. It includes the case of being indirectly connected through another member that does not affect the connection state.
  • FIG. 2 is a block diagram showing a configuration of the pipeline type A / D converter 100 according to the embodiment.
  • the A / D converter 100 converts the analog input voltage VI into digital data DOUT. Assume that the input voltage range of the analog input signal VI is ⁇ V ref to + V ref .
  • the A / D converter 100 includes an A type conversion circuit UCA connected in series, at least one B type conversion circuit UCB 1 to UCB n, and a comparator array (comparator array) CA.
  • the last-stage comparator array CA is configured as a part of the (n + 1) -th stage B-type conversion circuit UCB n + 1 in order to perform the same processing as the second sub-A / D converter 20 of the B-type conversion circuit described later. Alternatively, it may be configured as a single comparator row.
  • the conversion circuits UCA, UCB 1 to UCB n and the comparator string CA sequentially perform A / D conversion by m bits from the most significant bit MSB to the least significant bit LSB.
  • Each of the conversion circuits UCA, UCB 1 to UCB n alternately repeats the sampling state ⁇ 0 and the differential amplification state (interpolation amplification state) ⁇ 1 in a time division manner in synchronization with the clock signal.
  • the conversion circuit of a certain stage is in the sampling state ⁇ 0
  • the conversion circuit of the stage adjacent thereto is in the differential amplification state (interpolation amplification state) ⁇ 1.
  • FIG. 3 is a diagram illustrating the function of the A-type conversion circuit UCA.
  • the A-type conversion circuit UCA repeats the sampling state ⁇ 0 and the differential amplification state ⁇ 1 alternately.
  • the A-type conversion circuit UCA divides the reference voltage ⁇ V ref and V ref into a plurality of segments SEG, and determines which segment the input signal VI belongs to (sampling).
  • the conversion data D1 indicates the segment number k to which the input voltage VI belongs.
  • FIG. 3 shows a case where the input voltage VI belongs to the segment SEG 0 .
  • a type converter UCA is two intermediate voltage Vm a in accordance with the input voltage VI, to generate the Vm b.
  • the first intermediate voltage Vm a is obtained by using a predetermined common voltage Vc and an integer parameter ka.
  • Vm a Vc + k a ⁇ V ref / M ... (5a) And a voltage higher than the upper threshold voltage of the segment SEG k to which the input voltage VI belongs.
  • the intermediate voltages Vm a and Vm b are desirably offset with respect to the threshold voltage between the segments SEG.
  • the offset amount is preferably V ref / (2M).
  • the A-type conversion circuit UCA amplifies the difference between the input voltage VI and the intermediate voltage Vma with a gain G with reference to the common voltage Vc to generate the first output voltage Va.
  • the difference between the input voltage VI and the intermediate voltage Vm b, to generate the second output voltage Vb is amplified by a gain G based on the common voltage Vc.
  • the first output voltage Va and the second output voltage Vb are output from the first output terminal Po a and the second output terminal Po b , respectively.
  • differential amplification processing represented by (6b) is shifted (offset) input voltage VI to the common voltage Vc, the voltage Va obtained by amplifying the potential difference between the intermediate voltage Vm a and the input voltage VI, the intermediate It can be understood as the process of generating a voltage Vb obtained by amplifying the potential difference between the voltage Vm b and the input voltage VI.
  • FIG. 4 is a diagram showing input / output characteristics of the A-type conversion circuit UCA.
  • the first output voltage Va and the second output voltage Vb are given by the following equations.
  • Va G ⁇ (VI ⁇ k a / M ⁇ V ref ) (7a)
  • Vb G ⁇ (VI ⁇ k b / M ⁇ V ref ) (7b)
  • k a and k b are integer parameters determined so that the two straight lines Va and Vb sandwich the voltage range of the input voltage VI, respectively.
  • Expression (7a) represents a straight line with a slope of G and an x-intercept of (k a / M ⁇ V ref ), and expression (7b) represents a slope of G and the x-intercept of (k b / M ⁇ V ref ). Represents a straight line.
  • (k a / M ⁇ V ref ) is referred to as a first offset voltage
  • (k b / M ⁇ V ref ) is referred to as a second offset voltage.
  • the output voltages Va and Vb given by are output.
  • 1.
  • FIG. 5 is a circuit diagram showing a configuration of the A-type conversion circuit UCA.
  • the A-type conversion circuit UCA includes a first sub A / D converter 10, a first amplifier circuit 11a, and a second amplifier circuit 11b.
  • the first sub A / D converter 10 compares the input voltage VI with the threshold voltage string Vth in the sampling state ⁇ 0, determines which of the plurality of segments the input voltage Vi belongs to, and a conversion indicating the result Data D1 is generated.
  • j is an integer having a range of ⁇ M to M.
  • the input signal VI is sampled by the first sub A / D converter 10 as follows.
  • the configuration of the first sub A / D converter 10 is not particularly limited, and a known technique or a technique that can be used in the future may be used.
  • the comparators disclosed in Non-Patent Documents 1 and 2 proposed by the present inventor can be suitably used as the first sub A / D converter 10 of the present invention.
  • the threshold voltage Vth may be generated by resistance-dividing the reference voltage string -V ref , GND, V ref and voltage comparison may be performed using a comparator array (comparator string).
  • the first amplifier circuit 11a generates the first voltage Vm a having an upper limit or more voltage levels of the segment the input voltage VI belongs, the difference between the first voltage Vm a and the input voltage VI as a reference to a predetermined common voltage Vc Amplification is performed to generate the third voltage Va.
  • the second amplifier circuit 11b generates the second voltage Vm b having a voltage level below the lower limit of the segment the input voltage VI belongs, the difference between the second voltage Vm b and the input voltage VI as a reference to a predetermined common voltage Vc Amplify to generate the third voltage Vb.
  • the first voltage Vm a second voltage Vm b is sandwich segments input voltage VI belongs.
  • the first amplifier circuit 11a includes a first switch circuit 12a, a first amplifier 14a, first capacitor rows C a1 to C aM , and a first switch S 1a .
  • the second amplifier circuit 11b includes a second switch circuit 12b, a second amplifier 14b, second capacitor rows C b1 to C bM , and a second switch S 1b .
  • the first amplifier 14a is an inverting amplifier, and its gain is ( ⁇ G).
  • Vc ground voltage GND
  • Vc ground voltage GND
  • the first switch S1a is provided between the inverting input terminal of the first amplifier 14a and a fixed voltage terminal (ground terminal).
  • the first switch S 1a is turned on in the sampling state .phi.0, off the differential amplifier state .phi.1.
  • One end (first terminal) of each of the first capacitor rows C a1 to C aM is connected in common with the inverting input terminal of the first amplifier 14a.
  • the capacitance values of the capacitors C a1 to C aM are assumed to be C 0 equally.
  • the first switch circuit 12a is supplied with a comparison result by the first sub A / D converter 10, that is, conversion data D1 indicating a value k, or a control signal corresponding thereto.
  • the first switch circuit 12a is a switch matrix including a plurality of switches therein, and the other end (second terminal) of each of the first capacitor columns C a1 to C aM is set in accordance with the value k of the conversion data D1. Any one of the input voltage VI, the reference voltage V ref , GND, and ⁇ V ref is selectively applied.
  • the first switch circuit 12a applies the input voltage VI to the second terminals of all the capacitors C a1 to C aM .
  • the first switch circuit 12a applies the reference voltage V ref to the second terminals of the j capacitors among the capacitors C a1 to C aM and the ground voltage GND to the second terminals of the remaining capacitors. Apply.
  • the number j is determined according to the value k.
  • a circuit group including the second switch circuit 12b, the second amplifier 14b, the capacitors C b1 to C bM , and the second switch S 1b generates the second output voltage Vb and generates the first output voltage Va described above. And generating a second output voltage Vb that satisfies the equation (7b).
  • the above is the configuration of the A-type conversion circuit UCA.
  • the ground terminal in the figure may be replaced with the common voltage terminal.
  • the B-type conversion circuit UCB receives the first input voltage (third voltage) Vi a and the second input voltage (fourth voltage) Vi b from the preceding A-type conversion circuit UCA or B-type conversion circuit UCB.
  • the preceding stage is an A-type conversion circuit UCA.
  • the B-type conversion circuit UCB repeats the sampling state ⁇ 0 and the interpolation amplification state ⁇ 1 alternately.
  • FIG. 6 is a diagram for explaining the function of the B-type conversion circuit UCB.
  • FIG. 7 is a diagram showing input / output characteristics of the A / D converter 100.
  • the input voltages Vi a and Vi b generated by the preceding A-type conversion circuit UCA are voltage-converted so that the input voltage VI matches the common voltage Vc. Therefore, the B-type conversion circuit UCB divides the two input voltages Vi a and Vi b into a plurality of segments SEG 1 to SEG 7 in the sampling state ⁇ 0, and the common voltage Vc (GND) is divided into any segment SEG j . Determine if it belongs.
  • the B-type conversion circuit UCB does not use the external reference voltages V ref and -V ref , but performs sampling (quantization) using the input voltages Vi a and Vi b from the previous stage. This is one of the features of the circuit UCB.
  • the B-type conversion circuit UCB outputs conversion data D2 indicating a value j when the common voltage Vc (GND) belongs to the j-th segment SEG j .
  • Sampling in the B-type conversion circuit UCB is performed when the two offset voltages (k a ⁇ V ref / M) and (k b ⁇ V ref / M) obtained in the previous stage are divided into a plurality of segments. This is equivalent to determining which segment the input voltage VI belongs to.
  • the B-type conversion circuit UCB enters the interpolation amplification state ⁇ 1, and the seventh voltage (first output voltage) Va o and the eighth voltage (equation (19a) to (19d)) and it outputs a second output voltage) Vb o.
  • Vo a ⁇ H ⁇ Vm a
  • Vm a ⁇ (L ⁇ j a ) ⁇ Vi a + j a ⁇ Vi b ) ⁇ / L (19a)
  • j a and j b are integers determined according to the conversion value j.
  • the numerical values j a and j b may be determined as follows using an integer parameter ⁇ ( ⁇ ⁇ 1).
  • j a (j ⁇ ) (20a)
  • j b (j + ⁇ ) (20b)
  • a fifth voltage (referred to as a first intermediate voltage) Vm a appearing in Expression (19a) is a voltage that internally divides the two input voltages Vi a and Vi b into j a : (L ⁇ j a ).
  • the (referred to as a second intermediate voltage) sixth voltage appearing in equation (19b) Vm b are the two input voltages Vi a and Vi b, j b: a voltage which internally divides (L-j b).
  • the B-type conversion circuit UCB determines the internal dividing points j a and j b so that the two intermediate voltages Vm a and Vm b sandwich the segment SEG j to which the common voltage Vc (GND) belongs.
  • the B-type conversion circuit UCB generates the output voltages Vo a and Vo b by inverting and amplifying the two intermediate voltages Vm a and Vm b with a gain ( ⁇ H) with respect to the common voltage Vc.
  • the B-type conversion circuit UCB after the second stage repeats the same processing.
  • high resolution A / D conversion can be performed by pipeline processing.
  • FIG. 8 is a circuit diagram showing a configuration of the B-type conversion circuit UCB.
  • the B-type conversion circuit UCB generates a second sub A / D converter 20, a third amplifier circuit 21a that generates a seventh voltage (first output voltage) Vo a, and an eighth voltage (second output voltage) Vo b .
  • a fourth amplifier circuit 21b is provided.
  • the second sub-A / D converter 20 divided, in the sampling state .phi.0, negative input voltage (fifth voltage) Vi a and positive input voltage (sixth voltage) Vi b into a plurality of segments SEG 0 ⁇ SEG 8 Then, it is determined to which segment SEG j the common voltage Vc (GND) belongs.
  • the second sub A / D converter 20 outputs the conversion data D2 indicating the value j when the common voltage Vc (GND) belongs to the j-th segment SEG j .
  • the configuration of the second sub A / D converter 20 is not particularly limited, and a known technique or a technique that can be used in the future may be used.
  • the second sub A / D converter 20 generates a plurality of threshold voltages Vth 1 to Vth 8 by dividing the two input voltages Vi a and Vi b as shown in FIG. Sampling may be performed by comparison with threshold voltages Vth 1 to Vth 8 .
  • the second sub A / D converter 20 can be configured by a comparator array (comparator array).
  • the comparators described in Non-Patent Documents 1 and 2 proposed by the present inventor can be used.
  • Third amplifier circuit 21a the difference between the fifth voltage Vm a and the common voltage Vc having an upper limit or more voltage levels of the segment to which a common voltage Vc belongs, a seventh voltage Vo a by amplifying the common voltage Vc as the reference Generate.
  • Third amplifier circuit 21a, the third switch circuit 22 aa, the fourth switch circuit 22 ab, third amplifier 24a, the third capacitor column C aa1 ⁇ C AAL, the fourth capacitor column C ab1 ⁇ C Abl, the third switch S 1a is included.
  • Fourth amplifier circuit 21b, the fifth switch circuit 22 ba, the sixth switch circuit 22 bb, fourth amplifier 24b, the fifth capacitor column C ba1 ⁇ C BAL, sixth capacitor column C bb1 ⁇ C bbL, fourth switch S 1b is included.
  • the third amplifier circuit 21a and the fourth amplifier circuit 21b are configured similarly.
  • the third amplifier 24a is an inverting amplifier, and each gain is (-H).
  • the third switch S1a is provided between the inverting input terminal of the third amplifier 24a and the fixed voltage terminal (ground terminal).
  • the third switch S 1a is turned on in the sampling state .phi.0, off the interpolation amplification status .phi.1.
  • the third switch circuit 22aa and the fourth switch circuit 22ab are supplied with the sampling result by the first sub A / D converter 10, that is, the conversion data D indicating the value j, or a control signal corresponding thereto.
  • the third switch circuit 22 aa and the fourth switch circuit 22 ab are a switch matrix including a plurality of switches therein.
  • the third switch circuit 22 aa In sampling state .phi.0, the third switch circuit 22 aa, the third capacitor column C aa1 ⁇ C aaL second ends (second terminal) connected to the first input terminal Pi a, the fourth switch circuit 22 ab is The other end (second terminal) of each of the fourth capacitor rows C ab1 to C abM is connected to the second input terminal Pi b .
  • the third capacitor string C aa is charged with the first input voltage Vi a
  • the fourth capacitor string C ab is charged with the second input voltage Vi b .
  • the third switch circuit 22 aa is connected in the interpolation amplification status .phi.1, while the L third capacitor column C aa1 ⁇ C aaL (L- j a) number of the fixed voltage terminal of the second terminal (ground terminal) Open or short-circuit the remaining j a capacitors.
  • the fourth switching circuit 22 ab is connected in the interpolation amplification status .phi.1, a j a number of second terminals of the L-number of the fourth capacitor column C ab1 ⁇ C abL to a fixed voltage terminal (ground terminal P GND), the remaining (L ⁇ j a ) capacitors are opened or short-circuited.
  • the third amplifier 24a inverts amplifies the potential Vm a inverting input terminal with a gain (-H), and outputs a first output voltage Vo a from the first output terminal Po a.
  • Vo a ( ⁇ H) ⁇ Vm a
  • the fifth switch circuit 22 ba includes a fifth capacitor column C ba1 ⁇ C baL second ends (second terminal) connected to the first input terminal Pi a
  • the sixth switch circuit 22 bb is The other end (second terminal) of each of the sixth capacitor arrays C bb1 to C bbL is connected to the second input terminal Pi b .
  • the fifth capacitor column C ba is charged with the first input voltage Vi a
  • sixth capacitor column C bb is charged by the second input voltage Vi b.
  • the fifth switch circuit 22 ba has ( Lj b ) second terminals out of the L fifth capacitor columns C ba1 to C baL as fixed voltage terminals (ground terminals P GND ) in the interpolation amplification state ⁇ 1. connect open the remaining j b-number of capacitors or short-circuited.
  • the sixth switch circuit 22 bb connects j b second terminals of the L sixth capacitor rows C bb1 to C bbL to the fixed voltage terminal (ground terminal P GND ) in the interpolation amplification state ⁇ 1, and the rest (L ⁇ j b ) capacitors are opened or short-circuited.
  • the above is the configuration of the B-type conversion circuit UCB.
  • the gains G and H of the amplifiers of the A-type conversion circuit UCA and the B-type conversion circuit UCB are about 2 to 8 times, and are as strict as the conventional ones. High gain accuracy is not required. Therefore, an open-loop type broadband amplifier that does not use negative feedback can be used. When a negative feedback system is used, it is necessary to give sufficient consideration to the stability (oscillation) of the circuit, so that the difficulty of design increases, and problems that occur when the settling time becomes long occur. Since the A / D converter 100 can be configured as an open loop type, such a problem can be solved, and a high-speed and high-accuracy A / D converter can be easily obtained even by using a fine CMOS technology. Can be realized.
  • the negative feedback type amplifier may be used in the A / D converter 100 according to the embodiment.
  • FIG. 9 is a circuit diagram showing a configuration of a B-type conversion circuit according to a modification.
  • the accuracy of the gain required for the amplifier may be lower than that of the conventional one, but the third amplifier 24a and the fourth amplifier 24b belonging to the same conversion circuit are not required.
  • the relative accuracy of the gain H is required to some extent. It is well known that such relative accuracy can usually be achieved by using integrated circuit technology (eg, pairing of corresponding elements). When higher relative accuracy is required, the circuit of FIG. 9 is effective.
  • the B-type conversion circuit UCB in FIG. 9 further includes a gain adjustment circuit 26 in addition to the B-type conversion circuit UCB in FIG.
