WO2011100908A2 - 一种光功率监测的方法和装置 - Google Patents

一种光功率监测的方法和装置 Download PDF

Info

Publication number
WO2011100908A2
WO2011100908A2 PCT/CN2011/072649 CN2011072649W WO2011100908A2 WO 2011100908 A2 WO2011100908 A2 WO 2011100908A2 CN 2011072649 W CN2011072649 W CN 2011072649W WO 2011100908 A2 WO2011100908 A2 WO 2011100908A2
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical signal
channel
monitored
spectrum
Prior art date
Application number
PCT/CN2011/072649
Other languages
English (en)
French (fr)
Other versions
WO2011100908A3 (zh
Inventor
刘宁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201180001635.8A priority Critical patent/CN102301621B/zh
Priority to PCT/CN2011/072649 priority patent/WO2011100908A2/zh
Priority to EP11744266.5A priority patent/EP2688228B1/en
Publication of WO2011100908A2 publication Critical patent/WO2011100908A2/zh
Publication of WO2011100908A3 publication Critical patent/WO2011100908A3/zh
Priority to US14/051,647 priority patent/US9014556B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and apparatus for optical power monitoring.
  • the optical communication transmission network will evolve toward the variable bandwidth optical network, that is, the channel spacing gradually changes from a fixed 100 GHz/50 GHz to a flexible variable channel interval.
  • 1A shows that the channel spacing in the existing optical communication transmission network is fixed
  • FIG. 1B shows the future development trend of the optical network.
  • the channel spacing is flexible.
  • optical communication long-distance transmission networks the 0E0 (Optical-Electrical-Optical) conversion in the system link shows a decreasing trend. It is more and more difficult to directly test the bit error rate at the electrical layer, and only test the bit error rate at the link end. Not conducive to fault location.
  • the transmission capacity and the flexibility of the optical communication transmission network increase, the system complexity becomes higher and higher.
  • optical performance monitoring of high-speed wavelength division multiplexed signals in optical communication transmission networks is increasing.
  • optical power monitoring is the most basic and important performance monitoring content because it can reflect the basic working state of the wavelength channel and guide the system to perform automatic power balancing. Its typical application scenario is shown in the figure below.
  • the channel optical power monitoring technology can generally be divided into two categories: The first type is to use a grating and other devices to spatially distinguish different wavelengths of light, and then use the photodetector array to detect different positions.
  • the light intensity enables simultaneous monitoring of channel optical power and wavelength;
  • the second method uses TOF (Tunable Optical Filter) to scan the band to be measured, and to distinguish the light of different wavelengths from time to time.
  • TOF Tunable Optical Filter
  • the same photodetector is used to detect the optical power at different times.
  • an optical signal of a certain power is first extracted from a network; the optical signal is converted into parallel light by a collimating lens, and the parallel light is incident along an optimal diffraction angle of the diffraction grating; After passing through the diffraction grating, diffracted light with extremely high diffraction efficiency is obtained, and optical signals of different wavelengths are divided.
  • the separated optical signal passes through the converging lens, is concentrated on different pixels of the array detector, and is sequentially distributed according to the wavelength on the array detector; the array detector performs real-time fast sampling on the optical signal to convert the amplitude of the optical signal
  • a certain optical power is extracted from the signal of the optical communication transmission network and transmitted to the TOF; the TOF filters the input optical signal, transmits a certain bandwidth of the optical signal, and then imports In the photodetector; the photodetector performs photoelectric conversion, samples the optical signal, converts the amplitude of the optical signal into an electrical signal and transmits it to the signal processing and controller; after receiving the sampled data, the signal processing and the controller send the command. Change the passband wavelength of the TOF, and repeat until the entire wavelength range required for scanning; Finally, the signal processor analyzes and processes the obtained sampled data, performs deconvolution operation according to the magnitude and distribution of the light intensity, and restores the spectrum. Curve to calculate the channel optical power of the optical signal.
  • FIG. 2 shows a typical spectrum of three different rate pattern signals (10 Gbps NRZ/40 Gbps DQPSK/2.5 Gbps NRZ) with a measured signal at 50 GHz intervals, where the solid line represents the measurement with a high precision spectrometer.
  • the true spectrum, the "+" symbol is the original broadened spectrum obtained after TOF scanning, and the dashed line is the spectrum recovered by the deconvolution algorithm.
  • the power of the channel can be obtained by summing the power near the peak point of the center wavelength of the channel.
  • the recovered spectrum has a main peak where there is a signal, and there is a side lobes where there is no signal, which needs to be distinguished from the signal.
  • the center wavelength of each channel is fixed and the bandwidth difference is not large, only one main peak at the central wavelength position of the recovered spectrum needs to be summed to obtain the optical power of the channel. .
  • the present invention provides an optical power monitoring scheme to improve the accuracy of optical power monitoring and to extend the range of applications for optical power monitoring.
  • Embodiments of the present invention provide a method for optical power monitoring, including:
  • each optical signal power combination characterizing the H no optical power of the optical signals of the monitored channels
  • an embodiment of the present invention further provides an optical power monitoring apparatus, including:
  • a measuring module configured to measure a broadened spectrum of the optical signal of each channel to be monitored after being filtered, to obtain a measured broadened spectrum of the optical signal of each channel to be monitored;
  • a construction module configured to construct a plurality of optical signal power combinations, each optical signal power combination characterizing a hypothetical optical power of the optical signals of the monitored channels;
  • a calculation module configured to perform calculation on each of the optical signal power combinations according to a transfer function characterizing the filtering process, to obtain a theoretical broadening corresponding to the optical signals of the monitored channels under the optical signal power combination Spectral
  • a comparison module configured to calculate a plurality of theoretically broadened spectra calculated by the calculation module and the measured broadened spectrum to find a theoretically broadened spectrum closest to the measured stretched spectrum
  • a determining module configured to determine each of the optical powers in the optical signal power combination corresponding to the theoretically broadened spectrum of the measured spread spectrum as the actual optical power of the optical signal of the corresponding monitored channel.
  • the inventive scheme constructs a plurality of optical signal power combinations of the optical signals of the monitored channels, Then, based on the calculated combination of the plurality of optical powers, a plurality of theoretical broadened spectra corresponding to the optical signals of the monitored channels are obtained, and then the plurality of theoretically broadened spectra are compared with the measured actual broadened spectra to find the most The theoretical broadening spectrum close to the actual broadened spectrum, which is the closest to the actual optical power of the actual broadened spectrum, since there is no need to recover the spectrum of the optical signal of each channel monitored by the deconvolution operation, and the large difference between the restored spectrum and the real spectrum is avoided.
  • the resulting monitoring error therefore, can improve the accuracy of optical power monitoring, and reduce the filter performance requirements, thereby reducing the cost of monitoring, in particular, it can be applied to variable bandwidth optical communication transmission networks, but also There is no defect similar to the existing optical power monitoring technology applied to variable bandwidth optical communication transmission networks.
  • 1A is a schematic diagram of spectrum allocation of an existing optical communication transmission network
  • FIG. 1B is a schematic diagram of spectrum allocation of a future optical communication transmission network
  • FIG. 2 is a schematic diagram of three types of spectra corresponding to optical signals transmitted in an optical communication transmission network;
  • FIG. 3 is a schematic flowchart of an optical power monitoring method provided in Embodiment 1 of the present invention.
  • FIG. 4A is a schematic diagram of a transfer function of a tunable optical filter in Embodiment 1 of the present invention.
  • 4B is a schematic view showing a power spectral density of optical signals of three channels monitored in Embodiment 1 of the present invention
  • FIG. 4C is a measured spread spectrum of optical signals of three channels monitored in Embodiment 1 of the present invention
  • FIG. 4D is a spectrum of optical signals of three channels corresponding to the first optical power combination in Embodiment 1 of the present invention
  • 4E is a light spectrum of an optical signal corresponding to three channels of the second optical power combination in Embodiment 1 of the present invention.
  • 4F is a theoretical broadened spectrum of an optical signal corresponding to three channels of the first optical power combination in Embodiment 1 of the present invention.
  • 4G is an optical signal of three channels corresponding to a second optical power combination in Embodiment 1 of the present invention.
  • FIG. 5A is a schematic structural diagram of an optical power monitoring apparatus according to Embodiment 2 of the present invention
  • FIG. 5B is a schematic structural diagram of another optical power monitoring apparatus according to Embodiment 2 of the present invention.
  • the embodiment of the present invention provides a method for monitoring optical power, and the process thereof is as shown in FIG. 3.
  • the method includes: Step S31: measuring a broadened spectrum of the optical signal of each channel to be monitored after being filtered, to obtain the monitored channels. The measured broadened spectrum of the optical signal.
