WO2011090101A1 - Multilayer blow-molded container, and process for production thereof - Google Patents

Multilayer blow-molded container, and process for production thereof Download PDF

Info

Publication number
WO2011090101A1
WO2011090101A1 PCT/JP2011/050939 JP2011050939W WO2011090101A1 WO 2011090101 A1 WO2011090101 A1 WO 2011090101A1 JP 2011050939 W JP2011050939 W JP 2011050939W WO 2011090101 A1 WO2011090101 A1 WO 2011090101A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene
propylene
olefin copolymer
olefin
measured
Prior art date
Application number
PCT/JP2011/050939
Other languages
French (fr)
Japanese (ja)
Inventor
弘幸 上北
Original Assignee
株式会社プライムポリマー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プライムポリマー filed Critical 株式会社プライムポリマー
Priority to CN201180006278.4A priority Critical patent/CN102712186B/en
Priority to JP2011550944A priority patent/JP5379247B2/en
Priority to KR1020127021432A priority patent/KR101333450B1/en
Publication of WO2011090101A1 publication Critical patent/WO2011090101A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/0005Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0207Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0083Nucleating agents promoting the crystallisation of the polymer matrix
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • C08L23/142Copolymers of propene at least partially crystalline copolymers of propene with other olefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0715Preforms or parisons characterised by their configuration the preform having one end closed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3032Preforms or parisons made of several components having components being injected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06Injection blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/22Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor using multilayered preforms or parisons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/406Bright, glossy, shiny surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/80Medical packaging

Definitions

  • the present invention relates to a multilayer blow container and a manufacturing method thereof.
  • resins such as vinyl chloride resin, polycarbonate resin, ethylene resin, and propylene resin are used depending on applications.
  • the resulting blow-molded product is relatively inexpensive to manufacture, and is more glossy and transparent than high-density polyethylene. Therefore, containers for liquid detergents, cosmetics, foods, medicines, etc. Is widely used.
  • the gloss of the blow molded product is a physical property that has been studied in order to meet the market demand for a good appearance, but it still has sufficient gloss, good moldability and impact resistance at the same time. Has not been proposed.
  • a propylene / ⁇ -olefin copolymer is used as a base resin, and a linear low density polyethylene having a crystalline melting point of 110 to 125 ° C. is used as a compounding resin, and these resins and a nucleating agent are contained.
  • a multilayer blow molded article having an olefin polymer composition as an outermost layer has been proposed (see, for example, Patent Document 1).
  • Patent Document 1 As a result of investigations by the present inventors, it was found that even the multilayer blow molded article described in Patent Document 1 is still insufficient in gloss and impact resistance and needs further improvement.
  • Patent Document 2 As a multilayer bottle excellent in cold resistance, a multilayer bottle having a gas barrier resin core layer and having an outermost layer formed of a polyolefin resin and a linear ultra-low density polyethylene resin has been proposed (for example, Patent Document 2).
  • Patent Document 2 As a result of studies by the present inventors, it was found that even the multilayer bottle described in Patent Document 2 still has insufficient gloss and moldability, and further improvement is necessary.
  • a composition comprising a polypropylene resin obtained using a metallocene catalyst and an ethylene / ⁇ -olefin copolymer obtained using a metallocene catalyst as the outermost layer.
  • a high-gloss blow container formed by a multilayer blow molding method is known (for example, see Patent Document 4).
  • Patent Document 4 the high-gloss blown container described in Patent Document 4 is superior in gloss when compared to conventional containers, but further improved in terms of heat resistance and gloss. I found that there was room.
  • An object of the present invention is to provide a multi-layer blow container having high gloss, excellent surface appearance, excellent impact resistance, and excellent balance between impact resistance and stickiness resistance.
  • a multilayer blow container using a specific olefin polymer composition as the outermost layer has high gloss, excellent surface appearance, and is resistant to damage.
  • the present invention has been completed by finding out that it has excellent impact resistance and also has an excellent balance between impact resistance and stickiness resistance.
  • the resin used in the outermost layer is 80 to 98 parts by weight of the propylene resin (A) and 2 to 20 parts by weight of the ethylene / ⁇ -olefin copolymer (B) (however, (A) and (B) are 100 parts by weight) and a nucleating polymer composition (E) formed from 0.01 to 0.5 parts by weight of the nucleating agent (D),
  • the propylene resin (A) satisfies the following requirements (A-1) and (A-2), and the ethylene / ⁇ -olefin copolymer (B) satisfies the following requirements (B-1) and (B-2):
  • a multilayer blow container characterized in that the olefin polymer composition (E) satisfies the following requirement (E-1).
  • A-2 The crystal melting point measured with a differential scanning calorimeter (DSC) in accordance with JIS-K7121 is in the range of 140 to 155 ° C.
  • (B-1) A copolymer of ethylene and one or more ⁇ -olefins having 4 to 20 carbon atoms.
  • the crystal melting point measured by DSC in accordance with JIS-K7121 is in the range of 85 ° C. or higher and lower than 110 ° C.
  • melt flow rate (MFR) measured at a measurement temperature of 230 ° C. and a load of 2.16 kg is in the range of 5 to 10 g / 10 minutes.
  • the olefin polymer composition (E) is further formed using 0.1 to 20 parts by weight of a low density ethylene / ⁇ -olefin copolymer (F).
  • the polymer (F) satisfies the following requirements (F-1) and (F-2), and the density (d B [g / cm] measured by the density gradient method of the ethylene / ⁇ -olefin copolymer (B): 3 ]) and the density (d F [g / cm 3 ]) measured by the density gradient method of the low density ethylene / ⁇ -olefin copolymer (F) satisfy the following requirement (X-1), the multilayer blow It is preferable from the viewpoint of the low temperature impact resistance of the container.
  • (F-1) A copolymer of ethylene and one or more ⁇ -olefins having 3 to 20 carbon atoms.
  • the ethylene / ⁇ -olefin copolymer (B) preferably further satisfies the following requirement (B-4).
  • the density measured by the density gradient tube method is in the range of 0.880 to 0.910 g / cm 3 .
  • the ethylene / ⁇ -olefin copolymer (B) further satisfies the following requirement (B-4a), and the low-density ethylene / ⁇ -olefin copolymer (F) further satisfies the following requirement (F-3). Is preferable from the viewpoint of low-temperature impact resistance of the multilayer blow container.
  • (B-4a) density measured by a density gradient tube method (d B [g / cm 3 ]) is in the range of 0.890 ⁇ 0.910g / cm 3.
  • the density (d F [g / cm 3 ]) measured by the density gradient tube method is in the range of 0.865 to 0.900 g / cm 3 .
  • the propylene resin (A) further satisfies the following requirement (A-4).
  • the propylene resin (A) further satisfies the following requirement (A-3).
  • the ethylene / ⁇ -olefin copolymer (B) further satisfies the following requirement (B-5).
  • the ethylene / ⁇ -olefin copolymer (B) preferably further satisfies the following requirement (B-3).
  • the nucleating agent (D) is one or more compounds selected from the group consisting of aromatic phosphate ester compounds, carboxylic acid metal salt nucleating agents, polymer nucleating agents, sorbitol nucleating agents and inorganic compound nucleating agents. It is preferable that
  • the propylene-based resin (A) is 95.5 to 98 parts by weight, and the ethylene / ⁇ -olefin copolymer (B) is 2 to 4.5 parts by weight (provided that (A) and (B) The total is preferably 100 parts by weight.
  • the multilayer blow container has a layer formed from a propylene polymer (G) or an ethylene polymer (H) as at least one inner layer.
  • G propylene polymer
  • H ethylene polymer
  • the multilayer blow container is preferably obtained by molding by a direct blow molding method or an injection stretch blow molding method.
  • the multilayer blow container of the present invention uses a thermoplastic resin composition other than the olefin polymer composition (E) and the olefin polymer composition (E) described above, and the olefin polymer composition (E) has the outermost layer. And formed by a direct blow molding method or an injection stretch blow molding method so that the thermoplastic resin composition other than the olefin polymer composition (E) forms at least one inner layer.
  • the resin used for the outermost layer is an olefin polymer formed of a propylene resin (A), an ethylene / ⁇ -olefin copolymer (B), and a nucleating agent (D). It consists of a composition (E), It is characterized by the above-mentioned.
  • the multilayer blow container of the present invention has high gloss, excellent surface appearance, and excellent impact resistance, but the olefin polymer composition (E) is further reduced in density ethylene / ⁇ -olefin copolymer (F). In the embodiment formed using 0.1 to 20 parts by weight, the low temperature impact resistance is further excellent.
  • the propylene resin (A) used in the present invention preferably satisfies the following requirements (A-1) and (A-2), and preferably satisfies at least one of the following requirements (A-3) and (A-4): More preferably, the following requirements (A-3) and (A-4) are satisfied.
  • Propylene-type resin (A) may be used individually by 1 type, or may use 2 or more types.
  • olefins selected from the group consisting of ethylene and ⁇ -olefins having 4 to 20 carbon atoms.
  • the ⁇ -olefin having 4 to 20 carbon atoms include 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-dodecene, 1-hexadodecene and 4-methyl.
  • -1-pentene 2-methyl-1-butene, 3-methyl-1-butene, 3-methyl-1-butene, 3,3-dimethyl-1-butene, diethyl-1-butene, trimethyl-1-butene , 3-methyl-1-pentene, ethyl-1-pentene, propyl-1-pentene, dimethyl-1-pentene, methylethyl-1-pentene, diethyl-1-hexene, trimethyl-1-pentene, 3-methyl- Examples include 1-hexene, dimethyl-1-hexene, 3,5,5-trimethyl-1-hexene, methylethyl-1-heptene, trimethyl-1-heptene, ethyl-1-octene, and methyl-1-nonene. .
  • the propylene-based resin (A) used in the present invention is composed of propylene and one or more olefins selected from the group consisting of ethylene and ⁇ -olefins having 4 to 10 carbon atoms in view of the balance between physical properties and economy. It is preferably a copolymer, more preferably a copolymer of propylene and one or more ⁇ -olefins selected from the group consisting of ethylene and 1-butene, and a copolymer of propylene and ethylene It is particularly preferred that
  • the propylene resin (A) used in the present invention is preferably a random copolymer.
  • the crystal melting point measured with a differential scanning calorimeter (DSC) in accordance with JIS-K7121 is in the range of 140 to 155 ° C. It is preferable that the crystal melting point is in the above-mentioned range since the multilayer blow container is excellent in gloss and impact resistance and is excellent in moldability when producing the multilayer blow container.
  • the crystal melting point measured by a differential scanning calorimeter (DSC) in accordance with JIS-K7121 is higher than 155 ° C., the impact resistance of the multilayer blow container is inferior.
  • the moldability at the time of producing the multilayer blow container is inferior and the surface of the multilayer blow container is sticky. .
  • the crystalline melting point of the propylene-based resin (A) can be determined by measuring under the following measurement conditions using a differential scanning calorimeter (DSC) (for example, Diamond TM DSC manufactured by Perkin Elmer) according to JIS-K7121. it can.
  • DSC differential scanning calorimeter
  • the top of the endothermic peak in the third step when the measurement was performed under the following measurement conditions was defined as the crystalline melting point (Tm).
  • Tm crystalline melting point
  • Measurement condition Measurement environment: Nitrogen gas atmosphere Sample volume: 5mg Sample shape: Press film (230 ° C molding, thickness 200-400 ⁇ m) First step: The temperature is raised from 30 ° C to 240 ° C at 10 ° C / min and held for 10 min.
  • Second step IV Decrease the temperature to 60 ° C at 10 ° C / min.
  • 3rd step IV Increase the temperature to 240 ° C at 10 ° C / min.
  • the crystal melting point of the propylene resin (A) measured by a differential scanning calorimeter (DSC) in accordance with JIS-K7121 is, for example, propylene at the time of copolymerization in the production of the propylene resin (A), ethylene introduced, and It can be adjusted by changing the introduction ratio of one or more olefins selected from the group consisting of ⁇ -olefins having 4 to 20 carbon atoms. That is, by increasing the introduction amount of one or more olefins selected from the group consisting of ethylene and ⁇ -olefins having 4 to 20 carbon atoms with respect to the introduction amount of propylene, the differential scanning calorific value in accordance with JIS-K7121.
  • the crystal melting point measured by a total (DSC) can be lowered, and the introduction amount of one or more olefins selected from the group consisting of ethylene and ⁇ -olefins having 4 to 20 carbon atoms is reduced with respect to the introduction amount of propylene.
  • DSC differential scanning calorimeter
  • MFR measured at a measurement temperature of 230 ° C. and a load of 2.16 kg is in the range of 5 to 10 g / 10 minutes.
  • MFR means a melt flow rate.
  • the moldability and the impact resistance of the multilayer blow container are inferior.
  • the gloss of the multilayer blow container may be inferior.
  • MFR measured at a measurement temperature of 230 ° C. and a load of 2.16 kg is, for example, chain transfer used during copolymerization in the production of the propylene resin (A). It can adjust with the introduction amount of an agent (for example, hydrogen gas). That is, the amount of the chain transfer agent (for example, hydrogen gas) introduced is increased with respect to the amount of propylene introduced during the polymerization and one or more olefins selected from the group consisting of ethylene and ⁇ -olefins having 4 to 20 carbon atoms.
  • the introduction amount of chain transfer agent for example, hydrogen gas
  • the introduction amount of chain transfer agent is reduced with respect to the amount of one or more olefins selected from the group consisting of propylene introduced at the time of polymerization and ethylene and ⁇ -olefin having 4 to 20 carbon atoms.
  • the MFR measured at a measurement temperature of 230 ° C. and a load of 2.16 kg in accordance with ASTM D-1238 of the propylene resin (A) can be lowered.
  • the propylene-based resin obtained by polymerization is melt kneaded in the presence of a radical generator such as an organic peroxide, and the measurement temperature is 230 ° C. and the load is 2.16 kg according to ASTM D-1238.
  • the MFR measured in (1) can be adjusted. For example, by performing the melt-kneading process in the presence of an organic peroxide, the MFR measured at a measurement temperature of 230 ° C. and a load of 2.16 kg is increased in accordance with ASTM D-1238. Further, by increasing the amount of the organic peroxide added, the MFR measured at a measurement temperature of 230 ° C. and a load of 2.16 kg can be further increased in accordance with ASTM D-1238.
  • Mw / Mn measured by GPC is 4.0 or more.
  • GPC means gel permeation chromatography
  • Mw means weight average molecular weight
  • Mn means number average molecular weight
  • Mw / Mn is an index of molecular weight distribution.
  • Mw / Mn is preferably 1.5 or more, more preferably 3.0 or more, but satisfies the above (A-4), that is, Mw / Mn is 4.0 or more. It is particularly preferable because a blow molded article having excellent gloss can be obtained regardless of the surface roughness of the blow mold. The reason for this is not clear, but the present inventors consider as follows.
  • Mw / Mn is not particularly limited, but is usually 50.0, preferably 30.0, more preferably 20.0, still more preferably 16.0, particularly preferably 12 from the viewpoint of productivity. 0.0, most preferably 8.0.
  • Mw / Mn by GPC can be performed by the method as described in an Example.
  • Mw / Mn measured by GPC of the propylene resin (A) can be adjusted, for example, depending on the type of catalyst used in the production of the propylene resin (A).
  • a Ziegler-Natta catalyst preferably a solid titanium catalyst
  • the propylene-based resin (A) satisfying the requirement (A-4) can be obtained.
  • Mw / Mn there is a method of blending two or more propylene resins having different molecular weights.
  • the solid titanium catalyst is advantageous from the viewpoint of forming the higher molecular weight portion.
  • the propylene resin (A) is derived from one or more olefins selected from the group consisting of propylene-derived structural units and ethylene and ⁇ -olefins having 4 to 20 carbon atoms, calculated from 13 C-NMR.
  • the weight of the propylene-derived structural unit when the total amount of the structural units is 100% by weight is usually in the range of 80 to 99% by weight, and preferably in the range of 90 to 99% by weight.
  • the weight of the structural unit derived from one or more olefins selected from the group consisting of ethylene and an ⁇ -olefin having 4 to 20 carbon atoms is usually in the range of 1 to 20% by weight, preferably 1 to It is in the range of 10% by weight. Within the above range, it is preferable because the balance between the moldability when producing a multilayer blow container and physical properties such as stickiness of the multilayer blow container is good.
  • the total of the structural unit derived from propylene calculated from 13 C-NMR and the structural unit derived from one or more olefins selected from the group consisting of ethylene and an ⁇ -olefin having 4 to 20 carbon atoms is 100% by weight.
  • the weight of the structural unit derived from propylene was measured and calculated under the following conditions.
  • the mole fraction of the structural unit derived from ethylene in the propylene resin (A) (mol%) (hereinafter referred to as E (mol%))
  • the molar fraction (mol%) of constituent units derived from propylene (hereinafter referred to as P (mol%))
  • the weight percent of the structural unit derived from propylene and the weight percent of the structural unit derived from ethylene in the propylene-based resin (A) are calculated by converting from the obtained E (mol%) and P (mol%) to weight percent. be able to.
  • the molar fraction (mol%) of the structural unit derived from (hereinafter referred to as A (mol%)) and the molar fraction (mol%) of the structural unit derived from propylene (hereinafter referred to as P (mol%)) are calculated. be able to. Converted from the calculated A (mol%) and P (mol%) to wt%, derived from propylene-based constituent units in propylene resin (A) and derived from ⁇ -olefin having 4 to 20 carbon atoms The weight% of the structural unit to be calculated can be calculated.
  • Adjustment of the weight of the structural unit derived from propylene can be made into arbitrary quantity by adjusting the manufacturing conditions mentioned later. More specifically, introduction of one or more olefins selected from the group consisting of ethylene and ⁇ -olefins having 4 to 20 carbon atoms with respect to the amount of propylene introduced during copolymerization in the production of propylene-based resin (A). By reducing the amount, the weight of the structural unit derived from propylene can be increased.
  • the weight of the structural unit derived from propylene is reduced. be able to.
  • the propylene resin (A) is preferably a random copolymer of propylene and one or more olefins selected from the group consisting of ethylene and ⁇ -olefins having 4 to 20 carbon atoms.
  • the propylene resin (A) is a copolymer of propylene and one or more olefins selected from the group consisting of ethylene and ⁇ -olefins having 4 to 20 carbon atoms, preferably in the presence of a Ziegler-Natta catalyst or a metallocene catalyst. Can be obtained by random copolymerization.
  • the requirement (A-4) can be satisfied. It is also possible to adjust to satisfy the requirement (A-4) by blending two or more propylene resins (A) having different molecular weights.
  • a chain transfer agent represented by hydrogen gas can be introduced.
  • the propylene-based resin (A) can also be obtained by subjecting the propylene-based resin obtained by polymerization to melt-kneading in the presence of a radical generator such as an organic peroxide.
  • the organic peroxide is not particularly limited, but benzoyl peroxide, t-butyl perbenzoate, t-butyl peracetate, t-butyl peroxyisopropyl carbonate, 2,5-di-methyl-2,5 -Di- (benzoylperoxy) hexane, 2,5-di-methyl-2,5-di- (benzoylperoxy) hexyne-3, t-butyl-diperadipate, t-butylperoxy-3, 5,5-trimethylhexanoate, methyl-ethylketone peroxide, cyclohexanone peroxide, di-t-butyl peroxide, dicumyl peroxide, 2,5-di-methyl-2,5-di- (t -Butylperoxy) hexane, 2,5, -di-methyl-2,5-di- (t-butylperoxy) hexyne-3,1,
  • 2,5-di-methyl-2,5-di- (benzoylperoxy) hexane and 1,3-bis- (t-butylperoxyisopropyl) benzene are more preferred.
  • an organic peroxide it is desirable to use it at 0.1 parts by weight or less with respect to 100 parts by weight of the propylene-based resin obtained by polymerization.
  • the mixture is introduced into a mixer such as a Henschel mixer, a Banbury mixer, or a tumbler mixer, and then mixed.
  • a mixer such as a Henschel mixer, a Banbury mixer, or a tumbler mixer
  • the resulting mixture is then converted into a single-screw extruder,
  • molding with extruders, such as a twin-screw extruder, and obtaining the strand of propylene-type resin (A) is mentioned.
  • the strand is usually formed into a pellet using a pelletizer or the like before blow molding.
  • ⁇ Ethylene / ⁇ -olefin copolymer (B)> The ethylene / ⁇ -olefin copolymer (B) used in the present invention satisfies the following requirements (B-1) and (B-2), and at least one of the following requirements (B-3) and (B-4): Preferably, the following requirements (B-3) and (B-4) are satisfied. It is also preferable to satisfy the following requirement (B-5).
  • the ethylene / ⁇ -olefin copolymer (B) may be used alone or in combination of two or more.
  • (B-1) A copolymer of ethylene and one or more ⁇ -olefins having 4 to 20 carbon atoms.
  • the ⁇ -olefin having 4 to 20 carbon atoms include 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-dodecene, 1-hexadodecene and 4-methyl.
  • -1-pentene 2-methyl-1-butene, 3-methyl-1-butene, 3-methyl-1-butene, 3,3-dimethyl-1-butene, diethyl-1-butene, trimethyl-1-butene , 3-methyl-1-pentene, ethyl-1-pentene, propyl-1-pentene, dimethyl-1-pentene, methylethyl-1-pentene, diethyl-1-hexene, trimethyl-1-pentene, 3-methyl- Examples include 1-hexene, dimethyl-1-hexene, 3,5,5-trimethyl-1-hexene, methylethyl-1-heptene, trimethyl-1-heptene, ethyl-1-octene, and methyl-1-nonene. .
  • the ethylene / ⁇ -olefin copolymer (B) used in the present invention is at least one selected from the group consisting of ethylene and ⁇ -olefins having 4 to 10 carbon atoms from the viewpoint of a balance between physical properties and economy. It is preferably a copolymer of olefins, more preferably a copolymer of ethylene and one or more ⁇ -olefins selected from the group consisting of 1-butene, 1-hexene and 1-octene. A copolymer of ethylene and 1-hexene is particularly preferable.
  • the crystal melting point measured by DSC in accordance with JIS-K7121 is in the range of 85 ° C. or higher and lower than 110 ° C. It is preferable that the crystal melting point is in the above range because the multilayer blow container is excellent in impact resistance and adhesion between the outermost layer and other layers.
  • the crystalline melting point of the ethylene / ⁇ -olefin copolymer (B) measured by DSC in accordance with JIS-K7121 is 110 ° C. or higher, the adhesion and impact resistance are inferior, and measured by DSC in accordance with JIS-K7121.
  • the crystal melting point is lower than 85 ° C., the adhesiveness is inferior, and stickiness is generated, which is not preferable.
  • the crystal melting point is preferably 109 ° C. or lower, more preferably 108 ° C. or lower, and particularly preferably 105 ° C. or lower.
  • the crystalline melting point of the ethylene / ⁇ -olefin copolymer (B) used in the present invention measured by DSC in accordance with JIS-K7121 can be adjusted to any amount by adjusting the production conditions of the ethylene / ⁇ -olefin copolymer. It can be.
  • the polymerization of the ethylene / ⁇ -olefin copolymer (B) it is adjusted by changing the ratio of the feed amount of ethylene / ⁇ -olefin when the ethylene / ⁇ -olefin copolymer is polymerized.
  • the ratio of the feed amount of ethylene / ⁇ -olefin when the ethylene / ⁇ -olefin copolymer is polymerized Is possible. Specifically, by increasing the feed amount of ⁇ -olefin relative to the feed amount of ethylene, it is possible to lower the crystal melting point measured by DSC in accordance with JIS-K7121. Further, by reducing the feed amount of ⁇ -olefin relative to the feed amount of ethylene, it is possible to increase the crystalline melting point measured by DSC in accordance with JIS-K7121.
  • the crystal melting point of the ethylene / ⁇ -olefin copolymer (B) can be measured using a differential scanning calorimeter (DSC) according to JIS-K7121. Specifically, it can be measured by the same method as the crystalline melting point of the propylene resin (A) described above.
  • DSC differential scanning calorimeter
  • (B-3) MFR measured at a measurement temperature of 230 ° C. and a load of 2.16 kg in accordance with ASTM D-1238 is in the range of 5 to 10 g / 10 min.
  • the MFR is within the above range, the dispersibility of the ethylene / ⁇ -olefin copolymer (B) in the propylene resin (A) is good, the gloss of the multilayer blow container is excellent, and the impact resistance is excellent. Since it is excellent in adhesiveness with another layer, it is preferable.
  • the MFR of the ethylene / ⁇ -olefin copolymer (B) measured at a measurement temperature of 230 ° C. and a load of 2.16 kg in accordance with ASTM D-1238 is adjusted with the ethylene / ⁇ -olefin copolymer (B It can be set to an arbitrary value by adjusting the manufacturing conditions.
  • the amount of hydrogen gas is controlled by adjusting the feed amount of ethylene and / or ⁇ -olefin at the time of polymerization. It is possible. Measurement temperature in accordance with ASTM D-1238 by increasing the feed amount of ethylene gas during polymerization or when feeding ethylene and ⁇ -olefin, by increasing the feed amount of hydrogen gas relative to the feed amount of ethylene and ⁇ -olefin It is possible to increase the MFR measured at 230 ° C. and a 2.16 kg load. In the case of feeding ethylene gas or ethylene and ⁇ -olefin, the measurement temperature is 230 ° C. according to ASTM D-1238 by reducing the amount of hydrogen gas to ethylene and ⁇ -olefin. It is possible to lower the MFR measured with a 16 kg load.
  • the density measured by the density gradient tube method is in the range of 0.880 to 0.910 g / cm 3 . It is preferable for the density to be in the above-mentioned range since the multilayer blow container is excellent in gloss and impact resistance and adhesion between the outermost layer and other layers.
  • the low-density ethylene / ⁇ -olefin copolymer (F) described later is used and the ethylene / ⁇ -olefin copolymer is used.
  • the polymer (B) preferably satisfies the following requirement (B-4a).
  • (B-4a) density measured by a density gradient tube method (d B [g / cm 3 ]) is in the range of 0.890 ⁇ 0.910g / cm 3.
  • the multi-layer blow container has excellent gloss, impact resistance, low temperature impact resistance, adhesion between the outermost layer and other layers, low stickiness, and further, impact resistance and low temperature resistance. It is preferable because the balance between impact resistance such as impact properties and resistance is good.
  • the density measured by the density gradient tube method of the ethylene / ⁇ -olefin copolymer (B) used in the present invention should be an arbitrary amount by adjusting the production conditions of the ethylene / ⁇ -olefin copolymer (B). Can do.
  • the ratio of the feed amount of ethylene and ⁇ -olefin when the ethylene / ⁇ -olefin copolymer is polymerized is changed.
  • the density measured by the density gradient tube method can be lowered by increasing the feed amount of ⁇ -olefin relative to the feed amount of ethylene.
  • the density measured by the density gradient tube method can be increased by reducing the feed amount of ⁇ -olefin relative to the feed amount of ethylene.
  • the density measured by the density gradient tube method of the ethylene / ⁇ -olefin copolymer (B) used in the present invention is the same as that of the ethylene / ⁇ -olefin copolymer (B) strand obtained at the time of the MFR measurement. It is a measured value measured with a density gradient tube after heat treatment at 120 ° C. for 1 hour and linearly cooling to room temperature over 1 hour.
  • Mw / Mn measured by GPC is 1.2 to 3.0.
  • the ethylene / ⁇ -olefin copolymer (B) preferably has Mw / Mn of 1.5 to 3.0. It is preferable that Mw / Mn is within the above range because the multilayer blow container of the present invention is excellent in gloss.
  • Mw / Mn measured by GPC of the ethylene / ⁇ -olefin copolymer (B) can be adjusted, for example, depending on the type of catalyst used in the production of the ethylene / ⁇ -olefin copolymer (B). .
  • a metallocene catalyst as the catalyst, an ethylene / ⁇ -olefin copolymer (B) satisfying the requirement (B-5) can be obtained.
  • the ethylene / ⁇ -olefin copolymer (B) can be obtained by copolymerizing ethylene and an ⁇ -olefin, but the ethylene / ⁇ -olefin copolymer is obtained using a metallocene catalyst. A polymerized one is preferred. In the polymerization, a chain transfer agent represented by hydrogen gas can be introduced.
  • the ethylene / ⁇ -olefin copolymer (B) used in the present invention is an ethylene / ⁇ -olefin copolymer polymerized using a metallocene catalyst, an ethylene polymerized using a conventional so-called Ziegler-Natta catalyst is used. Since the composition distribution is more uniform than that of the ⁇ -olefin copolymer, the dispersibility with respect to the propylene-based resin (A) is improved, and the olefin polymer composition (E) having better gloss can be obtained.
  • an ethylene / ⁇ -olefin copolymer polymerized using a metallocene catalyst has a narrower molecular weight distribution than that of an ethylene / ⁇ -olefin copolymer polymerized using a Ziegler-Natta catalyst. Low molecular weight components that cause deterioration are reduced.
  • an ethylene / ⁇ -olefin copolymer polymerized using a metallocene catalyst has a more uniform composition distribution of the copolymer than an ethylene / ⁇ -olefin copolymer polymerized using a Ziegler-Natta catalyst. The amorphous component that causes stickiness is also reduced. Further, adhesion unevenness between the outermost layer and the other layers is reduced, and it is expected to suppress deterioration in appearance over time.
  • the olefin polymer composition (E) has excellent gloss, impact resistance, and low stickiness. ) Can be obtained.
  • the olefin polymer composition (E) the propylene resin (A) and the ethylene / ⁇ -olefin copolymer ( In addition to B) and the nucleating agent (D), it is preferable to use a composition formed using a low-density ethylene / ⁇ -olefin copolymer (F).
  • the low-density ethylene / ⁇ -olefin copolymer (F) preferably satisfies the following requirements (F-1) and (F-2), and further satisfies the following requirement (F-3).
  • the low density ethylene / ⁇ -olefin copolymer (F) may be used alone or in combination of two or more.
  • (F-1) A copolymer of ethylene and one or more ⁇ -olefins having 3 to 20 carbon atoms.
  • the ⁇ -olefin having 3 to 20 carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-dodecene, 1-hexadodecene, 4 -Methyl-1-pentene, 2-methyl-1-butene, 3-methyl-1-butene, 3-methyl-1-butene, 3,3-dimethyl-1-butene, diethyl-1-butene, trimethyl-1 -Butene, 3-methyl-1-pentene, ethyl-1-pentene, propyl-1-pentene, dimethyl-1-pentene, methylethyl-1-pentene, diethyl-1-hexene, trimethyl-1-pentene, 3- Methyl-1-hexen
  • the low density ethylene / ⁇ -olefin copolymer (F) includes at least one selected from the group consisting of ethylene and ⁇ -olefins having 3 to 10 carbon atoms from the viewpoint of a balance between physical properties and economy. It is preferably a copolymer with olefin, and is a copolymer of ethylene and one or more ⁇ -olefins selected from the group consisting of propylene, 1-butene, 1-hexene and 1-octene. More preferred.
  • the low density ethylene / ⁇ -olefin copolymer (F) is preferably a copolymer of ethylene and propylene, a copolymer of ethylene and 1-butene, or a copolymer of ethylene and 1-octene. More preferred is a copolymer of ethylene and 1-butene, and a copolymer of ethylene and 1-octene, and particularly preferred is a copolymer of ethylene and 1-butene.
  • the crystal melting point measured by DSC according to JIS-K7121 is 89 ° C. or lower, or no peak based on the crystal melting point is observed. When it has a crystalline melting point, it is preferably 75 ° C. or lower. A crystal melting point within the above range is preferable because a multilayer blow container is excellent in low-temperature impact resistance.
  • the crystal melting point of the low density ethylene / ⁇ -olefin copolymer (F) can be measured using a differential scanning calorimeter (DSC) according to JIS-K7121. Specifically, it can measure by the method as described in the below-mentioned Example.
  • DSC differential scanning calorimeter
  • the density (d F [g / cm 3 ]) measured by the density gradient tube method is in the range of 0.865 to 0.900 g / cm 3 .
  • the density is more preferably in the range of 0.870 to 0.900 g / cm 3 . It is preferable for the density to be in the above-mentioned range since the gloss of the multilayer blow container is excellent and the low-temperature impact resistance is particularly excellent.
  • the density (d F [g / cm 3 ]) measured by the public law satisfies the following requirement (X-1).
  • the density difference (d B -d F ) from the density ethylene / ⁇ -olefin copolymer ( F ) is 0.010 to 0.050 [g / cm 3 ].
  • the density difference (d B ⁇ d F ) is preferably 0.010 to 0.040 [g / cm 3 ].
  • the density difference (d B ⁇ d F ) be in the above range because the multilayer blow container is excellent in gloss and further excellent in low-temperature impact resistance.
  • the low-density ethylene / ⁇ -olefin copolymer (F) has an MFR measured at a measurement temperature of 230 ° C. and a load of 2.16 kg in accordance with ASTM D-1238 in the range of 0.1 to 50 g / 10 min. It is preferably in the range of 0.5 to 30 g / 10 minutes, and more preferably in the range of 5 to 10 g / 10 minutes.
  • the MFR is within the above range, the dispersibility of the low-density ethylene / ⁇ -olefin copolymer (F) becomes good, and the gloss and low-temperature impact properties are improved.
  • the low-density ethylene / ⁇ -olefin copolymer (F) can be obtained by copolymerizing ethylene and ⁇ -olefin, and the ethylene / ⁇ -olefin copolymer is a Ziegler-Natta catalyst.
  • the polymer may be polymerized using a metallocene or may be polymerized using a metallocene catalyst.
  • nucleating agent (D) In the present invention, the nucleating agent (D) is used.
  • the nucleating agent (D) one or more compounds selected from the group consisting of aromatic phosphate ester compounds, carboxylic acid metal salt nucleating agents, polymer nucleating agents, sorbitol nucleating agents and inorganic compound nucleating agents. Is mentioned. It is preferable that the nucleating agent (D) does not deteriorate the odor of the multilayer blow container.
  • a nucleating agent (D) may be used individually by 1 type, or may use 2 or more types together.
  • the aromatic phosphate compound is preferably a compound represented by the following formula [III] and / or [IV].
  • R 1 is a divalent hydrocarbon group having 1 to 10 carbon atoms
  • R 2 and R 3 are each independently a hydrogen atom or 1 to 10 carbon atoms.
  • a hydrocarbon group, M is a monovalent to trivalent metal atom, n is an integer of 1 to 3, and m is 1 or 2.
  • aromatic phosphate compound represented by the general formula [III] include sodium-2,2′-methylene-bis (4,6-di-t-butylphenyl) phosphate, sodium-2,2 '-Ethylidene-bis (4,6-di-t-butylphenyl) phosphate, lithium-2,2'-methylene-bis (4,6-di-t-butylphenyl) phosphate, lithium-2,2 '-Ethylidene-bis (4,6-di-t-butylphenyl) phosphate, sodium-2,2'-ethylidene-bis (4-i-propyl-6-t-butylphenyl) phosphate, lithium-2 , 2'-methylene-bis (4-methyl-6-t-butylphenyl) phosphate, lithium-2,2'-methylene-bis (4-ethyl-6-t-butylphenyl) phosphate, sodium-2 , 2'-Butyliden
  • a hydroxyaluminum phosphate compound represented by the general formula [IV] can also be used.
  • the compound represented by the general formula [V] in which R 2 and R 3 are both tert-butyl groups. are preferred.
  • R 1 is a divalent hydrocarbon group having 1 to 10 carbon atoms, and m is 1 or 2.
  • a particularly preferred aromatic phosphate compound is a compound represented by the general formula [VI].
  • R 1 is a methylene group or an ethylidene group.
  • hydroxyaluminum-bis [2,2-methylene-bis (4,6-di-t-butyl) phosphate] (also known as bis (2, 4,8,10-tetra-t-butyl-6-hydroxy-12H-dibenzo [d, g] [1,3,2] dioxaphosphocin-6-oxide) aluminum hydroxide salt), or hydroxyaluminum Bis [2,2-ethylidene-bis (4,6-di-t-butyl) phosphate].
  • carboxylic acid metal salt nucleating agent for example, pt-butyl aluminum benzoate, aluminum adipate, or sodium benzoate can be used.
  • a branched ⁇ -olefin polymer is preferably used as the polymer nucleating agent.
  • branched ⁇ -olefin polymers include 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, a homopolymer of 3-ethyl-1-hexene, or a copolymer thereof, Can include copolymers of these with other ⁇ -olefins.
  • polymer nucleating agents can be blended directly when the olefin polymer composition (E) is produced, and when the propylene resin (A) is produced, the propylene resin (A) is produced.
  • the above branched ⁇ -olefin is polymerized before or after the polymerization in a block manner, and blended by using the propylene resin (A) containing the branched ⁇ -olefin polymer as the nucleating agent (D). It is also possible to use a polymer nucleating agent-containing propylene resin (A ′).
  • the polymer nucleating agent contained in the polymer nucleating agent-containing propylene resin (A ′) Let the amount be the blending amount of the nucleating agent (D) in the olefin polymer composition (E). Moreover, let the part which reduced the quantity of the polymer nucleating agent from the polymer nucleating agent mixing
  • the polymer nucleating agent can also be formed by prepolymerization when producing the polymer (A), the polymer (B), and the polymer (F) using a known method. ), When the polymer (F) is produced, it can also be formed by a block copolymerization method.
  • a polymer nucleating agent-containing propylene resin (A ′) and a propylene resin (A) containing no polymer nucleating agent may be used in combination.
  • a polymer of 3-methyl-1-butene is particularly preferable from the viewpoints of transparency, low-temperature impact resistance, rigidity properties, and economical viewpoint.
  • nonitol, 1,2,3-trideoxy-4,6 5,7-bis-O-[(4-propylphenyl) methylene] can be preferably used.
  • inorganic compound nucleating agent for example, talc, mica, calcium carbonate can be used.
  • nucleating agents (D) nonitol, 1,2,3-trideoxy-4,6: 5,7-bis-O— is preferred in terms of transparency, low-temperature impact resistance, rigidity and low odor.
  • a commercially available product can be used as the nucleating agent (D) used in the present invention.
  • ADK STAB NA-21 manufactured by ADEKA
  • ADEKA is bis (2,4,8,10-tetra-t-butyl-6-).
  • Hydroxy-12H-dibenzo [d, g] [1,3,2] dioxaphosphocin-6-oxide) is commercially available as a nucleating agent containing aluminum hydroxide as a main component.
  • 3-Trideoxy-4,6 5,7-bis-O-[(4-propylphenyl) methylene] is commercially available under the trade name Millard NX8000 (Milken).
  • the olefin polymer composition (E) used in the present invention is a resin used for the outermost layer of the multilayer blow container of the present invention.
  • the propylene-based resin (A) is 80 to 98 parts by weight and an ethylene / ⁇ -olefin.
  • the olefin polymer composition (E) is composed of propylene resin (A) and ethylene / ⁇ -olefin copolymer. It is preferable to use a composition formed by using 0.1 to 20 parts by weight of a low density ethylene / ⁇ -olefin copolymer (F) in addition to the coalescence (B) and the nucleating agent (D). .
  • the olefin polymer composition (E) is formed without using the low density ethylene / ⁇ -olefin copolymer (F). It is also preferable.
  • the amount of the propylene-based resin (A) and the ethylene / ⁇ -olefin copolymer (B) used is such that the propylene-based resin (A) is used from the viewpoint of good stickiness and economical and productivity. 95.5 to 98 parts by weight, and the ethylene / ⁇ -olefin copolymer (B) is 2 to 4.5 parts by weight (provided that the total of (A) and (B) is 100 parts by weight) It is preferable that
  • a multilayer blow container The propylene-based resin (A) blended in the olefin polymer composition (E) is less than 80 parts by weight, and the ethylene / ⁇ -olefin copolymer is inferior in impact resistance and adhesion to other layers.
  • (B) is more than 20 parts by weight, stickiness occurs, which is not preferable.
  • the low-density ethylene / ⁇ -olefin copolymer (E) is blended into the olefin polymer composition (E) from the viewpoints of stickiness and economy.
  • F) is preferably 3 to 15 parts by weight.
  • the nucleating agent (D) is used in an amount of 0.01 to 0.5 parts by weight with respect to 100 parts by weight of the total amount of the propylene resin (A) and the ethylene / ⁇ -olefin copolymer (B).
  • the effect of improving the glossiness of the film can be obtained.
  • the addition amount of the nucleating agent (D) is less than 0.01 parts by weight, the effect of improving the glossiness is small. Even if the addition amount of the nucleating agent (D) is more than 0.5 parts by weight, the effect is not changed, and it is not preferable because it is economically disadvantageous.
  • the olefin polymer composition (E) satisfies the following requirement (E-1).
  • the melt flow rate (MFR) measured at a measurement temperature of 230 ° C. and a load of 2.16 kg is in the range of 5 to 10 g / 10 minutes.
  • MFR melt flow rate
  • the fluidity of the olefin polymer composition (E) at the time of molding becomes a range suitable for molding, and fine melt fracture (MF) generated at the time of molding can be suppressed.
  • MF fine melt fracture
  • the thickness nonuniformity of the olefin polymer composition (E) in blow molding is prevented, and the multilayer blow container excellent in smoothness can be obtained.
  • melt flow rate (MFR) measured at a measurement temperature of 230 ° C. and a load of 2.16 kg is higher than 10 g / 10 minutes, the moldability is inferior, and when it is lower than 5 g / 10 minutes, the glossiness is obtained.
  • the melt flow rate (MFR) measured at a measurement temperature of 230 ° C. and a load of 2.16 kg in accordance with the requirements (E-1) relating to the olefin polymer composition (E), that is, ASTM D-1238, is propylene used Can be adjusted by appropriately selecting the resin (A), the ethylene / ⁇ -olefin copolymer (B), and the low density ethylene / ⁇ -olefin copolymer (F) used as necessary. is there.
  • both the propylene-based resin (A) and the ethylene / ⁇ -olefin copolymer (B) used were measured in accordance with ASTM D-1238 at a measurement temperature of 230 ° C. and a load of 2.16 kg (MFR). ) In the range of 5 to 10 g / 10 min, the propylene resin (A), the ethylene / ⁇ -olefin copolymer (B), and the low-density ethylene / ⁇ -olefin copolymer used as necessary.
  • the requirement (E-1) can be satisfied by appropriately selecting the polymer (F).
  • a melt flow rate (MFR) measured at a measurement temperature of 230 ° C. and a load of 2.16 kg in accordance with ASTM D-1238 is less than 5 g / 10 minutes.
  • the propylene-based resin (A) or ethylene / ⁇ - The olefin copolymer (B) or the low density ethylene / ⁇ -olefin copolymer (F) used as necessary is modified to give an MF of the olefin polymer composition (E).
  • The can be adjusted within the above range.
  • an organic peroxide the thing similar to what was described by the term of the said ⁇ propylene-type resin (A)> is mentioned.
  • an ethylene / ⁇ -olefin copolymer (B) to be combined is necessary.
  • the MFR of the olefin polymer composition (E) can be adjusted within the above range by using a low density ethylene / ⁇ -olefin copolymer (F) used depending on
  • the olefin polymer composition (E) preferably has a crystal melting point measured by DSC according to JIS-K7121 in the range of 140 to 155 ° C. When the crystal melting point is within the above range, a multi-layer blow container having good gloss and good impact resistance can be obtained.
  • the crystal melting point of the olefin polymer composition (E) can be measured using a differential scanning calorimeter (DSC) according to JIS-K7121. Specifically, it can be measured by the same method as the crystalline melting point of the propylene resin (A) described above.
  • DSC differential scanning calorimeter
  • the olefin polymer composition (E) preferably has a half crystallization time (t 1/2 ) in the range of 50 to 1000 seconds, and more preferably in the range of 100 to 500 seconds. Within the above range, the mold transferability becomes good at the time of blow molding, and a multi-layer blow container with good gloss can be obtained.
  • the half crystallization time (t 1/2 ) was crystallized with the olefin polymer composition (E) under an isothermal condition of 125 ° C., and the calorific value associated with crystallization was measured at this time to start the heat generation (crystallization It can be measured as the time from the start) until the calorific value becomes half the total calorific value.
  • the half crystallization time (t 1/2 ) of the olefin polymer composition (E) can be adjusted by the amount of the nucleating agent (D) contained in the olefin polymer composition (E). By increasing the amount of the nucleating agent (D) contained in the olefin polymer composition (E), it is possible to increase the half crystallization time (t 1/2 ), and conversely, the amount of the nucleating agent (D). It is possible to slow down the half crystallization time (t 1/2 ) by reducing.
  • the olefin polymer composition (E) of the present invention includes the propylene resin (A), the ethylene / ⁇ -olefin copolymer (B), the low density ethylene / ⁇ -olefin copolymer (F), and Components other than the nucleating agent (D) may be contained.
  • Examples of other resins include polyolefins other than propylene resin (A), ethylene / ⁇ -olefin copolymer (B), low density ethylene / ⁇ -olefin copolymer (F), and nucleating agent (D).