  • the third amplifier 24a and the fourth amplifier 24b are variable gain amplifiers, and the gain adjustment circuit 26 digitally adjusts the gains H of the third amplifier 24a and the fourth amplifier 24b to reduce linearity errors.
  • a technique of performing differential amplification processing while swapping the third amplifier 24a and the fourth amplifier 24b is also effective.
  • the input switches 28a and 28b switch the input voltages Vi a and Vi b to the two input terminals Pi a and Pi b of the B-type conversion circuit UCB and output them.
  • the output switches 29a and 29b switch the voltage from the two output terminals Po a and Po b of the B-type conversion circuit UCB between the two output terminals Po a ′ and Po b ′, and output them.
  • the conversion characteristics match even if the input / output terminals are swapped.
  • the conversion characteristics can be matched by combining with the gain adjustment circuit 26.
  • FIG. 10 is a circuit diagram showing a configuration of a B-type conversion circuit according to the second modification.
  • the switch circuits 22 aa , 22 ab , 22 ba , and 22 bb in FIG. 8 have a configuration in which the ground voltage GND is applied to the capacitor rows C aa , C ab , C ba , and C bb .
  • the switch circuits 22 aa , 22 ab , 22 ba , and 22 bb in FIG. 10 apply the input voltages Vi a and Vi b from the previous stage to the capacitor arrays C aa , C ab , C ba , and C bb .
  • FIGS. 11A and 11B are diagrams illustrating the operation of the B-type conversion circuit of FIG. FIG. 11A shows the sampling state ⁇ 0, and FIG. 11B shows the interpolation amplification state ⁇ 1.
  • the previous stage is the interpolation amplification state ⁇ 1, and the previous stage switches S1a and S1b are off.
  • the offset voltages V off — a and V off — b exist in the third amplifier 24 a (14 a) and the fourth amplifier 24 b (14 b) in the previous stage, the signal components V sig_a and V sig_b are included in the voltages Vi a and Vi b from the previous stage.
  • the offset voltages V off — a and V off — b are superimposed on each other.
  • the capacitor string is charged with (V sig_a + V off_a ) and (V sig_b + V off_b ).
  • the noted B-type conversion circuit UCB i transitions to the interpolation amplification state ⁇ 1.
  • the previous conversion circuit is in the sampling state, and the switches S 1a and S 1b are turned on.
  • the input voltages Vi a and Vi b of the B-type conversion circuit UCB i become the offset voltages V off_a and V off_b , respectively.
  • the following relational expression (28) is established.
  • V x indicates the voltage of the node x.
  • FIGS. 12A and 12B are diagrams illustrating input / output characteristics of the A-type conversion circuit and the B-type conversion circuit when a differential amplifier is used.
  • FIG. 13 is a circuit diagram showing a part of the configuration of the B-type conversion circuit according to the third modification.
  • FIG. 13 shows only the third amplifier circuit 21a on the amplifier a side.
  • FIG. 14 is a diagram showing input / output characteristics of the B-type conversion circuit of FIG.
  • the B-type conversion circuit UCB in FIG. 13 receives differential first input voltages Vi ap and Vi an and second input voltages Vi bp and Vi bn .
  • the third amplifier circuit 21a of the B-type conversion circuit UCB includes a second sub A / D converter 20, third switch circuits 22 ap and 22 an , a third amplifier 24 a, capacitor rows C ap and C an , and a switch S 1a . .
  • Capacitor column C ap includes third capacitor column C aa1 ⁇ C AAL, the fourth capacitor column C ab1 ⁇ C abL. The same applies to the capacitor row Can .
  • the third switch circuits 22 ap and 22 an are matrix switches, and charge the capacitor arrays C ap and C an according to the control signal from the second sub A / D converter 20.
  • the third switch circuit 22 ap receives the normal rotation input voltage V ap for the capacitor column C aa and the normal rotation input for the capacitor column C ab .
  • the voltage V bp may be applied.
  • the third switch circuit 22 an may apply the inverted input voltage V an to the capacitor column C ba and the inverted input voltage V bn to the capacitor column C bb . This is the same as in FIG. V in — p and V in — n can be generated by the internal division method.
  • V in — p ⁇ (L ⁇ j) V ap + j ⁇ V bp ⁇ / L (30p)
  • V in — n ⁇ (L ⁇ j) V an + j ⁇ V bn ⁇ / L (30n)
  • the third switch circuit 22 ap When the voltage is generated by the external division method, in the sampling state ⁇ 0, the third switch circuit 22 ap outputs the normal input voltage Vap with respect to the capacitor column C aa and the inverted input voltage V with respect to the capacitor column C ab . What is necessary is just to apply bn .
  • V ex — p ⁇ (L + j) ⁇ V ap ⁇ j ⁇ V bp ⁇ / L (31p) Rewritten. This is nothing but a voltage that divides the two voltages V ap and V bp into j: (L + j).
  • the third switch circuit 22 an may apply the inverted input voltage V an to the capacitor column C ba and the forward input voltage V bn to the capacitor column C bb .
  • V ex_n represented by the formula (31n)
  • V ex — n ⁇ (L + j) ⁇ V an ⁇ j ⁇ V bn ⁇ / L (31n)
  • the voltage applied to the capacitor array is expanded to the inverting side (n), and the number of capacitors may be increased as necessary.
  • the gain H of the third amplifier 24a and the fourth amplifier 24b can be further reduced.
  • the common voltage Vc is the ground voltage GND
  • the present invention is not limited thereto.
  • the common voltage Vc may be the midpoint voltage Vdd / 2 of the power supply voltage Vdd.
  • Vref / 2 may be used when the reference voltage Vref is applied.
  • each gain has a property that it is sufficient to be several times as high as several tens of times.
  • FIG. 15 is a circuit diagram showing a configuration of the dynamic differential amplifier 30.
  • the dynamic differential amplifier 30 amplifies the signals V i1 and V i2 input to the first input terminal P i1 and the second input terminal P i2 , and the amplified signals V o1 and V o2 to the first output terminal P. o1 is output from the second output terminal Po2 .
  • the dynamic differential amplifier 30 includes a first load capacitor C L1 , a second load capacitor C L2 , an input differential pair 32, an initialization circuit 34, a control circuit 36, and a tail current source M 0.
  • the first load capacitor C L1 is provided between the first output terminal P o1 and the fixed voltage terminal (ground terminal).
  • the second load capacitor C L2 is provided between the second output terminal P o2 ground terminal.
  • the initialization circuit 34 initializes the charges of the first load capacitor C L1 and the second load capacitor C L2 .
  • Initialization circuit 34 includes, for example, initialization transistors M3 and M4.
  • the initialization transistor M3 is provided between the first load capacitor CL1 and the second fixed voltage terminal (power supply terminal).
  • the initialization transistor M4 is provided between the second load capacitor CL2 and the power supply terminal.
  • the initialization transistors M3 and M4 are controlled to be turned on and off in synchronization with a control clock VCLK that transitions to a low level at a predetermined cycle.
  • the initialization transistors M3 and M4 are turned on, the first load capacitor C L1 and the second load capacitor C L2 are charged by the power supply voltage V DD and the respective charges are initialized.
  • the input differential pair 32 includes an input transistor M1 and an input transistor M2.
  • the input transistor M1 has the first load capacitor C L1 as a load, and a first input signal V i1 is input to a control terminal (gate) thereof.
  • the input transistor M2 uses the second load capacitor C L2 as a load, and a second input signal V i2 is input to the gate thereof.
  • the control circuit 36 When the midpoint voltage (V o1 + V o2 ) / 2 of the potentials V o1 and V o2 of the first output terminal P o1 and the second output terminal P o2 reaches the predetermined threshold voltage Vth, the control circuit 36 The charge / discharge paths of the first load capacitor C L1 and the second load capacitor C L2 are cut off.
  • a first switch SW1 and a second switch SW2 are provided to cut off the charge / discharge path of the first load capacitor C L1 and the second load capacitor C L2 .
  • the first switch SW1 is provided between the first load capacitor CL1 and the input transistor M1.
  • the second switch SW2 is provided between the second load capacitor CL2 and the input transistor M2.
  • the control circuit 36 switches between conduction and interruption of the charge / discharge paths of the first load capacitor C L1 and the second load capacitor C L2 by switching the first switch SW1 and the second switch SW2 on and off.
  • FIG. 16 is a waveform diagram showing the operation of the dynamic differential amplifier 30 of FIG.
  • the horizontal axis represents time, and the vertical axis represents output voltages V o1 and V o2 .
  • the dynamic differential amplifier 30 Prior to amplification, the dynamic differential amplifier 30 is set to an initialization state (t ⁇ t 0 ). In the initialization state, the control clock VCLK becomes low level and the initialization transistors M3 and M4 are turned on. The control circuit 36 turns on the first switch SW1 and the second switch SW2. As a result, the power supply voltage V DD is applied to the first load capacitor C L1 and the second load capacitor C L2 , and the output voltages V o1 and V o2 are initialized to the power supply voltage V DD .
  • V o1 and V o2 V DD ⁇ I D1 / C L1 ⁇ t (33a)
  • V o2 V DD ⁇ I D2 / C L2 ⁇ t (33b)
  • Vth a predetermined threshold voltage
  • the first switch is reached at the time t 1 .
  • SW1 and the second switch SW2 are turned off.
  • the midpoint voltage V x is given by Expression (34).
  • V x V DD ⁇ I 0 ⁇ t / (2 ⁇ C L ) (34)
  • V o1 V DD / 2-g m1 / 2 ⁇ (V i1 ⁇ V i2 ) / I 0 ⁇ V DD (36a)
  • V o2 V DD / 2 + g m2 / 2 ⁇ (V i1 ⁇ V i2 ) / I 0 ⁇ V DD (36b)
  • the differential gain G of the dynamic differential amplifier 30 is given by the equation (37).
  • FIG. 17 is a circuit diagram showing a configuration of an amplifier 1030 according to the comparison technique.
  • the amplifier 1030 includes load resistors R L1 and R L2 instead of the initialization circuit. It should be noted that the capacitors C L1 and C L2 and the switches SW1 and SW2 are provided for sampling the drain voltages of the transistors M1 and M2, and have different functions from the dynamic differential amplifier 30 of FIG. is there.
  • the response time constant ⁇ of the amplifier 1030 is determined by the product of the resistance and the capacity. Therefore, in order to increase the response speed, that is, to shorten the time constant ⁇ , it is necessary to reduce the resistance value. is there. However, when the resistance value is lowered, the power consumption given by equation (46) increases in inverse proportion.
  • 18A and 18B are circuit diagrams showing a specific example of the dynamic differential amplifier 30 of FIG.
  • the control circuit 36a includes a first voltage dividing capacitor C 1 , a second voltage dividing capacitor C 2 , and a comparator 38.
  • First divided capacitor C 1 the second divided capacitor C 2 are provided in series between the first output terminal P o1 of the second output terminal P o2.
  • Capacitance value of the first divided capacitor C 1 and the second divided capacitor C 2 is equal C 0.
  • Comparator 38 first divided capacitor C 1, the potential V x of the second partial pressure of the connection point capacitor C 2 with a predetermined threshold voltage Vth, the switch SW1 with a signal corresponding to the comparison result, SW2 To control.
  • the comparator 38 may include an inverter 39.
  • Inverter 39 receives power supply voltage V DD and ground voltage GND, and its threshold voltage Vth is V DD / 2.
  • the number of stages of the inverter 39 may be designed according to the control logic of the switches SW1 and SW2.
  • Initialization circuit 34a a potential V x of the first divided capacitor C 1 and the second divided capacitor C 2 of the connection point N x, the first output terminal P o1, as in the second output terminal P o2, supply voltage Initialize to V DD . More specifically, between the node N x and the power supply terminal, the initialization transistor M5 is provided, which turns on, the potential of the node N x is initialized.
  • V x (V 1 + V 2 ) / 2 (49) That is, the potential V x at the connection point N x becomes a midpoint voltage between the two output voltages V o1 and V o2 , and the midpoint voltage V can be compared with the threshold voltage as in the circuit of FIG.
  • a control clock VCLK is input to the gate of the tail current source M0.
  • the tail current source M0 can be turned off in the initialization state, so that power consumption can be further reduced.
  • the dynamic differential amplifier 30b shown in FIG. 18B includes a logic gate 40 in addition to the dynamic differential amplifier 30a shown in FIG.
  • the logic gate 40 supplies the logical product of the output signal CNT of the control circuit 36 and the control clock V CLK to the gate of the tail current source M0.
  • the charge / discharge paths of the first load capacitor C L1 and the second load capacitor C L2 can be more reliably interrupted. Further, by turning off the tail current source M0, the potentials of the first output terminal P o1 and the second output terminal P o2 do not drop to the ground potential (0 V). Therefore, the power consumption can be further reduced as compared with FIG.
  • FIG. 19 (a) and 19 (b) are circuit diagrams showing another specific example of the dynamic differential amplifier.
  • the control circuit 36c is composed of a logic gate. Specifically, the control circuit 36c is an AND gate.
  • FIG. 19B is a circuit diagram showing a specific configuration of the control circuit 36c.
  • the control circuit 36c includes a NAND gate 42 and an inverter (NOT gate) 44 provided in the subsequent stage.
  • the NAND gate 42 includes P-channel transistors M P1 and M P2 , and N-channel transistors M N1 , M N2 , M N3 , and M N4 .
  • the first P-channel transistor M P1 , the first N-channel transistor M N1 , and the second N-channel transistor M N2 are sequentially stacked so as to form a first path between the power supply terminal and the ground terminal.
  • the second P-channel transistor M P2 , the third N-channel transistor M N3 , and the fourth N-channel transistor M N4 are sequentially stacked so as to form a second path parallel to the first path between the power supply terminal and the ground terminal.
  • the first input signal V 1 is applied to the gates of the first P-channel transistor M P1 , the first N-channel transistor M N1 , and the fourth N-channel transistor M N4 .
  • the second input signal V 2 is applied to the gates of the second P-channel transistor M P2 , the second N-channel transistor M N2 , and the third N-channel transistor M N3 .
  • the output terminal of the NAND gate 42 is connected to the drains of the first and second P-channel transistors M P1 and M P2 .
  • I DN K N (V GS ⁇ V TN ) (50a)
  • I DP ⁇ K P (V GS ⁇ V TP ) (50b)
  • the output logic state is switched at the midpoint voltage of V 1 and V 2 .
  • the midpoint voltage can be compared with the threshold voltage Vth by using the NAND gate 42 shown in FIG. 19B instead of the voltage dividing capacitors C 1 and C 2 .
  • the input differential pair 32 is configured by an N-channel MOSFET, but on the contrary, it may be configured by using a P-channel MOSFET.
  • the N channel and the P channel are replaced, the power supply voltage and the ground voltage are inverted, and the gate signal of each transistor is inverted if necessary.
  • control circuit 36 cuts off the charge / discharge path of the load capacitors C L1 and C L2 according to the midpoint voltage Vx of the output voltages V o1 and V o2 has been described.
  • You may comprise with the timer circuit which measures elapsed time.
  • FIG. 20 is a circuit diagram showing a modification of the dynamic differential amplifier 30 of FIG.
  • a tail current source M0 is provided to set the operating current of the input transistors M1 and M2. Since the drain-source voltage of the tail current source M0 is required to be 0.2 V or more, it is difficult to use in a situation where the power supply voltage V DD is low. Therefore, the dynamic differential amplifier 30d in FIG. 20 is configured by a pseudo differential circuit in which the tail current source M0 in FIG. 15 is omitted. Input to the transistors M1, M2 respectively on the drain side, turned in synchronization with the control clock V CLK, switching transistors M5, M6 of off controlled is provided. The switch transistors M5 and M6 are turned off in the initialization state and turned on in the amplification state.
  • the operating currents of the input transistor M1 and the input transistor M2 are controlled by controlling the gate voltages V i1 and V i2 of the input transistor M1 and the input transistor M2. Since the switch transistors M5 and M6 function as switches that are switched between the on and off states, their drain-source voltage Vds is substantially zero in the operating state. Therefore, the dynamic differential amplifier 30d can operate even with the power supply voltage V DD lower than the drain-source voltage Vds ( ⁇ 0.2V) of the tail current source M0 as compared with FIG.
  • the transistors M5 and M6 may be omitted, and the gate voltages V i1 and V i2 may be controlled so that the input transistors M1 and M2 are turned off during a period in which the transistors M5 and M6 are to be turned off.
  • the output of the gate 40 in FIG. 18B may be input to the gates of the transistors M5 and M6 in FIG.
  • the dynamic differential amplifier described with reference to FIGS. 15 to 20 can be suitably used for the above-described A / D converter, but its application is not limited.
  • the dynamic differential amplifier does not require absolute accuracy of gain, but can be used for various applications that require relative accuracy, and can suitably reduce power consumption.
  • DESCRIPTION OF SYMBOLS 100 ... A / D converter, UCA ... A type conversion circuit, UCB ... B type conversion circuit, 10 ... 1st sub A / D converter, 11a ... 1st amplifier circuit, 11b ... 2nd amplifier circuit, 12a ... 1st switch Circuit, 12b ... second switch circuit, 14a ... first amplifier, 14b ... second amplifier, Ca ... first capacitor row, Cb ... second capacitor row, 20 ... second sub A / D converter, 21a ... third amplification Circuit, 21b ... 4th amplifier circuit, 22aa ... 3rd switch circuit, 22ab ... 4th switch circuit, 22ba ... 5th switch circuit, 22bb ... 6th switch circuit, 24a ... 3rd amplifier, 24b ... 4th amplifier, 26 ... gain adjustment circuit.
  • the present invention relates to a pipeline type A / D converter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

