WO2011100946A1 - Hydrodynamischer drehmomentwandler - Google Patents

Hydrodynamischer drehmomentwandler Download PDF

Info

Publication number
WO2011100946A1
WO2011100946A1 PCT/DE2011/000103 DE2011000103W WO2011100946A1 WO 2011100946 A1 WO2011100946 A1 WO 2011100946A1 DE 2011000103 W DE2011000103 W DE 2011000103W WO 2011100946 A1 WO2011100946 A1 WO 2011100946A1
Authority
WO
WIPO (PCT)
Prior art keywords
damper
pendulum
output
torque converter
hydrodynamic torque
Prior art date
Application number
PCT/DE2011/000103
Other languages
English (en)
French (fr)
Inventor
Stephan Maienschein
Peter Droll
Original Assignee
Schaeffler Technologies Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies Gmbh & Co. Kg filed Critical Schaeffler Technologies Gmbh & Co. Kg
Priority to DE112011100549.0T priority Critical patent/DE112011100549B4/de
Priority to CN201180009745.9A priority patent/CN102762889B/zh
Publication of WO2011100946A1 publication Critical patent/WO2011100946A1/de
Priority to US13/571,491 priority patent/US8490766B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/14Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers
    • F16F15/1407Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers the rotation being limited with respect to the driving means
    • F16F15/145Masses mounted with play with respect to driving means thus enabling free movement over a limited range
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0226Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers
    • F16H2045/0231Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0263Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means the damper comprising a pendulum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/21Elements
    • Y10T74/2121Flywheel, motion smoothing-type
    • Y10T74/2128Damping using swinging masses, e.g., pendulum type, etc.