  • Examples of the polyolefin resin include propylene resins (P) other than the propylene resin (A).
  • Examples of the propylene resin (P) include propylene homopolymers (including syndiotactic propylene homopolymers) different from the propylene resin (A).
  • Tm of propylene-based resin (P) measured by a differential scanning calorimeter (DSC) according to JISK7121 is 140 to 155 ° C.
  • the MFR of propylene resin (P) measured at a measurement temperature of 230 ° C. and a load of 2.16 kg in accordance with ASTM D-1238 is preferably 0.01 to 20 g / 10 min, particularly 0.1 to 5 g / 10 min is preferred.
  • styrene elastomers or hydrogenated products (S) thereof can be exemplified.
  • S hydrogenated product
  • the styrenic elastomer or hydrogenated product (S) thereof has a styrene content of 10 to 70% by weight, preferably 10 to 65% by weight, more preferably 10 to 40% by weight, and a conjugated diene content of 30 to 90% by weight.
  • the styrenic elastomer or the hydrogenated product (S) thereof is preferably 35 to 90% by weight, more preferably 60 to 90% by weight.
  • styrene-type elastomer or its hydrogenated substance As said styrene-type elastomer or its hydrogenated substance (S), a styrene-type polymer block component (it may hereafter be called a styrene block) and a conjugated diene-type polymer block component (it may be hereafter called a diene block). And a styrene / butadiene random copolymer, a styrene / isoprene random copolymer, a styrene / chloroprene random copolymer, and hydrogenated products thereof. Of these, styrene block copolymers are preferred.
  • the styrenic polymer block component constituting the styrenic block copolymer is composed of styrene or a derivative thereof.
  • Specific examples of the monomer include styrene, ⁇ -methylstyrene, p-methylstyrene, chlorostyrene, and vinylnaphthalene. Etc. Of these, styrene is preferred. These monomers are used alone or in combination of two or more.
  • the monomer constituting the conjugated diene polymer block include butadiene, isoprene, chloroprene and the like. Of these, butadiene and isoprene are preferred. These monomers are used alone or in combination of two or more.
  • the bonding form of the styrene block and the diene block in the styrenic block copolymer is not particularly limited, but the styrene block / diene block or styrene block / [diene block / styrene block] n (where n is 1 to 5) Form is preferred.
  • the content of the styrene polymer block component in the styrene block copolymer is 10 to 70% by weight, preferably 10 to 65% by weight, more preferably 10 to 40% by weight, and the content of the conjugated diene polymer block component
  • the amount is desirably 30 to 90% by weight, preferably 35 to 90% by weight, and more preferably 60 to 90% by weight.
  • the styrene block copolymer has a melt flow rate (MFR) measured at 230 ° C. and a load of 2160 g in accordance with ASTM D-1238 at 0.1 g / 10 min or more, preferably 0.3 to 20 g / 10 min, particularly Preferably, it is 5 to 10 g / 10 min.
  • MFR melt flow rate
  • styrenic block copolymers include styrene / ethylene / butene / styrene block copolymers (SEBS), styrene / ethylene / propylene / styrene block copolymers (SEPS), and styrene / butadiene / stin blocks.
  • SEBS styrene / ethylene / butene / styrene block copolymers
  • SEPS styrene / ethylene / propylene / styrene block copolymers
  • SEPS styrene / butadiene / stin blocks.
  • SBS copolymer
  • SIS styrene / isoprene / styrene block copolymer
  • SEP styrene / ethylene / propylene block copolymer
  • the upper limit is usually 20 parts by weight or less, more preferably with respect to 100 parts by weight of the total of (A) and (B). Is 10 parts by weight or less, more preferably 5 parts by weight or less, and the lower limit is usually 0.1 parts by weight.
  • the upper limit of the propylene resin (P) is usually 20 parts by weight with respect to a total of 100 parts by weight of the (A) and (B). Below, more preferably 10 parts by weight or less, still more preferably 5 parts by weight or less, and the lower limit is usually 0.1 parts by weight.
  • the styrene elastomer or its hydrogenated product (S) is in a total of 100 parts by weight of (A) and (B).
  • the upper limit is usually 20 parts by weight or less, more preferably 10 parts by weight or less, further preferably 5 parts by weight or less, and the lower limit is usually 0.1 parts by weight.
  • the propylene resin (P) and the styrene elastomer or hydrogenated product (S) are used as the other resin
  • the propylene resin (P) and the styrene elastomer or hydrogenated product thereof are used.
  • the upper limit of the total of (S) is usually 20 parts by weight or less, more preferably 10 parts by weight or less, and even more preferably 5 parts by weight or less based on 100 parts by weight of the total of (A) and (B).
  • the lower limit is usually 0.1 parts by weight.
  • an embodiment in which the propylene resin (P) is not added and an embodiment in which the styrene elastomer or its hydrogenated product (S) is not added are more desirable. It is an aspect and the aspect which does not add the said propylene-type resin (P) and the said styrene-type elastomer, or its hydrogenated substance (S) is a more desirable aspect.
  • the low density ethylene / ⁇ -olefin copolymer (F) is in a small amount or not present in terms of stickiness.
  • Olefin polymer composition (E) consisting essentially of 0 to 20 parts by weight of at least one polymer selected from S) (in an amount relative to a total of 100 parts by weight of (A) and (B))
  • Olefin polymer composition (E) consisting essentially of 0 to 20 parts by weight of at least one polymer selected from S) (in an amount relative to a total of 100 parts by weight of (A) and (B))
  • the total of the propylene resin (P) having a Tm of 140 to 155 ° C. and the styrene elastomer or its hydrogenated product (S) is 0 with respect to 100 parts by weight of the total of (A) and (B).
  • the case of parts by weight is also included.
  • “substantially” means that the olefin polymer composition (E) may contain additives as other components within the range not impairing the effects of the present invention, but other components are included. Indicates no.
  • Additives include antioxidants, hydrochloric acid absorbers, heat stabilizers, light stabilizers, UV absorbers, lubricants, antistatic agents, flame retardants, pigments, dyes, dispersants, copper damage inhibitors, neutralizing agents, Examples thereof include foaming agents, plasticizers, anti-bubble agents, crosslinkers, flowability improvers such as peroxides, weld strength improvers, and the like.
  • these additives For example, a commercial item can be used.
  • the amount of the olefin polymer composition (E) is not particularly limited as long as it is within the range where the effects of the present invention can be obtained. It is usually 0.01 to 1.00 parts by weight with respect to 100 parts by weight in total with B).
  • the olefin polymer composition (E) used in the present invention has a MFR in a specific range, it is difficult to blow mold only with the olefin polymer composition (E), but as a surface layer of a multilayer blow molded article. It can be used, and when used as a surface layer, it exhibits excellent gloss and has excellent physical properties.
  • the method for preparing the olefin polymer composition (E) is not particularly limited.
  • a propylene resin (A), an ethylene / ⁇ -olefin copolymer (B) and a nucleating agent (D) can be arbitrarily used.
  • the strand is usually formed into pellets using a pelletizer or the like before blow molding.
  • the propylene resin (A) the propylene resin (A), the ethylene / ⁇ -olefin copolymer (B) or a low-density ethylene / ⁇ -olefin copolymer (F) used as necessary may be modified.
  • a reactive additive such as a peroxide such as an organic peroxide or a crosslinking agent
  • the reason why the multilayer blow container formed using the olefin polymer composition (E) as a resin for forming the outermost layer exhibits good physical properties is not clear, but ethylene / ⁇ -olefin having a crystal melting point in a specific range.
  • the copolymer (B) it is considered that the ethylene / ⁇ -olefin copolymer (B) is finely dispersed in the propylene-based resin (A). It is considered that the impact resistance is high and the impact resistance is high, and furthermore, the impact resistance and the low stickiness are compatible.
  • the resin used for the outermost layer is composed of the above-mentioned olefin polymer composition (E).
  • the multilayer blow container of the present invention has at least one inner layer as a layer other than the outermost layer.
  • the other layer (inner layer) forming the multilayer blow container is not particularly limited and is usually made of a thermoplastic resin other than the olefin polymer composition (E).
  • examples thereof include vinyl copolymers, polyvinyl alcohol resins or polyvinyl chloride resins, polyvinyl chloride resins, and modified polyolefin resins.
  • a mixture of two or more of the above resins can also be used.
  • a propylene polymer (G) and an ethylene polymer (H) are preferable.
  • the propylene polymer (G) is a propylene polymer having a propylene-derived constitutional unit of 51 mol% or more, and the ethylene polymer (H) is an ethylene-derived constitutional unit of 51 mol% or more. It is an ethylene polymer.
  • Multi-layer blow container is formed from styrene polymer or other polar resin such as polyethylene terephthalate resin, polyamide resin, ABS resin, ethylene-vinyl acetate copolymer, polyvinyl alcohol resin, polyvinyl chloride resin as other layer (inner layer)
  • styrene polymer or other polar resin such as polyethylene terephthalate resin, polyamide resin, ABS resin, ethylene-vinyl acetate copolymer, polyvinyl alcohol resin, polyvinyl chloride resin as other layer (inner layer)
  • the outermost layer of the multilayer blow container of the present invention that is, the layer formed from the olefin polymer composition (E) is highly glossy.
  • the multilayer blow container is also excellent in impact resistance.
  • the MFR which is an index of fluidity of the olefin polymer composition (E) is in a specific range. Yes. For this reason, in blow molding, it is estimated that the surface of the heated molten resin immediately before contacting the mold is easily smoothed, and the surface is likely to be smooth even after blow molding, thereby providing excellent surface gloss. It is considered that a multilayer blow container can be obtained. Moreover, since MFR which is an index of fluidity of the olefin polymer composition (E) is in a specific range, the surface appearance is also good.
  • an ethylene / ⁇ -olefin copolymer (B) is used as a raw material of the composition. Since the ethylene / ⁇ -olefin copolymer (B) has a crystal melting point in a specific range, the obtained molded product exhibits excellent properties such as the above-described correlated adhesiveness and low stickiness, Even when the amount of the ethylene / ⁇ -olefin copolymer (B) used relative to the propylene resin (A) is small, the impact resistance can be improved efficiently.
  • a low density ethylene / ⁇ -olefin copolymer (F) is used as a raw material of the composition as required.
  • the low-density ethylene / ⁇ -olefin copolymer (F) can efficiently improve the low-temperature impact resistance even when the amount used for the propylene-based resin (A) is small.
  • the multilayer blow container of the present invention has high gloss and excellent impact resistance, and when the low density ethylene / ⁇ -olein copolymer (F) is used, low temperature impact resistance is achieved.
  • the present inventors have estimated that it is also excellent.
  • the multilayer blow container of the present invention Since the multilayer blow container of the present invention has excellent impact resistance, cracks and the like due to external impact are suppressed, and since the outermost layer is highly glossy, the container has gloss with a transparent feeling. In addition, since the multilayer blow container of the present invention is excellent in low-temperature impact resistance, even when the multilayer blow container is filled with contents and transported, stored, etc. under low temperature conditions, it is due to impact from the outside. Cracks and the like are suppressed.
  • the layer structure of the multilayer blow container of the present invention is not particularly limited as long as the outermost layer is a layer made of the olefin polymer composition (E).
  • the outermost layer made of the olefin polymer composition (E) A two-layer configuration with the innermost layer (layer configuration arranged in order of outermost layer / innermost layer), an outermost layer made of the olefin polymer composition (E), an intermediate layer adjacent to the outermost layer, Three-layer configuration with the innermost layer adjacent to the intermediate layer (layer configuration arranged in order of outermost layer / intermediate layer / innermost layer), outermost layer made of the olefin polymer composition (E), and adjacent to the outermost layer A four-layer structure (outermost layer / intermediate layer (1) /) of the intermediate layer (1), the intermediate layer (2) adjacent to the intermediate layer (1), and the innermost layer adjacent to the intermediate layer (2).
  • a layer located inside the outermost layer is defined as an inner layer. That is, in the present invention, the innermost layer and the intermediate layer correspond to inner layers, and the multilayer blow container of the present invention may have at least one inner layer and may have two or more layers.
  • the layer adjacent to the outermost layer is formed from the propylene polymer (G) or the ethylene polymer (H), so-called Even without using an adhesive resin, strong adhesiveness was exhibited.
  • the layer adjacent to the outermost layer made of the olefin polymer composition (E) is a propylene polymer ( G) or an ethylene polymer (H) is preferable.
  • the layer adjacent to the olefin polymer composition (E) is a layer other than the propylene polymer (G) and the ethylene polymer (H), the olefin polymer composition (E). From the viewpoint of adhesiveness with the outermost layer made of, it is preferable that the outermost layer made of the olefin polymer composition (E) and other layers are formed via the adhesive resin layer.
  • the multilayer blow container of the present invention may have any layer colored.
  • the propylene polymer (G) is not particularly limited, and examples thereof include homopolypropylene, propylene / ⁇ -olefin random copolymer, propylene / ⁇ -olefin block copolymer, and the like.
  • the MFR measured at a measurement temperature of 230 ° C. and a load of 2.16 kg is preferably in the range of 0.1 to 20.0 g / 10 minutes. In particular, 0.1 to 5 g / 10 min is preferable.
  • the crystal melting point measured with a differential scanning calorimeter (DSC) in accordance with JIS-K7121 is preferably in the range of 100 to 168 ° C.
  • the ethylene polymer (H) is not particularly limited, and examples thereof include so-called high density polyethylene, linear low density polyethylene, and low density polyethylene.
  • the density of the ethylene polymer (H) measured by the density gradient tube method is preferably 0.860 to 0.980 g / cm 3 , and the measurement temperature is 230 ° C. according to ASTM D-1238.
  • the MFR measured under a 16 kg load is preferably 0.01 to 20 g / 10 min, and particularly preferably 0.1 to 5 g / 10 min.
  • the modified polyolefin resin (I) is not particularly limited, and generally an acid-modified polyolefin can be used.
  • the acid used for the acid modification include an ethylenically unsaturated carboxylic acid such as maleic anhydride, acrylic acid, methacrylic acid, and itaconic anhydride, or an anhydride thereof.
  • the polyolefin resin used for modification is preferably an ethylene / ⁇ -olefin copolymer, a propylene homopolymer, or a propylene / ⁇ -olefin copolymer.
  • the inner layer other than the layer adjacent to the outermost layer in the multilayer blow container is composed of a propylene polymer (G), an ethylene polymer (H), a styrene polymer, a polyethylene terephthalate resin, a polyamide resin, an ABS resin.
  • G propylene polymer
  • H ethylene polymer
  • H styrene polymer
  • polyethylene terephthalate resin a polyamide resin
  • ABS resin an ABS resin.
  • a layer formed of at least one resin selected from ethylene-vinyl acetate copolymer, polyvinyl alcohol resin or polyvinyl chloride resin is preferable.
  • any method may be used as long as it is blow molding.
  • the molding method include a direct blow molding method (hollow molding method), an injection stretch blow molding method (injection hollow molding method), an extrusion stretch blow molding method, and a sheet blow molding method.
  • the multilayer blow container is preferably obtained by molding by a direct blow molding method or an injection stretch blow molding method from the viewpoint of productivity in mass production.
  • the olefin polymer composition (E) and other resins are used, and the olefin polymer composition (E) is the outermost layer. Then, while the obtained parison is still in a molten state, it is sandwiched between blow molds, and fluid is blown into the parison to be molded into a predetermined shape. Since the layer formed from the olefin polymer composition (E) is the outermost layer, a high gloss multilayer blow container can be obtained.
  • the molding conditions depend on the properties of the resin, but the temperature of the resin when the fluid is blown, that is, the molding temperature is preferably 120 to 260 ° C., and the fluid blowing pressure is 2 to 10 kg / cm 2.
  • a blow ratio of 1.2 to 5.0 is preferable from the viewpoint of moldability.
  • the blow ratio here refers to the outer diameter of the cylindrical molten parison extruded from the extruder die, and the value obtained by dividing the outer diameter of the bottle to be formed.
  • the olefin polymer composition (E) and other resins are injection molded so that the olefin polymer composition (E) is the outermost layer.
  • the preform is forcibly stretched longitudinally using a stretching rod or the like, and then the transverse direction.
  • a multilayer blow container can be obtained by press-fitting a pressurized fluid into the preform for further stretching.
  • the injection temperature of the olefin polymer composition (E) is usually in the range of 160 to 260 ° C.
  • the temperature of the preform immediately before the longitudinal stretching is preferably 110 to 150 ° C.
  • the longitudinal stretching ratio is preferably 1.5 to 4.0 times
  • the transverse stretching ratio is 1.5 to 3.0 times. It is preferable that
  • the thickness and size of the multilayer blow container of the present invention are appropriately determined depending on the use of the multilayer blow container and the like. Usually, the thickness is 0.3 to 10.0 mm, the size is 10 to 300 mm in diameter, and the height is 10 to 300 mm.
  • the thickness of the outermost layer of the multilayer blow container of the present invention is preferably the ratio of the thickness of the outer layer to the other inner layer (outer layer / inner layer), preferably 50/50 to 5/95, more preferably 30/70 to 10 / 90 is preferred. Within the above-mentioned range, the high gloss of the outer layer is most easily expressed and the moldability is good, which is preferable.
  • the multilayer blow container of the present invention is excellent in transparency when a transparent resin is used for layers other than the outermost layer.
  • the haze value (haze) measured using a haze meter in accordance with JIS-K7105 is preferably 30 or less, and more preferably 20 or less. Within the above range, it is possible to obtain a high value-added bottle with very good contents visibility.
  • the multilayer blow container of the present invention is excellent in gloss.
  • the 60 ° gloss measured with a gloss meter in accordance with JIS-K7105 of the outermost layer is preferably 70 or more, and 75 or more. More preferably. Within the above range, it is possible to obtain a high value-added bottle exhibiting an excellent gloss appearance.
  • the multi-layer blow container according to the present invention can be used for various applications, for example, filling containers such as sauces, dressings, juices, fruits, sweets, boiled vegetables, toiletries such as cosmetics and shampoos. It is suitable as a container for filling sanitary goods such as containers and liquid detergents.
  • the method for producing a multilayer blow container of the present invention uses a thermoplastic resin composition other than the olefin polymer composition (E) and the olefin polymer composition (E) described above, and the olefin polymer composition (E) It is preferable that the outermost layer is formed and molded by a direct blow molding method or an injection stretch blow molding method so that the thermoplastic resin composition other than the olefin polymer composition (E) forms at least one inner layer.
  • thermoplastic resin other than the coalescence composition (E) and the olefin polymer composition (E) those described in the above-mentioned section [Multilayer Blow Container] can be used.
  • Other resins and various additives described above can also be used.
  • a multilayer blow container in which the outermost layer is formed from the olefin polymer composition (E) is molded by a direct blow molding method or an injection stretch blow molding method. For this reason, the resulting multilayer blow container is highly glossy because the outermost layer of the multilayer blow container contains the ethylene / ⁇ -olefin copolymer (B). The multilayer blow container is also excellent in impact resistance.
  • the multilayer blow container obtained by the production method of the present invention has excellent impact resistance, cracks due to external impact are suppressed, and the outermost layer is highly glossy, so that the container has gloss with a transparent feeling. .
  • the solid part after washing was defined as a solid titanium catalyst component (A).
  • the solid titanium catalyst component (A) was stored as a decane slurry, but a portion thereof was dried for the purpose of examining the catalyst composition.
  • the composition of the solid titanium catalyst component (A) was 2.3 wt% titanium, 61 wt% chlorine, 19 wt% magnesium, and 12.5 wt% DIBP.
  • the free titanium compound was detected by the following method. 10 ml of the supernatant of the above solid catalyst component was collected with a syringe into a 100 ml branched Schlenk previously purged with nitrogen and charged. Next, the solvent hexane was dried in a nitrogen stream, and further vacuum-dried for 30 minutes. This was charged with 40 ml of ion-exchanged water and 10 ml of 50% by volume sulfuric acid and stirred for 30 minutes. This aqueous solution was transferred to a 100 ml volumetric flask through a filter paper, followed by conc. As a masking agent for iron (II) ions.
  • the melt flow rate (MFR) (ASTM D-1238, measurement temperature 230 ° C., load 2.16 kg) of the obtained propylene-based resin (A-1) was calculated from 7.0 C / 10 min, 13 C-NMR.
  • the weight of the structural unit derived from ethylene is 3.2% by weight when the total of the structural unit derived from propylene and the structural unit derived from ethylene is 100% by weight, DSC melting point (measured by DSC based on JIS-K7121) Crystal melting point) was 145 ° C. and Mw / Mn (molecular weight distribution) was 5.3.
  • the resulting propylene-based resin (A-2) had a melt flow rate (MFR) (ASTM D-1238, measurement temperature 230 ° C., load 2.16 kg) calculated from 7.0 C / 10 min, 13 C-NMR.
  • MFR melt flow rate
  • the weight of ethylene-derived constitutional unit when the total of propylene-derived constitutional unit and ethylene-derived constitutional unit is 100% by weight is 4.8% by weight
  • DSC melting point measured by DSC based on JIS-K7121
  • Crystal melting point was 136 ° C.
  • Mw / Mn molecular weight distribution
  • the melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the obtained propylene resin (A-3) was calculated from 7.0 C / 10 min, 13 C-NMR.
  • the weight of the structural unit derived from ethylene is 1.0% by weight when the total of the structural unit derived from propylene and the structural unit derived from ethylene is 100% by weight.
  • DSC melting point (measured by DSC based on JIS-K7121) Crystal melting point) was 156 ° C. and Mw / Mn (molecular weight distribution) was 5.0.
  • the melt flow rate (MFR) (ASTM D-1238, measurement temperature 230 ° C., load 2.16 kg) of the obtained propylene-based resin (A-4) was calculated from 13 C-NMR at 3.0 g / 10 min.
  • the weight of the structural unit derived from ethylene is 3.2% by weight when the total of the structural unit derived from propylene and the structural unit derived from ethylene is 100% by weight, DSC melting point (measured by DSC based on JIS-K7121) Crystal melting point) was 145 ° C. and Mw / Mn (molecular weight distribution) was 5.3.
  • the resulting propylene resin (A-5) had a melt flow rate (MFR) (ASTM D-1238, measurement temperature 230 ° C., load 2.16 kg) calculated from 13 C-NMR at 15.0 g / 10 min.
  • MFR melt flow rate
  • the weight of the structural unit derived from ethylene is 3.2% by weight when the total of the structural unit derived from propylene and the structural unit derived from ethylene is 100% by weight, DSC melting point (measured by DSC based on JIS-K7121) Crystal melting point) was 145 ° C. and Mw / Mn (molecular weight distribution) was 5.3.
  • the mixture was reacted at 0 ° C. for 30 minutes, then heated to 95 ° C. over 1.5 hours, and reacted at that temperature for 4 hours. Thereafter, the temperature was lowered to 60 ° C., and the supernatant was removed by a decantation method.
  • the solid component thus obtained was washed twice with toluene and then resuspended in 100 liters of toluene to make a total volume of 160 liters.
  • ethylene supply was started again at a flow rate of 8 Nm 3 / hr. After 15 minutes, the ethylene flow rate was lowered to 2 Nm 3 / hr, and the pressure in the system was adjusted to 0.08 MPaG. During this time, the temperature in the system rose to 35 ° C. Thereafter, ethylene was supplied at a flow rate of 4 Nm 3 / hr for 3.5 hours while adjusting the temperature in the system to 32 to 35 ° C. During this time, the pressure in the system was maintained at 0.07 to 0.08 MPaG. Next, after the inside of the system was replaced with nitrogen, the supernatant was removed and washed twice with hexane. Thus, a prepolymerized catalyst (2) in which 3 g of polymer was prepolymerized per 1 g of the solid catalyst component was obtained.
  • Polymerization was started while continuously supplying 4.1 g / hr of the prepolymerized catalyst (2) prepared above and TIBA at a rate of 5 mmol / hr.
  • the yield of the obtained ethylene / 1-hexene copolymer was 6.0 kg / hr, the DSC melting point (crystal melting point measured by DSC according to JIS-K7121) was 98 ° C., measured by the density gradient tube method. Density was 0.903 g / cm 3 , MFR (ASTM-1238, measurement temperature 230 ° C., load 2.16 kg) was 7.0 g / 10 min, and Mw / Mn (molecular weight distribution) was 2.6. .
  • the obtained ethylene / 1-hexene copolymer is also referred to as an ethylene / ⁇ -olefin copolymer (B-1).
  • the yield of the obtained ethylene / 1-hexene copolymer was 6.0 kg / hr, the DSC melting point (crystal melting point measured by DSC according to JIS-K7121) was 113 ° C., measured by the density gradient tube method. Density was 0.913 g / cm 3 , MFR (ASTM-1238, measurement temperature 230 ° C., load 2.16 kg) was 7.0 g / 10 min, and Mw / Mn (molecular weight distribution) was 2.6. .
  • the obtained ethylene / 1-hexene copolymer is also referred to as an ethylene / ⁇ -olefin copolymer (B-2).
  • the yield of the obtained ethylene / 1-hexene copolymer is 5.8 kg / hr
  • DSC melting point (according to JIS-K7121, crystal melting point measured by DSC) is 120 ° C., measured by density gradient tube method Density was 0.924 g / cm 3
  • MFR (ASTM-1238, measurement temperature 230 ° C., load 2.16 kg) was 7.0 g / 10 min
  • Mw / Mn molecular weight distribution
  • the obtained ethylene / 1-hexene copolymer is also referred to as an ethylene / ⁇ -olefin copolymer (B-3).
  • Example A1 97 parts by weight of propylene-based resin (A-1), 3 parts by weight of ethylene / ⁇ -olefin copolymer (B-1), and ADEKA STAB NA-21 (manufactured by ADEKA: bis (2 , 4,8,10-Tetra-t-butyl-6-hydroxy-12H-dibenzo [d, g] [1,3,2] dioxaphosphocin-6-oxide) aluminum hydroxide as a main component 0.15 parts by weight of an aromatic phosphate ester compound nucleating agent) and a phenolic antioxidant [pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) as an additive ) Propionate]], 0.10 parts by weight of a phosphorous antioxidant [Tris (2,4-di-t-butylphenyl) phosphite], and calcium stearate as a neutralizing agent 0.09 part by weight of
  • melt flow rate (MFR) of the olefin polymer composition (E-1) (ASTM D-1238, measurement temperature 230 ° C., load 2.16 kg) is 7.0 g / 10 min, DSC melting point (according to JIS-K7121) Crystal melting point measured by DSC) was 147 ° C.
  • the molding temperature is set to 200 ° C. and the fluid blowing pressure is set to 5.0 kg / cm 2 .
  • a molten parison having an outer diameter of 20.0 mm was formed by a crosshead die having a die hole size of 14.0 mm and a core size of 12.5 mm, weight 34 g, inner capacity 780 ml, mouth screw outer diameter 27.0 mm, waist circumference
  • a cylindrical multilayer blow container having a two-layer structure having an outer diameter of 72 mm and a waistline average thickness of 0.5 mmt was manufactured.
  • a propylene-based random copolymer B251VT (Co., Ltd.) is used for a base material (inner layer) by using an intermediate layer and an outer layer extruder having a cylinder temperature set at 200 ° C. without using an inner layer extruder.
  • melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) is 1.2 g / 10 min
  • DSC melting point accordinging to JIS-K7121, crystal melting point measured by DSC) ) Is 146 ° C.
  • E-1 olefin polymer composition
  • blow mold After forming a molten parison in the shape of a mold, it was sandwiched between blow molds adjusted to a temperature of 25 ° C. by a water circulation circuit, stretched and adhered to the mold with compressed air, and cooled and solidified to obtain a multilayer blow container.
  • the blow mold two types of molds, that is, a mold subjected to sandblasting # 400 as a surface treatment and a mold subjected to sandblasting # 200, are used, and a multilayer blow container is formed using each mold. Obtained.
  • haze, gloss (gross), moldability, adhesiveness, impact resistance (full water drop impact strength) and stickiness were measured by the following evaluation methods.
  • a multilayer blow container was prepared using two types of molds, and the gloss of each was evaluated. These results are shown in the table.
  • Example A2 The same procedure as in Example A1 was carried out except that the ratio of 95.5 parts by weight of the propylene resin (A-1) and 4.5 parts by weight of the ethylene / ⁇ -olefin copolymer (B-1) was changed.
  • the melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-2) obtained in Example A2 is 7.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 147 ° C.
  • Example A3 At the time of multilayer blow molding, instead of propylene random copolymer B251VT (manufactured by Prime Polymer Co., Ltd.) for the base material (inner layer), propylene random block copolymer B511QA (manufactured by Prime Polymer Co., Ltd., melt) Flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) is 1.2 g / 10 min, DSC melting point (according to JIS-K7121, crystal melting point measured by DSC is 158 ° C.) The same procedure as in Example A2 was carried out except that the intermediate layer was used.
  • MFR Flow rate
  • Example A4 In the case of multilayer blow molding, instead of the propylene random copolymer B251VT (manufactured by Prime Polymer Co., Ltd.) for the base material (inner layer), PE resin HDPE, HZ-6008B (manufactured by Prime Polymer Co., Ltd.) Rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) is 0.7 g / 10 min, density measured by density gradient tube method is 0.958 g / cm 3 )
  • Example A2 was carried out in the same manner as in Example A2.
  • Example A5 The same procedure as in Example A1 was carried out except that the ratio of propylene resin (A-1) was 80.0 parts by weight and that of ethylene / ⁇ -olefin copolymer (B-1) was 20.0 parts by weight.
  • the melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-3) obtained in Example A5 is 7.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 148 ° C.
  • ADEKA STAB NA-21 manufactured by ADEKA
  • melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-7) obtained in Example A6 is 7.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 149 ° C.
  • Example A7 When propylene resin (A-1) is stirred and mixed with a Henschel mixer instead of propylene resin (A-4), [2,5-di-methyl-2,5- The same procedure as in Example A2 except that 0.006 part by weight of di- (benzoylperoxy) hexane] was added.
  • melt flow rate (MFR) (ASTM D-1238, measurement temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-20) obtained in Example A7 is 7.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 147 ° C.
  • MFR melt flow rate
  • DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 147 ° C.
  • the results are shown in the table together with the semi-crystallization time, the odor measurement results and the multilayer blow container test results.
  • Example A1 The same procedure as in Example A1 was carried out except that the proportion of propylene resin (A-1) was changed to 100 parts by weight and that of ethylene / ⁇ -olefin copolymer (B-1) was changed to 0 part by weight.
  • the melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-4) obtained in Comparative Example A1 is 7.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 147 ° C.
  • Comparative Example A1 since the ethylene / ⁇ -olefin copolymer (B) is not blended, the requirements of this claim are not satisfied. Since the ethylene / ⁇ -olefin copolymer (B) is not blended, the adhesiveness and impact resistance (full water impact resistance) are inferior.
  • Example A2 The same procedure as in Example A1 was carried out except that the ratio of propylene-based resin (A-1) was changed to 70.0 parts by weight and that of ethylene / ⁇ -olefin copolymer (B-1) was changed to 30.0 parts by weight.
  • the melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-5) obtained in Comparative Example A2 is 7.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 147 ° C.
  • Example A3 The same procedure as in Example A2 was conducted, except that ADK STAB NA-21 (manufactured by ADEKA) was not added as the nucleating agent (D).
  • the melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-6) obtained in Comparative Example A3 is 7.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 145 ° C.
  • Example A4 The same procedure as in Example A2 was conducted except that the propylene resin (A-2) was changed to the propylene resin (A-2).
  • the melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-8) obtained in Comparative Example A4 is 7.0 g / 10 min, DSC melting point (According to JIS-K7121, the crystalline melting point measured by DSC) was 138 ° C.
  • Example A5 The same procedure as in Example A2 was conducted except that the propylene resin (A-3) was changed to the propylene resin (A-3).
  • the melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-9) obtained in Comparative Example A5 is 7.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 158 ° C.
  • Example A6 The same procedure as in Example A2 was conducted except that the propylene resin (A-4) was changed to the propylene resin (A-4).
  • the melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-10) obtained in Comparative Example A6 is 3.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 147 ° C.
  • Example A7 The same procedure as in Example A2 was carried out except that the propylene resin (A-5) was replaced with a propylene resin (A-5).
  • the melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-11) obtained in Comparative Example A7 is 15.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 147 ° C.
  • melt flow rate (MFR) ASTM D-1238, measurement temperature 230 ° C., load 2.16 kg
  • MFR melt flow rate
  • Example A8 The same procedure as in Example A2 was conducted except that the ethylene / ⁇ -olefin copolymer (B-2) was changed to the ethylene / ⁇ -olefin copolymer (B-1).
  • the melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-12) obtained in Comparative Example A8 is 7.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 147 ° C.
  • the ethylene / ⁇ -olefin copolymer (B-2) used in Comparative Example A8 has a DSC melting point (crystal melting point measured by DSC according to JIS-K7121) of the ethylene / ⁇ -olefin copolymer (B). It is higher than the range specified in the claims. For this reason, adhesiveness and impact resistance (full drop impact strength) are inferior. Furthermore, the balance between impact resistance and stickiness is not good.
  • Comparative Example A9 The same procedure as in Comparative Example A8 was carried out except that the ratio of propylene resin (A-1) was 90.0 parts by weight and that of ethylene / ⁇ -olefin copolymer (B-2) was 10.0 parts by weight.
  • the melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-13) obtained in Comparative Example A9 is 7.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 147 ° C.
  • the ethylene / ⁇ -olefin copolymer (B-2) used in Comparative Example A9 has a DSC melting point (crystal melting point measured by DSC according to JIS-K7121) of the ethylene / ⁇ -olefin copolymer (B). It is higher than the range specified in the claims. For this reason, adhesiveness and impact resistance (full drop impact strength) are inferior. Furthermore, the balance between impact resistance and stickiness is not good.
  • Comparative Example A10 The procedure was the same as Comparative Example A8 except that the ratio of propylene resin (A-1) was 80.0 parts by weight and that of ethylene / ⁇ -olefin copolymer (B-2) was 20.0 parts by weight.
  • the melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-14) obtained in Comparative Example A10 is 7.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 147 ° C.
  • the ethylene / ⁇ -olefin copolymer (B-2) used in Comparative Example A10 has a DSC melting point (crystal melting point measured by DSC according to JIS-K7121) of the ethylene / ⁇ -olefin copolymer (B). It is higher than the range specified in the claims. For this reason, adhesiveness and impact resistance (full drop impact strength) are inferior. Furthermore, the balance between impact resistance and stickiness is not good.
  • Example A11 The same procedure as in Example A2 was conducted, except that the ethylene / ⁇ -olefin copolymer (B-3) was replaced with the ethylene / ⁇ -olefin copolymer (B-3).
  • the melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-15) obtained in Comparative Example A11 is 7.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 147 ° C.
  • the ethylene / ⁇ -olefin copolymer (B-3) used in Comparative Example A11 has a DSC melting point (crystal melting point measured by DSC according to JIS-K7121) of the ethylene / ⁇ -olefin copolymer (B). It is higher than the range specified in the claims. For this reason, gloss (gross), adhesiveness, and impact resistance (full water drop impact strength) are inferior. Furthermore, the balance between impact resistance and stickiness is not good.
  • melt flow rate (MFR) (ASTM D-1238, measurement temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-16) obtained in Comparative Example A12 is 7.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 147 ° C.
  • ULTRAZEX 1030L was used in place of the ethylene / ⁇ -olefin copolymer (B).
  • the DSC melting point of ULTZEX 1030L (according to JIS-K7121, crystal melting point measured by DSC) is 115 ° C., which is higher than the DSC melting point range of the ethylene / ⁇ -olefin copolymer (B) defined in the claims. .
  • Ultzex 1030L is polymerized with a Ziegler-Natta catalyst that is not a metallocene catalyst, the multilayer blow container formed from the olefin polymer composition (E-16) has adhesiveness, stickiness and impact resistance (full water). Drop impact strength is inferior. Furthermore, the balance between impact resistance and stickiness is not good.
  • melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-17) obtained in Comparative Example A13 is 8.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 147 ° C.
  • HZ-2100J was used in place of the ethylene / ⁇ -olefin copolymer (B).
  • the DSC melting point of HZ-2100J (according to JIS-K7121, crystal melting point measured by DSC) is 131 ° C., which is higher than the DSC melting point range of the ethylene / ⁇ -olefin copolymer (B) specified in the claims.
  • the density measured by the density gradient tube method of HZ-2100J is 0.956 g / cm 3 .
  • the multilayer blow container formed from the olefin polymer composition (E-17) is inferior in adhesion and impact resistance (full water drop impact strength). Furthermore, the balance between impact resistance and stickiness is not good.
  • Tuffmer P-0680 polyethylene rubber (EPR), manufactured by Mitsui Chemicals, Inc., density 0. 870 g / cm 3 , melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) is 1.0 g / 10 min, DSC melting point (according to JIS-K7121, crystal melting point measured by DSC) ) Is not measured.), And Tufmer P-0680 (manufactured by Mitsui Chemicals, Inc.) as propylene resin (A-1) as 90.0 parts by weight and ethylene / ⁇ -olefin copolymer (B) was carried out in the same manner as in Example A1, except that the ratio was changed to 10.0 parts by weight.
  • EPR polyethylene rubber
  • MFR melt flow rate
  • melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-18) obtained in Comparative Example A14 is 6.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 147 ° C.
  • Tuffmer P-0680 manufactured by Mitsui Chemicals, Inc.
  • Tuffmer P-0680 does not correspond to an ethylene / ⁇ -olefin copolymer (B) because its DSC melting point (according to JIS-K7121, crystal melting point measured by DSC) is not measured.
  • the melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) was 1.0 g / 10 min, and the density measured by the density gradient tube method was 0.870 g / cm 3 . .
  • the multilayer blow container formed from the olefin polymer composition (E-18) is inferior in glossiness (gloss), adhesiveness and stickiness.
  • Tuffmer P-0180 polyethylene rubber (EPR), manufactured by Mitsui Chemicals, Inc., density 0. 0
  • EPR polyethylene rubber
  • melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) is 8.0 g / 10 min, DSC melting point (according to JIS-K7121, crystal melting point measured by DSC) ) Is not measured.), And 90.0 parts by weight of propylene resin (A-1) and ethylene / ⁇ -olefin copolymer (B) as Toughmer P-0180 (manufactured by Mitsui Chemicals, Inc.) was carried out in the same manner as in Example A1, except that the ratio was changed to 10.0 parts by weight.
  • MFR melt flow rate
  • melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-19) obtained in Comparative Example A15 is 7.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 147 ° C.
  • Tuffmer P-0180 (manufactured by Mitsui Chemicals, Inc.) is used in place of the ethylene / ⁇ -olefin copolymer (B).
  • Tuffmer P-0180 does not correspond to an ethylene / ⁇ -olefin copolymer (B) because the DSC melting point (according to JIS-K7121, crystal melting point measured by DSC) is not measured.
  • the density was 0.870 g / cm 3 . For this reason, the multilayer blow container formed from the olefin polymer composition (E-19) has poor adhesion and stickiness.
  • Example B1 97 parts by weight of propylene-based resin (A-1), 3 parts by weight of ethylene / ⁇ -olefin copolymer (B-1), and ADEKA STAB NA-21 (manufactured by ADEKA: bis (2 , 4,8,10-Tetra-t-butyl-6-hydroxy-12H-dibenzo [d, g] [1,3,2] dioxaphosphocin-6-oxide) aluminum hydroxide as a main component Tafmer P-0280 (ethylene-propylene copolymer, manufactured by Mitsui Chemicals, Ltd.) as 0.15 parts by weight of an aromatic phosphate ester compound nucleating agent) as a low density ethylene / ⁇ -olefin copolymer (F) the density was measured by a density gradient tube method: 0.870 g / cm 3, Ziegler-Natta catalyst, DSC melting point (according to JIS-K7121, the crystalline melting point was measured by DSC): not
  • melt flow rate (MFR) of the propylene resin composition (E-21) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) is 7.0 g / 10 min, DSC melting point (according to JIS-K7121) Crystal melting point measured by DSC) was 147 ° C.
  • the molding temperature is set to 200 ° C. and the fluid blowing pressure is set to 5.0 kg / cm 2 .
  • a molten parison having an outer diameter of 20.0 mm was formed by a crosshead die having a die hole size of 14.0 mm and a core size of 12.5 mm, weight 34 g, inner capacity 780 ml, mouth screw outer diameter 27.0 mm, waist circumference
  • a cylindrical multilayer blow container having a two-layer structure having an outer diameter of 72 mm and a waistline average thickness of 0.5 mmt was manufactured.
  • a propylene-based random copolymer B251VT (Co., Ltd.) is used for a base material (inner layer) by using an intermediate layer and an outer layer extruder having a cylinder temperature set at 200 ° C. without using an inner layer extruder.
  • melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) is 1.2 g / 10 min
  • DSC melting point accordinging to JIS-K7121, crystal melting point measured by DSC)
  • Is 146 ° C. with an intermediate layer extruder and the olefin polymer composition (E-21) is dissolved with an outer layer extruder so that the outer layer thickness ratio is 15%.
  • blow mold After forming a molten parison in the shape of a mold, it was sandwiched between blow molds adjusted to a temperature of 25 ° C. by a water circulation circuit, stretched and adhered to the mold with compressed air, and cooled and solidified to obtain a multilayer blow container.
  • the blow mold two types of molds, that is, a mold subjected to sandblasting # 400 as a surface treatment and a mold subjected to sandblasting # 200, are used, and a multilayer blow container is formed using each mold. Obtained.
  • Example B2 Low density ethylene / ⁇ -olefin copolymer (F) was measured by Mitsui Chemicals, Inc., Tafmer A-4085S (ethylene-butene copolymer, density gradient tube method) from Mitsui Chemicals, Inc., Tafmer P-0280.
  • a multilayer blow container was obtained in the same manner as in Example B1 except that the strand was used.
  • Example B3 The propylene resin (A-1) was changed to 90 parts by weight, the ethylene / ⁇ -olefin copolymer (B-1) was changed to 10 parts by weight, and the low density ethylene / ⁇ -olefin copolymer (F) was changed to Mitsui A strand was obtained in the same manner as in Example B1, except that Tuffmer P-0280 manufactured by Kagaku Co., Ltd. was changed to Tuffmer A-4085S manufactured by Mitsui Chemicals, and the blending amount was changed from 15 parts by weight to 5 parts by weight. It was.
  • a multilayer blow container was obtained in the same manner as in Example B1 except that the strand was used.
  • Example B4 The low density ethylene / ⁇ -olefin copolymer (F) was changed in the same manner as in Example B1 except that Mitsui Chemicals Co., Ltd., Tafmer P-0280 was changed to Mitsui Chemicals Co., Ltd., Tafmer A-4085S. Obtained.
  • a multilayer blow container was obtained in the same manner as in Example B1 except that the strand was used.
  • Example B5 A strand was obtained in the same manner as in Example B1 except that the low-density ethylene / ⁇ -olefin copolymer (F) was not used.
  • a multilayer blow container was obtained in the same manner as in Example B1 except that the strand was used.
  • Example B6 The propylene-based resin (A-1) was changed to 95.5 parts by weight and the ethylene / ⁇ -olefin copolymer (B-1) was changed to 4.5 parts by weight to obtain a low density ethylene / ⁇ -olefin copolymer (F ) Was used, and a strand was obtained in the same manner as in Example B1 except that 0.1 part by weight of stearic acid monoglyceride was used as an antistatic agent.
  • a multilayer blow container was obtained in the same manner as in Example B1 except that the strand was used.
  • Example B7 The propylene resin (A-1) was changed to 90 parts by weight and the ethylene / ⁇ -olefin copolymer (B-1) was changed to 10 parts by weight, and the low density ethylene / ⁇ -olefin copolymer (F) was not used. A strand was obtained in the same manner as in Example B1.
  • a multilayer blow container was obtained in the same manner as in Example B1 except that the strand was used.
  • a multilayer blow container was obtained in the same manner as in Example B1 except that the strand was used.
  • Tuffmer P-0275 ethylene-propylene copolymer, density measured by density gradient tube method: 0.860 g / cm 3 , DSC melting point (according to JIS-K7121, crystal melting point measured by DSC): not observed , MFR (ASTM-1238, measurement temperature 230 ° C., load 2.16 kg): 5.4 g / 10 min) was carried out in the same manner as in Example B1 to obtain a strand.
  • a multilayer blow container was obtained in the same manner as in Example B1 except that the strand was used.
  • MFR Melt flow rate
  • the MFR of the propylene resin (A), the ethylene / ⁇ -olefin copolymer (B), the low density ethylene / ⁇ -olefin copolymer (F), and the olefin polymer composition (E) is ASTM D- It was measured according to 1238, measurement temperature 230 ° C., load 2.16 kg.
  • the strand obtained at the time of MFR measurement is collected and used for the following density measurement.
  • Crystalline melting points of the propylene resin (A), the ethylene / ⁇ -olefin copolymer (B), the low density ethylene / ⁇ -olefin copolymer (F) and the olefin polymer composition (E) are in accordance with JIS-K7121.