 A型変換回路は、入力電圧を複数のしきい値電圧と比較し、複数のセグメントのいずれに属するかを判定し、入力電圧が属するセグメントを挟む第1電圧と第2電圧を生成する。A型変換回路は、第1電圧と入力電圧の差分を、所定のコモン電圧を基準として増幅することにより第3電圧を生成する。また第2電圧と入力電圧の差分を、コモン電圧を基準として増幅することにより第4電圧を生成する。B型変換回路は、第3電圧と第4電圧の間を、複数のセグメントに分割し、コモン電圧が複数のセグメントのいずれに属するかを判定する。続いてコモン電圧が属するセグメントを挟む第5電圧と第6電圧を生成する。B型変換回路は、第5電圧とコモン電圧の差分を、コモン電圧を基準として増幅することにより第7電圧(次段の第3電圧)を生成し、第6電圧とコモン電圧の差分を、コモン電圧を基準として増幅することにより第8電圧を生成する。

Description

パイプライン型A/DコンバータおよびA/D変換方法、ならびにダイナミック型差動増幅器
 本発明は、パイプライン型A/Dコンバータに関する。
 アナログ電圧をデジタル信号に変換するために、パイプライン型のA/Dコンバータが利用される。図1(a)~(c)は、一般的なパイプライン型のA/Dコンバータの構成を示すブロック図および入出力特性である。A/Dコンバータ1100は、カスケードに接続された複数(n段)の単位変換回路UC~UCを備える。
 単位変換回路UC~UCは、最上位ビットMSBから最下位ビットLSBに向けてmビットずつ、順次A/D変換を実行する。図1(b)は単位変換回路UCの構成を示す。単位変換回路UCは、演算増幅器OA1と、スイッチ回路SW、サブA/DコンバータSADCを備え、標本化状態φ0と、差分増幅状態φ1、をクロック信号と同期しながら時分割的に交互に繰り返す。あるステージの単位変換回路UCが標本化状態φ0にあるとき、それと隣接するステージの単位変換回路UCは差分増幅状態φ1にある。
 入力端子Piには、前段からの入力電圧Vinが入力される。入力電圧範囲は-Vref~+Vrefである。標本化状態φ0において、サブA/DコンバータSADCは、入力電圧Vinを複数の基準電圧と比較し、比較結果kを示す比較データD1を生成する。この例では、6値つまり約2.5ビットの冗長構成を有しており、入力電圧Vinが、以下のように標本化(量子化)される。
 -Vref<Vin<-5/8×Vref      k=-3
 -5/8×Vref<Vin<-3/8×Vref  k=-2
 -3/8×Vref<Vin<-1/8×Vref  k=-1
 -1/8×Vref<Vin<+1/8×Vref  k=0
 +1/8×Vref<Vin<+3/8×Vref  k=1
 +3/8×Vref<Vin<+5/8×Vref  k=2
 +5/8×Vref<Vin<+Vref      k=3
 また、標本化状態φ0において、スイッチSがオン、スイッチSが入力端子Pi側にオンする。またスイッチ回路SWは、入力電圧Vinを選択し、入力キャパシタCs1~Cs3の一端に印加する。その結果、フィードバックキャパシタCfおよび入力キャパシタCs1~Cs3は、等しく入力電圧Vinによって充電される。
 次にクロック信号の位相が切り替わると差分増幅状態φ1となり、スイッチSがオフし、スイッチSは演算増幅器OAの出力端子Po側にオンする。またサブA/DコンバータSADCは、比較結果をスイッチ回路SWへと出力する。スイッチ回路SWは、比較結果に応じて、基準電圧列+Vref、-Vref、GNDのいずれかを、入力キャパシタCs1~Cs3それぞれの一端に印加する。上述のように、比較結果を示す変換値kは-3~+3の間の7値を取り得る。スイッチ回路SWは、kが正のとき、k個の入力キャパシタCに基準電圧+Vrefを印加し、残りに接地電圧GNDを印加する。反対にkが負のときには、(-k)個の入力キャパシタCに基準電圧-Vrefを印加し、残りに接地電圧GNDを印加する。kがゼロのとき、すべてのキャパシタCs1~Cs3に接地電圧GNDが印加される。
 すべてのキャパシタCf、Cs1~Cs3の容量値が等しくCとすると、演算増幅器OAの反転入力端子(-)に保持される電荷Qは、
 Q=-4C・Vin   …(1)
で与えられる。また、演算増幅器OAの反転入力端子(-)の電位をvi、その出力電圧をvo、その利得をGとするとき、
 (vi-Vref)×k×C+(vi-vo)C=Q=-4C・Vin …(2a)
 vo=-G・vi   …(2b)
 したがって差分増幅状態φ1における単位変換回路UCの出力電圧Vout(=vo)は、式(3)で与えられる。
 Vout=4(Vin-k/4×Vref)/{1+(k+1)/G}  …(3)
 いま、Gが無限大であると仮定すると、単位変換回路UCの入出力特性として式(3’)を得る。
 Vout=4・(Vin-k×Vref/4)   …(3’)
 図1(c)には、式(3)で与えられる単位変換回路UCの入出力特性が示される。白丸はサブA/DコンバータSADCの基準電圧を示す。図中、黒丸は式(3’)中の右辺第2項の(k×Vref)で与えられるX軸方向のオフセット電圧を示す。すなわち単位変換回路UCは、入力電圧Vinと、オフセット電圧の差分を利得4で増幅する。
 この出力信号Voutは、次段の単位変換回路UCの入力電圧Vinとして供給される。図1(a)に示すように、複数の単位変換回路UCがクロック信号と同期してパイプライン動作を行うことにより、各単位変換回路UCから順次、変換値kを示すデータD1、D2…が出力される。なお最終段の単位変換回路UCは、差分増幅処理は必要ないため、比較器列(サブA/Dコンバータ)のみで構成することができる。
特開2006-54608号公報
K. Sushihara and A. Matsuzawa、「A 7b 450MSPS 50mW CMOS ADC in 0.3mm2」、IEEE International Solid-State Circuits Conference, Digest of Technical、2002、pp.170-171 Yusuke Asada, Kei Yoshihara, Tatsuya Urano, Masaya Miyahara, and Akira、「A 6bit, 7mW, 250fJ, 700MS/s Subranging ADC」、IEEE Asian Solid-State Circuits Conference (A-SSCC)、台湾、2009年11月、5-3、pp.141-144
 図1に示すような、従来のパイプライン型A/Dコンバータ1100の変換精度は、回路系の利得の正確さに依存しており、具体的にはキャパシタC、Cs~Csの比精度と、演算増幅器OA1の利得に依存している。これまでの説明では、演算増幅器OA1の利得Gが無限大であると仮定したが、実際の演算増幅器の利得は有限であり、近年の半導体プロセスの微細化にともなってその利得はますます減少する傾向にある。分解能をNビットとし、変換誤差を1/4LSBとするときの必要利得Gは、
 G(dB)>6N+10   …(4)
程度となる。したがって分解能を10ビットとすると、必要な利得Gは70dB以上、分解能を12ビットとすると必要な利得Gは82dB以上となる。近年の微細化されたCMOSデバイスを用いた演算増幅器の利得はせいぜい60dB程度であり、このような高い利得を得ることは困難となっている。
 さらにこの変換方式では、演算増幅器を用いた負帰還増幅を前提としている。負帰還回路は演算増幅器の利得を上げることで、回路系の精度が、容量の比精度によって定まるように構成されているが、負帰還回路は発振やセトリング時間の増大を招きやすく、A/Dコンバータの高速化にとって大きな障害となっている。
 本発明は係る課題に鑑みてなされたものであり、そのある態様の例示的な目的のひとつは、負帰還回路を用いないパイプライン型A/Dコンバータの提供にある。
 本発明のある態様は、アナログの入力電圧をデジタルデータに変換するA/D変換方法に関する。この方法は、以下の処理を行う。
 1. 入力電圧を複数のしきい値電圧と比較し、複数のセグメントのいずれに属するかを判定する第1ステップ
 2. 入力電圧が属するセグメントを挟む第1電圧と第2電圧を生成する第2ステップ
 3. 第1電圧と入力電圧の差分を、所定のコモン電圧を基準として増幅することにより第3電圧を生成する第3ステップ
 4. 第2電圧と入力電圧の差分を、コモン電圧を基準として増幅することにより第4電圧を生成する第4ステップ
 5. 第3電圧と第4電圧の間を、複数のセグメントに分割し、コモン電圧が複数のセグメントのいずれに属するかを判定する第5ステップ
 6. コモン電圧が属するセグメントを挟む第5電圧と第6電圧を生成する第6ステップ
 7. 第5電圧とコモン電圧の差分を、コモン電圧を基準として増幅することにより第7電圧を生成する第7ステップ
 8. 第6電圧とコモン電圧の差分を、コモン電圧を基準として増幅することにより第8電圧を生成する第8ステップ
 第5ステップから第8ステップは繰り返し実行されるものであり、第8ステップから第5ステップに戻るとき、前回の第7ステップで得られた第7電圧を次の第5ステップの第3電圧として、前回の第8ステップで得られた第8電圧を次の第5ステップの第4電圧として利用する。
 この態様によると、高速なA/D変換が実現できる。
 第6ステップにおいて、第5電圧と第6電圧はそれぞれ、第3電圧と第4電圧を補間することにより生成されてもよい。
 第1電圧から第8電圧はそれぞれ、差動信号として生成されてもよい。
 第6ステップにおいて、第5電圧と第6電圧は、第3電圧と第4電圧を外挿補間することにより生成されてもよい。
 本発明の別の態様は、アナログの入力電圧をデジタルデータに変換するパイプライン型A/Dコンバータに関する。このA/Dコンバータは、直列に接続されたA型変換回路、少なくともひとつのB型変換回路、および比較器列を備える。
 A型変換回路は、入力電圧を複数のしきい値電圧と比較し、複数のセグメントのいずれに属するかを判定する第1サブA/Dコンバータと、入力電圧が属するセグメントの上限以上の電圧レベルを有する第1電圧を生成し、第1電圧と入力電圧の差分を所定のコモン電圧を基準として増幅することにより第3電圧を生成し、後段のB型変換回路に出力する第1増幅回路と、入力電圧が属するセグメントの下限以下の電圧レベルを有する第2電圧を生成し、第2電圧と入力電圧の差分を所定のコモン電圧を基準として増幅することにより第4電圧を生成し、後段のB型変換回路に出力する第2増幅回路と、を備える。
 B型変換回路は、前段からの第3電圧と第4電圧の間を複数のセグメントに分割し、コモン電圧が複数のセグメントのいずれに属するかを判定する第2サブA/Dコンバータと、コモン電圧が属するセグメントの上限以上の電圧レベルを有する第5電圧とコモン電圧の差分を、コモン電圧を基準として増幅することにより第7電圧を生成し、後段のB型変換回路に第3電圧として出力する第3増幅回路と、コモン電圧が属するセグメントの下限以下の電圧レベルを有する第6電圧とコモン電圧の差分を、コモン電圧を基準として増幅することにより第8電圧を生成し、後段のB型変換回路に第4電圧として出力する第4増幅回路と、を備える。比較器列は、前段のB型変換回路からの第3電圧と第4電圧の間を複数のセグメントに分割し、コモン電圧が複数のセグメントのいずれに属するかを判定する。
 この態様によると、高速なA/D変換が実現できる。
 第1増幅回路は、それぞれの第1端子が共通に接続された複数の第1キャパシタを含む第1キャパシタ列と、標本化状態において第1キャパシタ列の第2端子に入力電圧を印加し、補間増幅状態において、第1キャパシタ列のうち、第1サブA/Dコンバータによる判定結果に応じた個数の第1キャパシタの第2端子に、基準電圧を印加する第1スイッチ回路と、第1キャパシタ列の第1端子と固定電圧端子の間に設けられ、標本化状態においてオンし、補間増幅状態においてオフする第1スイッチと、その第1入力端子にコモン電圧が入力され、その第2入力端子が第1キャパシタ列の第1端子と接続された第1増幅器と、を含んでもよい。第2増幅回路は、第1増幅回路と同様に構成されてもよい。
 第3増幅回路および第4増幅回路は、第3電圧と第4電圧を補間することにより、第5電圧と第6電圧を生成してもよい。
 第3増幅回路は、それぞれの第1端子が共通に接続された複数の第3キャパシタを含む第3キャパシタ列と、それぞれの第1端子が第3キャパシタ列の第1端子と共通に接続された複数の第4キャパシタを含む第4キャパシタ列と、標本化状態において第3キャパシタ列の第2端子に第3電圧を印加し、補間増幅状態において、第3キャパシタ列のうち、第2サブA/Dコンバータによる判定結果に応じた個数の第3キャパシタの第2端子に、固定電圧を印加する第3スイッチ回路と、標本化状態において第4キャパシタ列の第2端子に第4電圧を印加し、補間増幅状態において、第4キャパシタ列のうち、第2サブA/Dコンバータによる判定結果に応じた個数の第4キャパシタの第2端子に、固定電圧を印加する第4スイッチ回路と、第3キャパシタ列および第4キャパシタ列の共通接続された第1端子と固定電圧端子の間に設けられ、標本化状態においてオンし、補間増幅状態においてオフする第3スイッチと、その第1入力端子にコモン電圧が入力され、その第2入力端子が第3キャパシタ列および第4キャパシタ列の共通接続された第1端子と接続された第3増幅器と、を含んでもよい。第4増幅回路は、第3増幅回路と同様に構成されてもよい。
 第3スイッチ回路は、補間増幅状態において、第3キャパシタ列に固定電圧を印加する際、当該固定電圧として前段からの第3電圧を印加するとともに、第4スイッチ回路は、補間増幅状態において、第4キャパシタ列に固定電圧を印加する際、当該固定電圧として前段からの第4電圧を印加することにより、前段の変換回路の増幅器のオフセット電圧をキャンセルしてもよい。
 なお、以上の構成要素の任意の組み合わせ、本発明の表現を、方法、装置などの間で変換したものもまた、本発明の態様として有効である。
 本発明のある態様によれば、高速なA/Dコンバータが提供される。
図1(a)~(c)は、一般的なパイプライン型のA/Dコンバータの構成を示すブロック図および入出力特性である。 実施の形態に係るパイプライン型のA/Dコンバータの構成を示すブロック図である。 A型変換回路の機能を説明する図である。 A型変換回路の入出力特性を示す図である。 A型変換回路の構成を示す回路図である。 B型変換回路の機能を説明する図である。 A/Dコンバータの入出力特性を示す図である。 B型変換回路の構成を示す回路図である。 変形例に係るB型変換回路の構成を示す回路図である。 第2の変形例に係るB型変換回路の構成を示す回路図である。 図11(a)、(b)は、図10のB型変換回路の動作を示す図である。 図12(a)、(b)は、差動形式の増幅器を用いた場合の、A型変換回路およびB型変換回路の入出力特性を示す図である。 第3の変形例に係るB型変換回路の構成の一部を示す回路図である。 図13のB型変換回路の入出力特性を示す図である。 ダイナミック型差動増幅器の構成を示す回路図である。 図15のダイナミック型差動増幅器の動作を示す波形図である。 比較技術に係る増幅器の構成を示す回路図である。 図18(a)、(b)は、図15のダイナミック型差動増幅器の具体例を示す回路図である。 図19(a)、(b)は、ダイナミック型差動増幅器の別の具体例を示す回路図である。 図15のダイナミック型差動増幅器の変形例を示す回路図である。
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。
 本明細書において、「部材Aが、部材Bと接続された状態」とは、部材Aと部材Bが物理的に直接的に接続される場合のほか、部材Aと部材Bが、電気的な接続状態に影響を及ぼさない他の部材を介して間接的に接続される場合も含む。
 同様に、「部材Cが、部材Aと部材Bの間に設けられた状態」とは、部材Aと部材C、あるいは部材Bと部材Cが直接的に接続される場合のほか、電気的な接続状態に影響を及ぼさない他の部材を介して間接的に接続される場合も含む。
 図2は、実施の形態に係るパイプライン型のA/Dコンバータ100の構成を示すブロック図である。A/Dコンバータ100は、アナログ入力電圧VIをデジタルデータDOUTに変換する。アナログ入力信号VIの入力電圧範囲は、-Vref~+Vrefであるとする。
 A/Dコンバータ100は、直列に接続されたA型変換回路UCAと、少なくともひとつのB型変換回路UCB~UCBと、比較器列(コンパレータアレイ)CAと、を備える。最終段の比較器列CAは、後述するB型変換回路の第2サブA/Dコンバータ20と同様の処理を行うため、(n+1)段目のB型変換回路UCBn+1の一部として構成されてもよいし、比較器列単体として構成されてもよい。
 変換回路UCA、UCB~UCBおよび比較器列CAは、最上位ビットMSBから最下位ビットLSBに向けてmビットずつ、順次A/D変換を実行する。
 各変換回路UCA、UCB~UCBは、標本化状態φ0と、差分増幅状態(補間増幅状態)φ1、をクロック信号と同期しながら時分割的に交互に繰り返す。あるステージの変換回路が標本化状態φ0にあるとき、それと隣接するステージの変換回路は差分増幅状態(補間増幅状態)φ1にある。
