WO2011093357A1 - インプリント用モールド及びその製造方法 - Google Patents

インプリント用モールド及びその製造方法 Download PDF

Info

Publication number
WO2011093357A1
WO2011093357A1 PCT/JP2011/051550 JP2011051550W WO2011093357A1 WO 2011093357 A1 WO2011093357 A1 WO 2011093357A1 JP 2011051550 W JP2011051550 W JP 2011051550W WO 2011093357 A1 WO2011093357 A1 WO 2011093357A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
fine pattern
pattern forming
forming layer
thickness
Prior art date
Application number
PCT/JP2011/051550
Other languages
English (en)
French (fr)
Inventor
栄 中塚
雨宮 勲
生 木村
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to JP2011551888A priority Critical patent/JP5677987B2/ja
Priority to US13/575,854 priority patent/US20120328728A1/en
Priority to SG2012053609A priority patent/SG182619A1/en
Priority to KR1020127022474A priority patent/KR20120139711A/ko
Publication of WO2011093357A1 publication Critical patent/WO2011093357A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • B29C59/046Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts for layered or coated substantially flat surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Definitions

  • the present invention relates to an imprint mold and a method for manufacturing the same, and more particularly to an imprint mold for forming a fine pattern on the mold surface and a method for manufacturing the same.
  • stepper by using light and an electron beam having a wavelength shorter than that of visible light from an ultraviolet laser or an extreme ultraviolet light source, processing from the micron order to several tens of nanometers becomes possible.
  • micron-order processing takes a considerable amount of time to form a pattern. For this reason, the time required for nano-order microfabrication further increases.
  • an ultraviolet laser or an extreme ultraviolet light source is used, the apparatus becomes large and the cost increases. Further, the technique of performing microfabrication by exposure / development with an electron beam is sequential processing, and the work efficiency is lowered.
  • nanoimprint technology is a method for transferring a fine pattern onto a material to be transferred like a stamp using a mold on which a fine pattern is formed.
  • nanoimprint technology a fine structure of several tens of nm level can be manufactured at a low cost with good reproducibility and in large quantities.
  • thermal imprinting is a method in which a mold on which a fine pattern is formed is pressed against a thermoplastic resin as a molding material while being heated, and then the molding material is cooled and released to transfer the fine pattern.
  • Optical imprinting is a method in which a mold on which a fine pattern is formed is pressed against a photocurable resin that is a molding material, irradiated with ultraviolet light, and then the molding material is released to transfer the fine pattern. is there.
  • This fine pattern formation includes direct drawing on the fine pattern formation layer by a blue laser or electron beam (EB), or performing etching processing on the fine pattern formation layer after drawing and development of the fine pattern on the resist. Means are used.
  • EB electron beam
  • the drawing apparatus usually has an autofocus function, and if it is a nano-order flaw, it is difficult to cause a focus error. However, when a micron-order scratch occurs, a focus error may occur even if the autofocus function is used. Due to this focus error, the fine pattern stored in the drawing apparatus may not be accurately reproduced on the imprint mold.
  • An object of the present invention is to provide an imprint mold having a fine pattern with high pattern accuracy and a method for manufacturing the same, in which the surface roughness of the substrate is reduced.
  • the first aspect of the present invention is characterized in that a planarizing layer having a layer made of a planarizing agent is provided on a substrate, and a layer having a fine pattern is provided on the planarizing layer.
  • the base material is a cylindrical base material made of stainless steel
  • the planarizing agent is polysilazane.
  • the layer having the fine pattern is a fine pattern forming layer, and the fine pattern forming layer includes a chromium oxide layer.
  • the layer having the fine pattern is a fine pattern forming layer, and the fine pattern forming layer includes a chromium nitride layer.
  • the chromium nitride layer has a thickness of 20 nm or more, and the total thickness of the fine pattern forming layer is 20 nm or more and 1 ⁇ m or less.
  • the layer having the fine pattern is a fine pattern forming layer, and the fine pattern forming layer is a chromium oxide layer and a nitriding layer.
  • a chromium layer is included, the thickness of the chromium nitride layer is 20 nm or more, and the total thickness of the fine pattern forming layer is 20 nm or more and 1 ⁇ m or less.
  • the layer having the fine pattern is a fine pattern forming layer, and the fine pattern forming layer includes an amorphous carbon layer.
  • a seventh aspect of the present invention is a method for producing an imprint mold, comprising a substrate surface planarization step of applying a planarizing agent on a substrate.
  • the base material is a cylindrical base material made of stainless steel, and the planarizing agent is polysilazane.
  • a fine pattern forming layer is formed on the planarizing layer having a layer made of a planarizing agent after the substrate surface planarizing step.
  • the fine pattern forming layer includes a chromium oxide layer, and the thickness of the chromium oxide layer is greater than 100 nm. The total thickness is more than 100 nm and not more than 1 ⁇ m.
  • the fine pattern forming layer includes a chromium nitride layer, and the chromium nitride layer has a thickness of 20 nm or more.
  • the total thickness of the layer is 20 nm or more and 1 ⁇ m or less.
  • the fine pattern forming layer includes a chromium oxide layer and a chromium nitride layer, and the chromium nitride layer has a thickness of 20 nm or more,
  • the total thickness of the fine pattern forming layer is 20 nm or more and 1 ⁇ m or less.
  • the fine pattern forming layer includes an amorphous carbon layer, and the thickness of the amorphous carbon layer is greater than 50 nm, and the fine pattern forming layer is The thickness of is greater than 50 nm and 1 ⁇ m or less.
  • blue laser drawing is performed in the drawing step.
  • the surface roughness of the substrate is reduced, and as a result, an imprint mold having a fine pattern with high pattern accuracy and a method for manufacturing the same can be provided.
  • the fine pattern provided in the master mold or sub master mold serving as the original mold has high pattern accuracy.
  • This high pattern accuracy is largely caused by the surface roughness of the substrate, that is, the flatness of the substrate.
  • the present inventor has conceived of providing a layer for forming a fine pattern after applying a planarizing agent on a base material which is a basic portion of an imprint mold.
  • a planarizing agent on a base material which is a basic portion of an imprint mold.
  • the present inventor has conceived that a layer that is more opaque than the leveling agent is provided on at least a part of the fine pattern forming layer 8 on the leveling layer having the layer made of the leveling agent. .
  • the focus at the time of fine pattern drawing can be surely adjusted on the opaque layer.
  • the situation as shown in FIG. 3B is suppressed, that is, even when the bent base material is flattened by the flattening layer, the focus at the time of drawing the fine pattern is not the flattening layer. It has been found that it is possible to suppress passing and fitting onto a rough surface substrate.
  • flatness is an index indicating the surface roughness of the mold substrate, and is determined from the geometric plane of the surface of the portion that should not have scratches. This indicates the size of the deviation and is an index defined in JIS B 0182.