  • the filtering process is to distinguish the optical signals of the monitored channels to facilitate subsequent measurement of the spectrum of the optical signals of each channel.
  • the spectrum of the optical signal of each channel to be monitored is referred to as an actual spectrum in the present invention; in the filtering process, the optical signal of each channel to be monitored is affected by the filtering process, and thus the light after the filtering process
  • the spectrum of the signal is called a broadened spectrum, and in this step, the optical signal after the filtering process is measured to obtain the broadened spectrum, and the broadened spectrum obtained by the measurement is referred to as a measured broadened spectrum.
  • a tunable optical filter can be used to implement the filtering process to distinguish the optical signals of the channels being monitored.
  • the tunable optical filter temporally distinguishes the optical signals of different channels, and then measures the broadened spectrum of the optical signals of each channel through the tunable optical filter, and fits the measured data of each channel. Together, the measured broadened spectrum of the optical signals of each channel being monitored through the tunable optical filter is obtained.
  • a plurality of non-dimmable filters can also be used to spatially distinguish different optical signals, for example, gratings can be used.
  • the combination of array detectors separates the optical signals of different channels.
  • the function of the grating is equivalent to the function of multiple filters.
  • a splitter can be used to divide the optical signal to be monitored into multiple For each copy, use a filter that filters the signal of the corresponding channel. Filtering is performed to distinguish optical signals of different channels. Then, the optical signals of the separated channels are measured for the broadened spectrum, and the data of all the channels are fitted to obtain the measured broadened spectrum of the optical signals of the monitored channels after passing through the filter.
  • the grating can separate the optical signals of the multiple channels multiplexed together to simultaneously output the optical signals of a single channel from different output ports. For one single channel optical signal, the grating performs the optical signals of the other channels. Filtration, which acts as a filtering process, is within the scope of protection required by this application.
  • the demultiplexer functions similarly to the grating, and the optical signals of the monitored channels can be spatially distinguished. The effect of the demultiplexer on the optical signals of the monitored channels is also a filtering process. It should also be within the scope of protection required by this application.
  • Step S32 constructing a plurality of optical signal power combinations, each optical signal power combination characterizing a hypothetical optical power of the optical signals of the monitored channels.
  • each optical signal power combination characterizes the actual optical power of the optical signal of each channel being monitored, and is a theory of the power of the optical signal of each channel being monitored.
  • the power of a channel's optical signal may vary from 0dB to ldB, and the power of the optical signal without H may be 0dB, O. ldB, 0.2dB ..., 0.9dB, ldB.
  • the power step change of the optical signal of each channel may be equal to or less than the accuracy of performing optical power monitoring.
  • the accuracy required for optical power monitoring is 0.1 dB.
  • the power variation of each channel's optical signal is 0.1 dB, and the step size can be even smaller, for example, 0.05 dB. This allows for higher measurement accuracy.
  • Step S33 Perform calculation on each of the optical signal power combinations according to a transfer function characterizing the filtering process, to obtain a theoretical broadened spectrum corresponding to the optical signals of the monitored channels under the optical signal power combination.
  • step S33 may specifically include:
  • each optical signal power combination For each optical signal power combination, obtaining, according to pre-acquired model information of the optical signals of the monitored channels, a spectrum corresponding to the optical signal power combination of the optical signals of the monitored channels;
  • a convolution operation is performed on a spectrum corresponding to each optical signal power combination and a transfer function characterizing the filtering process to obtain a theoretically broadened light corresponding to the optical signal of each channel monitored under the optical signal power combination.
  • the model information of the optical signals of each channel to be monitored may include: optical signals of each channel The modulation pattern used by the number, the center wavelength of the channel where the optical signal of each channel is located, and the channel bandwidth of the channel where the optical signal of each channel is located.
  • the model information of the optical signals of each channel to be monitored may include: a spectral shape of an optical signal of each channel being monitored. It should be understood that the model information of the optical signals of each channel to be monitored is not limited to the above information, and any description of the characteristics of the optical signals of the monitored channels can be used as model information of the optical signals of the monitored channels.
  • Step S34 comparing the calculated plurality of theoretically broadened spectra with the measured stretched spectrum to find a theoretically broadened spectrum closest to the measured stretched spectrum.
  • the step may specifically include: using a two-norm optimization or a norm optimization method to find the theory of the measured broadened spectrum measured in step S31 in the plurality of theoretically broadened spectra obtained by the calculation. Broaden the spectrum.
  • Step S35 Determine each of the optical powers in an optical signal power combination corresponding to the theoretically broadened spectrum of the measured spread spectrum as the actual optical power of the optical signal of the corresponding monitored channel.
  • step S31 there is no clear sequence between step S31 and steps S32 and S33, and steps S32 and S33 may be performed first, and then step S31 may be performed. Step S31 may be performed while steps S32 and S33 are sequentially performed.
  • step S31 the method further includes the following steps:
  • the signal after the filtering of the optical signal of each channel to be monitored is photoelectrically converted; the photoelectrically converted signal is subjected to analog-to-digital conversion.
  • step S31 is specifically based on the analog-to-digital converted signal, and the measured broadened spectrum of the optical signals of the monitored channels is measured.
  • the broadened spectrum ⁇ ( ⁇ ) of the optical signal of a channel after passing through the tunable optical filter can be expressed as P ⁇ k) ("H( ,k)S( )d ( 1 ) where H( , / ) is The transfer function of the tuned optical filter at the center wavelength k, S( ) is the spectrum of the optical signal input to the tunable optical filter, and ⁇ represents the upper cutoff wavelength and the lower cutoff wavelength of the filter, respectively.
  • the signal is measured to obtain a broadened spectrum of the monitored optical signal after passing through the filter.
  • the optical signals transmitted by each of the channels are respectively transmitted.
  • the power spectral density is ⁇ )... ⁇ ( ), and the center wavelengths of these channels are respectively! ;...! .
  • the spectrum S( ⁇ ) in equation (1) can be expressed as:
  • the equation (2) can be expressed as a discrete matrix to characterize the spectrum of the N-channel optical signals.
  • the discrete vector representation of N, w [ Wl , w 2 , ... w N ] represents the power of the optical signal of each channel.
  • the matrix s is a matrix representation of the power spectral density of the optical signals of the N channels, each column of the matrix s is a discrete representation of the power spectral density of the optical signal of each channel, and w is the vector representation of the optical signal power of the N channels form.
  • H is the matrix representation of the transfer function of the tunable optical filter at different central wavelengths. Each row of H represents the transfer function of the tunable optical filter at a central wavelength. Equation (1) can also be discretized as:
  • the measured broadened spectrum obtained by measuring the signal of the N channels monitored by the tunable optical filter is: P0, where P0 is a discretized vector representation of the broadened spectrum.
  • the matrix H is multiplied by the matrix S to represent a convolution operation, and the matrix s represents the model information of the optical signals monitored by each channel.
  • the present invention constructs the light of each channel by calculating the power of the optical signals of the respective channels, and then calculating the light of each channel according to the power of the optical signals of the respective channels.
  • the spectrum of the signal since the calculated spectrum of the optical signal of each channel may not be the actual spectrum of the monitored optical signal, the theoretical broadened spectrum and the measured broadened spectrum obtained from the spectrum of the optical signals of each channel calculated above are present. The following relationship:
  • n is the error vector, which is the vector representation of the measurement error of each channel, where the power error of each channel is the difference between the measured power and the theoretically calculated power.
  • Q group optical power combinations can be constructed, that is, there are Q w vectors, which can be respectively expressed as: Wl , w 2 , ... w Q , and corresponding Q theoretical broadened spectra can be calculated accordingly.
  • Q w vectors which can be respectively expressed as: Wl , w 2 , ... w Q , and corresponding Q theoretical broadened spectra can be calculated accordingly.
  • a theoretical spectrum closest to P0 is found from Pi Pl 2 , ... P1 Q ,, that is, a theoretically broadened spectrum is found to minimize its error with P0.
  • the optical power corresponding to the theoretical spectrum closest to P0 is then combined to determine the actual power of the optical signals of each channel being monitored.
  • the matrix H in the previous principle corresponds.
  • optical power of the optical signals of the three channels is specifically taken as an example, and the present invention is further explained in conjunction with FIG. 4A to G. It is to be understood that the following examples are merely illustrative of the invention and are not to be construed as limiting.