  • the measurement was performed using a differential scanning calorimeter (DSC, manufactured by Perkin Elmer).
  • the peak of the endothermic peak at the third step measured here was defined as the crystalline melting point (Tm).
  • Tm crystalline melting point
  • Measurement condition Measurement environment: Nitrogen gas atmosphere Sample volume: 5mg Sample shape: Press film (230 ° C molding, thickness 200-400 ⁇ m) First step: The temperature is raised from 30 ° C to 240 ° C at 10 ° C / min and held for 10 min.
  • Second step IV Decrease the temperature to 60 ° C at 10 ° C / min.
  • 3rd step IV Increase the temperature to 240 ° C at 10 ° C / min.
  • the half crystallization time (T 1/2 ) of the olefin polymer composition (E) was measured using a differential scanning calorimeter (DSC, manufactured by Perkin Elmer (DSC7)).
  • the olefin polymer composition (E) is crystallized under an isothermal condition of 125 ° C., and the calorific value associated with the crystallization is measured at this time, and the calorific value from the start of the exotherm (crystallization start) is half the total calorific value.
  • the time (seconds) until the crystallization time was measured as the half crystallization time (t 1/2 ).
  • a smaller half crystallization time (t 1/2 ) means a faster crystallization rate.
  • Measurement condition Measurement environment: Nitrogen gas atmosphere Sample volume: 5mg Sample shape: Press film (230 ° C molding, thickness 200-400 ⁇ m) First step: The temperature is increased from 30 ° C to 220 ° C at 10 ° C / min and held for 3 min.
  • 2nd step IV Decrease the temperature to 125 ° C at 60 ° C / min.
  • the density of the ethylene / ⁇ -olefin copolymer (B) and the low density ethylene / ⁇ -olefin copolymer (F) is the same as that of the ethylene / ⁇ -olefin copolymer (B) and the low density obtained during the MFR measurement.
  • the strands of the density ethylene / ⁇ -olefin copolymer (F) were each heat-treated at 120 ° C. for 1 hour, gradually cooled to room temperature over 1 hour, and then measured with a density gradient tube.
  • Mw / Mn molecular weight distribution
  • Mw and Mn were measured as follows using GPC-150C Plus manufactured by Waters.
  • TSKgel GMH6-HT and TSKgel GMH6-HTL were used as separation columns, the column size was 7.5 mm in inner diameter and 600 mm in length, the column temperature was 140 ° C., and o-dichlorobenzene (Wako Pure Chemical Industries) was used as the mobile phase.
  • Yakuhin Kogyo Co., Ltd. and 0.025% by weight of BHT (Wako Pure Chemical Industries, Ltd.) as an antioxidant, moved at 1.0 ml / min, sample concentration of 0.1% by weight, sample injection The amount was 500 microliters, and a differential refractometer was used as a detector.
  • Standard polystyrene used was manufactured by Tosoh Corporation for molecular weights of Mw ⁇ 1000 and Mw> 4 ⁇ 10 6 , and used by Pressure Chemical Co. for 1000 ⁇ Mw ⁇ 4 ⁇ 10 6 .
  • the glossiness was evaluated by the following gloss measurement.
  • the measurement site was cut out from the container body, and the 60-degree glossiness of the outer layer was measured with a gloss meter (NIPPON DENSHOKU (VG2000)) in accordance with JIS-K7105. It can be said that the larger the gloss value, the better the glossiness.
  • AA Appearance is poor and adhesion is good
  • BB Appearance is poor and adhesion is slightly inferior when observed closely
  • CC Clear appearance is poor and adhesion is inferior [Odor]
  • the odor of the olefin polymer composition (E) was obtained by putting 10 g of the composition pellets in a 100 ml Erlenmeyer flask, sealing with a cap, taking out after heating in an oven at 100 ° C. for 1 hour, and immediately opening the cap. The generated odor was judged as superior or inferior in the sensory test as follows.
  • AA No odor
  • BB Some odor
  • CC Some odor [impact resistance]
  • the impact resistance was evaluated based on the presence or absence of surface cracks by the full water drop impact strength measurement method described below.
  • a multi-layer blow container (with an internal capacity of 780 ml) filled with water was cooled to 5 ° C. (evaluation of impact resistance), and each of the 10 containers cooled to each temperature had a bottom of 1 m from the concrete surface. It was dropped vertically from the height position and evaluated according to the following drop criteria. The determination of the crack was made based on whether or not a surface crack was generated.
  • Weight of structural unit derived from ⁇ -olefin in propylene resin calculated from 13 C-NMR The total of the structural unit derived from propylene calculated from 13 C-NMR and the structural unit derived from one or more olefins selected from the group consisting of ethylene and an ⁇ -olefin having 4 to 20 carbon atoms is 100% by weight.
  • the weight of the structural unit derived from one or more olefins selected from the group consisting of ethylene and ⁇ -olefins having 4 to 20 carbon atoms is measured and calculated as follows based on the measurement of 13 C-NMR. I decided.
  • E (mol%) Mole fraction of structural units derived from ethylene (mol%)
  • P (mol%) mole fraction of structural units derived from propylene (mol%)
  • the weight percent of the structural unit derived from propylene and the weight percent of the structural unit derived from ethylene in the propylene-based resin (A) were calculated from the calculated E (mol%) and P (mol%) in weight percent. .

Abstract

Disclosed is a multilayer blow-molded container having high gloss, excellent surface appearance and excellent impact resistance. The multilayer blow-molded container is characterized in that a resin to be used for the outermost layer comprises an olefin polymer composition (E) comprising a propylene resin (A), an ethylene·α-olefin copolymer (B) and a nucleating agent (D), the propylene resin (A) comprises a copolymer of propylene and an α-olefin (A-1) and has a crystal melting point of 140 to 155˚C (A-2), the ethylene·α-olefin copolymer (B) comprises a copolymer of ethylene and at least one α-olefin having 4 to 20 carbon atoms (B-1) and has a crystal melting point of not lower than 85°C and lower than 110°C (B-2), and the olefin polymer composition (E) has an MFR value of 5 to 10 g/10 min (E-1).

Description

多層ブロー容器およびその製造方法Multilayer blow container and method for producing the same
 本発明は多層ブロー容器およびその製造方法に関する。 The present invention relates to a multilayer blow container and a manufacturing method thereof.
 ブロー容器等のブロー成形体の原料としては、例えば塩化ビニル樹脂、ポリカーボネート樹脂、エチレン系樹脂、プロピレン系樹脂等の樹脂が用途に応じて用いられている。 As a raw material for blow molded articles such as blow containers, resins such as vinyl chloride resin, polycarbonate resin, ethylene resin, and propylene resin are used depending on applications.
 これらの樹脂のうち、高密度ポリエチレンのような硬質のエチレン系樹脂を用いた場合には、光沢が悪く、低密度ポリエチレンのような軟質のエチレン系樹脂を用いた場合には、剛性が低いという問題がある。 Among these resins, when a hard ethylene resin such as high density polyethylene is used, the gloss is poor, and when a soft ethylene resin such as low density polyethylene is used, the rigidity is low. There's a problem.
 また、塩化ビニル樹脂を用いた場合は、光沢には優れるものの、環境問題があり、ポリカーボネート樹脂を用いた場合には、光沢には非常に優れるものの、製造コストが高くなる等の問題があった。 In addition, when vinyl chloride resin is used, there is an environmental problem although it is excellent in gloss. When polycarbonate resin is used, there are problems such as high manufacturing cost although it is very excellent in gloss. .
 一方、プロピレン系樹脂を用いた場合には、得られるブロー成形体は、比較的製造コストが安く、高密度ポリエチレンよりも光沢、透明性に優れるため、液体洗剤、化粧品、食品、薬品等の容器として広く用いられている。 On the other hand, when a propylene-based resin is used, the resulting blow-molded product is relatively inexpensive to manufacture, and is more glossy and transparent than high-density polyethylene. Therefore, containers for liquid detergents, cosmetics, foods, medicines, etc. Is widely used.
 ブロー成形体の光沢は、良好な外観を求める市場の要求に答えるために、従来から検討されてきた物性であるが、未だ充分な光沢と良成形性と耐衝撃性を同時に満足するブロー成形体は提案されていない。 The gloss of the blow molded product is a physical property that has been studied in order to meet the market demand for a good appearance, but it still has sufficient gloss, good moldability and impact resistance at the same time. Has not been proposed.
 光沢に優れるブロー成形体として、プロピレン・α‐オレフィン共重合体を基材樹脂とし、結晶融点が110~125℃の線状低密度ポリエチレンを配合樹脂とし、これらの樹脂と、核剤とを含むオレフィン重合体組成物を最外層とする、多層ブロー成形体が提案されている(例えば、特許文献1参照)。しかしながら、本発明者らが検討したところ、特許文献1に記載された多層ブロー成形体であっても、未だ光沢および耐衝撃性は充分でなく、更なる改善が必要であることがわかった。 As a blow molded product with excellent gloss, a propylene / α-olefin copolymer is used as a base resin, and a linear low density polyethylene having a crystalline melting point of 110 to 125 ° C. is used as a compounding resin, and these resins and a nucleating agent are contained. A multilayer blow molded article having an olefin polymer composition as an outermost layer has been proposed (see, for example, Patent Document 1). However, as a result of investigations by the present inventors, it was found that even the multilayer blow molded article described in Patent Document 1 is still insufficient in gloss and impact resistance and needs further improvement.
 耐寒強度に優れる多層ボトルとして、ガスバリヤー性樹脂の芯層を有し、最外層がポリオレフィン系樹脂と、直鎖状超低密度ポリエチレン樹脂とから形成される多層ボトルが提案されている(例えば、特許文献2参照)。しかしながら、本発明者らが検討したところ、特許文献2に記載された多層ボトルであっても、未だ光沢および成形性が充分でなく、更なる改善が必要であることがわかった。 As a multilayer bottle excellent in cold resistance, a multilayer bottle having a gas barrier resin core layer and having an outermost layer formed of a polyolefin resin and a linear ultra-low density polyethylene resin has been proposed (for example, Patent Document 2). However, as a result of studies by the present inventors, it was found that even the multilayer bottle described in Patent Document 2 still has insufficient gloss and moldability, and further improvement is necessary.
 優れた光沢、表面性を有するインモールド方式によって製造されるラベル付き多層プラスチック容器として、最外層に用いられる樹脂として、エチレン分を含有するポリプロピレンランダム共重合体樹脂、ポリエチレン樹脂、造核剤、エチレン・α‐オレフィン共重合体樹脂を含むものを用いることが提案されている(例えば、特許文献3参照)。しかしながら、本発明者らが検討したところ、特許文献3に記載された多層プラスチック容器は、未だ耐衝撃性が充分でなく、更なる改善が必要であることがわかった。 As a multilayer plastic container with a label manufactured by an in-mold method with excellent gloss and surface properties, as a resin used for the outermost layer, a polypropylene random copolymer resin containing polyethylene, polyethylene resin, nucleating agent, ethylene It has been proposed to use a material containing an α-olefin copolymer resin (for example, see Patent Document 3). However, when the present inventors examined, it turned out that the multilayer plastic container described in patent document 3 is not yet sufficient in impact resistance, and needs further improvement.
 容器外表面の光沢に優れた高光沢ブロー容器として、メタロセン触媒を用いて得られるポリプロピレン系樹脂と、メタロセン触媒を用いて得られるエチレン・α‐オレフィン共重合体とからなる組成物を最外層に用い、多層ブロー成形法によって成形した高光沢ブロー容器が知られている(例えば、特許文献4参照)。しかしながら、本発明者らが検討したところ、特許文献4に記載された高光沢ブロー容器は、従来の容器と比べた際には光沢に優れるが、耐熱性や光沢などの点で更なる改善の余地があることがわかった。 As a high-gloss blow container with excellent gloss on the outer surface of the container, a composition comprising a polypropylene resin obtained using a metallocene catalyst and an ethylene / α-olefin copolymer obtained using a metallocene catalyst as the outermost layer. A high-gloss blow container formed by a multilayer blow molding method is known (for example, see Patent Document 4). However, as a result of investigations by the present inventors, the high-gloss blown container described in Patent Document 4 is superior in gloss when compared to conventional containers, but further improved in terms of heat resistance and gloss. I found that there was room.
特許第3106834号公報Japanese Patent No. 3106634 特開平6-72424号公報JP-A-6-72424 特開平7-304123号公報JP-A-7-304123 特開2003-137928号公報JP 2003-137828 A
 本発明は、高光沢であり、表面外観に優れるとともに、耐衝撃性に優れ、かつ耐衝撃性と耐べたつき性とのバランスにも優れた多層ブロー容器を提供することを目的としている。 An object of the present invention is to provide a multi-layer blow container having high gloss, excellent surface appearance, excellent impact resistance, and excellent balance between impact resistance and stickiness resistance.
 本発明者らは、上記課題を達成するために鋭意研究を重ねた結果、特定のオレフィン重合体組成物を最外層に使用した多層ブロー容器は、高光沢であり、表面外観に優れるとともに、耐衝撃性に優れ、かつ耐衝撃性と耐べたつき性とのバランスにも優れることを見出し、本発明を完成させた。 As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that a multilayer blow container using a specific olefin polymer composition as the outermost layer has high gloss, excellent surface appearance, and is resistant to damage. The present invention has been completed by finding out that it has excellent impact resistance and also has an excellent balance between impact resistance and stickiness resistance.
 すなわち、本発明の多層ブロー容器は、最外層に使用される樹脂が、プロピレン系樹脂(A)80~98重量部とエチレン・α‐オレフィン共重合体(B)2~20重量部(ただし、(A)と(B)との合計は100重量部である)と、核剤(D)0.01~0.5重量部とから形成されるオレフィン重合体組成物(E)からなり、前記プロピレン系樹脂(A)が下記要件(A-1)および(A-2)を満たし、前記エチレン・α‐オレフィン共重合体(B)が下記要件(B-1)および(B-2)を満たし、前記オレフィン重合体組成物(E)が下記要件(E-1)を満たすことを特徴とする多層ブロー容器。 That is, in the multilayer blow container of the present invention, the resin used in the outermost layer is 80 to 98 parts by weight of the propylene resin (A) and 2 to 20 parts by weight of the ethylene / α-olefin copolymer (B) (however, (A) and (B) are 100 parts by weight) and a nucleating polymer composition (E) formed from 0.01 to 0.5 parts by weight of the nucleating agent (D), The propylene resin (A) satisfies the following requirements (A-1) and (A-2), and the ethylene / α-olefin copolymer (B) satisfies the following requirements (B-1) and (B-2): A multilayer blow container characterized in that the olefin polymer composition (E) satisfies the following requirement (E-1).
 (A-1)プロピレンと、エチレンおよび炭素原子数4~20のα‐オレフィンからなる群から選ばれる1種以上のオレフィンとの共重合体である。 (A-1) A copolymer of propylene and one or more olefins selected from the group consisting of ethylene and α-olefins having 4 to 20 carbon atoms.
 (A-2)JIS-K7121に準拠して示差走査熱量計(DSC)で測定した結晶融点が140~155℃の範囲である。 (A-2) The crystal melting point measured with a differential scanning calorimeter (DSC) in accordance with JIS-K7121 is in the range of 140 to 155 ° C.
 (B-1)エチレンと、炭素原子数4~20の1種以上のα‐オレフィンとの共重合体である。 (B-1) A copolymer of ethylene and one or more α-olefins having 4 to 20 carbon atoms.
 (B-2)JIS-K7121に準拠してDSCで測定した結晶融点が85℃以上、110℃未満の範囲である。 (B-2) The crystal melting point measured by DSC in accordance with JIS-K7121 is in the range of 85 ° C. or higher and lower than 110 ° C.
 (E-1)ASTM D-1238に準拠して、測定温度230℃、2.16kg荷重で測定したメルトフローレート(MFR)が5~10g/10分の範囲である。 (E-1) According to ASTM D-1238, the melt flow rate (MFR) measured at a measurement temperature of 230 ° C. and a load of 2.16 kg is in the range of 5 to 10 g / 10 minutes.
 前記オレフィン系重合体組成物(E)が、さらに低密度エチレン・α‐オレフィン共重合体(F)0.1~20重量部を用いて形成されており、前記低密度エチレン・α‐オレフィン共重合体(F)が下記要件(F-1)および(F-2)を満たし、前記エチレン・α‐オレフィン共重合体(B)の密度勾配官法で測定した密度(dB[g/cm3])および低密度エチレン・α‐オレフィン共重合体(F)の密度勾配官法で測定した密度(dF[g/cm3])が下記要件(X-1)を満たすと、多層ブロー容器の低温耐衝撃性の観点から好ましい。 The olefin polymer composition (E) is further formed using 0.1 to 20 parts by weight of a low density ethylene / α-olefin copolymer (F). The polymer (F) satisfies the following requirements (F-1) and (F-2), and the density (d B [g / cm] measured by the density gradient method of the ethylene / α-olefin copolymer (B): 3 ]) and the density (d F [g / cm 3 ]) measured by the density gradient method of the low density ethylene / α-olefin copolymer (F) satisfy the following requirement (X-1), the multilayer blow It is preferable from the viewpoint of the low temperature impact resistance of the container.
 (F-1)エチレンと、炭素原子数3~20の1種以上のα-オレフィンとの共重合体である。 (F-1) A copolymer of ethylene and one or more α-olefins having 3 to 20 carbon atoms.
 (F-2)JIS-K7121に準拠してDSCで測定した結晶融点が89℃以下であるか、または、結晶融点に基づくピークが観測されない。 (F-2) The crystal melting point measured by DSC according to JIS-K7121 is 89 ° C. or lower, or no peak based on the crystal melting point is observed.
 (X-1)dB[g/cm3]>dF[g/cm3]であり、0.010[g/cm3]≦(dB-dF)[g/cm3]≦0.050[g/cm3]である。 (X-1) d B [g / cm 3 ]> d F [g / cm 3 ], 0.010 [g / cm 3 ] ≦ (d B −d F ) [g / cm 3 ] ≦ 0 0.050 [g / cm 3 ].
 前記エチレン・α‐オレフィン共重合体(B)がさらに下記要件(B-4)を満たすことが好ましい。 The ethylene / α-olefin copolymer (B) preferably further satisfies the following requirement (B-4).
 (B-4)密度勾配管法で測定した密度が0.880~0.910g/cm3の範囲である。 (B-4) The density measured by the density gradient tube method is in the range of 0.880 to 0.910 g / cm 3 .
 前記エチレン・α‐オレフィン共重合体(B)がさらに下記要件(B-4a)を満たし、前記低密度エチレン・α‐オレフィン共重合体(F)がさらに下記要件(F-3)を満たすことが、多層ブロー容器の低温耐衝撃性の観点から好ましい。 The ethylene / α-olefin copolymer (B) further satisfies the following requirement (B-4a), and the low-density ethylene / α-olefin copolymer (F) further satisfies the following requirement (F-3). Is preferable from the viewpoint of low-temperature impact resistance of the multilayer blow container.
 (B-4a)密度勾配管法で測定した密度(dB[g/cm3])が0.890~0.910g/cm3の範囲である。 (B-4a) density measured by a density gradient tube method (d B [g / cm 3 ]) is in the range of 0.890 ~ 0.910g / cm 3.
 (F-3)密度勾配管法で測定した密度(dF[g/cm3])が0.865~0.900g/cm3の範囲である。 (F-3) The density (d F [g / cm 3 ]) measured by the density gradient tube method is in the range of 0.865 to 0.900 g / cm 3 .
 前記プロピレン系樹脂(A)がさらに下記要件(A-4)を満たすことが好ましい。 It is preferable that the propylene resin (A) further satisfies the following requirement (A-4).
 (A-4)GPCにより測定したMw/Mnが4.0以上である。 (A-4) Mw / Mn measured by GPC is 4.0 or more.
 前記プロピレン系樹脂(A)がさらに下記要件(A-3)を満たすことが好ましい。 It is preferable that the propylene resin (A) further satisfies the following requirement (A-3).
 (A-3)ASTM D-1238に準拠して、測定温度230℃、2.16kg荷重で測定したMFRが5~10g/10分の範囲である。 (A-3) According to ASTM D-1238, MFR measured at a measurement temperature of 230 ° C. and a load of 2.16 kg is in the range of 5 to 10 g / 10 minutes.
 前記エチレン・α‐オレフィン共重合体(B)がさらに下記要件(B-5)を満たすことが好ましい。 It is preferable that the ethylene / α-olefin copolymer (B) further satisfies the following requirement (B-5).
 (B-5)GPCにより測定したMw/Mnが1.2~3.0である。 (B-5) Mw / Mn measured by GPC is 1.2 to 3.0.
 前記エチレン・α‐オレフィン共重合体(B)がさらに下記要件(B-3)を満たすことが好ましい。 The ethylene / α-olefin copolymer (B) preferably further satisfies the following requirement (B-3).
 (B-3)ASTM D-1238に準拠して、測定温度230℃、2.16kg荷重で測定したMFRが5~10g/10分の範囲である。 (B-3) MFR measured at a measurement temperature of 230 ° C. and a load of 2.16 kg in accordance with ASTM D-1238 is in the range of 5 to 10 g / 10 min.
 前記核剤(D)が、芳香族リン酸エステル化合物、カルボン酸金属塩造核剤、ポリマー造核剤、ソルビトール系造核剤および無機化合物造核剤からなる群から選ばれる1種以上の化合物であることが好ましい。 The nucleating agent (D) is one or more compounds selected from the group consisting of aromatic phosphate ester compounds, carboxylic acid metal salt nucleating agents, polymer nucleating agents, sorbitol nucleating agents and inorganic compound nucleating agents. It is preferable that
 前記プロピレン系樹脂(A)が95.5~98重量部であり、前記エチレン・α‐オレフィン共重合体(B)が2~4.5重量部(ただし、(A)と(B)との合計は100重量部である)であることが好ましい。 The propylene-based resin (A) is 95.5 to 98 parts by weight, and the ethylene / α-olefin copolymer (B) is 2 to 4.5 parts by weight (provided that (A) and (B) The total is preferably 100 parts by weight.
 前記多層ブロー容器が、少なくとも一つの内層として、プロピレン系重合体(G)またはエチレン系重合体(H)から形成される層を有することを特徴とする請求項1~10のいずれか一項に記載の多層ブロー容器。 The multilayer blow container has a layer formed from a propylene polymer (G) or an ethylene polymer (H) as at least one inner layer. The multilayer blow container described.
 前記多層ブロー容器が、ダイレクトブロー成形法または射出延伸ブロー成形法により成形して得られたものであることが好ましい。 The multilayer blow container is preferably obtained by molding by a direct blow molding method or an injection stretch blow molding method.
 本発明の多層ブロー容器は、前述のオレフィン重合体組成物(E)およびオレフィン重合体組成物(E)以外の熱可塑性樹脂組成物を用い、前記オレフィン重合体組成物(E)が最外層を形成し、前記オレフィン重合体組成物(E)以外の熱可塑性樹脂組成物が少なくとも一つの内層を形成するように、ダイレクトブロー成形法または射出延伸ブロー成形法により成形することを特徴とする。 The multilayer blow container of the present invention uses a thermoplastic resin composition other than the olefin polymer composition (E) and the olefin polymer composition (E) described above, and the olefin polymer composition (E) has the outermost layer. And formed by a direct blow molding method or an injection stretch blow molding method so that the thermoplastic resin composition other than the olefin polymer composition (E) forms at least one inner layer.
 本発明によれば、高光沢であり、表面外観に優れるとともに、耐衝撃性に優れ、かつ耐衝撃性と耐べたつき性とのバランスにも優れる多層ブロー容器を提供することができる。 According to the present invention, it is possible to provide a multilayer blow container having high gloss, excellent surface appearance, excellent impact resistance, and excellent balance between impact resistance and stickiness resistance.
 次に本発明について具体的に説明する。 Next, the present invention will be specifically described.
 〔多層ブロー容器〕
 本発明の多層ブロー容器は、最外層に使用される樹脂が、プロピレン系樹脂(A)とエチレン・α‐オレフィン共重合体(B)と、核剤(D)とから形成されるオレフィン重合体組成物(E)からなることを特徴とする。
[Multi-layer blow container]
In the multilayer blow container of the present invention, the resin used for the outermost layer is an olefin polymer formed of a propylene resin (A), an ethylene / α-olefin copolymer (B), and a nucleating agent (D). It consists of a composition (E), It is characterized by the above-mentioned.
 本発明の多層ブロー容器は、高光沢であり、表面外観に優れるとともに、耐衝撃性に優れるが、オレフィン重合体組成物(E)が、さらに低密度エチレン・α‐オレフィン共重合体(F)0.1~20重量部を用いて形成されている態様では、さらに低温耐衝撃性にも優れる。 The multilayer blow container of the present invention has high gloss, excellent surface appearance, and excellent impact resistance, but the olefin polymer composition (E) is further reduced in density ethylene / α-olefin copolymer (F). In the embodiment formed using 0.1 to 20 parts by weight, the low temperature impact resistance is further excellent.
 <プロピレン系樹脂(A)>
 本発明に用いるプロピレン系樹脂(A)は、下記要件(A-1)および(A-2)を満たし、さらに下記要件(A-3)、(A-4)の少なくとも一方を満たすことが好ましく、下記要件(A-3)および(A-4)を満たすことがより好ましい。プロピレン系樹脂(A)は一種単独で用いても、二種以上を用いてもよい。
<Propylene resin (A)>
The propylene resin (A) used in the present invention preferably satisfies the following requirements (A-1) and (A-2), and preferably satisfies at least one of the following requirements (A-3) and (A-4): More preferably, the following requirements (A-3) and (A-4) are satisfied. Propylene-type resin (A) may be used individually by 1 type, or may use 2 or more types.
 (A-1)プロピレンと、エチレンおよび炭素原子数4~20のα‐オレフィンからなる群から選ばれる1種以上のオレフィンとの共重合体である。なお、炭素原子数4~20のα‐オレフィンとしては、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-ヘキサドデセン、4-メチル-1-ペンテン、2-メチル-1-ブテン、3-メチル-1-ブテン、3-メチル-1-ブテン、3,3-ジメチル-1-ブテン、ジエチル-1-ブテン、トリメチル-1-ブテン、3-メチル-1-ペンテン、エチル-1-ペンテン、プロピル-1-ペンテン、ジメチル-1-ペンテン、メチルエチル-1-ペンテン、ジエチル-1-ヘキセン、トリメチル-1-ペンテン、3-メチル-1-ヘキセン、ジメチル-1-ヘキセン、3,5,5-トリメチル-1-ヘキセン、メチルエチル-1-ヘプテン、トリメチル-1-ヘプテン、エチル-1-オクテン、メチル-1-ノネンなどが挙げられる。 (A-1) A copolymer of propylene and one or more olefins selected from the group consisting of ethylene and α-olefins having 4 to 20 carbon atoms. Examples of the α-olefin having 4 to 20 carbon atoms include 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-dodecene, 1-hexadodecene and 4-methyl. -1-pentene, 2-methyl-1-butene, 3-methyl-1-butene, 3-methyl-1-butene, 3,3-dimethyl-1-butene, diethyl-1-butene, trimethyl-1-butene , 3-methyl-1-pentene, ethyl-1-pentene, propyl-1-pentene, dimethyl-1-pentene, methylethyl-1-pentene, diethyl-1-hexene, trimethyl-1-pentene, 3-methyl- Examples include 1-hexene, dimethyl-1-hexene, 3,5,5-trimethyl-1-hexene, methylethyl-1-heptene, trimethyl-1-heptene, ethyl-1-octene, and methyl-1-nonene. .
 本発明に用いるプロピレン系樹脂(A)としては、物性、経済性のバランスの面からプロピレンと、エチレンおよび炭素原子数4~10のα‐オレフィンからなる群から選ばれる1種以上のオレフィンとの共重合体であることが好ましく、プロピレンと、エチレンおよび1-ブテンからなる群から選ばれる1種以上のα‐オレフィンとの共重合体であることがより好ましく、プロピレンとエチレンとの共重合体であることが特に好ましい。 The propylene-based resin (A) used in the present invention is composed of propylene and one or more olefins selected from the group consisting of ethylene and α-olefins having 4 to 10 carbon atoms in view of the balance between physical properties and economy. It is preferably a copolymer, more preferably a copolymer of propylene and one or more α-olefins selected from the group consisting of ethylene and 1-butene, and a copolymer of propylene and ethylene It is particularly preferred that
 また、本発明に用いるプロピレン系樹脂(A)は、ランダム共重合体であることが好ましい。 The propylene resin (A) used in the present invention is preferably a random copolymer.
 (A-2)JIS-K7121に準拠して示差走査熱量計(DSC)で測定した結晶融点が140~155℃の範囲である。結晶融点が前記範囲内にあると、多層ブロー容器の光沢および耐衝撃性に優れ、多層ブロー容器を製造する際の成形性にも優れるため好ましい。JIS-K7121に準拠して示差走査熱量計(DSC)で測定した結晶融点が155℃よりも高いと多層ブロー容器の耐衝撃性が劣る。またJIS-K7121に準拠して示差走査熱量計(DSC)で測定した結晶融点が140℃より低いと、多層ブロー容器を製造する際の成形性に劣り、多層ブロー容器の表面にべたつきが発生する。 (A-2) The crystal melting point measured with a differential scanning calorimeter (DSC) in accordance with JIS-K7121 is in the range of 140 to 155 ° C. It is preferable that the crystal melting point is in the above-mentioned range since the multilayer blow container is excellent in gloss and impact resistance and is excellent in moldability when producing the multilayer blow container. When the crystal melting point measured by a differential scanning calorimeter (DSC) in accordance with JIS-K7121 is higher than 155 ° C., the impact resistance of the multilayer blow container is inferior. Also, if the crystal melting point measured by a differential scanning calorimeter (DSC) in accordance with JIS-K7121 is lower than 140 ° C., the moldability at the time of producing the multilayer blow container is inferior and the surface of the multilayer blow container is sticky. .
 前記プロピレン系樹脂(A)の結晶融点は、JIS-K7121に従って、示差走査熱量計(DSC)(例えば、パーキンエルマー社製 Diamond DSC)を用いて下記測定条件にて測定を行うことにより求めることができる。なお、下記測定条件で測定を行った際の、第3stepにおける吸熱ピークの頂点を結晶融点(Tm)と定義した。吸熱ピークが複数ある場合はピークの高さが最大となる吸熱ピーク頂点を結晶融点(Tm)と定義する。 The crystalline melting point of the propylene-based resin (A) can be determined by measuring under the following measurement conditions using a differential scanning calorimeter (DSC) (for example, Diamond ™ DSC manufactured by Perkin Elmer) according to JIS-K7121. it can. In addition, the top of the endothermic peak in the third step when the measurement was performed under the following measurement conditions was defined as the crystalline melting point (Tm). When there are a plurality of endothermic peaks, the peak of the endothermic peak where the peak height is maximum is defined as the crystalline melting point (Tm).
 (測定条件)
 測定環境:窒素ガス雰囲気
 サンプル量 : 5mg
 サンプル形状 : プレスフィルム(230℃成形、厚み200~400μm)
 第1step  : 30℃より10℃/minで240℃まで昇温し、10min間保持する。
(Measurement condition)
Measurement environment: Nitrogen gas atmosphere Sample volume: 5mg
Sample shape: Press film (230 ° C molding, thickness 200-400μm)
First step: The temperature is raised from 30 ° C to 240 ° C at 10 ° C / min and held for 10 min.
 第2step  : 10℃/minで60℃まで降温する。 Second step IV: Decrease the temperature to 60 ° C at 10 ° C / min.
 第3step  : 10℃/minで240℃まで昇温する。 3rd step IV: Increase the temperature to 240 ° C at 10 ° C / min.
 前記プロピレン系樹脂(A)のJIS-K7121に準拠して示差走査熱量計(DSC)で測定した結晶融点は、例えばプロピレン系樹脂(A)の製造における共重合時のプロピレンと、導入するエチレンおよび炭素原子数4~20のα-オレフィンからなる群から選ばれる1種以上のオレフィンの導入比率を変更することにより調整することができる。つまり、プロピレンの導入量に対する、エチレンおよび炭素原子数4~20のα-オレフィンからなる群から選ばれる1種以上のオレフィンの導入量を多くすることにより、JIS-K7121に準拠して示差走査熱量計(DSC)で測定した結晶融点を低くすることができ、プロピレンの導入量に対する、エチレンおよび炭素原子数4~20のα-オレフィンからなる群から選ばれる1種以上のオレフィンの導入量を少なくすることにより、JIS-K7121に準拠して示差走査熱量計(DSC)で測定した結晶融点を高くすることができる。 The crystal melting point of the propylene resin (A) measured by a differential scanning calorimeter (DSC) in accordance with JIS-K7121 is, for example, propylene at the time of copolymerization in the production of the propylene resin (A), ethylene introduced, and It can be adjusted by changing the introduction ratio of one or more olefins selected from the group consisting of α-olefins having 4 to 20 carbon atoms. That is, by increasing the introduction amount of one or more olefins selected from the group consisting of ethylene and α-olefins having 4 to 20 carbon atoms with respect to the introduction amount of propylene, the differential scanning calorific value in accordance with JIS-K7121. The crystal melting point measured by a total (DSC) can be lowered, and the introduction amount of one or more olefins selected from the group consisting of ethylene and α-olefins having 4 to 20 carbon atoms is reduced with respect to the introduction amount of propylene. By doing so, the crystal melting point measured with a differential scanning calorimeter (DSC) in accordance with JIS-K7121 can be increased.
 (A-3)ASTM D-1238に準拠して、測定温度230℃、2.16kg荷重で測定したMFRが5~10g/10分の範囲である。なお、MFRとはメルトフローレートを意味する。MFRが前記範囲内にあると、成形時のオレフィン重合体組成物(E)の流動性が本発明の成形に好適な範囲となり、ブロー成形における最多層のオレフィン重合体組成物(E)の厚みムラが防止され、平滑性に優れ、ひいては光沢にも優れる多層ブロー容器を製造することができる。ASTM D-1238に準拠して、測定温度230℃、2.16kg荷重で測定したMFRが10g/10分より大きいと多層ブロー容器を製造する際の成形性および多層ブロー容器の耐衝撃性が劣る場合があり、ASTM D-1238に準拠して、測定温度230℃、2.16kg荷重で測定したMFRが5g/10分より小さいと多層ブロー容器の光沢性が劣る場合がある。 (A-3) According to ASTM D-1238, MFR measured at a measurement temperature of 230 ° C. and a load of 2.16 kg is in the range of 5 to 10 g / 10 minutes. In addition, MFR means a melt flow rate. When the MFR is within the above range, the fluidity of the olefin polymer composition (E) at the time of molding becomes a suitable range for molding of the present invention, and the thickness of the olefin polymer composition (E) having the highest multilayer in blow molding. Unevenness is prevented, and a multi-layer blow container having excellent smoothness and excellent gloss can be produced. In accordance with ASTM D-1238, if the MFR measured at a measurement temperature of 230 ° C. and a load of 2.16 kg is greater than 10 g / 10 minutes, the moldability and the impact resistance of the multilayer blow container are inferior. In accordance with ASTM D-1238, if the MFR measured at a measurement temperature of 230 ° C. and a load of 2.16 kg is less than 5 g / 10 minutes, the gloss of the multilayer blow container may be inferior.
 前記プロピレン系樹脂(A)のASTM D-1238に準拠して、測定温度230℃、2.16kg荷重で測定したMFRは、例えばプロピレン系樹脂(A)の製造における共重合時、使用する連鎖移動剤(例えば水素ガス)の導入量で調整することができる。つまり、重合時に導入するプロピレンと、エチレンおよび炭素原子数4~20のα-オレフィンからなる群から選ばれる1種以上のオレフィンの量に対する、連鎖移動剤(例えば水素ガス)の導入量を多くすることによって、プロピレン系樹脂(A)の、ASTM D-1238に準拠して測定温度230℃、2.16kg荷重で測定したMFRを高くすることができる。また、重合時に導入するプロピレンと、エチレンおよび炭素原子数4~20のα-オレフィンからなる群から選ばれる1種以上のオレフィンの量に対する、連鎖移動剤(例えば水素ガス)の導入量を少なくすることによって、プロピレン系樹脂(A)のASTM D-1238に準拠して測定温度230℃、2.16kg荷重で測定したMFRを低くすることができる。 According to ASTM D-1238 of the propylene resin (A), MFR measured at a measurement temperature of 230 ° C. and a load of 2.16 kg is, for example, chain transfer used during copolymerization in the production of the propylene resin (A). It can adjust with the introduction amount of an agent (for example, hydrogen gas). That is, the amount of the chain transfer agent (for example, hydrogen gas) introduced is increased with respect to the amount of propylene introduced during the polymerization and one or more olefins selected from the group consisting of ethylene and α-olefins having 4 to 20 carbon atoms. Thus, the MFR of the propylene resin (A) measured at a measurement temperature of 230 ° C. and a load of 2.16 kg in accordance with ASTM D-1238 can be increased. Further, the introduction amount of chain transfer agent (for example, hydrogen gas) is reduced with respect to the amount of one or more olefins selected from the group consisting of propylene introduced at the time of polymerization and ethylene and α-olefin having 4 to 20 carbon atoms. Thus, the MFR measured at a measurement temperature of 230 ° C. and a load of 2.16 kg in accordance with ASTM D-1238 of the propylene resin (A) can be lowered.
 また、重合で得られたプロピレン系樹脂を有機過酸化物等のラジカル発生剤の存在下で溶融混練処理を行うことによっても、ASTM D-1238に準拠して測定温度230℃、2.16kg荷重で測定したMFRを調整することができる。例えば有機過酸化物存在下で溶融混練処理を行うことによりASTM D-1238に準拠して、測定温度230℃、2.16kg荷重で測定したMFRは高くなる。また有機過酸化物の添加量を増やすことにより、ASTM D-1238に準拠して、測定温度230℃、2.16kg荷重で測定したMFRはさらに高くすることが出来る。 In addition, the propylene-based resin obtained by polymerization is melt kneaded in the presence of a radical generator such as an organic peroxide, and the measurement temperature is 230 ° C. and the load is 2.16 kg according to ASTM D-1238. The MFR measured in (1) can be adjusted. For example, by performing the melt-kneading process in the presence of an organic peroxide, the MFR measured at a measurement temperature of 230 ° C. and a load of 2.16 kg is increased in accordance with ASTM D-1238. Further, by increasing the amount of the organic peroxide added, the MFR measured at a measurement temperature of 230 ° C. and a load of 2.16 kg can be further increased in accordance with ASTM D-1238.
 (A-4)GPCにより測定したMw/Mnが4.0以上である。なお、GPCとはゲルパーミエーションクロマトグラフィーを意味し、Mwは重量平均分子量を意味し、Mnは数平均分子量を意味し、Mw/Mnは分子量分布の指標である。プロピレン系樹脂(A)としては、Mw/Mnが好ましくは1.5以上、より好ましくは3.0以上であるが、前記(A-4)を満たす、すなわち、Mw/Mnが4.0以上であると、ブロー金型の表面粗さによらず、光沢に優れたブロー成形体が得られるため特に好ましい。この理由は明らかではないが、本発明者らは以下のように考えている。すなわちMw/Mnが4.0以上であると、該範囲未満の場合と比べてより高分子量の部分とより低分子量の部分とが存在することになる。より高分子量の部分の存在がブロー成形時の樹脂流動変形を少なくし、より低分子量の部分の存在が、固化を早めると考えられる。このため、(A)成分として上記Mw/Mnの範囲のものを用いると表面粗さが大きい金型を用いた場合も、表面粗さが小さい金型を用いた場合も得られる多層ブロー容器は金型表面の粗さを転写することなく、良好な光沢になると、本発明者らは推定した。また、Mw/Mnの上限としては特に限定はないが、生産性の観点から通常は50.0、好ましくは30.0、より好ましくは20.0、さらに好ましくは16.0、とりわけ好ましくは12.0、最も好ましくは8.0である。なお、GPCによるMw/Mnは実施例に記載の方法で行うことができる。 (A-4) Mw / Mn measured by GPC is 4.0 or more. GPC means gel permeation chromatography, Mw means weight average molecular weight, Mn means number average molecular weight, and Mw / Mn is an index of molecular weight distribution. As the propylene-based resin (A), Mw / Mn is preferably 1.5 or more, more preferably 3.0 or more, but satisfies the above (A-4), that is, Mw / Mn is 4.0 or more. It is particularly preferable because a blow molded article having excellent gloss can be obtained regardless of the surface roughness of the blow mold. The reason for this is not clear, but the present inventors consider as follows. That is, when Mw / Mn is 4.0 or more, a portion having a higher molecular weight and a portion having a lower molecular weight are present than in the case where the value is less than the above range. It is considered that the presence of a higher molecular weight portion reduces resin flow deformation during blow molding, and the presence of a lower molecular weight portion accelerates solidification. For this reason, the multilayer blow container which can be obtained both when a mold having a large surface roughness and a mold having a small surface roughness is used when the component (A) is in the range of Mw / Mn. The inventors estimated that the gloss would be good without transferring the roughness of the mold surface. The upper limit of Mw / Mn is not particularly limited, but is usually 50.0, preferably 30.0, more preferably 20.0, still more preferably 16.0, particularly preferably 12 from the viewpoint of productivity. 0.0, most preferably 8.0. In addition, Mw / Mn by GPC can be performed by the method as described in an Example.
 前記プロピレン系樹脂(A)のGPCにより測定したMw/Mnは、例えばプロピレン系樹脂(A)の製造の際に用いる触媒の種類によって、調整することができる。例えば触媒として、チーグラーナッタ触媒、好ましくは固体状チタン触媒を用いることにより前記要件(A-4)を満たすプロピレン系樹脂(A)を得ることができる。また、Mw/Mnを調整する別の方法の例としては、分子量の異なる2種以上のプロピレン系樹脂をブレンドする方法がある。特に固体状チタン触媒は前記のより高分子量の部分を形成する観点から有利である。 Mw / Mn measured by GPC of the propylene resin (A) can be adjusted, for example, depending on the type of catalyst used in the production of the propylene resin (A). For example, by using a Ziegler-Natta catalyst, preferably a solid titanium catalyst, as the catalyst, the propylene-based resin (A) satisfying the requirement (A-4) can be obtained. As another example of adjusting Mw / Mn, there is a method of blending two or more propylene resins having different molecular weights. In particular, the solid titanium catalyst is advantageous from the viewpoint of forming the higher molecular weight portion.
 また、プロピレン系樹脂(A)としては、13C-NMRより算出した、プロピレン由来の構成単位と、エチレンおよび炭素原子数4~20のα‐オレフィンからなる群から選ばれる1種以上のオレフィン由来の構成単位との合計を100重量%とした際の、プロピレン由来の構成単位の重量が、通常は80~99重量%の範囲であり、好ましくは、90~99重量%の範囲である。また、エチレンおよび炭素原子数4~20のα‐オレフィンからなる群から選ばれる1種以上のオレフィン由来の構成単位の重量が、通常は1~20重量%の範囲であり、好ましくは、1~10重量%の範囲である。前記範囲内では、多層ブロー容器を製造する際の成形性と、多層ブロー容器のべたつき性等の物性とのバランスが良好であるため好ましい。 The propylene resin (A) is derived from one or more olefins selected from the group consisting of propylene-derived structural units and ethylene and α-olefins having 4 to 20 carbon atoms, calculated from 13 C-NMR. The weight of the propylene-derived structural unit when the total amount of the structural units is 100% by weight is usually in the range of 80 to 99% by weight, and preferably in the range of 90 to 99% by weight. The weight of the structural unit derived from one or more olefins selected from the group consisting of ethylene and an α-olefin having 4 to 20 carbon atoms is usually in the range of 1 to 20% by weight, preferably 1 to It is in the range of 10% by weight. Within the above range, it is preferable because the balance between the moldability when producing a multilayer blow container and physical properties such as stickiness of the multilayer blow container is good.
 13C-NMRより算出した、プロピレン由来の構成単位と、エチレンおよび炭素原子数4~20のα‐オレフィンからなる群から選ばれる1種以上のオレフィン由来の構成単位との合計を100重量%とした際の、プロピレン由来の構成単位の重量は下記の条件で測定し、算出した。 The total of the structural unit derived from propylene calculated from 13 C-NMR and the structural unit derived from one or more olefins selected from the group consisting of ethylene and an α-olefin having 4 to 20 carbon atoms is 100% by weight. The weight of the structural unit derived from propylene was measured and calculated under the following conditions.
