WO2011101398A2 - Led-spannungsmessung - Google Patents

Led-spannungsmessung Download PDF

Info

Publication number
WO2011101398A2
WO2011101398A2 PCT/EP2011/052329 EP2011052329W WO2011101398A2 WO 2011101398 A2 WO2011101398 A2 WO 2011101398A2 EP 2011052329 W EP2011052329 W EP 2011052329W WO 2011101398 A2 WO2011101398 A2 WO 2011101398A2
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
emitting diode
light
led
current mirror
Prior art date
Application number
PCT/EP2011/052329
Other languages
English (en)
French (fr)
Other versions
WO2011101398A3 (de
Inventor
Dominique Combet
Thomas Kuch
Original Assignee
Tridonic Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tridonic Ag filed Critical Tridonic Ag
Priority to DE112011100594.6T priority Critical patent/DE112011100594B4/de
Priority to EP11703901.6A priority patent/EP2540139B1/de
Publication of WO2011101398A2 publication Critical patent/WO2011101398A2/de
Publication of WO2011101398A3 publication Critical patent/WO2011101398A3/de

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/59Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits for reducing or suppressing flicker or glow effects

Definitions

  • the present invention relates to a voltage measuring circuit for one or more light-emitting diodes (LEDs) and to operating circuits for LEDs with such a circuit for measuring the voltage over an LED path which has one or more LEDs.
  • the LEDs can u.a. be organic or inorganic LEDs. It is basically known to use an operating circuit with switching regulators, in particular buck converters, buck converters, boost converters, flyback converters, etc. for driving LEDs (these switching regulators can all also be used in the context of the present invention).
  • a control unit controls a clocked semiconductor power switch, by means of which in the on state an inductance is magnetized, wherein the inductance in the off state of the switch then eg. Via the LED discharges or demagnetizes.
  • the current does not necessarily have to flow through the light-emitting diode path during the switch-on and switch-off phase (see, for example, step-up converter).
  • DE 102006034371 A1 shows an operating circuit for measuring the voltage across the LED track, as shown in the appended FIG.
  • an inductance LI is selectively charged and discharged, which forms a freewheeling path with a diode D1 and the LED path L.
  • a filter / smoothing capacitor Cl is connected.
  • Bus voltage V in ie, a DC supply voltage
  • the LED cathode voltage V kath measured.
  • a control unit (not shown in FIG. 5) determines, from the difference between the two values, the voltage U LE D across the LED path L, which has one or more LEDs connected in series.
  • the measurement of the bus voltage V in takes place in this prior art via a Meßlgriff Ml at the midpoint of a two resistors RIO, RH voltage divider ST1, which is connected in parallel to a supply voltage source VQ.
  • the measurement of the LED cathode voltage V kath takes place at a measuring tap M2 at the midpoint of a voltage divider ST2 having two resistors R20, R21, which is connected in series with the LED path L on the cathode side.
  • a power loss occurs at each voltage measuring tap M1, M2, that is to say at both voltage dividers ST1, ST2.
  • Such power dissipation may be, for example, up to several 100mW per LED channel, i. per LED track, with LED lighting means having more of these channels.
  • the cathode-side potential is pulled to zero because of the fact that the filter capacitor C1 is charged via the voltage divider ST2, while an arbitrarily high supply voltage (for example, 400 volts) is applied to the anode side ) may be present.
  • an arbitrarily high supply voltage for example, 400 volts
  • the invention is therefore based on the object to provide a voltage measuring circuit, in which at least one of the above-mentioned problems is rudimentary reduced.
  • the invention deals with a voltage measuring circuit for a light-emitting diode path with at least one light-emitting diode.
  • a DC voltage is supplied to the light-emitting diode path.
  • Parallel to the light-emitting diode path the primary side of a current mirror is connected.
  • On the secondary side of the current mirror is now according to the invention at a measuring resistor to a Voltage drop across the LED strip proportional measuring voltage tapped.
  • the current mirror has at least two transistors. Of these, preferably one each connected to the primary and one on the secondary side of the current mirror. To improve the behavior of the current mirror but also circuits come with a larger number of transistors in question.
  • the transistors may be bipolar transistors and / or field-effect transistors.
  • the at least two transistors can also have identical electrical properties. They can be designed as an integrated component.
  • the measuring resistor on the secondary side of the current mirror is connected in a preferred embodiment in series with the secondary-side transistor.
  • Another resistor on the primary side of the current mirror is preferably connected in series with the primary-side transistor. This serves to dimension the current to be mirrored.
  • the invention deals with an operating circuit for at least a light-emitting diode path with at least one light-emitting diode.
  • This operating circuit has a switching regulator circuit.
  • the switching regulator circuit is supplied with a DC voltage.
  • the switching regulator circuit provides a constant current for the at least one light emitting diode path.
  • Parallel to the light-emitting diode path the primary side of a current mirror is connected. On the secondary side is at a resistor a tapped to the voltage drop across the LED strip proportional measurement voltage.
  • the operating circuit may have a voltage measuring circuit according to the invention, as has been described above.
  • the current flowing through the light-emitting diode path is preferably set by means of a coil and the timing of a switch controlled by a control and / or regulating circuit.
  • the measuring voltage can be compared as a feedback signal with a setpoint to clock depending on a possible difference as a control variable the switch. It serves as a monitor, for example as an error detection or shutdown (e.g., short circuit detection, overload detection, etc.). All evaluation functions, i. Control and fault monitoring and possibly shutdown) can be integrated in the example. As IC running control / regulating device.
  • the control and / or regulating circuit can determine the time duration between a switch-off and a subsequent switch-on of the switch as a function of the voltage across the at least one light-emitting diode and a time-constant characteristic variable of the coil.
  • the control and / or regulating circuit can also detect the coil characteristic via the rising slope of the coil current and by including the coil voltage. In addition, in a preferred embodiment, the control and / or regulating circuit does not detect the current through the at least one light-emitting diode.
  • the control and / or regulating circuit may be an integrated circuit.
  • the control and / or regulating circuit can control the switch in the form of PWM-modulated signals.
  • the switching regulator may be, for example, a boost converter, a buck converter, a flyback converter, etc.
  • a capacitor is preferably connected, in particular for smoothing the DC voltage.
  • the invention also relates to an LED module, comprising at least one LED, which is supplied by the operating circuit.
  • the invention also relates to a lighting device, comprising an LED module with at least one LED, which is supplied by the operating circuit.
  • the invention also relates to a method for measuring voltage for a light-emitting diode path with at least one light emitting diode, the LED is supplied with a DC voltage, and parallel to the light emitting diode path, the primary side of a current mirror is connected, wherein on the secondary side of the current mirror to a measuring resistor to a voltage drop across the LED strip proportional measuring voltage is tapped.