  • Figure 4A is a schematic diagram showing the transfer function of the tunable optical filter
  • Figure 4B is a schematic diagram showing the power spectral density of the optical signals of the three channels being monitored, and the shape of the three power spectral densities in Figure 4B reflects three monitored The modulation pattern and bandwidth of the optical signal of the channel are different
  • FIG. 4C is a measured broadened spectrum obtained by measuring the signal of the optical signal of the three channels monitored by the tunable filter.
  • the power of the optical signals of the three channels being monitored is assumed, and two optical power combinations are constructed (each optical power combination characterizes the power of the optical signals of the three channels being monitored).
  • Case according to the formula (2) or (3) mentioned above, the two spectra of the optical signals of the three channels monitored are obtained correspondingly, as shown in Fig. 4D (corresponding to the first optical power combination) and Fig. 4E ( Corresponding to the second optical power combination).
  • Fig. 4D corresponding to the first optical power combination
  • Fig. 4E Corresponding to the second optical power combination.
  • the theoretical broadened spectrum corresponding to the first optical power combination is shown in FIG. 4F; based on the spectrum shown in FIG. 4E, the theoretical broadened spectrum corresponding to the second optical power combination is obtained according to the formula (4).
  • the optical power monitoring method obtains a plurality of optical power combinations of optical signals of each channel to be monitored, and then performs calculation based on the plurality of optical power combinations constructed to obtain light of each channel to be monitored.
  • the signal is corresponding to a variety of theoretical broadening spectra, and then a plurality of theoretical broadened spectra are compared with the measured actual broadened spectra to find the theoretical broadened spectrum closest to the actual broadened spectrum, and the actual optical power of the optical signal that should be monitored. Since the deconvolution operation is not required to recover the spectrum of the optical signal of each channel being monitored, the monitoring error caused by the large difference between the restored spectrum and the real spectrum is avoided, so that the accuracy of the optical power monitoring can be improved, and the filtering is reduced.
  • the performance requirements of the device reduce the cost of monitoring. In particular, it can be applied to variable bandwidth optical communication transmission networks, and there is no similarity to the existing optical power monitoring technology applied to variable bandwidth optical communication transmission networks. Defects exist.
  • the embodiment provides an apparatus for monitoring optical power, and the structure thereof is as shown in FIG. 5A, and includes: a measurement module 41, a construction module 42, a calculation module 43, and a comparison module 44. , and determine module 45.
  • the measuring module 41 is configured to measure the broadened spectrum of the optical signal of each channel to be monitored after being filtered, to obtain a measured broadened spectrum of the optical signal of the monitored channel.
  • the construction module 42 is configured to construct a plurality of optical signal power combinations. Among them, each optical power combination represents the assumed optical power of the optical signals of each channel being monitored.
  • the calculating module 43 is configured to perform calculation on each of the optical signal power combinations according to a transfer function that characterizes the filtering process, and obtain a corresponding one of the optical signals of the monitored channels under the set of optical signal power combinations. Theoretical broadening of the spectrum.
  • the comparison module 44 is configured to compare the plurality of theoretically broadened spectra calculated by the calculation module 43 with the measured stretched spectra measured by the measurement module 41 to find a closest to the measured stretched spectrum. Theoretical broadening of the spectrum.
  • the determining module 45 is configured to determine, by the comparison module 44, each hypothetical optical power in the optical signal power combination corresponding to the theoretical broadened spectrum of the measured spread spectrum as the actual power of the optical signal of the corresponding monitored channel.
  • the calculating submodule 43 may specifically include:
  • the signal spectrum acquisition sub-module 431 is configured to acquire, according to the model information of the optical signals of the monitored channels, the optical signals of the monitored channels corresponding to the set of optical signal power combinations according to the model information of the optical signals of the monitored channels.
  • the model information of the optical signal of each channel to be monitored may include: a modulation pattern adopted by the optical signals of each channel, a center wavelength of the channel where the optical signals of each channel are located, and a channel bandwidth of the channel where the optical signals of each channel are located
  • the model information of the optical signal monitored by each channel may include: a spectral shape of the optical signal of each channel being monitored. It should be understood that the model information of the optical signals of the monitored channels is not limited to the above information, and any description of the characteristics of the optical signals of the monitored channels can be used as model information of the optical signals of the monitored channels.
  • a convolution calculation sub-module 432 configured to convolute a spectrum corresponding to each optical signal power combination with a transfer function characterizing the filtering process, to obtain an optical signal of the monitored each channel in the group of optical signal powers Corresponding to a theoretical broadening spectrum.
  • the optical power monitoring device provided by the present invention may further include: a filtering module 46, a photoelectric conversion module 47, and an analog-to-digital conversion module 48, based on the structural device shown in FIG. 5A.
  • the filtering module 46 is configured to filter signals of the monitored channel.
  • the filter 46 can be a tunable optical filter, a non-tunable optical filter, or a grating or optical demultiplexer similar to a filter for signal separation.
  • the photoelectric conversion module 47 is configured to perform photoelectric conversion on the optical signal output from the filter 46.
  • the analog-to-digital conversion module 48 is configured to perform analog-to-digital conversion on the signal output from the photoelectric conversion module 47.
  • the measuring module 41 performs measurement based on the signal output from the analog-to-digital conversion module 48, and obtains the filtered measured broadened spectrum of the optical signals of the monitored channels.
  • the embodiment of the invention further provides a processor for performing the following methods: Measuring the broadened spectrum of the optical signal of each channel after being filtered, and obtaining a measured broadened spectrum of the optical signal of each channel to be monitored;
  • each optical signal power combination characterizing the H no optical power of the optical signals of the monitored channels
  • Each hypothetical optical power in the optical signal power combination corresponding to the theoretically broadened spectrum closest to the measured spread spectrum is determined as the actual optical power of the optical signal of the corresponding monitored channel.
  • the model information of the optical signals of each channel to be monitored may include: a modulation pattern used by the optical signals of each channel, a center wavelength of a channel where the optical signals of each channel are located, and a channel bandwidth of a channel where the optical signals of each channel are located; or
  • the model information of the optical signals of the monitored channels may include: a spectral shape of the optical signals of each channel being monitored. It should be understood that the model information of the optical signals of each channel to be monitored is not limited to the above information, and any description of the characteristics of the optical signals of the monitored channels can be used as model information of the optical signals of the monitored channels.
  • the above processor can be applied to optical power monitoring, and specifically can be a device such as a DSP or a CPU.
  • the apparatus or processor for optical power monitoring provided by the embodiment of the present invention constructs a plurality of optical power combinations of optical signals of each channel to be monitored, and then combines the plurality of optical powers based on the constructed Row calculation, obtaining a plurality of theoretical broadened spectra corresponding to the optical signals of the monitored channels, and comparing various theoretical broadened spectra with the measured actual broadened spectra to find the theoretical broadened spectrum closest to the actual broadened spectrum,
  • the power in the optical power combination corresponding to the theoretical spectrum closest to the actual broadened spectrum is determined as the actual optical power of the optical signal of the corresponding monitored channel, since the deconvolution operation is not required to recover the spectrum of the optical signal of each channel being monitored, avoiding
  • the monitoring error caused by the large difference between the restored spectrum and the real spectrum can improve the accuracy of optical power monitoring and reduce the performance of the filter, thereby reducing the cost of monitoring.
  • the present invention can be implemented by means of software plus necessary general hardware, and of course, can also be through hardware, but in many cases the former is a better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a readable storage medium, such as a floppy disk of a computer.
  • a hard disk or optical disk or the like includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • the above is only a specific embodiment of the present invention, but the scope of the present invention is not limited thereto, and any person skilled in the art can easily think of changes or substitutions within the technical scope of the present invention. It should be covered by the scope of the present invention. Therefore, the scope of the invention should be determined by the scope of the claims.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Description