Definitions

  • the invention relates to a hydrodynamic torque converter having the features according to the preamble of claim 1.
  • Such hydrodynamic torque converter can be arranged for example in a drive train of a motor vehicle for torque transmission between an internal combustion engine and a transmission.
  • Such hydrodynamic torque converter have a drive-side connected impeller, which causes a fluid flow in the direction of a driven wheel connected to an output side and this can drive it. Before the fluid flows back from the turbine wheel into the impeller, it passes through a stator and thereby undergoes a change in the flow direction in certain situations, which causes an influence on the torque transmission between impeller and turbine.
  • a converter lock-up clutch in the hydrodynamic torque converter to bypass the hydrodynamic torque transmission caused by the fluid.
  • the lock-up clutch connects the drive side, for example, the converter housing rotatably connected to the impeller selectively with an output side, for example in the form of a connectable with a transmission input shaft via a gearing output hub.
  • torsional vibrations caused by an internal combustion engine connected to the converter housing may be transmitted to the output hub, and therefore usually a torsional vibration damper in the power flow is effectively interposed between the clutch output of the lockup clutch and the output hub for damping the torsional vibrations.
  • the damping characteristics of the torsional vibration damper are not sufficient.
  • a centrifugal pendulum device can be arranged within the converter housing in order to improve the damping properties of the hydrodynamic torque converter.
  • the object of the invention is to improve the connection of the centrifugal pendulum device and the torsional vibration damper in the torque converter. According to the invention this object is achieved by a hydrodynamic torque converter with the features of claim 1.
  • a hydrodynamic torque converter with a Wandlerüberbrü- ckungskupplung and a drive side connected transducer housing and a rotatably connected impeller and a driven side with an output hub rotatably connected turbine wheel and effectively arranged between the clutch output of the converter lockup clutch and the output hub torsional vibration damper and with a within the converter housing arranged and a pendulum with limited pivotable pendulum masses having centrifugal pendulum means proposed wherein the pendulum is arranged axially between the torsional vibration damper and the turbine and rotationally fixed to a damper output part of the torsional vibration damper and the damper output part and / or the pendulum directly via a positive connection with the output hub is connectable.
  • the torsional vibration damper may be formed as a series damper with first and second energy storage elements in series effective, the first energy storage elements are effectively arranged between a damper input part and a damper intermediate part and the second energy storage elements between the damper intermediate part and the damper output part. It is also conceivable that the torsional vibration damper is designed as a simple damper with a limited on the action of energy storage elements against a damper input part rotatable damper output part.
  • the positive connection is designed as a toothing or as caulking or welding or riveting.
  • the teeth allow a limited axial displacement of the rotatably connected components.
  • the turbine wheel is connected to the output hub via a further positive connection, in particular by means of a rivet element.
  • the turbine wheel may be caulked or welded to the output hub.
  • the pendulum flange is riveted to the damper output member, but may also be welded, bolted, caulked or connected thereto by a standoff bolt.
  • Figure 1 Section of a hydrodynamic torque converter in a special
  • FIG. 2 Spatial view of the damper output part shown in FIG. 1
  • Figure 3 section of a hydrodynamic torque converter in a further specific embodiment of the invention.
  • Figure 4 Section of a hydrodynamic rotary torque lers in a further specific embodiment of the invention.
  • Figure 5 Spatial view of the pendulum shown in Figure 4 and the output hub.
  • FIG. 6 shows a detail of a hydrodynamic torque converter in a further specific embodiment of the invention.
  • FIG. 1 shows a detail of a hydrodynamic torque converter in a special embodiment of the invention
  • FIG. 2 shows the damper output part and the output hub in a spatial representation.
  • the section shows a torsional vibration damper 10, which is arranged within a converter housing and designed as a series damper, and a centrifugal pendulum device 12.
  • the damper input part 14 of FIG Torsional vibration damper 10 is connected to a clutch output 16 of a converter bridging clutch 18 in a rotationally fixed manner via the rivet element 20.
  • the damper input part 14 is connected via radially outer, first energy storage elements 22 with a relative to the damper input part 14 limited rotatable damper intermediate part 24.
  • the damper input part 14 encloses the first energy storage elements 22, for example, bow springs for their radial and axial securing.
  • the first energy storage elements 22 are acted upon by the damper input part 14 whose force transmission can be tapped at a second peripheral end of the first energy storage elements 22 by a biasing element attached to the intermediate damper part 24.
  • the damper intermediate part 24 consists of two axially spaced and a damper output member 26 axially receiving therebetween disc parts 28, 30.
  • the damper intermediate part 24 is in turn connected via cutouts 34 in the disc member 28 second energy storage elements 32, such as compression springs with a damper output member 26 operatively connected.
  • the damper output member 26 is extended radially inwardly toward the output hub 36 and rotatably connected thereto via a positive connection, as shown here a toothing and axially secured with a locking ring 41 on the output hub.
  • the damper output part 26 as well as the output hub 36 each have a toothing 38, 40 which are engaged with each other.
  • the output hub 36 is also provided on the inside with a toothing 42 for connection to a transmission input shaft of a transmission.
  • a pendulum flange 44 of the centrifugal pendulum device 12 is positively connected to the damper output part via a rivet 46.
  • the pendulum flange 44 is designed substantially as a disc-like part and extends axially adjacent to the torsional vibration damper 10 and the turbine wheel 48, wherein the pendulum 44 receives bilaterally arranged pendulum masses 50 in a radially outer region.
  • the pendulum masses 50 are attached to each other by means of spacer bolts 52 and, together with these, limitedly pivotable relative to the pendulum flange 44 along cutouts in the pendulum flange 44.
  • the pendulum masses 50 are relative to the pendulum flange 44 via rolling elements in cutouts in the pendulum masses 50 and in the pendulum 44 to effect a pendulum motion unrolled.
  • the output hub 36 is rotatably connected to the turbine wheel 48 via a positive connection, as shown here by means of a rivet 54.
  • the output hub 36 has a flange-like section 56 for receiving the turbine wheel 48.
  • FIG. 3 shows a detail of a hydrodynamic torque converter in a further specific embodiment of the invention.
  • this embodiment is similar to that in Figure 1 designed with the essential difference that the damper intermediate part 58 is designed as a disc-like component and disposed axially between two disc parts 62, 64 of the damper output member 60.
  • the disk member 64 is extended radially inwardly such that it is rotatably connected via a mounted on its radially inner toothing 36 with the teeth 38 of the output hub 36.
  • FIG. 4 shows a detail of a hydrodynamic torque converter in a further specific embodiment of the invention.
  • the damper output member 26 is designed as a disc-like component and axially enclosed by the two disc parts 28, 30 of the damper intermediate part 24 in the region of the second energy storage elements 32.
  • the damper output member 26 is rotatably connected via a rivet 46 to the pendulum 44, wherein the pendulum flange 44 is extended radially inwardly and on its inside a toothing 66 via which this brought into engagement with the teeth 40 of the output hub 36 and rotatably connected thereto can.
  • the axial securing of the pendulum flange 44 on the output hub 36 takes over is effected by a retaining ring 41.
  • FIG. 5 illustrates this the spatial configuration of the pendulum 44 and the output hub 36.
  • the pendulum 44 has in a radially outer portion recesses 68 for receiving bolts, which serve the attachment of the axially pairwise opposite pendulum masses and recesses 70 for receiving the rollers for guiding the Pendulum masses opposite the pendulum flange 44.
  • FIG. 6 shows a section of a hydrodynamic torque converter in a further specific embodiment of the invention.
  • this embodiment of the variant from FIG. 4 is similar with the essential difference that the intermediate damper part 58 is designed as a disk-like component and is arranged axially between two disk parts 62, 64 of the damper output part 60.
  • the disk member 64 is extended radially inwardly such that it is rotatably connected by means of a rivet member 46 with the pendulum, wherein the pendulum flange 44 has a toothing 66 on the inside for connection to the output hub 36.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