  • Fig.l shows a first embodiment of
  • Fig. 3 shows a third embodiment of
  • Fig. 4 shows a fourth embodiment of
  • Fig. 5 shows an LED voltage measuring circuit as they are
  • FIGS. 1 to 4 show embodiments of the LED voltage measuring circuit 1 according to the invention.
  • the LED voltage measuring circuit 1 is designed in such a way that no measuring resistor (R20, R21) in series with the LED path L is required.
  • a measurement signal Ü M ESS reproducing the LED voltage Ü LED is coupled out by means of a current mirror S.
  • FIGS. 2 to 4 show examples of possible embodiments of the current mirror S, wherein, however, any further configurations of current mirrors, for example with an even higher number of transistors, can be used.
  • the current mirror is formed with three transistors Tl, T2, T3, of which two T2, T3 are arranged on the secondary side P2 of the current mirror, wherein the transistors Tl, T2, T3 are formed as bipolar transistors.
  • the current mirror S is constructed with a transistor Tl on the primary side PI and a transistor T2 on the secondary side P2, wherein the transistors Tl, T2 are formed as bipolar transistors.
  • the current mirror S is constructed with a transistor T1 on the primary side PI and a transistor T2 on the secondary side P2, wherein the transistors T1, T2 are designed as MOSFETs.
  • a current mirror S can also be constructed with three MOSFETs.
  • the LED voltage measuring circuit 1 according to the invention is used in an operating circuit 2 which is designed to operate a light-emitting diode path L.
  • the voltage measuring circuit according to the invention is not limited to the operating circuit 2, but rather can be used in any circuit in which a voltage measurement is to be made. In this respect, the invention is not limited to the field of LEDs, but can be used in a circuit with any load.
  • the operating circuit 2 is supplied with an input DC voltage Vin or a rectified AC voltage.
  • a switching regulator circuit SRS has a series connection between a semiconductor power switch Sl
  • a control and / or regulating circuit SR is provided which prescribes the timing of the switch S1, for example in the form of PW-modulated signals, as the manipulated variable for regulating the light-emitting diode power.
  • the feedback signal to which is controlled and which, for example, is compared with a target value
  • at least the current flowing through the LED line L is measured. This LED current can be measured at any point in the LED current path.
  • the voltage across the LED track is measured by means of the current mirror circuit described.
  • the light-emitting diode path has one or more parallel, but preferably in series LEDs and / or OLEDs. These may be, for example, monochromatic LEDs, color-converted white LEDs and / or RGB-LED modules. In the case of the latter, it is particularly advantageous if each luminous color is arranged in a separate LED segment ("LED channel") and each LED segment is regulated via its own feedback signal, such as the current flowing in the LED segment.
  • LED channel Parallel to the light-emitting diode path, the primary side PI of a current mirror S is connected.
  • the current mirror can have on the primary side as well as on the secondary side in each case a transistor Tl, T2 and a resistor Rl, R2 connected in series therewith.
  • the current mirror can also be any other embodiment known from the prior art.
  • FETs field-effect transistors
  • the current mirror can also be any other embodiment known from the prior art.
  • the actual measurement of the LED voltage takes place through the secondary side P2 of the current mirror S. Due to the current mirror function, the identical current flows on the secondary side as on the primary side of the current mirror S and thus through a secondary-side measuring resistor R2.
  • the voltage ümess on this resistor R2 is thus the LED voltage üled again.
  • the resistor Rl on the primary side PI serves to dimension the measuring voltage Umess picked up at the resistor R2.
  • the measured voltage ümess is thus proportional to the voltage Uled, wherein the factor between the two voltages by the size of the resistors Rl and R2 can be adjusted.
  • the measurement of the LED voltage for fault monitoring such as e.g. Short circuit detection or overload detection can be used on the LED track or in the output circuit or the wiring.
  • the measurement of the LED voltage can be used for the determination of the LED current or the LED temperature, so it can be done an indirect detection of the LED current or the LED temperature. It can be concluded by means of value tables or stored characteristics or formulas with the help of the measured LED voltage on the LED current or the LED temperature.
  • the light-emitting diode path L is no longer connected to ground via a measuring circuit on the cathode side, the problem of unwanted glaring of the LEDs is also reduced.
  • Another advantage is that when the LED is removed from the circuit, the voltage across the capacitor C1 is discharged through the resistor Rl on the primary side PI of the current mirror. When the LED is then reinserted, the voltage of the charged capacitor C1 does not immediately drop, but rather a voltage is applied across the LED only when it is switched on again.
  • the problem is that when re-inserting the cathode-side potential is pulled to zero due to the measuring channel, while the anode side, the supply voltage of, for example, 400 volts applied, thus resolved.
  • a so-called 'hot-swapping' which corresponds to the removal and re-insertion of an LED during operation, there is the risk that the LED will be destroyed becomes significantly smaller than in the prior art.
  • the 'hot-swapping ' * is electrically equivalent to an interrupt error, ie the LED link is interrupted and then the supply voltage is applied again.
  • the voltage measuring circuit counteracts this risk during 'hot-swapping', since the voltage across the capacitor C1 is discharged through the resistor Rl on the primary side PI of the current mirror.
  • the two transistors Tl and T2 of the current mirror should have identical electrical properties, the two transistors are preferably integrated in one component.
  • a method for measuring voltage for a light-emitting diode path L with at least one light-emitting diode LED is possible, wherein the light-emitting diode is supplied with a DC voltage.
  • the primary side PI of a current mirror S is connected.
  • a measuring voltage UMESS proportional to the voltage drop ULED across the light-emitting diode path L is picked off at a measuring resistor R2.
  • the current mirror measurement can be used to measure a DC current in a measuring branch P2 which is not connected in series with the light-emitting diode path. There is also no difference measurement (bus voltage minus cathode voltage) instead, but a direct measurement of the voltage across the LED track.
  • a measurement of the light-emitting diode path voltage is performed by means of a measuring resistor, which is not connected in series with the light-emitting diode path. But it is also no measurement of the LED current by means of a measuring resistor, which is connected in series with the light-emitting diode path, necessary by the voltage measuring circuit according to the invention.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

Die Erfindung betrifft eine Betriebsschaltung für wenigstens eine Leuchtdiodenstrecke (L) mit mindestens einer Leuchtdiode (LED), aufweisend eine Schaltreglerschaltung (SRS), der eine Gleichspannung zugeführt wird und die einen Konstantstrom für die wenigstens eine Leuchtdiodenstrecke (L) bereitstellt, wobei parallel zu der Leuchtdiodenstrecke (L) die Primärseite (P1) eines Stromspiegels (S) geschaltet ist und auf der Sekundärseite (P2) an einem Widerstand (R2) eine zum Spannungsabfall an der Leuchtdiodenstrecke (L) proportionale Messspannung (Umess) abgegriffen wird.