一种光功率监测的方法和装置 技术领域
本发明涉及通信领域, 尤其涉及一种光功率监测的方法和装置。
背景技术
大容量业务的出现,使得光通信传输网的传输速率有从 40Gb/s向 100Gb/s 甚至 400Gb/s, lTb/s速率演进的趋势。 为了实现高的传输速率, 各种高级调制 码型被引入, 口 PM-QPSK ( Polarization Multiplexing-Quadrature Phase Shift Keying, 偏振复用 -正交相移键控 ) , QAM ( Quadrature Amplitude Modulation, 正交幅度调制 )和 OFDM ( Orthogonal Frequency Division Multiplexing, 正交 频分复用)。 另一方面, 为了提高光纤的频谱利用率和***配置灵活性, 光通 信传输网络将向可变带宽光网络的方向演进, 即通道间隔逐渐从固定的 100GHz/50GHz变为灵活可变的通道间隔, 其中, 图 1A表示现有光通信传输 网络中的通道间隔是固定不变的, 图 1B表示光网络未来的发展趋势一一通道 间隔灵活可变。
在光通信长距离传输网络中, ***链路中 0E0 ( Optical-Electrical-Optical ) 转换呈减少趋势, 在电层直接测试误码率变得越来越困难,仅在链路终端测试 误码率不利于故障定位。随着光通信传输网络中传输容量的增大和灵活性的提 升, ***复杂度越来越高。 为了有效的控制和管理光网络, 对光通信传输网络 中的高速波分复用信号进行光性能监测的重要性越来越高。其中光功率监测由 于能够反映波长通道的基本工作状态并指导***执行自动功率均衡等处理,成 为最基本也是最重要的性能监测内容。 其典型应用场景如下图所示。
现有技术中,通道光功率的监测技术通常可以分为两大类: 第一类是采用 光栅等器件将不同的波长的光从空间上区分开来,再利用光电探测器阵列检测 不同位置上的光强从而同时实现通道光功率和波长的监测; 第二类方法利用 TOF ( Tunable Optical Filter, 可调谐光滤波器)扫描待测波段, 将不同的波长 的光从时间上区分开来, 再利用同一个光电探测器检测不同时刻的光功率。
在第一类光功率监测技术中, 首先从网络中提取出一定功率的光信号; 该 光信号经过准直透镜后转变为平行光,并使平行光沿着衍射光栅的最佳衍射角 入射; 经过衍射光栅后, 得到衍射效率极大的衍射光, 不同波长的光信号被分 离开; 分离后的光信号经过会聚透镜, 被会聚在阵列探测器的不同像素上, 并 在阵列探测器上按波长依次分布; 阵列探测器对光信号进行实时快速采样,将 光信号的幅度转换为电信号,从而获取原始的光谱数据, 并将原始数据传送给 信号处理器;信号处理器对原始数据进行处理和分析,根据光强的幅度和分布, 进行反卷积运算, 恢复光谱曲线, 计算出光信号的通道光功率。
在第二类光功率监测技术中,从光通信传输网络的信号中,提取出一定的 光功率, 传送到 TOF; TOF对输入的光信号进行滤波, 将一定带宽的光信号 透过, 再导入光电探测器中; 光电探测器进行光电转换, 对光信号采样, 将光 信号的振幅转换为电信号传送给信号处理与控制器;信号处理与控制器在接收 了采样数据后, 再发送指令, 改变 TOF的通带波长, 如此反复, 直到扫描完 所需的整个波长范围; 最后信号处理器将得到的采样数据进行分析和处理, 根 据光强的幅度和分布, 进行反卷积运算, 恢复光谱曲线, 从而计算出光信号的 通道光功率。
下面以示例的方式简要介绍现有的两类光功率监测技术利用反卷积恢复 出的光谱线计算光信号的通道功率的原理。 参考图 2, 图 2示出了被测信号为 50GHz间隔的 3种不同速率码型信号 ( lOGbps NRZ/40Gbps DQPSK/2.5Gbps NRZ )的典型光谱, 其中, 实线代表用高精度光谱仪测量出的真实光谱, "+" 符号为经过 TOF扫描后得到的原始展宽光谱, 虚线为经过反卷积算法恢复出 的光谱。在利用反卷积运算获得的展宽光谱后,在通道中心波长峰值点附近对 功率进行求和可以得到通道的光功率。从图 2中可以看出, 恢复出的光谱在有 信号的地方存在一个主峰, 而在没有信号的地方也存在旁瓣, 需要和信号予以 区分。 在固定带宽光通信传输网络中, 由于各通道的中心波长固定, 且带宽差 异不大,因此只需要对恢复出的光谱的中心波长位置处的一个主峰进行求和即 可获得该通道的光功率。
然而,当光通信传输网络从固定带宽光通信传输网络向可变带宽光通信传 输网络转变时, 由于中心波长不固定, 通道带宽不确定, 调制格式不确定, 而 且通道间保护间隔窄,导致很难从利用恢复出的光谱中区分出主峰和旁瓣计算 通道的功率,导致无论是采用第一类光功率监测技术还是第二类光功率监测技 术进行光功率监测时得到的监测结果误差偏大, 甚至导致光功率监测失败。 发明内容
鉴于现有的光功率监测技术存在的缺点,本发明提供一种光功率监测的方 案以提高光功率监测的精度和扩大光功率监测的应用范围。
本发明实施例提供一种光功率监测的方法, 包括:
测量被监测各通道的光信号经过滤波处理后的展宽光谱,得到所述被监测 各通道的光信号的实测展宽光谱;
构造复数种光信号功率组合,每一光信号功率组合表征了所述被监测各通 道的光信号的 H没光功率;
根据表征所述滤波处理的传递函数,针对所述每一光信号功率组合进行计 算,获得在该光信号功率组合下所述被监测各通道的光信号所对应的一个理论 展宽光谱;
将计算获得的复数个理论展宽光谱与所述实测展宽光谱进行比较,找出一 个最接近所述实测展宽光谱的理论展宽光谱;
将最接近所述实测展宽光谱的理论展宽光谱所对应的光信号功率组合中 的各假设光功率确定为相应被监测通道的光信号的实际光功率。 相应地, 本发明实施例还提供一种光功率监测装置, 包括:
测量模块, 用于测量被监测各通道的光信号经过滤波处理后的展宽光谱, 得到所述被监测各通道的光信号的实测展宽光谱;
构造模块, 用于构造复数种光信号功率组合,每一光信号功率组合表征了 所述被监测各通道的光信号的假设光功率;
计算模块, 用于根据表征所述滤波处理的传递函数,针对所述每一光信号 功率组合进行计算,获得在该光信号功率组合下所述被监测各通道的光信号所 对应的一个理论展宽光谱;
比较模块,用于将计算模块计算得到的复数个理论展宽光谱与所述实测展 宽光谱, 找出一个最接近所述实测展宽光谱的理论展宽光谱;
确定模块,用于将最接近所述实测展宽光谱的理论展宽光谱所对应的光信 号功率组合中的各 H没光功率确定为相应被监测通道的光信号的实际光功率。