  • FIG. 1 is a diagram schematically showing a manufacturing process of an imprint mold 1 (hereinafter also simply referred to as a mold 1) in the present embodiment.
  • FIG. 1A shows a mold substrate 2 and
  • FIG. 1B shows a state in which a planarizing layer 6 made of a planarizing agent is provided on the mold substrate 2.
  • FIG. 1C shows a state in which the adhesion layer 7, the fine pattern forming layer 8, and the resist layer 9 are laminated in this order on the planarizing layer 6, and
  • FIG. Shows a state in which a fine pattern is drawn and developed.
  • FIG. 1E shows a state in which the fine pattern forming layer 8 is etched, and FIG.
  • FIG. 1F shows a state in which the mold 1 is completed by cleaning after the etching.
  • a planarizing layer 6 is provided on the mold substrate 2, and an adhesion layer 7 and a fine pattern forming layer 8 on which a fine pattern is formed are formed on the planarized layer 6.
  • the provided imprint mold is obtained.
  • FIGS. 1 and 2 show an overview of the imprint mold completed through these processes.
  • 2A and 2B are schematic views of the imprint mold according to the present embodiment, in which FIG. 2A is a perspective view, FIG. 2B is a front view, and FIG. 2C is a cross-sectional view of the A-A ′ portion of FIG.
  • FIGS. 1 and 2 are schematic views of the imprint mold according to the present embodiment, in which FIG. 2A is a perspective view, FIG. 2B is a front view, and FIG. 2C is a cross-sectional view of the A-A ′ portion of FIG.
  • the imprint mold and the manufacturing method thereof according to the present embodiment will be described in detail with reference to FIGS. 1 and 2.
  • the mold substrate 2 may be of any composition as long as it can be used as the imprint mold 1.
  • a base material made of an alloy such as metal or stainless steel can be mentioned.
  • glass such as quartz, SiC, silicon wafer, a silicon wafer provided with a SiO 2 layer, graphite, glassy carbon, carbon fiber reinforced plastic (CFRP) carbon-based material, and the like can be given.
  • the shape of the mold substrate 2 is not limited as long as it can be used as an imprint mold.
  • the shape of the mold base 2 includes a disk-shaped base, a cylindrical base, and the like. If it is disk shape, when apply
  • the cylindrical shape is suitable for mass production because imprinting by a roller method is possible.
  • the shape of the mold base 2 may be other than a disk shape, and may be a rectangle, a polygon, or a semicircular shape.
  • examples of the shape of the mold base 2 include a polygonal shape such as a column, a triangular column, and a quadrangular column.
  • the column or the cylinder is finer continuously and uniformly on the material to be transferred. It is more preferable because the pattern can be transferred.
  • whatever shape the mold substrate 2 has, what is used as a basis for manufacturing an imprint mold is referred to as a “substrate”.
  • the mold base 2 made of cylindrical stainless steel having a hollow central portion. As shown in FIG. 2, the mold base 2 has left and right mold end faces, a mold outer peripheral face 20, and a rotating shaft 3 that is not formed physically.
  • a layer having a fine pattern is not directly formed on the surface of the mold base 2 as in the prior art, but is made of a planarizing agent whose surface is flattened by a planarizing agent.
  • a layer (hereinafter also referred to as a flattening layer 6) is formed on the mold substrate 2.
  • this substrate surface flattening step will be described in detail.
  • a leveling agent examples include conventionally used liquid flattening film forming agents, and specific examples include polysilazane, methylsiloxane, and metal alkoxide.
  • the above-described materials may be used as the material constituting the planarizing layer 6, or a mixture of the materials exemplified above may be used.
  • the mold base 2 is held in a state where the rotary shaft 3 is horizontal, and a container containing a flattening agent is prepared below the mold base 2. Thereafter, the mold base 2 is lowered, and a part of the outer peripheral surface of the mold base 2 is brought into contact with the planarizing agent. And a part of mold base material 2 is immersed in a planarizing agent.
  • the mold base 2 is brought into contact with the planarizing agent in parallel to the rotation axis direction. By making them contact in parallel, it is possible to prevent a difference in the degree of application between the left and right mold end faces in the immersed portion of the mold base 2. As a result, unevenness is not caused in the application of the flattening agent.
  • the mold base 2 is rotated by the plurality of rollers 107 in a state where the planarizing agent and the mold base 2 are in contact with each other in parallel to the rotation axis direction, and the mold outer peripheral surface 20 is thus rotated.
  • the leveling agent is applied (FIG. 1B).
  • a part for rotating the mold base 2 with the roller 107 may be separately provided on the mold base 2.
  • the rotation speed and rotation speed at this time are set so that the planarizing agent can be sufficiently applied to the mold base 2.
  • the adhesion layer 7, the fine pattern forming layer 8, and the resist layer 9 are laminated in this order on the planarizing layer 6 made of the planarizing agent applied as described above (FIG. 1 (c). )). Thereafter, the resist layer 9 is subjected to electron beam exposure and etching is performed (FIGS. 1D and 1E). Thus, a fine pattern is formed on the fine pattern forming layer 8 on the mold substrate 2 (FIG. 1 (f)).
  • the adhesion layer 7 provided on the planarizing layer 6 this is for bonding the fine pattern forming layer 8 and the planarizing layer 6 and eventually the mold substrate 2. Any material can be used as long as it is used as the adhesion layer 7, but an amorphous silicon layer is preferable. If the fine pattern forming layer 8 is formed on the planarizing layer 6, the adhesion layer 7 may not be provided as long as the fine pattern forming layer 8 can be adhered well. In the present embodiment, a case where the adhesion layer 7 is provided on the planarizing layer 6 will be described.
  • the fine pattern forming layer 8 provided on the adhesion layer 7, in the present embodiment it is preferable that at least a part of the fine pattern forming layer 8 is an opaque layer. Furthermore, the transmittance at a wavelength of 405 nm of the entire fine pattern forming layer 8 having an opaque layer is preferably within an appropriate range. As shown in FIG. 3A, when the laser beam 109 is irradiated from the upper part of the mold base 2 on which the fine pattern forming layer 8 is laminated, the focus of the laser beam 109 at the time of pattern drawing is set to the opaque layer. Can be adjusted to the top reliably. More specifically, the situation shown in FIG.
  • the “opaque layer” in the present embodiment refers to focusing on the opaque layer when pattern drawing is focused on the substrate on which the fine pattern forming layer 8 is laminated.
  • the opaque layer mentioned here examples include a chromium oxide layer (CrOx), a chromium nitride layer (CrNx), and an amorphous carbon layer. These layers may be used as the fine pattern forming layer 8 itself.
  • the thickness of the chromium oxide layer is larger than 100 nm, and the total thickness of the fine pattern forming layer 8 is larger than 100 nm and 1 ⁇ m or less. Still preferred. If it is 100 nm or more, sufficient focusing can be performed on the chromium oxide layer. If it is 1 ⁇ m or less, it can withstand practical use during pattern transfer.
  • the thickness of the chromium nitride layer is 20 nm or more, and the total thickness of the fine pattern forming layer 8 is 20 nm or more and 1 ⁇ m or less. Is preferred.
  • the thickness of the chromium nitride layer is more preferably 30 nm or more.
  • the thickness of the chromium nitride layer is 20 nm or more, and the total thickness of the fine pattern forming layer 8 is 20 nm or more and 1 ⁇ m or less.