Hydrodynamischer Drehmomentwandler mit einer Wandlerüberbrückungskupplung (18) und einem antriebsseitig verbundenen Wandlergehäuse und einem damit drehfest verbundenen Pumpenrad sowie einem abtriebsseitig mit einer Abtriebsnabe (36) drehfest verbundenen Turbinenrad (48) und einem wirksam zwischen Kupplungsausgang (16) der Wandlerüberbrückungskupplung (18) und der Abtriebsnabe angeordneten Torsionsschwingungsdämpfer (10) sowie mit einer innerhalb des Wandlergehäuses angeordneten und einen Pendelflansch (44) mit daran begrenzt verschwenkbaren Pendelmassen (50) aufweisenden Fliehkraftpendeleinrichtung (12), wobei der Pendelflansch (44) axial zwischen dem Torsionsschwingungsdämpfer (10) und dem Turbinenrad (48) angeordnet und mit einem Dämpferausgangsteil (26, 60) des Torsionsschwingungsdämpfers (10) drehfest verbunden ist und das Dämpferausgangsteil und/oder der Pendelflansch über eine formschlüssige Verbindung mit der Abtriebsnabe (36) unmittelbar verbindbar ist.

Description

Hydrodynamischer Drehmomentwandler
Die Erfindung betrifft einen hydrodynamischen Drehmomentwandler mit den Merkmalen gemäß dem Oberbegriff von Anspruch 1.
Derartige hydrodynamische Drehmomentwandler können beispielsweise in einem Antriebsstrang eines Kraftfahrzeugs zur Drehmomentübertragung zwischen einer Brennkraftmaschine und einem Getriebe angeordnet sein. Solche hydrodynamische Drehmomentwandler weisen ein antriebsseitig verbundenes Pumpenrad auf, das einen Fluidstrom in Richtung eines mit einer Abtriebsseite verbundenen Turbinenrads bewirkt und dieses damit antreiben kann. Bevor das Fluid aus dem Turbinenrad in das Pumpenrad zurückströmt, passiert es ein Leitrad und erfährt dadurch in bestimmten Situationen eine Veränderung der Strömungsrichtung, die eine Beeinflussung der Drehmomentübertragung zwischen Pumpenrad und Turbinenrad bewirkt.
Auch ist es bekannt, eine Wandlerüberbrückungskupplung in dem hydrodynamischen Drehmomentwandler zur Umgehung der über das Fluid bewirkten hydrodynamischen Drehmomentübertragung anzuordnen. Dazu verbindet die Überbrückungskupplung die Antriebsseite, beispielsweise das mit dem Pumpenrad drehfest verbundene Wandlergehäuse wahlweise mit einer Abtriebsseite, beispielsweise in Form einer mit einer Getriebeeingangswelle über eine Verzahnung verbindbaren Abtriebsnabe. In solchen Situationen können sich von einer mit dem Wandlergehäuse verbundenen Brennkraftmaschine verursachte Torsionsschwingungen auf die Abtriebsnabe übertragen, weshalb üblicherweise ein Torsionsschwingungsdämpfer in dem Kraftfluss wirksam zwischen dem Kupplungsausgang der Wandlerüberbrückungskupplung und der Abtriebsnabe zur Dämpfung der Torsionsschwingungen angeordnet ist. Unter bestimmten Umständen und Anforderungen an den hydrodynamischen Drehmomentwandler sind die Dämpfungseigenschaften des Torsionsschwingungsdämpfers nicht ausreichend. Dazu kann eine Fliehkraftpendeleinrichtung innerhalb des Wandlergehäuses angeordnet werden, um die Dämpfungseigenschaften des hydrodynamischen Drehmomentwandlers zu verbessern.
Aufgabe der Erfindung ist es, die Anbindung der Fliehkraftpendeleinrichtung und des Torsionsschwingungsdämpfers in dem Drehmomentwandler zu verbessern. Erfindungsgemäß wird diese Aufgabe durch einen hydrodynamischen Drehmomentwandler mit den Merkmalen gemäß Anspruch 1 gelöst.
Entsprechend wird ein hydrodynamischer Drehmomentwandler mit einer Wandlerüberbrü- ckungskupplung und einem antriebsseitig verbundenen Wandlergehäuse und einem damit drehfest verbundenen Pumpenrad sowie einem abtriebsseitig mit einer Abtriebsnabe drehfest verbundenen Turbinenrad und einem wirksam zwischen Kupplungsausgang der Wandler- überbrückungskupplung und der Abtriebsnabe angeordneten Torsionsschwingungsdämpfer sowie mit einer innerhalb des Wandlergehäuses angeordneten und einen Pendelflansch mit daran begrenzt verschwenkbaren Pendelmassen aufweisenden Fliehkraftpendeleinrichtung vorgeschlagen wobei der Pendelflansch axial zwischen dem Torsionsschwingungsdämpfer und dem Turbinenrad angeordnet und mit einem Dämpferausgangsteil des Torsionsschwin- gungsdämpfers drehfest verbunden ist und das Dämpferausgangsteil und/oder der Pendelflansch über eine formschlüssige Verbindung mit der Abtriebsnabe unmittelbar verbindbar ist. Dadurch kann eine kostengünstige und zugleich stabile Befestigung des Torsionsschwin- gungsdämpfers und des Pendelflansches an der Abtriebsnabe erreicht werden. Dabei kann der Torsionsschwingungsdämpfer als Reihendämpfer mit ersten und zweiten in Reihe wirksamen Energiespeicherelementen ausgebildet sein, wobei die ersten Energiespeicherelemente wirksam zwischen einem Dämpfereingangsteil und einem Dämpferzwischenteil und die zweiten Energiespeicherelemente wirksam zwischen dem Dämpferzwischenteil und dem Dämpferausgangsteil angeordnet sind. Auch ist es denkbar, dass der Torsionsschwingungsdämpfer als einfacher Dämpfer mit einem über die Wirkung von Energiespeicherelemente gegenüber einem Dämpfereingangsteil begrenzt verdrehbaren Dämpferausgangsteil ausgebildet ist.