本发明方案通过构造出被监测各通道的光信号的复数种光信号功率组合, 然后基于构造出的这复数种光功率组合进行计算,获得被监测各通道的光信号 对应的多种理论展宽光谱,再将多种理论展宽光谱与测得的实际展宽光谱进行 比较,找出最接近实际展宽光谱的理论展宽光谱, 将该最接近实际展宽光谱的 实际光功率, 由于无需通过反卷积运算恢复被监测各通道的光信号的光谱,避 免了恢复光谱和真实光谱存在较大差异造成的监测误差, 因此, 其可以提高光 功率监测的精度, 而且降低了对滤波器性能的要求, 从而降低了监测的成本, 尤其是, 其可以应用于可变带宽光通信传输网络, 而且还没有类似于现有的光 功率监测技术应用于可变带宽光通信传输网络时所存在的缺陷。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲, 在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1A为现有光通信传输网络的频谱分配示意图;
图 1B为未来光通信传输网络的频谱分配示意图;
图 2为光通信传输网络中传输的光信号对应的三类光谱的示意图; 图 3为本发明实施例 1中提供的光功率监测方法的流程示意图;
图 4A为本发明实施例 1中可调谐光滤波器的传递函数的示意图;
图 4B为本发明实施例 1中被监测三个通道的光信号的功率谱密度的示意 图;
图 4C为本发明实施例 1中被监测三个通道的光信号的实测展宽光谱; 图 4D为本发明实施例 1中对应于第一种光功率组合的三个通道的光信号 的光谱;
图 4E为本发明实施例 1中对应于第二种光功率组合的三个通道的光信号的 光普;
图 4F为本发明实施例 1中对应于第一种光功率组合的三个通道的光信号的 理论展宽光谱;
图 4G为本发明实施例 1中对应于第二种光功率组合的三个通道的光信号 的理论展宽光谱;
图 5A为本发明实施例 2提供的一种光功率监测装置的结构示意图; 图 5B为本发明实施例 2提供的另一种光功率监测装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
为使本发明的目的、技术方案和优点更加清楚, 下面将结合附图对本发明 实施方式作进一步地详细描述。
实施例 1
本发明实施例提供光功率监测的方法, 其流程如图 3所示, 该方法包括: 步骤 S31, 测量被监测各通道的光信号经过滤波处理后的展宽光谱, 得到 所述被监测各通道的光信号的实测展宽光谱。
在本步骤中, 滤波处理是为了将被监测各通道的光信号区分开来, 以方便 后续对每个通道的光信号的光谱进行测量。在进行滤波处理之前,被监测各通 道的光信号的光谱, 在本发明中称之为实际光谱; 在滤波处理时, 被监测各通 道的光信号受到滤波处理的影响,因此滤波处理之后的光信号的光谱称之为展 宽光谱, 而在本步骤中对滤波处理之后的光信号进行测量以获得该展宽光谱, 将测量获得的展宽光谱称之为实测展宽光谱。
本实施例中可以采用可调谐光滤波器来实现滤波处理,以将被监测各通道 的光信号区分开来。 可调谐光滤波器从时间上将不同的通道的光信号区分开 来, 然后测量每个通道的光信号通过可调谐光滤波器后的的展宽光谱, 将测量 得到的各个通道对应的数据拟合在一起就得到了被监测各通道的光信号通过 可调谐光滤波器后的实测展宽光谱。
除了采用可调谐光滤波器从时间上将不同的通道的光信号区分开来,还可 以采用多个不可调光滤波器从空间上将不同道的光信号区分开来, 例如, 可以 采用光栅和阵列探测器的组合将不同通道的光信号区分开来,光栅在这里起的 作用相当于多个滤波器的作用; 除了用光栅外, 还可以用一个分光器, 将需要 监测的光信号分成多份,每份再用一个可以滤过相应某一通道的信号的滤波器 进行滤波处理,从而将不同通道的光信号区分开来。 然后对区分开后的各个通 道的光信号进行展宽光谱的测量,拟合所有通道的数据得到被监测各通道的光 信号经过滤波器后的实测展宽光谱。
光栅可以将复用在一起的多个通道的光信号区分开来同时从不同的输出 端口输出单一通道的光信号,对于其中一个单一通道的光信号而言, 光栅将其 它通道的光信号进行了滤除, 所起的作用也就是一种滤波处理, 在本申请所要 求的保护范围之内。 另外, 解复用器的作用也类似于光栅, 可以将被监测各通 道的光信号从空间上区分开来,解复用器对被监测各通道的光信号所起的作用 也是一种滤波处理, 也应在本申请所要求的保护范围之内。
步骤 S32, 构造复数种光信号功率组合, 每一光信号功率组合表征了所述 被监测各通道的光信号的假设光功率。
在本步骤中,每一光信号功率组合表征的并不是被监测各通道的光信号的 实际光功率, 是对被监测各通道的光信号的功率情况的一种理论 H没。 例如, 一个通道的光信号的功率可能的变化范围为 0dB ~ ldB, 可以 H没该通道的光 信号的功率可能为 0dB, O. ldB, 0.2dB ..., 0.9dB , ldB。
在本步骤构造复数种光信号功率组合时,每一通道的光信号的功率的变化 步长可以为等于或者小于进行光功率监测的精度。 例如,在进行光功率监测时 要求达到的精度为 0.1dB, 在构造复数种光信号功率组合时每一通道的光信号 的功率变化步长为 0.1dB, 步长甚至可以更小例如 0.05dB, 这样可以获得更高 的测量精度。
步骤 S33, 根据表征所述滤波处理的传递函数, 针对所述每一光信号功率 组合进行计算,获得在该光信号功率组合下所述被监测各通道的光信号所对应 的一个理论展宽光谱。
在一实施例中, 步骤 S33具体可以包括:
针对每一光信号功率组合,根据预先获取的被监测各通道的光信号的模型 信息, 获得被监测各通道的光信号的对应于该光信号功率组合的光谱;
将每一光信号功率组合对应的光谱与表征所述滤波处理的传递函数进行 卷积运算,获得在该光信号功率组合下被监测各通道的光信号所对应的一个理 论展宽光"普。
在该实施中,被监测各通道的光信号的模型信息可以包括: 各通道的光信 号所采用的调制码型,各通道的光信号所在通道的中心波长,各通道的光信号 所在的通道的通道带宽。 或者, 被监测各通道的光信号的模型信息可以包括: 被监测各通道的光信号的光谱形状。 需要理解的是,被监测各通道的光信号的 模型信息并不仅限于上述信息,任何描述被监测各通道的光信号的特点的都可 以作为被监测各通道的光信号的模型信息。
步骤 S34, 将计算获得的复数个理论展宽光谱与所述实测展宽光谱进行比 较, 找出一个最接近所述实测展宽光谱的理论展宽光谱。
在一实施例中, 本步骤可以具体包括: 采用二范数优化或者一范数优化的 方法, 在计算获得的复数个理论展宽光谱中找出最接近步骤 S31中测量得到的 实测展宽光谱的理论展宽光谱。
步骤 S35, 将最接近所述实测展宽光谱的理论展宽光谱所对应的一个光信 号功率组合中的各 H没光功率确定为相应被监测通道的光信号的实际光功率。