  • the chromium nitride layer since the chromium nitride layer is more opaque than the chromium oxide layer, the chromium nitride layer mainly serves as an opaque layer. Therefore, as a stacking order, it is preferable to form a chromium nitride layer on the chromium oxide layer.
  • the focus of the laser beam 109 can be surely adjusted to the upper chromium nitride layer, and a precise pattern can be formed in the subsequent etching of the chromium oxide layer. That is, it is preferable to dispose a relatively opaque layer as an upper layer in the fine pattern forming layer 8.
  • an amorphous carbon layer may be used. Since the amorphous carbon layer is not as highly transparent as the chromium oxide layer, it is possible to prevent the mold base 2 from being focused on when drawing a fine pattern.
  • the thickness of the amorphous carbon layer is preferably greater than 50 nm, and the total thickness of the fine pattern forming layer 8 is preferably greater than 50 nm and 1 ⁇ m or less.
  • the focus of the laser beam 109 can be surely adjusted to the fine pattern forming layer 8 formed on the surface of the planarizing layer 6. Further, if the thickness of the fine pattern forming layer 8 is within the above range, the fine pattern forming layer 8 can be reliably focused and a fine pattern having an appropriate aspect ratio can be formed. .
  • a resist layer 9 for blue laser drawing is formed on the fine pattern forming layer 8.
  • the resist layer 9 for blue laser drawing may be a heat-sensitive material that changes its state due to a heat change, and may be suitable for the subsequent etching process. Further, a photosensitive material may be used. At this time, an inorganic resist layer made of tungsten oxide (WOx) having a composition gradient is more preferable from the viewpoint of improving resolution.
  • WOx tungsten oxide
  • the fine pattern forming layer 8 is etched using the resist layer 9 as an etching mask.
  • the layer 8 for fine pattern formation in which the fine pattern was formed can be formed with respect to the mold base material 2 made of stainless steel.
  • This etching process may use a conventional method. For example, dry etching with chlorine gas and oxygen gas can be mentioned. By this etching process, as shown in FIG.1 (e), the mold base material 2 with the resist layer 9 which has a desired fine pattern is obtained.
  • the resist layer 9 is removed by performing alkali cleaning and vapor drying with isopropanol on the mold substrate 2 with the resist layer 9. Thereby, as shown in FIG.1 (f), the mold 1 by which the desired fine pattern was transcribe
  • the fine pattern at this time may be a pattern in a range from nano-order to micro-order, but more preferably a nano-order periodic structure of several nm to several hundred nm.
  • Specific examples are a line-and-space pattern and a fine protrusion structure composed of a plurality of fine irregularities.
  • Examples of the cross-sectional shape include a triangle, a trapezoid, and a square in the case of a one-dimensional periodic structure.
  • the shape of the fine protrusions is not limited to an accurate cone (bus line is straight) or pyramid (ridge line is straight), as long as it is tapered in consideration of extraction after imprinting.
  • the ridgeline shape may be a curved surface with a side surface bulging outward. Specific examples include a bell, a cone, a truncated cone, and a cylinder.
  • the period in this periodic structure is also referred to as a pitch, and indicates the distance between the fine protrusion vertices.
  • the tip portion may be flattened or rounded in consideration of moldability and breakage resistance.
  • this fine protrusion may produce a continuous fine protrusion with respect to one direction.
  • the imprint mold according to the present embodiment is configured. According to the embodiment, the following effects can be obtained. That is, a fine pattern is formed on a flat surface by applying a flattening agent on a base material that is a base part of an imprint mold to form a flattened layer and forming a fine pattern forming layer on the flattened layer. can do. As a result, it is possible to focus on a flat surface made of a flattening agent when drawing a fine pattern. Furthermore, the fine pattern forming layer 8 in which a fine pattern is formed can be formed on the surface having high flatness. As a result, a fine pattern can be formed with high accuracy.
  • an opaque fine pattern forming layer on the flattening layer containing the flattening agent, it is possible to reliably focus on the opaque layer when drawing a fine pattern. That is, it is possible to suppress the focus at the time of drawing a fine pattern from passing through the flattening layer onto the rough surface base material even though the bent base material is flattened by the flattening layer. As a result, a fine pattern forming layer can be formed with higher accuracy.
  • Embodiment 2 a highly transparent substance is used as the leveling agent.
  • an opaque material is used as the leveling agent.
  • the surface of the mold base 2 originally has a certain level of flatness, such as a silicon wafer, even if a highly transparent substance is used as the leveling agent, On top of this, a resist layer 9 having a fine pattern can be directly formed and used as an imprint mold.
  • the leveling agent having opacity include a leveling agent to which a dye additive is added.
  • a transparent material for the planarizing agent, for example, a configuration in which a chromium layer is sandwiched between two layers made of polysilazane may be used as the planarizing layer 6.
  • Example 1 An Example is shown and this invention is demonstrated concretely.
  • a leveling agent was prepared.
  • As the leveling agent a solution in which 20% of polysilazane was dissolved in dibutyl ether was used.
  • the leveling agent container containing the polysilazane solution was disposed below the mold base 2.
  • the mold substrate 2 was brought into contact with the polysilazane solution. At this time, a part of the outer peripheral surface 20 of the mold was immersed in the flattening agent at a depth of 0.3 mm or less from the liquid surface of the flattening agent.
  • the mold was rotated three times at a rotation speed of 32 rotations / minute by a separately provided rotating shaft 3, and the polysilazane solution was applied to the entire outer peripheral surface 20 of the mold.
  • the polysilazane solution was applied onto the cylindrical mold base 2 so that the planarizing layer 6 had a thickness of 1.5 ⁇ m. Then, the cylindrical mold base material 2 and the planarizing agent were pulled apart and dried while rotating the mold base material 2.
  • an adhesion layer 7, a fine pattern forming layer 8 which is itself opaque, and an inorganic resist layer 9 were laminated in this order.
  • an amorphous silicon layer was formed to a thickness of 30 nm.
  • An amorphous carbon layer having a thickness of 200 nm was formed as the fine pattern forming layer 8.
  • a tungsten oxide (WOx) layer was formed to a thickness of 20 nm by sputtering.
  • the flow rate ratio of Ar: O 2 was continuously changed by using an ion beam sputtering method to incline the oxygen concentration in the inorganic resist layer 9. Further, Rutherford Back Scattering Spectroscopy (RBS) was used for composition analysis in the inorganic resist layer 9.
  • RBS Rutherford Back Scattering Spectroscopy
  • a fine pattern composed of line and space was drawn on the inorganic resist layer 9 using a blue laser drawing apparatus (wavelength: 405 nm). After drawing, an etching process and a cleaning process were performed to produce a mold 1.
  • Example 2 ⁇ Examples 2 to 9>
  • the mold 1 was prepared in the same manner as in Example 1 except that the type of the mold base 2 and the type and thickness of the fine pattern forming layer 8 were changed. Produced.
  • the fine pattern forming layer 8 was not provided, but a fine pattern drawn on the inorganic resist layer 9 and developed was used as a completed mold. Further, in Example 6, a fine pattern composed of dots instead of lines and spaces was drawn.
  • N 2 30: 70 (flow rate ratio).