In einer bevorzugten Ausführung der Erfindung ist die formschlüssige Verbindung als Verzahnung oder als Verstemmung oder Verschweißung oder als Vernietung ausgeführt. Dabei kann die Verzahnung eine begrenzte axiale Verschiebbarkeit der damit drehfest verbundenen Bauteile ermöglichen. Dazu ist es vorteilhaft, die beiden über die Verzahnung verbundenen Bauteile gegeneinander axial zu sichern, beispielsweise mittels eines Sicherungsrings.
In einer weiteren Ausführungsform der Erfindung ist das Turbinenrad mit der Abtriebsnabe über eine weitere formschlüssige Verbindung verbunden ist, insbesondere mittels eines Nietelements. Auch kann das Turbinenrad mit der Abtriebsnabe verstemmt oder verschweißt sein. ln einer weiteren Ausführungsform der Erfindung ist der Pendelflansch mit dem Dämpferausgangsteil vernietet, kann aber auch mit diesem verschweißt, verschraubt, verstemmt oder über einen Abstandsbolzen verbunden sein.
Weitere Vorteile und vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus der Beschreibung und den Abbildungen, bei deren Darstellung zugunsten der Übersichtlichkeit auf eine maßstabsgetreue Wiedergabe verzichtet wurde. Alle erläuterten Merkmale sind nicht nur in der angegebenen Kombination, sondern auch in anderen Kombinationen beziehungsweise in Alleinstellung anwendbar, ohne den Rahmen der Erfindung zu verlassen.
Die Erfindung wird im Folgenden unter Bezugnahme auf die Abbildungen ausführlich beschrieben. Es zeigen im Einzelnen:
Figur 1 : Ausschnitt eines hydrodynamischen Drehmomentwandlers in einer speziellen
Ausführungsform der Erfindung.
Figur 2: Räumliche Ansicht des in Figur 1 dargestellten Dämpferausgangsteils und der
Abtriebsnabe.
Figur 3: Ausschnitt eines hydrodynamischen Drehmomentwandlers in einer weiteren speziellen Ausführungsform der Erfindung.
Figur 4: Ausschnitt eines hydrodynamischen Dreh momentwand lers in einer weiteren speziellen Ausführungsform der Erfindung.
Figur 5: Räumliche Ansicht des in Figur 4 dargestellten Pendelflansches und der Abtriebsnabe.
Figur 6: Ausschnitt eines hydrodynamischen Drehmomentwandlers in einer weiteren speziellen Ausführungsform der Erfindung.
In Figur 1 ist ein Ausschnitt eines hydrodynamischen Drehmomentwandlers in einer speziellen Ausführungsform der Erfindung dargestellt und Figur 2 zeigt hierzu das Dämpferausgangsteil und die Abtriebsnabe in räumlicher Darstellung. Der Ausschnitt zeigt einen innerhalb eines Wandlergehäuses angeordneten und als Reihendämpfer ausgebildeten Torsionsschwin- gungsdämpfer 10 und eine Fliehkraftpendeleinrichtung 12. Das Dämpfereingangsteil 14 des Torsionsschwingungsdämpfers 10 ist mit einem Kupplungsausgang 16 einer Wandlerüberbrü- ckungskupplung 18 drehfest über das Nietelement 20 verbunden. Das Dämpfereingangsteil 14 ist dabei über radial außen liegende, erste Energiespeicherelemente 22 mit einem gegenüber dem Dämpfereingangsteil 14 begrenzt verdrehbaren Dämpferzwischenteil 24 verbunden. Dabei umschließt das Dämpfereingangsteil 14 die ersten Energiespeicherelemente 22, beispielsweise Bogenfedern zu deren radialen und axialen Sicherung. An einer ersten Umfangs- seite werden die ersten Energiespeicherelemente 22 durch das Dämpfereingangsteil 14 beaufschlagt wobei deren Kraftweiterleitung an einem zweiten umfangsseitigen Ende der ersten Energiespeicherelemente 22 durch ein an dem Dämpferzwischenteil 24 angebrachtes Beaufschlagungselement abgegriffen werden kann. Das Dämpferzwischenteil 24 besteht aus zwei axial beabstandeten und ein Dämpferausgangsteil 26 axial zwischen sich aufnehmenden Scheibenteilen 28, 30. Das Dämpferzwischenteil 24 ist wiederum über in Ausschnitten 34 in dem Scheibeteil 28 aufgenommene zweite Energiespeicherelemente 32, beispielsweise Druckfedern mit einem Dämpferausgangsteil 26 wirksam verbunden.