需要说明的是, 步骤 S31与步骤 S32、 S33之间没有明确的顺序, 可以先依 次执行完步骤 S32、 S33 , 然后执行步骤 S31 ; 也可以在依次执行步骤 S32、 S33 的同时, 执行步骤 S31。
在一实施例中, 在步骤 S31之前还可以进一步包括如下步骤:
对被监测各通道的光信号经过滤波处理后的信号进行光电转换; 将光电转换后的信号进行模数转换。
此时, 步骤 S31具体是基于模数转换后的信号, 测量得到所述被监测各通 道的光信号的实测展宽光谱。
为了便于更好地了解本发明, 下面对本发明所依据的原理做进一步的解 释。
某一通道的光信号经过可调谐光滤波器后的展宽光谱 Ρ(^)可以表示为 P{k) (" H( ,k)S( )d ( 1 ) 其中, H( ,/ )是可调谐光滤波器在中心波长 k处的传递函数, S( )是输 入到可调谐光滤波器的光信号的光谱, 和 ^分别表示滤波器的上截止波长、 下截止波长。通过对滤波器输出的信号进行测量, 就可以获得被监测的光信号 经过滤波器后的展宽光谱 。
如果对 Ν个通道的光信号进行光功率监测, 这 Ν个通道各自传输的光信号 的功率谱密度分别为 μ)…^( ), 这 Ν个通道的中心波长分别为!;…! 。 针 对这被监测的 Ν个通道, 公式(1 ) 中的光谱 S(^)可以表示为:
N _
S^ ^S^ - X^ ( 2 ) 其中, w;表示第 i个通道的光信号的功率。
由于光谱是由一系列功率对波长的关系组成的, 因此, 可以把(2 ) 式表 达为离散矩阵形式, 表征 N个通道的光信号的光谱
S = sw ( 3 )
其中,
Figure imgf000010_0001
1…… N的离 散向量表达形式, w = [Wl, w2, …… wN]表示各个通道的光信号的功率。 矩阵 s为 N个通道的光信号的功率谱密度的矩阵表示, 矩阵 s的每一列是每一个通道的 光信号的功率谱密度的离散化表示, w为 N个通道的光信号功率的向量表达形 式。 H为可调谐光滤波器在不同中心波长处的传递函数的矩阵表达形式, H的 每一行代表可调谐光滤波器在一个中心波长上的传递函数, 公式(1 )也可以 离散化表达为:
Pl=HS=Hsw ( 4 )
其中, 对这被监测的 N个通道的光信号经过可调谐光滤波器后的信号进行 测量得到的实测展宽光谱为: P0, 其中 P0是展宽光谱的离散化的向量表达形 式。 在 (4 ) 式中, 矩阵 H与矩阵 S相乘体现的是卷积运算, 矩阵 s体现了被监 测各通道的光信号的模型信息。
由于并不知道被监测各通道的光信号的实际光谱是未知的,本发明是通过 构造出各通道的光信号的功率,进而依据构造的各通道的光信号的功率计算出 的各通道的光信号的光谱,由于计算出的各通道的光信号的光谱可能并不是被 监测的光信号的实际光谱,因此依据上述计算出的各通道的光信号的光谱得到 的理论展宽光谱与实测展宽光谱存在如下关系:
P0 = Pl+n = Hsw+n ( 5 )
其中, n为误差向量, 为各个通道的测量误差的向量表达形式, 其中每个 通道的功率误差为实测的功率与理论计算得到的功率之间的差异。
对于本发明而言, 可以构造 Q组光功率组合, 即有 Q个 w向量, 可以分别 表示为: Wl, w2 , ... ... wQ , 相应地可以计算得到 Q个理论展宽光谱, 可以表 示为: PI Pl2 , …… P1Q
根据公式(5 ) , 从 Pi Pl2 , ... ... P1Q†找出与 P0最接近的一个理论光 谱, 即找出一个理论展宽光谱使得其与 P0误差最小。 然后将与 P0最接近的理 论光谱所对应的一个光功率组合确定被监测各通道的光信号的实际功率。
从 Pi Pl2 , ... ... P1Q中找出最接近 P0的理论展宽光谱, 可以采用二范数 优化的方法, 求出使得最接近 P0的理论展宽光谱所对应的光功率组合: w = arg || p-HSw ||2
、、■' 除了采用二范数优化的方法外,还可以采用一范数优化的方法, 进而求出 最接近 P0的理论展宽光谱所对应的光功率组合: w = arg min || p-HSw ||丄 可以理解的是, 如何从 Pi Pl2 , ... ... P1Q中找出最接近 P0的理论展宽光 谱, 并不仅限于上述两种方法。
还需要说明的是,如果是采用的不是可调谐光滤波器, 而是采用多个滤波 器或者光栅将被监测的各通道的光信号从空间上区分开的话,前文原理中的矩 阵 H是对应不同通道的滤波器的传递函数的矩阵表示, 或者光栅的传递函数的 矩阵表示。
下面以监测三个通道的光信号的光功率具体为例, 结合图 4A ~ G, 对本发 明做进一步的阐述。可以理解的是, 下面的实施例只是为了便于更好的理解本 发明, 不应理解为对本发明的限定。
图 4A表示的是可调谐光滤波器的传递函数的示意图; 图 4B是被监测三个 通道的光信号的功率谱密度的示意图, 图 4B中三种功率谱密度的形状体现了 三个被监测通道的光信号的调制码型和带宽的不同; 图 4C是对被监测三个通 道的光信号的通过可调谐滤波器后的信号进行测量得到的实测展宽光谱。
在本实施例中,对被监测三个通道的光信号的功率进行假设, 构造了两种 光功率组合(每一种光功率组合表征了被监测三个通道的光信号的功率的一种 假设情况) , 依据前文提到的公式(2 )或(3 ) , 相应得到了被监测三个通道 的光信号的两种光谱, 如图 4D (对应于第一种光功率组合)和图 4E (对应第 二种光功率组合)所示。 基于图 4D所示光谱, 依据公式(4 )进行计算, 得到 了第一种光功率组合所对应的理论展宽光谱, 如图 4F所示; 基于图 4E所示光 谱, 依据公式(4 )进行计算, 得到了第二种光功率组合所对应的理论展宽光 谱, 如图 4G所示。 然后将图 4F和图 4G所示的理论展宽光谱与图 4C所示的实际 展宽光谱相比较, 发现图 4F所示的理论展宽光谱与图 3C所示的实际展宽光谱 更为接近, 因此,将与图 4F所对应的第一种光功率组合确定为表征了被监测三 个通道的光信号的实际功率。
本发明实施例提供的光功率监测的方法,通过构造出被监测各通道的光信 号的复数种光功率组合, 然后基于构造出的这复数种光功率组合进行计算, 获 得被监测各通道的光信号对应的多种理论展宽光谱,再将多种理论展宽光谱与 测得的实际展宽光谱进行比较, 找出最接近实际展宽光谱的理论展宽光谱,将 应被监测通道的光信号的实际光功率,由于无需反卷积运算恢复被监测各通道 的光信号的光谱, 避免了恢复光谱和真实光谱存在较大差异造成的监测误差, 因此, 其可以提高光功率监测的精度, 而且降低了对滤波器性能的要求, 从而 降低了监测的成本, 尤其是, 其可以应用于可变带宽光通信传输网络, 而且还 没有类似于现有的光功率监测技术应用于可变带宽光通信传输网络时所存在 的缺陷。