Description

-Spannungsmessung
Die vorliegende Erfindung behandelt eine Spannungsmessschaltung für eine oder mehrere Leuchtdioden (LEDs) sowie Betriebsschaltungen für LEDs mit einer derartigen Schaltung zur Messung der Spannung über einer LED- Strecke, die eine oder mehrere LEDs aufweist. Die LEDs können u.a. organische oder anorganische LEDs sein. Es ist grundsätzlich bekannt, eine Betriebsschaltung mit Schaltreglern, insbesondere Tiefsetzsteller (Buck Converter) , Hochsetzstellern, Flyback-Konvertern etc. zur Ansteuerung von LEDs zu verwenden (diese Schaltregler können sämtlich auch im Rahmen der vorliegenden Erfindung verwendet werden) . Dabei steuert eine Steuereinheit einen getakteten Halbleiter- Leistungsschalter an, mittels dem in dessen eingeschalteten Zustand eine Induktivität magnetisiert wird, wobei sich die Induktivität im ausgeschalteten Zustand des Schalters dann bspw. über die LED entlädt bzw. entmagnetisiert. Je nach Schaltung muss aber der Strom nicht gezwungenermassen während der Ein- und Ausschaltphase durch die Leuchtdiodenstrecke fliessen (siehe z.B. Hochsetzsteller).
Für den Betrieb von LEDs ist der Einsatz einer Betriebsschaltung mit Regelung vorteilhaft. Diese bedarf einer rückgeführten Messgröße, beispielsweise der an den LEDs abfallenden Spannung oder durch die LEDs fließenden Strom. Es ist vorteilhaft, die Spannung über der LED-Strecke zu kennen. Es kann auch vorteilhaft sein, die LED-Spannung für eine Fehlerüberwachung (z.B. Kurzschlussdetektion, Überlasterkennung, usw.) zu nutzen. DE 102006034371 AI zeigt eine Betriebsschaltung zur Messung der Spannung über der LED-Strecke, wie sie in der anliegenden Fig.5 dargestellt ist. Mittels eines Schalters Sl wird selektiv eine Induktivität LI geladen und entladen, die mit einer Diode Dl und der LED-Strecke L einen Freilaufpfad bildet. Parallel zu der LED-Strecke L ist ein Filter- /Glättungskondensator Cl geschaltet.
Bei dieser Schaltung wird einerseits eine sog. Busspannung Vin, d.h. eine DC-Versorgungsspannung, und andererseits die LED-Kathodenspannung Vkath gemessen. Eine Steuereinheit (in Fig. 5 nicht dargestellt) ermittelt aus der Differenz der beiden Werte die Spannung ULED über der LED-Strecke L, die eine oder mehrere in Reihe geschaltete LEDs aufweist. Die Messung der Busspannung Vin erfolgt bei diesem Stand der Technik über einen Messabgriff Ml am Mittenpunkt eines zwei Widerstände RIO, RH aufweisenden Spannungsteilers ST1, der parallel zu einer Versorgungsspannungsquelle VQ geschaltet ist. Die Messung der LED-Kathodenspannung Vkath erfolgt an einem Messabgriff M2 am Mittenpunkt eines zwei Widerstände R20, R21 aufweisenden Spannungsteilers ST2 ein, der kathodenseitig in Reihe zu der LED-Strecke L geschaltet ist.
Bei dieser Form der Spannungsmessschaltung tritt an jedem Spannungsmessabgriff Ml, M2, also bei beiden Spannungsteilern ST1, ST2, eine Verlustleistung auf. Eine solche Verlustleistung kann bspw. bis zu mehreren 100mW pro LED- Kanal, d.h. pro LED-Strecke betragen, wobei LED- Beleuchtungsmittel mehrere dieser Kanäle aufwiesen können.
Darüber hinaus tritt das Problem auf, dass der kontinuierlich durch den Spannungsteiler für die LED-
Kathodenspannungsmessung fließende Strom, insbesondere bei sehr effizienten LEDs, zu einem ungewünschten Glimmen der LEDs führen kann, auch wenn die LEDs eigentlich ausgeschaltet sein sollten. Dieses Glimmen könnte nur durch Abschalten der Versorgungsspannung oder durch Kurzschließen der LEDs abgestellt werden. Hierfür wäre eine zusätzliche Antiglimmschaltung notwendig, die zusätzlichen Aufwand und womöglich Verlustleistung zur Folge hätte.
Ferner entsteht bei einem Herausnehmen einer LED aus der Schaltung eine große Ausgangsspannung: Das kathodenseitige Potential wird dabei aufgrund der Tatsache, dass der Filterkondensator Cl über den Spannungsteiler ST2 geladen wird, auf das Potential Null gezogen, während anodenseitig eine beliebig hohe Versorgungsspannung (beispielsweise 400 Volt) anliegen kann. Bei einem sogenannten „hot-swapping" , d.h. bei einem Austausch einer LED während des Betriebs, besteht dabei die Gefahr, dass die LED durch hohe Impulsströme, die durch das Entladen des Filterkondensators entstehen, zerstört werden können.
Der Erfindung liegt darum die Aufgabe zu Grunde, eine Spannungsmessschaltung bereitzustellen, bei der zumindest eines der oben genannten Probleme ansatzweise verringert wird.
Diese Aufgabe wird erfindungsgemäss durch die Merkmale der unabhängigen Ansprüche gelöst. Die abhängigen Ansprüche bilden den zentralen Gedanken der Erfindung in besonders vorteilhafter Weise weiter.
Die Erfindung behandelt also in einem ersten Aspekt eine Spannungsmessschaltung für eine Leuchtdiodenstrecke mit mindestens einer Leuchtdiode. Eine Gleichspannung wird der Leuchtdiodenstrecke zugeführt. Parallel zu der Leuchtdiodenstrecke ist die Primärseite eines Stromspiegels geschaltet. Auf der Sekundärseite des Stromspiegels wird nun erfindungsgemäß an einem Messwiderstand eine zum Spannungsabfall über der Leuchtdiodenstrecke proportionale Messspannung abgegriffen.