Das Dämpferausgangsteil 26 ist radial nach innen in Richtung Abtriebsnabe 36 erweitert und mit dieser über eine formschlüssige Verbindung, wie hier gezeigt einer Verzahnung drehfest verbunden und mit einem Sicherungsring 41 auf der Abtriebsnabe axial gesichert. Dabei weist das Dämpferausgangsteil 26 wie auch die Abtriebsnabe 36 jeweils eine Verzahnung 38, 40 auf die miteinander in Eingriff stehen. Die Abtriebsnabe 36 ist an der Innenseite außerdem mit einer Verzahnung 42 zur Verbindung mit einer Getriebeeingangswelle eines Getriebes ausgestattet.
Radial außerhalb der formschlüssigen Verbindung zwischen Dämpferausgangsteil 26 und Abtriebsnabe 36 ist ein Pendelflansch 44 der Fliehkraftpendeleinrichtung 12 mit dem Dämpferausgangsteil formschlüssig über ein Nietelement 46 verbunden. Der Pendelflansch 44 ist im Wesentlichen als scheibenartiges Teil ausgeführt und erstreckt sich axial benachbart zu dem Torsionsschwingungsdämpfer 10 und dem Turbinenrad 48, wobei der Pendelflansch 44 in einem radial äußeren Bereich beidseitig angeordnete Pendelmassen 50 aufnimmt. Die Pendelmassen 50 sind über Abstandsbolzen 52 miteinander befestigt und zusammen mit diesen gegenüber dem Pendelflansch 44 entlang von Ausschnitten in dem Pendelflansch 44 begrenzt verschwenkbar. Die Pendelmassen 50 sind gegenüber dem Pendelflansch 44 über Wälzkörper in Ausschnitten in den Pendelmassen 50 und in dem Pendelflansch 44 zur Bewirkung einer Pendelbewegung abrollbar. Etwa auf radialer Höhe des Nietelements 46 ist die Abtriebsnabe 36 mit dem Turbinenrad 48 über eine formschlüssige Verbindung, wie hier gezeigt mittels eines Nietelements 54 drehfest verbunden. Dazu weist die Abtriebsnabe 36 einen flanschartigen Abschnitt 56 zur Aufnahme des Turbinenrads 48 auf.
Figur 3 zeigt einen Ausschnitt eines hydrodynamischen Drehmomentwandlers in einer weiteren speziellen Ausführungsform der Erfindung. Dabei ist diese Ausführung ähnlich zu der in Figur 1 mit dem wesentlichen Unterschied ausgestaltet, dass das Dämpferzwischenteil 58 als scheibenartiges Bauteil ausgeführt und axial zwischen zwei Scheibenteilen 62, 64 des Dämpferausgangsteils 60 angeordnet ist. Das Scheibenteil 64 ist dabei derart radial nach innen verlängert, dass es über eine an seiner radialen Innenseite angebrachte Verzahnung 36 mit der Verzahnung 38 der Abtriebsnabe 36 drehfest verbindbar ist.
In Figur 4 ist ein Ausschnitt eines hydrodynamischen Drehmomentwandler in einer weiteren speziellen Ausführungsform der Erfindung dargestellt. Ähnlich zu der Ausführung in Figur 1 ist das Dämpferausgangsteil 26 als scheibenartiges Bauteil ausgeführt und von den beiden Scheibenteilen 28, 30 des Dämpferzwischenteils 24 im Bereich der zweiten Energiespeicherelemente 32 axial umschlossen. Das Dämpferausgangsteil 26 ist über ein Nietelement 46 mit dem Pendelflansch 44 drehfest verbunden, wobei der Pendelflansch 44 radial nach innen verlängert ist und an seiner Innenseite eine Verzahnung 66 aufweist über die dieser mit der Verzahnung 40 der Abtriebsnabe 36 in Eingriff gebracht und drehfest damit verbunden werden kann. Die axiale Sicherung des Pendelflansches 44 auf der Abtriebsnabe 36 übernimmt wird durch einen Sicherungsring 41 bewirkt. Figur 5 verdeutlicht hierzu die räumliche Ausgestaltung des Pendelflansches 44 und der Abtriebsnabe 36. Der Pendelflansch 44 weist in einem radial äußeren Abschnitt Aussparungen 68 zur Aufnahme von Bolzen, die der Befestigung der axial paarweise gegenüberliegenden Pendelmassen dienen und Aussparungen 70 zur Aufnahme der Laufrollen zur Führung der Pendelmassen gegenüber dem Pendelflansch 44 auf.
Figur 6 zeigt einen Ausschnitt eines hydrodynamischen Drehmomentwandler in einer weiteren speziellen Ausführungsform der Erfindung. Dabei ähnelt diese Ausführung der Variante aus Figur 4 mit dem wesentlichen Unterschied, dass das Dämpferzwischenteil 58 als scheibenartiges Bauteil ausgeführt und axial zwischen zwei Scheibenteilen 62, 64 des Dämpferausgangsteils 60 angeordnet ist. Das Scheibenteil 64 ist dabei derart radial nach innen verlängert, dass es mittels eines Nietelements 46 mit dem Pendelflansch drehfest verbunden ist, wobei der Pendelflansch 44 eine Verzahnung 66 an dessen Innenseite zur Verbindung mit der Abtriebsnabe 36 aufweist.
Bezuqszeichenliste Torsionsschwingungsdämpfer
Fliehkraftpendeleinrichtung
Dämpfereingangsteil
Kupplungsausgang
Wandlerüberbrückungskupplung
Nietelement
Energiespeicherelement
Dämpferzwischenteil
Dämpferausgangsteil
Scheibenteil
Scheibenteil
Energiespeicherelement
Ausschnitt
Abtriebsnabe
Verzahnung
Verzahnung
Verzahnung
Sicherungsring
Pendelflansch
Nietelement
Turbinenrad
Pendelmassen
Abstandsbolzen
Nietelement
flanschartiger Abschnitt
Dämpferzwischenteil
Dämpferausgangsteil
Scheibenteil
Scheibenteil
Verzahnung
Aussparung
Aussparung