Landscapes

  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

 基材上に平坦化剤よりなる層を有する平坦化層が設けられ、前記平坦化層上に微細パターン形成用層を有する層が設けられたインプリント用モールドを提供する。

Description

インプリント用モールド及びその製造方法
 本発明は、インプリント用モールド及びその製造方法に関し、特に、モールド表面に微細パターンを形成するインプリント用モールド及びその製造方法に関する。
 従来、機械加工の分野や電子回路の分野では、ミクロンオーダーの加工がなされているが、従来はその加工の制御等の際に可視光を用いるのが一般的であった。しかし可視光では、ミクロンオーダーの制御しかできないという限界があった。
 これに対し、ステッパと呼ばれる装置において、紫外線レーザーや極紫外線光源可視光より短い波長の光や電子線を用いることにより、ミクロンオーダーから数10nmのナノオーダーの加工が可能になった。
 その一方で、ミクロンオーダーの加工ですら、パターンを形成するのに相当の時間を要する。そのため、ナノオーダーの微細加工ではさらに要する時間が増加する。しかも、紫外線レーザーや極紫外線光源を用いる場合、装置も大掛かりになり、コストも増大する。また、電子線で露光・現像して微細加工を行う手法は逐次加工であり、作業効率が下がってしまう。
 他方、通常の微細なパターン転写として、通常光を用いてガラス板上に形成されたマスクパターンを露光により転写する手法、すなわちフォトリソグラフィー法が従来の手法として存在する。しかしながら、フォトリソグラフィーを用いても、光の解像度に依存することになり、ナノオーダーの微細パターンを形成する際には限界がある。
 この問題に対し、近年、微細パターンが形成されたモールドを用いて、被転写材に微細パターンを判子のように転写する方法であるナノインプリント技術に注目が集まっている。このナノインプリント技術により、数10nmレベルという微細構造を安価に再現性良くしかも大量に作製できる。
 なお、インプリント技術は大きく分けて2種類あり、熱インプリントと光インプリントとがある。熱インプリントは、微細パターンが形成されたモールドを被成形材料である熱可塑性樹脂に加熱しながら押し付け、その後で被成形材料を冷却・離型し、微細パターンを転写する方法である。また、光インプリントは、微細パターンが形成されたモールドを被成形材料である光硬化性樹脂に押し付けて紫外光を照射し、その後で被成形材料を離型し、微細パターンを転写する方法である。
 どちらのインプリント法を用いるにしても、より細かいパターンを、より大きな被成形材料上に転写することが必要となる。これを行うために用いられる方式としては、モールドと被成形材料とを一度にプレスする一括転写方式や、平板モールドを使用して上記のインプリント法を繰り返し行って最終的に大面積の基材に微細パターンを転写するステップ&リピート方式、ローラー方式などが挙げられる(例えば特許文献1および2参照)。
特開2005-5284号公報 特開2008-73902号公報
 微細パターン転写のためには、元型となるインプリント用モールドに微細パターンが設けられている必要がある。この微細パターン形成には、青色レーザーや電子ビーム(EB)などによる微細パターン形成用層への直接描画や、レジストに対する微細パターンの描画・現像後に微細パターン形成用層へのエッチング処理を行う等の手段が用いられている。
 この微細パターンの描画を行う際には、通常、基材表面に焦点を合わせた後にレーザー照射を行う。ところが、基材表面に傷が存在する場合、すなわち基材表面の平坦度が低い場合、平坦でない基材表面に焦点を合わせることになる。その場合、微細パターンの描画を行う際に、微細パターンの形状再現性が低下するおそれがある。
 確かに、通常、描画装置にはオートフォーカス機能が搭載されており、ナノオーダーの傷ならばフォーカスエラーを起こしにくい。しかしながら、ミクロンオーダーの傷になると、オートフォーカス機能を用いたとしてもフォーカスエラーが生ずるおそれがある。このフォーカスエラーのせいで、描画装置に記憶された微細パターンをインプリント用モールド上に精度良く再現することができなくなるおそれがある。
 本発明の目的は、基材の表面粗さが軽減され、その結果、高いパターン精度の微細パターンを有するインプリント用モールドおよびその製造方法を提供することにある。
 本発明の第1の態様は、基材上に平坦化剤よりなる層を有する平坦化層が設けられ、前記平坦化層上には微細パターンを有する層が設けられたことを特徴とする。
 本発明の第2の態様は、第1の態様に記載の発明において、前記基材はステンレス鋼よりなる円筒形基材であり、前記平坦化剤はポリシラザンであることを特徴とする。
 本発明の第3の態様は、第1または第2の態様に記載の発明において、前記微細パターンを有する層は、微細パターン形成用層であり、前記微細パターン形成用層は酸化クロム層を含み、前記酸化クロム層の厚さは100nmより大きく、前記微細パターン形成用層全体の厚さは100nmより大きく1μm以下であることを特徴とする。
 本発明の第4の態様は、第1または第2の態様に記載の発明において、前記微細パターンを有する層は、微細パターン形成用層であり、前記微細パターン形成用層は窒化クロム層を含み、前記窒化クロム層の厚さは20nm以上であり、前記微細パターン形成用層全体の厚さは20nm以上であり1μm以下であることを特徴とする。
 本発明の第5の態様は、第1または第2の態様に記載の発明において、前記微細パターンを有する層は、微細パターン形成用層であり、前記微細パターン形成用層は酸化クロム層および窒化クロム層を含み、前記窒化クロム層の厚さは20nm以上であり、前記微細パターン形成用層全体の厚さは20nm以上であり1μm以下であることを特徴とする。
 本発明の第6の態様は、第1または第2の態様に記載の発明において、 前記微細パターンを有する層は、微細パターン形成用層であり、前記微細パターン形成用層はアモルファスカーボン層を含み、前記アモルファスカーボン層の厚さは50nmより大きく、前記微細パターン形成用層の厚さは50nmより大きく1μm以下であることを特徴とする。
 本発明の第7の態様は、基材上に平坦化剤を塗布する基材表面平坦化工程を有することを特徴とするインプリント用モールドの製造方法である。
 本発明の第8の態様は、第7の態様に記載の発明において、前記基材はステンレス鋼よりなる円筒形基材であり、前記平坦化剤はポリシラザンであることを特徴とする。
 本発明の第9の態様は、第7または第8の態様に記載の発明において、前記基材表面平坦化工程後に、平坦化剤よりなる層を有する平坦化層上に、微細パターン形成用層を有する層を設け、その上に更に微細パターン形成用のレジスト層を設ける工程と、前記レジスト層に対して微細パターンを描画して現像する描画工程と、前記描画工程後、微細パターン形成用層をエッチングして微細パターンを形成する工程と、を有することを特徴とする。
 本発明の第10の態様は、第9の態様に記載の発明において、前記微細パターン形成用層は酸化クロム層を含み、前記酸化クロム層の厚さは100nmより大きく、前記微細パターン形成用層全体の厚さは100nmより大きく1μm以下であることを特徴とする。
 本発明の第11の態様は、第9の態様に記載の発明において、前記微細パターン形成用層は窒化クロム層を含み、前記窒化クロム層の厚さは20nm以上であり、前記微細パターン形成用層全体の厚さは20nm以上であり1μm以下であることを特徴とする。
 本発明の第12の態様は、第9の態様に記載の発明において、前記微細パターン形成用層は酸化クロム層および窒化クロム層を含み、前記窒化クロム層の厚さは20nm以上であり、前記微細パターン形成用層全体の厚さは20nm以上であり1μm以下であることを特徴とする。
 本発明の第13の態様は、第9の態様に記載の発明において、前記微細パターン形成用層はアモルファスカーボン層を含み、前記アモルファスカーボン層の厚さは50nmより大きく、前記微細パターン形成用層の厚さは50nmより大きく1μm以下であることを特徴とする。
 本発明の第14の態様は、第9の態様に記載の発明において、前記描画工程においては、青色レーザー描画を行うことを特徴とする。
 本発明によれば、基材の表面粗さが軽減され、その結果、高いパターン精度の微細パターンを有するインプリント用モールドおよびその製造方法を提供できる。
本実施形態におけるインプリント用モールドの製造工程を概略的に示す図である。 本実施形態におけるインプリント用モールドの概略図であり、(a)は斜視図、(b)は正面図、(b)は(b)のA-A’部分の断面図である。 微細パターン描画の際のフォーカス合わせについて説明した概略図であり、(a)は本実施例、(b)は従来例における概略図である。 本実施例における微細パターンの精度を示す写真図である。 本実施例における微細パターンの精度を示す写真図である。 本実施例における微細パターンの精度を示す写真図である。 本実施例における微細パターンの精度を示す写真図である。 本実施例における微細パターンの精度を示す写真図である。 本実施例における微細パターンの精度を示す写真図である。
 先に述べたように、インプリントを行う際には、元型となるマスターモールドまたはサブマスターモールドに設けられた微細パターンが高いパターン精度を有しているか否かがポイントとなる。そして、この高いパターン精度は、基材の表面粗さ、すなわち基材の平坦度に起因するところが大きい。
 このような状況下において本発明者は、インプリントモールドの基礎部分となる基材上に平坦化剤を塗布した後、微細パターン形成用層を設けることを想到した。これにより、微細パターン描画の際に、平坦化剤からなる平坦な表面上にフォーカスを合わせることができることを見出した。そして、高い平坦度を有する表面上に微細パターンを有する微細パターン形成用層を形成することができ、その結果、高い精度で微細パターンを形成できることを見出した。