Der Stromspiegel weist mindestens zwei Transistoren auf. Von diesen ist vorzugsweise je einer auf der Primär- und einer auf der Sekundärseite des Stromspiegels verschaltet. Zur Verbesserung des Verhaltens des Stromspiegels kommen aber auch Schaltungen mit einer grösseren Anzahl von Transistoren in Frage.
Es kann sich bei den Transitoren um Bipolar-Transistoren und/oder Feldeffekt-Transistoren handeln.
Die mindestens zwei Transistoren können auch identische elektrische Eigenschaften aufweisen. Sie können als integriertes Bauteil ausgebildet sein.
Der Messwiderstand auf der Sekundärseite des Stromspiegels ist in einer bevorzugten Ausführung in Reihe zu dem sekundärseitigen Transistors geschaltet.
Ein weiterer Widerstand auf der Primärseite des Stromspiegels ist vorzugsweise in Reihe zu dem primärseit igen Transistor geschaltet. Dieser dient der Dimensionierung des zu spiegelnden Stromes.
In einem weiteren Aspekt behandelt die Erfindung eine Betriebsschaltung für wenigstens Leuchtdiodenstrecke mit mindestens einer Leuchtdiode. Diese Betriebsschaltung weist eine Schaltreglerschaltung auf. Der Schaltreglerschaltung wird dabei eine Gleichspannung zugeführt. Außerdem stellt die Schaltreglerschaltung einen Konstantstrom für die wenigstens eine Leuchtdiodenstrecke bereit. Parallel zu der Leuchtdiodenstrecke ist die Primärseite eines Stromspiegels geschaltet. Auf der Sekundärseite wird an einem Widerstand eine zum Spannungsabfall an der Leuchtdiodenstrecke proportionale Messspannung abgegriffen.
Die Betriebsschaltung kann dabei eine erfindungsgemäße Spannungsmessschaltung aufweisen, wie sie oben beschrieben worden ist.
Der durch die Leuchtdiodenstrecke fliessende Strom wird vorzugsweise mittels einer Spule und die Taktung eines durch eine Steuer- und/oder Regelschaltung angesteuerten Schalters eingestellt . Die Messspannung kann als Rückführsignal mit einem Sollwert verglichen werden, um abhängig von einer etwaigen Differenz als Steuergrösse den Schalter zu takten. Sie dient als Überwachung, zum Beispiel als Erkennung von Fehlern oder für eine Abschaltung (z.B. Kurzschlussdetektion, Überlasterkennung, usw.). Sämtliche Auswertefunktionen, d.h. Regelung und Fehlerüberwachung und ggf. -abschaltung) können in der bspw. als IC ausgeführten Steuer-/Regelvorrichtung integriert sein.
Bei eingeschaltetem Schalter magnetisiert sich die Spule, die sich bei ausgeschaltetem Schalter entmagnetisiert, bspw. über die wenigstens eine Leuchtdiodestrecke. Die Steuer- und/oder Regelschaltung kann dabei die Zeitdauer zwischen einem Ausschalten und einem folgenden Einschalten des Schalters abhängig von der Spannung über der wenigstens einen Leuchtdiode und einer zeitlich konstanten Kenngrösse der Spule bestimmen.
Die Steuer- und/oder Regelschaltung kann außerdem die Spulen- Kenngrösse über die Anstiegssteilheit des Spulenstroms und durch Einbezug der Spulenspannung erfassen. Darüber hinaus erfasst die Steuer- und/oder Regelschaltung in einer bevorzugten Ausführungsform den Strom durch die wenigstens eine Leuchtdiode nicht.
Die Steuer- und/oder Regelschaltung kann eine integrierte Schaltung sein.
Die Steuer- und/oder Regelschaltung kann den Schalter in Form von PWM-modulierten Signalen ansteuern.
Der Schaltregler kann bspw. ein Hochsetzsteller, ein Tiefsetzsteller, ein Flyback-Konverter etc. sein. Parallel zu der Leuchtdiodenstrecke ist vorzugsweise ein Kondensator geschaltet, insbesondere zur Glättung der Gleichspannung .
Die Erfindung betrifft auch ein LED-Modul, aufweisend wenigstens eine LED, die von der Betriebsschaltung versorgt ist.
Die Erfindung betrifft auch eine Beleuchtungsvorrichtung, aufweisend ein LED-Modul mit wenigstens einer LED, die von der Betriebsschaltung versorgt ist.
Die Erfindung betrifft auch ein Verfahren zur Spannungsmessung für eine Leuchtdiodenstrecke mit mindestens einer Leuchtdiode, wobei der Leuchtdiode eine Gleichspannung zugeführt wird, und parallel zu der Leuchtdiodenstrecke die Primärseite eines Stromspiegels geschaltet ist, wobei auf der Sekundärseite des Stromspiegels an einem Messwiderstand eine zum Spannungsabfall über der Leuchtdiodenstrecke proportionale Messspannung abgegriffen wird. Weitere Merkmale, Vorteile und Eigenschaften der vorliegenden Erfindung sollen nunmehr anhand der Figuren der begleitenden Zeichnungen und der detaillierten Beschreibung von Ausführungsbeispielen erläutert werden.
Fig.l zeigt eine erste Ausführungsform der
erfindungsgemäßen LED-SpannungsmessSchaltung,
Fig.2 zeigt eine zweite Ausführungsform der
erfindungsgemäßen LED-SpannungsmessSchaltung,
Fig. 3 zeigt eine dritte Ausführungsform der
erfindungsgemäßen LED-SpannungsmessSchaltung,
Fig. 4 zeigt eine vierte Ausführungsform der
erfindungsgemäßen LED-SpannungsmessSchaltung, und
Fig.5 zeigt eine LED-Spannungsmessschaltung, wie sie
aus dem Stand der Technik DE 102006034371 AI bekannt ist und in der Beschreibungseinleitung erläutert ist.
Figuren 1 bis 4 zeigen Ausführungsformen der erfindungsgemäßen LED-Spannungsmessschaltung 1. Dabei ist die LED-Spannungsmessschaltung 1 derart ausgeführt, dass kein Messwiderstand (R20, R21) in Serie zu der LED-Strecke L erforderlich ist.