Claims

Patentansprüche
1. Hydrodynamischer Drehmomentwandler mit einer Wandlerüberbrückungskupplung (18) und einem antriebsseitig verbundenen Wandlergehäuse und einem damit drehfest verbundenen Pumpenrad sowie einem abtriebsseitig mit einer Abtriebsnabe (36) drehfest verbundenen Turbinenrad (48) und einem wirksam zwischen Kupplungsausgang (16) der Wandlerüberbrückungskupplung (18) und der Abtriebsnabe (36) angeordneten Torsionsschwingungsdämpfer (10) sowie mit einer innerhalb des Wandlergehäuses angeordneten und einen Pendelflansch (44) mit daran begrenzt verschwenkbaren Pendelmassen (50) aufweisenden Fliehkraftpendeleinrichtung (12) dadurch gekennzeichnet, dass der Pendelflansch (44) axial zwischen dem Torsionsschwingungsdämpfer (10) und dem Turbinenrad (48) angeordnet und mit einem Dämpferausgangsteil (26, 60) des Torsionsschwingungsdämpfers ( 0) drehfest verbunden ist und das Dämpferausgangsteil (26, 60) und/oder der Pendelflansch über eine formschlüssige Verbindung mit der Abtriebsnabe (36) unmittelbar verbindbar ist.
2. Hydrodynamischer Drehmomentwandler nach Anspruch 1 dadurch gekennzeichnet, dass die formschlüssige Verbindung als Verzahnung ausgeführt ist.
3. Hydrodynamischer Drehmomentwandler nach Anspruch 1 dadurch gekennzeichnet, dass die formschlüssige Verbindung als Verstemmung oder Verschweißung ausgeführt ist.
4. Hydrodynamischer Drehmomentwandler nach Anspruch 2 dadurch gekennzeichnet, dass das mit der Abtriebsnabe (36) über die Verzahnung verbundene Bauteil axial auf der Abtriebsnabe (36) gesichert ist.
5. Hydrodynamischer Drehmomentwandler nach einem der Ansprüche 1 bis 4 dadurch gekennzeichnet, dass das Turbinenrad (48) mit der Abtriebsnabe (36) über eine weitere formschlüssige Verbindung verbunden ist, insbesondere mittels eines Nietelements (20, 46, 54) verbunden ist.
6. Hydrodynamischer Drehmomentwandler nach einem der Ansprüche 1 bis 5 dadurch gekennzeichnet, dass der Pendelflansch (44) mit dem Dämpferausgangsteil (26, 60) vernietet ist.
PCT/DE2011/000103 2010-02-16 2011-02-04 Hydrodynamischer drehmomentwandler WO2011100946A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112011100549.0T DE112011100549B4 (de) 2010-02-16 2011-02-04 Hydrodynamischer Drehmomentwandler
CN201180009745.9A CN102762889B (zh) 2010-02-16 2011-02-04 液力变矩器
US13/571,491 US8490766B2 (en) 2010-02-16 2012-08-10 Hydrodynamic torque converter