(A型変換回路)
 はじめに初段に設けられたA型変換回路UCAについて説明する。
 図3は、A型変換回路UCAの機能を説明する図である。A型変換回路UCAは、入力信号VIと、基準電圧列VREF(たとえば、+Vref、-Vref、GND=0Vの3つの電圧)を受ける。A型変換回路UCAは、標本化状態φ0と差分増幅状態φ1を交互に繰り返す。
 標本化状態φ0において、A型変換回路UCAは、基準電圧-VrefとVrefの間を、複数のセグメントSEGに分割し、入力信号VIがいずれのセグメントに属するか判定する(標本化)。
 具体的にはA型変換回路UCAは、入力電圧VIを、基準電圧-VrefとVrefの間に間隔ΔV(=Vref/M)に配置された複数のしきい値電圧列Vthと比較し、比較結果を示す変換データD1を出力する。変換データD1は、入力電圧VIが属するセグメントの番号kを示している。図3では、入力電圧VIがセグメントSEGに属する場合を示す。
 続いてクロック信号の位相が切りかわると、A型変換回路UCAは差分増幅状態φ1となる。A型変換回路UCAは、入力電圧VIに応じた2つの中間電圧Vm、Vmを生成する。
 第1中間電圧Vmは、所定のコモン電圧Vcおよび整数のパラメータkを用いて、
 Vm=Vc+k×Vref/M  …(5a)
で与えられる電圧であり、かつ入力電圧VIが属するセグメントSEGの上側のしきい値電圧より高い電圧である。
 第2中間電圧Vmは、整数のパラメータkを用いて、
 Vm=Vc+k×Vref/M  …(5b)
で与えられる電圧であり、かつ入力電圧VIが属するセグメントSEGの下側のしきい値電圧より低い電圧である。つまり、中間電圧Vm、Vmは、セグメントSEGを挟み込むように決定される。
 なお、中間電圧Vm、Vmは、セグメントSEG間のしきい値電圧に対してオフセットさせることが望ましい。オフセット量は、Vref/(2M)が好適である。
 そして、A型変換回路UCAは、入力電圧VIと中間電圧Vmの差分を、コモン電圧Vcを基準として利得Gで増幅して第1出力電圧Vaを生成する。同様に、入力電圧VIと中間電圧Vmの差分を、コモン電圧Vcを基準として利得Gで増幅して第2出力電圧Vbを生成する。第1出力電圧Va、第2出力電圧Vbは、それぞれ第1出力端子Po、第2出力端子Poから出力する。
 Va=G×(Vm-VI-Vc)+Vc
   =G×(k×Vref/M-VI)+Vc  …(6a)
 Vb=G×(Vm-VI-Vc)+Vc
   =G×(k×Vref/M-VI)+Vc  …(6b)
 つまり式(6a)、(6b)で表される差分増幅処理は、入力電圧VIをコモン電圧Vcにシフト(オフセット)し、中間電圧Vmと入力電圧VIの電位差を増幅した電圧Vaと、中間電圧Vmと入力電圧VIの電位差を増幅した電圧Vbを生成する処理と理解できる。
 図4は、A型変換回路UCAの入出力特性を示す図である。以下では、説明の簡素化と理解の容易のために、コモン電圧Vcを接地電圧GND(=0V)として説明する。
 第1出力電圧Va、第2出力電圧Vbは、以下の式で与えられる。
 Va=G×(VI-k/M・Vref)   …(7a)
 Vb=G×(VI-k/M・Vref)   …(7b)
 k、kはそれぞれ、2つの直線Va、Vbが、入力電圧VIの電圧範囲を挟むように決められた整数のパラメータである。式(7a)は、傾きがG、x切片が(k/M・Vref)である直線を表し、式(7b)は、傾きがG、x切片が(k/M・Vref)である直線を表す。以下、(k/M・Vref)を第1オフセット電圧、(k/M・Vref)を第2オフセット電圧と称する。
 数値k、kは、整数のパラメータα(α≧1)を用いて、以下のように決めてもよい。
 k=(k+α)
 k=(k-α)
 図4および式(7a)、(7b)から明らかなように、2つの出力電圧Va、Vbの差分(Vb-Va)は、
 Vb-Va=G×(k-k)/M・Vref=G×2α/M・Vref …(8)
となり、入力電圧VIの値によらず一定となる。つまり、後段の回路の入力電圧範囲も、入力電圧VIによらずにほぼ一定となる。たとえば
 Vb-Va=Vref   …(8a)
となるように、つまりG×2α/M=1となるようにα、M、Gの値を決めるとよい。
 図4には、M=4、G=2の場合が示され、しきい値電圧Vthは白丸で示される。たとえば標本化状態φ0において、入力電圧VIがk=0すなわち、-Vref/8<VI<Vref/8と判定されると、
 Va=G×(VI-1/M・Vref)  …(9a)
 Vb=G×(VI+1/M・Vref)  …(9b)
で与えられる出力電圧Va、Vbが出力される。ここではα=1としている。
 続いてA型変換回路UCAの具体的な構成例を説明する。
 図5は、A型変換回路UCAの構成を示す回路図である。A型変換回路UCAは、第1サブA/Dコンバータ10、第1増幅回路11a、第2増幅回路11bを備える。
 第1サブA/Dコンバータ10は、標本化状態φ0において、入力電圧VIをしきい値電圧列Vthと比較し、入力電圧Viが複数のセグメントのいずれに属するかを判定し、結果を示す変換データD1を生成する。たとえば、しきい値電圧列Vthは、
 Vth=Vref/(2M)+j×Vref/M  …(10)
を満たすように決定してもよい。ここでjは、-M~Mの範囲をとる整数である。
 第1サブA/Dコンバータ10によって、入力信号VIが以下のように標本化される。
 -Vref<VI<-5/8×Vref      k=-3
 -5/8×Vref<VI<-3/8×Vref  k=-2
 -3/8×Vref<VI<-1/8×Vref  k=-1
 -1/8×Vref<VI<+1/8×Vref  k=0
 +1/8×Vref<VI<+3/8×Vref  k=1
 +3/8×Vref<VI<+5/8×Vref  k=2
 +5/8×Vref<VI<+Vref      k=3
 第1サブA/Dコンバータ10の構成は特に限定されず、公知の、あるいは将来において利用可能となる技術を用いればよい。たとえば、本発明者が提案した非特許文献1、2に記載のコンパレータを、本発明の第1サブA/Dコンバータ10として好適に利用することができる。あるいは、基準電圧列-Vref、GND、Vrefを抵抗分圧することによってしきい値電圧Vthを生成し、コンパレータアレイ(比較器列)を用いて電圧比較を行ってもよい。
 第1増幅回路11aは、入力電圧VIが属するセグメントの上限以上の電圧レベルを有する第1電圧Vmを生成し、第1電圧Vmと入力電圧VIの差分を所定のコモン電圧Vcを基準として増幅し、第3電圧Vaを生成する。
 第2増幅回路11bは、入力電圧VIが属するセグメントの下限以下の電圧レベルを有する第2電圧Vmを生成し、第2電圧Vmと入力電圧VIの差分を所定のコモン電圧Vcを基準として増幅し、第3電圧Vbを生成する。第1電圧Vmと第2電圧Vmは、入力電圧VIが属するセグメントを挟んでいる。
 第1増幅回路11aは、第1スイッチ回路12a、第1増幅器14a、第1キャパシタ列Ca1~CaM、第1スイッチS1aを含む。同様に、第2増幅回路11bは第2スイッチ回路12b、第2増幅器14b、第2キャパシタ列Cb1~CbM、第2スイッチS1bを含む。
 まず第1増幅回路11aについて説明する。第1増幅器14aは反転増幅器であり、その利得は(-G)である。第1増幅器14aの非反転入力端子にはコモン電圧Vc(接地電圧GND)が印加されており、その反転入力端子の電圧がViであるとき、その出力電圧Vaは、
 Va=-G×Vi  …(11)
となる。
 第1スイッチS1aは、第1増幅器14aの反転入力端子と固定電圧端子(接地端子)の間に設けられる。第1スイッチS1aは、標本化状態φ0においてオンし、差分増幅状態φ1においてオフする。
 第1キャパシタ列Ca1~CaMそれぞれの一端(第1端子)は、第1増幅器14aの反転入力端子と共通に接続される。キャパシタCa1~CaMの容量値は、等しくCであるものとする。
 第1スイッチ回路12aには、第1サブA/Dコンバータ10による比較結果、すなわち値kを示す変換データD1、もしくはそれに応じた制御信号が与えられる。第1スイッチ回路12aは、その内部に複数のスイッチを含むスイッチマトリクスであり、第1キャパシタ列Ca1~CaMそれぞれの他端(第2端子)に、変換データD1の値kに応じて、入力電圧VI、基準電圧Vref、GND、-Vrefのいずれかを選択的に印加する。
 具体的には、標本化状態φ0において第1スイッチ回路12aは、すべてのキャパシタCa1~CaMの第2端子に入力電圧VIを印加する。このとき、第1スイッチS1aはオンしているから、キャパシタCa1~CaMは、入力電圧VIによって充電され、それらに蓄えられる電荷の総量Qは、
 Q=-M・C・VI  (12)
となる。
 第1スイッチ回路12aは、差分増幅状態φ1において、キャパシタCa1~CaMのうち、j個のキャパシタの第2端子に基準電圧Vrefを印加し、残りのキャパシタの第2端子に接地電圧GNDを印加する。個数jは、値kに応じて定められる。このとき、第1増幅器14aの反転入力端子の電位をviとすると、電荷の保存則によって以下の式(13)が成り立つ。
 j・C・(VI-Vref)+(M-j)・C・VI=Q=-M・C・VI  …(13)
 式(13)を整理すると、
 vi=-(VI+j・Vref/M)  …(14)
を得る。式(11)、(14)から、第1出力電圧Vaは、式(15)で与えられる。
 Va=-G×Vi=G×(VI+j・Vref/M)  …(15)
 第1スイッチ回路12aが、j個のキャパシタの第2端子に基準電圧-Vrefを印加し、残りのキャパシタの第2端子に接地電圧GNDを印加した場合、第1出力電圧Vaは、式(16)で与えられる。
 Va=-G×Vi=G×(VI-j・Vref/M)  …(16)
 つまり、図5のA型変換回路UCAによれば、上述の式(7a)を満たす第1出力電圧Vaを生成することができる。式(7a)においてk=k+1とする場合、第1スイッチ回路12aの状態は以下の通りである。
 (1)k≧0のとき
 第1スイッチ回路12aは、(k+1)個のキャパシタに-Vrefを印加し、残りのM-(k+1)個のキャパシタに接地電圧GNDを印加する。
 (2)k=-1のとき
 第1スイッチ回路12aはM個すべてのキャパシタに接地電圧GNDを印加する。
 (3)k≦-2のとき
 第1スイッチ回路12aは、(-k+1)個のキャパシタに基準電圧Vrefを印加し、残りのM-(-k+1)個のキャパシタに接地電圧GNDを印加する。
 k=k+αと一般化すると、第1スイッチ回路12aの状態は以下の通りとなる。
 (1)k≧1のとき
 第1スイッチ回路12aは、k個のキャパシタに-Vrefを印加し、残りのM-(k)個のキャパシタに接地電圧GNDを印加する。
 (2)k=0のとき
 第1スイッチ回路12aはM個すべてのキャパシタに接地電圧GNDを印加する。
 (3)k≦-1のとき
 第1スイッチ回路12aは、k個のキャパシタに基準電圧Vrefを印加し、残りのM-(k)個のキャパシタに接地電圧GNDを印加する。
 第2スイッチ回路12b、第2増幅器14b、キャパシタCb1~CbM、第2スイッチS1bを含む回路群は、第2出力電圧Vbを生成し、上述した第1出力電圧Vaを生成する回路群と同様に構成され、式(7b)を満たす第2出力電圧Vbを生成する。
 式(7b)においてk=k-1とする場合、第2スイッチ回路12bの状態は、以下の通りである。
 (1)k≧2のとき
 第2スイッチ回路12bは、(k-1)個のキャパシタに-Vrefを印加し、残りのM-(k-1)個のキャパシタに接地電圧GNDを印加する。
 (2)k=1のとき
 第2スイッチ回路12bはM個すべてのキャパシタに接地電圧GNDを印加する。
 (3)k≦0
 第2スイッチ回路12bは、(-k+1)個のキャパシタに基準電圧Vrefを印加し、残りのM-(-k+1)個のキャパシタに接地電圧GNDを印加する。
 k=k-αと一般化すると、第2スイッチ回路12bの状態は以下の通りとなる。
 (1)k≧1のとき
 第2スイッチ回路12bは、k個のキャパシタに-Vrefを印加し、残りのM-(k)個のキャパシタに接地電圧GNDを印加する。
 (2)k=0のとき
 第2スイッチ回路12bはM個すべてのキャパシタに接地電圧GNDを印加する。
 (3)k≦-1のとき
 第2スイッチ回路12bは、k個のキャパシタに基準電圧Vrefを印加し、残りのM-(k)個のキャパシタに接地電圧GNDを印加する。
 以上がA型変換回路UCAの構成である。コモン電圧Vcを接地電圧GNDとは異なる電圧とする場合、図中の接地端子をコモン電圧端子と置き換えればよい。
(B型変換回路)
 B型変換回路UCBは、前段のA型変換回路UCAもしくはB型変換回路UCBからの第1入力電圧(第3電圧)Vi、第2入力電圧(第4電圧)Viを受ける。以下では理解の容易のため、前段がA型変換回路UCAであるものとして説明する。
 はじめにB型変換回路UCBの機能を説明する。B型変換回路UCBは、標本化状態φ0と補間増幅状態φ1を交互に繰り返す。図6は、B型変換回路UCBの機能を説明する図である。図7は、A/Dコンバータ100の入出力特性を示す図である。
 上述のように、前段のA型変換回路UCAによって生成される入力電圧Vi、Viは、入力電圧VIがコモン電圧Vcと一致するように電圧変換されている。そこでB型変換回路UCBは標本化状態φ0において、2つの入力電圧Vi、Viの間を複数のセグメントSEG~SEGに分割し、コモン電圧Vc(GND)がいずれのセグメントSEGに属するかを判定する。セグメントSEGの間隔は、等しく以下のΔVに設定される。
 ΔV=(Vi-Vi)/L  …(17)
 Lは2以上の整数である。上述したように前段からの2つの電圧Vi(Va)、Vi(Vb)の差分は、式(8)で与えられるから、セグメントSEGの間隔ΔVは、
 ΔV=G×2α/M・Vref/L  …(18)
となり、もとの基準電圧Vrefと比例する。式(8a)が成り立つとき、
 ΔV=Vref/L  …(18a)
である。
 図6ではL=8の場合が示される。B型変換回路UCBは、外部からの基準電圧Vref、-Vrefを用いず、前段からの入力電圧Vi、Viを利用して標本化(量子化)を行う点が、B型変換回路UCBの特徴のひとつである。
 B型変換回路UCBは、コモン電圧Vc(GND)がj番目のセグメントSEGに属するとき、値jを示す変換データD2を出力する。図6では、接地電圧GNDがj=4番目のセグメントSEGに属している状態を示している。
 B型変換回路UCBにおける標本化は、前段において得られた2つのオフセット電圧(k×Vref/M)と(k×Vref/M)の間を複数のセグメントに分割したときに、入力電圧VIがどのセグメントに属しているかを判定することと等価である。
 続いてクロック信号の位相が切りかわると、B型変換回路UCBは補間増幅状態φ1となり、式(19a)~(19d)で与えられる第7電圧(第1出力電圧)Va、第8電圧(第2出力電圧)Vbを出力する。
 Vo=-H×Vm
 Vm={(L-j)・Vi+j・Vi)}/L  …(19a)
 Vo=-H×Vm
 Vm={(L-j)・Vi+j・Vi)}/L  …(19b)
 j、jは、変換値jに応じて決められる整数である。たとえば、数値j、jは、整数のパラメータβ(β≧1)を用いて、以下のように決めてもよい。
 j=(j-β)  …(20a)
 j=(j+β)  …(20b)
 具体的にはβ=1としてもよい。
 式(19a)に現れる第5電圧(第1中間電圧と称する)Vmは、2つの入力電圧ViとViをj:(L-j)に内分する電圧である。また式(19b)に現れる第6電圧(第2中間電圧と称する)Vmは、2つの入力電圧ViとViを、j:(L-j)に内分する電圧である。
 B型変換回路UCBは、2つの中間電圧Vm、Vmが、コモン電圧Vc(GND)が属するセグメントSEGを挟み込むように、内分点j、jを決定する。B型変換回路UCBは、2つの中間電圧Vm、Vmをそれぞれ、コモン電圧Vcを基準として利得(-H)で反転増幅することにより、出力電圧Vo、Voを生成する。図6には、H=4の場合が示される。
 2つの出力電圧VoとVoの差分に着目すると、式(19a)、(19b)から以下の式(21)が成り立つ。
 Vo-Vo=-H×{(j-j)・Va+(j-j)Vb}/L …(21)
 式(21)に、式(20a)、(20b)を代入すれば、式(22)を得る。
 Vb-Va=-H×{-2β・(Vb-Va)}/L …(22)
 式(22)に、式(8)を代入すれば、式(23)を得る。
 Vb-Va=-H×{-2β・G×2α/M・Vref}/L  …(23)
 β=1、H=4、G×2α/M=1、L=8が成り立つとき、
 Vo-Vo=Vref
となり、後段のB型変換回路UCBに対する入力電圧範囲は一定となる。
 2段目以降のB型変換回路UCBは、同様の処理を繰り返し行う。その結果、パイプライン処理によって高い分解能のA/D変換を行うことができる。