 (13C-NMR測定条件)
 測定装置:日本電子製LA400型核磁気共鳴装置
 測定モード:BCM(Bilevel Complete decoupling)
 観測周波数:100.4MHz
 観測範囲:17006.8Hz
 パルス幅:C核45°(7.8μ秒)
 パルス繰り返し時間:5秒
 試料管:5mmφ
 試料管回転数:12Hz
 積算回数:20000回
 測定温度:125℃
 溶媒:1,2,4-トリクロロベンゼン:0.35ml/重ベンゼン:0.2ml
 試料量:約40mg
 (プロピレン由来の構成単位の重量の算出)
 エチレンおよび炭素原子数4~20のα‐オレフィンからなる群から選ばれる1種以上のオレフィン(すなわちコモノマー)がエチレンである場合、得られた13C-NMRスペクトルから下記文献(1)に準じて、モノマー連鎖分布(ダイアッド(2連子)分布)の比率を決定することにより、プロピレン系樹脂(A)中のエチレンに由来する構成単位のモル分率(mol%) (以下E(mol%)と記す)およびプロピレンに由来する構成単位のモル分率(mol%) (以下P(mol%)と記す)を算出することができる。求められたE(mol%)およびP(mol%)から重量%に換算しプロピレン系樹脂(A)中のプロピレンに由来する構成単位の重量%およびエチレンに由来する構成単位の重量%を算出することができる。
( 13 C-NMR measurement conditions)
Measuring apparatus: LA400 type nuclear magnetic resonance apparatus manufactured by JEOL Measurement mode: BCM (Bilevel Complete Decoupling)
Observation frequency: 100.4 MHz
Observation range: 17006.8Hz
Pulse width: C nucleus 45 ° (7.8 μsec)
Pulse repetition time: 5 seconds Sample tube: 5 mmφ
Sample tube rotation speed: 12Hz
Integration count: 20000 times Measurement temperature: 125 ° C
Solvent: 1,2,4-trichlorobenzene: 0.35 ml / heavy benzene: 0.2 ml
Sample amount: about 40mg
(Calculation of weight of structural unit derived from propylene)
When one or more olefins selected from the group consisting of ethylene and an α-olefin having 4 to 20 carbon atoms (that is, a comonomer) is ethylene, the obtained 13 C-NMR spectrum is used according to the following document (1). By determining the ratio of the monomer chain distribution (dyad (doubled) distribution), the mole fraction of the structural unit derived from ethylene in the propylene resin (A) (mol%) (hereinafter referred to as E (mol%)) And the molar fraction (mol%) of constituent units derived from propylene (hereinafter referred to as P (mol%)) can be calculated. The weight percent of the structural unit derived from propylene and the weight percent of the structural unit derived from ethylene in the propylene-based resin (A) are calculated by converting from the obtained E (mol%) and P (mol%) to weight percent. be able to.
 文献(1):Kakugo,M.; Naito,Y.; Mizunuma,K.; Miyatake,T., Macromolecules 1982, 15, (4), 1150-1152
 エチレンおよび炭素原子数4~20のα‐オレフィンからなる群から選ばれる1種以上のオレフィン(すなわちコモノマー)が炭素原子数4~20のα‐オレフィンの場合、得られた13C-NMRスペクトルから、下記文献(2)に準じて、モノマー連鎖分布(ダイアッド(2連子)分布)の比率を決定することにより、プロピレン系樹脂の(A)中の炭素原子数4~20のα‐オレフィンに由来する構成単位のモル分率(mol%) (以下A(mol%)と記す)およびプロピレンに由来する構成単位のモル分率(mol%) (以下P(mol%)と記す)を算出することができる。求められたA(mol%)およびP(mol%)から重量%に換算しプロピレン系樹脂(A)中のプロピレンに由来する構成単位の重量%および炭素原子数4~20のα‐オレフィンに由来する構成単位の重量%を算出することができる。
Reference (1): Kakugo, M .; Naito, Y .; Mizunuma, K .; Miyatake, T., Macromolecules 1982, 15, (4), 1150-1152
When one or more olefins selected from the group consisting of ethylene and an α-olefin having 4 to 20 carbon atoms (that is, a comonomer) is an α-olefin having 4 to 20 carbon atoms, the obtained 13 C-NMR spectrum In accordance with the following document (2), by determining the ratio of the monomer chain distribution (dyad (doublet) distribution), the α-olefin having 4 to 20 carbon atoms in (A) of the propylene resin is obtained. The molar fraction (mol%) of the structural unit derived from (hereinafter referred to as A (mol%)) and the molar fraction (mol%) of the structural unit derived from propylene (hereinafter referred to as P (mol%)) are calculated. be able to. Converted from the calculated A (mol%) and P (mol%) to wt%, derived from propylene-based constituent units in propylene resin (A) and derived from α-olefin having 4 to 20 carbon atoms The weight% of the structural unit to be calculated can be calculated.
 文献(2): James C. Randall, Macromolecules, 1978, 11, 592-597
 プロピレンに由来する構成単位の重量の調整は、後述する製造条件を調整することにより任意の量とすることができる。より詳細には、プロピレン系樹脂(A)の製造における共重合時の、プロピレンの導入量に対する、エチレンおよび炭素原子数4~20のα-オレフィンからなる群から選ばれる1種以上のオレフィンの導入量を少なくすることにより、プロピレン由来の構成単位の重量を多くすることができる。また、プロピレンの導入量に対する、エチレンおよび炭素原子数4~20のα-オレフィンからなる群から選ばれる1種以上のオレフィンの導入量を多くすることにより、プロピレン由来の構成単位の重量を少なくすることができる。
Reference (2): James C. Randall, Macromolecules, 1978, 11, 592-597
Adjustment of the weight of the structural unit derived from propylene can be made into arbitrary quantity by adjusting the manufacturing conditions mentioned later. More specifically, introduction of one or more olefins selected from the group consisting of ethylene and α-olefins having 4 to 20 carbon atoms with respect to the amount of propylene introduced during copolymerization in the production of propylene-based resin (A). By reducing the amount, the weight of the structural unit derived from propylene can be increased. Further, by increasing the amount of one or more olefins selected from the group consisting of ethylene and α-olefins having 4 to 20 carbon atoms with respect to the amount of propylene introduced, the weight of the structural unit derived from propylene is reduced. be able to.
 また、前記プロピレン系樹脂(A)は、プロピレンと、エチレンおよび炭素原子数4~20のα‐オレフィンからなる群から選ばれる1種以上のオレフィンとのランダム共重合体であることが好ましい。前記プロピレン系樹脂(A)はチーグラーナッタ触媒や、メタロセン触媒存在下でプロピレンと、エチレンおよび炭素原子数4~20のα‐オレフィンからなる群から選ばれる1種以上のオレフィンとを共重合、好ましくはランダム共重合することにより得ることができる。前記プロピレン系樹脂(A)を重合する際に用いる触媒としては、チーグラーナッタ触媒、好ましくは固体状チタン触媒を用いると、前記要件(A-4)を満たすことが可能である。また、分子量の異なる2種以上のプロピレン系樹脂(A)をブレンドすることにより、要件(A-4)を満たすように調整することも可能である。また、重合の際には、水素ガスに代表されるような連鎖移動剤を導入することもできる。さらに、重合で得られたプロピレン系樹脂を、有機過酸化物等のラジカル発生剤存在下で溶融混練処理を行いプロピレン系樹脂(A)を得ることもできる。 The propylene resin (A) is preferably a random copolymer of propylene and one or more olefins selected from the group consisting of ethylene and α-olefins having 4 to 20 carbon atoms. The propylene resin (A) is a copolymer of propylene and one or more olefins selected from the group consisting of ethylene and α-olefins having 4 to 20 carbon atoms, preferably in the presence of a Ziegler-Natta catalyst or a metallocene catalyst. Can be obtained by random copolymerization. When a Ziegler-Natta catalyst, preferably a solid titanium catalyst, is used as the catalyst used for polymerizing the propylene-based resin (A), the requirement (A-4) can be satisfied. It is also possible to adjust to satisfy the requirement (A-4) by blending two or more propylene resins (A) having different molecular weights. In the polymerization, a chain transfer agent represented by hydrogen gas can be introduced. Furthermore, the propylene-based resin (A) can also be obtained by subjecting the propylene-based resin obtained by polymerization to melt-kneading in the presence of a radical generator such as an organic peroxide.
 前記の有機過酸化物としては、特に限定はされないが、ベンゾイルパーオキサイド、t-ブチルパーベンゾエート、t-ブチルパーアセテート、t-ブチルパーオキシイソプロピルカーボネート、2,5-ジ-メチル-2,5-ジ-(ベンゾイルパーオキシ)ヘキサン、2,5-ジ-メチル-2,5-ジ-(ベンゾイルパーオキシ)ヘキシン-3、t-ブチル-ジ-パーアジペート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、メチル-エチルケトンパーオキサイド、シクロヘキサノンパーオキサイド、ジ-t-ブチルパーオキサイド、ジキュミルパーオキサイド、2,5-ジ-メチル-2,5-ジ-(t-ブチルパーオキシ)ヘキサン、2,5,-ジ-メチル-2,5-ジ-(t-ブチルパーオキシ)ヘキシン-3、1,3-ビス-(t-ブチルパーオキシイソプロピル)ベンゼン、t-ブチルキユミルパーオキサイド、1,1-ビス-(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス-(t-ブチルパーオキシ)シクロヘキサン、2,2-ビス-(t-ブチルパーオキシ)ブタン、p-メンタンハイドロパーオキサイド、ジ-イソプロピルベンゼンハイドロパーオキサイド、キユメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、p-サイメンハイドロパーオキサイド、1,1,3,3-テトラ-メチルブチルハイドロパーオキサイドもしくは2,5-ジ-メチル-2,5-ジ-(ハイドロパーオキシ)ヘキサンなどの有機過酸化物を例示できる。また、これらのうち、2,5-ジ-メチル-2,5-ジ-(ベンゾイルパーオキシ)ヘキサン、1,3-ビス-(t-ブチルパーオキシイソプロピル)ベンゼンがより好ましい。有機過酸化物を使用する場合、重合で得られたプロピレン系樹脂100重量部に対して0.1重量部以下で使用することが望ましい。溶融混練処理は、プロピレン系樹脂に上記有機過酸化物を添加後、ヘンシェルミキサー、バンバリーミキサー、タンブラーミキサー等の混合機に投入し、混合を行い、次いで、得られた混合物を、一軸押出機、二軸押出機等の押出機により成形し、プロピレン系樹脂(A)のストランドを得る方法が挙げられる。なお、前記ストランドは、通常ブロー成形を行う前に、ペレタイザー等を用いてペレット形状にされる。 The organic peroxide is not particularly limited, but benzoyl peroxide, t-butyl perbenzoate, t-butyl peracetate, t-butyl peroxyisopropyl carbonate, 2,5-di-methyl-2,5 -Di- (benzoylperoxy) hexane, 2,5-di-methyl-2,5-di- (benzoylperoxy) hexyne-3, t-butyl-diperadipate, t-butylperoxy-3, 5,5-trimethylhexanoate, methyl-ethylketone peroxide, cyclohexanone peroxide, di-t-butyl peroxide, dicumyl peroxide, 2,5-di-methyl-2,5-di- (t -Butylperoxy) hexane, 2,5, -di-methyl-2,5-di- (t-butylperoxy) hexyne-3,1,3-bis- (t-butylperoxyisopropyl Pill) benzene, t-butyl chylyl peroxide, 1,1-bis- (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis- (t-butylperoxy) cyclohexane, 2,2-bis- (t-butylperoxy) butane, p-menthane hydroperoxide, di-isopropylbenzene hydroperoxide, cumene hydroperoxide, t-butyl hydroperoxide, p-cymene hydroperoxide, Examples thereof include organic peroxides such as 1,1,3,3-tetra-methylbutyl hydroperoxide or 2,5-di-methyl-2,5-di- (hydroperoxy) hexane. Of these, 2,5-di-methyl-2,5-di- (benzoylperoxy) hexane and 1,3-bis- (t-butylperoxyisopropyl) benzene are more preferred. When using an organic peroxide, it is desirable to use it at 0.1 parts by weight or less with respect to 100 parts by weight of the propylene-based resin obtained by polymerization. In the melt-kneading process, after adding the organic peroxide to the propylene-based resin, the mixture is introduced into a mixer such as a Henschel mixer, a Banbury mixer, or a tumbler mixer, and then mixed.The resulting mixture is then converted into a single-screw extruder, The method of shape | molding with extruders, such as a twin-screw extruder, and obtaining the strand of propylene-type resin (A) is mentioned. The strand is usually formed into a pellet using a pelletizer or the like before blow molding.
 <エチレン・α‐オレフィン共重合体(B)>
 本発明に用いるエチレン・α‐オレフィン共重合体(B)は、下記要件(B-1)および(B-2)を満たし、さらに下記要件(B-3)、(B-4)の少なくとも一方を満たすことが好ましく、下記要件(B-3)および(B-4)を満たすことがより好ましい。また、下記要件(B-5)を満たすことも好ましい。エチレン・α‐オレフィン共重合体(B)は一種単独で用いても、二種以上を用いてもよい。
<Ethylene / α-olefin copolymer (B)>
The ethylene / α-olefin copolymer (B) used in the present invention satisfies the following requirements (B-1) and (B-2), and at least one of the following requirements (B-3) and (B-4): Preferably, the following requirements (B-3) and (B-4) are satisfied. It is also preferable to satisfy the following requirement (B-5). The ethylene / α-olefin copolymer (B) may be used alone or in combination of two or more.
 (B-1)エチレンと、炭素原子数4~20の1種以上のα‐オレフィンとの共重合体である。なお、炭素原子数4~20のα‐オレフィンとしては、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-ヘキサドデセン、4-メチル-1-ペンテン、2-メチル-1-ブテン、3-メチル-1-ブテン、3-メチル-1-ブテン、3,3-ジメチル-1-ブテン、ジエチル-1-ブテン、トリメチル-1-ブテン、3-メチル-1-ペンテン、エチル-1-ペンテン、プロピル-1-ペンテン、ジメチル-1-ペンテン、メチルエチル-1-ペンテン、ジエチル-1-ヘキセン、トリメチル-1-ペンテン、3-メチル-1-ヘキセン、ジメチル-1-ヘキセン、3,5,5-トリメチル-1-ヘキセン、メチルエチル-1-ヘプテン、トリメチル-1-ヘプテン、エチル-1-オクテン、メチル-1-ノネンなどが挙げられる。 (B-1) A copolymer of ethylene and one or more α-olefins having 4 to 20 carbon atoms. Examples of the α-olefin having 4 to 20 carbon atoms include 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-dodecene, 1-hexadodecene and 4-methyl. -1-pentene, 2-methyl-1-butene, 3-methyl-1-butene, 3-methyl-1-butene, 3,3-dimethyl-1-butene, diethyl-1-butene, trimethyl-1-butene , 3-methyl-1-pentene, ethyl-1-pentene, propyl-1-pentene, dimethyl-1-pentene, methylethyl-1-pentene, diethyl-1-hexene, trimethyl-1-pentene, 3-methyl- Examples include 1-hexene, dimethyl-1-hexene, 3,5,5-trimethyl-1-hexene, methylethyl-1-heptene, trimethyl-1-heptene, ethyl-1-octene, and methyl-1-nonene. .
 本発明に用いるエチレン・α‐オレフィン共重合体(B)としては、物性と経済性とのバランスの観点からエチレンと、炭素原子数4~10のα‐オレフィンからなる群から選ばれる1種以上のオレフィンとの共重合体であることが好ましく、エチレンと、1-ブテン、1-ヘキセンおよび1-オクテンからなる群から選ばれる1種以上のα‐オレフィンとの共重合体であることがより好ましく、エチレンと1-ヘキセンとの共重合体であることが特に好ましい。 The ethylene / α-olefin copolymer (B) used in the present invention is at least one selected from the group consisting of ethylene and α-olefins having 4 to 10 carbon atoms from the viewpoint of a balance between physical properties and economy. It is preferably a copolymer of olefins, more preferably a copolymer of ethylene and one or more α-olefins selected from the group consisting of 1-butene, 1-hexene and 1-octene. A copolymer of ethylene and 1-hexene is particularly preferable.
 (B-2)JIS-K7121に準拠してDSCで測定した結晶融点が85℃以上、110℃未満の範囲である。結晶融点が前記範囲内にあると、多層ブロー容器の耐衝撃性や、最外層と他の層との接着性に優れるため好ましい。エチレン・α‐オレフィン共重合体(B)のJIS-K7121に準拠してDSCで測定した結晶融点が110℃以上では接着性および耐衝撃性に劣り、JIS-K7121に準拠してDSCで測定した結晶融点が85℃より低いと接着性に劣り、さらにべたつきが発生する為好ましくない。また、耐衝撃性、接着性およびべたつき性とのバランスの観点から、結晶融点は好ましくは109℃以下、より好ましくは108℃以下、特に好ましくは105℃以下である。 (B-2) The crystal melting point measured by DSC in accordance with JIS-K7121 is in the range of 85 ° C. or higher and lower than 110 ° C. It is preferable that the crystal melting point is in the above range because the multilayer blow container is excellent in impact resistance and adhesion between the outermost layer and other layers. When the crystalline melting point of the ethylene / α-olefin copolymer (B) measured by DSC in accordance with JIS-K7121 is 110 ° C. or higher, the adhesion and impact resistance are inferior, and measured by DSC in accordance with JIS-K7121. When the crystal melting point is lower than 85 ° C., the adhesiveness is inferior, and stickiness is generated, which is not preferable. Further, from the viewpoint of the balance between impact resistance, adhesion and stickiness, the crystal melting point is preferably 109 ° C. or lower, more preferably 108 ° C. or lower, and particularly preferably 105 ° C. or lower.
 本発明に用いるエチレン・α‐オレフィン共重合体(B)のJIS-K7121に準拠してDSCで測定した結晶融点は、エチレン・α‐オレフィン共重合体の製造条件を調整することにより任意の量とすることができる。 The crystalline melting point of the ethylene / α-olefin copolymer (B) used in the present invention measured by DSC in accordance with JIS-K7121 can be adjusted to any amount by adjusting the production conditions of the ethylene / α-olefin copolymer. It can be.
 より具体的には、エチレン・α-オレフィン共重合体(B)の重合において、エチレン・α-オレフィン共重合体を重合する際の、エチレンとα-オレフィンのフィード量の比率を変える事により調整可能である。具体的には、エチレンのフィード量に対するα-オレフィンのフィード量を多くする事により、JIS-K7121に準拠してDSCで測定した結晶融点を低くする事が可能である。また、エチレンのフィード量に対するα-オレフィンのフィード量を少なくする事により、JIS-K7121に準拠してDSCで測定した結晶融点を高くする事が可能である。 More specifically, in the polymerization of the ethylene / α-olefin copolymer (B), it is adjusted by changing the ratio of the feed amount of ethylene / α-olefin when the ethylene / α-olefin copolymer is polymerized. Is possible. Specifically, by increasing the feed amount of α-olefin relative to the feed amount of ethylene, it is possible to lower the crystal melting point measured by DSC in accordance with JIS-K7121. Further, by reducing the feed amount of α-olefin relative to the feed amount of ethylene, it is possible to increase the crystalline melting point measured by DSC in accordance with JIS-K7121.
 前記エチレン・α‐オレフィン共重合体(B)の結晶融点は、JIS-K7121に従って示差走査熱量計(DSC)を用いて測定できる。具体的には、前述のプロピレン系樹脂(A)の結晶融点と同様の方法で測定することができる。 The crystal melting point of the ethylene / α-olefin copolymer (B) can be measured using a differential scanning calorimeter (DSC) according to JIS-K7121. Specifically, it can be measured by the same method as the crystalline melting point of the propylene resin (A) described above.
 (B-3)ASTM D-1238に準拠して、測定温度230℃、2.16kg荷重で測定したMFRが5~10g/10分の範囲である。MFRが前記範囲内にあると、エチレン・α‐オレフィン共重合体(B)のプロピレン系樹脂(A)に対する分散性が良好となり、多層ブロー容器の光沢性、耐衝撃性に優れ、最外層と他の層との接着性に優れるため好ましい。 (B-3) MFR measured at a measurement temperature of 230 ° C. and a load of 2.16 kg in accordance with ASTM D-1238 is in the range of 5 to 10 g / 10 min. When the MFR is within the above range, the dispersibility of the ethylene / α-olefin copolymer (B) in the propylene resin (A) is good, the gloss of the multilayer blow container is excellent, and the impact resistance is excellent. Since it is excellent in adhesiveness with another layer, it is preferable.
 なお、エチレン・α-オレフィン共重合体(B)のASTM D-1238に準拠して、測定温度230℃、2.16kg荷重で測定したMFRの調整は、エチレン・α-オレフィン共重合体(B)の製造条件を調整することにより任意の値とすることができる。 The MFR of the ethylene / α-olefin copolymer (B) measured at a measurement temperature of 230 ° C. and a load of 2.16 kg in accordance with ASTM D-1238 is adjusted with the ethylene / α-olefin copolymer (B It can be set to an arbitrary value by adjusting the manufacturing conditions.
 より具体的には、後述するエチレン・α-オレフィン共重合体(B)の重合において、重合する際のエチレンおよび/またはα-オレフィンのフィード量に対する水素ガスのフィード量を調整することで制御することが可能である。重合する際のエチレンガスのフィード量またはエチレンとα-オレフィンをフィードする場合はエチレンおよびα-オレフィンのフィード量に対する水素ガスのフィード量を多くすることでASTM D-1238に準拠して、測定温度230℃、2.16kg荷重で測定したMFRを高くすることが可能である。エチレンガスのフィード量またはエチレンとα-オレフィンをフィードする場合はエチレンおよびα-オレフィンのフィード量に対する水素ガスのフィード量を少なくすることでASTM D-1238に準拠して、測定温度230℃、2.16kg荷重で測定したMFRを低くすることが可能である。 More specifically, in the polymerization of the ethylene / α-olefin copolymer (B) described later, the amount of hydrogen gas is controlled by adjusting the feed amount of ethylene and / or α-olefin at the time of polymerization. It is possible. Measurement temperature in accordance with ASTM D-1238 by increasing the feed amount of ethylene gas during polymerization or when feeding ethylene and α-olefin, by increasing the feed amount of hydrogen gas relative to the feed amount of ethylene and α-olefin It is possible to increase the MFR measured at 230 ° C. and a 2.16 kg load. In the case of feeding ethylene gas or ethylene and α-olefin, the measurement temperature is 230 ° C. according to ASTM D-1238 by reducing the amount of hydrogen gas to ethylene and α-olefin. It is possible to lower the MFR measured with a 16 kg load.
 (B-4)密度勾配管法で測定した密度が0.880~0.910g/cm3の範囲である。密度が前記範囲内にあると、多層ブロー容器の光沢や耐衝撃性、最外層と他の層との接着性に優れるため好ましい。 (B-4) The density measured by the density gradient tube method is in the range of 0.880 to 0.910 g / cm 3 . It is preferable for the density to be in the above-mentioned range since the multilayer blow container is excellent in gloss and impact resistance and adhesion between the outermost layer and other layers.
 また、本発明の多層ブロー容器が、低温耐衝撃性が求められる用途に用いられる場合には、後述の低密度エチレン・α‐オレフィン共重合体(F)を用いると共に、エチレン・α‐オレフィン共重合体(B)が下記要件(B-4a)を満たすことが好ましい。 When the multilayer blow container of the present invention is used for applications requiring low temperature impact resistance, the low-density ethylene / α-olefin copolymer (F) described later is used and the ethylene / α-olefin copolymer is used. The polymer (B) preferably satisfies the following requirement (B-4a).
 (B-4a)密度勾配管法で測定した密度(dB[g/cm3])が0.890~0.910g/cm3の範囲である。密度が前記範囲内にあると、多層ブロー容器の光沢、耐衝撃性、低温耐衝撃性、最外層と他の層との接着性に優れ、かつべたつきが低く、さらには耐衝撃性や低温耐衝撃性などの耐衝撃特性と耐性とのバランスが良いため好ましい。 (B-4a) density measured by a density gradient tube method (d B [g / cm 3 ]) is in the range of 0.890 ~ 0.910g / cm 3. When the density is within the above range, the multi-layer blow container has excellent gloss, impact resistance, low temperature impact resistance, adhesion between the outermost layer and other layers, low stickiness, and further, impact resistance and low temperature resistance. It is preferable because the balance between impact resistance such as impact properties and resistance is good.
 本発明に用いるエチレン・α‐オレフィン共重合体(B)の密度勾配管法で測定した密度はエチレン・α‐オレフィン共重合体(B)の製造条件を調整することにより任意の量とすることができる。 The density measured by the density gradient tube method of the ethylene / α-olefin copolymer (B) used in the present invention should be an arbitrary amount by adjusting the production conditions of the ethylene / α-olefin copolymer (B). Can do.
 より具体的には、後述するエチレン・α-オレフィン共重合体(B)の重合において、エチレン・α-オレフィン共重合体を重合する際の、エチレンとα-オレフィンのフィード量の比率を変える事により調整可能である。具体的には、エチレンのフィード量に対するα-オレフィンのフィード量を多くする事により、密度勾配管法で測定した密度を低くする事が可能である。また、エチレンのフィード量に対するα-オレフィンのフィード量を少なくする事により、密度勾配管法で測定した密度を高くする事が可能である。 More specifically, in the polymerization of the ethylene / α-olefin copolymer (B) described later, the ratio of the feed amount of ethylene and α-olefin when the ethylene / α-olefin copolymer is polymerized is changed. Can be adjusted. Specifically, the density measured by the density gradient tube method can be lowered by increasing the feed amount of α-olefin relative to the feed amount of ethylene. Further, the density measured by the density gradient tube method can be increased by reducing the feed amount of α-olefin relative to the feed amount of ethylene.
 なお、本発明に用いるエチレン・α‐オレフィン共重合体(B)の密度勾配管法で測定した密度は、前記MFRの測定時に得られる、エチレン・α-オレフィン共重合体(B)のストランドを120℃で1時間熱処理し、1時間かけて直線的に室温まで徐冷したのち、密度勾配管で測定した測定値である。 The density measured by the density gradient tube method of the ethylene / α-olefin copolymer (B) used in the present invention is the same as that of the ethylene / α-olefin copolymer (B) strand obtained at the time of the MFR measurement. It is a measured value measured with a density gradient tube after heat treatment at 120 ° C. for 1 hour and linearly cooling to room temperature over 1 hour.
 (B-5)GPCにより測定したMw/Mnが1.2~3.0である。なお、エチレン・α‐オレフィン共重合体(B)としては、Mw/Mnが1.5~3.0であるとより好ましい。Mw/Mnが前記範囲内であると、本発明の多層ブロー容器の光沢に優れるため好ましい。 (B-5) Mw / Mn measured by GPC is 1.2 to 3.0. The ethylene / α-olefin copolymer (B) preferably has Mw / Mn of 1.5 to 3.0. It is preferable that Mw / Mn is within the above range because the multilayer blow container of the present invention is excellent in gloss.
 前記エチレン・α‐オレフィン共重合体(B)のGPCにより測定したMw/Mnは、例えばエチレン・α‐オレフィン共重合体(B)の製造の際に用いる触媒の種類によって、調整することができる。例えば触媒として、メタロセン触媒を用いることにより、前記要件(B-5)を満たすエチレン・α‐オレフィン共重合体(B)を得ることができる。 Mw / Mn measured by GPC of the ethylene / α-olefin copolymer (B) can be adjusted, for example, depending on the type of catalyst used in the production of the ethylene / α-olefin copolymer (B). . For example, by using a metallocene catalyst as the catalyst, an ethylene / α-olefin copolymer (B) satisfying the requirement (B-5) can be obtained.
 また、前記エチレン・α‐オレフィン共重合体(B)は、エチレンと、α‐オレフィンとを共重合することにより得ることができるが、エチレン・α‐オレフィン共重合体は、メタロセン触媒を用いて重合されたものであることが好ましい。また、重合の際には、水素ガスに代表されるような連鎖移動剤を導入することもできる。 The ethylene / α-olefin copolymer (B) can be obtained by copolymerizing ethylene and an α-olefin, but the ethylene / α-olefin copolymer is obtained using a metallocene catalyst. A polymerized one is preferred. In the polymerization, a chain transfer agent represented by hydrogen gas can be introduced.
 本発明に用いるエチレン・α-オレフィン共重合体(B)がメタロセン触媒を用いて重合されたエチレン・α-オレフィン共重合体であると、従来の、いわゆるチーグラーナッタ触媒を用いて重合されたエチレン・α-オレフィン共重合体よりも組成分布が均一であることからプロピレン系樹脂(A)に対する分散性が良好となり、より光沢が良好なオレフィン重合体組成物(E)を得ることができる。また、メタロセン触媒を用いて重合されたエチレン・α-オレフィン共重合体であると、チーグラーナッタ触媒を用いて重合されたエチレン・α-オレフィン共重合体より分子量分布も狭くなり、耐衝撃性を悪化させる要因となる低分子量成分が少なくなる。さらにはメタロセン触媒を用いて重合されたエチレン・α-オレフィン共重合体であると、チーグラーナッタ触媒を用いて重合されたエチレン・α-オレフィン共重合体より、共重合体の組成分布も均一となり、べたつきの原因となる非晶成分も少なくなる。また、最外層と他の層との間の接着ムラも少なくなり、経時的な外観悪化を抑制することも期待される。 When the ethylene / α-olefin copolymer (B) used in the present invention is an ethylene / α-olefin copolymer polymerized using a metallocene catalyst, an ethylene polymerized using a conventional so-called Ziegler-Natta catalyst is used. Since the composition distribution is more uniform than that of the α-olefin copolymer, the dispersibility with respect to the propylene-based resin (A) is improved, and the olefin polymer composition (E) having better gloss can be obtained. In addition, an ethylene / α-olefin copolymer polymerized using a metallocene catalyst has a narrower molecular weight distribution than that of an ethylene / α-olefin copolymer polymerized using a Ziegler-Natta catalyst. Low molecular weight components that cause deterioration are reduced. Furthermore, an ethylene / α-olefin copolymer polymerized using a metallocene catalyst has a more uniform composition distribution of the copolymer than an ethylene / α-olefin copolymer polymerized using a Ziegler-Natta catalyst. The amorphous component that causes stickiness is also reduced. Further, adhesion unevenness between the outermost layer and the other layers is reduced, and it is expected to suppress deterioration in appearance over time.
 上記のことから、メタロセン触媒用いて重合されたエチレン・α-オレフィン共重合体(B)を用いることで光沢に優れ、さらには耐衝撃性に優れ、べたつき性が低いオレフィン重合体組成物(E)を得ることができる。 From the above, by using the ethylene / α-olefin copolymer (B) polymerized using a metallocene catalyst, the olefin polymer composition (E) has excellent gloss, impact resistance, and low stickiness. ) Can be obtained.
 <低密度エチレン・α‐オレフィン共重合体(F)>
 本発明の多層ブロー容器が、低温耐衝撃性を求められる場合には、前述のようにオレフィン重合体組成物(E)として、プロピレン系樹脂(A)と、エチレン・α‐オレフィン共重合体(B)と、核剤(D)とに加えて、さらに低密度エチレン・α‐オレフィン共重合体(F)を用いて形成される組成物を用いることが好ましい。
<Low density ethylene / α-olefin copolymer (F)>
When the multilayer blow container of the present invention is required to have low temperature impact resistance, as described above, as the olefin polymer composition (E), the propylene resin (A) and the ethylene / α-olefin copolymer ( In addition to B) and the nucleating agent (D), it is preferable to use a composition formed using a low-density ethylene / α-olefin copolymer (F).
 前記低密度エチレン・α‐オレフィン共重合体(F)は、下記要件(F-1)および(F-2)を満たし、さらに下記要件(F-3)を満たすことが好ましい。低密度エチレン・α‐オレフィン共重合体(F)は一種単独で用いても、二種以上を用いてもよい。 The low-density ethylene / α-olefin copolymer (F) preferably satisfies the following requirements (F-1) and (F-2), and further satisfies the following requirement (F-3). The low density ethylene / α-olefin copolymer (F) may be used alone or in combination of two or more.
 (F-1)エチレンと、炭素原子数3~20の1種以上のα‐オレフィンとの共重合体である。なお、炭素原子数3~20のα‐オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-ヘキサドデセン、4-メチル-1-ペンテン、2-メチル-1-ブテン、3-メチル-1-ブテン、3-メチル-1-ブテン、3,3-ジメチル-1-ブテン、ジエチル-1-ブテン、トリメチル-1-ブテン、3-メチル-1-ペンテン、エチル-1-ペンテン、プロピル-1-ペンテン、ジメチル-1-ペンテン、メチルエチル-1-ペンテン、ジエチル-1-ヘキセン、トリメチル-1-ペンテン、3-メチル-1-ヘキセン、ジメチル-1-ヘキセン、3,5,5-トリメチル-1-ヘキセン、メチルエチル-1-ヘプテン、トリメチル-1-ヘプテン、エチル-1-オクテン、メチル-1-ノネンなどが挙げられる。 (F-1) A copolymer of ethylene and one or more α-olefins having 3 to 20 carbon atoms. Examples of the α-olefin having 3 to 20 carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-dodecene, 1-hexadodecene, 4 -Methyl-1-pentene, 2-methyl-1-butene, 3-methyl-1-butene, 3-methyl-1-butene, 3,3-dimethyl-1-butene, diethyl-1-butene, trimethyl-1 -Butene, 3-methyl-1-pentene, ethyl-1-pentene, propyl-1-pentene, dimethyl-1-pentene, methylethyl-1-pentene, diethyl-1-hexene, trimethyl-1-pentene, 3- Methyl-1-hexene, dimethyl-1-hexene, 3,5,5-trimethyl-1-hexene, methylethyl-1-heptene, trimethyl-1-heptene, ethyl-1-octene, methyl-1-nonene, etc. Can be mentioned.
 前記低密度エチレン・α‐オレフィン共重合体(F)としては、物性と経済性とのバランスの観点からエチレンと、炭素原子数3~10のα‐オレフィンからなる群から選ばれる1種以上のオレフィンとの共重合体であることが好ましく、エチレンと、プロピレン、1-ブテン、1-ヘキセンおよび1-オクテンからなる群から選ばれる1種以上のα‐オレフィンとの共重合体であることがより好ましい。前記低密度エチレン・α‐オレフィン共重合体(F)としては、中でもエチレンとプロピレンとの共重合体、エチレンと1-ブテンとの共重合体、エチレンと1‐オクテンとの共重合体が好ましく、エチレンと1-ブテンとの共重合体、エチレンと1‐オクテンとの共重合体より好ましく、エチレンと1-ブテンとの共重合体が特に好ましい。 The low density ethylene / α-olefin copolymer (F) includes at least one selected from the group consisting of ethylene and α-olefins having 3 to 10 carbon atoms from the viewpoint of a balance between physical properties and economy. It is preferably a copolymer with olefin, and is a copolymer of ethylene and one or more α-olefins selected from the group consisting of propylene, 1-butene, 1-hexene and 1-octene. More preferred. The low density ethylene / α-olefin copolymer (F) is preferably a copolymer of ethylene and propylene, a copolymer of ethylene and 1-butene, or a copolymer of ethylene and 1-octene. More preferred is a copolymer of ethylene and 1-butene, and a copolymer of ethylene and 1-octene, and particularly preferred is a copolymer of ethylene and 1-butene.
 (F-2)JIS-K7121に準拠してDSCで測定した結晶融点が89℃以下であるか、または、結晶融点に基づくピークが観測されない。結晶融点を有する場合には、75℃以下であることが好ましい。結晶融点が前記範囲内にあると、多層ブロー容器が低温耐衝撃性にすぐれるため好ましい。 (F-2) The crystal melting point measured by DSC according to JIS-K7121 is 89 ° C. or lower, or no peak based on the crystal melting point is observed. When it has a crystalline melting point, it is preferably 75 ° C. or lower. A crystal melting point within the above range is preferable because a multilayer blow container is excellent in low-temperature impact resistance.
 前記低密度エチレン・α‐オレフィン共重合体(F)の結晶融点は、JIS-K7121に従って示差走査熱量計(DSC)を用いて測定できる。具体的には、後述の実施例に記載の方法で測定することができる。 The crystal melting point of the low density ethylene / α-olefin copolymer (F) can be measured using a differential scanning calorimeter (DSC) according to JIS-K7121. Specifically, it can measure by the method as described in the below-mentioned Example.
 (F-3)密度勾配管法で測定した密度(dF[g/cm3])が0.865~0.900g/cm3の範囲である。前記密度は、0.870~0.900g/cm3の範囲であることがより好ましい。密度が前記範囲内にあると、多層ブロー容器の光沢に優れ、低温耐衝撃性に特に優れるため好ましい。 (F-3) The density (d F [g / cm 3 ]) measured by the density gradient tube method is in the range of 0.865 to 0.900 g / cm 3 . The density is more preferably in the range of 0.870 to 0.900 g / cm 3 . It is preferable for the density to be in the above-mentioned range since the gloss of the multilayer blow container is excellent and the low-temperature impact resistance is particularly excellent.
 また、前記エチレン・α‐オレフィン共重合体(B)の密度勾配官法で測定した密度(dB[g/cm3])および低密度エチレン・α‐オレフィン共重合体(F)の密度勾配官法で測定した密度(dF[g/cm3])は下記要件(X-1)を満たす。 The density (d B [g / cm 3 ]) measured by the density gradient method of the ethylene / α-olefin copolymer (B) and the density gradient of the low density ethylene / α-olefin copolymer (F) The density (d F [g / cm 3 ]) measured by the public law satisfies the following requirement (X-1).
 (X-1)dB[g/cm3]>dF[g/cm3]であり、0.010[g/cm3]≦(dB-dF)[g/cm3]≦0.050[g/cm3]である。すなわち、低密度エチレン・α‐オレフィン共重合体(F)の密度は、前記エチレン・α‐オレフィン共重合体(B)の密度よりも小さく、エチレン・α‐オレフィン共重合体(B)と低密度エチレン・α‐オレフィン共重合体(F)との密度差(dB-dF)が0.010~0.050[g/cm3]である。なお、密度差(dB-dF)は0.010~0.040[g/cm3]であることが好ましい。 (X-1) d B [g / cm 3 ]> d F [g / cm 3 ], 0.010 [g / cm 3 ] ≦ (d B −d F ) [g / cm 3 ] ≦ 0 0.050 [g / cm 3 ]. That is, the density of the low-density ethylene / α-olefin copolymer (F) is smaller than the density of the ethylene / α-olefin copolymer (B), which is lower than that of the ethylene / α-olefin copolymer (B). The density difference (d B -d F ) from the density ethylene / α-olefin copolymer ( F ) is 0.010 to 0.050 [g / cm 3 ]. The density difference (d B −d F ) is preferably 0.010 to 0.040 [g / cm 3 ].
 密度差(dB-dF)が前記範囲内にあると、多層ブロー容器の光沢に優れ、さらには低温耐衝撃性に優れるため好ましい。 It is preferable that the density difference (d B −d F ) be in the above range because the multilayer blow container is excellent in gloss and further excellent in low-temperature impact resistance.
 また低密度エチレン・α‐オレフィン共重合体(F)としては、ASTM D-1238に準拠して、測定温度230℃、2.16kg荷重で測定したMFRが0.1~50g/10分の範囲であることが好ましく、0.5~30g/10分の範囲であることがより好ましく、特に5~10g/10分の範囲にあることが好ましい。MFRが前記範囲内にあると、低密度エチレン・α‐オレフィン共重合体(F)の分散性が良好となり、光沢、低温衝撃性が向上する。 The low-density ethylene / α-olefin copolymer (F) has an MFR measured at a measurement temperature of 230 ° C. and a load of 2.16 kg in accordance with ASTM D-1238 in the range of 0.1 to 50 g / 10 min. It is preferably in the range of 0.5 to 30 g / 10 minutes, and more preferably in the range of 5 to 10 g / 10 minutes. When the MFR is within the above range, the dispersibility of the low-density ethylene / α-olefin copolymer (F) becomes good, and the gloss and low-temperature impact properties are improved.
 また、前記低密度エチレン・α‐オレフィン共重合体(F)は、エチレンと、α‐オレフィンとを共重合することにより得ることができるが、エチレン・α‐オレフィン共重合体は、チーグラーナッタ触媒を用いて重合されたものでも、メタロセン触媒を用いて重合されたものでもよい。 The low-density ethylene / α-olefin copolymer (F) can be obtained by copolymerizing ethylene and α-olefin, and the ethylene / α-olefin copolymer is a Ziegler-Natta catalyst. The polymer may be polymerized using a metallocene or may be polymerized using a metallocene catalyst.
 <核剤(D)>
 本発明には核剤(D)を用いる。核剤(D)としては、芳香族リン酸エステル化合物、カルボン酸金属塩造核剤、ポリマー造核剤、ソルビトール系造核剤および無機化合物造核剤からなる群から選ばれる1種以上の化合物が挙げられる。核剤(D)は、多層ブロー容器の臭気を悪化させないことが好ましい。核剤(D)は一種単独で用いても、二種以上を併用してもよい。
<Nucleating agent (D)>
In the present invention, the nucleating agent (D) is used. As the nucleating agent (D), one or more compounds selected from the group consisting of aromatic phosphate ester compounds, carboxylic acid metal salt nucleating agents, polymer nucleating agents, sorbitol nucleating agents and inorganic compound nucleating agents. Is mentioned. It is preferable that the nucleating agent (D) does not deteriorate the odor of the multilayer blow container. A nucleating agent (D) may be used individually by 1 type, or may use 2 or more types together.
 前記芳香族リン酸エステル化合物としては、以下の式[III]および/または[IV]で表わされる化合物であることが好ましい。 The aromatic phosphate compound is preferably a compound represented by the following formula [III] and / or [IV].
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 前記式[III]、[IV]中、R1は、炭素原子数1~10の2価炭化水素基であり、R2およびR3はそれぞれ独立に、水素原子または炭素原子数1~10の炭化水素基であり、Mは、1~3価の金属原子であり、nは1~3の整数であり、mは1または2である。 In the formulas [III] and [IV], R 1 is a divalent hydrocarbon group having 1 to 10 carbon atoms, and R 2 and R 3 are each independently a hydrogen atom or 1 to 10 carbon atoms. A hydrocarbon group, M is a monovalent to trivalent metal atom, n is an integer of 1 to 3, and m is 1 or 2.
 一般式[III]で表わされる芳香族リン酸エステル化合物の具体例としては、ナトリウム-2,2'-メチレン-ビス(4,6-ジ-t-ブチルフェニル)フォスフェート、ナトリウム-2,2'-エチリデン-ビス(4,6-ジ-t-ブチルフェニル)フォスフェート、リチウム-2,2'-メチレン-ビス(4,6-ジ-t-ブチルフェニル)フォスフェート、リチウム-2,2'-エチリデン-ビス(4,6-ジ-t-ブチルフェニル)フォスフェート、ナトリウム-2,2'-エチリデン-ビス(4-i-プロピル-6-t-ブチルフェニル)フォスフェート、リチウム-2,2'-メチレン-ビス(4-メチル-6-t-ブチルフェニル)フォスフェート、リチウム-2,2'-メチレン-ビス(4-エチル-6-t-ブチルフェニル)フォスフェート、ナトリウム-2,2'-ブチリデン-ビス(4,6-ジ-メチルフェニル)フォスフェート、ナトリウム-2,2'-ブチリデン-ビス(4,6-ジ-t-ブチルフェニル)フォスフェート、ナトリウム-2,2'-t-オクチルメチレン-ビス(4,6-ジ-メチルフェニル)フォスフェート、ナトリウム-2,2'-t-オクチルメチレン-ビス(4,6-ジ-t-ブチルフェニル)フォスフェート、カルシウム-ビス-(2,2'-メチレン-ビス(4,6-ジ-t-ブチルフェニル)フォスフェート)、マグネシウム-ビス[2,2'-メチレン-ビス(4,6-ジ-t-ブチルフェニル)フォスフェート]、バリウム-ビス[2,2'-メチレン-ビス(4,6-ジ-t-ブチルフェニル)フォスフェート]、ナトリウム-2,2'-メチレン-ビス(4-メチル-6-t-ブチルフェニル)フォスフェート、ナトリウム-2,2'-メチレン-ビス(4-エチル-6-t-ブチルフェニル)フォスフェート、ナトリウム-2,2'-エチリデン-ビス(4-m-ブチル-6-t-ブチルフェニル)フォスフェート、ナトリウム-2,2'-メチレン-ビス(4,6-ジ-メチルフェニル)フォスフェート、ナトリウム-2,2'-メチレン-ビス(4,6-ジ-エチルフェニル)フォスフェート、カリウム-2,2'-エチリデン-ビス(4,6-ジ-t-ブチルフェニル)フォスフェート、カルシウム-ビス[2,2'-エチリデン-ビス(4,6-ジ-t-ブチルフェニル)フオスフェート]、マグネシウム-ビス[2,2'-エチリデン-ビス(4,6-ジ-t-ブチルフェニル)フォスフェート]、バリウム-ビス[2,2'-エチリデン-ビス(4,6-ジ-t-ブチルフェニル)フォスフェート]、アルミニウム-トリス[2,2'-メチレン-ビス(4,6-ジ-t-ブチルフェル)フォスフェート]、アルミニウム-トリス[2,2'-エチリデン-ビス(4,6-ジ-t-ブチルフェニル)フォスフェート]、およびこれらの二種以上の混合物などを挙げることができる。 Specific examples of the aromatic phosphate compound represented by the general formula [III] include sodium-2,2′-methylene-bis (4,6-di-t-butylphenyl) phosphate, sodium-2,2 '-Ethylidene-bis (4,6-di-t-butylphenyl) phosphate, lithium-2,2'-methylene-bis (4,6-di-t-butylphenyl) phosphate, lithium-2,2 '-Ethylidene-bis (4,6-di-t-butylphenyl) phosphate, sodium-2,2'-ethylidene-bis (4-i-propyl-6-t-butylphenyl) phosphate, lithium-2 , 2'-methylene-bis (4-methyl-6-t-butylphenyl) phosphate, lithium-2,2'-methylene-bis (4-ethyl-6-t-butylphenyl) phosphate, sodium-2 , 2'-Butylidene-bis (4,6-di-methylphenyl) phosphate, sodium-2,2'-butylidene-bis (4,6-di-t-butylphenyl) Nyl) phosphate, sodium-2,2'-t-octylmethylene-bis (4,6-di-methylphenyl) phosphate, sodium-2,2'-t-octylmethylene-bis (4,6-di) -t-butylphenyl) phosphate, calcium-bis- (2,2'-methylene-bis (4,6-di-t-butylphenyl) phosphate), magnesium-bis [2,2'-methylene-bis (4,6-di-t-butylphenyl) phosphate], barium-bis [2,2'-methylene-bis (4,6-di-t-butylphenyl) phosphate], sodium-2,2 ' -Methylene-bis (4-methyl-6-t-butylphenyl) phosphate, sodium-2,2'-methylene-bis (4-ethyl-6-t-butylphenyl) phosphate, sodium-2,2 ' -Ethylidene-bis (4-m-butyl-6-t-butylphenyl) phosphate, sodium-2,2'-methylene-bis (4,6-di-methylphenyl) ) Phosphate, sodium-2,2'-methylene-bis (4,6-di-ethylphenyl) phosphate, potassium-2,2'-ethylidene-bis (4,6-di-t-butylphenyl) phosphate Fate, calcium-bis [2,2'-ethylidene-bis (4,6-di-t-butylphenyl) phosphato], magnesium-bis [2,2'-ethylidene-bis (4,6-di-t- Butylphenyl) phosphate], barium-bis [2,2'-ethylidene-bis (4,6-di-t-butylphenyl) phosphate], aluminum-tris [2,2'-methylene-bis (4, 6-di-t-butylfell) phosphate], aluminum-tris [2,2'-ethylidene-bis (4,6-di-t-butylphenyl) phosphate], and mixtures of two or more of these Can be mentioned.