 それに加え、本発明者は、前記平坦化剤からなる層を有する平坦化層の上に、平坦化剤よりも不透明な層を微細パターン形成用層8の少なくとも一部としてあえて設けることを想到した。これにより、図3(a)に示すように、微細パターン描画の際のフォーカスをこの不透明な層の上に確実に合わせることができることを見出した。具体的には、図3(b)に示されるような事態を抑制、すなわち、平坦化層により折角基材を平坦化したにもかかわらず、微細パターン描画の際のフォーカスが、平坦化層を通り越して粗表面基材上に合わせられるのを抑制できることを見出した。
 以下、本発明を実施するための形態を、図1に基づき説明する。
 なお、本実施形態においては「平坦度(真円度または平面度)」は、モールド基材の表面粗さを示す指標であり、キズ等がないはずの部分の表面の幾何学的平面からのずれの大きさを示すものであり、JIS B 0182にて定義される指標である。
<実施の形態1>
 図1は、本実施形態におけるインプリント用モールド1(以降、単にモールド1ともいう)の製造工程を概略的に示す図である。図1(a)はモールド基材2を示し、図1(b)はモールド基材2に平坦化剤よりなる平坦化層6を設けた様子を示す。さらに、図1(c)はその平坦化層6の上に、密着層7、微細パターン形成用層8、レジスト層9をこの順に積層した様子を示し、図1(d)はこのレジスト層9に対して微細パターンを描画・現像した様子を示す。そして図1(e)は微細パターン形成用層8に対してエッチングを行った様子を示し、図1(f)はエッチング後に洗浄を行い、モールド1を完成させた様子を示す図である。図1(f)に示すように、モールド基材2上に平坦化層6が設けられ、前記平坦化層6上に、密着層7、及び微細パターンが形成された微細パターン形成用層8が設けられたインプリント用モールドが得られる。
 このような工程を経て完成したインプリント用モールドの概観図を、図2に示す。図2は本実施形態におけるインプリント用モールドの概略図であり、(a)は斜視図、(b)は正面図、(c)は(b)のA-A’部分の断面図である。以下、図1および図2に基づいて、本実施形態に係るインプリント用モールドおよびその製造方法について詳述する。
(基材の準備) 
 まず図1(a)に示すような、インプリント用モールド1のためのモールド基材2を用意する。
 このモールド基材2は、インプリント用モールド1として用いることができるのならばどのような組成のものでも良い。工業用としての耐久性を考慮すると、金属またはステンレス鋼のような合金製基材が挙げられる。この他にも、石英などのガラス、SiC、シリコンウエハ、さらにはシリコンウエハ上にSiO層を設けたもの、グラファイト、グラッシーカーボン、カーボンファイバー強化プラスチック(CFRP)のカーボン系材料等が挙げられる。
 また、モールド基材2の形状についてであるが、インプリント用モールドとして用いることができるのならば形状は制限されない。例えば、モールド基材2の形状として、円盤形状基材や、円筒形状基材などが挙げられる。円盤形状であれば、平坦化剤等を塗布する際、円盤モールド基材2を回転させながら平坦化剤等を均一に塗布することができる。また、円筒形状であれば、ローラー方式でのインプリントが可能となることから、大量生産に適している。
 なお、モールド基材2の形状は円盤形状以外であっても良く、矩形、多角形、半円形状であってもよい。また、円筒形状以外には、モールド基材2の形状として、円柱や三角柱や四角柱のような多角形形状が挙げられるが、円柱または円筒形の方が連続的かつ均一に被転写材に微細パターンを転写できるため、より好ましい。なお、本実施形態においては、モールド基材2がどのような形状であっても、インプリント用モールド製造の基礎として用いられるものを「基材」と言うこととする。
 本実施形態においては、中心部分が空洞である円筒形状のステンレス鋼からなるモールド基材2を用いて説明する。図2に示すように、このモールド基材2は左右両側モールド端面、モールド外周面20、物質的には形成されていない回転軸3を有している。
(平坦化剤の塗布) 
 上述の通り、インプリント用モールド1に用いられる基材においては、ミクロンオーダーの傷が微細パターンの再現性に大きな影響を与えるおそれがある。
 そのため、本実施形態においては、従来のようにモールド基材2の表面に直接に微細パターンを有する層を形成するのではなく、平坦化剤により基材表面が平坦化された平坦化剤からなる層(以降、平坦化層6ともいう)をモールド基材2上に形成する。以下、この基材表面平坦化工程について詳述する。
 まず、平坦化剤の選定を行う。この平坦化剤としては、従来使用される液体状の平坦化膜化剤が挙げられるが、具体的にはポリシラザン、メチルシロキサン、金属アルコキシドなどが挙げられる。また、良好な平坦性を維持できるのならば、平坦化層6を構成する物質として上記の物質のみを用いてもよいし、上記に例示した物質を混合したものを用いても構わない。
 次に、回転軸3を水平にした状態でモールド基材2を保持し、モールド基材2下方に平坦化剤入り容器を用意する。その後、モールド基材2を下方に降ろし、前記モールド基材2の外周面の一部と平坦化剤とを接触させる。そして、モールド基材2の一部を平坦化剤に浸漬させる。
 ここでは、平坦化剤に対して、モールド基材2を回転軸方向に対して平行に接触させるのが好ましい。平行に接触させることにより、モールド基材2における浸漬部分において、左右両側モールド端面の間で塗布の程度に差異が生じることを防止することができる。その結果、平坦化剤の塗布にムラを生じさせないことになる。
 このように、平坦化剤とモールド基材2とを前記回転軸方向に対して平行に接触させた状態で、前記モールド基材2を複数のローラー107により回転させて、前記モールド外周面20に前記平坦化剤を塗布する(図1(b))。なお、図2(a)に示すように、モールド基材2をローラー107により回転させるための部分を、モールド基材2に別途設けてもよい。
 このときの回転速度および回転数は、平坦化剤をモールド基材2に十分塗布することができるように設定する。
(微細パターンの形成) 
 本実施形態においては、上述のように塗布された平坦化剤からなる平坦化層6の上に、密着層7、微細パターン形成用層8、レジスト層9をこの順に積層する(図1(c))。その後、レジスト層9に対して電子ビーム露光を行い、エッチング処理を行う(図1(d)(e))。これにより、モールド基材2上にある微細パターン形成用層8に対して微細パターンを形成する(図1(f))。
 まず、平坦化層6の上に設けられる密着層7についてであるが、これは、微細パターン形成用層8と、平坦化層6ひいてはモールド基材2とを接着させるためのものである。密着層7として用いられるものならばどのような物質でもよいが、好ましくはアモルファスシリコン層である。なお、平坦化層6上に微細パターン形成用層8を形成する際に良好に接着することができるならば、密着層7を設けなくともよい。本実施形態においては、平坦化層6の上に密着層7を設けた場合について説明する。
 そして、密着層7の上に設けられる微細パターン形成用層8についてであるが、本実施形態においては、微細パターン形成用層8の少なくとも一部が不透明な層であることが好ましい。さらに、不透明な層を有する微細パターン形成用層8全体の波長405nmにおける透過率は適度な範囲内にあるのが好ましい。図3(a)に示すように、微細パターン形成用層8が積層されたモールド基材2の上部からレーザー光109を照射する際、パターン描画の際のレーザー光109のフォーカスをこの不透明な層上に確実に合わせることができる。より詳しく言うと、図3(b)に示すような事態を抑制、すなわち、平坦化層6により折角モールド基材2を平坦化したにもかかわらず、微細パターン描画の際のレーザー光109のフォーカスが、平坦化層6を通り越して粗表面基材上の傷108の部分に合わせられるのを抑制できる。なお、上記透過率の適度な範囲については、本発明者が鋭意研究中である。
 なお、本実施形態における「不透明な層」とは、微細パターン形成用層8が積層された基材上からパターン描画のフォーカス合わせを行ったときに、前記不透明な層上でフォーカス合わせが行われる程度に不透明である層のことをいう。微細パターン形成用層8の一部にこの不透明な層を形成する場合、この不透明な層の上にフォーカスを合わせることになるため、不透明な層は微細パターン形成用層8において主表面側(レーザー照射側でありレジスト層9に近接する部分)に配置されるのが好ましい。
 ここで挙げた不透明な層としては、酸化クロム層(CrOx)、窒化クロム層(CrNx)、アモルファスカーボン層などが具体的に挙げられる。これらの層は、微細パターン形成用層8そのものとして使用してもよい。
 ここで、微細パターン形成用層8が酸化クロム層を含む場合、酸化クロム層の厚さは100nmより大きくし、かつ、微細パターン形成用層8全体の厚さは100nmより大きく1μm以下であれば、なお好ましい。100nm以上ならば、酸化クロム層上にて十分フォーカスあわせを行うことができる。1μm以下ならば、パターン転写の際の実用に堪えることができる。
 また、微細パターン形成用層8が窒化クロム層を含む場合、窒化クロム層の厚さは20nm以上であり、かつ、微細パターン形成用層8全体の厚さは20nm以上であり1μm以下であるのが好ましい。なお、窒化クロム層の厚さは30nm以上であるのがより好ましい。
 さらに、微細パターン形成用層8が酸化クロム層および窒化クロム層からなる場合、窒化クロム層の厚さは20nm以上であり、微細パターン形成用層8全体の厚さは20nm以上であり1μm以下であるのが好ましい。なお、この場合、窒化クロム層の方が酸化クロム層よりも不透明であることから、窒化クロム層が主として不透明な層の役割を果たす。そのため、積層する順番としては、酸化クロム層の上に窒化クロム層を形成するのが好ましい。レーザー光109のフォーカスを確実に上層の窒化クロム層に合わせることができ、その後の酸化クロム層に対するエッチングにおいて精緻なパターンを形成することができる。つまり、微細パターン形成用層8において相対的に不透明な層を上層に配置するのが好ましい。