 以上がB型変換回路UCBの機能である。続いて、この機能を実現するためのB型変換回路UCBの構成を説明する。図8は、B型変換回路UCBの構成を示す回路図である。
 B型変換回路UCBは、第2サブA/Dコンバータ20、第7電圧(第1出力電圧)Voを生成する第3増幅回路21a、第8電圧(第2出力電圧)Voを生成する第4増幅回路21bを備える。
 第2サブA/Dコンバータ20は、標本化状態φ0において、負の入力電圧(第5電圧)Viと正の入力電圧(第6電圧)Viを複数のセグメントSEG~SEGに分割し、コモン電圧Vc(GND)がいずれのセグメントSEGに属するかを判定する。第2サブA/Dコンバータ20は、コモン電圧Vc(GND)が、j番目のセグメントSEGに属するとき、値jを示す変換データD2を出力する。
 第2サブA/Dコンバータ20の構成は特に限定されず、公知の、あるいは将来において利用可能となる技術を用いればよい。第2サブA/Dコンバータ20は、図6に示すように2つの入力電圧Vi、Viを分圧することによって複数のしきい値電圧Vth~Vthを生成し、接地電圧GNDを各しきい値電圧Vth~Vthと比較し、標本化を行ってもよい。この場合、第2サブA/Dコンバータ20は、コンパレータアレイ(比較器列)で構成できる。この第2サブA/Dコンバータ20として、本発明者が提案した非特許文献1、2に記載のコンパレータを利用することができる。
 第3増幅回路21aは、コモン電圧Vcが属するセグメントの上限以上の電圧レベルを有する第5電圧Vmとコモン電圧Vcの差分を、コモン電圧Vcを基準として増幅することにより第7電圧Voを生成する。
 同様に第4増幅回路21bは、コモン電圧Vcが属するセグメントの下限以下の電圧レベルを有する第6電圧Vmとコモン電圧Vcの差分を、コモン電圧Vcを基準として増幅することにより第8電圧Voを生成する。
 この第7電圧Vo、第8電圧Voはそれぞれ、後段の第3電圧Vi、第4電圧Viとなる。
 第3増幅回路21aに着目し、その構成を説明する。
 第3増幅回路21aは、第3スイッチ回路22aa、第4スイッチ回路22ab、第3増幅器24a、第3キャパシタ列Caa1~CaaL、第4キャパシタ列Cab1~CabL、第3スイッチS1aを含む。第4増幅回路21bは、第5スイッチ回路22ba、第6スイッチ回路22bb、第4増幅器24b、第5キャパシタ列Cba1~CbaL、第6キャパシタ列Cbb1~CbbL、第4スイッチS1bを含む。第3増幅回路21aと第4増幅回路21bは同様に構成される。
 第3増幅器24aは反転増幅器であり、それぞれの利得は(-H)である。
 第3スイッチS1aは、第3増幅器24aの反転入力端子と固定電圧端子(接地端子)の間に設けられる。第3スイッチS1aは、標本化状態φ0においてオンし、補間増幅状態φ1においてオフする。
 第3キャパシタ列Caa1~CaaL、第4キャパシタ列Cab1~CabLそれぞれの一端(第1端子)は、第3増幅器24aの反転入力端子と共通に接続される。キャパシタCaa1~CaaL、Cab1~CabLの容量値は、等しくCであるものとする。
 第3スイッチ回路22aaおよび第4スイッチ回路22abには、第1サブA/Dコンバータ10による標本化の結果、すなわち値jを示す変換データD、もしくはそれに応じた制御信号が与えられる。第3スイッチ回路22aa、第4スイッチ回路22abは、その内部に複数のスイッチを含むスイッチマトリクスである。
 標本化状態φ0において、第3スイッチ回路22aaは、第3キャパシタ列Caa1~CaaLそれぞれの他端(第2端子)を第1入力端子Piと接続し、第4スイッチ回路22abは、第4キャパシタ列Cab1~CabMそれぞれの他端(第2端子)を第2入力端子Piと接続する。その結果、第3キャパシタ列Caaが第1入力電圧Viで充電され、第4キャパシタ列Cabが第2入力電圧Viで充電される。
 第3スイッチ回路22aaは、補間増幅状態φ1において、L個の第3キャパシタ列Caa1~CaaLのうち(L-j)個の第2端子を固定電圧端子(接地端子)に接続し、残りのj個のキャパシタを開放、もしくは短絡する。
 第4スイッチ回路22abは、補間増幅状態φ1において、L個の第4キャパシタ列Cab1~CabLのうちj個の第2端子を固定電圧端子(接地端子PGND)に接続し、残りの(L-j)個のキャパシタを開放、もしくは短絡する。このとき第3増幅器24aの反転入力端子の電荷Qは、
 Q=-C・Vi・(L-j)-C・Vi・j  …(24a)
となる。このときの容量Ctotは、
 Ctot=L・C  …(25)
であるから、第3増幅器24aの反転入力端子の電位Vmは、
 Vm=Q/Ctot={(L-j)・Vi+j・Vi}/L …(26a)
となり、式(19a)と一致することが分かる。
 第3増幅器24aは、反転入力端子の電位Vmを利得(-H)で反転増幅し、第1出力端子Poから第1出力電圧Voを出力する。
 Vo=(-H)×Vm  …(27)
 第4増幅回路21bについて説明する。標本化状態φ0において、第5スイッチ回路22baは、第5キャパシタ列Cba1~CbaLそれぞれの他端(第2端子)を第1入力端子Piと接続し、第6スイッチ回路22bbは、第6キャパシタ列Cbb1~CbbLそれぞれの他端(第2端子)を第2入力端子Piと接続する。その結果、第5キャパシタ列Cbaが第1入力電圧Viで充電され、第6キャパシタ列Cbbが第2入力電圧Viで充電される。
 第5スイッチ回路22baは、補間増幅状態φ1において、L個の第5キャパシタ列Cba1~CbaLのうち(L-j)個の第2端子を固定電圧端子(接地端子PGND)に接続し、残りのj個のキャパシタを開放、もしくは短絡する。
 第6スイッチ回路22bbは、補間増幅状態φ1において、L個の第6キャパシタ列Cbb1~CbbLのうちj個の第2端子を固定電圧端子(接地端子PGND)に接続し、残りの(L-j)個のキャパシタを開放、もしくは短絡する。このとき第4増幅器24bの反転入力端子の電荷Qは、
 Q=-C・Vi・(L-j)-C・Vi・j  …(24b)
となる。第3増幅器24aの反転入力端子の電位Vmは、
 Vm=Q/Ctot={(L-j)・Vi+j・Vi}/L …(26b)
となり、式(19b)と一致することが分かる。以上がB型変換回路UCBの構成である。
 実施の形態に係るA/Dコンバータ100によれば、A型変換回路UCAおよびB型変換回路UCBの増幅器の利得G、Hは、2倍~8倍程度あれば十分であり、また従来ほど厳密な利得精度が要求されない。したがって負帰還を用いないオープンループ型の広帯域増幅器を用いることができる。負帰還系を用いる場合には、回路の安定性(発振)に十分配慮する必要があるため設計の難易度が高くなり、またセトリング時間が長くなると行った問題が生ずるが、実施の形態に係るA/Dコンバータ100は、オープンループ型で構成することができるため、このような問題を解決することができ、微細なCMOS技術を用いても、容易に高速・高精度なA/Dコンバータを実現することができる。
 なお、負帰還型回路にともなう問題が解決できる場合には、実施の形態に係るA/Dコンバータ100において、負帰還型の増幅器を用いても構わないことはいうまでもない。
 以下、A/Dコンバータ100の変形例を説明する。
(第1の変形例)
 図9は、変形例に係るB型変換回路の構成を示す回路図である。上述のように、実施の形態に係るA/Dコンバータ100では、従来に比べて増幅器に要求される利得の精度は低くてよいが、同じ変換回路に属する第3増幅器24a、第4増幅器24bの利得Hの相対的な精度は、ある程度要求される。通常、このような相対的な精度は、集積回路技術(たとえば対応する素子同士のペアリングなど)を用いることで達成できることはよく知られている。さらに高い相対精度が要求される場合には、図9の回路が有効である。
 図9のB型変換回路UCBは、図8のB型変換回路UCBに加えて、利得調整回路26をさらに備える。第3増幅器24a、第4増幅器24bは、可変利得増幅器であり、利得調整回路26は、第3増幅器24a、第4増幅器24bそれぞれの利得Hをデジタル的に調節し、直線性誤差を低減する。
 また、利得調整回路26による調整に加えて、あるいはそれと代えて、第3増幅器24aと第4増幅器24bをスワップしながら、差分増幅処理を行う手法も有効である。入力スイッチ28a、28bは、入力電圧Vi、Viを、B型変換回路UCBの2つの入力端子Pi、Piに切りかえて出力する。同様に、出力スイッチ29a、29bは、B型変換回路UCBの2つの出力端子Po、Poからの電圧を、2つの出力端子Po’、Po’との間で切りかえて出力する。
 第3増幅器24a、第4増幅器24bの増幅率が同一であれば、入出力端子をスワップしても変換特性は一致する。増幅率にミスマッチが生ずる場合には、利得調整回路26と組み合わせることにより、変換特性を一致させることができる。
(第2の変形例)
 ところで、これまでの説明においては増幅器のオフセット電圧はゼロであることを仮定していたが、実際の増幅器には一定量をオフセット電圧があり、精度を劣化させるので、対策が必要である。そこで、第2の変形例では、増幅器のスイッチ動作を工夫することでオフセット電圧の問題を解決する。
 図10は、第2の変形例に係るB型変換回路の構成を示す回路図である。図8のスイッチ回路22aa、22ab、22ba、22bbでは、接地電圧GNDをキャパシタ列Caa、Cab、Cba、Cbbに印加する構成であった。これに対して図10のスイッチ回路22aa、22ab、22ba、22bbは、前段からの入力電圧Vi、Viをキャパシタ列Caa、Cab、Cba、Cbbに印加する。
 図11(a)、(b)は、図10のB型変換回路の動作を示す図である。図11(a)は標本化状態φ0を、図11(b)は補間増幅状態φ1を示す。
 図11(a)を参照する。注目するB型変換回路UCBが標本化状態φ0にあるとき、前段は補間増幅状態φ1であり、前段のスイッチS1a、S1bはオフである。前段の増幅器第3増幅器24a(14a)、第4増幅器24b(14b)にオフセット電圧Voff_a、Voff_bが存在するとき、前段からの電圧Vi、Viには、信号成分Vsig_a、Vsig_bにオフセット電圧Voff_a、Voff_bが重畳されている。B型変換回路UCBにおいて、キャパシタ列は、(Vsig_a+Voff_a)、(Vsig_b+Voff_b)で充電される。ノードxに蓄積される電荷は、
 Q=-(Vsig_a+Voff_a)・C・(L-j)-(Vsig_b+Voff_b)・C・j  …(27)
 続いて、注目するB型変換回路UCBが補間増幅状態φ1に遷移する。このとき前段の変換回路は標本化状態となり、スイッチS1a、S1bがオンとなる。このときのB型変換回路UCBの入力電圧Vi、Viはそれぞれ、オフセット電圧Voff_a、Voff_bとなる。図11(b)に示す補間増幅状態φ1においては、以下の関係式(28)が成り立つ。Vはノードxの電圧を示す。
 (V-Voff_a)・C・(L-j)+(V+Voff_b)・C・j=Q
 =-(Vsig_a+Voff_a)・C・(L-j)-(Vsig_b+Voff_b)・C・j  …(28)
 したがって、
 (-Voff_a)・C・(L-j)+(V-Voff_b)・C・j=Q
 V=-{Vsig_a・(L-j)+Vsig_b・j}/L  …(29)
 となり、オフセット電圧Voff_a、Voff_bの影響を除去し、高精度なA/D変換が実現できる。
(第3の変形例)
 これまでは、シングルエンド形式の増幅器を用いる実施例を説明したが、当業者であれば、差動形式の増幅器を利用可能であることが理解される。
 図12(a)、(b)は、差動形式の増幅器を用いた場合の、A型変換回路およびB型変換回路の入出力特性を示す図である。
 差動回路を用いると、コモン電圧Vcを中心とした反転信号が得られるため、実施の形態で説明した内分法(内挿補間)に加えて、外分法(外挿補間)を用いることが可能となる。図13は、第3の変形例に係るB型変換回路の構成の一部を示す回路図である。図13では、増幅器a側に関する第3増幅回路21aのみを示している。図14は、図13のB型変換回路の入出力特性を示す図である。
 図8の構成では、内分法(内挿)によって、太線で示す直線Vap、Vbpの内側の直線Vin_pのみを生成できる。これに対して、図13の構成では、直線Vap、Vbpの外側の直線Vex_pを生成することができる。
 図13のB型変換回路UCBは、差動形式の第1入力電圧Viap,Vian、第2入力電圧Vibp,Vibnを受ける。B型変換回路UCBの第3増幅回路21aは、第2サブA/Dコンバータ20、第3スイッチ回路22ap、22an、第3増幅器24a、キャパシタ列Cap、Can、スイッチS1aを備える。
 スイッチS1aは、第3増幅器24aの入力端子の間に設けられる。
 キャパシタ列Capは、第3キャパシタ列Caa1~CaaL、第4キャパシタ列Cab1~CabLを含む。キャパシタ列Canも同様である。
 第3スイッチ回路22ap、22anはマトリクススイッチであり、第2サブA/Dコンバータ20からの制御信号に応じて、キャパシタ列Cap、Canを充電する。
 内分法によって電圧を生成する場合、標本化状態φ0において第3スイッチ回路22apは、キャパシタ列Caaに対して正転の入力電圧Vapを、キャパシタ列Cabに対して正転の入力電圧Vbpを印加すればよい。第3スイッチ回路22anは、キャパシタ列Cbaに対して反転の入力電圧Vanを、キャパシタ列Cbbに対して反転の入力電圧Vbnを印加すればよい。これは図8と同様である。内分法によって、Vin_p、Vin_nを生成できる。
 Vin_p={(L-j)Vap+j・Vbp}/L  …(30p)
 Vin_n={(L-j)Van+j・Vbn}/L  …(30n)
 外分法によって電圧を生成する場合、標本化状態φ0において第3スイッチ回路22apは、キャパシタ列Caaに対して正転の入力電圧Vapを、キャパシタ列Cabに対して反転の入力電圧Vbnを印加すればよい。
 補間増幅状態φ1において、第3キャパシタ列Caaの(L+j)個のキャパシタを接地し、第4キャパシタ列Cabのj個のキャパシタを接地すると、第3増幅器24aの入力端子には、
 Vex_p={(L+j)・Vap+j・Vbn}/L  …(31p)
を得る。ここでVbn=-Vbpであるから、式(31p)は、
 Vex_p={(L+j)・Vap-j・Vbp}/L  …(31p)
と書き直される。これは、2つの電圧VapとVbpを、j:(L+j)に外分する電圧に他ならない。
 第3スイッチ回路22anは、キャパシタ列Cbaに対して反転の入力電圧Vanを、キャパシタ列Cbbに対して正転の入力電圧Vbnを印加すればよい。その結果、式(31n)で表される電圧Vex_nを得る。
 Vex_n={(L+j)・Van-j・Vbn}/L  …(31n)
 これは、2つの反転電圧Van、Vbnをj:(L+j)に外分する電圧に他ならない。
 すなわち図13のB型変換回路UCBでは、キャパシタ列に印加する電圧を、反転側(n)に拡張し、キャパシタの数を必要なだけ増加すればよい。外挿法を用いた場合、第3増幅器24a、第4増幅器24bの利得Hをさらに低下させることができる。
 実施の形態では、コモン電圧Vcが接地電圧GNDである場合について説明したが、本発明はそれに限定されない。回路を正電圧の範囲で動作させたい場合、コモン電圧Vcは、電源電圧Vddの中点電圧Vdd/2としてもよい。あるいは、基準電圧Vrefが与えられる場合には、Vref/2としてもよい。
 上述したように、同じ変換回路に属する第1増幅器14aおよび第2増幅器14bの利得(-G)には、相対的な精度は要求されるが、絶対的な精度は必要とされない。また、それぞれの利得は数倍、高くても数十倍程度で足りるという性質を有する。第3増幅器24a、第4増幅器24bについても同様である。そこでこのような特性を有するダイナミック型差動増幅器の好ましい構成を説明する。
 図15は、ダイナミック型差動増幅器30の構成を示す回路図である。ダイナミック型差動増幅器30は、第1入力端子Pi1、第2入力端子Pi2に入力された信号Vi1、Vi2を増幅し、増幅された信号Vo1、Vo2を第1出力端子Po1、第2出力端子Po2から出力する。
 ダイナミック型差動増幅器30は、第1負荷キャパシタCL1、第2負荷キャパシタCL2、入力差動対32、初期化回路34、制御回路36、テイル電流源M0を備える。
 第1負荷キャパシタCL1は、第1出力端子Po1と固定電圧端子(接地端子)の間に設けられる。第2負荷キャパシタCL2は、第2出力端子Po2と接地端子の間に設けられる。
 初期化回路34は、第1負荷キャパシタCL1、第2負荷キャパシタCL2の電荷を初期化する。初期化回路34は、たとえば初期化トランジスタM3、M4を含む。初期化トランジスタM3は、第1負荷キャパシタCL1と第2の固定電圧端子(電源端子)の間に設けられる。同様に初期化トランジスタM4は、第2負荷キャパシタCL2と電源端子の間に設けられる。初期化トランジスタM3、M4は、所定の周期でローレベルに遷移する制御クロックVCLKと同期してオン、オフが制御される。初期化トランジスタM3、M4がオンすると、第1負荷キャパシタCL1、第2負荷キャパシタCL2が電源電圧VDDによって充電され、それぞれの電荷が初期化される。