 芳香族リン酸エステル化合物としては、一般式[IV]で表わされるヒドロキシアルミニウムフォスフェート化合物も使用可能であり、特にR2およびR3が共にtert-ブチル基である、一般式[V]で表わされる化合物が好ましい。 As the aromatic phosphate compound, a hydroxyaluminum phosphate compound represented by the general formula [IV] can also be used. In particular, the compound represented by the general formula [V] in which R 2 and R 3 are both tert-butyl groups. Are preferred.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式[V]において、R1は、炭素原子数1~10の2価炭化水素基であり、mは1または2である。特に好ましい芳香族リン酸エステル化合物は、一般式[VI]で表わされる化合物である。 In the formula [V], R 1 is a divalent hydrocarbon group having 1 to 10 carbon atoms, and m is 1 or 2. A particularly preferred aromatic phosphate compound is a compound represented by the general formula [VI].
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式[VI]において、R1は、メチレン基またはエチリデン基である。一般式[VI]で表わされる化合物としては、具体的には、ヒドロキシアルミニウム-ビス[2,2-メチレン-ビス(4,6-ジ-t-ブチル)フォスフェート](別名:ビス(2,4,8,10-テトラ-t-ブチル-6-ヒドロキシ-12H-ジベンゾ〔d,g〕〔1,3,2〕ジオキサホスホシン-6-オキシド)水酸化アルミニウム塩)、またはヒドロキシアルミニウム-ビス[2,2-エチリデン-ビス(4,6-ジ-t-ブチル)フォスフェート]である。 In the formula [VI], R 1 is a methylene group or an ethylidene group. As the compound represented by the general formula [VI], specifically, hydroxyaluminum-bis [2,2-methylene-bis (4,6-di-t-butyl) phosphate] (also known as bis (2, 4,8,10-tetra-t-butyl-6-hydroxy-12H-dibenzo [d, g] [1,3,2] dioxaphosphocin-6-oxide) aluminum hydroxide salt), or hydroxyaluminum Bis [2,2-ethylidene-bis (4,6-di-t-butyl) phosphate].
 カルボン酸金属塩造核剤としては例えば、p-t-ブチル安息香酸アルミニウム塩、アジピン酸アルミニウム、安息香酸ナトリウムを用いることができる。 As the carboxylic acid metal salt nucleating agent, for example, pt-butyl aluminum benzoate, aluminum adipate, or sodium benzoate can be used.
 ポリマー造核剤としては分岐状α-オレフィン重合体が好適に用いられる。分岐状α-オレフィン重合体の例として、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセンの単独重合体、あるいはそれら相互の共重合体、さらにはそれらと他のα-オレフィンとの共重合体を挙げることができる。 As the polymer nucleating agent, a branched α-olefin polymer is preferably used. Examples of branched α-olefin polymers include 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, a homopolymer of 3-ethyl-1-hexene, or a copolymer thereof, Can include copolymers of these with other α-olefins.
 これらのポリマー造核剤は、オレフィン系重合体組成物(E)を製造する際に、直接配合することも可能であるし、プロピレン系樹脂(A)製造の際、プロピレン系樹脂(A)の重合の前、あるいは後でブロック的に上記分岐状α-オレフィンの重合を行い、核剤(D)として分岐状α-オレフィン重合体を含んだプロピレン系樹脂(A)を用いることにより配合してもよい(ポリマー造核剤配合プロピレン系樹脂(A')とする)。ポリマー造核剤配合プロピレン系樹脂(A')をオレフィン系重合体組成物(E)の原料として使用する場合、ポリマー造核剤配合プロピレン系樹脂(A')中に含まれるポリマー造核剤の量をオレフィン系重合体組成物(E)中の核剤(D)の配合量とする。また、ポリマー造核剤配合プロピレン系樹脂(A')からポリマー造核剤の量を減じた分を、オレフィン系重合体組成物(E)中のプロピレン系樹脂(A)とする。 These polymer nucleating agents can be blended directly when the olefin polymer composition (E) is produced, and when the propylene resin (A) is produced, the propylene resin (A) is produced. The above branched α-olefin is polymerized before or after the polymerization in a block manner, and blended by using the propylene resin (A) containing the branched α-olefin polymer as the nucleating agent (D). It is also possible to use a polymer nucleating agent-containing propylene resin (A ′). When using the polymer nucleating agent-containing propylene resin (A ′) as a raw material for the olefin polymer composition (E), the polymer nucleating agent contained in the polymer nucleating agent-containing propylene resin (A ′) Let the amount be the blending amount of the nucleating agent (D) in the olefin polymer composition (E). Moreover, let the part which reduced the quantity of the polymer nucleating agent from the polymer nucleating agent mixing | blending propylene-type resin (A ') be the propylene-type resin (A) in an olefin type polymer composition (E).
 また、上記ポリマー造核剤は、公知の方法を用いて重合体(A)、重合体(B)、重合体(F)を製造する際の予備重合で形成することもでき、重合体(B)、重合体(F)を製造する際にブロック共重合法で形成することもできる。 The polymer nucleating agent can also be formed by prepolymerization when producing the polymer (A), the polymer (B), and the polymer (F) using a known method. ), When the polymer (F) is produced, it can also be formed by a block copolymerization method.
 なお、その際、ポリマー造核剤配合プロピレン系樹脂(A')と、ポリマー造核剤を含まないプロピレン系樹脂(A)とを併用してもよい。また、ポリマー造核剤配合プロピレン系樹脂(A')と、他の核剤(D)を併用してもよい。 At that time, a polymer nucleating agent-containing propylene resin (A ′) and a propylene resin (A) containing no polymer nucleating agent may be used in combination. Moreover, you may use together a polymer nucleating agent mixing | blending propylene-type resin (A '), and another nucleating agent (D).
 これらのポリマー造核剤は、オレフィン系重合体組成物(E)が後述するその他の樹脂類を含有する場合には、その他の樹脂類と、ポリマー増核剤とを含有するマスターバッチを、オレフィン系重合体組成物(E)を製造する際に用いることにより配合してもよい。該マスターバッチをオレフィン系重合体組成物(E)の原料として使用する場合、マスターバッチ中に含まれるポリマー増核剤の量をオレフィン系重合体組成物(E)中の核剤(D)の配合量とする。なお、マスターバッチと他の核剤(D)とを併用し、オレフィン系重合体組成物を製造してもよい。 When these polymer nucleating agents contain other resins described later in the olefin polymer composition (E), master batches containing other resins and a polymer nucleating agent are used as olefins. You may mix | blend by using when manufacturing a type | system | group polymer composition (E). When the master batch is used as a raw material for the olefin polymer composition (E), the amount of the polymer nucleating agent contained in the master batch is determined based on the nucleating agent (D) in the olefin polymer composition (E). The blending amount. The master batch and other nucleating agent (D) may be used in combination to produce an olefin polymer composition.
 ポリマー造核剤としては透明性、低温耐衝撃性、剛性の特性が良好であること、および経済性の観点から、特に、3-メチル-1-ブテンの重合体が好ましい。 As the polymer nucleating agent, a polymer of 3-methyl-1-butene is particularly preferable from the viewpoints of transparency, low-temperature impact resistance, rigidity properties, and economical viewpoint.
 ソルビトール系造核剤としては、ノニトール,1,2,3-トリデオキシ-4,6:5,7-ビス-O-[(4-プロピルフェニル)メチレン]を好ましく利用することができる。 As the sorbitol nucleating agent, nonitol, 1,2,3-trideoxy-4,6: 5,7-bis-O-[(4-propylphenyl) methylene] can be preferably used.
 無機化合物造核剤としては例えば、タルク、マイカ、炭酸カルシウムを用いることができる。 As the inorganic compound nucleating agent, for example, talc, mica, calcium carbonate can be used.
 これらの核剤(D)の中でも、透明性、低温耐衝撃性、剛性および低臭気であるとの観点からノニトール,1,2,3-トリデオキシ-4,6:5,7-ビス-O-[(4-プロピルフェニル)メチレン]、およびビス(2,4,8,10-テトラ-t-ブチル-6-ヒドロキシ-12H-ジベンゾ〔d,g〕〔1,3,2〕ジオキサホスホシン-6-オキシド)水酸化アルミニウム塩から選択される少なくとも1種の造核剤を用いることが好ましい。これらのうちでもビス(2,4,8,10-テトラ-t-ブチル-6-ヒドロキシ-12H-ジベンゾ〔d,g〕〔1,3,2〕ジオキサホスホシン-6-オキシド)水酸化アルミニウム塩を用いることがより好ましい。 Among these nucleating agents (D), nonitol, 1,2,3-trideoxy-4,6: 5,7-bis-O— is preferred in terms of transparency, low-temperature impact resistance, rigidity and low odor. [(4-propylphenyl) methylene] and bis (2,4,8,10-tetra-t-butyl-6-hydroxy-12H-dibenzo [d, g] [1,3,2] dioxaphosphocin It is preferred to use at least one nucleating agent selected from -6-oxide) aluminum hydroxide salts. Of these, bis (2,4,8,10-tetra-t-butyl-6-hydroxy-12H-dibenzo [d, g] [1,3,2] dioxaphosphocin-6-oxide) hydroxylation More preferably, an aluminum salt is used.
 本発明に用いる核剤(D)としては、市販品を用いることができ、例えば、アデカスタブNA-21(ADEKA社製)はビス(2,4,8,10-テトラ-t-ブチル-6-ヒドロキシ-12H-ジベンゾ〔d,g〕〔1,3,2〕ジオキサホスホシン-6-オキシド)水酸化アルミニウム塩を主成分として含んだ造核剤として市販されており、ノニトール,1,2,3-トリデオキシ-4,6:5,7-ビス-O-[(4-プロピルフェニル)メチレン]は、ミラードNX8000(ミリケン社製)の商品名で市販されている。 A commercially available product can be used as the nucleating agent (D) used in the present invention. For example, ADK STAB NA-21 (manufactured by ADEKA) is bis (2,4,8,10-tetra-t-butyl-6-). Hydroxy-12H-dibenzo [d, g] [1,3,2] dioxaphosphocin-6-oxide) is commercially available as a nucleating agent containing aluminum hydroxide as a main component. , 3-Trideoxy-4,6: 5,7-bis-O-[(4-propylphenyl) methylene] is commercially available under the trade name Millard NX8000 (Milken).
 <オレフィン重合体組成物(E)>
 本発明に用いるオレフィン重合体組成物(E)は、本発明の多層ブロー容器の最外層に使用される樹脂であり、前述のプロピレン系樹脂(A)80~98重量部とエチレン・α‐オレフィン共重合体(B)2~20重量部(ただし、(A)と(B)との合計は100重量部である)と、核剤(D)0.01~0.5重量部とから形成される組成物である。
<Olefin polymer composition (E)>
The olefin polymer composition (E) used in the present invention is a resin used for the outermost layer of the multilayer blow container of the present invention. The propylene-based resin (A) is 80 to 98 parts by weight and an ethylene / α-olefin. Formed from 2 to 20 parts by weight of copolymer (B) (however, the sum of (A) and (B) is 100 parts by weight) and 0.01 to 0.5 parts by weight of nucleating agent (D) Composition.
 なお、本発明の多層ブロー容器が、低温耐衝撃性を求められる場合には、前述のようにオレフィン重合体組成物(E)として、プロピレン系樹脂(A)と、エチレン・α‐オレフィン共重合体(B)と、核剤(D)とに加えて、さらに低密度エチレン・α‐オレフィン共重合体(F)0.1~20重量部を用いて形成される組成物を用いることが好ましい。 When the multilayer blow container of the present invention is required to have low temperature impact resistance, as described above, the olefin polymer composition (E) is composed of propylene resin (A) and ethylene / α-olefin copolymer. It is preferable to use a composition formed by using 0.1 to 20 parts by weight of a low density ethylene / α-olefin copolymer (F) in addition to the coalescence (B) and the nucleating agent (D). .
 また、多層ブロー容器に低温耐衝撃性が求められない場合には、オレフィン重合体組成物(E)が、低密度エチレン・α‐オレフィン共重合体(F)を用いずに形成される組成物であることも好ましい。 When the multilayer blow container does not require low temperature impact resistance, the olefin polymer composition (E) is formed without using the low density ethylene / α-olefin copolymer (F). It is also preferable.
 プロピレン系樹脂(A)およびエチレン・α‐オレフィン共重合体(B)の使用量は、べたつき性が良好であるという観点、および経済性と生産性の観点から、前記プロピレン系樹脂(A)が95.5~98重量部であり、前記エチレン・α‐オレフィン共重合体(B)が2~4.5重量部(ただし、(A)と(B)との合計は100重量部である)であることが好ましい。 The amount of the propylene-based resin (A) and the ethylene / α-olefin copolymer (B) used is such that the propylene-based resin (A) is used from the viewpoint of good stickiness and economical and productivity. 95.5 to 98 parts by weight, and the ethylene / α-olefin copolymer (B) is 2 to 4.5 parts by weight (provided that the total of (A) and (B) is 100 parts by weight) It is preferable that
 オレフィン重合体組成物(E)を得るために用いる前記プロピレン系樹脂(A)が98重量部より多く、前記エチレン・α‐オレフィン共重合体(B)が2重量部より少ない場合、多層ブロー容器の耐衝撃性、他の層との接着性が劣り、オレフィン重合体組成物(E)に配合される前記プロピレン系樹脂(A)が80重量部より少なく、前記エチレン・α‐オレフィン共重合体(B)が20重量部より多い場合べたつきが発生するため好ましくない。 When the amount of the propylene-based resin (A) used to obtain the olefin polymer composition (E) is more than 98 parts by weight and the amount of the ethylene / α-olefin copolymer (B) is less than 2 parts by weight, a multilayer blow container The propylene-based resin (A) blended in the olefin polymer composition (E) is less than 80 parts by weight, and the ethylene / α-olefin copolymer is inferior in impact resistance and adhesion to other layers. When (B) is more than 20 parts by weight, stickiness occurs, which is not preferable.
 また、多層ブロー容器が、低温耐衝撃性を求められる場合には、べたつきと経済性の観点からオレフィン重合体組成物(E)に配合される、前記低密度エチレン・α‐オレフィン共重合体(F)が3~15重量部であることが好ましい。 When the multilayer blow container is required to have low temperature impact resistance, the low-density ethylene / α-olefin copolymer (E) is blended into the olefin polymer composition (E) from the viewpoints of stickiness and economy. F) is preferably 3 to 15 parts by weight.
 核剤(D)はプロピレン系樹脂(A)とエチレン・α-オレフィン共重合体(B)との合計量100重量部に対し、0.01~0.5重量部用いることにより、多層ブロー容器の光沢性を向上させる効果が得られる。核剤(D)の添加量が0.01重量部より少ないと光沢性を向上する効果が少ない。核剤(D)の添加量が0.5重量部より多く添加しても、効果が変わらないばかりでなく、経済的に不利となるため好ましくない。 The nucleating agent (D) is used in an amount of 0.01 to 0.5 parts by weight with respect to 100 parts by weight of the total amount of the propylene resin (A) and the ethylene / α-olefin copolymer (B). The effect of improving the glossiness of the film can be obtained. When the addition amount of the nucleating agent (D) is less than 0.01 parts by weight, the effect of improving the glossiness is small. Even if the addition amount of the nucleating agent (D) is more than 0.5 parts by weight, the effect is not changed, and it is not preferable because it is economically disadvantageous.
 前記オレフィン重合体組成物(E)は、下記要件(E-1)を満たす。 The olefin polymer composition (E) satisfies the following requirement (E-1).
 (E-1)ASTM D-1238に準拠して、測定温度230℃、2.16kg荷重で測定したメルトフローレート(MFR)が5~10g/10分の範囲である。MFRが前記範囲内にあると、成形時のオレフィン重合体組成物(E)の流動性が成形に好適な範囲となり、成形時に発生する微細なメルトフラクチャー(MF)を抑制することができる。また、ブロー成形におけるオレフィン重合体組成物(E)の厚みムラが防止され、平滑性に優れる多層ブロー容器を得ることができる。 (E-1) According to ASTM D-1238, the melt flow rate (MFR) measured at a measurement temperature of 230 ° C. and a load of 2.16 kg is in the range of 5 to 10 g / 10 minutes. When the MFR is within the above range, the fluidity of the olefin polymer composition (E) at the time of molding becomes a range suitable for molding, and fine melt fracture (MF) generated at the time of molding can be suppressed. Moreover, the thickness nonuniformity of the olefin polymer composition (E) in blow molding is prevented, and the multilayer blow container excellent in smoothness can be obtained.
 ASTM D-1238に準拠して、測定温度230℃、2.16kg荷重で測定したメルトフローレート(MFR)が10g/10分より高いと、成形性に劣り、5g/10分より低いと光沢性に劣る。 In accordance with ASTM D-1238, when the melt flow rate (MFR) measured at a measurement temperature of 230 ° C. and a load of 2.16 kg is higher than 10 g / 10 minutes, the moldability is inferior, and when it is lower than 5 g / 10 minutes, the glossiness is obtained. Inferior to
 オレフィン重合体組成物(E)に関わる要件(E-1)、つまりASTM D-1238に準拠して、測定温度230℃、2.16kg荷重で測定したメルトフローレート(MFR)は、使用するプロピレン系樹脂(A)と、エチレン・α-オレフィン共重合体(B)と、必要に応じて用いられる低密度エチレン・α‐オレフィン共重合体(F)とを適宜選択することにより調整が可能である。 The melt flow rate (MFR) measured at a measurement temperature of 230 ° C. and a load of 2.16 kg in accordance with the requirements (E-1) relating to the olefin polymer composition (E), that is, ASTM D-1238, is propylene used Can be adjusted by appropriately selecting the resin (A), the ethylene / α-olefin copolymer (B), and the low density ethylene / α-olefin copolymer (F) used as necessary. is there.
 使用するプロピレン系樹脂(A)とエチレン・α-オレフィン共重合体(B)が、共に、ASTM D-1238に準拠して、測定温度230℃、2.16kg荷重で測定したメルトフローレート(MFR)が5~10g/10分の範囲である場合には、プロピレン系樹脂(A)とエチレン・α-オレフィン共重合体(B)と、必要に応じて用いられる低密度エチレン・α‐オレフィン共重合体(F)とを適宜選択することで(E-1)の要件を満たすことが可能である。 Both the propylene-based resin (A) and the ethylene / α-olefin copolymer (B) used were measured in accordance with ASTM D-1238 at a measurement temperature of 230 ° C. and a load of 2.16 kg (MFR). ) In the range of 5 to 10 g / 10 min, the propylene resin (A), the ethylene / α-olefin copolymer (B), and the low-density ethylene / α-olefin copolymer used as necessary. The requirement (E-1) can be satisfied by appropriately selecting the polymer (F).
 また、これ以外の場合、例えば、プロピレン系樹脂(A)として、ASTM D-1238に準拠して、測定温度230℃、2.16kg荷重で測定したメルトフローレート(MFR)が5g/10分未満程度の、比較的MFRが低いものを用いる場合には、プロピレン系樹脂(A)、エチレン・α‐オレフィン共重合体(B)および核剤(D)、ならびに必要に応じて用いられる低密度エチレン・α‐オレフィン共重合体(F)からオレフィン重合体組成物(E)を形成する際に、有機過酸化物存在下で溶融混練を行うことにより、プロピレン系樹脂(A)やエチレン・α‐オレフィン共重合体(B)、あるいは必要に応じて用いられる低密度エチレン・α‐オレフィン共重合体(F)の変性を行い、オレフィン重合体組成物(E)のMFRを、前記範囲内に調整することができる。なお、有機過酸化物としては、前記<プロピレン系樹脂(A)>の項で記載したものと同様のものが挙げられる。 In other cases, for example, as a propylene resin (A), a melt flow rate (MFR) measured at a measurement temperature of 230 ° C. and a load of 2.16 kg in accordance with ASTM D-1238 is less than 5 g / 10 minutes. When a relatively low MFR is used, propylene resin (A), ethylene / α-olefin copolymer (B) and nucleating agent (D), and low-density ethylene used as necessary・ When forming the olefin polymer composition (E) from the α-olefin copolymer (F), by performing melt-kneading in the presence of an organic peroxide, the propylene-based resin (A) or ethylene / α- The olefin copolymer (B) or the low density ethylene / α-olefin copolymer (F) used as necessary is modified to give an MF of the olefin polymer composition (E). The can be adjusted within the above range. In addition, as an organic peroxide, the thing similar to what was described by the term of the said <propylene-type resin (A)> is mentioned.
 また、別の例としては、プロピレン系樹脂(A)としてMFRが10g/10分を超える、比較的MFRが高いものを用いる場合には、組み合わせるエチレン・α-オレフィン共重合体(B)、必要に応じて用いられる低密度エチレン・α‐オレフィン共重合体(F)としてMFRの低いものを用いることにより、オレフィン重合体組成物(E)のMFRを前記範囲内に調整することができる。 As another example, when a propylene resin (A) having an MFR of more than 10 g / 10 minutes and a relatively high MFR is used, an ethylene / α-olefin copolymer (B) to be combined is necessary. The MFR of the olefin polymer composition (E) can be adjusted within the above range by using a low density ethylene / α-olefin copolymer (F) used depending on
 前記オレフィン重合体組成物(E)は、JIS-K7121に準拠してDSCで測定した結晶融点が140~155℃の範囲であることが好ましい。結晶融点が前記範囲内にあると、光沢が良好であり、耐衝撃性の良好な多層ブロー容器を得ることができる。 The olefin polymer composition (E) preferably has a crystal melting point measured by DSC according to JIS-K7121 in the range of 140 to 155 ° C. When the crystal melting point is within the above range, a multi-layer blow container having good gloss and good impact resistance can be obtained.
 前記オレフィン重合体組成物(E)の結晶融点は、JIS-K7121に従って示差走査熱量計(DSC)を用いて測定できる。具体的には、前述のプロピレン系樹脂(A)の結晶融点と同様の方法で測定することができる。 The crystal melting point of the olefin polymer composition (E) can be measured using a differential scanning calorimeter (DSC) according to JIS-K7121. Specifically, it can be measured by the same method as the crystalline melting point of the propylene resin (A) described above.
 また、前記オレフィン重合体組成物(E)は、半結晶化時間(t1/2)が50~1000秒の範囲であることが好ましく、100~500秒の範囲であることがより好ましい。前記範囲内では、ブロー成形時に金型転写性が良好となり、光沢の良好な多層ブロー容器を得ることができる。 The olefin polymer composition (E) preferably has a half crystallization time (t 1/2 ) in the range of 50 to 1000 seconds, and more preferably in the range of 100 to 500 seconds. Within the above range, the mold transferability becomes good at the time of blow molding, and a multi-layer blow container with good gloss can be obtained.
 なお、半結晶化時間(t1/2)は、125℃等温条件下オレフィン重合体組成物(E)で結晶化させて、この時結晶化に伴う発熱量を測定し、発熱開始(結晶化開始)から発熱量がトータル発熱量の半分の値になるまでの時間として測定することができる。 The half crystallization time (t 1/2 ) was crystallized with the olefin polymer composition (E) under an isothermal condition of 125 ° C., and the calorific value associated with crystallization was measured at this time to start the heat generation (crystallization It can be measured as the time from the start) until the calorific value becomes half the total calorific value.
 前記オレフィン重合体組成物(E)の半結晶化時間(t1/2)は、オレフィン重合体組成物(E)に含まれる核剤(D)の量で調整することができる。オレフィン重合体組成物(E)に含まれる核剤(D)の量を増やすことで半結晶化時間(t1/2)を速くすることが可能で、逆に、核剤(D)の量を減らすことで半結晶化時間(t1/2)を遅くすることが可能である。 The half crystallization time (t 1/2 ) of the olefin polymer composition (E) can be adjusted by the amount of the nucleating agent (D) contained in the olefin polymer composition (E). By increasing the amount of the nucleating agent (D) contained in the olefin polymer composition (E), it is possible to increase the half crystallization time (t 1/2 ), and conversely, the amount of the nucleating agent (D). It is possible to slow down the half crystallization time (t 1/2 ) by reducing.
 本発明のオレフィン重合体組成物(E)には、前述のプロピレン系樹脂(A)、エチレン・α‐オレフィン共重合体(B)、低密度エチレン・α‐オレフィン共重合体(F)、および核剤(D)以外の成分が含有されていてもよい。 The olefin polymer composition (E) of the present invention includes the propylene resin (A), the ethylene / α-olefin copolymer (B), the low density ethylene / α-olefin copolymer (F), and Components other than the nucleating agent (D) may be contained.
 前記(A)、(B)、(F)および(D)以外の成分としては、その他の樹脂類、各種添加剤等が挙げられる。 As components other than the above (A), (B), (F) and (D), other resins, various additives and the like can be mentioned.
 その他の樹脂類としては、例えば、プロピレン系樹脂(A)、エチレン・α‐オレフィン共重合体(B)、低密度エチレン・α‐オレフィン共重合体(F)および核剤(D)以外のポリオレフィン系樹脂が挙げられる。
ポリオレフィン系樹脂としては、プロピレン系樹脂(A)以外のプロピレン系樹脂(P)を例示することができる。プロピレン系樹脂(P)としては、プロピレン系樹脂(A)とは異なるプロピレンの単独重合体(シンジオタクチックプロピレン単独重合体などを含む)等が挙げられる。通常、プロピレン系樹脂(P)の、JISK7121に準拠して示差走査熱量計(DSC)により測定したTmは140~155℃である。また、プロピレン系樹脂(P)の、ASTM D-1238に準拠して、測定温度230℃、2.16kg荷重で測定したMFRとしては0.01~20g/10分が好ましく、特に0.1~5g/10分であることが好ましい。
Examples of other resins include polyolefins other than propylene resin (A), ethylene / α-olefin copolymer (B), low density ethylene / α-olefin copolymer (F), and nucleating agent (D). Based resins.
Examples of the polyolefin resin include propylene resins (P) other than the propylene resin (A). Examples of the propylene resin (P) include propylene homopolymers (including syndiotactic propylene homopolymers) different from the propylene resin (A). Usually, Tm of propylene-based resin (P) measured by a differential scanning calorimeter (DSC) according to JISK7121 is 140 to 155 ° C. Further, the MFR of propylene resin (P) measured at a measurement temperature of 230 ° C. and a load of 2.16 kg in accordance with ASTM D-1238 is preferably 0.01 to 20 g / 10 min, particularly 0.1 to 5 g / 10 min is preferred.
 また、その他の樹脂として、例えばスチレン系エラストマーまたはその水素添加物(S)を例示することもできる。なお、光沢の金型表面粗さ依存性を小さくしたい場合には、スチレン系エラストマーまたはその水素添加物(S)を添加しないことが好ましい態様である。 Further, as other resins, for example, styrene elastomers or hydrogenated products (S) thereof can be exemplified. When it is desired to reduce the gloss mold surface roughness dependency, it is preferable that no styrene elastomer or its hydrogenated product (S) is added.
 スチレン系エラストマーまたはその水素添加物(S)としては、スチレン含有量10~70重量%、好ましくは10~65重量%、さらに好ましくは10~40重量%、および共役ジエン含有量30~90重量%、好ましくは35~90重量%、さらに好ましくは60~90重量%のスチレン系エラストマーまたはその水素添加物(S)が挙げられる。 The styrenic elastomer or hydrogenated product (S) thereof has a styrene content of 10 to 70% by weight, preferably 10 to 65% by weight, more preferably 10 to 40% by weight, and a conjugated diene content of 30 to 90% by weight. The styrenic elastomer or the hydrogenated product (S) thereof is preferably 35 to 90% by weight, more preferably 60 to 90% by weight.
 上記スチレン系エラストマーまたはその水素添加物(S)としては、スチレン系重合体ブロック成分(以下、スチレンブロックという場合がある)と、共役ジエン系重合体ブロック成分(以下、ジエンブロックという場合がある)とからなるスチレン系ブロック共重合体や、スチレン・ブタジエンランダム共重合体、スチレン・イソプレンランダム共重合体、スチレン・クロロプレンランダム共重合体およびこれらの水素添加物などがあげられる。これらの中ではスチレン系ブロック共重合体が好ましい。 As said styrene-type elastomer or its hydrogenated substance (S), a styrene-type polymer block component (it may hereafter be called a styrene block) and a conjugated diene-type polymer block component (it may be hereafter called a diene block). And a styrene / butadiene random copolymer, a styrene / isoprene random copolymer, a styrene / chloroprene random copolymer, and hydrogenated products thereof. Of these, styrene block copolymers are preferred.
 上記スチレン系ブロック共重合体を構成するスチレン系重合体ブロック成分はスチレンまたはその誘導体から構成され、モノマーの具体的なものとしてはスチレン、α-メチルスチレン、p-メチルスチレン、クロロスチレン、ビニルナフタレンなどがあげられる。これらの中では、スチレンが好ましい。これらのモノマーは1種単独で、または2種以上が組み合されて用いられる。 The styrenic polymer block component constituting the styrenic block copolymer is composed of styrene or a derivative thereof. Specific examples of the monomer include styrene, α-methylstyrene, p-methylstyrene, chlorostyrene, and vinylnaphthalene. Etc. Of these, styrene is preferred. These monomers are used alone or in combination of two or more.
 前記共役ジエン系重合体ブロックを構成するモノマーの具体的なものとしては、ブタジエン、イソプレン、クロロプレンなどがあげられる。これらの中では、ブタジエン、イソプレンが好ましい。これらのモノマーは1種単独で、または2種以上が組み合されて用いられる。 Specific examples of the monomer constituting the conjugated diene polymer block include butadiene, isoprene, chloroprene and the like. Of these, butadiene and isoprene are preferred. These monomers are used alone or in combination of two or more.
 スチレン系ブロック共重合体におけるスチレンブロックとジエンブロックとの結合形態は特に限定されないが、スチレンブロック・ジエンブロックまたはスチレンブロック・[ジエンブロック・スチレンブロック]n(ここで、nは1~5)の形態が好ましい。 The bonding form of the styrene block and the diene block in the styrenic block copolymer is not particularly limited, but the styrene block / diene block or styrene block / [diene block / styrene block] n (where n is 1 to 5) Form is preferred.
 スチレン系ブロック共重合体中のスチレン系重合体ブロック成分の含有量は10~70重量%、好ましくは10~65重量%、さらに好ましくは10~40重量%、共役ジエン系重合体ブロック成分の含有量は30~90重量%、好ましくは35~90重量%、さらに好ましくは60~90重量%であるのが望ましい。 The content of the styrene polymer block component in the styrene block copolymer is 10 to 70% by weight, preferably 10 to 65% by weight, more preferably 10 to 40% by weight, and the content of the conjugated diene polymer block component The amount is desirably 30 to 90% by weight, preferably 35 to 90% by weight, and more preferably 60 to 90% by weight.
 スチレン系ブロック共重合体は、ASTM D-1238に準拠して、230℃、荷重2160gで測定したメルトフローレート(MFR)が0.1g/10min以上、好ましくは0.3~20g/10min、特に好ましくは5~10g/10minであるのが望ましい。 The styrene block copolymer has a melt flow rate (MFR) measured at 230 ° C. and a load of 2160 g in accordance with ASTM D-1238 at 0.1 g / 10 min or more, preferably 0.3 to 20 g / 10 min, particularly Preferably, it is 5 to 10 g / 10 min.
 スチレン系ブロック共重合体の具体的なものとしては、スチレン・エチレン・ブテン・スチレンブロック共重合体(SEBS)、スチレン・エチレン・プロピレン・スチレンブロック共重合体(SEPS)、スチレン・ブタジエン・スチンブロック共重合体(SBS)、スチレン・イソプレン・スチレンブロック共重合体(SIS)、およびスチレン・エチレン・プロピレンブロック共重合体(SEP)などがあげられる。 Specific examples of styrenic block copolymers include styrene / ethylene / butene / styrene block copolymers (SEBS), styrene / ethylene / propylene / styrene block copolymers (SEPS), and styrene / butadiene / stin blocks. Examples thereof include a copolymer (SBS), a styrene / isoprene / styrene block copolymer (SIS), and a styrene / ethylene / propylene block copolymer (SEP).
 オレフィン重合体組成物(E)が、その他の樹脂類を含有する場合には、前記(A)と(B)との合計100重量部に対して、上限が通常は20重量部以下、より好ましくは10重量部以下、さらに好ましくは5重量部以下であり、下限が通常は0.1重量部である。 When the olefin polymer composition (E) contains other resins, the upper limit is usually 20 parts by weight or less, more preferably with respect to 100 parts by weight of the total of (A) and (B). Is 10 parts by weight or less, more preferably 5 parts by weight or less, and the lower limit is usually 0.1 parts by weight.
 その他の樹脂として、前記プロピレン系樹脂(P)を用いる場合、前記プロピレン系樹脂(P)は、前記(A)と(B)との合計100重量部に対して、上限が通常は20重量部以下、より好ましくは10重量部以下、さらに好ましくは5重量部以下であり、下限が通常は0.1重量部である。 When the propylene resin (P) is used as the other resin, the upper limit of the propylene resin (P) is usually 20 parts by weight with respect to a total of 100 parts by weight of the (A) and (B). Below, more preferably 10 parts by weight or less, still more preferably 5 parts by weight or less, and the lower limit is usually 0.1 parts by weight.
 その他の樹脂として、前記スチレン系エラストマーまたはその水素添加物(S)を用いる場合、前記スチレン系エラストマーまたはその水素添加物(S)は、前記(A)と(B)との合計100重量部に対して、上限が通常は20重量部以下、より好ましくは10重量部以下、さらに好ましくは5重量部以下であり、下限が通常は0.1重量部である。 When the styrene elastomer or its hydrogenated product (S) is used as the other resin, the styrene elastomer or its hydrogenated product (S) is in a total of 100 parts by weight of (A) and (B). On the other hand, the upper limit is usually 20 parts by weight or less, more preferably 10 parts by weight or less, further preferably 5 parts by weight or less, and the lower limit is usually 0.1 parts by weight.
 その他の樹脂として、前記プロピレン系樹脂(P)および前記スチレン系エラストマーまたはその水素添加物(S)の少なくともいずれかを用いる場合、前記プロピレン系樹脂(P)と前記スチレン系エラストマーまたはその水素添加物(S)との合計は、前記(A)と(B)との合計100重量部に対して、上限が通常は20重量部以下、より好ましくは10重量部以下、さらに好ましくは5重量部以下であり、下限が通常は0.1重量部である。 When at least one of the propylene resin (P) and the styrene elastomer or hydrogenated product (S) is used as the other resin, the propylene resin (P) and the styrene elastomer or hydrogenated product thereof are used. The upper limit of the total of (S) is usually 20 parts by weight or less, more preferably 10 parts by weight or less, and even more preferably 5 parts by weight or less based on 100 parts by weight of the total of (A) and (B). The lower limit is usually 0.1 parts by weight.
 また、光沢の金型表面粗さ依存性が少ないことが望ましい場合は、前記プロピレン系樹脂(P)を添加しない態様、前記スチレン系エラストマーまたはその水素添加物(S)を添加しない態様がより望ましい態様であり、前記プロピレン系樹脂(P)および前記スチレン系エラストマーまたはその水素添加物(S)を添加しない態様がさらに望ましい態様である。 Further, when it is desirable that the gloss mold surface roughness dependency is small, an embodiment in which the propylene resin (P) is not added and an embodiment in which the styrene elastomer or its hydrogenated product (S) is not added are more desirable. It is an aspect and the aspect which does not add the said propylene-type resin (P) and the said styrene-type elastomer, or its hydrogenated substance (S) is a more desirable aspect.
 また、前記スチレン系エラストマーまたはその水素添加物(S)を用いる場合、べたつきの点から、前記低密度エチレン・α‐オレフィン共重合体(F)が少量であるかまたは存在しないことが好ましい態様のひとつである。 In the case of using the styrenic elastomer or the hydrogenated product (S) thereof, it is preferable that the low density ethylene / α-olefin copolymer (F) is in a small amount or not present in terms of stickiness. One.
 前記低密度エチレン・α‐オレフィン共重合体(F)を用いない場合には、前述のプロピレン系樹脂(A)80~98重量部とエチレン・α‐オレフィン共重合体(B)2~20重量部(ただし、(A)と(B)との合計は100重量部である)と、任意成分であるTmが140~155℃のプロピレン系樹脂(P)およびスチレン系エラストマーまたはその水素添加物(S)から選択される少なくとも一種の重合体0~20重量部((A)と(B)との合計100重量部に対する量である)とから実質的になるオレフィン系重合体組成物(E)を用いることも本発明の好適態様の一つである。この中にはTmが140~155℃のプロピレン系樹脂(P)およびスチレン系エラストマーまたはその水素添加物(S)との合計が(A)と(B)との合計100重量部に対して0重量部である場合も含まれる。なお、実質的になるとは、オレフィン系重合体組成物(E)が、その他の成分として、本発明の効果を損なわない範囲で添加剤を含んでいてもよいが、それ以外の成分が含まれないことを示す。 When the low density ethylene / α-olefin copolymer (F) is not used, 80 to 98 parts by weight of the propylene resin (A) and 2 to 20 parts by weight of the ethylene / α-olefin copolymer (B) are used. Parts (provided that the total of (A) and (B) is 100 parts by weight), propylene resin (P) having an optional component Tm of 140 to 155 ° C. and a styrene elastomer or a hydrogenated product thereof ( Olefin polymer composition (E) consisting essentially of 0 to 20 parts by weight of at least one polymer selected from S) (in an amount relative to a total of 100 parts by weight of (A) and (B)) It is also a preferred embodiment of the present invention to use. Among these, the total of the propylene resin (P) having a Tm of 140 to 155 ° C. and the styrene elastomer or its hydrogenated product (S) is 0 with respect to 100 parts by weight of the total of (A) and (B). The case of parts by weight is also included. As used herein, “substantially” means that the olefin polymer composition (E) may contain additives as other components within the range not impairing the effects of the present invention, but other components are included. Indicates no.
 添加剤としては、酸化防止剤、塩酸吸収剤、耐熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤、難燃剤、顔料、染料、分散剤、銅害防止剤、中和剤、発泡剤、可塑剤、気泡防止剤、架橋剤、過酸化物などの流れ性改良剤、ウェルド強度改良剤などが挙げられる。これらの添加剤としては、特に限定はなく、例えば市販品を用いることができる。 Additives include antioxidants, hydrochloric acid absorbers, heat stabilizers, light stabilizers, UV absorbers, lubricants, antistatic agents, flame retardants, pigments, dyes, dispersants, copper damage inhibitors, neutralizing agents, Examples thereof include foaming agents, plasticizers, anti-bubble agents, crosslinkers, flowability improvers such as peroxides, weld strength improvers, and the like. There is no limitation in particular as these additives, For example, a commercial item can be used.
 オレフィン重合体組成物(E)が、添加剤を含有する場合にはその量としては、本発明の効果を得られる範囲の量であればよく、特に限定はないが、前記(A)と(B)との合計100重量部に対して、通常は0.01~1.00重量部である。 When the olefin polymer composition (E) contains an additive, the amount of the olefin polymer composition (E) is not particularly limited as long as it is within the range where the effects of the present invention can be obtained. It is usually 0.01 to 1.00 parts by weight with respect to 100 parts by weight in total with B).
 本発明に用いるオレフィン重合体組成物(E)は、MFRが特定の範囲にあるため、オレフィン重合体組成物(E)のみではブロー成形することが困難であるが、多層ブロー成形体の表層として用いることが可能であり、表層として用いることにより、優れた光沢を示し、優れた物性を有する。 Since the olefin polymer composition (E) used in the present invention has a MFR in a specific range, it is difficult to blow mold only with the olefin polymer composition (E), but as a surface layer of a multilayer blow molded article. It can be used, and when used as a surface layer, it exhibits excellent gloss and has excellent physical properties.
 オレフィン重合体組成物(E)の調製方法としては特に限定はなく、例えばプロピレン系樹脂(A)、エチレン・α‐オレフィン共重合体(B)および核剤(D)、任意に用いることが可能な低密度エチレン・α‐オレフィン共重合体(F)、その他の樹脂類および添加剤を、ヘンシェルミキサー、バンバリーミキサー、タンブラーミキサー等の混合機に投入し、混合を行い、次いで、得られた混合物を、一軸押出機、二軸押出機等の押出機により成形し、オレフィン重合体組成物(E)のストランドを得る方法が挙げられる。なお、前記ストランドは、通常ブロー成形を行う前に、ペレタイザー等を用いてペレットに成形される。 The method for preparing the olefin polymer composition (E) is not particularly limited. For example, a propylene resin (A), an ethylene / α-olefin copolymer (B) and a nucleating agent (D) can be arbitrarily used. A low density ethylene / α-olefin copolymer (F), other resins and additives into a mixer such as a Henschel mixer, Banbury mixer, tumbler mixer, etc., followed by mixing, and then the resulting mixture Is formed by an extruder such as a single screw extruder or a twin screw extruder to obtain a strand of the olefin polymer composition (E). The strand is usually formed into pellets using a pelletizer or the like before blow molding.
 また、前記添加剤として、有機過酸化物等の過酸化物、架橋剤等の反応性の添加剤を用いた場合には、前記混合機による混合の際に、プロピレン系樹脂(A)や、エチレン・α‐オレフィン共重合体(B)や、必要に応じて用いられる低密度エチレン・α‐オレフィン共重合体(F)の変性を伴ってもよい。 Further, when a reactive additive such as a peroxide such as an organic peroxide or a crosslinking agent is used as the additive, at the time of mixing by the mixer, the propylene resin (A), The ethylene / α-olefin copolymer (B) or a low-density ethylene / α-olefin copolymer (F) used as necessary may be modified.