 なお、酸化クロム層および窒化クロム層以外にも、アモルファスカーボン層を用いてもよい。アモルファスカーボン層だと、酸化クロム層ほど高い透明性を有さないが故に、微細パターン描画の際に、モールド基材2に焦点が合ってしまうということを防止することができる。アモルファスカーボン層の場合、アモルファスカーボン層の厚さは50nmより大きくし、かつ、微細パターン形成用層8全体の厚さは50nmより大きく1μm以下であるのが好ましい。
 ここで挙げた各物質からなる層の厚さが上記範囲にあれば、平坦化層6表面に形成された微細パターン形成用層8に、確実にレーザー光109のフォーカスを合わせることができる。また、微細パターン形成用層8全体の厚さが上記範囲にあれば、微細パターン形成用層8に確実にフォーカスを合わせることができるとともに、適切なアスペクト比を有する微細パターンを形成することができる。
 その後、図1(c)に示すように、微細パターン形成用層8に青色レーザー描画用のレジスト層9を成膜する。青色レーザー描画用のレジスト層9としては、熱変化によって状態変化する感熱材料であって、その後のエッチング工程に適するものであってもよい。また、感光材料であってもよい。このとき、組成傾斜させた酸化タングステン(WOx)からなる無機レジスト層であれば、解像度向上という点から尚好ましい。
 その後、描画済みのレジスト層9を有するモールド基材2に対して現像を行うことにより、図1(d)に示すように、所望の微細パターン(すなわち最終的に得られる製品に形成された微細パターンに対して反転したパターン)を有するレジスト層9が得られる。
 上述のようにレジスト層9に微細パターンを施した後、このレジスト層9をエッチングマスクとして、微細パターン形成用層8に対してエッチング加工を行う。これにより、ステンレス鋼のモールド基材2に対して、微細パターンが形成された微細パターン形成用層8を形成することができる。このエッチング加工は従来の手法を用いればよい。たとえば、塩素ガスおよび酸素ガスによるドライエッチングが挙げられる。
 このエッチング加工により、図1(e)に示すように、所望の微細パターンを有するレジスト層9付きモールド基材2が得られる。
 このレジスト層9付きモールド基材2に対し、アルカリ洗浄、イソプロパノールによる蒸気乾燥を行ってレジスト層9を除去する。これにより、図1(f)に示すように、モールド外周面20に所望の微細パターンが転写されたモールド1を作製することができる
 なお、このときの微細パターンとは、ナノオーダーからマイクロオーダーまでの範囲のパターンであってもよいが、数nm~数100nmのナノオーダーの周期構造であれば、なおよい。具体的な例を挙げるとすれば、ライン・アンド・スペースのパターンや、複数の微細な凹凸からなっている微細突起構造である。その断面形状としては、1次元周期構造の場合、三角、台形、四角等が挙げられる。2次元周期構造の場合、微細突起の形状は、正確な円錐(母線が直線)や角錐(稜線が直線)のみならず、インプリント後の抜き取りを考慮して先細りとなっている限り、母線や稜線形状が曲線をなし、側面が外側に膨らんだ曲面であるものであってもよい。具体的な形状としては、釣り鐘、円錐、円錐台、円柱等が挙げられる。以降、この周期構造における周期をピッチともいい、微細突起頂点間の距離を示す。
 さらには、成形性や耐破損性を考慮して、先端部を平坦にしたり、丸みをつけたりしてもよい。さらに、この微細突起は一方向に対して連続的な微細突起を作製してもよい。
 以上のように、本実施形態に係るインプリント用モールドが構成される。前記実施の形態によれば、以下の効果を奏する。
 すなわち、インプリントモールドの基礎部分となる基材上に平坦化剤を塗布して平坦化層を形成し、その上に微細パターン形成層を形成することにより、平坦な表面上に微細パターンを形成することができる。
 その結果、微細パターン描画の際に、平坦化剤からなる平坦な表面上にフォーカスを合わせることができる。さらには、高い平坦度を有する表面上に、微細パターンが形成された微細パターン形成用層8を形成することができる。その結果、高い精度で微細パターンを形成できる。
 それに加え、前記平坦化剤を含む平坦化層の上に不透明な微細パターン形成用層を設けることにより、微細パターン描画の際のフォーカスをこの不透明な層上に確実に合わせることができる。すなわち、平坦化層により折角基材を平坦化したにもかかわらず、微細パターン描画の際のフォーカスが、平坦化層を通り越して粗表面基材上に合わせられるのを抑制できる。その結果、さらに高い精度で微細パターン形成層を形成できる。
<実施の形態2>
 実施の形態1においては、平坦化剤として透明性の高い物質を用いた。しかし、本実施形態においては、平坦化剤として不透明性を有する物質を用いる。こうすることにより、微細パターン形成用層8にて不透明な層を用いなくとも、パターン描画のフォーカスが粗表面の基材上に合うことを抑制することができる。すなわち、平坦化剤そのものが不透明であることから、平坦化された平坦化層6の表面に、確実にパターン描画のフォーカスを合わせることができる。そのため、平坦化層6の上に、微細パターンを有するレジスト層9を直接形成することも可能となる。なお、シリコンウエハのように、モールド基材2の表面が元々ある程度の平坦性を有していれば、平坦化剤として透明性の高い物質を用いた場合であっても、平坦化層6の上に、微細パターンを有するレジスト層9を直接形成し、それをもってインプリント用モールドとすることも可能となる。
 不透明性を有する平坦化剤としては、例えば色素添加剤を加えた平坦化剤が挙げられる。また、平坦化剤に透明性を有する物質を用いた場合であっても、たとえばポリシラザンからなる2つの層の間にクロム層を挟んだ形態を平坦化層6としてもよい。
 以上、本発明に係る実施の形態を挙げたが、上記の開示内容は、本発明の例示的な実施形態を示すものである。本発明の範囲は、上記の例示的な実施形態に限定されるものではない。本明細書中に明示的に記載されている又は示唆されているか否かに関わらず、当業者であれば、本明細書の開示内容に基づいて本発明の実施形態に種々の改変を加えて実施し得る。
 <実施例1>
 次に実施例を示し、本発明について具体的に説明する。
 ステンレス製の円筒形の中空モールド基材2(SUS304、直径100mmすなわち半径50mm、そのうち中空部分の直径84mm、モールド端面間距離300mm)を用意した。
 次に、平坦化剤を用意した。平坦化剤には、ジブチルエーテル中にポリシラザンを20%溶解した溶液を用いた。このポリシラザン溶液が入った平坦化剤容器をモールド基材2下方に配置した。
 その後、モールド基材2をポリシラザン溶液に接触させた。このとき、平坦化剤の液面から0.3mm以下の距離の深さで、モールド外周面20の一部を平坦化剤に浸漬させた。
 その状態で、別途設けられた回転軸3によりモールドを回転速度32回転/分で3回転させ、モールド外周面20全面にポリシラザン溶液を塗布した。この際、平坦化層6が1.5μmの厚さになるようにポリシラザン溶液を円筒形モールド基材2上に塗布した。
 その後、円筒形モールド基材2と平坦化剤とを引き離し、モールド基材2を回転させながら乾燥させた。
 次に、塗布された平坦化層6の上に、密着層7、それ自身が不透明な微細パターン形成用層8、無機レジスト層9をこの順に積層した。
 密着層7としてはアモルファスシリコン層を30nmの厚さで成膜した。微細パターン形成用層8としてはアモルファスカーボン層を200nmの厚さで成膜した。無機レジスト層9としては酸化タングステン(WOx)層をスパッタ法により、20nmの厚さで成膜した。なお、無機レジスト層9の深さ方向への組成変化については、中空モールド基材側x=0.95、レジスト最表面側x=1.60の傾斜組成とした。この無機レジスト層9の形成には、イオンビームスパッタ法を用いてAr:Oの流量比を連続的に変化させて無機レジスト層9中の酸素濃度を傾斜させた。また、無機レジスト層9中の組成分析にはラザフォード後方散乱分光法(Rutherford Back Scattering Spectroscopy:RBS)を使用した。
 この無機レジスト層9に対し、青色レーザー描画装置(波長405nm)を用いてライン・アンド・スペースからなる微細パターンを描画した。描画後、エッチング処理・洗浄処理を行い、モールド1を作製した。
 <実施例2~9>
 実施例2~9においては、表1に示すとおり、モールド基材2の種類、微細パターン形成用層8の種類及び厚さを各々変化させたこと以外は、実施例1と同様にモールド1を作製した。
 なお、実施例3においては、微細パターン形成用層8を設けず、無機レジスト層9に微細パターンを描画して現像したものを完成モールドとした。また、実施例6においては、ライン・アンド・スペースではなくドットからなる微細パターンを描画した。
 なお、微細パターン形成用層8の作製に当たり、酸化クロム層を形成する際にはAr:O=80:20(流量比)とし、その上に更に窒化クロム層を形成する際にはAr:N=30:70(流量比)とした。
Figure JPOXMLDOC01-appb-T000001
<結果>
 本実施例にて製造したモールドについて、走査型電子顕微鏡による観察を行った。その観察結果に基づき、フォーカス異常の有無について検討した。
 その結果、表1に示すように、実施例1~9においてはフォーカス異常が発生していなかった。これらの実施例について観察した様子を示す写真であるが、実施例3のモールドについては走査型電子顕微鏡による写真を図4に示す。また、実施例4のモールドについては図5、実施例5のモールドについては図6、実施例7のモールドについては図7、実施例8のモールドについては図8、実施例9のモールドについては図9に示す。この写真からも明らかなように、精度の高い微細パターンが形成されたモールドを得ることができた。
1   インプリント用モールド
2   モールド基材
20  モールド外周面
3   回転軸
6   平坦化層
7   密着層
8   微細パターン形成用層
9   レジスト層
107 ローラー
108 傷
109 レーザー光