 入力差動対32は、入力トランジスタM1、入力トランジスタM2を含む。入力トランジスタM1は、第1負荷キャパシタCL1を負荷とするとともに、その制御端子(ゲート)には第1入力信号Vi1が入力される。同様に入力トランジスタM2は、第2負荷キャパシタCL2を負荷とするとともに、そのゲートには第2入力信号Vi2が入力される。テイル電流源M0は、入力差動対32に動作電流(テイル電流)I=ID1+ID2を供給する。
 制御回路36は、第1出力端子Po1と第2出力端子Po2それぞれの電位Vo1、Vo2の中点電圧(Vo1+Vo2)/2が、所定のしきい値電圧Vthに達すると、第1負荷キャパシタCL1および第2負荷キャパシタCL2の充放電経路を遮断する。
 第1負荷キャパシタCL1と第2負荷キャパシタCL2の充放電経路を遮断するために、第1スイッチSW1および第2スイッチSW2が設けられる。第1スイッチSW1は、第1負荷キャパシタCL1と入力トランジスタM1の間に設けられる。第2スイッチSW2は、第2負荷キャパシタCL2と入力トランジスタM2の間に設けられる。
 制御回路36は、第1スイッチSW1、第2スイッチSW2のオン、オフ状態を切りかえることにより、第1負荷キャパシタCL1および第2負荷キャパシタCL2の充放電経路の導通、遮断を切りかえる。
 以上がダイナミック型差動増幅器30の基本的な構成である。続いてその動作を説明する。図16は、図15のダイナミック型差動増幅器30の動作を示す波形図である。横軸は時間、縦軸は出力電圧Vo1、Vo2を示す。
 1. 初期化状態
 増幅に先立ち、ダイナミック型差動増幅器30は初期化状態にセットされる(t<t)。初期化状態において、制御クロックVCLKがローレベルとなり初期化トランジスタM3、M4がオンする。また制御回路36は、第1スイッチSW1、第2スイッチSW2をオンする。その結果、第1負荷キャパシタCL1、第2負荷キャパシタCL2に電源電圧VDDが印加され、出力電圧Vo1、Vo2が電源電圧VDDに初期化される。
 2. 増幅状態
 制御クロックVCLKがハイレベルとなると、初期化トランジスタM3、M4がオフし、増幅状態となる(t<t<t)。増幅状態では、入力トランジスタM1、入力トランジスタM2それぞれに、入力電圧Vi1、Vi2に応じた電流ID1、ID2が流れる。電流ID1、ID2は、入力トランジスタM1、入力トランジスタM2の相互コンダクタンスをg、テイル電流をIとして、式(32a)、(32b)で与えられる。
 ID1=I/2+g×(Vi1-Vi2)/2   …(32a)
 ID2=I/2-g×(Vi1-Vi2)/2   …(32b)
 なお、I=ID1+ID2が成り立つ。
 増幅開始からの経過時間をtとすると、出力電圧Vo1、Vo2はそれぞれ、式(33a)、(33b)で与えられる。
 Vo1=VDD-ID1/CL1・t   …(33a)
 Vo2=VDD-ID2/CL2・t   …(33b)
 制御回路36は、出力電圧Vo1、Vo2の中点電圧V=(Vo1+Vo2)/2を監視し、所定のしきい値電圧Vthに達すると、その時刻tに第1スイッチSW1、第2スイッチSW2をオフする。第1負荷キャパシタCL1、第2負荷キャパシタCL2の容量値を等しくCと書くとき、中点電圧Vは、式(34)で与えられる。
 V=VDD-I×t/(2×C)  …(34)
 しきい値電圧Vthが、電源電圧の中点電圧VDD/2であるとき、増幅状態の期間Tは、式(35)で与えられる。
 T=C×VDD/I   …(35)
 このときの出力電圧Vo1、Vo2は、式(36a)、(36b)となる。
 Vo1=VDD/2-gm1/2×(Vi1-Vi2)/I×VDD  …(36a)
 Vo2=VDD/2+gm2/2×(Vi1-Vi2)/I×VDD  …(36b)
 したがって、ダイナミック型差動増幅器30の差動利得Gは、式(37)で与えられる。
 G=(Vo1-Vo2)/(Vi1-Vi2
  =-(gm1+gm2)/2×VDD/(ID1+ID2)   …(37)
 入力トランジスタM1、入力トランジスタM2のコンダクタンスは、
 gm1=2×ID1/Veff   …(38a)
 gm2=2×ID2/Veff   …(38b)
であるから、この関係を式(37)に代入して、式(39)を得る。
 G=-VDD/Veff  …(39)
 なお、Veff=VGS-Vtである。VGSはゲートソース間電圧、VtはMOSFETのゲートソース間しきい値電圧である。
 図15のダイナミック型差動増幅器30の1回の増幅当たりの消費エネルギーEは、
 E=Q・VDD=2・I・T・VDD=C・VDD   …(40)
となる。したがって消費電力Pは、繰り返し周波数をfとして、
 P=f・E=f・C・VDD    …(41)
となる。
 図15のダイナミック型差動増幅器30の利点は、図17の増幅器との対比によって明確となる。図17は、比較技術に係る増幅器1030の構成を示す回路図である。増幅器1030は、初期化回路に代えて、負荷抵抗RL1、RL2を備える。キャパシタCL1、CL2およびスイッチSW1、SW2は、トランジスタM1、M2のドレイン電圧をサンプリングするために設けられ、図15のダイナミック型差動増幅器30とは機能が異なっていることに留意すべきである。
 増幅器1030は、入力トランジスタM1、入力トランジスタM2のドレイン電流が、負荷抵抗RL1、RL2に定常的に流れる。バイアス状態での出力電圧Vo1、Vo2は、電源電圧VDDの1/2程度に設定されるため、抵抗RL1、RL2は、
 R=VDD/2I   …(42)
が成り立つ。ここでR=RL1=RL2、I=(ID1+ID2)/2である。トランジスタM1、M2の相互コンダクタンスgは、MOSトランジスタの飽和領域での電圧電流の関係式から、
 g=2・I/Veff   …(43)
で与えられる。したがってこの回路の差動利得Gは、
 G=-g・R=-VDD/Veff   …(44)
となる。つまり、図15のダイナミック型差動増幅器30の利得は、図17の増幅器1030と同じ利得を有することがわかる。
 図17の増幅器の消費電力について検討する。電圧Veffは通常0.2V程度であるため、VDD=1Vとすると、約5倍となる。増幅器1030の時間応答は、
 Vo1-Vo2=G・(Vi1-Vi2)・(1-e1/τ)   …(45)
 τ=R・C
である。この回路には定常電流2・Iが流れることを考慮すると、その消費電力Pは、
 P=2・I・VDD=VDD /R=C・VDD /τ   …(46)
 式(45)から明らかなように、増幅器1030の応答時定数τは、抵抗と容量の積で定まるところ、応答速度を速く、つまり時定数τを短くするためには、抵抗値を下げる必要がある。ところが抵抗値を下げると、式(46)で与えられる消費電力は、それと反比例して増加する。
 図17の増幅器において、1%のセトリングを仮定すると、半周期で5・τは必要であるため、その消費電力Pは、式(47)で与えられる。
 P=C・VDD /τ=10・f・C・VDD   …(47)
 図17の図15の増幅器を対比すると、図15のダイナミック型差動増幅器30の利点が以下のように明らかとなる。
 まず、図15のダイナミック型差動増幅器30では、その消費電力Pは式(41)で与えられるため、式(47)で与えられる図17の増幅器1030の消費電力Pに比べて、約1/10程度まで低減できることがわかる。
 図17の回路でも、繰り返し周波数fに反比例して負荷抵抗Rを設計すると、消費電力を下げることができるが、広帯域にわたり抵抗値を可変とすることは容易ではなく、非現実的である。つまり現実的には、想定される最高繰り返し周波数fcmaxにおいて十分な応答速度が得られるように抵抗Rを低く設定せざるを得ず、式(47)に示すように消費電力は大きくなる。この点、図15の構成によれば、式(41)に示すように、消費電力は動作電流とは無関係であるため、高速化を目的として動作電流を大きくしても消費電力は増大しないという利点がある。また周波数fを下げた場合には、きわめて低消費電力で動作する増幅器を提供することができる。
 続いて、ダイナミック型差動増幅器30のより具体的な構成例を説明する。
 図18(a)、(b)は、図15のダイナミック型差動増幅器30の具体例を示す回路図である。
 図18(a)のダイナミック型差動増幅器30aにおいて、制御回路36aは、第1分圧キャパシタC、第2分圧キャパシタC、比較器38を含む。第1分圧キャパシタC、第2分圧キャパシタCは、第1出力端子Po1と第2出力端子Po2の間に直列に設けられる。第1分圧キャパシタCと第2分圧キャパシタCの容量値は等しくCである。比較器38は、第1分圧キャパシタC、第2分圧キャパシタCの接続点の電位Vを所定のしきい値電圧Vthと比較し、比較結果に応じた信号によってスイッチSW1、SW2を制御する。
 図18(a)の下段に示すように、比較器38は、インバータ39を含んでもよい。インバータ39は、電源電圧VDDと接地電圧GNDを受けており、そのしきい値電圧VthはVDD/2となる。インバータ39の段数は、スイッチSW1、SW2の制御論理に応じて設計すればよい。
 初期化回路34aは、第1分圧キャパシタCと第2分圧キャパシタCの接続点Nの電位Vを、第1出力端子Po1、第2出力端子Po2と同じく、電源電圧VDDに初期化する。具体的には、ノードNと電源端子の間に、初期化トランジスタM5が設けられており、これがオンすることにより、ノードNの電位が初期化される。
 初期化によってキャパシタC、Cの電荷がゼロに初期化される。プリチャージが解除されて増幅が開始する。第1出力端子Po1、第2出力端子Po2に出力電圧V、Vが発生するとき、寄生容量を無視すると式(48)が成り立つ。
 C(V-V)=C(V-V)   …(48)
 式(48)をVについて解くと、式(49)を得る。
 V=(V+V)/2  …(49)
 つまり、接続点Nの電位Vは、2つの出力電圧Vo1、Vo2の中点電圧となり、図15の回路と同様に、中点電圧Vをしきい値電圧と比較できる。
 またテイル電流源M0のゲートには、制御クロックVCLKが入力される。これによりテイル電流源M0を初期化状態においてオフすることができるため、消費電力をさらに低減することができる。
 図18(b)のダイナミック型差動増幅器30bは、図18(a)のダイナミック型差動増幅器30aに加えて、論理ゲート40を備える。論理ゲート40は、制御回路36の出力信号CNTと、制御クロックVCLKの論理積を、テイル電流源M0のゲートに供給する。この構成によれば、第1負荷キャパシタCL1、第2負荷キャパシタCL2の充放電経路を、より確実に遮断することができる。また、テイル電流源M0をオフすることにより、第1出力端子Po1、第2出力端子Po2の電位が接地電位(0V)まで下がらない。したがって、図18(a)よりもさらに消費電力を低減できる。
 図19(a)、(b)は、ダイナミック型差動増幅器の別の具体例を示す回路図である。図19(a)のダイナミック型差動増幅器30cにおいて、制御回路36cは論理ゲートで構成される。具体的には、制御回路36cはANDゲートである。図19(b)は、制御回路36cの具体的な構成を示す回路図である。制御回路36cは、NANDゲート42と、その後段に設けられたインバータ(NOTゲート)44を含む。
 NANDゲート42は、PチャンネルトランジスタMP1、MP2、NチャンネルトランジスタMN1、MN2、MN3、MN4を含む。第1PチャンネルトランジスタMP1、第1NチャンネルトランジスタMN1、第2NチャンネルトランジスタMN2は、電源端子と接地端子の間に第1経路を形成するように順にスタックされる。第2PチャンネルトランジスタMP2、第3NチャンネルトランジスタMN3、第4NチャンネルトランジスタMN4は、電源端子と接地端子の間に、第1経路と並列な第2経路を形成するように順にスタックされる。
 第1PチャンネルトランジスタMP1、第1NチャンネルトランジスタMN1、第4NチャンネルトランジスタMN4のゲートには、第1入力信号Vが印加される。第2PチャンネルトランジスタMP2、第2NチャンネルトランジスタMN2、第3NチャンネルトランジスタMN3のゲートには、第2入力信号Vが印加される。NANDゲート42の出力端子は、第1、第2PチャンネルトランジスタMP1、MP2のドレインと接続される。
 Nチャンネルトランジスタの平均ドレイン電流をIDN、Pチャンネルトランジスタの平均ドレイン電流をIDPとすると、微細なトランジスタでは、電圧-電流特性は式(50a)、(50b)で近似できる。
 IDN=K(VGS-VTN)   …(50a)
 IDP=-K(VGS-VTP)   …(50b)
 のNANDゲート42の出力は、Pチャンネルトランジスタを流れる全電流と、Nチャンネルトランジスタに流れる全電流が等しいときに、論理状態が遷移する。したがって、
 IDN=K(V-VTN)+K(V-VTN
    =2・K{(V+V)/2-VTN}     …(51a)
 IDP=K(VDD-V+VTP)+K(VDD-V+VTP
    =2・K{-(V+V)/2+VDD+VTP}   …(51b)
 これらより、IDN=IDPを与える入力電圧V、Vは、
 (V+V)/2=(K・VTN+K・VTP)/(K+K)+K/(K+K)・VDD  …(52)
 となり、VとVの中点電圧で出力論理状態が切り替わることがわかる。このように、分圧キャパシタC、Cに代えて、図19(b)に示すNANDゲート42を用いることによっても、中点電圧をしきい値電圧Vthと比較することができる。
 なお、図15~図19では、入力差動対32がNチャンネルMOSFETで構成される場合を示したが、これと反対に、PチャンネルMOSFETを用いて構成してもよい。この場合、NチャンネルとPチャンネルを置換するとともに、電源電圧と接地電圧を天地反転し、さらに必要に応じて、各トランジスタのゲート信号を反転すればよい。
 実施の形態では、制御回路36が、出力電圧Vo1とVo2の中点電圧Vxに応じて、負荷キャパシタCL1、CL2の充放電経路を遮断する場合を説明したが、放電開始からの経過時間を測定するタイマー回路で構成されてもよい。
 図20は、図15のダイナミック型差動増幅器30の変形例を示す回路図である。図15のダイナミック型差動増幅器30では、入力トランジスタM1、M2の動作電流を設定するためにテイル電流源M0が設けられている。テイル電流源M0のドレインソース間電圧として0.2V以上必要であるため、電源電圧VDDが低い状況での利用が難しい。そこで、図20のダイナミック型差動増幅器30dは、図15のテイル電流源M0が省略された疑似差動回路で構成される。入力トランジスタM1、M2それぞれのドレイン側には、制御クロックVCLKと同期してオン、オフが制御されるスイッチトランジスタM5、M6が設けられる。スイッチトランジスタM5、M6は、初期化状態においてオフ、増幅状態においてオンする。
 図20のダイナミック型差動増幅器30dにおいては、入力トランジスタM1と入力トランジスタM2のゲート電圧Vi1、Vi2を制御することにより、入力トランジスタM1、入力トランジスタM2の動作電流が制御される。スイッチトランジスタM5、M6は、オン、オフの2状態で切り替わるスイッチとして機能するため、動作状態においてそれらのドレインソース間電圧Vdsは実質的にゼロとなる。したがって、ダイナミック型差動増幅器30dは、図15に比べて、テイル電流源M0のドレインソース間電圧Vds(≒0.2V)低い電源電圧VDDでも動作可能となる。
 図20において、トランジスタM5、M6を省略し、それらがオフすべき期間に、入力トランジスタM1、M2がオフするようにゲート電圧Vi1、Vi2を制御してもよい。
 また図20と図18(b)を組み合わせてもよい。この場合、図20のトランジスタM5、M6のゲートに、図18(b)のゲート40の出力を入力すればよい。
 図15~図20で説明したダイナミック型差動増幅器は、上述のA/Dコンバータに好適に利用できるが、その用途は限定されない。ダイナミック型差動増幅器は、利得の絶対的な精度は要求されないが、相対的な精度が要求されるさまざまなアプリケーションに利用でき、消費電力を好適に低減することができる。
 実施の形態にもとづき、特定の語句を用いて本発明を説明したが、実施の形態は、本発明の原理、応用を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が可能である。
100…A/Dコンバータ、UCA…A型変換回路、UCB…B型変換回路、10…第1サブA/Dコンバータ、11a…第1増幅回路、11b…第2増幅回路、12a…第1スイッチ回路、12b…第2スイッチ回路、14a…第1増幅器、14b…第2増幅器、Ca…第1キャパシタ列、Cb…第2キャパシタ列、20…第2サブA/Dコンバータ、21a…第3増幅回路、21b…第4増幅回路、22aa…第3スイッチ回路、22ab…第4スイッチ回路、22ba…第5スイッチ回路、22bb…第6スイッチ回路、24a…第3増幅器、24b…第4増幅器、26…利得調整回路。
 本発明は、パイプライン型A/Dコンバータに関する。