 また、最外層を形成する樹脂としてオレフィン重合体組成物(E)を用いて形成された多層ブロー容器が良好な物性を示す理由は明らかでないが、特定範囲の結晶融点を有するエチレン・α‐オレフィン共重合体(B)を用いることにより、プロピレン系樹脂(A)へ、エチレン・α‐オレフィン共重合体(B)が微分散すると考えられ、そのため、得られる多層ブロー容器の光沢、表面外観に優れ、耐衝撃性が高くなり、さらには、耐衝撃性と低いべたつき性とが両立しうると考えられる。さらには、最外層と接する内層を形成する重合体として、後述のプロピレン系重合体(G)またはエチレン系重合体(H)を用いた場合には、該層と最外層との接着点となるエチレン・α‐オレフィン共重合体(B)が微分散するため、接着点の数が多くなり、内層との接着性にも優れると考えられる。また、低密度エチレン・α‐オレフィン共重合体(F)を用いた場合には、エチレン・α‐オレフィン共重合体(B)の介在下では、低密度エチレン・α‐オレフィン共重合体(F)は、プロピレン系樹脂(A)に微分散すると考えられ、そのため、光沢、表面外観に優れ、耐衝撃性および低温耐衝撃性が高くなり、さらに微分散するためべたつき性も低く抑えられると考えられる。 The reason why the multilayer blow container formed using the olefin polymer composition (E) as a resin for forming the outermost layer exhibits good physical properties is not clear, but ethylene / α-olefin having a crystal melting point in a specific range. By using the copolymer (B), it is considered that the ethylene / α-olefin copolymer (B) is finely dispersed in the propylene-based resin (A). It is considered that the impact resistance is high and the impact resistance is high, and furthermore, the impact resistance and the low stickiness are compatible. Furthermore, when a later-described propylene polymer (G) or ethylene polymer (H) is used as the polymer forming the inner layer in contact with the outermost layer, it becomes an adhesion point between the layer and the outermost layer. Since the ethylene / α-olefin copolymer (B) is finely dispersed, the number of adhesion points increases, and it is considered that the adhesion to the inner layer is excellent. Further, when the low density ethylene / α-olefin copolymer (F) is used, the low density ethylene / α-olefin copolymer (F) is interposed in the presence of the ethylene / α-olefin copolymer (B). ) Is considered to be finely dispersed in the propylene-based resin (A). Therefore, it is considered that the gloss and surface appearance are excellent, the impact resistance and the low-temperature impact resistance are high, and the stickiness is also suppressed to be low because of fine dispersion. It is done.
 <多層ブロー容器>
 本発明の多層ブロー容器は、最外層に使用される樹脂が、前述のオレフィン重合体組成物(E)からなる。本発明の多層ブロー容器は最外層以外の層として、少なくとも一つの内層を有する。
<Multilayer blow container>
In the multilayer blow container of the present invention, the resin used for the outermost layer is composed of the above-mentioned olefin polymer composition (E). The multilayer blow container of the present invention has at least one inner layer as a layer other than the outermost layer.
 多層ブロー容器を形成する他の層(内層)としては特に限定はなく、通常はオレフィン重合体組成物(E)以外の熱可塑性樹脂からなる。 The other layer (inner layer) forming the multilayer blow container is not particularly limited and is usually made of a thermoplastic resin other than the olefin polymer composition (E).
 オレフィン重合体組成物(E)以外の熱可塑性樹脂としては、プロピレン系重合体(G)、エチレン系重合体(H)、スチレン系重合体、ポリエチレンテレフタレート樹脂、ポリアミド樹脂、ABS樹脂、エチレン・酢酸ビニル共重合体、ポリビニルアルコール樹脂またはポリ塩化ビニル樹脂、ポリ塩化ビニル樹脂および変性ポリオレフィン樹脂等が挙げられ、上記樹脂2種以上の混合物も用いることができる。このうち、プロピレン系重合体(G)、エチレン系重合体(H)が好ましい。 As thermoplastic resins other than the olefin polymer composition (E), propylene polymer (G), ethylene polymer (H), styrene polymer, polyethylene terephthalate resin, polyamide resin, ABS resin, ethylene / acetic acid Examples thereof include vinyl copolymers, polyvinyl alcohol resins or polyvinyl chloride resins, polyvinyl chloride resins, and modified polyolefin resins. A mixture of two or more of the above resins can also be used. Among these, a propylene polymer (G) and an ethylene polymer (H) are preferable.
 なお、プロピレン系重合体(G)とは、プロピレン由来の構成単位を51モル%以上有するプロピレン系重合体であり、エチレン系重合体(H)とは、エチレン由来の構成単位を51モル%以上有するエチレン系重合体である。 The propylene polymer (G) is a propylene polymer having a propylene-derived constitutional unit of 51 mol% or more, and the ethylene polymer (H) is an ethylene-derived constitutional unit of 51 mol% or more. It is an ethylene polymer.
 多層ブロー容器が、他の層(内層)としてスチレン系重合体または、ポリエチレンテレフタレート樹脂、ポリアミド樹脂、ABS樹脂、エチレン-酢酸ビニル共重合体、ポリビニルアルコール樹脂、ポリ塩化ビニル樹脂等の極性樹脂から形成される層を有する場合には、最外層と、スチレン系重合体または極性樹脂から形成される層との間に、変性ポリオレフィン樹脂(I)から形成される層を有することが、層間の接着強度の観点から好ましい。 Multi-layer blow container is formed from styrene polymer or other polar resin such as polyethylene terephthalate resin, polyamide resin, ABS resin, ethylene-vinyl acetate copolymer, polyvinyl alcohol resin, polyvinyl chloride resin as other layer (inner layer) In the case of having a layer to be formed, it is necessary to have a layer formed from the modified polyolefin resin (I) between the outermost layer and the layer formed from the styrenic polymer or the polar resin. From the viewpoint of
 本発明の多層ブロー容器の最外層、すなわちオレフィン重合体組成物(E)から形成される層は、高光沢である。また、多層ブロー容器は耐衝撃性にも優れる。 The outermost layer of the multilayer blow container of the present invention, that is, the layer formed from the olefin polymer composition (E) is highly glossy. The multilayer blow container is also excellent in impact resistance.
 本発明の多層ブロー容器の最外層、すなわちオレフィン重合体組成物(E)から形成される層は、オレフィン重合体組成物(E)の、流動性の指標であるMFRが特定の範囲となっている。このため、ブロー成形において、金型に接触する直前の加熱溶融樹脂の表面が容易に平滑になりやすく、ブロー成形した後においても表面が平滑になりやすいと推定され、これにより表面光沢性に優れた多層ブロー容器を得ることができるものと考えられる。また、オレフィン重合体組成物(E)の、流動性の指標であるMFRが特定の範囲となっているため、表面外観も良好となる。 In the outermost layer of the multilayer blow container of the present invention, that is, the layer formed from the olefin polymer composition (E), the MFR which is an index of fluidity of the olefin polymer composition (E) is in a specific range. Yes. For this reason, in blow molding, it is estimated that the surface of the heated molten resin immediately before contacting the mold is easily smoothed, and the surface is likely to be smooth even after blow molding, thereby providing excellent surface gloss. It is considered that a multilayer blow container can be obtained. Moreover, since MFR which is an index of fluidity of the olefin polymer composition (E) is in a specific range, the surface appearance is also good.
 さらにオレフィン重合体組成物(E)は、該組成物の原料としてエチレン・α-オレフィン共重合体(B)が用いられる。前記エチレン・α‐オレフィン共重合体(B)は、特定範囲の結晶融点を有するため、得られた成形体は前述の相関接着性が優れる、べたつき性が低いなどの優れた特性を示すほか、エチレン・α‐オレフィン共重合体(B)のプロピレン系樹脂(A)に対する使用量が少ない場合でも、効率的に耐衝撃性を改良することが可能となった。この理由は定かではないが、特定範囲の融点を持つエチレン・α-オレフィン共重合体(B)を選択することにより、適度なラメラ厚みを持ち、ラメラとラメラをつなぐタイ分子の量も最適なものとなっていると推測される。 Further, in the olefin polymer composition (E), an ethylene / α-olefin copolymer (B) is used as a raw material of the composition. Since the ethylene / α-olefin copolymer (B) has a crystal melting point in a specific range, the obtained molded product exhibits excellent properties such as the above-described correlated adhesiveness and low stickiness, Even when the amount of the ethylene / α-olefin copolymer (B) used relative to the propylene resin (A) is small, the impact resistance can be improved efficiently. The reason for this is not clear, but by selecting an ethylene / α-olefin copolymer (B) having a melting point in a specific range, it has an appropriate lamella thickness and the amount of tie molecules that connect the lamella and lamella is also optimal. It is presumed to be a thing.
 さらにオレフィン重合体組成物(E)は、該組成物の原料として、必要に応じて低密度エチレン・α‐オレフィン共重合体(F)が用いられる。前記低密度エチレン・α‐オレフィン共重合体(F)は、プロピレン系樹脂(A)に対する使用量が少ない場合でも、効率的に低温耐衝撃性を改良することが可能である。 Further, in the olefin polymer composition (E), a low density ethylene / α-olefin copolymer (F) is used as a raw material of the composition as required. The low-density ethylene / α-olefin copolymer (F) can efficiently improve the low-temperature impact resistance even when the amount used for the propylene-based resin (A) is small.
 以上のようなことから、本発明の多層ブロー容器は高光沢であると同時に耐衝撃性に優れ、前記低密度エチレン・α‐オレイン共重合体(F)を用いた場合には低温耐衝撃性にも優れていると本発明者等は推定した。 As described above, the multilayer blow container of the present invention has high gloss and excellent impact resistance, and when the low density ethylene / α-olein copolymer (F) is used, low temperature impact resistance is achieved. The present inventors have estimated that it is also excellent.
 本発明の多層ブロー容器は、耐衝撃性に優れるため、外部からの衝撃によるクラック等が抑制され、最外層が高光沢であるため、容器が透明感のある光沢性を有する。また、本発明の多層ブロー容器は、低温耐衝撃性に優れるため、多層ブロー容器に内容物が充填され、低温条件で、輸送、貯蔵等されている場合であっても、外部からの衝撃によるクラック等が抑制される。 Since the multilayer blow container of the present invention has excellent impact resistance, cracks and the like due to external impact are suppressed, and since the outermost layer is highly glossy, the container has gloss with a transparent feeling. In addition, since the multilayer blow container of the present invention is excellent in low-temperature impact resistance, even when the multilayer blow container is filled with contents and transported, stored, etc. under low temperature conditions, it is due to impact from the outside. Cracks and the like are suppressed.
 本発明の多層ブロー容器の層構成としては、最外層がオレフィン重合体組成物(E)からなる層であればよく、特に限定はないが、例えばオレフィン重合体組成物(E)からなる最外層と、最内層との二層構成(最外層/最内層の順で配置された層構成)、オレフィン重合体組成物(E)からなる最外層と、該最外層に隣接する中間層と、該中間層に隣接する最内層との三層構成(最外層/中間層/最内層の順で配置された層構成)、オレフィン重合体組成物(E)からなる最外層と、該最外層に隣接する中間層(1)と、該中間層(1)に隣接する中間層(2)と、該中間層(2)に隣接する最内層との四層構成(最外層/中間層(1)/中間層(2)/最内層の順で配置された層構成)等が挙げられる。 The layer structure of the multilayer blow container of the present invention is not particularly limited as long as the outermost layer is a layer made of the olefin polymer composition (E). For example, the outermost layer made of the olefin polymer composition (E) A two-layer configuration with the innermost layer (layer configuration arranged in order of outermost layer / innermost layer), an outermost layer made of the olefin polymer composition (E), an intermediate layer adjacent to the outermost layer, Three-layer configuration with the innermost layer adjacent to the intermediate layer (layer configuration arranged in order of outermost layer / intermediate layer / innermost layer), outermost layer made of the olefin polymer composition (E), and adjacent to the outermost layer A four-layer structure (outermost layer / intermediate layer (1) /) of the intermediate layer (1), the intermediate layer (2) adjacent to the intermediate layer (1), and the innermost layer adjacent to the intermediate layer (2). Intermediate layer (2) / layer structure arranged in the order of the innermost layer).
 なお、本発明においては、最外層よりも内側に位置する層を、内層と定義する。すなわち、本発明において前記最内層、中間層は内層に該当し、本発明の多層ブロー容器は、内層を少なくとも一層を有し、二層以上有していてもよい。 In the present invention, a layer located inside the outermost layer is defined as an inner layer. That is, in the present invention, the innermost layer and the intermediate layer correspond to inner layers, and the multilayer blow container of the present invention may have at least one inner layer and may have two or more layers.
 オレフィン重合体組成物(E)を最外層にもつ本発明の多層ブロー容器において、最外層に隣接する層がプロピレン系重合体(G)またはエチレン系重合体(H)から形成される場合、いわゆる接着樹脂を用いなくても強固な接着性を発現した。本発明の多層ブロー容器のオレフィン重合体組成物(E)からなる最外層との接着性の観点から、オレフィン重合体組成物(E)からなる最外層と隣接する層は、プロピレン系重合体(G)またはエチレン系重合体(H)であることが好ましい。 In the multilayer blow container of the present invention having the olefin polymer composition (E) in the outermost layer, when the layer adjacent to the outermost layer is formed from the propylene polymer (G) or the ethylene polymer (H), so-called Even without using an adhesive resin, strong adhesiveness was exhibited. From the viewpoint of adhesiveness with the outermost layer made of the olefin polymer composition (E) of the multilayer blow container of the present invention, the layer adjacent to the outermost layer made of the olefin polymer composition (E) is a propylene polymer ( G) or an ethylene polymer (H) is preferable.
 なお、オレフィン重合体組成物(E)と隣接する層が、前記プロピレン系重合体(G)、およびエチレン系重合体(H)以外の層である場合には、オレフィン重合体組成物(E)からなる最外層との接着性の観点から、接着性樹脂層を介して、オレフィン重合体組成物(E)からなる最外層と、他の層が形成されることが好ましい。 When the layer adjacent to the olefin polymer composition (E) is a layer other than the propylene polymer (G) and the ethylene polymer (H), the olefin polymer composition (E). From the viewpoint of adhesiveness with the outermost layer made of, it is preferable that the outermost layer made of the olefin polymer composition (E) and other layers are formed via the adhesive resin layer.
 本発明の多層ブロー容器は、任意の層が着色されていてもよい。 The multilayer blow container of the present invention may have any layer colored.
 前記プロピレン系重合体(G)としては、特に限定はなく、ホモポリプロピレン、プロピレン・α‐オレフィンランダム共重合体、プロピレン・α‐オレフィンブロック共重合体等が挙げられる。プロピレン系重合体(G)のASTM D-1238に準拠して、測定温度230℃、2.16kg荷重で測定したMFRとしては、0.1~20.0g/10分の範囲であることが好ましく、特に0.1~5g/10分であることが好ましい。またJIS-K7121に準拠して示差走査熱量計(DSC)で測定した結晶融点が100~168℃の範囲であることが好ましい。 The propylene polymer (G) is not particularly limited, and examples thereof include homopolypropylene, propylene / α-olefin random copolymer, propylene / α-olefin block copolymer, and the like. According to ASTM D-1238 of the propylene polymer (G), the MFR measured at a measurement temperature of 230 ° C. and a load of 2.16 kg is preferably in the range of 0.1 to 20.0 g / 10 minutes. In particular, 0.1 to 5 g / 10 min is preferable. The crystal melting point measured with a differential scanning calorimeter (DSC) in accordance with JIS-K7121 is preferably in the range of 100 to 168 ° C.
 前記エチレン系重合体(H)としては、特に限定はなく、いわゆる高密度ポリエチレン、直鎖状低密度ポリエチレン、低密度ポリエチレンが挙げられる。エチレン系重合体(H)の密度勾配管法で測定した密度は0.860~0.980g/cm3であることが好ましく、またASTM D-1238に準拠して、測定温度230℃、2.16kg荷重で測定したMFRとしては0.01~20g/10分が好ましく、特に0.1~5g/10分であることが好ましい。 The ethylene polymer (H) is not particularly limited, and examples thereof include so-called high density polyethylene, linear low density polyethylene, and low density polyethylene. The density of the ethylene polymer (H) measured by the density gradient tube method is preferably 0.860 to 0.980 g / cm 3 , and the measurement temperature is 230 ° C. according to ASTM D-1238. The MFR measured under a 16 kg load is preferably 0.01 to 20 g / 10 min, and particularly preferably 0.1 to 5 g / 10 min.
 前記変性ポリオレフィン樹脂(I)としては、特に限定無く、一般的には酸変性ポリオレフィンを使用することができる。酸変性に使用される酸は、例えば無水マレイン酸、アクリル酸、メタクリル酸、無水イタコン酸といったエチレン系不飽和カルボン酸あるいはその無水物が挙げられる。また、変性に使用するポリオレフィン樹脂としてはエチレン・α-オレフィン共重合体、プロピレン単独重合体、プロピレン・α-オレフィン共重合体が好ましい。 The modified polyolefin resin (I) is not particularly limited, and generally an acid-modified polyolefin can be used. Examples of the acid used for the acid modification include an ethylenically unsaturated carboxylic acid such as maleic anhydride, acrylic acid, methacrylic acid, and itaconic anhydride, or an anhydride thereof. The polyolefin resin used for modification is preferably an ethylene / α-olefin copolymer, a propylene homopolymer, or a propylene / α-olefin copolymer.
 また、多層ブロー容器中の、最外層と隣接する層以外の内層は、プロピレン系重合体(G)、エチレン系重合体(H)、スチレン系重合体または、ポリエチレンテレフタレート樹脂、ポリアミド樹脂、ABS樹脂、エチレン-酢酸ビニル共重合体、ポリビニルアルコール樹脂またはポリ塩化ビニル樹脂から選ばれる少なくとも1種の樹脂から形成される層であることが好ましい。 Further, the inner layer other than the layer adjacent to the outermost layer in the multilayer blow container is composed of a propylene polymer (G), an ethylene polymer (H), a styrene polymer, a polyethylene terephthalate resin, a polyamide resin, an ABS resin. A layer formed of at least one resin selected from ethylene-vinyl acetate copolymer, polyvinyl alcohol resin or polyvinyl chloride resin is preferable.
 また、最外層以外の層には、その他の樹脂類、各種添加剤が含まれていてもよい。 Moreover, other resins and various additives may be contained in layers other than the outermost layer.
 本発明の多層ブロー容器の成形法としては、ブロー成形であればどのような方法でもよい。成形法としては、ダイレクトブロー成形法(中空成形法)、射出延伸ブロー成形法(射出中空成形法)、押出延伸ブロー成形法、シートブロー成形法等が挙げられる。多層ブロー容器としては、大量生産を行う際の生産性の観点から、ダイレクトブロー成形法または射出延伸ブロー成形法により成形して得られたものであることが好ましい。 As a method for forming the multilayer blow container of the present invention, any method may be used as long as it is blow molding. Examples of the molding method include a direct blow molding method (hollow molding method), an injection stretch blow molding method (injection hollow molding method), an extrusion stretch blow molding method, and a sheet blow molding method. The multilayer blow container is preferably obtained by molding by a direct blow molding method or an injection stretch blow molding method from the viewpoint of productivity in mass production.
 ダイレクトブロー成形法により、多層ブロー容器を成形する場合には例えば、多層ブロー用ダイを用いて、オレフィン重合体組成物(E)およびその他の樹脂を、オレフィン重合体組成物(E)が最外層になるように、パイプ状に押出し、得られたパリソンがまだ溶融状態にある間に、ブロー型で挟んで、パリソン内に流体を吹き込んで所定形状に成形する。オレフィン重合体組成物(E)から形成される層が、最外層となるため、高光沢の多層ブロー容器を得ることができる。 When forming a multilayer blow container by the direct blow molding method, for example, using a multilayer blow die, the olefin polymer composition (E) and other resins are used, and the olefin polymer composition (E) is the outermost layer. Then, while the obtained parison is still in a molten state, it is sandwiched between blow molds, and fluid is blown into the parison to be molded into a predetermined shape. Since the layer formed from the olefin polymer composition (E) is the outermost layer, a high gloss multilayer blow container can be obtained.
 そして(E)は、そのMFRを鑑みると、単独ではブロー成形に制約を受けるケース(例えば大型ブロー成形にはやや困難がある場合がある)があるが、本願発明の技術を用いれば、最外層以外の層を適宜選択することにより(例えば(G)や(H)を適宜選択することにより)、光沢などと大型化等とを同時に達成することもできる。 And (E), in view of the MFR, there are cases where blow molding is restricted by itself (for example, there may be some difficulties in large blow molding), but if the technique of the present invention is used, the outermost layer By appropriately selecting a layer other than (for example, by appropriately selecting (G) and (H)), it is possible to simultaneously achieve gloss and the like and enlargement.
 成形条件は、樹脂の性状にもよるが、流体を吹き込む際の樹脂の温度、すなわち成形温度が120~260℃であることが好ましく、流体の吹き込み圧力が2~10kg/cm2であることが好ましく、ブロー比が1.2~5.0であることが成形性の観点から好ましい。 The molding conditions depend on the properties of the resin, but the temperature of the resin when the fluid is blown, that is, the molding temperature is preferably 120 to 260 ° C., and the fluid blowing pressure is 2 to 10 kg / cm 2. A blow ratio of 1.2 to 5.0 is preferable from the viewpoint of moldability.
 ここでいうブロー比とは押出機ダイ部より押し出された筒状溶融パリソンの外径で、成形されるボトルの外径を割った値を言う。 The blow ratio here refers to the outer diameter of the cylindrical molten parison extruded from the extruder die, and the value obtained by dividing the outer diameter of the bottle to be formed.
 射出延伸ブロー成形法により、多層ブロー容器を成形する場合には例えば、オレフィン重合体組成物(E)およびその他の樹脂を、オレフィン重合体組成物(E)が最外層になるように、射出成形することによりプリフォームを成形する。次いでこのプリフォームが溶融状態あるいは軟化状態にある状況で、あるいは一旦プリフォームを固化させた後再加熱した後、このプリフォームを延伸棒等を用いて、強制的に縦延伸し、その後横方向にさらに延伸するためにプリフォーム内に加圧流体を圧入することにより多層ブロー容器を得ることができる。射出成形によりプリフォームを成形する際には、オレフィン重合体組成物(E)の射出温度が通常は160~260℃の範囲である。前記縦延伸直前のプリフォームの温度は110~150℃であることが好ましく、縦延伸倍率は1.5~4.0倍であることが好ましく、横延伸倍率は1.5~3.0倍であることが好ましい。 When molding a multilayer blow container by the injection stretch blow molding method, for example, the olefin polymer composition (E) and other resins are injection molded so that the olefin polymer composition (E) is the outermost layer. To form a preform. Next, in a state where the preform is in a molten state or a softened state, or after re-heating after the preform is solidified, the preform is forcibly stretched longitudinally using a stretching rod or the like, and then the transverse direction. A multilayer blow container can be obtained by press-fitting a pressurized fluid into the preform for further stretching. When a preform is formed by injection molding, the injection temperature of the olefin polymer composition (E) is usually in the range of 160 to 260 ° C. The temperature of the preform immediately before the longitudinal stretching is preferably 110 to 150 ° C., the longitudinal stretching ratio is preferably 1.5 to 4.0 times, and the transverse stretching ratio is 1.5 to 3.0 times. It is preferable that
 本発明の多層ブロー容器の厚さ、サイズは、多層ブロー容器の用途等によって適宜決定されるが、通常は、厚さ0.3~10.0mm、サイズは直径10~300mm、高さ10~300mmである。 The thickness and size of the multilayer blow container of the present invention are appropriately determined depending on the use of the multilayer blow container and the like. Usually, the thickness is 0.3 to 10.0 mm, the size is 10 to 300 mm in diameter, and the height is 10 to 300 mm.
 本発明の多層ブロー容器の最外層の厚さは、外層とその他の内層との厚さの比(外層/内層)が、好ましくは50/50~5/95、より好ましくは30/70~10/90であるのが好ましい。前記範囲内では、外層の高光沢が最も発現されやすく、成形性も良好となるため好ましい。 The thickness of the outermost layer of the multilayer blow container of the present invention is preferably the ratio of the thickness of the outer layer to the other inner layer (outer layer / inner layer), preferably 50/50 to 5/95, more preferably 30/70 to 10 / 90 is preferred. Within the above-mentioned range, the high gloss of the outer layer is most easily expressed and the moldability is good, which is preferable.
 本発明の多層ブロー容器は、最外層以外の層にも透明樹脂を用いた場合には、透明性に優れる。具体的には、JIS-K7105に準拠してヘイズメーターを用いて測定した曇値(ヘイズ)が30以下であることが好ましく、20以下であることがより好ましい。前記範囲内では内容物の視認性が極めて良好な、付加価値の高いボトルを得る事が出来る。 The multilayer blow container of the present invention is excellent in transparency when a transparent resin is used for layers other than the outermost layer. Specifically, the haze value (haze) measured using a haze meter in accordance with JIS-K7105 is preferably 30 or less, and more preferably 20 or less. Within the above range, it is possible to obtain a high value-added bottle with very good contents visibility.
 本発明の多層ブロー容器は、光沢に優れるが、具体的には、最外層のJIS-K7105に準拠して光沢計で測定した60度光沢度が、70以上であることが好ましく、75以上であることがより好ましい。前記範囲内では優れた光沢外観を示す、付加価値の高いボトルを得る事が出来る。 The multilayer blow container of the present invention is excellent in gloss. Specifically, the 60 ° gloss measured with a gloss meter in accordance with JIS-K7105 of the outermost layer is preferably 70 or more, and 75 or more. More preferably. Within the above range, it is possible to obtain a high value-added bottle exhibiting an excellent gloss appearance.
 本発明に係る多層ブロー容器は、各種用途に用いることができるが、例えばソース、ドレッシング、ジュース、フルーツ、甘味、水煮野菜等の食品を充填する容器、化粧品、シャンプーなどのトイレタリー用品を充填する容器、液体洗剤などのサニタリー用品を充填する容器として好適である。 The multi-layer blow container according to the present invention can be used for various applications, for example, filling containers such as sauces, dressings, juices, fruits, sweets, boiled vegetables, toiletries such as cosmetics and shampoos. It is suitable as a container for filling sanitary goods such as containers and liquid detergents.
 〔多層ブロー容器の製造方法〕
 本発明の多層ブロー容器の製造方法は、前述のオレフィン重合体組成物(E)およびオレフィン重合体組成物(E)以外の熱可塑性樹脂組成物を用い、前記オレフィン重合体組成物(E)が最外層を形成し、前記オレフィン重合体組成物(E)以外の熱可塑性樹脂組成物が少なくとも一つの内層を形成するように、ダイレクトブロー成形法または射出延伸ブロー成形法により成形することが好ましい。
[Method for producing multilayer blow container]
The method for producing a multilayer blow container of the present invention uses a thermoplastic resin composition other than the olefin polymer composition (E) and the olefin polymer composition (E) described above, and the olefin polymer composition (E) It is preferable that the outermost layer is formed and molded by a direct blow molding method or an injection stretch blow molding method so that the thermoplastic resin composition other than the olefin polymer composition (E) forms at least one inner layer.
 本発明の製造方法に用いられる、プロピレン系樹脂(A)、エチレン・α‐オレフィン共重合体(B)、低密度エチレン・α‐オレフィン共重合体(F)、核剤(D)、オレフィン重合体組成物(E)およびオレフィン重合体組成物(E)以外の熱可塑性樹脂としては、前述の〔多層ブロー容器〕の項で説明したものを用いることができ、〔多層ブロー容器〕の項で説明した、その他の樹脂類、各種添加剤も用いることができる。 Propylene resin (A), ethylene / α-olefin copolymer (B), low density ethylene / α-olefin copolymer (F), nucleating agent (D), olefin heavy used in the production method of the present invention As the thermoplastic resin other than the coalescence composition (E) and the olefin polymer composition (E), those described in the above-mentioned section [Multilayer Blow Container] can be used. Other resins and various additives described above can also be used.
 本発明の製造方法では、ダイレクトブロー成形法または射出延伸ブロー成形法により、最外層がオレフィン重合体組成物(E)から形成される多層ブロー容器を成形する。このため、得られる多層ブロー容器は、該多層ブロー容器の最外層にエチレン・α‐オレフィン共重合体(B)が含有されるため、高光沢である。また、多層ブロー容器は耐衝撃性にも優れる。 In the production method of the present invention, a multilayer blow container in which the outermost layer is formed from the olefin polymer composition (E) is molded by a direct blow molding method or an injection stretch blow molding method. For this reason, the resulting multilayer blow container is highly glossy because the outermost layer of the multilayer blow container contains the ethylene / α-olefin copolymer (B). The multilayer blow container is also excellent in impact resistance.
 本発明の製造方法により得られる多層ブロー容器は、耐衝撃性に優れるため、外部からの衝撃によるクラック等が抑制され、最外層が高光沢であるため、容器が透明感のある光沢性を有する。 Since the multilayer blow container obtained by the production method of the present invention has excellent impact resistance, cracks due to external impact are suppressed, and the outermost layer is highly glossy, so that the container has gloss with a transparent feeling. .
 次に本発明について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 〔プロピレン系樹脂(A-1)の製造〕
 (1)固体触媒成分の調製
 無水塩化マグネシウム95.2g、デカン442mlおよび2-エチルヘキシルアルコール390.6gを130℃で2時間加熱反応を行って均一溶液とした後、この溶液中に無水フタル酸21.3gを添加し、さらに130℃にて1時間攪拌混合を行い、無水フタル酸を溶解させた。
[Production of propylene-based resin (A-1)]
(1) Preparation of solid catalyst component An anhydrous magnesium chloride 95.2 g, decane 442 ml, and 2-ethylhexyl alcohol 390.6 g were heated at 130 ° C. for 2 hours to form a homogeneous solution. .3 g was added, and further stirred and mixed at 130 ° C. for 1 hour to dissolve phthalic anhydride.
 このようにして得られた均一溶液を室温に冷却した後、-20℃に保持した四塩化チタン200ml中に、この均一溶液の75mlを1時間にわたって滴下装入した。装入終了後、この混合液の温度を4時間かけて110℃に昇温し、110℃に達したところでフタル酸ジイソブチル(DIBP)5.22gを添加し、これより2時間同温度にて攪拌保持した。 After cooling the homogeneous solution thus obtained to room temperature, 75 ml of this homogeneous solution was charged dropwise into 200 ml of titanium tetrachloride maintained at −20 ° C. over 1 hour. After the completion of charging, the temperature of the mixed solution was raised to 110 ° C. over 4 hours, and when it reached 110 ° C., 5.22 g of diisobutyl phthalate (DIBP) was added, followed by stirring at the same temperature for 2 hours. Retained.
 2時間の反応終了後、熱濾過にて固体部を採取し、この固体部を275mlの四塩化チタンに再懸濁させた後、再び110℃で2時間加熱した。反応終了後、再び熱濾過にて固体部を採取し、110℃のデカンおよびヘキサンにて溶液中に遊離のチタン化合物が検出されなくなるまで充分洗浄した。洗浄後の固体部を、固体状チタン触媒成分(A)とした。固体状チタン触媒成分(A)は、デカンスラリーとして保存したが、この内の一部を触媒組成を調べる目的で乾燥した。前記固体状チタン触媒成分(A)の組成は、チタン2.3重量%、塩素61重量%、マグネシウム19重量%、DIBP 12.5重量%であった。 After completion of the reaction for 2 hours, the solid part was collected by hot filtration, and the solid part was resuspended in 275 ml of titanium tetrachloride and then heated again at 110 ° C. for 2 hours. After completion of the reaction, the solid part was again collected by hot filtration, and washed thoroughly with decane and hexane at 110 ° C. until no free titanium compound was detected in the solution. The solid part after washing was defined as a solid titanium catalyst component (A). The solid titanium catalyst component (A) was stored as a decane slurry, but a portion thereof was dried for the purpose of examining the catalyst composition. The composition of the solid titanium catalyst component (A) was 2.3 wt% titanium, 61 wt% chlorine, 19 wt% magnesium, and 12.5 wt% DIBP.
 なお、前記遊離チタン化合物の検出は次の方法で行った。予め窒素置換した100mlの枝付きシュレンクに上記固体触媒成分の上澄み液10mlを注射器で採取し装入した。次に、窒素気流にて溶媒ヘキサンを乾燥し、さらに30分間真空乾燥した。これに、イオン交換水40ml、50容量%硫酸10mlを装入し30分間攪拌した。この水溶液をろ紙を通して100mlメスフラスコに移し、続いて鉄(II)イオンのマスキング剤としてconc.H3PO4 1mlとチタンの発色試薬として3%H22水溶液 5mlを加え、さらにイオン交換水で100mlにメスアップした。このメスフラスコを振り混ぜ、20分後にUVを用い420nmの吸光度を観測し遊離チタンの検出を行った。この吸収が観測されなくなるまで遊離チタンの洗浄除去および遊離チタンの検出を行った。 The free titanium compound was detected by the following method. 10 ml of the supernatant of the above solid catalyst component was collected with a syringe into a 100 ml branched Schlenk previously purged with nitrogen and charged. Next, the solvent hexane was dried in a nitrogen stream, and further vacuum-dried for 30 minutes. This was charged with 40 ml of ion-exchanged water and 10 ml of 50% by volume sulfuric acid and stirred for 30 minutes. This aqueous solution was transferred to a 100 ml volumetric flask through a filter paper, followed by conc. As a masking agent for iron (II) ions. 1 ml of H 3 PO 4 and 5 ml of 3% H 2 O 2 aqueous solution were added as a coloring reagent for titanium, and the volume was further increased to 100 ml with ion-exchanged water. The volumetric flask was shaken and mixed, and after 20 minutes, the absorbance at 420 nm was observed using UV to detect free titanium. Free titanium was removed by washing and free titanium was detected until this absorption was not observed.
 (2)予備重合触媒成分の調製
 内容積500mlの攪拌機付きの三つ口フラスコを窒素ガスで置換した後、脱水処理したヘプタンを400ml、トリエチルアルミニウム19.2mmol、ジシクロペンチルジメトキシシラン3.8mmol、上記固体状チタン触媒成分(A)4gを加えた。内温を20℃に保持し、攪拌しながらプロピレンガスを8g/hrの速度で連続的に導入した。1時間後、攪拌を停止し結果的に固体状チタン触媒成分(A)1g当たり2gのプロピレンが重合した予備重合触媒成分(B)を得た。
(2) Preparation of prepolymerization catalyst component A three-necked flask with a stirrer having an internal volume of 500 ml was replaced with nitrogen gas, and then 400 ml of dehydrated heptane, 19.2 mmol of triethylaluminum, 3.8 mmol of dicyclopentyldimethoxysilane, and the above 4 g of solid titanium catalyst component (A) was added. While maintaining the internal temperature at 20 ° C., propylene gas was continuously introduced at a rate of 8 g / hr while stirring. After 1 hour, stirring was stopped, and as a result, a prepolymerized catalyst component (B) in which 2 g of propylene was polymerized per 1 g of the solid titanium catalyst component (A) was obtained.
 (3)重合
 内容積10Lの攪拌機付きステンレス製オートクレーブを十分乾燥し、窒素置換の後、脱水処理したヘプタン6L、トリエチルアルミニウム12.5mmol、ジシクロペンチルジメトキシシラン0.6mmolを加えた。系内の窒素をプロピレンで置換した後に、水素を0.30MPa-G装入し、続いて攪拌しながらプロピレンおよびエチレンを導入した。なお、導入量は、重合槽内の気相部のエチレン濃度が1.5mol%となるように調整した。
(3) Polymerization A stainless steel autoclave with a stirrer with an internal volume of 10 L was sufficiently dried, and after substitution with nitrogen, 6 L of dehydrated heptane, 12.5 mmol of triethylaluminum, and 0.6 mmol of dicyclopentyldimethoxysilane were added. After replacing nitrogen in the system with propylene, hydrogen was charged at 0.30 MPa-G, and then propylene and ethylene were introduced with stirring. The amount introduced was adjusted so that the ethylene concentration in the gas phase in the polymerization tank was 1.5 mol%.
 内温80℃、全圧0.8MPa-Gに系内が安定した後、上記予備重合触媒成分(B)をTi原子換算で0.10mmol含んだヘプタンスラリー20.8mlを加え、全圧とエチレン濃度とを保つようにプロピレンおよびエチレンを連続的に供給しながら80℃で3時間重合をおこなった。 After the inside of the system was stabilized at an internal temperature of 80 ° C. and a total pressure of 0.8 MPa-G, 20.8 ml of heptane slurry containing 0.10 mmol of the prepolymerized catalyst component (B) in terms of Ti atoms was added, and the total pressure and ethylene were added. Polymerization was carried out at 80 ° C. for 3 hours while continuously supplying propylene and ethylene so as to maintain the concentration.
 所定時間経過したところで50mlのメタノールを添加し反応を停止し、降温、脱圧した。内容物を全量フィルター付きろ過槽へ移し60℃に昇温し固液分離した。さらに、60℃のヘプタン6Lで固体部を2回洗浄した。このようにして得られたプロピレン/エチレン共重合体(プロピレン系樹脂(A-1))を真空乾燥した。 When a predetermined time had elapsed, 50 ml of methanol was added to stop the reaction, and the temperature was lowered and the pressure was released. The entire contents were transferred to a filtration tank equipped with a filter, heated to 60 ° C., and solid-liquid separated. Further, the solid part was washed twice with 6 L of heptane at 60 ° C. The propylene / ethylene copolymer (propylene resin (A-1)) thus obtained was vacuum dried.
 得られたプロピレン系樹脂(A-1)の、メルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)は7.0g/10分、13C-NMRより算出した、プロピレン由来の構成単位とエチレン由来の構成単位との合計を100重量%とした際のエチレン由来の構成単位の重量が3.2重量%、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が145℃、Mw/Mn(分子量分布)は5.3であった。 The melt flow rate (MFR) (ASTM D-1238, measurement temperature 230 ° C., load 2.16 kg) of the obtained propylene-based resin (A-1) was calculated from 7.0 C / 10 min, 13 C-NMR. The weight of the structural unit derived from ethylene is 3.2% by weight when the total of the structural unit derived from propylene and the structural unit derived from ethylene is 100% by weight, DSC melting point (measured by DSC based on JIS-K7121) Crystal melting point) was 145 ° C. and Mw / Mn (molecular weight distribution) was 5.3.
 〔プロピレン系樹脂(A-2)の製造〕
 プロピレン系重合体(A-1)の製造において、重合槽内の気相部のエチレン濃度が2.2mol%となるように調整した以外は、プロピレン系重合体(A-1)の製造と同様にして重合を行った。
[Production of propylene-based resin (A-2)]
The production of the propylene polymer (A-1) was the same as the production of the propylene polymer (A-1) except that the ethylene concentration in the gas phase in the polymerization tank was adjusted to 2.2 mol%. Polymerization was carried out.
 得られたプロピレン系樹脂(A-2)の、メルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)は7.0g/10分、13C-NMRより算出した、プロピレン由来の構成単位とエチレン由来の構成単位との合計を100重量%とした際のエチレン由来の構成単位の重量が4.8重量%、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が136℃、Mw/Mn(分子量分布)は5.5であった。 The resulting propylene-based resin (A-2) had a melt flow rate (MFR) (ASTM D-1238, measurement temperature 230 ° C., load 2.16 kg) calculated from 7.0 C / 10 min, 13 C-NMR. The weight of ethylene-derived constitutional unit when the total of propylene-derived constitutional unit and ethylene-derived constitutional unit is 100% by weight is 4.8% by weight, DSC melting point (measured by DSC based on JIS-K7121) Crystal melting point) was 136 ° C., and Mw / Mn (molecular weight distribution) was 5.5.
 〔プロピレン系樹脂(A-3)の製造〕
 プロピレン系重合体(A-1)の製造において、重合槽内の気相部のエチレン濃度が0.8mol%となるように調整した以外は、プロピレン系重合体(A-1)の製造と同様にして重合を行った。
[Production of propylene resin (A-3)]
The production of the propylene polymer (A-1) was the same as the production of the propylene polymer (A-1) except that the ethylene concentration in the gas phase portion in the polymerization tank was adjusted to 0.8 mol%. Polymerization was carried out.
 得られたプロピレン系樹脂(A-3)の、メルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)は7.0g/10分、13C-NMRより算出した、プロピレン由来の構成単位とエチレン由来の構成単位との合計を100重量%とした際のエチレン由来の構成単位の重量が1.0重量%、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が156℃、Mw/Mn(分子量分布)は5.0であった。 The melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the obtained propylene resin (A-3) was calculated from 7.0 C / 10 min, 13 C-NMR. The weight of the structural unit derived from ethylene is 1.0% by weight when the total of the structural unit derived from propylene and the structural unit derived from ethylene is 100% by weight. DSC melting point (measured by DSC based on JIS-K7121) Crystal melting point) was 156 ° C. and Mw / Mn (molecular weight distribution) was 5.0.
 〔プロピレン系樹脂(A-4)の製造〕
 プロピレン系重合体(A-1)の製造において、系内の窒素をプロピレンで置換した後に、水素を0.15MPa-G装入した以外は、プロピレン系重合体(A-1)の製造と同様にして重合を行った。
[Production of propylene resin (A-4)]
The production of the propylene polymer (A-1) was the same as the production of the propylene polymer (A-1) except that the nitrogen in the system was replaced with propylene and hydrogen was charged at 0.15 MPa-G. Polymerization was carried out.
 得られたプロピレン系樹脂(A-4)の、メルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)は3.0g/10分、13C-NMRより算出した、プロピレン由来の構成単位とエチレン由来の構成単位との合計を100重量%とした際のエチレン由来の構成単位の重量が3.2重量%、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が145℃、Mw/Mn(分子量分布)は5.3であった。 The melt flow rate (MFR) (ASTM D-1238, measurement temperature 230 ° C., load 2.16 kg) of the obtained propylene-based resin (A-4) was calculated from 13 C-NMR at 3.0 g / 10 min. The weight of the structural unit derived from ethylene is 3.2% by weight when the total of the structural unit derived from propylene and the structural unit derived from ethylene is 100% by weight, DSC melting point (measured by DSC based on JIS-K7121) Crystal melting point) was 145 ° C. and Mw / Mn (molecular weight distribution) was 5.3.
 〔プロピレン系樹脂(A-5)の製造〕
 プロピレン系重合体(A-1)の製造において、系内の窒素をプロピレンで置換した後に、水素を0.45MPa-G装入した以外は、プロピレン系重合体(A-1)の製造と同様にして重合を行った。
[Production of propylene resin (A-5)]
The production of the propylene polymer (A-1) was the same as the production of the propylene polymer (A-1), except that nitrogen in the system was replaced with propylene and hydrogen was charged at 0.45 MPa-G. Polymerization was carried out.
 得られたプロピレン系樹脂(A-5)の、メルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)は15.0g/10分、13C-NMRより算出した、プロピレン由来の構成単位とエチレン由来の構成単位との合計を100重量%とした際のエチレン由来の構成単位の重量が3.2重量%、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が145℃、Mw/Mn(分子量分布)は5.3であった。 The resulting propylene resin (A-5) had a melt flow rate (MFR) (ASTM D-1238, measurement temperature 230 ° C., load 2.16 kg) calculated from 13 C-NMR at 15.0 g / 10 min. The weight of the structural unit derived from ethylene is 3.2% by weight when the total of the structural unit derived from propylene and the structural unit derived from ethylene is 100% by weight, DSC melting point (measured by DSC based on JIS-K7121) Crystal melting point) was 145 ° C. and Mw / Mn (molecular weight distribution) was 5.3.
 〔エチレン・α-オレフィン共重合体(B-1)の製造〕
 (1)触媒の調製
 充分に窒素置換した300リットルの反応器に600℃で10時間乾燥したシリカ10.0kgとトルエン154リットルとを装入し、懸濁状にして0℃まで冷却した。その後、この懸濁液に、メチルアルミノキサンのトルエン溶液(Al=3.02モル/リットル)23.4リットルを1時間かけて滴下した。この際、系内の温度を0~5℃の範囲に保った。
[Production of ethylene / α-olefin copolymer (B-1)]
(1) Preparation of catalyst 10.0 kg of silica dried at 600 ° C. for 10 hours and 154 liters of toluene were charged in a 300 liter reactor sufficiently purged with nitrogen, and the suspension was cooled to 0 ° C. Thereafter, 23.4 liters of a toluene solution of methylaluminoxane (Al = 3.02 mol / liter) was dropped into the suspension over 1 hour. At this time, the temperature in the system was kept in the range of 0 to 5 ° C.
 引続き0℃で30分間反応させ、次いで1.5時間かけて95℃まで昇温し、その温度で4時間反応させた。その後60℃まで降温し、上澄み液をデカンテーション法により除去した。このようにして得られた固体成分をトルエンで2回洗浄した後、トルエン100リットルで再懸濁し、全量を160リットルとした。 Subsequently, the mixture was reacted at 0 ° C. for 30 minutes, then heated to 95 ° C. over 1.5 hours, and reacted at that temperature for 4 hours. Thereafter, the temperature was lowered to 60 ° C., and the supernatant was removed by a decantation method. The solid component thus obtained was washed twice with toluene and then resuspended in 100 liters of toluene to make a total volume of 160 liters.
 このようにして得られた懸濁液に、ビス(1,3-n-ブチルメチルシクロペンタジエニル)ジルコニウムジクロリドのトルエン溶液(Zr=25.6ミリモル/リットル)20.0リットルを35℃で30分間かけて滴下し、さらに35℃で2時間反応させた。その後、上澄み液を除去し、ヘキサンで2回洗浄することにより、固体触媒成分1g当り3.2mgのジルコニウムを含有する固体触媒成分(1)を得た。 To the suspension thus obtained, 20.0 liters of a toluene solution of bis (1,3-n-butylmethylcyclopentadienyl) zirconium dichloride (Zr = 25.6 mmol / liter) was added at 35 ° C. The solution was added dropwise over 30 minutes and further reacted at 35 ° C. for 2 hours. Thereafter, the supernatant was removed and washed twice with hexane to obtain a solid catalyst component (1) containing 3.2 mg of zirconium per 1 g of the solid catalyst component.