Wie in Fig. 1 schematisch dargestellt, wird gemäss der Erfindung ein, die LED-Spannung ÜLED wiedergebendes, Messsignal ÜMESS mittels eines Stromspiegels S ausgekoppelt.
Figuren 2 bis 4 zeigen Beispiele für mögliche Ausgestaltungen des Stromspiegels S, wobei indessen beliebige weitere Ausgestaltungen von Stromspiegeln, bspw. auch mit einer noch höheren Anzahl von Transistoren, Anwendung finden können. In Fig. 2 ist der Stromspiegel mit drei Transistoren Tl, T2, T3 ausgebildet, von denen zwei T2, T3 auf der Sekundärseite P2 des Stromspiegels angeordnet sind, wobei die Transistoren Tl, T2, T3 als Bipolartransistoren ausgebildet sind. In Fig. 3 ist der Stromspiegel S mit einem Transistor Tl auf der Primärseite PI und einem Transistor T2 auf der Sekundärseite P2 aufgebaut, wobei die Transistoren Tl, T2 als Bipolartransistoren ausgebildet sind.
In dem Beispiel von Fig. 4 schliesslich ist der Stromspiegel S mit einem Transistor Tl auf der Primärseite PI und einem Transistor T2 auf der Sekundärseite P2 aufgebaut, wobei die Transistoren Tl, T2 als MOSFETs ausgebildet sind. Natürlich kann ein Stromspiegel S auch mit drei MOSFETs aufgebaut werden. Die erfindungsgemäße LED-Spannungsmessschaltung 1 findet Anwendung in einer Betriebsschaltung 2, die zum Betreiben einer Leuchtdiodenstrecke L ausgelegt ist. Es soll jedoch vorweg genommen werden, dass die erfindungsgemäße Spannungsmessschaltung nicht auf die Betriebsschaltung 2 beschränkt ist, sondern vielmehr in jeder Schaltung eingesetzt werden kann, in der eine Spannungsmessung vorgenommen werden soll. Insofern ist die Erfindung auch nicht auf den Bereich der LEDs beschränkt, sondern kann in einer Schaltung mit jeder beliebigen Last verwendet werden. Der Betriebsschaltung 2 wird eine Eingangs-Gleichspannung Vin oder eine gleichgerichtete Wechselspannung zugeführt.
Eine Schaltreglerschaltung SRS weist eine Serienschaltung zwischen einem Halbleiter-Leistungsschalter Sl
(beispielsweise einem MOSFET) und einer Freilaufdiode Dl auf. Die Serienschaltung magnetisiert in eingeschaltetem Zustand des Schalters Sl eine Induktivität Li mittels des durch den Schalter Sl fliessenden Stroms. Im ausgeschalteten Zustand des Schalters Sl entlädt sich die in der Spule LI gespeicherte Energie in Form eines abfallenden Stroms i durch die Leuchtdiodenstrecke LED (die Spule LI entmagnetisiert sich) . Somit ergibt sich ein Stromverlauf, bei dem sich ansteigende Zyklen und abfallende Zyklen mit der Periodizität der Schalteransteuerung abwechseln. Für die Lichtleistung entscheidend ist dabei der zeitlich gemittelte Strom. Der dreieckförmige Strom durch die Leuchtdiodenstrecke kann dabei durch einen Filterkondensator Cl geglättet werden.
Es ist eine Steuer- und/oder Regelschaltung SR vorgesehen, die als Stellgrösse der Regelung der Leuchtdiodenleistung die Taktung des Schalters Sl beispielsweise in Form von PW - modulierten Signalen vorgibt. Als Rückführsignal, auf das geregelt wird (und das bspw. mit einem Sollwert verglichen wird) , wird zumindest der Strom gemessen, der durch die LED- Strecke L fliesst. Dieser LED-Strom kann dabei an einer beliebigen Stelle im LED-Strompfad gemessen werden.
Für den korrekten Betrieb der LEDs ist aber neben dem LED- Strom auch die Spannung über der LED-Strecke von Interesse. Die Spannung über der LED-Strecke wird mittels der beschriebenen Schaltung mit Stromspiegel gemessen.
Die Leuchtdiodenstrecke weist eine oder mehrere parallel, vorzugsweise jedoch in Serie geschaltete LEDs und / oder OLEDs auf. Dabei kann es sich bspw. um monochromatische LEDs, Farbstoff-konvertierte weiße LEDs und/oder um RGB-LED Module handeln. Bei letzteren ist es besonders vorteilhaft, wenn jede Leuchtfarbe in einer separaten LED-Strecke („LED-Kanal") angeordnet ist und jede LED-Strecke über ein eigenes Rückführsignal, wie beispielsweise den in der LED-Strecke fliessenden Strom, geregelt wird. Parallel zu der Leuchtdiodenstrecke ist die Primärseite PI eines Stromspiegels S geschaltet. Der Stromspiegel kann dabei auf der Primärseite wie auf der Sekundärseite jeweils einen Transistor Tl, T2 und einen dazu in Reihe geschalteten Widerstand Rl, R2 aufweisen. Bei den Transistoren handelt es in der Ausführungsform von Fig. um Feldeffekt-Transistoren (FETs) , insbesondere um MOSFETs. Es kann sich bei dem Stromspiegel aber auch um jede andere Ausführungsform handeln, wie sie aus dem Stand der Technik bekannt ist. Die eigentliche Messung der LED-Spannung findet durch die Sekundärseite P2 des Stromspiegels S statt. Aufgrund der Stromspiegelfunktion fließt der identische Strom auf der Sekundärseite wie auf der Primärseite des Stromspiegels S und somit durch einen sekundärseitigen Messwiderstand R2. Die Spannung ümess an diesem Widerstand R2 gibt somit die LED- Spannung üled wieder. Der Widerstand Rl auf der Primärseite PI dient der Dimensionierung der am Widerstand R2 abgegriffenen Messspannung Umess. Die gemessene Spannung ümess ist also proportional zu der Spannung Uled, wobei der Faktor zwischen beiden Spannungen durch die Größe der Widerstände Rl und R2 eingestellt werden kann.