Claims (24)

  1.  アナログの入力電圧をデジタルデータに変換するA/D変換方法であって、
     前記入力電圧を複数のしきい値電圧と比較し、複数のセグメントのいずれに属するかを判定する第1ステップと、
     前記入力電圧が属するセグメントを挟む第1電圧と第2電圧を生成する第2ステップと、
     前記第1電圧と前記入力電圧の差分を、所定のコモン電圧を基準として増幅することにより第3電圧を生成する第3ステップと、
     前記第2電圧と前記入力電圧の差分を、前記コモン電圧を基準として増幅することにより第4電圧を生成する第4ステップと、
     前記第3電圧と前記第4電圧の間を、複数のセグメントに分割し、前記コモン電圧が複数のセグメントのいずれに属するかを判定する第5ステップと、
     前記コモン電圧が属するセグメントを挟む第5電圧と第6電圧を生成する第6ステップと、
     前記第5電圧と前記コモン電圧の差分を、前記コモン電圧を基準として増幅することにより第7電圧を生成する第7ステップと、
     前記第6電圧と前記コモン電圧の差分を、前記コモン電圧を基準として増幅することにより第8電圧を生成する第8ステップと、
     を備え、
     前記第5ステップから第8ステップは繰り返し実行されるものであり、
     前記第8ステップから前記第5ステップに戻るとき、前回の第7ステップで得られた第7電圧を次の第5ステップの第3電圧として、前回の第8ステップで得られた第8電圧を次の第5ステップの第4電圧として利用することを特徴とするA/D変換方法。
  2.  前記第6ステップにおいて、前記第5電圧と前記第6電圧はそれぞれ、前記第3電圧と前記第4電圧を補間することにより生成されることを特徴とする請求項1に記載のA/D変換方法。
  3.  前記第1電圧から第8電圧はそれぞれ、差動信号として生成されることを特徴とする請求項1に記載のA/D変換方法。
  4.  前記第6ステップにおいて、前記第5電圧と前記第6電圧は、前記第3電圧と前記第4電圧を外挿補間することにより生成されることを特徴とする請求項3に記載のA/D変換方法。
  5.  アナログの入力電圧をデジタルデータに変換するパイプライン型A/Dコンバータであって、
     直列に接続されたA型変換回路、少なくともひとつのB型変換回路および比較器列を備え、
     前記A型変換回路は、
     前記入力電圧を複数のしきい値電圧と比較し、複数のセグメントのいずれに属するかを判定する第1サブA/Dコンバータと、
     前記入力電圧が属するセグメントの上限以上の電圧レベルを有する第1電圧を生成し、前記第1電圧と前記入力電圧の差分を所定のコモン電圧を基準として増幅することにより第3電圧を生成し、後段のB型変換回路に出力する第1増幅回路と、
     前記入力電圧が属するセグメントの下限以下の電圧レベルを有する第2電圧を生成し、前記第2電圧と前記入力電圧の差分を所定のコモン電圧を基準として増幅することにより第4電圧を生成し、後段のB型変換回路に出力する第2増幅回路と、
     を備え、
     前記B型変換回路は、
     前段からの前記第3電圧と前記第4電圧の間を複数のセグメントに分割し、前記コモン電圧が複数のセグメントのいずれに属するかを判定する第2サブA/Dコンバータと、
     前記コモン電圧が属するセグメントの上限以上の電圧レベルを有する第5電圧と前記コモン電圧の差分を、前記コモン電圧を基準として増幅することにより第7電圧を生成し、後段のB型変換回路に前記第3電圧として出力する第3増幅回路と、
     前記コモン電圧が属するセグメントの下限以下の電圧レベルを有する第6電圧と前記コモン電圧の差分を、前記コモン電圧を基準として増幅することにより第8電圧を生成し、後段のB型変換回路に前記第4電圧として出力する第4増幅回路と、
     を備え、
     前記比較器列は、前段のB型変換回路からの前記第3電圧と前記第4電圧の間を複数のセグメントに分割し、前記コモン電圧が複数のセグメントのいずれに属するかを判定することを特徴とするA/Dコンバータ。
  6.  前記第1増幅回路は、
     それぞれの第1端子が共通に接続された複数の第1キャパシタを含む第1キャパシタ列と、
     標本化状態において前記第1キャパシタ列の第2端子に前記入力電圧を印加し、補間増幅状態において、前記第1キャパシタ列のうち、前記第1サブA/Dコンバータによる判定結果に応じた個数の第1キャパシタの第2端子に、基準電圧を印加する第1スイッチ回路と、
     前記第1キャパシタ列の前記第1端子と固定電圧端子の間に設けられ、標本化状態においてオンし、補間増幅状態においてオフする第1スイッチと、
     その第1入力端子に前記コモン電圧が入力され、その第2入力端子が前記第1キャパシタ列の前記第1端子と接続された第1増幅器と、
     を含み、
     前記第2増幅回路は、第2キャパシタ列、第2スイッチ回路、第2スイッチ、第2増幅器を含み、前記第1増幅回路と同様に構成されることを特徴とする請求項5に記載のA/Dコンバータ。
  7.  前記第3増幅回路および前記第4増幅回路は、前記第3電圧と前記第4電圧を補間することにより、前記第5電圧と前記第6電圧を生成することを特徴とする請求項5または6に記載のA/Dコンバータ。
  8.  前記第3増幅回路は、
     それぞれの第1端子が共通に接続された複数の第3キャパシタを含む第3キャパシタ列と、
     それぞれの第1端子が前記第3キャパシタ列の前記第1端子と共通に接続された複数の第4キャパシタを含む第4キャパシタ列と、
     標本化状態において前記第3キャパシタ列の第2端子に前記第3電圧を印加し、補間増幅状態において、前記第3キャパシタ列のうち、前記第2サブA/Dコンバータによる判定結果に応じた個数の第3キャパシタの第2端子に、固定電圧を印加する第3スイッチ回路と、
     標本化状態において前記第4キャパシタ列の第2端子に前記第4電圧を印加し、補間増幅状態において、前記第4キャパシタ列のうち、前記第2サブA/Dコンバータによる判定結果に応じた個数の第4キャパシタの第2端子に、固定電圧を印加する第4スイッチ回路と、
     前記第3キャパシタ列および前記第4キャパシタ列の共通接続された前記第1端子と固定電圧端子の間に設けられ、標本化状態においてオンし、補間増幅状態においてオフする第3スイッチと、
     その第1入力端子に前記コモン電圧が入力され、その第2入力端子が前記第3キャパシタ列および前記第4キャパシタ列の共通接続された前記第1端子と接続された第3増幅器と、
     を含み、
     前記第4増幅回路は、第5キャパシタ列、第6キャパシタ列、第5スイッチ回路と、第6スイッチ回路、第4スイッチ、第4増幅器を含み、前記第3増幅回路と同様に構成されることを特徴とする請求項7に記載のA/Dコンバータ。
  9.  前記第3スイッチ回路は、補間増幅状態において、前記第3キャパシタ列に前記固定電圧を印加する際、当該固定電圧として前段からの前記第3電圧を印加するとともに、前記第4スイッチ回路は、補間増幅状態において、前記第4キャパシタ列に前記固定電圧を印加する際、当該固定電圧として前段からの前記第4電圧を印加することにより、前段の変換回路の増幅器のオフセット電圧をキャンセルすることを特徴とする請求項8に記載のA/Dコンバータ。
  10.  前記第1増幅回路から前記第4増幅回路は、差動形式で構成されることを特徴とする請求項8に記載のA/Dコンバータ。
  11.  前記第3増幅回路、前記第4増幅回路は、前記第3電圧の正転信号と反転信号、前記第4電圧の正転信号と反転信号を組み合わせることにより、前記第5電圧と前記第6電圧を、前記第3電圧と前記第4電圧の内挿補間または外挿補間のいずれかにより生成することを特徴とする請求項10に記載のA/Dコンバータ。
  12.  前記第3スイッチ回路は、標本化状態において前記第3キャパシタ列の第2端子に前記第3電圧の正転信号または反転信号を印加し、
     前記第4スイッチ回路は、標本化状態において前記第4キャパシタ列の第2端子に前記第4電圧の正転信号または反転信号を印加することを特徴とする請求項11に記載のA/Dコンバータ。
  13.  前記B型変換回路は、前記第3増幅器および前記第4増幅器の利得をデジタル制御可能な利得調整部をさらに備えることを特徴とする請求項8に記載のA/Dコンバータ。
  14.  前記B型変換回路の前段に設けられ、前記第3電圧と第4電圧をスワップして前記B型変換回路に供給する入力スイッチと、
     前記B型変換回路の後段に設けられ、前記第7電圧、前記第8電圧をスワップして後段のB型変換回路に出力する出力スイッチと、
     をさらに備えることを特徴とする請求項5に記載のA/Dコンバータ。
  15.  前記第1増幅器および前記第2増幅器はそれぞれダイナミック型差動増幅器を含み、
     前記ダイナミック型差動増幅器は、
     第1、第2入力端子と、
     第1、第2出力端子と、
     前記第1出力端子と固定電圧端子の間の設けられた第1負荷キャパシタと、
     前記第2出力端子と固定電圧端子の間の設けられた第2負荷キャパシタと、
     前記第1、第2負荷キャパシタの電荷を初期化する初期化回路と、
     前記第1、第2負荷キャパシタをそれぞれ負荷とするとともに、それぞれの制御端子が前記第1、第2入力端子と接続される第1、第2入力トランジスタを含む入力差動対と、
     前記第1出力端子と前記第2出力端子それぞれの電位の中点電圧が所定のしきい値電圧に達すると、前記第1、第2負荷キャパシタの充放電経路を遮断する制御回路と、
     を備えることを特徴とする請求項6に記載のA/Dコンバータ。
  16.  前記第3増幅器および前記第4増幅器はそれぞれダイナミック型差動増幅器を含み、
     前記ダイナミック型差動増幅器は、
     第1、第2入力端子と、
     第1、第2出力端子と、
     前記第1出力端子と固定電圧端子の間の設けられた第1負荷キャパシタと、
     前記第2出力端子と固定電圧端子の間の設けられた第2負荷キャパシタと、
     前記第1、第2負荷キャパシタの電荷を初期化する初期化回路と、
     前記第1、第2負荷キャパシタをそれぞれ負荷とするとともに、それぞれの制御端子が前記第1、第2入力端子と接続される第1、第2入力トランジスタを含む入力差動対と、
     前記第1出力端子と前記第2出力端子それぞれの電位の中点電圧が所定のしきい値電圧に達すると、前記第1、第2負荷キャパシタの充放電経路を遮断する制御回路と、
     を備えることを特徴とする請求項8に記載のA/Dコンバータ。
  17.  前記第1負荷キャパシタと前記第1入力トランジスタの間に設けられた第1スイッチと、
     前記第2負荷キャパシタと前記第2入力トランジスタの間に設けられた第2スイッチと、
     をさらに備え、
     前記制御回路は、前記第1、第2スイッチをオフすることにより、前記第1、第2負荷キャパシタの充放電経路を遮断することを特徴とする請求項15または16に記載のA/Dコンバータ。
  18.  前記ダイナミック型差動増幅器は、前記入力差動対にテイル電流を供給するテイル電流源をさらに備え、
     前記制御回路は、前記テイル電流源をオフすることにより、前記第1、第2負荷キャパシタの充放電経路を遮断することを特徴とする請求項15から17のいずれかに記載のA/Dコンバータ。
  19.  前記制御回路は、
     前記第1出力端子と前記第2出力端子の間に直列に設けられた第1、第2分圧キャパシタと、
     前記第1、第2分圧キャパシタの接続点の電位を所定のしきい値電圧と比較する比較器と、
     を含むことを特徴とする請求項15から18のいずれかに記載のA/Dコンバータ。
  20.  前記比較器は、電源として電源電圧および接地電圧を受けるインバータを含むことを特徴とする請求項19に記載のA/Dコンバータ。
  21.  前記初期化回路は、前記第1、第2分圧キャパシタの接続点の電位を、前記第1、第2出力端子と同じ電位に初期化することを特徴とする請求項19に記載のA/Dコンバータ。
  22.  前記制御回路は、前記第1負荷キャパシタと前記第2負荷キャパシタそれぞれの電位を受けるNANDゲートを含み、前記NANDゲートの出力に応じて、前記第1、第2負荷キャパシタの充放電経路を遮断し、
     前記NANDゲートは、
     電源端子と接地端子の間に第1経路を形成するように順にスタックされた第1Pチャンネルトランジスタ、第1Nチャンネルトランジスタ、第2Nチャンネルトランジスタと、
     電源端子と接地端子の間に、第1経路と並列1な第2経路を形成するように順にスタックされた第2Pチャンネルトランジスタ、第3Nチャンネルトランジスタ、第4Nチャンネルトランジスタと、
     を含み、
     前記第1Pチャンネルトランジスタ、第1、第4Nチャンネルトランジスタのゲートに、第1入力信号が印加され、
     前記第2Pチャンネルトランジスタ、第2、第3Nチャンネルトランジスタのゲートに、第2入力信号が印加され、
     前記NANDゲートの出力端子が前記第1、第2Pチャンネルトランジスタのドレインと接続されていることを特徴とする請求項21に記載のA/Dコンバータ。
  23.  第1、第2入力端子と、
     第1、第2出力端子と、
     前記第1出力端子と固定電圧端子の間の設けられた第1負荷キャパシタと、
     前記第2出力端子と固定電圧端子の間の設けられた第2負荷キャパシタと、
     前記第1、第2負荷キャパシタの電荷を初期化する初期化回路と、
     前記第1、第2負荷キャパシタをそれぞれ負荷とするとともに、それぞれの制御端子が前記第1、第2入力端子と接続される第1、第2入力トランジスタを含む入力差動対と、
     前記第1出力端子と前記第2出力端子それぞれの電位の中点電圧が所定のしきい値電圧に達すると、前記第1、第2負荷キャパシタの充放電経路を遮断する制御回路と、
     を備えることを特徴とするダイナミック型差動増幅器。
  24.  前記第1負荷キャパシタと前記第1入力トランジスタの間に設けられた第1スイッチと、
     前記第2負荷キャパシタと前記第2入力トランジスタの間に設けられた第2スイッチと、
     をさらに備え、
     前記制御回路は、前記第1、第2スイッチをオフすることにより、前記第1、第2負荷キャパシタの充放電経路を遮断することを特徴とする請求項23に記載のダイナミック型差動増幅器。
PCT/JP2010/005929 2010-02-26 2010-10-04 パイプライン型a/dコンバータおよびa/d変換方法、ならびにダイナミック型差動増幅器 WO2011104786A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080064684.1A CN102844987B (zh) 2010-02-26 2010-10-04 流水线式a/d转换器和a/d转换方法、以及动态式差动放大器
JP2012501538A JP5515126B2 (ja) 2010-02-26 2010-10-04 パイプライン型a/dコンバータおよびa/d変換方法、ならびにダイナミック型差動増幅器
US13/593,868 US8947287B2 (en) 2010-02-26 2012-08-24 Pipeline A/D converter and A/D converting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2010/001313 2010-02-26
PCT/JP2010/001313 WO2011104761A1 (ja) 2010-02-26 2010-02-26 パイプライン型a/dコンバータおよびa/d変換方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001313 Continuation WO2011104761A1 (ja) 2010-02-26 2010-02-26 パイプライン型a/dコンバータおよびa/d変換方法