实施例 2
相应于实施例 1提供的光功率监测的方法, 本实施例提供一种光功率监测 的装置, 其结构如图 5A所示, 包括: 测量模块 41, 构造模块 42, 计算模块 43, 比较模块 44, 和确定模块 45。
测量模块 41, 用于测量被监测各通道的光信号经过滤波处理后的展宽光 谱, 得到被监测通道的光信号的实测展宽光谱。
构造模块 42, 用于构造复数种光信号功率组合。 其中, 每一光功率组合表 征了被监测各通道的光信号的假设光功率。
计算模块 43, 用于根据表征所述滤波处理的传递函数,针对所述每一光信 号功率组合进行计算,获得在该组光信号功率组合下所述被监测各通道的光信 号所对应的一个理论展宽光谱。
比较模块 44,用于将计算模块 43计算得到的复数个理论展宽光谱与测量模 块 41测量得到的实测展宽光谱进行比较,找出一个最接近所述实测展宽光谱的 理论展宽光谱。
确定模块 45,用于将比较模块 44找出的最接近所述实测展宽光谱的理论展 宽光谱所对应的光信号功率组合中的各假设光功率确定为相应被监测通道的 光信号的实际功率。
在一实施例中, 计算子模块 43具体可以包括:
信号谱获取子模块 431, 用于针对每一组光信号功率组合, 根据预先获取 的被监测各通道的光信号的模型信息,获取被监测各通道的光信号对应于该组 光信号功率组合的光谱; 其中, 被监测各通道的光信号的模型信息可以包括: 各通道的光信号所采用的调制码型,各通道的光信号所在通道的中心波长,各 通道的光信号所在通道的通道带宽; 或者,被监测各通道的光信号的模型信息 可以包括: 被监测各通道的光信号的光谱形状。 需要理解的是, 被监测各通道 的光信号的模型信息并不仅限于上述信息,任何描述被监测各通道的光信号的 特点的都可以作为被监测各通道的光信号的模型信息。
卷积计算子模块 432, 用于将每一光信号功率组合对应的光谱与表征所述 滤波处理的传递函数进行卷积运算,获得在该组光信号功率组合所述被监测各 通道的光信号所对应的一个理论展宽光谱。
在另一实施例中, 参见图 5B, 本发明提供的光功率监测装置在图 5A所示 结构装置的基础上, 还可以进一步包括: 滤波模块 46, 光电转换模块 47, 模数 转换模块 48。
滤波模块 46, 用于对被监测通道的信号进行滤波。 其中滤波器 46可以可调 谐光滤波器,也可以是不可调谐光滤波器,还可以起到类似于滤波器进行信号 分离功能的光栅或者光解复用器。
光电转换模块 47, 用于对滤波器 46输出的光信号进行光电转换。
模数转换模块 48, 用于对光电转换模块 47输出的信号进行模数转换。 测量模块 41即是基于模数转换模块 48输出的信号进行测量,获得被监测各 通道的光信号经过滤波后的实测展宽光谱。
本实施例中各模块的处理过程所依赖的原理可以参见实施例 1中的相关描 述, 此处不再赘述。
本发明实施例还提供一种处理器, 其用于执行以下方法: 测量被监测各通道的光信号经过滤波处理后的展宽光谱,得到所述被监测 各通道的光信号的实测展宽光谱;
构造复数种光信号功率组合,每一光信号功率组合表征了所述被监测各通 道的光信号的 H没光功率;
根据表征所述滤波处理的传递函数,针对所述每一光信号功率组合进行计 算,获得在该光信号功率组合下所述被监测各通道的光信号所对应的一个理论 展宽光谱;
将计算获得的复数个理论展宽光谱与所述实测展宽光谱进行比较,找出一 个最接近所述实测展宽光谱的理论展宽光谱;
将最接近所述实测展宽光谱的理论展宽光谱所对应的光信号功率组合中 的各假设光功率确定为相应被监测通道的光信号的实际光功率。
其中,根据表征所述滤波处理的传递函数,针对所述每一光信号功率组合 进行计算,获得在该光信号功率组合下所述被监测各通道的光信号所对应的一 个理论展宽光谱, 具体可以包括:
针对所述每一光信号功率组合,根据预先获取的被监测各通道的光信号的 模型信息, 获得所述被监测各通道的光信号的对应于该光信号功率组合的光 -if;
将每一光信号功率组合对应的光谱与表征所述滤波处理的传递函数进行 卷积运算,获得在该光信号功率组合下所述被监测各通道的光信号所对应的一 个理论展宽光谱。
其中,被监测各通道的光信号的模型信息可以包括: 各通道的光信号所采 用的调制码型,各通道的光信号所在通道的中心波长,各通道的光信号所在通 道的通道带宽; 或者, 被监测各通道的光信号的模型信息可以包括: 被监测各 通道的光信号的光谱形状。 需要理解的是,被监测各通道的光信号的模型信息 并不仅限于上述信息,任何描述被监测各通道的光信号的特点的都可以作为被 监测各通道的光信号的模型信息。
上述处理器可以应用于光功率监测, 具体可以是 DSP或者 CPU等器件。 本发明实施例提供的光功率监测的装置或者处理器,通过构造出被监测各 通道的光信号的复数种光功率组合,然后基于构造出的这复数种光功率组合进 行计算, 获得被监测各通道的光信号对应的多种理论展宽光谱, 再将多种理论 展宽光谱与测得的实际展宽光谱进行比较,找出最接近实际展宽光谱的理论展 宽光谱,将该最接近实际展宽光谱的理论光谱所对应的光功率组合中的各功率 确定为相应被监测通道的光信号的实际光功率,由于无需反卷积运算恢复被监 测各通道的光信号的光谱,避免了恢复光谱和真实光谱存在较大差异造成的监 测误差, 因此, 其可以提高光功率监测的精度, 而且降低了对滤波器性能的要 求,从而降低了监测的成本,尤其是,其可以应用于可变带宽光通信传输网络, 而且还没有类似于现有的光功率监测技术应用于可变带宽光通信传输网络时 所存在的缺陷。 通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发 明可借助软件加必需的通用硬件的方式来实现, 当然也可以通过硬件,但很多 情况下前者是更佳的实施方式。基于这样的理解, 本发明的技术方案本质上或 者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软 件产品存储在可读取的存储介质中, 如计算机的软盘, 硬盘或光盘等, 包括若 干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备 等)执行本发明各个实施例所述的方法。 以上所述, 仅为本发明的具体实施方 式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本 发明揭露的技术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范 围之内。 因此, 本发明的保护范围应所述以权利要求的保护范围为准。