Die Messung der LED-Spannung für eine Fehlerüberwachung wie z.B. Kurzschlussdetektion oder Überlasterkennung an der LED- Strecke oder auch im Ausgangskreis oder der Verkabelung genutzt werden. Zusätzlich kann die Messung der LED-Spannung für die Bestimmung der LED-Stromes oder der LED-Temperatur genutzt werden, es kann also eine indirekte Erfassung des LED-Stromes oder der LED-Temperatur erfolgen. Dabei kann mit Hilfe von Wertetabellen oder abgelegten Kennlinien bzw. Formeln mit Hilfe der gemessenen LED-Spannung auf den LED- Strom oder die LED-Temperatur geschlossen werden.
Ein Vorteil ist nunmehr, dass die Verluste, die beim Stand der Technik (siehe oben) aufgrund der Messschaltung für die Busspannung bzw. die LED Spannung auch im Ruhezustand auftreten, nun nicht mehr vorliegen, da die Busspannung nicht mehr gemessen werden muss, um die Spannung über der LED- Strecke zu ermitteln. Im Standby-Betrieb (d.h. anliegende Versorgungsspannung, aber keine Lichtemission der LEDs) wird die Ladung, d.h. die Spannung, über den parallel zur LED geschalteten Kondensator Cl über den Widerstand Rl der Primärseite PI des Stromspiegels S entladen. Somit geht die Spannung über der LED gegen Null. Auch im Standby-Zustand wird also kein Strom mehr durch den Widerstand Rl oder R2 des Stromspiegels fließen. Somit geht auch stationär die Verlustleistung im Standby-Betrieb gegen Null.
Da kathodenseitig nunmehr auch nicht mehr die Leuchtdiodenstrecke L über eine Messschaltung mit Masse verbunden ist, ist auch das Problem des ungewünschten Glimmens der LEDs verringert.
Ein weiterer Vorteil ist, dass wenn die LED aus der Schaltung entfernt wird, die Spannung über den Kondensator Cl durch den Widerstand Rl auf der Primärseite PI des Stromspiegels entladen wird. Wenn dann die LED wieder eingesetzt wird, fällt nicht unmittelbar die Spannung des geladenen Kondensators Cl ab, sondern vielmehr wird erst beim Wiedereinschalten wieder eine Spannung über der LED anliegen. Beim oben beschriebenen Stand der Technik ist das Problem, dass beim Wiedereinsetzen das kathodenseitige Potential aufgrund des Messkanals auf Null gezogen wird, während anodenseitig die Versorgungsspannung von beispielsweise 400 Volt anliegt, somit behoben. Wird ein sogenanntes ' hot-swapping ' gemacht, was dem Herausnehmen und erneuten Einsetzen einer LED im laufenden Betrieb entspricht, ist das Risiko, dass die LED zerstört wird deutlich kleiner als beim Stand der Technik. Das , hot- swapping'* ist elektrisch gleichbedeutend mit einem Unterbrechungsfehler, d.h. dass die LED-Strecke unterbrochen wird und dann wieder Versorgungsspannung anliegt. Wie bereits oben beschrieben, wirkt die Spannungsmessschaltung diesem Risiko beim ' hot-swapping ' entgegen, da die Spannung über den Kondensator Cl durch den Widerstand Rl auf der Primärseite PI des Stromspiegels entladen wird.
Da die beiden Transistoren Tl und T2 des Stromspiegels identische elektrische Eigenschaften aufweisen sollten, sind die beiden Transistoren vorzugsweise in einem Bauteil integriert .
Somit wird Verfahren zur Spannungsmessung für eine Leuchtdiodenstrecke L mit mindestens einer Leuchtdiode LED ermöglicht, wobei der Leuchtdiode eine Gleichspannung zugeführt wird. Parallel zu der Leuchtdiodenstrecke L ist die Primärseite PI eines Stromspiegels S geschaltet. Auf der Sekundärseite P2 des Stromspiegels S wird an einem Messwiderstand R2 eine zum Spannungsabfall ULED über der Leuchtdiodenstrecke L proportionale MessSpannung UMESS abgegriffen .
Funktionell kann also durch die Stromspiegelmessung eine Messung eines DC-Stroms in einem Messzweig P2 erfolgen, der nicht in Serie zu der Leuchtdiodenstrecke geschaltet ist. Es findet auch keine Differenzmessung (Busspannung minus Kathodenspannung) mehr statt, sondern eine direkte Messung der Spannung über der LED-Strecke.
Es wird also eine Messung der Leuchtdiodenstrecken-Spannung mittels eines Messwiderstands vorgenommen, der nicht in Serie zu der Leuchtdiodenstrecke geschaltet ist. Es ist aber auch keine Messung des LED-Stromes mittels eines Messwiderstands, der in Serie zu der Leuchtdiodenstrecke geschaltet ist, durch die erfindungsgemäße Spannungsmessschaltung notwendig.
Bezugszeichenliste
1 Spannungsmessschaltung
2 Betriebsschaltung
Vin Eingangsgleichspannung
SRS Schaltreglerschaltung
Sl Schalter
Dl Diode
LI Induktivität
S Stromspiegel
PI Stromspiegel-Primärseite
P2 Stromspiegel-Sekundärseite
Rl Widerstand der Stromspiegel-Primärseite
Tl Transistor der Stromspiegel-Primärseite R2 Widerstand der Stromspiegel-Sekundärseite
T2 Transistor der Stromspiegel- Sekundärseite
T3 Dritter Transistor des Stromspiegels
Cl Kondensator
L Leuchtdiodenstrecke
LED Leuchtdiode ULED Spannung über die Leuchtdiodenstrecke
ÜMESS Messspannung
UKATH Spannungspotential an der Kathodenseite der LED-
Strecke L SR Steuer- und/oder Regelschaltung
ST1 erster Spannungsteiler
ST2 zweiter Spannungsteiler
RIO, RH Widerstände des ersten Spannungsteilers
R20, R21 Widerstände des zweiten Spannungsteilers VQ Versorgungsspannungs-Quelle
Ml, M2 Messabgriffe an Mittenpunkten der Spannungsteiler
ST1, ST2