 (2)予備重合触媒成分の調製
 充分に窒素置換した350リットルの反応器に、上記で調製した固体触媒成分(1)7.0kgとヘキサンを装入し、全容積を285リットルにした。系内を10℃まで冷却した後、エチレンを8Nm3/hrの流量で5分間ヘキサン中に吹き込んだ。この間、系内の温度は、10~15℃に保持した。その後、エチレンの供給を停止し、ジイソブチルアルミニウムハイドライド(DIBALH)を2.4モルおよび1-ヘキセンを1.2kg装入した。系内を密閉系にした後、8Nm3/hrの流量でエチレンの供給を再度開始した。15分後、エチレンの流量を2Nm3/hrに下げ、系内の圧力を0.08MPaGにした。この間に、系内の温度は35℃まで上昇した。その後、系内の温度を32~35℃に調節しながら、エチレンを4Nm3/hrの流量で3.5時間供給した。この間、系内の圧力は0.07~0.08MPaGに保持されていた。次いで、系内を窒素により置換を行った後、上澄み液を除去し、ヘキサンで2回洗浄した。このようにして固体触媒成分1g当たり3gのポリマーが予備重合された予備重合触媒(2)を得た。
(2) Preparation of prepolymerization catalyst component In a 350 liter reactor sufficiently purged with nitrogen, 7.0 kg of the solid catalyst component (1) prepared above and hexane were charged to a total volume of 285 liters. After cooling the system to 10 ° C., ethylene was blown into hexane at a flow rate of 8 Nm 3 / hr for 5 minutes. During this time, the temperature in the system was maintained at 10 to 15 ° C. Thereafter, the ethylene supply was stopped, and 2.4 mol of diisobutylaluminum hydride (DIBALH) and 1.2 kg of 1-hexene were charged. After the inside of the system was closed, ethylene supply was started again at a flow rate of 8 Nm 3 / hr. After 15 minutes, the ethylene flow rate was lowered to 2 Nm 3 / hr, and the pressure in the system was adjusted to 0.08 MPaG. During this time, the temperature in the system rose to 35 ° C. Thereafter, ethylene was supplied at a flow rate of 4 Nm 3 / hr for 3.5 hours while adjusting the temperature in the system to 32 to 35 ° C. During this time, the pressure in the system was maintained at 0.07 to 0.08 MPaG. Next, after the inside of the system was replaced with nitrogen, the supernatant was removed and washed twice with hexane. Thus, a prepolymerized catalyst (2) in which 3 g of polymer was prepolymerized per 1 g of the solid catalyst component was obtained.
 (3)重合
 連続式流動床気相重合装置を用い、全圧2.0MPaG、重合温度70℃、ガス線速0.7m/秒で、エチレンと1-ヘキセンとの共重合を行った。
(3) Polymerization Copolymerization of ethylene and 1-hexene was carried out using a continuous fluidized bed gas phase polymerization apparatus at a total pressure of 2.0 MPaG, a polymerization temperature of 70 ° C., and a gas linear velocity of 0.7 m / sec.
 上記で調製した予備重合触媒(2)を4.1g/hrおよびTIBAを5ミリモル/hrの割合で連続的に供給しながら重合を開始した。重合の間一定のガス組成を維持するためにエチレン、1-ヘキセン、水素、窒素を連続的に供給した(ガス組成(mol比);1-ヘキセン/エチレン=0.04、水素/エチレン=4.0×10-4、エチレン濃度=71%)。 Polymerization was started while continuously supplying 4.1 g / hr of the prepolymerized catalyst (2) prepared above and TIBA at a rate of 5 mmol / hr. In order to maintain a constant gas composition during the polymerization, ethylene, 1-hexene, hydrogen and nitrogen were continuously supplied (gas composition (molar ratio); 1-hexene / ethylene = 0.04, hydrogen / ethylene = 4). 0.0 × 10 −4 , ethylene concentration = 71%).
 得られたエチレン・1-ヘキセン共重合体の収量は6.0kg/hrであり、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が98℃であり、密度勾配管法で測定した密度が0.903g/cm3であり、MFR(ASTM-1238、測定温度230℃、荷重2.16kg)が7.0g/10分、Mw/Mn(分子量分布)は2.6であった。 The yield of the obtained ethylene / 1-hexene copolymer was 6.0 kg / hr, the DSC melting point (crystal melting point measured by DSC according to JIS-K7121) was 98 ° C., measured by the density gradient tube method. Density was 0.903 g / cm 3 , MFR (ASTM-1238, measurement temperature 230 ° C., load 2.16 kg) was 7.0 g / 10 min, and Mw / Mn (molecular weight distribution) was 2.6. .
 なお、得られたエチレン・1-ヘキセン共重合体をエチレン・α-オレフィン共重合体(B-1)とも記す。 The obtained ethylene / 1-hexene copolymer is also referred to as an ethylene / α-olefin copolymer (B-1).
 〔エチレン・α-オレフィン共重合体(B-2)の製造〕
 エチレン・α-オレフィン共重合体(B-1)の製造において、重合温度を80℃に変更し、ガス組成(mol比)を1-ヘキセン/エチレン=0.03、水素/エチレン=4.2×10-4、エチレン濃度=71%に変更した以外は、エチレン・α-オレフィン共重合体(B-1)の製造と同様にしてエチレン・1-ヘキセン共重合体を得た。
[Production of ethylene / α-olefin copolymer (B-2)]
In the production of the ethylene / α-olefin copolymer (B-1), the polymerization temperature was changed to 80 ° C., and the gas composition (mol ratio) was 1-hexene / ethylene = 0.03, hydrogen / ethylene = 4.2. An ethylene / 1-hexene copolymer was obtained in the same manner as in the production of the ethylene / α-olefin copolymer (B-1) except that the ethylene concentration was changed to × 10 −4 and ethylene concentration = 71%.
 得られたエチレン・1-ヘキセン共重合体の収量は6.0kg/hrであり、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が113℃であり、密度勾配管法で測定した密度が0.913g/cm3であり、MFR(ASTM-1238、測定温度230℃、荷重2.16kg)が7.0g/10分、Mw/Mn(分子量分布)は2.6であった。 The yield of the obtained ethylene / 1-hexene copolymer was 6.0 kg / hr, the DSC melting point (crystal melting point measured by DSC according to JIS-K7121) was 113 ° C., measured by the density gradient tube method. Density was 0.913 g / cm 3 , MFR (ASTM-1238, measurement temperature 230 ° C., load 2.16 kg) was 7.0 g / 10 min, and Mw / Mn (molecular weight distribution) was 2.6. .
 なお、得られたエチレン・1-ヘキセン共重合体をエチレン・α-オレフィン共重合体(B-2)とも記す。 The obtained ethylene / 1-hexene copolymer is also referred to as an ethylene / α-olefin copolymer (B-2).
 〔エチレン・α-オレフィン共重合体(B-3)の製造〕
 エチレン・α-オレフィン共重合体(B-1)の製造において、重合温度を80℃に変更し、ガス組成(mol比)を1-ヘキセン/エチレン=0.02、水素/エチレン=4.6×10-4、エチレン濃度=70%に変更した以外は、エチレン・α-オレフィン共重合体(B-1)の製造と同様にしてエチレン・1-ヘキセン共重合体を得た。
[Production of ethylene / α-olefin copolymer (B-3)]
In the production of the ethylene / α-olefin copolymer (B-1), the polymerization temperature was changed to 80 ° C., and the gas composition (mol ratio) was 1-hexene / ethylene = 0.02, hydrogen / ethylene = 4.6. An ethylene / 1-hexene copolymer was obtained in the same manner as in the production of the ethylene / α-olefin copolymer (B-1) except that the ethylene concentration was changed to × 10 −4 and ethylene concentration = 70%.
 得られたエチレン・1-ヘキセン共重合体の収量は5.8kg/hrであり、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が120℃であり、密度勾配管法で測定した密度が0.924g/cm3であり、MFR(ASTM-1238、測定温度230℃、荷重2.16kg)が7.0g/10分、Mw/Mn(分子量分布)は2.6であった。 The yield of the obtained ethylene / 1-hexene copolymer is 5.8 kg / hr, DSC melting point (according to JIS-K7121, crystal melting point measured by DSC) is 120 ° C., measured by density gradient tube method Density was 0.924 g / cm 3 , MFR (ASTM-1238, measurement temperature 230 ° C., load 2.16 kg) was 7.0 g / 10 min, and Mw / Mn (molecular weight distribution) was 2.6. .
 なお、得られたエチレン・1-ヘキセン共重合体をエチレン・α-オレフィン共重合体(B-3)とも記す。 The obtained ethylene / 1-hexene copolymer is also referred to as an ethylene / α-olefin copolymer (B-3).
 〔実施例A1〕
 プロピレン系樹脂(A-1)を97重量部およびエチレン・α-オレフィン共重合体(B-1)を3重量部、さらに核剤(D)としてアデカスタブNA-21(ADEKA社製:ビス(2,4,8,10-テトラ-t-ブチル-6-ヒドロキシ-12H-ジベンゾ〔d,g〕〔1,3,2〕ジオキサホスホシン-6-オキシド)水酸化アルミニウム塩を主成分として含んだ芳香族リン酸エステル化合物系造核剤)を0.15重量部、および添加剤としてフェノール系酸化防止剤[ペンタエリスリトール テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]]を0.10重量部、リン系酸化防止剤[トリス(2,4-ジ-t-ブチルフェニル)フォスファイト]を0.10重量部、中和剤としてステアリン酸カルシウムを0.09重量部、帯電防止剤としてステアリン酸モノグリセライドを0.10重量部、ヘンシェルミキサーにて攪拌混合し、その混合物をナカタニ機械社製の二軸押出機(NR-36)を用いて下記条件にて溶融混練しストランドを得た。
[Example A1]
97 parts by weight of propylene-based resin (A-1), 3 parts by weight of ethylene / α-olefin copolymer (B-1), and ADEKA STAB NA-21 (manufactured by ADEKA: bis (2 , 4,8,10-Tetra-t-butyl-6-hydroxy-12H-dibenzo [d, g] [1,3,2] dioxaphosphocin-6-oxide) aluminum hydroxide as a main component 0.15 parts by weight of an aromatic phosphate ester compound nucleating agent) and a phenolic antioxidant [pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) as an additive ) Propionate]], 0.10 parts by weight of a phosphorous antioxidant [Tris (2,4-di-t-butylphenyl) phosphite], and calcium stearate as a neutralizing agent 0.09 part by weight of the rubber and 0.10 part by weight of stearic acid monoglyceride as an antistatic agent were stirred and mixed with a Henschel mixer, and the mixture was mixed using a twin-screw extruder (NR-36) manufactured by Nakatani Machinery Co., Ltd. A strand was obtained by melt-kneading under the following conditions.
 (二軸押出機条件)
 型式:NR-36
 スクリュー回転数250rpm
 樹脂温度200℃
 得られたストランドを水冷後ペレタイザーにて切断する事によりオレフィン重合体組成物(E-1)のペレットを得た。
(Twin screw extruder conditions)
Model: NR-36
Screw rotation speed 250rpm
Resin temperature 200 ℃
The obtained strand was cooled with water and then cut with a pelletizer to obtain pellets of the olefin polymer composition (E-1).
 オレフィン重合体組成物(E-1)のメルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)は7.0g/10分、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が147℃であった。 The melt flow rate (MFR) of the olefin polymer composition (E-1) (ASTM D-1238, measurement temperature 230 ° C., load 2.16 kg) is 7.0 g / 10 min, DSC melting point (according to JIS-K7121) Crystal melting point measured by DSC) was 147 ° C.
 結果を半結晶化時間、臭気の測定結果と併せて表に示した。 The results are shown in the table together with the semi-crystallization time and odor measurement results.
 次いで、該ペレットを用いてブロー成形を実施した。 Next, blow molding was performed using the pellets.
 3種3層多層ダイレクトブロー成形機(株式会社プラコー社製、3B50・40・40ブロー成形機)を用い、成形条件としてシリンダ温度が200℃、流体の吹き込み圧力を5.0kg/cm2で設定し、ダイ孔サイズ14.0mm、コアサイズ12.5mmのクロスヘッドダイにより外径20.0mm筒状の溶融パリソンを成形し、重量34g、内容量780ml、口部ネジ外径27.0mm、胴回り外径72mm、胴回り平均肉厚0.5mmtの2層構造の円筒状多層ブロー容器を製造した。 Using three types of three-layer multi-layer direct blow molding machine (Placo Co., Ltd., 3B50 / 40/40 blow molding machine), the molding temperature is set to 200 ° C. and the fluid blowing pressure is set to 5.0 kg / cm 2 . Then, a molten parison having an outer diameter of 20.0 mm was formed by a crosshead die having a die hole size of 14.0 mm and a core size of 12.5 mm, weight 34 g, inner capacity 780 ml, mouth screw outer diameter 27.0 mm, waist circumference A cylindrical multilayer blow container having a two-layer structure having an outer diameter of 72 mm and a waistline average thickness of 0.5 mmt was manufactured.
 具体的には、内層の押出機を用いず、シリンダ温度を200℃に設定した中間層と外層の押出機を用いて、基材(内層)用にプロピレン系ランダム共重合体B251VT((株)プライムポリマー社製、メルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)は1.2g/10分、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が146℃)を中間層の押出機にて、オレフィン重合体組成物(E-1)を外層の押出機にて、外層肉厚比率15%となるように溶解し、クロスヘッドダイにより筒状の溶融パリソンを成形した後、水循環回路により25℃に温度調整したブロー金型で挟み、圧縮空気にて金型に延伸密着させて冷却固化し、多層ブロー容器を得た。なお、ブロー金型としては、表面処理としてサンドブラスト処理#400を行った金型およびサンドブラスト処理#200を行った金型の二種類の金型を用い、それぞれの金型を用いて多層ブロー容器を得た。 Specifically, a propylene-based random copolymer B251VT (Co., Ltd.) is used for a base material (inner layer) by using an intermediate layer and an outer layer extruder having a cylinder temperature set at 200 ° C. without using an inner layer extruder. Made by Prime Polymer, melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) is 1.2 g / 10 min, DSC melting point (according to JIS-K7121, crystal melting point measured by DSC) ) Is 146 ° C.) with an intermediate layer extruder and the olefin polymer composition (E-1) is melted with an outer layer extruder so that the outer layer thickness ratio is 15%. After forming a molten parison in the shape of a mold, it was sandwiched between blow molds adjusted to a temperature of 25 ° C. by a water circulation circuit, stretched and adhered to the mold with compressed air, and cooled and solidified to obtain a multilayer blow container. As the blow mold, two types of molds, that is, a mold subjected to sandblasting # 400 as a surface treatment and a mold subjected to sandblasting # 200, are used, and a multilayer blow container is formed using each mold. Obtained.
 得られた多層ブロー容器を試験用ボトルとして用いて、下記記載の評価方法によりヘイズ、光沢(グロス)、成形性、接着性、耐衝撃性(満水落下耐衝撃強度)、べたつき性を測定した。なお、金型の表面処理が得られる多層ブロー容器の光沢に影響するかどうかを調べるため、二種類の金型を用いて多層ブロー容器を作成し、それぞれの光沢を評価した。これらの結果を表に示した。 Using the obtained multilayer blow container as a test bottle, haze, gloss (gross), moldability, adhesiveness, impact resistance (full water drop impact strength) and stickiness were measured by the following evaluation methods. In order to investigate whether the surface treatment of the mold affects the gloss of the multilayer blow container, a multilayer blow container was prepared using two types of molds, and the gloss of each was evaluated. These results are shown in the table.
 〔実施例A2〕
 プロピレン系樹脂(A-1)を95.5重量部およびエチレン・α-オレフィン共重合体(B-1)を4.5重量部の比率に変更した以外は実施例A1と同様に行った。実施例A2で得られたオレフィン重合体組成物(E-2)のメルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)は7.0g/10分、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が147℃であった。
[Example A2]
The same procedure as in Example A1 was carried out except that the ratio of 95.5 parts by weight of the propylene resin (A-1) and 4.5 parts by weight of the ethylene / α-olefin copolymer (B-1) was changed. The melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-2) obtained in Example A2 is 7.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 147 ° C.
 結果を半結晶化時間、臭気の測定結果および多層ブロー容器試験結果と併せて表に示した。 The results are shown in the table together with the semi-crystallization time, the odor measurement results and the multilayer blow container test results.
 〔実施例A3〕
 多層ブロー成形の際、基材(内層)用にプロピレン系ランダム共重合体B251VT((株)プライムポリマー社製)に代えてプロピレン系ランダムブロック共重合体B511QA((株)プライムポリマー社製、メルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)は1.2g/10分、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が158℃)を中間層にて用いた以外は実施例A2と同様に行った。
[Example A3]
At the time of multilayer blow molding, instead of propylene random copolymer B251VT (manufactured by Prime Polymer Co., Ltd.) for the base material (inner layer), propylene random block copolymer B511QA (manufactured by Prime Polymer Co., Ltd., melt) Flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) is 1.2 g / 10 min, DSC melting point (according to JIS-K7121, crystal melting point measured by DSC is 158 ° C.) The same procedure as in Example A2 was carried out except that the intermediate layer was used.
 結果を表に示した。 The results are shown in the table.
 〔実施例A4〕
 多層ブロー成形の際、基材(内層)用にプロピレン系ランダム共重合体B251VT((株)プライムポリマー社製)に代えてPE系樹脂HDPE、HZ-6008B((株)プライムポリマー社製メルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)は0.7g/10分、密度勾配管法で測定した密度が0.958g/cm3)を中間層にて用いた以外は実施例A2と同様に行った。
[Example A4]
In the case of multilayer blow molding, instead of the propylene random copolymer B251VT (manufactured by Prime Polymer Co., Ltd.) for the base material (inner layer), PE resin HDPE, HZ-6008B (manufactured by Prime Polymer Co., Ltd.) Rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) is 0.7 g / 10 min, density measured by density gradient tube method is 0.958 g / cm 3 ) Example A2 was carried out in the same manner as in Example A2.
 結果を表に示した。 The results are shown in the table.
 〔実施例A5〕
 プロピレン系樹脂(A-1)を80.0重量部およびエチレン・α-オレフィン共重合体(B-1)を20.0重量部の比率に変更した以外は実施例A1と同様に行った。実施例A5で得られたオレフィン重合体組成物(E-3)のメルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)は7.0g/10分、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が148℃であった。
[Example A5]
The same procedure as in Example A1 was carried out except that the ratio of propylene resin (A-1) was 80.0 parts by weight and that of ethylene / α-olefin copolymer (B-1) was 20.0 parts by weight. The melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-3) obtained in Example A5 is 7.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 148 ° C.
 結果を半結晶化時間、臭気の測定結果および多層ブロー容器試験結果と併せて表に示した。 The results are shown in the table together with the semi-crystallization time, the odor measurement results and the multilayer blow container test results.
 〔実施例A6〕
 核剤(D)としてアデカスタブNA-21(ADEKA社製)を0.15重量部に代えてゲルオールMD(新日本理化(株)社製品名、化学名=1,3,2,4-ジ-(p-メチルベンジリデン)ソルビトール、表中にG-MDと記載)を0.30重量部に変更した以外は、実施例A2と同様に行った。実施例A6で得られたオレフィン重合体組成物(E-7)のメルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)は7.0g/10分、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が149℃であった。
[Example A6]
As a nucleating agent (D), ADEKA STAB NA-21 (manufactured by ADEKA) was replaced by 0.15 parts by weight, and Gelol MD (product name of Shin Nippon Rika Co., Ltd., chemical name = 1, 3, 2, 4-di-) The procedure was the same as Example A2 except that (p-methylbenzylidene) sorbitol (described as G-MD in the table) was changed to 0.30 part by weight. The melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-7) obtained in Example A6 is 7.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 149 ° C.
 結果を半結晶化時間、臭気の測定結果および多層ブロー容器試験結果と併せて表に示した。 The results are shown in the table together with the semi-crystallization time, the odor measurement results and the multilayer blow container test results.
 〔実施例A7〕
 プロピレン系樹脂(A-1)を、プロピレン系樹脂(A-4)に代えて、ヘンシェルミキサーにて攪拌混合する際に、有機過酸化物として[2,5-ジ-メチル-2,5-ジ-(ベンゾイルパーオキシ)ヘキサン]を0.006重量部加えた以外は実施例A2と同様に行った。
[Example A7]
When propylene resin (A-1) is stirred and mixed with a Henschel mixer instead of propylene resin (A-4), [2,5-di-methyl-2,5- The same procedure as in Example A2 except that 0.006 part by weight of di- (benzoylperoxy) hexane] was added.
 実施例A7で得られたオレフィン重合体組成物(E-20)のメルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)は7.0g/10分、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が147℃であった。結果を半結晶化時間、臭気の測定結果および多層ブロー容器試験結果と併せて表に示した。 The melt flow rate (MFR) (ASTM D-1238, measurement temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-20) obtained in Example A7 is 7.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 147 ° C. The results are shown in the table together with the semi-crystallization time, the odor measurement results and the multilayer blow container test results.
 〔比較例A1〕
 プロピレン系樹脂(A-1)を100重量部およびエチレン・α-オレフィン共重合体(B-1)を0重量部の比率に変更した以外は実施例A1と同様に行った。比較例A1で得られたオレフィン重合体組成物(E-4)のメルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)は7.0g/10分、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が147℃であった。
[Comparative Example A1]
The same procedure as in Example A1 was carried out except that the proportion of propylene resin (A-1) was changed to 100 parts by weight and that of ethylene / α-olefin copolymer (B-1) was changed to 0 part by weight. The melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-4) obtained in Comparative Example A1 is 7.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 147 ° C.
 結果を半結晶化時間、臭気の測定結果および多層ブロー容器試験結果と併せて表に示した。 The results are shown in the table together with the semi-crystallization time, the odor measurement results and the multilayer blow container test results.
 比較例A1では、エチレン・α-オレフィン共重合体(B)を配合していない為、本請求項の要件を満たさない。エチレン・α-オレフィン共重合体(B)を配合していない為ため接着性と耐衝撃性(満水落下耐衝撃強度)が劣っている。 In Comparative Example A1, since the ethylene / α-olefin copolymer (B) is not blended, the requirements of this claim are not satisfied. Since the ethylene / α-olefin copolymer (B) is not blended, the adhesiveness and impact resistance (full water impact resistance) are inferior.
 〔比較例A2〕
 プロピレン系樹脂(A-1)を70.0重量部およびエチレン・α-オレフィン共重合体(B-1)を30.0重量部の比率に変更した以外は実施例A1と同様に行った。比較例A2で得られたオレフィン重合体組成物(E-5)のメルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)は7.0g/10分、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が147℃であった。
[Comparative Example A2]
The same procedure as in Example A1 was carried out except that the ratio of propylene-based resin (A-1) was changed to 70.0 parts by weight and that of ethylene / α-olefin copolymer (B-1) was changed to 30.0 parts by weight. The melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-5) obtained in Comparative Example A2 is 7.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 147 ° C.
 結果を半結晶化時間、臭気の測定結果および多層ブロー容器試験結果と併せて表に示した。 The results are shown in the table together with the semi-crystallization time, the odor measurement results and the multilayer blow container test results.
 比較例A2では、エチレン・α-オレフィン共重合体(B)の配合量が請求項に規定の範囲より多い。このためべたつき性が劣っている。 In Comparative Example A2, the blending amount of the ethylene / α-olefin copolymer (B) is larger than the range specified in the claims. For this reason, stickiness is inferior.
 〔比較例A3〕
 核剤(D)としてアデカスタブNA-21(ADEKA社製)を添加しなかった以外は、実施例A2と同様に行った。比較例A3で得られたオレフィン重合体組成物(E-6)のメルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)は7.0g/10分、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が145℃であった。
[Comparative Example A3]
The same procedure as in Example A2 was conducted, except that ADK STAB NA-21 (manufactured by ADEKA) was not added as the nucleating agent (D). The melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-6) obtained in Comparative Example A3 is 7.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 145 ° C.
 結果を半結晶化時間、臭気の測定結果および多層ブロー容器試験結果と併せて表に示した。 The results are shown in the table together with the semi-crystallization time, the odor measurement results and the multilayer blow container test results.
 比較例A3では、核剤(D)を配合していない為、本請求項1の案件を満たさない。このため光沢(グロス)が劣っている。 In Comparative Example A3, the case of Claim 1 is not satisfied because the nucleating agent (D) is not blended. For this reason, gloss is inferior.
 〔比較例A4〕
 プロピレン系樹脂(A-1)に代えてプロピレン系樹脂(A-2)に変更した以外は実施例A2と同様に行った。比較例A4で得られたオレフィン重合体組成物(E-8)のメルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)は7.0g/10分、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が138℃であった。
[Comparative Example A4]
The same procedure as in Example A2 was conducted except that the propylene resin (A-2) was changed to the propylene resin (A-2). The melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-8) obtained in Comparative Example A4 is 7.0 g / 10 min, DSC melting point (According to JIS-K7121, the crystalline melting point measured by DSC) was 138 ° C.
 結果を半結晶化時間、臭気の測定結果および多層ブロー容器試験結果と併せて表に示した。 The results are shown in the table together with the semi-crystallization time, the odor measurement results and the multilayer blow container test results.
 比較例A4では、プロピレン系樹脂(A)のDSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が請求項に規定された範囲より低い。このため成形性とべたつき性が劣っている。 In Comparative Example A4, the DSC melting point (crystal melting point measured by DSC in accordance with JIS-K7121) of the propylene-based resin (A) is lower than the range specified in the claims. For this reason, formability and stickiness are inferior.
 〔比較例A5〕
 プロピレン系樹脂(A-1)に代えてプロピレン系樹脂(A-3)に変更した以外は実施例A2と同様に行った。比較例A5で得られたオレフィン重合体組成物(E-9)のメルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)は7.0g/10分、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が158℃であった。
[Comparative Example A5]
The same procedure as in Example A2 was conducted except that the propylene resin (A-3) was changed to the propylene resin (A-3). The melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-9) obtained in Comparative Example A5 is 7.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 158 ° C.
 結果を半結晶化時間、臭気の測定結果および多層ブロー容器試験結果と併せて表に示した。 The results are shown in the table together with the semi-crystallization time, the odor measurement results and the multilayer blow container test results.
 比較例A5では、プロピレン系樹脂(A)のDSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が請求項に規定された範囲より高い。このため耐衝撃性(満水落下耐衝撃強度)が劣っている。 In Comparative Example A5, the DSC melting point (crystal melting point measured by DSC according to JIS-K7121) of the propylene-based resin (A) is higher than the range specified in the claims. For this reason, impact resistance (full water impact resistance) is inferior.
 〔比較例A6〕
 プロピレン系樹脂(A-1)に代えてプロピレン系樹脂(A-4)に変更した以外は実施例A2と同様に行った。比較例A6で得られたオレフィン重合体組成物(E-10)のメルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)は3.0g/10分、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が147℃であった。
[Comparative Example A6]
The same procedure as in Example A2 was conducted except that the propylene resin (A-4) was changed to the propylene resin (A-4). The melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-10) obtained in Comparative Example A6 is 3.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 147 ° C.
 結果を半結晶化時間、臭気の測定結果および多層ブロー容器試験結果と併せて表に示した。 The results are shown in the table together with the semi-crystallization time, the odor measurement results and the multilayer blow container test results.
 比較例A6では、オレフィン重合体組成物(E)のメルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)が請求項に規定された範囲より低い。このため光沢(グロス)が劣っている。 In Comparative Example A6, the melt flow rate (MFR) (ASTM D-1238, measurement temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E) is lower than the range specified in the claims. For this reason, gloss is inferior.
 〔比較例A7〕
 プロピレン系樹脂(A-1)に代えてプロピレン系樹脂(A-5)に変更した以外は実施例A2と同様に行った。比較例A7で得られたオレフィン重合体組成物(E-11)のメルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)は15.0g/10分、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が147℃であった。
[Comparative Example A7]
The same procedure as in Example A2 was carried out except that the propylene resin (A-5) was replaced with a propylene resin (A-5). The melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-11) obtained in Comparative Example A7 is 15.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 147 ° C.
 結果を半結晶化時間、臭気の測定結果および多層ブロー容器試験結果と併せて表に示した。 The results are shown in the table together with the semi-crystallization time, the odor measurement results and the multilayer blow container test results.
 比較例A7では、オレフィン重合体組成物(E)のメルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)が請求項に規定された範囲より高い。このため成形性と耐衝撃性(満水落下耐衝撃強度)が劣っている。 In Comparative Example A7, the melt flow rate (MFR) (ASTM D-1238, measurement temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E) is higher than the range specified in the claims. For this reason, moldability and impact resistance (full drop impact strength) are inferior.
 〔比較例A8〕
 エチレン・α-オレフィン共重合体(B-1)に代えてエチレン・α-オレフィン共重合体(B-2)に変更した以外は実施例A2と同様に行った。比較例A8で得られたオレフィン重合体組成物(E-12)のメルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)は7.0g/10分、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が147℃であった。
[Comparative Example A8]
The same procedure as in Example A2 was conducted except that the ethylene / α-olefin copolymer (B-2) was changed to the ethylene / α-olefin copolymer (B-1). The melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-12) obtained in Comparative Example A8 is 7.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 147 ° C.
 結果を半結晶化時間、臭気の測定結果および多層ブロー容器試験結果と併せて表に示した。 The results are shown in the table together with the semi-crystallization time, the odor measurement results and the multilayer blow container test results.
 比較例A8で用いたエチレン・α-オレフィン共重合体(B-2)は、エチレン・α-オレフィン共重合体(B)のDSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が請求項に規定された範囲より高い。このため接着性と耐衝撃性(満水落下耐衝撃強度)が劣っている。さらには耐衝撃性とべたつき特性とのバランスが良くない。 The ethylene / α-olefin copolymer (B-2) used in Comparative Example A8 has a DSC melting point (crystal melting point measured by DSC according to JIS-K7121) of the ethylene / α-olefin copolymer (B). It is higher than the range specified in the claims. For this reason, adhesiveness and impact resistance (full drop impact strength) are inferior. Furthermore, the balance between impact resistance and stickiness is not good.
 〔比較例A9〕
 プロピレン系樹脂(A-1)を90.0重量部およびエチレン・α-オレフィン共重合体(B-2)を10.0重量部の比率に変更した以外は比較例A8と同様に行った。比較例A9で得られたオレフィン重合体組成物(E-13)のメルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)は7.0g/10分、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が147℃であった。
[Comparative Example A9]
The same procedure as in Comparative Example A8 was carried out except that the ratio of propylene resin (A-1) was 90.0 parts by weight and that of ethylene / α-olefin copolymer (B-2) was 10.0 parts by weight. The melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-13) obtained in Comparative Example A9 is 7.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 147 ° C.
 結果を半結晶化時間、臭気の測定結果および多層ブロー容器試験結果と併せて表に示した。 The results are shown in the table together with the semi-crystallization time, the odor measurement results and the multilayer blow container test results.
 比較例A9で用いたエチレン・α-オレフィン共重合体(B-2)は、エチレン・α-オレフィン共重合体(B)のDSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が請求項に規定された範囲より高い。このため接着性と耐衝撃性(満水落下耐衝撃強度)が劣っている。さらには耐衝撃性とべたつき特性とのバランスが良くない。 The ethylene / α-olefin copolymer (B-2) used in Comparative Example A9 has a DSC melting point (crystal melting point measured by DSC according to JIS-K7121) of the ethylene / α-olefin copolymer (B). It is higher than the range specified in the claims. For this reason, adhesiveness and impact resistance (full drop impact strength) are inferior. Furthermore, the balance between impact resistance and stickiness is not good.
 〔比較例A10〕
 プロピレン系樹脂(A-1)を80.0重量部およびエチレン・α-オレフィン共重合体(B-2)を20.0重量部の比率に変更した以外は比較例A8と同様に行った。比較例A10で得られたオレフィン重合体組成物(E-14)のメルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)は7.0g/10分、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が147℃であった。
[Comparative Example A10]
The procedure was the same as Comparative Example A8 except that the ratio of propylene resin (A-1) was 80.0 parts by weight and that of ethylene / α-olefin copolymer (B-2) was 20.0 parts by weight. The melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-14) obtained in Comparative Example A10 is 7.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 147 ° C.
 結果を半結晶化時間、臭気の測定結果および多層ブロー容器試験結果と併せて表に示した。 The results are shown in the table together with the semi-crystallization time, the odor measurement results and the multilayer blow container test results.
 比較例A10で用いたエチレン・α-オレフィン共重合体(B-2)は、エチレン・α-オレフィン共重合体(B)のDSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が請求項に規定された範囲より高い。このため接着性と耐衝撃性(満水落下耐衝撃強度)が劣っている。さらには耐衝撃性とべたつき特性とのバランスが良くない。 The ethylene / α-olefin copolymer (B-2) used in Comparative Example A10 has a DSC melting point (crystal melting point measured by DSC according to JIS-K7121) of the ethylene / α-olefin copolymer (B). It is higher than the range specified in the claims. For this reason, adhesiveness and impact resistance (full drop impact strength) are inferior. Furthermore, the balance between impact resistance and stickiness is not good.
 〔比較例A11〕
 エチレン・α-オレフィン共重合体(B-1)に代えてエチレン・α-オレフィン共重合体(B-3)に変更した以外は実施例A2と同様に行った。比較例A11で得られたオレフィン重合体組成物(E-15)のメルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)は7.0g/10分、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が147℃であった。
[Comparative Example A11]
The same procedure as in Example A2 was conducted, except that the ethylene / α-olefin copolymer (B-3) was replaced with the ethylene / α-olefin copolymer (B-3). The melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-15) obtained in Comparative Example A11 is 7.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 147 ° C.
 結果を半結晶化時間、臭気の測定結果および多層ブロー容器試験結果と併せて表に示した。 The results are shown in the table together with the semi-crystallization time, the odor measurement results and the multilayer blow container test results.
 比較例A11で用いたエチレン・α-オレフィン共重合体(B-3)は、エチレン・α-オレフィン共重合体(B)のDSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が請求項に規定された範囲より高い。このため光沢(グロス)と接着性と耐衝撃性(満水落下耐衝撃強度)が劣っている。さらには耐衝撃性とべたつき特性とのバランスが良くない。 The ethylene / α-olefin copolymer (B-3) used in Comparative Example A11 has a DSC melting point (crystal melting point measured by DSC according to JIS-K7121) of the ethylene / α-olefin copolymer (B). It is higher than the range specified in the claims. For this reason, gloss (gross), adhesiveness, and impact resistance (full water drop impact strength) are inferior. Furthermore, the balance between impact resistance and stickiness is not good.
 〔比較例A12〕
 エチレン・α-オレフィン共重合体(B-1)に代えてメタロセン触媒ではない、チーグラーナッタ触媒にて製造されるPE系樹脂L-LDPE(直鎖状低密度ポリエチレン)、ウルトゼックス1030L((株)プライムポリマー社製、密度0.909g/cm3、メルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)は7.0g/10min、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が115℃)に変更した以外は実施例A2と同様に行った。
[Comparative Example A12]
PE-based resin L-LDPE (linear low density polyethylene) produced by a Ziegler-Natta catalyst, which is not a metallocene catalyst, instead of an ethylene / α-olefin copolymer (B-1), Ultzex 1030L ) Prime polymer, density 0.909 g / cm 3 , melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) is 7.0 g / 10 min, DSC melting point (according to JIS-K7121) This was carried out in the same manner as in Example A2 except that the crystal melting point measured by DSC was 115 ° C.).
 比較例A12で得られたオレフィン重合体組成物(E-16)のメルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)は7.0g/10分、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が147℃であった。 The melt flow rate (MFR) (ASTM D-1238, measurement temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-16) obtained in Comparative Example A12 is 7.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 147 ° C.
 結果を半結晶化時間、臭気の測定結果および多層ブロー容器試験結果と併せて表に示した。 The results are shown in the table together with the semi-crystallization time, the odor measurement results and the multilayer blow container test results.
 比較例A12ではエチレン・α-オレフィン共重合体(B)に代えて、ウルトゼックス1030Lを用いた。ウルトゼックス1030LのDSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)は115℃であり、請求項に規定されたエチレン・α-オレフィン共重合体(B)のDSC融点の範囲より高い。さらにウルトゼックス1030Lは、メタロセン触媒ではない、チーグラーナッタ触媒で重合されるため、オレフィン重合体組成物(E-16)から形成される多層ブロー容器は、接着性、べたつき性と耐衝撃性(満水落下耐衝撃強度)が劣っている。さらには耐衝撃性とべたつき特性とのバランスが良くない。 In Comparative Example A12, ULTRAZEX 1030L was used in place of the ethylene / α-olefin copolymer (B). The DSC melting point of ULTZEX 1030L (according to JIS-K7121, crystal melting point measured by DSC) is 115 ° C., which is higher than the DSC melting point range of the ethylene / α-olefin copolymer (B) defined in the claims. . Furthermore, since Ultzex 1030L is polymerized with a Ziegler-Natta catalyst that is not a metallocene catalyst, the multilayer blow container formed from the olefin polymer composition (E-16) has adhesiveness, stickiness and impact resistance (full water). Drop impact strength is inferior. Furthermore, the balance between impact resistance and stickiness is not good.
 〔比較例A13〕
 エチレン・α-オレフィン共重合体(B-1)に代えてPE系樹脂HDPE(高密度ポリエチレン)、HZ-2100J((株)プライムポリマー社製、密度0.956g/cm3、メルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)は11.0g/10分、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が131℃、Mw/Mn(分子量分布)は7.0)に変更し、プロピレン系樹脂(A-1)を90.0重量部およびPE系樹脂HDPE、HZ-2100J((株)プライムポリマー社製)を10.0重量部の比率に変更した以外は実施例A1と同様に行った。
[Comparative Example A13]
Instead of the ethylene / α-olefin copolymer (B-1), a PE resin HDPE (high density polyethylene), HZ-2100J (manufactured by Prime Polymer Co., Ltd., density 0.956 g / cm 3 , melt flow rate ( MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) is 11.0 g / 10 min, DSC melting point (according to JIS-K7121, crystal melting point measured by DSC) is 131 ° C., Mw / Mn ( The molecular weight distribution was changed to 7.0), and 90.0 parts by weight of the propylene resin (A-1) and 10.0 parts by weight of the PE resin HDPE, HZ-2100J (manufactured by Prime Polymer Co., Ltd.) The same procedure as in Example A1 was conducted except that the ratio was changed.
 比較例A13で得られたオレフィン重合体組成物(E-17)のメルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)は8.0g/10分、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が147℃であった。 The melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-17) obtained in Comparative Example A13 is 8.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 147 ° C.
 結果を半結晶化時間、臭気の測定結果および多層ブロー容器試験結果と併せて表に示した。 The results are shown in the table together with the semi-crystallization time, the odor measurement results and the multilayer blow container test results.
 比較例A13ではエチレン・α-オレフィン共重合体(B)に代えて、HZ-2100Jを用いた。HZ-2100JのDSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)は131℃であり、請求項に規定されたエチレン・α-オレフィン共重合体(B)のDSC融点の範囲より高い。さらに、HZ-2100Jの密度勾配管法で測定した密度が0.956g/cm3である。このためオレフィン重合体組成物(E-17)から形成される多層ブロー容器は、接着性と耐衝撃性(満水落下耐衝撃強度)が劣っている。さらには耐衝撃性とべたつき特性とのバランスが良くない。 In Comparative Example A13, HZ-2100J was used in place of the ethylene / α-olefin copolymer (B). The DSC melting point of HZ-2100J (according to JIS-K7121, crystal melting point measured by DSC) is 131 ° C., which is higher than the DSC melting point range of the ethylene / α-olefin copolymer (B) specified in the claims. . Furthermore, the density measured by the density gradient tube method of HZ-2100J is 0.956 g / cm 3 . For this reason, the multilayer blow container formed from the olefin polymer composition (E-17) is inferior in adhesion and impact resistance (full water drop impact strength). Furthermore, the balance between impact resistance and stickiness is not good.
 〔比較例A14〕
 エチレン・α-オレフィン共重合体(B-1)に代えてエチレン・α-オレフィン共重合体(B)としてタフマーP-0680(ポリエチレンラバー(EPR)、三井化学(株)社製、密度0.870g/cm3、メルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)は1.0g/10分、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が測定されない。)に変更し、プロピレン系樹脂(A-1)を90.0重量部およびエチレン・α-オレフィン共重合体(B)としてタフマーP-0680(三井化学(株)社製)を10.0重量部の比率に変更した以外は実施例A1と同様に行った。
[Comparative Example A14]
Instead of ethylene / α-olefin copolymer (B-1), Tuffmer P-0680 (polyethylene rubber (EPR), manufactured by Mitsui Chemicals, Inc., density 0. 870 g / cm 3 , melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) is 1.0 g / 10 min, DSC melting point (according to JIS-K7121, crystal melting point measured by DSC) ) Is not measured.), And Tufmer P-0680 (manufactured by Mitsui Chemicals, Inc.) as propylene resin (A-1) as 90.0 parts by weight and ethylene / α-olefin copolymer (B) Was carried out in the same manner as in Example A1, except that the ratio was changed to 10.0 parts by weight.
 比較例A14で得られたオレフィン重合体組成物(E-18)のメルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)は6.0g/10分、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が147℃であった。 The melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-18) obtained in Comparative Example A14 is 6.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 147 ° C.
 結果を半結晶化時間、臭気の測定結果および多層ブロー容器試験結果と併せて表に示した。 The results are shown in the table together with the semi-crystallization time, the odor measurement results and the multilayer blow container test results.
 比較例A14ではエチレン・α-オレフィン共重合体(B)に代えて、タフマーP-0680(三井化学(株)社製)を用いている。タフマーP-0680は、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が測定されず、エチレン・α-オレフィン共重合体(B)に該当しない。さらに、メルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)は1.0g/10分、密度勾配管法で測定した密度も0.870g/cm3であった。 In Comparative Example A14, Tuffmer P-0680 (manufactured by Mitsui Chemicals, Inc.) is used in place of the ethylene / α-olefin copolymer (B). Tuffmer P-0680 does not correspond to an ethylene / α-olefin copolymer (B) because its DSC melting point (according to JIS-K7121, crystal melting point measured by DSC) is not measured. Further, the melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) was 1.0 g / 10 min, and the density measured by the density gradient tube method was 0.870 g / cm 3 . .
 このためオレフィン重合体組成物(E-18)から形成される多層ブロー容器は、光沢性(グロス)、接着性とべたつき性が劣っている。 Therefore, the multilayer blow container formed from the olefin polymer composition (E-18) is inferior in glossiness (gloss), adhesiveness and stickiness.
 〔比較例A15〕
 エチレン・α-オレフィン共重合体(B-1)に代えてエチレン・α-オレフィン共重合体(B)としてタフマーP-0180(ポリエチレンラバー(EPR)、三井化学(株)社製、密度0.870g/cm3、メルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)は8.0g/10分、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が測定されない。)に変更し、プロピレン系樹脂(A-1)を90.0重量部およびエチレン・α-オレフィン共重合体(B)としてタフマーP-0180(三井化学(株)社製)を10.0重量部の比率に変更した以外は実施例A1と同様に行った。
[Comparative Example A15]
Instead of the ethylene / α-olefin copolymer (B-1), Tuffmer P-0180 (polyethylene rubber (EPR), manufactured by Mitsui Chemicals, Inc., density 0. 0) was used as the ethylene / α-olefin copolymer (B). 870 g / cm 3 , melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) is 8.0 g / 10 min, DSC melting point (according to JIS-K7121, crystal melting point measured by DSC) ) Is not measured.), And 90.0 parts by weight of propylene resin (A-1) and ethylene / α-olefin copolymer (B) as Toughmer P-0180 (manufactured by Mitsui Chemicals, Inc.) Was carried out in the same manner as in Example A1, except that the ratio was changed to 10.0 parts by weight.
 比較例A15で得られたオレフィン重合体組成物(E-19)のメルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)は7.0g/10分、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が147℃であった。 The melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) of the olefin polymer composition (E-19) obtained in Comparative Example A15 is 7.0 g / 10 min, DSC melting point (According to JIS-K7121, crystal melting point measured by DSC) was 147 ° C.
 結果を半結晶化時間、臭気の測定結果および多層ブロー容器試験結果と併せて表に示した。 The results are shown in the table together with the semi-crystallization time, the odor measurement results and the multilayer blow container test results.