Claims

权 利 要 求
1、 一种光功率监测的方法, 其特征在于, 包括:
测量被监测各通道的光信号经过滤波处理后的展宽光谱,得到所述被监测 各通道的光信号的实测展宽光谱;
构造复数种光信号功率组合,每一光信号功率组合表征了所述被监测各通 道的光信号的 H没光功率;
根据表征所述滤波处理的传递函数,针对所述每一光信号功率组合进行计 算,获得在该光信号功率组合下所述被监测各通道的光信号所对应的一个理论 展宽光谱;
将计算获得的复数个理论展宽光谱与所述实测展宽光谱进行比较,找出一 个最接近所述实测展宽光谱的理论展宽光谱;
将最接近所述实测展宽光谱的理论展宽光谱所对应的光信号功率组合中 的各假设光功率确定为相应被监测通道的光信号的实际光功率。
2、 如权利要求 1所述的方法, 其特征在于, 根据表征所述滤波处理的传递 函数,针对所述每一光信号功率组合进行计算, 获得在该光信号功率组合下所 述被监测各通道的光信号所对应的一个理论展宽光谱, 具体包括:
针对所述每一光信号功率组合,根据预先获取的被监测各通道的光信号的 模型信息, 获得所述被监测各通道的光信号的对应于该光信号功率组合的光 -if;
将每一光信号功率组合对应的光谱与表征所述滤波处理的传递函数进行 卷积运算,获得在该光信号功率组合下所述被监测各通道的光信号所对应的一 个理论展宽光谱。
3、 如权利要求 2所述的方法, 其特征在于, 所述被监测各通道的光信号的 模型信息包括: 各通道的光信号所采用的调制码型、各通道的光信号所在通道 的中心波长、 各通道的光信号所在通道的通道带宽。
4、 如权利要求 2所述的方法, 其特征在于, 所述被监测各通道的光信号的 模型信息包括被监测各通道的光信号的光谱形状。
5、 如权利要求 1至 4任一项所述的方法, 其特征在于, 所述将计算获得的 复数个理论展宽光谱与所述实测展宽光谱进行比较,找出一个最接近所述实测 展宽光谱的理论展宽光谱, 具体包括: 采用二范数优化或者一范数优化的方法,在所述计算获得的复数个理论展 宽光谱中找出一个最接近所述实测展宽光谱的理论展宽光谱。
6、 如权利要求 1至 4任一项所述的方法, 其特征在于, 所述构造复数种光 功率组合时,每一通道的光信号的功率变化步长为小于或等于进行光功率监测 时所要求的测量精度。
7、 如权利要求 1至 4任一项所述的方法, 其特征在于, 所述测量被监测各 通道的光信号经过滤波处理后的展宽光谱,得到所述被监测各通道的光信号的 实测展宽光谱, 之前进一步包括:
对被监测各通道的光信号经过滤波处理后的信号进行光电转换; 将光电转换后的信号进行模数转换;
所述测量被监测各通道的光信号经过滤波器后的展宽光谱具体为:基于模 数转换后的信号, 测量得到所述被监测各通道的光信号的实测展宽光谱。
8、 一种光功率监测的装置, 其特征在于, 所述装置包括:
测量模块, 用于测量被监测各通道的光信号经过滤波处理后的展宽光谱, 得到所述被监测各通道的光信号的实测展宽光谱;
构造模块, 用于构造复数种光信号功率组合,每一光信号功率组合表征了 所述被监测各通道的光信号的假设光功率;
计算模块, 用于根据表征所述滤波处理的传递函数,针对所述每一光信号 功率组合进行计算,获得在该光信号功率组合下所述被监测各通道的光信号所 对应的一个理论展宽光谱;
比较模块,用于将计算模块计算得到的复数个理论展宽光谱与所述实测展 宽光谱, 找出一个最接近所述实测展宽光谱的理论展宽光谱;
确定模块,用于将最接近所述实测展宽光谱的理论展宽光谱所对应的光信 号功率组合中的各 H没光功率确定为相应被监测通道的光信号的实际光功率。
9、 如权利要求 8所述的装置, 其特征在于, 所述计算模块具体包括: 信号谱获取子模块, 用于针对所述每一组光信号功率组合,根据预先获取 的被监测各通道的光信号的模型信息,获取被监测各通道的光信号的对应于该 组光信号功率组合的光谱; 卷积计算子模块,用于将每一光信号功率组合对应的光谱谱与表征所述滤 波处理的传递函数进行卷积运算,获得在该光信号功率组合下所述被监测各通 道的光信号所对应的一个理论展宽光谱。
10、 如权利要求 8或 9所述的装置, 其特征在于, 所述装置还进一步包括: 滤波模块, 用于对被监测各通道的光信号进行滤波处理, 以将各通道的光 信号区分开来;
光电转换模块, 用于对所述滤波模块输出的光信号进行光电转换; 模数转换模块, 用于对光转换模块输出的信号进行模数转换;
所述测量模块具体用于基于模数转换模块输出的信号,计算得到所述被监 测被监测各通道的光信号的实测光谱。
PCT/CN2011/072649 2011-04-12 2011-04-12 一种光功率监测的方法和装置 WO2011100908A2 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180001635.8A CN102301621B (zh) 2011-04-12 2011-04-12 一种光功率监测的方法和装置
PCT/CN2011/072649 WO2011100908A2 (zh) 2011-04-12 2011-04-12 一种光功率监测的方法和装置
EP11744266.5A EP2688228B1 (en) 2011-04-12 2011-04-12 Method and apparatus for monitoring optical power
US14/051,647 US9014556B2 (en) 2011-04-12 2013-10-11 Optical power monitoring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/072649 WO2011100908A2 (zh) 2011-04-12 2011-04-12 一种光功率监测的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/051,647 Continuation US9014556B2 (en) 2011-04-12 2013-10-11 Optical power monitoring method and apparatus

Publications (2)

Publication Number Publication Date
WO2011100908A2 true WO2011100908A2 (zh) 2011-08-25
WO2011100908A3 WO2011100908A3 (zh) 2012-03-15

Family

ID=44483378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072649 WO2011100908A2 (zh) 2011-04-12 2011-04-12 一种光功率监测的方法和装置

Country Status (4)

Country Link
US (1) US9014556B2 (zh)
EP (1) EP2688228B1 (zh)
CN (1) CN102301621B (zh)
WO (1) WO2011100908A2 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104735848B (zh) * 2013-12-20 2017-04-12 致茂电子股份有限公司 发光模块及其驱动方法
US9515733B2 (en) * 2015-03-05 2016-12-06 Fujitsu Limited Mitigation of spectral offset in an optical filter
CN106559133B (zh) 2015-09-28 2020-02-14 华为技术有限公司 光信号检测的方法及其网络设备
US10833584B2 (en) 2015-11-12 2020-11-10 Empower Semiconductor, Inc. Boot-strapping systems and techniques for circuits

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7154665B2 (en) * 2003-08-11 2006-12-26 Lucent Technologies Inc. Optical performance monitoring using a semiconductor optical amplifier
US7113666B2 (en) 2004-06-03 2006-09-26 Sunrise Telecom Incorporated Method and apparatus for spectrum deconvolution and reshaping
CN1881848A (zh) 2005-06-16 2006-12-20 中国科学院半导体研究所 光通道性能在线监测模块
JP5125080B2 (ja) * 2006-11-30 2013-01-23 富士通株式会社 光強度測定装置および光強度測定方法
CN100587420C (zh) * 2007-03-16 2010-02-03 电子科技大学 一种激光光谱测量方法
JP5274797B2 (ja) * 2007-08-07 2013-08-28 富士通株式会社 波長分割多重信号監視装置およびそれを具備する波長分割多重伝送装置
US8320758B2 (en) * 2008-05-01 2012-11-27 Aegis Lightwave, Inc. Channel monitor and method for estimating optical power
CN101552638A (zh) 2008-05-30 2009-10-07 福州高意通讯有限公司 一种光通道性能监测模块
JP2010112808A (ja) * 2008-11-05 2010-05-20 Hioki Ee Corp 光パワーメータ
JP5906870B2 (ja) * 2012-03-23 2016-04-20 富士通株式会社 光パワーモニタ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2688228A4

Also Published As

Publication number Publication date
CN102301621A (zh) 2011-12-28
US20140037287A1 (en) 2014-02-06
US9014556B2 (en) 2015-04-21
CN102301621B (zh) 2014-03-12
EP2688228A2 (en) 2014-01-22
EP2688228A4 (en) 2015-04-15
EP2688228B1 (en) 2016-08-24
WO2011100908A3 (zh) 2012-03-15

Similar Documents

Publication Publication Date Title
WO2011022889A1 (zh) 带内光信噪比的检测方法及装置
JP6442884B2 (ja) 光伝送システム、光伝送装置、及び、波長間隔測定装置
US8078054B2 (en) Apparatus and method for improving the tolerance of tone-based optical channel monitoring to stimulated Raman scattering
CN102946275B (zh) 一种实现高速dwdm***中osnr监测的方法和装置
WO2011100908A2 (zh) 一种光功率监测的方法和装置
WO2013185734A2 (zh) 相干光通信***中色散和非线性补偿方法及***
WO2015042875A1 (zh) 波长选择开关和控制波长选择开关中的空间相位调制器的方法
CN110212976B (zh) 一种基于人工神经网络的光信噪比监测方法
US9166701B1 (en) System and method for receiving optical signals
CN105547654B (zh) 一种基于光双边带调制的光器件测量方法及测量***
WO2013113208A1 (zh) 波分复用***的光信噪比监测装置及方法
US9054814B2 (en) Front end device and superposing signal detecting device
WO2012075902A1 (zh) 一种检测光信噪比的方法和装置
CN105071894B (zh) 一种基于相位追踪的非正交偏振复用相位调制信号传输方法
CN110730034A (zh) 频偏处理方法、装置、设备及存储介质
WO2021185231A1 (zh) 一种光开关和基于光开关的光性能检测方法
CN109474336B (zh) 一种光信噪比监测装置及监测方法
TW200415875A (en) Method and apparatus for testing network data signals in a wavelength division multiplexed optical network
JP2001235639A (ja) 波長値を比較し、多重化するための装置および単色源を監視するためのシステム
CN101860397B (zh) 连续平衡路径补偿的光电接收机及其补偿方法
JP4680223B2 (ja) 波長分散測定装置
CN114726436B (zh) 一种波分复用***波长通道监测方法及装置
Nakajima et al. Over-100-spatial-channel programmable spectral processor for SDM signal monitoring
CN104009797B (zh) 基于数字非线性处理的色散损伤监测方法
JP2001356073A (ja) 波長監視のための装置およびシステム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001635.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744266

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011744266

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011744266

Country of ref document: EP