Claims (14)

  1.  基材上に平坦化剤よりなる層を有する平坦化層が設けられ、前記平坦化層上には微細パターンを有する層が設けられたことを特徴とするインプリント用モールド。
  2.  前記基材はステンレス鋼よりなる円筒形基材であり、
     前記平坦化剤はポリシラザンであることを特徴とする請求項1に記載のインプリント用モールド。
  3.  前記微細パターンを有する層は、微細パターン形成用層であり、
     前記微細パターン形成用層は酸化クロム層を含み、
     前記酸化クロム層の厚さは100nmより大きく、
     前記微細パターン形成用層全体の厚さは100nmより大きく1μm以下であることを特徴とする請求項1または2に記載のインプリント用モールド。
  4.  前記微細パターンを有する層は、微細パターン形成用層であり、
     前記微細パターン形成用層は窒化クロム層を含み、
     前記窒化クロム層の厚さは20nm以上であり、
     前記微細パターン形成用層全体の厚さは20nm以上であり1μm以下であることを特徴とする請求項1または2に記載のインプリント用モールド。
  5.  前記微細パターンを有する層は、微細パターン形成用層であり、
     前記微細パターン形成用層は酸化クロム層および窒化クロム層を含み、
     前記窒化クロム層の厚さは20nm以上であり、
     前記微細パターン形成用層全体の厚さは20nm以上であり1μm以下であることを特徴とする請求項1または2に記載のインプリント用モールド。
  6.  前記微細パターンを有する層は、微細パターン形成用層であり、
     前記微細パターン形成用層はアモルファスカーボン層を含み、
     前記アモルファスカーボン層の厚さは50nmより大きく、
     前記微細パターン形成用層の厚さは50nmより大きく1μm以下であることを特徴とする請求項1または2に記載のインプリント用モールド。
  7.  基材上に平坦化剤を塗布する基材表面平坦化工程を有することを特徴とするインプリント用モールドの製造方法。
  8.  前記基材はステンレス鋼よりなる円筒形基材であり、
     前記平坦化剤はポリシラザンであることを特徴とする請求項7に記載のインプリント用モールドの製造方法。
  9.  前記基材表面平坦化工程後に、平坦化剤よりなる層を有する平坦化層上に、微細パターン形成用層を有する層を設け、その上に更に微細パターン形成用のレジスト層を設ける工程と、
     前記レジスト層に対して微細パターンを描画して現像する描画工程と、
     前記描画工程後、微細パターン形成用層をエッチングして微細パターンを形成する工程と、
    を有することを特徴とする請求項7または8に記載のインプリント用モールドの製造方法。
  10.  前記微細パターン形成用層は酸化クロム層を含み、
     前記酸化クロム層の厚さは100nmより大きく、
     前記微細パターン形成用層全体の厚さは100nmより大きく1μm以下であることを特徴とする請求項9に記載のインプリント用モールドの製造方法。
  11.  前記微細パターン形成用層は窒化クロム層を含み、
     前記窒化クロム層の厚さは20nm以上であり、
     前記微細パターン形成用層全体の厚さは20nm以上であり1μm以下であることを特徴とする請求項9に記載のインプリント用モールドの製造方法。
  12.  前記微細パターン形成用層は酸化クロム層および窒化クロム層を含み、
     前記窒化クロム層の厚さは20nm以上であり、
     前記微細パターン形成用層全体の厚さは20nm以上であり1μm以下であることを特徴とする請求項9に記載のインプリント用モールドの製造方法。
  13.  前記微細パターン形成用層はアモルファスカーボン層を含み、
     前記アモルファスカーボン層の厚さは50nmより大きく、
     前記微細パターン形成用層の厚さは50nmより大きく1μm以下であることを特徴とする請求項9に記載のインプリント用モールドの製造方法。
  14.  前記描画工程においては、青色レーザー描画を行うことを特徴とする請求項9に記載のインプリント用モールドの製造方法。
PCT/JP2011/051550 2010-01-29 2011-01-27 インプリント用モールド及びその製造方法 WO2011093357A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011551888A JP5677987B2 (ja) 2010-01-29 2011-01-27 インプリント用モールド及びその製造方法、並びにインプリント用モールド基材
US13/575,854 US20120328728A1 (en) 2010-01-29 2011-01-27 Mold for imprinting and production method thereof
SG2012053609A SG182619A1 (en) 2010-01-29 2011-01-27 Mold for imprinting and production method thereof
KR1020127022474A KR20120139711A (ko) 2010-01-29 2011-01-27 임프린트용 몰드 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-019664 2010-01-29
JP2010019664 2010-01-29

Publications (1)

Publication Number Publication Date
WO2011093357A1 true WO2011093357A1 (ja) 2011-08-04

Family

ID=44319340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051550 WO2011093357A1 (ja) 2010-01-29 2011-01-27 インプリント用モールド及びその製造方法

Country Status (5)