Claims

Patentansprüche
1. Spannungsmessschaltung für eine Leuchtdiodenstrecke (L) mit mindestens einer Leuchtdiode (LED) , der eine
Gleichspannung zugeführt wird,
dadurch gekennzeichnet,
dass parallel zu der Leuchtdiodenstrecke (L) die
Primärseite (PI) eines Stromspiegels (S) geschaltet ist und auf der Sekundärseite (P2) des Stromspiegels (S) an einem Messwiderstand (R2) eine zum Spannungsabfall (ULED) über der Leuchtdiodenstrecke (L) proportionale
Messspannung (ÜMESS) abgegriffen wird. 2. Spannungsmessschaltung nach Anspruch 1,
dadurch gekennzeichnet,
dass der Stromspiegel (S) mindestens zwei Transistoren (Tl, T2), vorzugsweise drei Transistoren (Tl, T2, T3) aufweist, von denen wenigstens einer auf der Primärseite (PI) und wenigstens einer auf der Sekundärseite (P2) des
Stromspiegels (S) verschaltet ist.
Spannungsmessschaltung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass es sich bei den mindestens zwei Transistoren (Tl, T2) um Bipolar-Transistoren oder Feldeffekt-Transistoren handelt .
4. Spannungsmessschaltung nach einem der vorhergehenden
Ansprüche, dadurch gekennzeichnet,
dass mindestens zwei Transistoren (Tl, T2) identische elektrische Eigenschaften aufweisen und vorzugsweise als integiertes Bauteil ausgebildet sind.
Spannungsmessschaltung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass der Messwiderstand ( 2) auf der Sekundärseite (P2) des Stromspiegels in Reihe zu dem sekundärseitigen
Transistors geschaltet ist.
Spannungsmessschaltung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
ein Widerstand (Rl) auf der Primärseite (PI) des
Stromspiegels (S) in Reihe zu dem primärseitigen
Transistor (Tl) geschaltet ist, der einer
Dimensionierung der Messspannung (Umess) dient.
Betriebsschaltung für wenigstens eine
Leuchtdiodenstrecke (L) mit mindestens einer Leuchtdiode (LED) , aufweisend eine Schaltreglerschaltung (SRS) , der eine Gleichspannung (VIN) zugeführt wird und die einen im zeitlichen Mittel konstanten Strom für die wenigstens eine Leuchtdiodenstrecke (L) bereitstellt,
dadurch gekennzeichnet,
dass parallel zu der Leuchtdiodenstrecke (L) die
Primärseite (PI) eines Stromspiegels (S) geschaltet ist und auf der Sekundärseite (P2) an einem Widerstand (R2) eine zum Spannungsabfall an der Leuchtdiodenstrecke (L) proportionale Messspannung (Umess) abgegriffen ist.
Betriebsschaltung nach Anspruch 7,
dadurch gekennzeichnet, dass die Betriebsschaltung Spannungsmessschaltung nach den Ansprüchen 1 bis 6 aufweist .
9. Betriebsschaltung nach Anspruch 7 oder 8,
dadurch gekennzeichnet, dass
der durch die Leuchtdiodenstrecke (L) fliessende Strom mittels einer Spule (LI) und einem durch eine Steuer- und/oder Regelschaltung (SR) getakteten Schalter (Sl) eingestellt wird.
10. Betriebsschaltung nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die Messspannung (Umess) als Rückführsignal zur Überwachung, zur Erkennung eines Fehlers, zur Abschaltung oder zur Regelung der Taktung des Schalters (Sl) verwendet ist.
11. LED-Modul, aufweisend wenigstens eine Leuchtdiode (LED) , die von einer Betriebsschaltung nach einem der Ansprüche 7 bis 10 versorgt ist.
12. Beleuchtungsvorrichtung, aufweisend ein LED-Modul mit wenigstens einer Leuchtdiode (LED) , die von einer Betriebsschaltung nach einem der Ansprüche 7 bis 10 versorgt ist.
13. Verfahren zur Spannungsmessung für eine
Leuchtdiodenstrecke (L) mit mindestens einer Leuchtdiode (LED) , wobei der Leuchtdiode eine Gleichspannung zugeführt wird, und parallel zu der Leuchtdiodenstrecke (L) die Primärseite (PI) eines Stromspiegels (S) geschaltet ist, dadurch gekennzeichnet, dass auf der Sekundärseite ( P2 ) des Stromspiegels (S) an einem Messwiderstand (R2) eine zum Spannungsabfall (ULED) über der Leuchtdiodenstrecke (L) proportionale Messspannung (ÜMESS) abgegriffen wird.
PCT/EP2011/052329 2010-02-18 2011-02-17 Led-spannungsmessung WO2011101398A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112011100594.6T DE112011100594B4 (de) 2010-02-18 2011-02-17 LED-Spannungsmessung
EP11703901.6A EP2540139B1 (de) 2010-02-18 2011-02-17 Led-spannungsmessung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010002081A DE102010002081A1 (de) 2010-02-18 2010-02-18 LED-Spannungsmessung
DE102010002081.8 2010-02-18

Publications (2)

Publication Number Publication Date
WO2011101398A2 true WO2011101398A2 (de) 2011-08-25
WO2011101398A3 WO2011101398A3 (de) 2014-03-13

Family

ID=44044112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/052329 WO2011101398A2 (de) 2010-02-18 2011-02-17 Led-spannungsmessung

Country Status (3)

Country Link
EP (1) EP2540139B1 (de)
DE (2) DE102010002081A1 (de)
WO (1) WO2011101398A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT13688U1 (de) * 2012-12-06 2014-06-15 Tridonic Gmbh & Co Kg Betriebsgerät für Leuchtmittel
WO2014085837A3 (de) * 2012-12-06 2014-09-04 Tridonic Gmbh & Co Kg Betriebsgerät für leuchtmittel
CN113193910A (zh) * 2021-04-12 2021-07-30 武汉船舶通信研究所(中国船舶重工集团公司第七二二研究所) 一种led电光调制频率特性的自动测量装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011116231B4 (de) 2011-10-17 2017-12-21 Austriamicrosystems Ag Beleuchtungsanordnung und Verfahren zum Erkennen eines Kurzschlusses bei Dioden
DE102012220761A1 (de) * 2012-11-14 2014-05-15 Bag Engineering Gmbh Multifunktionales Betriebsgerät zum Versorgen eines Verbrauchers wie einer LED-Einrichtung
DE102020208944A1 (de) 2020-07-16 2022-01-20 Osram Gmbh Verfahren und schaltungsanordnung zur detektion eines teilausfalls eines leuchtmittels mit mindestens einem strang von halbleiterlichtquellen
DE102020132666B3 (de) 2020-12-08 2022-03-10 Elmos Semiconductor Se Vorrichtung und Verfahren zur sicherheitsrelevanten Erfassung des Spannungsabfalls über ein Leuchtmittel in einem Fahrzeug
DE102020008118A1 (de) 2020-12-08 2022-06-09 Elmos Semiconductor Se Verfahren zur sicherheitsrelevanten Erfassung des Spannungsabfalls über ein Leuchtmittel in einem Fahrzeug