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102010008178.7 2010-02-16
DE102010008178 2010-02-16
DE102010011143.0 2010-03-11
DE102010011143 2010-03-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/571,491 Continuation US8490766B2 (en) 2010-02-16 2012-08-10 Hydrodynamic torque converter

Publications (1)

Publication Number Publication Date
WO2011100946A1 true WO2011100946A1 (de) 2011-08-25

Family

ID=44317439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2011/000103 WO2011100946A1 (de) 2010-02-16 2011-02-04 Hydrodynamischer drehmomentwandler

Country Status (4)

Country Link
US (1) US8490766B2 (de)
CN (1) CN102762889B (de)
DE (2) DE102011010344A1 (de)
WO (1) WO2011100946A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104620019A (zh) * 2012-07-10 2015-05-13 舍弗勒技术股份两合公司 扭矩耦合器
DE102016202933A1 (de) 2016-02-25 2017-08-31 Schaeffler Technologies AG & Co. KG Hydrodynamischer Drehmomentwandler

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104956120B (zh) * 2012-12-20 2017-11-10 舍弗勒技术股份两合公司 离心力摆
CN104870859B (zh) * 2012-12-21 2016-10-19 舍弗勒技术股份两合公司 减振器
US9163712B2 (en) * 2013-02-07 2015-10-20 Schaeffler Technologies AG & Co. KG Torque converter with centrifugal pendulum absorber
WO2014161540A1 (de) * 2013-04-02 2014-10-09 Schaeffler Technologies Gmbh & Co. Kg Fliehkraftpendel
JP6169450B2 (ja) * 2013-04-19 2017-07-26 Nok株式会社 トーショナルダンパ
FR3006731B1 (fr) * 2013-06-11 2016-01-01 Valeo Embrayages Transmission comportant un dispositif de filtration de type oscillateur pendulaire et module pour une transmission
DE102014213606A1 (de) 2013-07-26 2015-01-29 Schaeffler Technologies Gmbh & Co. Kg Drehmomentübertragungseinrichtung
FR3009851B1 (fr) * 2013-08-26 2018-01-12 Valeo Embrayages Module d'amortissement et systeme d'embrayage pourvu d'un tel module
EP3146232A1 (de) * 2014-05-21 2017-03-29 Schaeffler Technologies AG & Co. KG Antriebssystem
US9297448B1 (en) * 2014-10-23 2016-03-29 Valeo Embrayages Hydrokinetic torque coupling device having turbine-piston lockup clutch, and related methods
JP5828030B1 (ja) * 2014-10-29 2015-12-02 株式会社エクセディ トルクコンバータのロックアップ装置
DE102015203501A1 (de) * 2015-02-27 2016-09-22 Schaeffler Technologies AG & Co. KG Drehmomentübertragungseinrichtung und Verfahren zu deren Herstellung
KR101707804B1 (ko) * 2015-07-16 2017-02-17 한국파워트레인 주식회사 진자를 이용한 진동저감장치를 포함하는 차량용 토크 컨버터
DE102017112046A1 (de) * 2017-06-01 2018-12-06 Schaeffler Technologies AG & Co. KG Drehschwingungsdämpfer
DE102019127399B4 (de) * 2019-10-11 2023-03-23 Schaeffler Technologies AG & Co. KG Torsionsdämpfer und Dämpfereinrichtung
US20240159301A1 (en) * 2022-11-10 2024-05-16 Schaeffler Technologies AG & Co. KG Torque converter assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19804227A1 (de) * 1998-02-04 1999-08-05 Mannesmann Sachs Ag Überbrückungskupplung mit einer Ausgleichsschwungmasse am Torsionsschwingungsdämpfer
DE102006028556A1 (de) * 2005-07-11 2007-01-18 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Drehmomentübertragungseinrichtung
DE102008057647A1 (de) * 2007-11-29 2009-06-04 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kraftübertragungsvorrichtung mit einem drehzahladaptiven Tilger und Verfahren zur Verbesserung des Dämpfungsverhaltens