Country Link
US (1) US20120328728A1 (ja)
JP (2) JP5677987B2 (ja)
KR (1) KR20120139711A (ja)
SG (1) SG182619A1 (ja)
WO (1) WO2011093357A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013035243A (ja) * 2011-08-10 2013-02-21 Hoya Corp ローラーモールド、ローラーモールド用基材及びパターン転写方法
WO2013077066A1 (ja) * 2011-11-25 2013-05-30 Hoya株式会社 インプリント用モールド及びその製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2053146B1 (en) 2006-08-07 2016-08-31 Seiko Instruments Inc. Method for manufacturing electroformed mold, electroformed mold, and method for manufacturing electroformed parts
US9161448B2 (en) 2010-03-29 2015-10-13 Semprius, Inc. Laser assisted transfer welding process
US9412727B2 (en) 2011-09-20 2016-08-09 Semprius, Inc. Printing transferable components using microstructured elastomeric surfaces with pressure modulated reversible adhesion
KR101614628B1 (ko) * 2012-01-27 2016-04-21 아사히 가세이 이-매터리얼즈 가부시키가이샤 미세 요철 구조체, 건식 에칭용 열반응형 레지스트 재료, 몰드의 제조 방법 및 몰드
KR20140076357A (ko) * 2012-12-12 2014-06-20 삼성전자주식회사 고대비 정렬 마크를 가진 나노임프린트 스탬프 및 그 제조방법
CN110265344B (zh) 2014-07-20 2023-09-12 艾克斯展示公司技术有限公司 用于微转贴印刷的设备及方法
US9704821B2 (en) 2015-08-11 2017-07-11 X-Celeprint Limited Stamp with structured posts
US10468363B2 (en) 2015-08-10 2019-11-05 X-Celeprint Limited Chiplets with connection posts
US10103069B2 (en) 2016-04-01 2018-10-16 X-Celeprint Limited Pressure-activated electrical interconnection by micro-transfer printing
KR20180009825A (ko) * 2016-07-19 2018-01-30 삼성디스플레이 주식회사 롤 타입 임프린트 마스터 몰드, 이의 제조 방법 및 이를 이용한 임프린트 방법
US10222698B2 (en) 2016-07-28 2019-03-05 X-Celeprint Limited Chiplets with wicking posts
US11064609B2 (en) 2016-08-04 2021-07-13 X Display Company Technology Limited Printable 3D electronic structure
US11391780B2 (en) 2018-04-10 2022-07-19 Lg Energy Solution, Ltd. Battery diagnostic device and method
US10748793B1 (en) 2019-02-13 2020-08-18 X Display Company Technology Limited Printing component arrays with different orientations
US11062936B1 (en) 2019-12-19 2021-07-13 X Display Company Technology Limited Transfer stamps with multiple separate pedestals

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240725A (ja) * 1985-08-17 1987-02-21 Oki Electric Ind Co Ltd 電子線レジスト組成物及びレジストパタ−ンの形成方法
JPH09134917A (ja) * 1995-11-07 1997-05-20 Catalysts & Chem Ind Co Ltd 半導体装置
JP2004306554A (ja) * 2003-04-10 2004-11-04 Mitsubishi Rayon Co Ltd 凹凸表面構造シート転写成形用の円筒状型部材の製造方法
JP2009119695A (ja) * 2007-11-14 2009-06-04 Hitachi High-Technologies Corp ナノプリント用樹脂スタンパ
JP2009288340A (ja) * 2008-05-27 2009-12-10 Horon:Kk ローラーモールド作製方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5756130A (en) * 1993-05-20 1998-05-26 Hitaci Maxell, Ltd. Stamper for producing recording medium
JPH11249168A (ja) * 1998-03-04 1999-09-17 Seiko Epson Corp アクティブマトリックス基板およびその製造方法、液晶パネル
JP2001310330A (ja) * 2000-04-27 2001-11-06 Hitachi Koki Co Ltd 金型及びその成形品
JP2003100865A (ja) * 2001-09-21 2003-04-04 Catalysts & Chem Ind Co Ltd 半導体基板の製造方法および半導体基板
US20050008821A1 (en) * 2003-07-07 2005-01-13 Pricone Robert M. Process and apparatus for fabricating precise microstructures and polymeric molds for making same
US7686970B2 (en) * 2004-12-30 2010-03-30 Asml Netherlands B.V. Imprint lithography
EP1746460B1 (en) * 2005-07-21 2011-04-06 Shin-Etsu Chemical Co., Ltd. Photomask blank, photomask and fabrication method thereof
JP2007293221A (ja) * 2006-03-31 2007-11-08 Fujifilm Corp 平版印刷版の作製方法及び平版印刷版原版
WO2009041646A1 (ja) * 2007-09-28 2009-04-02 Asahi Glass Company, Limited 光硬化性組成物、微細パターン形成体の製造方法および光学素子
JP2009295797A (ja) * 2008-06-05 2009-12-17 Kyowa Hakko Chemical Co Ltd 溝構造または中空構造を有する部材の作製方法
JP2010006870A (ja) * 2008-06-24 2010-01-14 Fujifilm Corp ナノインプリント用硬化性組成物、硬化物およびその製造方法
JP2010008604A (ja) * 2008-06-25 2010-01-14 Hoya Corp マスクブランク及び転写用マスク

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240725A (ja) * 1985-08-17 1987-02-21 Oki Electric Ind Co Ltd 電子線レジスト組成物及びレジストパタ−ンの形成方法
JPH09134917A (ja) * 1995-11-07 1997-05-20 Catalysts & Chem Ind Co Ltd 半導体装置
JP2004306554A (ja) * 2003-04-10 2004-11-04 Mitsubishi Rayon Co Ltd 凹凸表面構造シート転写成形用の円筒状型部材の製造方法
JP2009119695A (ja) * 2007-11-14 2009-06-04 Hitachi High-Technologies Corp ナノプリント用樹脂スタンパ
JP2009288340A (ja) * 2008-05-27 2009-12-10 Horon:Kk ローラーモールド作製方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013035243A (ja) * 2011-08-10 2013-02-21 Hoya Corp ローラーモールド、ローラーモールド用基材及びパターン転写方法
WO2013077066A1 (ja) * 2011-11-25 2013-05-30 Hoya株式会社 インプリント用モールド及びその製造方法
JP2013111763A (ja) * 2011-11-25 2013-06-10 Hoya Corp インプリント用モールド及びその製造方法

Also Published As

Publication number Publication date
JP2015111691A (ja) 2015-06-18
JP5677987B2 (ja) 2015-02-25
SG182619A1 (en) 2012-08-30
KR20120139711A (ko) 2012-12-27
JPWO2011093357A1 (ja) 2013-06-06
US20120328728A1 (en) 2012-12-27

Similar Documents

Publication Publication Date Title
JP5677987B2 (ja) インプリント用モールド及びその製造方法、並びにインプリント用モールド基材
TWI549832B (zh) Production method of transfer die and transfer die
JP5935385B2 (ja) ナノインプリント用レプリカテンプレートの製造方法及びレプリカテンプレート
KR102126110B1 (ko) 필름 마스크, 이의 제조방법, 이를 이용한 패턴 형성 방법 및 이를 이용하여 형성된 패턴
JP6019685B2 (ja) ナノインプリント方法及びナノインプリント装置
JP5441991B2 (ja) インプリント用モールド及びその製造方法
JP2013035243A (ja) ローラーモールド、ローラーモールド用基材及びパターン転写方法
JP6208924B2 (ja) 微細構造転写用モールド、微細構造転写用モールドの製造方法及び表面微細構造部材の製造方法
JP5150926B2 (ja) インプリントモールドの製造方法
JP5884555B2 (ja) インプリント用のモールドおよび微細構造の形成方法
TWI704046B (zh) 壓紋膜、單張膜、轉寫物、及壓紋膜之製造方法
JP5707342B2 (ja) インプリント用回転式モールド及びその製造方法
JP6996333B2 (ja) ブランクス基材、インプリントモールド、インプリントモールドの製造方法及びインプリント方法
TWI668097B (zh) 塡料充塡膜、單片膜、積層膜、貼合體、及塡料充塡膜之製造方法
JP6417728B2 (ja) テンプレートの製造方法
JP2018147915A (ja) インプリントモールド及びインプリントモールドの製造方法
JP2018098470A (ja) パターン形成方法及びレプリカモールドの製造方法
JP6802969B2 (ja) テンプレートの製造方法、及び、テンプレート
TW202330233A (zh) 模具、模具之製造方法及微細凹凸結構體之製造方法
JP2018157144A (ja) インプリントモールド用マスクブランク及びその製造方法、インプリントモールド及びその製造方法、並びにインプリント方法
JP2018133591A (ja) テンプレートの製造方法
JP2019009469A (ja) 部材
WO2016068171A1 (ja) フィラー充填フィルム、枚葉フィルム、積層フィルム、貼合体、及びフィラー充填フィルムの製造方法
JP2014079903A (ja) インプリント用モールドの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11737069

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011551888

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127022474

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13575854

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11737069

Country of ref document: EP

Kind code of ref document: A1