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006034371A1 (de) 2006-04-21 2007-10-25 Tridonicatco Schweiz Ag Betriebsschaltung für Leuchtdioden

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2991893B2 (ja) * 1993-05-31 1999-12-20 富士通株式会社 発光素子の駆動回路及びこれを用いた光増幅中継器
JPH0792205A (ja) * 1993-09-27 1995-04-07 Matsushita Electric Works Ltd 電源電圧検知装置
JP3417891B2 (ja) * 1999-10-27 2003-06-16 株式会社オートネットワーク技術研究所 電流検出装置
DE10140331C2 (de) * 2001-08-16 2003-11-06 Siemens Ag Lichtzeichen zur Verkehrssteuerung und Verfahren zur Funktionsüberwachung eines solchen Zeichens
DE102004027676B4 (de) * 2004-04-30 2006-06-14 Siemens Ag Verfahren und Vorrichtung zum Prüfen wenigstens eines LED-Strangs
US7884557B2 (en) * 2006-07-14 2011-02-08 Wolfson Microelectronics Plc Protection circuit and method
AT504949B1 (de) * 2007-02-20 2008-11-15 Zizala Lichtsysteme Gmbh Schaltungsanordnung zur erkennung eines kurzschlusses von leuchtdioden
DE202007007777U1 (de) * 2007-06-01 2007-08-16 Conwys Ag Schaltungsanordnung
DE202007007776U1 (de) * 2007-06-01 2007-08-09 Conwys Ag Anhängeranschlußgerät
US8421375B2 (en) * 2007-06-25 2013-04-16 Ingersoll-Rand Company Amplification circuit and heat sink used with a light emitting apparatus having varying voltages
JP4994253B2 (ja) * 2008-01-24 2012-08-08 株式会社ジャパンディスプレイイースト 液晶表示装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006034371A1 (de) 2006-04-21 2007-10-25 Tridonicatco Schweiz Ag Betriebsschaltung für Leuchtdioden

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT13688U1 (de) * 2012-12-06 2014-06-15 Tridonic Gmbh & Co Kg Betriebsgerät für Leuchtmittel
WO2014085837A3 (de) * 2012-12-06 2014-09-04 Tridonic Gmbh & Co Kg Betriebsgerät für leuchtmittel
CN104838725A (zh) * 2012-12-06 2015-08-12 赤多尼科两合股份有限公司 用于发光机构的操作装置
CN113193910A (zh) * 2021-04-12 2021-07-30 武汉船舶通信研究所(中国船舶重工集团公司第七二二研究所) 一种led电光调制频率特性的自动测量装置

Also Published As

Publication number Publication date
DE112011100594B4 (de) 2015-09-03
DE112011100594A5 (de) 2013-01-24
EP2540139A2 (de) 2013-01-02
DE102010002081A1 (de) 2011-08-18
WO2011101398A3 (de) 2014-03-13
EP2540139B1 (de) 2016-10-05

Similar Documents

Publication Publication Date Title
EP2540139B1 (de) Led-spannungsmessung
EP2888800B1 (de) Notlichtgerät
DE19841490B4 (de) Schaltungsanordnung zum Schutz einer Serienschaltung aus mindestens zwei Leuchdioden vor dem Ausfall
DE102011087368B4 (de) Treiberschaltung, Anordnung und Verfahren zum Bootstrapping eines Schaltertreibers
DE102005012625B4 (de) Verfahren sowie Schaltungsanordnung zur Ansteuerung von Leuchtdioden
DE102006013524B4 (de) Schaltwandler mit mehreren Wandlerstufen
DE102010008275B4 (de) Vorrichtung zur Energieversorgung von mehreren LED-Einheiten
EP3078242A1 (de) Treiberschaltung für leuchtmittel insbesondere leds
DE19600074C2 (de) Fahrzeugbordnetz
DE102011087431A1 (de) Anordnung und Verfahren zum Treiben eines Kaskodenschalters
WO2009043412A1 (de) Vorrichtung und verfahren zur spannungsversorgung eines spannungs- oder stromauslösenden schaltgeräts
DE10201852A1 (de) Entladungslampen-Beleuchtungseinrichtung
DE19841270A1 (de) Ansteuerschaltung zum Erzeugen eines konstanten Stromes durch zumindest eine Leuchtdiode
DE10030176A1 (de) Entladungslampen-Lichtstromkreis
DE102012224346A1 (de) Schaltungsanordnung zum Betreiben von n parallel geschalteten Strängen mit mindestens einer Halbleiterlichtquelle
DE102008064399A1 (de) Verfahren und Betriebsgerät zum Betreiben eines Leuchtmittels mit geregeltem Strom
DE10206178A1 (de) Entladungslampen-Zündschaltung
EP2416624A1 (de) Schaltungsanordnung und Verfahren zum betreiben mindestens einer ersten und mindestens einer zweiten LED
DE112015007243B4 (de) Festkörperbeleuchtungsanordnung
EP3393207B1 (de) Schaltregler zum betreiben von leuchtmitteln mit nachleuchtunterdrückung
DE102016210736A1 (de) Anordnung und Verfahren zum Betreiben von LEDs
DE102014108775A1 (de) Tiefsetzer sowie LED-Einrichtung, insbesondere LED-Scheinwerfer oder LED-Signallicht, mit einem solchen Tiefsetzer
DE10235787B4 (de) Last-Treibervorrichtung für ein Fahrzeug
DE102013210641A1 (de) Verfahren zum Einstellen einer Stromstärke zum Betreiben einer Halbleiterlichtquelle einer Beleuchtungseinrichtung
DE102022112757B4 (de) Intelligenter halbleiterschalter mit integrierter strommessfunktion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11703901

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2011703901

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011703901

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 112011100594

Country of ref document: DE

Ref document number: 1120111005946

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112011100594

Country of ref document: DE

Effective date: 20130124