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0960709A (ja) * 1995-08-24 1997-03-04 Nsk Warner Kk トルクコンバータ用のダンパー装置
GB2413614A (en) * 2004-05-01 2005-11-02 Safe Developments Ltd A flywheel with pendulum masses tracking an order of vibration across engine speeds
EP1744074A3 (de) * 2005-07-11 2008-10-01 LuK Lamellen und Kupplungsbau Beteiligungs KG Drehmomentübertragungseinrichtung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19804227A1 (de) * 1998-02-04 1999-08-05 Mannesmann Sachs Ag Überbrückungskupplung mit einer Ausgleichsschwungmasse am Torsionsschwingungsdämpfer
DE102006028556A1 (de) * 2005-07-11 2007-01-18 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Drehmomentübertragungseinrichtung
DE102008057647A1 (de) * 2007-11-29 2009-06-04 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kraftübertragungsvorrichtung mit einem drehzahladaptiven Tilger und Verfahren zur Verbesserung des Dämpfungsverhaltens

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104620019A (zh) * 2012-07-10 2015-05-13 舍弗勒技术股份两合公司 扭矩耦合器
US9470290B2 (en) 2012-07-10 2016-10-18 Shaeffler Technologies Ag & Co. Kg Torque coupler
DE102016202933A1 (de) 2016-02-25 2017-08-31 Schaeffler Technologies AG & Co. KG Hydrodynamischer Drehmomentwandler

Also Published As

Publication number Publication date
US20120298461A1 (en) 2012-11-29
DE112011100549B4 (de) 2018-11-15
US8490766B2 (en) 2013-07-23
CN102762889A (zh) 2012-10-31
CN102762889B (zh) 2015-09-09
DE102011010344A1 (de) 2011-08-18
DE112011100549A5 (de) 2013-01-10

Similar Documents

Publication Publication Date Title
DE112011100549B4 (de) Hydrodynamischer Drehmomentwandler
DE112011100546B4 (de) Hydrodynamischer Drehmomentwandler
EP2536961B1 (de) Drehmomentübertragungseinrichtung
DE112010002947B4 (de) Drehmomentübertragungseinrichtung
DE112009001493B3 (de) Hydrodynamischer Drehmomentwandler
EP1520117B1 (de) Drehmomentübertragungseinrichtung
DE10362352B3 (de) Torsionsschwingungsdämpfer
EP3198169B1 (de) Kupplungsscheibe mit einem drehschwingungsdämpfer
WO2010043194A1 (de) Hydrodynamischer drehmomentwandler
EP3571425B1 (de) Drehmomentübertragungsbaugruppe
WO2012022278A1 (de) Fliehkraftpendeleinrichtung
DE102008057648A1 (de) Kraftübertragungsvorrichtung, insbesondere zur Leistungsübertragung zwischen einer Antriebsmaschine und einem Abtrieb
WO2012095072A1 (de) Fliehkraftpendeleinrichtung
DE102012205761A1 (de) Drehmomentwandler
EP2600031A2 (de) Drehmomentübertragungseinrichtung
WO2007054047A2 (de) Lamellenkupplung und hydrodynamische drehmomentwandler-vorrichtung mit einer solchen lamellenkupplung
DE112006002797B4 (de) Kraftfahrzeug-Antriebsstrang mit einem 3-Zylinder-Motor
DE102008020684A1 (de) Drehmomentwandler mit Anordnung gegen Rattern und Kühlströmungsanordnung
WO2007128259A1 (de) Hydrodynamischer drehmomentwandler mit kopplungsfedereinrichtung für den kolben
WO2007124715A1 (de) Befestigungsmittel unter verwendung der zunge einer turbinenschaufel für eine dämpfungsfederaufnahme eines drehmomentwandlers und verfahren zur herstellung des befestigungsmittels
DE102013225599A1 (de) Drehmomentübertragungseinrichtung
WO2014012543A1 (de) Doppelkupplungseinrichtung
WO2007128273A2 (de) Vorrichtung zum verbinden von komponenten mit einer nabe
DE102011010345A1 (de) Kupplungseinrichtung
DE102007057432B4 (de) Hydrodynamische Kopplungseinrichtung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180009745.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11711255

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112011100549

Country of ref document: DE

Ref document number: 1120111005490

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112011100549

Country of ref document: DE

Effective date: 20130110

122 Ep: pct application non-entry in european phase

Ref document number: 11711255

Country of ref document: EP

Kind code of ref document: A1