Publications (1)

Publication Number Publication Date
WO2011104786A1 true WO2011104786A1 (ja) 2011-09-01

Family

ID=44506211

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2010/001313 WO2011104761A1 (ja) 2010-02-26 2010-02-26 パイプライン型a/dコンバータおよびa/d変換方法
PCT/JP2010/005929 WO2011104786A1 (ja) 2010-02-26 2010-10-04 パイプライン型a/dコンバータおよびa/d変換方法、ならびにダイナミック型差動増幅器

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001313 WO2011104761A1 (ja) 2010-02-26 2010-02-26 パイプライン型a/dコンバータおよびa/d変換方法

Country Status (3)

Country Link
US (1) US8947287B2 (ja)
CN (1) CN102844987B (ja)
WO (2) WO2011104761A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015126497A (ja) * 2013-12-27 2015-07-06 国立大学法人東京工業大学 パイプライン型a/dコンバータ
JP2018014714A (ja) * 2016-07-07 2018-01-25 株式会社テックイデア 積分器およびこれを用いたa/d変換器
WO2021117181A1 (ja) * 2019-12-12 2021-06-17 日本電信電話株式会社 ドライバ回路

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10319536B1 (en) * 2012-11-19 2019-06-11 Prakash Achrekar High-capacity electrical energy storage device
JP2017092885A (ja) * 2015-11-17 2017-05-25 ソニー株式会社 信号処理回路および方法
US10156596B2 (en) * 2015-12-10 2018-12-18 Microchip Technology Incorporated Voltage measurement circuit
US10158372B1 (en) * 2017-06-20 2018-12-18 Taiwan Semiconductor Manufcturing Company, Ltd. Analog to digital converter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054608A (ja) * 2004-08-10 2006-02-23 Sony Corp パイプライン型アナログ/ディジタル変換器
WO2009122656A1 (ja) * 2008-03-31 2009-10-08 パナソニック株式会社 パイプラインa/d変換器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60331694D1 (de) * 2003-10-21 2010-04-22 Fujitsu Microelectronics Ltd D/a-umsetzungsschaltung und a/d-umsetzungsschaltung
US7330145B2 (en) * 2003-10-23 2008-02-12 Nxp B.V. Dual residue pipelined analog-to-digital converter
KR100688512B1 (ko) * 2004-12-30 2007-03-02 삼성전자주식회사 2개의 기준 전압들을 사용하는 파이프라인 구조의아날로그-디지털 변환 장치
US7280064B2 (en) * 2005-09-08 2007-10-09 Realtek Semiconductor Corp. Pipeline ADC with minimum overhead digital error correction
CN101465649B (zh) * 2007-12-19 2010-08-18 中国科学院微电子研究所 一种参考电压可调的比较器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054608A (ja) * 2004-08-10 2006-02-23 Sony Corp パイプライン型アナログ/ディジタル変換器
WO2009122656A1 (ja) * 2008-03-31 2009-10-08 パナソニック株式会社 パイプラインa/d変換器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015126497A (ja) * 2013-12-27 2015-07-06 国立大学法人東京工業大学 パイプライン型a/dコンバータ
JP2018014714A (ja) * 2016-07-07 2018-01-25 株式会社テックイデア 積分器およびこれを用いたa/d変換器
WO2021117181A1 (ja) * 2019-12-12 2021-06-17 日本電信電話株式会社 ドライバ回路

Also Published As

Publication number Publication date
CN102844987B (zh) 2015-09-02
US20130044017A1 (en) 2013-02-21
WO2011104761A1 (ja) 2011-09-01
CN102844987A (zh) 2012-12-26
US8947287B2 (en) 2015-02-03

Similar Documents

Publication Publication Date Title
JP5412639B2 (ja) 比較器及びアナログデジタル変換器
JP5807549B2 (ja) 比較回路およびa/d変換回路
WO2011104786A1 (ja) パイプライン型a/dコンバータおよびa/d変換方法、ならびにダイナミック型差動増幅器
US8836376B2 (en) Comparator and A/D converter
US7199745B2 (en) Successive approximation A/D converter provided with a sample-hold amplifier
JP2945805B2 (ja) A/d変換器
US8120388B2 (en) Comparator, sample-and-hold circuit, differential amplifier, two-stage amplifier, and analog-to-digital converter
JP2002271201A (ja) A/d変換器
JP2006115003A (ja) サンプルホールド回路およびそれを用いたパイプラインad変換器
JP2000201077A (ja) Ad変換器とその制御方法
JP2002163894A (ja) サンプル・ホールド回路およびa/d変換器
KR20080087587A (ko) 파이프라인 구조의 싸이클릭 디지털 투 아날로그 변환기
WO2016203525A1 (ja) 半導体装置
KR20200074084A (ko) 추가적인 능동 회로부가 없는 sar adc에서의 넓은 입력 공통 모드 범위를 인에이블하기 위한 방법 및 장치
JP5965825B2 (ja) コンパレータ及びその補正方法
JP5515126B2 (ja) パイプライン型a/dコンバータおよびa/d変換方法、ならびにダイナミック型差動増幅器
JP6270202B2 (ja) パイプライン型a/dコンバータ
JP3907633B2 (ja) Nic回路及びadc回路
JP7159634B2 (ja) コンパレータ及びad変換器
JP3851305B2 (ja) アナログ−デジタル変換回路
US7372389B2 (en) Analogue to digital converter, and method of analogue to digital conversion
JP3803649B2 (ja) D/a変換器
JP2006121307A (ja) サンプルホールド回路又はそれを用いたad変換器
JP2016039442A (ja) Da変換器及びオフセット調整機能付き増幅回路
JP2008035166A (ja) 半導体集積回路装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080064684.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846454

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012501538

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10846454

Country of ref document: EP

Kind code of ref document: A1