 比較例A15ではエチレン・α-オレフィン共重合体(B)に代えて、タフマーP-0180(三井化学(株)社製)を用いている。タフマーP-0180は、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が測定されず、エチレン・α-オレフィン共重合体(B)に該当しない。さらに、密度は0.870g/cm3、であった。このためオレフィン重合体組成物(E-19)から形成される多層ブロー容器は、接着性とべたつき性が劣っている。 In Comparative Example A15, Tuffmer P-0180 (manufactured by Mitsui Chemicals, Inc.) is used in place of the ethylene / α-olefin copolymer (B). Tuffmer P-0180 does not correspond to an ethylene / α-olefin copolymer (B) because the DSC melting point (according to JIS-K7121, crystal melting point measured by DSC) is not measured. Furthermore, the density was 0.870 g / cm 3 . For this reason, the multilayer blow container formed from the olefin polymer composition (E-19) has poor adhesion and stickiness.
 〔実施例B1〕
 プロピレン系樹脂(A-1)を97重量部およびエチレン・α-オレフィン共重合体(B-1)を3重量部、さらに核剤(D)としてアデカスタブNA-21(ADEKA社製:ビス(2,4,8,10-テトラ-t-ブチル-6-ヒドロキシ-12H-ジベンゾ〔d,g〕〔1,3,2〕ジオキサホスホシン-6-オキシド)水酸化アルミニウム塩を主成分として含んだ芳香族リン酸エステル化合物系造核剤)を0.15重量部、低密度エチレン・α‐オレフィン共重合体(F)として、三井化学社製、タフマーP-0280(エチレン-プロピレン共重合体、密度勾配管法で測定した密度:0.870g/cm3、チーグラーナッタ触媒、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点):観察されず、MFR(ASTM-1238、測定温度230℃、荷重2.16kg):5.4g/10分)を15重量部、および添加剤としてフェノール系酸化防止剤[ペンタエリスリトール テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を0.10重量部、リン系酸化防止剤[トリス(2,4-ジ-t-ブチルフェニル)フォスファイト]]を0.10重量部、中和剤としてステアリン酸カルシウムを0.09重量部を、ヘンシェルミキサーにて攪拌混合し、その混合物をナカタニ機械社製の二軸押出機(NR-36)を用いて下記条件にて溶融混練しストランドを得た。
[Example B1]
97 parts by weight of propylene-based resin (A-1), 3 parts by weight of ethylene / α-olefin copolymer (B-1), and ADEKA STAB NA-21 (manufactured by ADEKA: bis (2 , 4,8,10-Tetra-t-butyl-6-hydroxy-12H-dibenzo [d, g] [1,3,2] dioxaphosphocin-6-oxide) aluminum hydroxide as a main component Tafmer P-0280 (ethylene-propylene copolymer, manufactured by Mitsui Chemicals, Ltd.) as 0.15 parts by weight of an aromatic phosphate ester compound nucleating agent) as a low density ethylene / α-olefin copolymer (F) the density was measured by a density gradient tube method: 0.870 g / cm 3, Ziegler-Natta catalyst, DSC melting point (according to JIS-K7121, the crystalline melting point was measured by DSC): not observed, MFR (AST -1238, measuring temperature 230 ° C., load 2.16 kg): 5.4 g / 10 min) 15 parts by weight, and phenolic antioxidant [pentaerythritol tetrakis [3- (3,5-di-t] as an additive -Butyl-4-hydroxyphenyl) propionate] in 0.10 parts by weight, phosphorus antioxidant [Tris (2,4-di-t-butylphenyl) phosphite]] in 0.10 parts by weight, neutralizing agent As a mixture, 0.09 part by weight of calcium stearate was stirred and mixed with a Henschel mixer, and the mixture was melt-kneaded using a twin screw extruder (NR-36) manufactured by Nakatani Machinery Co., Ltd. under the following conditions to obtain a strand. .
 (二軸押出機条件)
 型式:NR-36
 スクリュー回転数250rpm
 樹脂温度200℃
 得られたストランドを水冷後ペレタイザーにて切断する事によりオレフィン重合体組成物(E-21)のペレットを得た。
(Twin screw extruder conditions)
Model: NR-36
Screw rotation speed 250rpm
Resin temperature 200 ℃
The obtained strand was cooled with water and then cut with a pelletizer to obtain pellets of the olefin polymer composition (E-21).
 プロピレン系樹脂組成物(E-21)のメルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)は7.0g/10分、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が147℃であった。 The melt flow rate (MFR) of the propylene resin composition (E-21) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) is 7.0 g / 10 min, DSC melting point (according to JIS-K7121) Crystal melting point measured by DSC) was 147 ° C.
 結果を半結晶化時間、臭気の測定結果と併せて表に示した。 The results are shown in the table together with the semi-crystallization time and odor measurement results.
 次いで、該ペレットを用いてブロー成形を実施した。 Next, blow molding was performed using the pellets.
 3種3層多層ダイレクトブロー成形機(株式会社プラコー社製、3B50・40・40ブロー成形機)を用い、成形条件としてシリンダ温度が200℃、流体の吹き込み圧力を5.0kg/cm2で設定し、ダイ孔サイズ14.0mm、コアサイズ12.5mmのクロスヘッドダイにより外径20.0mm筒状の溶融パリソンを成形し、重量34g、内容量780ml、口部ネジ外径27.0mm、胴回り外径72mm、胴回り平均肉厚0.5mmtの2層構造の円筒状多層ブロー容器を製造した。 Using three types of three-layer multi-layer direct blow molding machine (Placo Co., Ltd., 3B50 / 40/40 blow molding machine), the molding temperature is set to 200 ° C. and the fluid blowing pressure is set to 5.0 kg / cm 2 . Then, a molten parison having an outer diameter of 20.0 mm was formed by a crosshead die having a die hole size of 14.0 mm and a core size of 12.5 mm, weight 34 g, inner capacity 780 ml, mouth screw outer diameter 27.0 mm, waist circumference A cylindrical multilayer blow container having a two-layer structure having an outer diameter of 72 mm and a waistline average thickness of 0.5 mmt was manufactured.
 具体的には、内層の押出機を用いず、シリンダ温度を200℃に設定した中間層と外層の押出機を用いて、基材(内層)用にプロピレン系ランダム共重合体B251VT((株)プライムポリマー社製、メルトフローレート(MFR)(ASTM D-1238、測定温度230℃、荷重2.16kg)は1.2g/10分、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点)が146℃)を中間層の押出機にて、オレフィン重合体組成物(E-21)を外層の押出機にて、外層肉厚比率15%となるように溶解し、クロスヘッドダイにより筒状の溶融パリソンを成形した後、水循環回路により25℃に温度調整したブロー金型で挟み、圧縮空気にて金型に延伸密着させて冷却固化し、多層ブロー容器を得た。なお、ブロー金型としては、表面処理としてサンドブラスト処理#400を行った金型およびサンドブラスト処理#200を行った金型の二種類の金型を用い、それぞれの金型を用いて多層ブロー容器を得た。 Specifically, a propylene-based random copolymer B251VT (Co., Ltd.) is used for a base material (inner layer) by using an intermediate layer and an outer layer extruder having a cylinder temperature set at 200 ° C. without using an inner layer extruder. Made by Prime Polymer, melt flow rate (MFR) (ASTM D-1238, measuring temperature 230 ° C., load 2.16 kg) is 1.2 g / 10 min, DSC melting point (according to JIS-K7121, crystal melting point measured by DSC) ) Is 146 ° C.) with an intermediate layer extruder and the olefin polymer composition (E-21) is dissolved with an outer layer extruder so that the outer layer thickness ratio is 15%. After forming a molten parison in the shape of a mold, it was sandwiched between blow molds adjusted to a temperature of 25 ° C. by a water circulation circuit, stretched and adhered to the mold with compressed air, and cooled and solidified to obtain a multilayer blow container. As the blow mold, two types of molds, that is, a mold subjected to sandblasting # 400 as a surface treatment and a mold subjected to sandblasting # 200, are used, and a multilayer blow container is formed using each mold. Obtained.
 得られた多層ブロー容器を試験用ボトルとして用いて、下記記載の評価方法によりヘイズ、光沢(グロス)、成形性、接着性、べたつき、耐衝撃性(満水落下耐衝撃強度)および低温耐衝撃性(満水落下耐衝撃強度)を測定した。なお、金型の表面処理が得られる多層ブロー容器の光沢に影響するかどうかを調べるため、二種類の金型を用いて多層ブロー容器を作成し、それぞれの光沢を評価した。これらの結果を表に示した。 Using the resulting multilayer blow container as a test bottle, haze, gloss (gross), formability, adhesiveness, stickiness, impact resistance (full water drop impact strength) and low temperature impact resistance by the following evaluation methods (Full water drop impact strength) was measured. In order to investigate whether the surface treatment of the mold affects the gloss of the multilayer blow container, a multilayer blow container was prepared using two types of molds, and the gloss of each was evaluated. These results are shown in the table.
 〔実施例B2〕
 低密度エチレン・α‐オレフィン共重合体(F)を、三井化学社製、タフマーP-0280から、三井化学社製、タフマーA-4085S(エチレン-ブテン共重合体、密度勾配管法で測定した密度:0.885g/cm3、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点):70℃、MFR(ASTM-1238、測定温度230℃、荷重2.16kg):6.7g/10分)に変更し、その配合量を15重量部から7重量部に変更し、帯電防止剤としてステアリン酸モノグリセライドを0.1重量部用いたこと以外は実施例B1と同様に行い、ストランドを得た。
[Example B2]
Low density ethylene / α-olefin copolymer (F) was measured by Mitsui Chemicals, Inc., Tafmer A-4085S (ethylene-butene copolymer, density gradient tube method) from Mitsui Chemicals, Inc., Tafmer P-0280. Density: 0.885 g / cm 3 , DSC melting point (according to JIS-K7121, crystal melting point measured by DSC): 70 ° C., MFR (ASTM-1238, measurement temperature 230 ° C., load 2.16 kg): 6.7 g / 10 minutes), the blending amount was changed from 15 parts by weight to 7 parts by weight, and the same procedure as in Example B1 was conducted except that 0.1 part by weight of stearic acid monoglyceride was used as an antistatic agent. Obtained.
 該ストランドを用いたこと以外は、実施例B1と同様に行い、多層ブロー容器を得た。 A multilayer blow container was obtained in the same manner as in Example B1 except that the strand was used.
 結果を表に示した。 The results are shown in the table.
 〔実施例B3〕
 プロピレン系樹脂(A-1)を90重量部、エチレン・α-オレフィン共重合体(B-1)を10重量部に変更し、低密度エチレン・α‐オレフィン共重合体(F)を、三井化学社製、タフマーP-0280から、三井化学社製、タフマーA-4085Sに変更し、その配合量を15重量部から5重量部に変更した以外は実施例B1と同様に行い、ストランドを得た。
[Example B3]
The propylene resin (A-1) was changed to 90 parts by weight, the ethylene / α-olefin copolymer (B-1) was changed to 10 parts by weight, and the low density ethylene / α-olefin copolymer (F) was changed to Mitsui A strand was obtained in the same manner as in Example B1, except that Tuffmer P-0280 manufactured by Kagaku Co., Ltd. was changed to Tuffmer A-4085S manufactured by Mitsui Chemicals, and the blending amount was changed from 15 parts by weight to 5 parts by weight. It was.
 該ストランドを用いたこと以外は、実施例B1と同様に行い、多層ブロー容器を得た。 A multilayer blow container was obtained in the same manner as in Example B1 except that the strand was used.
 結果を表に示した。 The results are shown in the table.
 〔実施例B4〕
 低密度エチレン・α‐オレフィン共重合体(F)を、三井化学社製、タフマーP-0280から、三井化学社製、タフマーA-4085Sに変更した以外は実施例B1と同様に行い、ストランドを得た。
[Example B4]
The low density ethylene / α-olefin copolymer (F) was changed in the same manner as in Example B1 except that Mitsui Chemicals Co., Ltd., Tafmer P-0280 was changed to Mitsui Chemicals Co., Ltd., Tafmer A-4085S. Obtained.
 該ストランドを用いたこと以外は、実施例B1と同様に行い、多層ブロー容器を得た。 A multilayer blow container was obtained in the same manner as in Example B1 except that the strand was used.
 結果を表に示した。 The results are shown in the table.
 〔実施例B5〕
 低密度エチレン・α‐オレフィン共重合体(F)を用いなかったこと以外は実施例B1と同様に行い、ストランドを得た。
[Example B5]
A strand was obtained in the same manner as in Example B1 except that the low-density ethylene / α-olefin copolymer (F) was not used.
 該ストランドを用いたこと以外は、実施例B1と同様に行い、多層ブロー容器を得た。 A multilayer blow container was obtained in the same manner as in Example B1 except that the strand was used.
 結果を表に示した。 The results are shown in the table.
 〔実施例B6〕
 プロピレン系樹脂(A-1)を95.5重量部、エチレン・α-オレフィン共重合体(B-1)を4.5重量部に変更し、低密度エチレン・α‐オレフィン共重合体(F)を用いず、帯電防止剤としてステアリン酸モノグリセライドを0.1重量部用いたこと以外は実施例B1と同様に行い、ストランドを得た。
[Example B6]
The propylene-based resin (A-1) was changed to 95.5 parts by weight and the ethylene / α-olefin copolymer (B-1) was changed to 4.5 parts by weight to obtain a low density ethylene / α-olefin copolymer (F ) Was used, and a strand was obtained in the same manner as in Example B1 except that 0.1 part by weight of stearic acid monoglyceride was used as an antistatic agent.
 該ストランドを用いたこと以外は、実施例B1と同様に行い、多層ブロー容器を得た。 A multilayer blow container was obtained in the same manner as in Example B1 except that the strand was used.
 結果を表に示した。 The results are shown in the table.
 〔実施例B7〕
 プロピレン系樹脂(A-1)を90重量部、エチレン・α-オレフィン共重合体(B-1)を10重量部に変更し、低密度エチレン・α‐オレフィン共重合体(F)を用いなかった以外は実施例B1と同様に行い、ストランドを得た。
[Example B7]
The propylene resin (A-1) was changed to 90 parts by weight and the ethylene / α-olefin copolymer (B-1) was changed to 10 parts by weight, and the low density ethylene / α-olefin copolymer (F) was not used. A strand was obtained in the same manner as in Example B1.
 該ストランドを用いたこと以外は、実施例B1と同様に行い、多層ブロー容器を得た。 A multilayer blow container was obtained in the same manner as in Example B1 except that the strand was used.
 結果を表に示した。 The results are shown in the table.
 〔参考例B1〕
 プロピレン系樹脂(A-1)を95.5重量部、エチレン・α-オレフィン共重合体(B-1)を4.5重量部に変更し、低密度エチレン・α‐オレフィン共重合体(F)を15重量部から25重量部に変更した以外は実施例B1と同様に行い、ストランドを得た。
[Reference Example B1]
The propylene-based resin (A-1) was changed to 95.5 parts by weight and the ethylene / α-olefin copolymer (B-1) was changed to 4.5 parts by weight to obtain a low density ethylene / α-olefin copolymer (F ) Was changed from 15 parts by weight to 25 parts by weight in the same manner as in Example B1 to obtain a strand.
 該ストランドを用いたこと以外は、実施例B1と同様に行い、多層ブロー容器を得た。 A multilayer blow container was obtained in the same manner as in Example B1 except that the strand was used.
 結果を表に示した。 The results are shown in the table.
 〔比較例B1〕
 エチレン・α-オレフィン共重合体(B-1)を、エチレン・α-オレフィン共重合体(B-2)に変更し、プロピレン系樹脂(A-1)を95.5重量部に変更し、エチレン・α-オレフィン共重合体(B-2)を4.5重量部用い、低密度エチレン・α‐オレフィン共重合体(F)を、三井化学社製、タフマーP-0280から、三井化学社製、タフマーP-0275(エチレン-プロピレン共重合体、密度勾配管法で測定した密度:0.860g/cm3、DSC融点(JIS-K7121に準拠、DSCで測定した結晶融点):観察されず、MFR(ASTM-1238、測定温度230℃、荷重2.16kg):5.4g/10分)に変更した以外は実施例B1と同様に行い、ストランドを得た。
[Comparative Example B1]
The ethylene / α-olefin copolymer (B-1) was changed to the ethylene / α-olefin copolymer (B-2), and the propylene resin (A-1) was changed to 95.5 parts by weight. Using 4.5 parts by weight of ethylene / α-olefin copolymer (B-2), a low density ethylene / α-olefin copolymer (F) was obtained from Mitsui Chemicals, Tuffmer P-0280, and Mitsui Chemicals. Manufactured by Tuffmer P-0275 (ethylene-propylene copolymer, density measured by density gradient tube method: 0.860 g / cm 3 , DSC melting point (according to JIS-K7121, crystal melting point measured by DSC): not observed , MFR (ASTM-1238, measurement temperature 230 ° C., load 2.16 kg): 5.4 g / 10 min) was carried out in the same manner as in Example B1 to obtain a strand.
 該ストランドを用いたこと以外は、実施例B1と同様に行い、多層ブロー容器を得た。 A multilayer blow container was obtained in the same manner as in Example B1 except that the strand was used.
 結果を表に示した。 The results are shown in the table.
 〔評価方法〕
 以下に記載の方法に従い、プロピレン系重合体(A)、エチレン・α-オレフィン共重合体(B)、低密度エチレン・α‐オレフィン共重合体(F)またはオレフィン重合体組成物(E)の物性を測定した。結果を表に示す。
〔Evaluation methods〕
According to the method described below, the propylene polymer (A), the ethylene / α-olefin copolymer (B), the low density ethylene / α-olefin copolymer (F) or the olefin polymer composition (E) Physical properties were measured. The results are shown in the table.
 〔MFR(メルトフローレート)〕
 前記プロピレン系樹脂(A)、エチレン・α-オレフィン共重合体(B)、低密度エチレン・α‐オレフィン共重合体(F)、およびオレフィン重合体組成物(E)のMFRは、ASTM D-1238、測定温度230℃、荷重2.16kgに従って測定した。
[MFR (melt flow rate)]
The MFR of the propylene resin (A), the ethylene / α-olefin copolymer (B), the low density ethylene / α-olefin copolymer (F), and the olefin polymer composition (E) is ASTM D- It was measured according to 1238, measurement temperature 230 ° C., load 2.16 kg.
 ASTM D-1238に基づき、MFR計測時に得られるストランドを採取し、下記密度の測定に使用する。 Based on ASTM D-1238, the strand obtained at the time of MFR measurement is collected and used for the following density measurement.
 〔融点(Tm)〕
 前記プロピレン系樹脂(A)、エチレン・α-オレフィン共重合体(B)、低密度エチレン・α‐オレフィン共重合体(F)およびオレフィン重合体組成物(E)の結晶融点はJIS-K7121に従って、示差走査熱量計(DSC、パーキンエルマー社製(Diamond DSC))を用いて測定を行った。ここで測定した第3stepにおける吸熱ピークの頂点を結晶融点(Tm)と定義した。吸熱ピークが複数ある場合はピーク高さが最大となる吸熱ピーク頂点を結晶融点(Tm)と定義する。
[Melting point (Tm)]
Crystalline melting points of the propylene resin (A), the ethylene / α-olefin copolymer (B), the low density ethylene / α-olefin copolymer (F) and the olefin polymer composition (E) are in accordance with JIS-K7121. The measurement was performed using a differential scanning calorimeter (DSC, manufactured by Perkin Elmer). The peak of the endothermic peak at the third step measured here was defined as the crystalline melting point (Tm). When there are a plurality of endothermic peaks, the endothermic peak vertex at which the peak height is maximum is defined as the crystalline melting point (Tm).
 (測定条件)
 測定環境:窒素ガス雰囲気
 サンプル量 : 5mg
 サンプル形状 : プレスフィルム(230℃成形、厚み200~400μm)
 第1step  : 30℃より10℃/minで240℃まで昇温し、10min間保持する。
(Measurement condition)
Measurement environment: Nitrogen gas atmosphere Sample volume: 5mg
Sample shape: Press film (230 ° C molding, thickness 200-400μm)
First step: The temperature is raised from 30 ° C to 240 ° C at 10 ° C / min and held for 10 min.
 第2step  : 10℃/minで60℃まで降温する。 Second step IV: Decrease the temperature to 60 ° C at 10 ° C / min.
 第3step  : 10℃/minで240℃まで昇温する。 3rd step IV: Increase the temperature to 240 ° C at 10 ° C / min.
 〔半結晶化時間(T1/2)〕
 オレフィン重合体組成物(E)の半結晶化時間(T1/2)は、示差走査熱量計(DSC、パーキンエルマー社製(DSC7))を用いて測定を行った。125℃等温条件下でオレフィン重合体組成物(E)を結晶化させて、この時結晶化に伴う発熱量を測定し、発熱開始(結晶化開始)から発熱量がトータル発熱量の半分の値になるまでの時間(秒)を半結晶化時間(t1/2)として測定した。半結晶化時間(t1/2)の値が小さいほど結晶化速度が速いことを意味する。
[Semi-crystallization time (T 1/2 )]
The half crystallization time (T 1/2 ) of the olefin polymer composition (E) was measured using a differential scanning calorimeter (DSC, manufactured by Perkin Elmer (DSC7)). The olefin polymer composition (E) is crystallized under an isothermal condition of 125 ° C., and the calorific value associated with the crystallization is measured at this time, and the calorific value from the start of the exotherm (crystallization start) is half the total calorific value. The time (seconds) until the crystallization time was measured as the half crystallization time (t 1/2 ). A smaller half crystallization time (t 1/2 ) means a faster crystallization rate.
 (測定条件)
 測定環境:窒素ガス雰囲気
 サンプル量 : 5mg
 サンプル形状 : プレスフィルム(230℃成形、厚み200~400μm)
 第1step  : 30℃より10℃/minで220℃まで昇温し、3min間保持する。
(Measurement condition)
Measurement environment: Nitrogen gas atmosphere Sample volume: 5mg
Sample shape: Press film (230 ° C molding, thickness 200-400μm)
First step: The temperature is increased from 30 ° C to 220 ° C at 10 ° C / min and held for 3 min.
 第2step  : 60℃/minで125℃まで降温する。 2nd step IV: Decrease the temperature to 125 ° C at 60 ° C / min.
 〔密度〕
 エチレン・α-オレフィン共重合体(B)および低密度エチレン・α‐オレフィン共重合体(F)の密度は、前記MFRの測定時に得られる、エチレン・α-オレフィン共重合体(B)および低密度エチレン・α‐オレフィン共重合体(F)のストランドをそれぞれ120℃で1時間熱処理し、1時間かけて室温まで徐冷したのち、密度勾配管で測定した。
〔density〕
The density of the ethylene / α-olefin copolymer (B) and the low density ethylene / α-olefin copolymer (F) is the same as that of the ethylene / α-olefin copolymer (B) and the low density obtained during the MFR measurement. The strands of the density ethylene / α-olefin copolymer (F) were each heat-treated at 120 ° C. for 1 hour, gradually cooled to room temperature over 1 hour, and then measured with a density gradient tube.
 〔Mw/Mn(分子量分布)〕
 前記プロピレン系樹脂(A)およびエチレン・α-オレフィン共重合体(B)のMw/Mnは、下記測定法で測定した重量平均分子量(Mw)および数平均分子量(Mn)より求めた。
[Mw / Mn (molecular weight distribution)]
The Mw / Mn of the propylene resin (A) and the ethylene / α-olefin copolymer (B) was determined from the weight average molecular weight (Mw) and the number average molecular weight (Mn) measured by the following measurement method.
 MwおよびMnは、ウォーターズ社製GPC‐150C Plusを用い以下の様にして測定した。 Mw and Mn were measured as follows using GPC-150C Plus manufactured by Waters.
 分離カラムには、TSKgel GMH6-HTおよびTSKgel GMH6-HTLを用い、カラムサイズはそれぞれ内径7.5mm、長さ600mmであり、カラム温度は140℃とし、移動相にはo‐ジクロロベンゼン(和光純薬工業(株))および酸化防止剤としてBHT(和光純薬工業(株))0.025重量%を用い、1.0ml/分で移動させ、試料濃度は0.1重量%とし、試料注入量は500マイクロリットルとし、検出器として示差屈折計を用いた。 TSKgel GMH6-HT and TSKgel GMH6-HTL were used as separation columns, the column size was 7.5 mm in inner diameter and 600 mm in length, the column temperature was 140 ° C., and o-dichlorobenzene (Wako Pure Chemical Industries) was used as the mobile phase. Yakuhin Kogyo Co., Ltd.) and 0.025% by weight of BHT (Wako Pure Chemical Industries, Ltd.) as an antioxidant, moved at 1.0 ml / min, sample concentration of 0.1% by weight, sample injection The amount was 500 microliters, and a differential refractometer was used as a detector.
 標準ポリスチレンは、分子量がMw<1000およびMw>4×106については東ソー(株)製を用い、1000≦Mw≦4×106についてはプレッシャーケミカル社製を用いた。 Standard polystyrene used was manufactured by Tosoh Corporation for molecular weights of Mw <1000 and Mw> 4 × 10 6 , and used by Pressure Chemical Co. for 1000 ≦ Mw ≦ 4 × 10 6 .
 〔ヘイズ〕
 多層ブロー容器のヘイズは、容器胴部から測定部位を切り出し、JIS-K7105に準拠してヘイズメーター(NIPPON DENSHOKU(NDH2000))にてヘイズ(曇値)を測定した。ヘイズの値が小さいほど透明性に優れているといえる。
[Haze]
For the haze of the multilayer blow container, the measurement site was cut out from the container body, and the haze (cloudiness value) was measured with a haze meter (NIPPON DENSHOKU (NDH2000)) in accordance with JIS-K7105. It can be said that the smaller the haze value, the better the transparency.
 〔光沢〕
 光沢性の評価は下記のグロスの測定により評価した。多層ブロー容器のグロスは、容器胴部から測定部位を切り出し、JIS-K7105に準拠して光沢計(NIPPON DENSHOKU(VG2000))で、外層の60度光沢度を測定した。グロスの値が大きいほど、優れた光沢性を持っているといえる。
[Glossy]
The glossiness was evaluated by the following gloss measurement. For the gloss of the multilayer blow container, the measurement site was cut out from the container body, and the 60-degree glossiness of the outer layer was measured with a gloss meter (NIPPON DENSHOKU (VG2000)) in accordance with JIS-K7105. It can be said that the larger the gloss value, the better the glossiness.
 〔成形性〕
 多層ブロー容器の成形性は、得られた容器外観を観察し、容器胴部にブロー時の溶融パリソン表面肌荒れによる皺の有無で評価した。
[Formability]
The moldability of the multi-layer blow container was evaluated by observing the appearance of the obtained container and the presence or absence of wrinkles due to the rough surface of the melted parison during blowing on the container body.
 AA:皺が全くないかまたは目立たなく、成形性が良好
 BB:皺が観察できるかまたは目立ち、成形性が劣る
 〔接着性〕
 多層ブロー容器の本願オレフィン重合体組成物(E)から形成される最外層と隣接する層との層間において、容器成形時にバリカット部すなわち容器上部及び容器下部ピンチオフ部に発生する層剥離によるひも状や帯状に観察される外観不良の有無を評価する。
AA: No wrinkles or not noticeable, good moldability BB: Wrinkles can be observed or noticeable, and moldability is poor [Adhesiveness]
Between the outermost layer formed from the olefin polymer composition (E) of the present invention and the adjacent layer of the multilayer blow container, a string-like shape due to delamination that occurs in the burr cut part, that is, the container upper part and the container lower pinch-off part at the time of container molding Evaluate the presence or absence of appearance defects observed in strips.
 AA:外観不良が無く、接着性が良好である
 BB:よく見ると外観不良が観察でき、接着性がやや劣る
 CC:明らかな外観不良が有り、接着性が劣る
 〔臭気〕
 オレフィン重合体組成物(E)の臭気は、該組成物のペレット10gを100ml三角フラスコに入れ、蓋栓をして密封し、100℃オーブンで1時間加熱後取出し、直後に蓋栓を開け、発生した臭気を官能試験にて以下のように優劣判断した。
AA: Appearance is poor and adhesion is good BB: Appearance is poor and adhesion is slightly inferior when observed closely CC: Clear appearance is poor and adhesion is inferior [Odor]
The odor of the olefin polymer composition (E) was obtained by putting 10 g of the composition pellets in a 100 ml Erlenmeyer flask, sealing with a cap, taking out after heating in an oven at 100 ° C. for 1 hour, and immediately opening the cap. The generated odor was judged as superior or inferior in the sensory test as follows.
 AA・・・臭気無し
 BB・・・若干臭気有り
 CC・・・臭気有り
 〔耐衝撃性〕
 耐衝撃性の評価は、下記満水落下衝撃強度測定法による表面亀裂の発生有無により評価した。多層ブロー容器(内容量780ml)に水を満注した充填容器を5℃(耐衝撃性の評価)に冷却し、各温度に冷却したそれぞれ10本の容器を容器の底面がコンクリート面から1mの高さになる位置より垂直落下させ、次の落下基準に従い評価を行った。割れの判定は表層亀裂の発生有無にて判断した。
AA: No odor BB: Some odor CC: Some odor [impact resistance]
The impact resistance was evaluated based on the presence or absence of surface cracks by the full water drop impact strength measurement method described below. A multi-layer blow container (with an internal capacity of 780 ml) filled with water was cooled to 5 ° C. (evaluation of impact resistance), and each of the 10 containers cooled to each temperature had a bottom of 1 m from the concrete surface. It was dropped vertically from the height position and evaluated according to the following drop criteria. The determination of the crack was made based on whether or not a surface crack was generated.
 AA:全数で表面に亀裂が発生しない
 BB:半数以上で、表面に亀裂が発生しないが、少なくとも1本で表面に亀裂が発生する
 CC:過半数で表面に亀裂が発生する
 満水落下耐衝撃強度測定法の評価が良好であるほど、耐衝撃性が良好であるといえる。
AA: No cracks occur on the surface in all cases BB: More than half, no cracks occur on the surface, but cracks occur on the surface with at least one CC: Cracks occur on the surface with a majority The full drop impact strength measurement The better the evaluation of the method, the better the impact resistance.
 〔低温耐衝撃性〕
 低温耐衝撃性の評価は、下記満水落下衝撃強度測定法による表面亀裂の発生有無により評価した。多層ブロー容器(内容量780ml)に、エチレングリコール/水=5/5(体積/体積)からなる液を満注した充填容器を-5℃(低温耐衝撃性の評価)に冷却し、各温度に冷却したそれぞれ10本の容器を容器の底面がコンクリート面から1mの高さになる位置より垂直落下させ、次の落下基準に従い評価を行った。割れの判定は表層亀裂の発生有無にて判断した。
(Low temperature impact resistance)
The low temperature impact resistance was evaluated by the presence or absence of surface cracks by the full water drop impact strength measurement method described below. Cool a filled container filled with a solution consisting of ethylene glycol / water = 5/5 (volume / volume) to a multilayer blow container (internal capacity 780 ml) to −5 ° C. (evaluation of low temperature impact resistance), Each of the 10 containers cooled in the vertical direction was dropped vertically from the position where the bottom surface of the container was 1 m above the concrete surface, and the evaluation was performed according to the following drop criteria. The determination of the crack was made based on whether or not a surface crack was generated.
 AA:全数で表面に亀裂が発生しない
 BB:半数以上で、表面に亀裂が発生しないが、少なくとも1本で表面に亀裂が発生する
 CC:過半数で表面に亀裂が発生する
 満水落下耐衝撃強度測定法の評価が良好であるほど、低温耐衝撃性が良好であるといえる。
AA: No cracks occur on the surface in all cases BB: More than half, no cracks occur on the surface, but cracks occur on the surface with at least one CC: Cracks occur on the surface with a majority The full drop impact strength measurement The better the evaluation of the method, the better the low-temperature impact resistance.
 〔べたつき性〕
 多層ブロー容器の表面の手触りについて、成形後48~72時間23℃で状態調整したボトルの表面について、べたべたとした触感の有無を官能試験にて以下のように優劣判断した。
[Stickiness]
Regarding the touch of the surface of the multi-layer blow container, the presence or absence of a sticky tactile sensation on the surface of the bottle which was conditioned at 23 ° C. for 48 to 72 hours after molding was judged as superior or inferior as follows.
 AA:全くべたつきを感じない
 BB:殆どべたつきを感じない
 CC:多少べたつきを感じる
 DD:べたつきを感じる
 本願請求の多層ブロー容器においては、べたつきの無いものが好ましく、べたつきが発生するものはべたつき性に劣るとした。
AA: No stickiness at all BB: Little stickiness CC: Some stickiness DD: Feeling sticky In the multilayer blow container claimed in the present application, a non-sticky one is preferable, and a sticky one is sticky. I was inferior.
 〔13C-NMRより算出したプロピレン系樹脂中のα-オレフィン由来の構成単位の重量〕
 13C-NMRより算出した、プロピレン由来の構成単位と、エチレンおよび炭素原子数4~20のα‐オレフィンからなる群から選ばれる1種以上のオレフィン由来の構成単位との合計を100重量%とした際の、エチレンおよび炭素原子数4~20のα‐オレフィンからなる群から選ばれる1種以上のオレフィン由来の構成単位の重量は13C-NMRの測定に基づき下記のようにして測定・算出し決定した。
[Weight of structural unit derived from α-olefin in propylene resin calculated from 13 C-NMR]
The total of the structural unit derived from propylene calculated from 13 C-NMR and the structural unit derived from one or more olefins selected from the group consisting of ethylene and an α-olefin having 4 to 20 carbon atoms is 100% by weight. The weight of the structural unit derived from one or more olefins selected from the group consisting of ethylene and α-olefins having 4 to 20 carbon atoms is measured and calculated as follows based on the measurement of 13 C-NMR. I decided.
 13C-NMR測定条件
 測定装置:日本電子製LA400型核磁気共鳴装置
 測定モード:BCM(Bilevel Complete decoupling)
 観測周波数:100.4MHz
 観測範囲:17006.8Hz
 パルス幅:C核45°(7.8μ秒)
 パルス繰り返し時間:5秒
 試料管:5mmφ
 試料管回転数:12Hz
 積算回数:20000回
 測定温度:125℃
 溶媒:1,2,4-トリクロロベンゼン:0.35ml/重ベンゼン:0.2ml
 試料量:約40mg
 コモノマーがエチレンの場合、得られた13C-NMRスペクトルを下記文献(1)に準じて、モノマー連鎖分布(ダイアッド(2連子)分布)の比率を決定し、プロピレン系樹脂の(A)中のエチレンに由来する構成単位のモル分率(mol%) (以下E(mol%)と記す)およびプロピレンに由来する構成単位のモル分率(mol%) (以下P(mol%)と記す)を算出した。求められたE(mol%)およびP(mol%)から重量%に換算しプロピレン系樹脂(A)中のプロピレンに由来する構成単位の重量%およびエチレンに由来する構成単位の重量%を算出した。
13 C-NMR measurement conditions Measurement device: LA400 type nuclear magnetic resonance apparatus manufactured by JEOL Measurement mode: BCM (Bilevel Complete Decoupling)
Observation frequency: 100.4 MHz
Observation range: 17006.8Hz
Pulse width: C nucleus 45 ° (7.8 μsec)
Pulse repetition time: 5 seconds Sample tube: 5 mmφ
Sample tube rotation speed: 12Hz
Integration count: 20000 times Measurement temperature: 125 ° C
Solvent: 1,2,4-trichlorobenzene: 0.35 ml / heavy benzene: 0.2 ml
Sample amount: about 40mg
When the comonomer is ethylene, the ratio of the obtained 13 C-NMR spectrum is determined according to the following document (1) to determine the ratio of the monomer chain distribution (dyad (doubled) distribution). Mole fraction of structural units derived from ethylene (mol%) (hereinafter referred to as E (mol%)) and mole fraction of structural units derived from propylene (mol%) (hereinafter referred to as P (mol%)) Was calculated. The weight percent of the structural unit derived from propylene and the weight percent of the structural unit derived from ethylene in the propylene-based resin (A) were calculated from the calculated E (mol%) and P (mol%) in weight percent. .
 文献(1):Kakugo,M.; Naito,Y.; Mizunuma,K.; Miyatake,T., Macromolecules 1982, 15, (4), 1150-1152
 なお、多層ブロー容器の物性についての評価の内、ヘイズ、成形性、接着性、耐衝撃性、低温耐衝撃性およびべたつき性については、サンドブラスト処理#400を行った金型を用いて作成された多層ブロー容器について測定した。
Reference (1): Kakugo, M .; Naito, Y .; Mizunuma, K .; Miyatake, T., Macromolecules 1982, 15, (4), 1150-1152
Of the evaluation of the physical properties of the multilayer blow container, the haze, moldability, adhesiveness, impact resistance, low temperature impact resistance and stickiness were prepared using a mold subjected to sandblasting # 400. Measurements were made on multilayer blow containers.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007

Claims (13)

  1.  最外層に使用される樹脂が、プロピレン系樹脂(A)80~98重量部とエチレン・α‐オレフィン共重合体(B)2~20重量部(ただし、(A)と(B)との合計は100重量部である)と、核剤(D)0.01~0.5重量部とから形成されるオレフィン重合体組成物(E)からなり、
     前記プロピレン系樹脂(A)が下記要件(A-1)および(A-2)を満たし、
     前記エチレン・α‐オレフィン共重合体(B)が下記要件(B-1)および(B-2)を満たし、
     前記オレフィン重合体組成物(E)が下記要件(E-1)を満たすことを特徴とする多層ブロー容器。
     (A-1)プロピレンと、エチレンおよび炭素原子数4~20のα‐オレフィンからなる群から選ばれる1種以上のオレフィンとの共重合体である。
     (A-2)JIS-K7121に準拠して示差走査熱量計(DSC)で測定した結晶融点が140~155℃の範囲である。
     (B-1)エチレンと、炭素原子数4~20の1種以上のα‐オレフィンとの共重合体である。
     (B-2)JIS-K7121に準拠してDSCで測定した結晶融点が85℃以上、110℃未満の範囲である。
     (E-1)ASTM D-1238に準拠して、測定温度230℃、2.16kg荷重で測定したメルトフローレート(MFR)が5~10g/10分の範囲である。
    The resin used in the outermost layer is 80 to 98 parts by weight of the propylene resin (A) and 2 to 20 parts by weight of the ethylene / α-olefin copolymer (B) (however, the sum of (A) and (B)) Is 100 parts by weight) and an olefin polymer composition (E) formed from 0.01 to 0.5 parts by weight of the nucleating agent (D),
    The propylene resin (A) satisfies the following requirements (A-1) and (A-2):
    The ethylene / α-olefin copolymer (B) satisfies the following requirements (B-1) and (B-2):
    A multilayer blow container, wherein the olefin polymer composition (E) satisfies the following requirement (E-1).
    (A-1) A copolymer of propylene and one or more olefins selected from the group consisting of ethylene and α-olefins having 4 to 20 carbon atoms.
    (A-2) The crystal melting point measured with a differential scanning calorimeter (DSC) in accordance with JIS-K7121 is in the range of 140 to 155 ° C.
    (B-1) A copolymer of ethylene and one or more α-olefins having 4 to 20 carbon atoms.
    (B-2) The crystal melting point measured by DSC in accordance with JIS-K7121 is in the range of 85 ° C. or higher and lower than 110 ° C.
    (E-1) According to ASTM D-1238, the melt flow rate (MFR) measured at a measurement temperature of 230 ° C. and a load of 2.16 kg is in the range of 5 to 10 g / 10 minutes.
  2.  前記オレフィン系重合体組成物(E)が、さらに低密度エチレン・α‐オレフィン共重合体(F)0.1~20重量部を用いて形成されており、
     前記低密度エチレン・α‐オレフィン共重合体(F)が下記要件(F-1)および(F-2)を満たし、
     前記エチレン・α‐オレフィン共重合体(B)の密度勾配官法で測定した密度(dB[g/cm3])および低密度エチレン・α‐オレフィン共重合体(F)の密度勾配官法で測定した密度(dF[g/cm3])が下記要件(X-1)を満たす請求項1に記載の多層ブロー容器。
     (F-1)エチレンと、炭素原子数3~20の1種以上のα-オレフィンとの共重合体である。
     (F-2)JIS-K7121に準拠してDSCで測定した結晶融点が89℃以下であるか、または、結晶融点に基づくピークが観測されない。
     (X-1)dB[g/cm3]>dF[g/cm3]であり、0.010[g/cm3]≦(dB-dF)[g/cm3]≦0.050[g/cm3]である。
    The olefin polymer composition (E) is further formed using 0.1 to 20 parts by weight of a low density ethylene / α-olefin copolymer (F),
    The low density ethylene / α-olefin copolymer (F) satisfies the following requirements (F-1) and (F-2):
    The density (d B [g / cm 3 ]) measured by the density gradient method of the ethylene / α-olefin copolymer (B) and the density gradient method of the low density ethylene / α-olefin copolymer (F) The multilayer blow container according to claim 1, wherein the density (d F [g / cm 3 ]) measured in step 1 satisfies the following requirement (X-1).
    (F-1) A copolymer of ethylene and one or more α-olefins having 3 to 20 carbon atoms.
    (F-2) The crystalline melting point measured by DSC according to JIS-K7121 is 89 ° C. or lower, or no peak based on the crystalline melting point is observed.
    (X-1) d B [g / cm 3 ]> d F [g / cm 3 ], 0.010 [g / cm 3 ] ≦ (d B −d F ) [g / cm 3 ] ≦ 0 0.050 [g / cm 3 ].
  3.  前記エチレン・α‐オレフィン共重合体(B)がさらに下記要件(B-4)を満たすことを特徴とする請求項1に記載の多層ブロー容器。
     (B-4)密度勾配管法で測定した密度が0.880~0.910g/cm3の範囲である。
    The multilayer blow container according to claim 1, wherein the ethylene / α-olefin copolymer (B) further satisfies the following requirement (B-4).
    (B-4) The density measured by the density gradient tube method is in the range of 0.880 to 0.910 g / cm 3 .
  4.  前記エチレン・α‐オレフィン共重合体(B)がさらに下記要件(B-4a)を満たし、前記低密度エチレン・α‐オレフィン共重合体(F)がさらに下記要件(F-3)を満たすことを特徴とする請求項2に記載の多層ブロー容器。
     (B-4a)密度勾配管法で測定した密度(dB[g/cm3])が0.890~0.910g/cm3の範囲である。
     (F-3)密度勾配管法で測定した密度(dF[g/cm3])が0.865~0.900g/cm3の範囲である。
    The ethylene / α-olefin copolymer (B) further satisfies the following requirement (B-4a), and the low density ethylene / α-olefin copolymer (F) further satisfies the following requirement (F-3). The multilayer blow container according to claim 2.
    (B-4a) density measured by a density gradient tube method (d B [g / cm 3 ]) is in the range of 0.890 ~ 0.910g / cm 3.
    (F-3) The density (d F [g / cm 3 ]) measured by the density gradient tube method is in the range of 0.865 to 0.900 g / cm 3 .
  5.  前記プロピレン系樹脂(A)がさらに下記要件(A-4)を満たすことを特徴とする請求項1~4のいずれか一項に記載の多層ブロー容器。
     (A-4)GPCにより測定したMw/Mnが4.0以上である。
    The multilayer blow container according to any one of claims 1 to 4, wherein the propylene-based resin (A) further satisfies the following requirement (A-4).
    (A-4) Mw / Mn measured by GPC is 4.0 or more.
  6.  前記プロピレン系樹脂(A)がさらに下記要件(A-3)を満たすことを特徴とする請求項1~5のいずれか一項に記載の多層ブロー容器。
     (A-3)ASTM D-1238に準拠して、測定温度230℃、2.16kg荷重で測定したMFRが5~10g/10分の範囲である。
    The multilayer blow container according to any one of claims 1 to 5, wherein the propylene-based resin (A) further satisfies the following requirement (A-3).
    (A-3) According to ASTM D-1238, the MFR measured at a measurement temperature of 230 ° C. and a load of 2.16 kg is in the range of 5 to 10 g / 10 minutes.
  7.  前記エチレン・α‐オレフィン共重合体(B)がさらに下記要件(B-5)を満たすことを特徴とする請求項1~6のいずれか一項に記載の多層ブロー容器。
     (B-5)GPCにより測定したMw/Mnが1.2~3.0である。
    The multilayer blow container according to any one of claims 1 to 6, wherein the ethylene / α-olefin copolymer (B) further satisfies the following requirement (B-5).
    (B-5) Mw / Mn measured by GPC is 1.2 to 3.0.
  8.  前記エチレン・α‐オレフィン共重合体(B)がさらに下記要件(B-3)を満たすことを特徴とする請求項1~7のいずれか一項に記載の多層ブロー容器。
     (B-3)ASTM D-1238に準拠して、測定温度230℃、2.16kg荷重で測定したMFRが5~10g/10分の範囲である。
    The multilayer blow container according to any one of claims 1 to 7, wherein the ethylene / α-olefin copolymer (B) further satisfies the following requirement (B-3).
    (B-3) According to ASTM D-1238, the MFR measured at a measurement temperature of 230 ° C. and a load of 2.16 kg is in the range of 5 to 10 g / 10 minutes.
  9.  前記核剤(D)が、芳香族リン酸エステル化合物、カルボン酸金属塩造核剤、ポリマー造核剤、ソルビトール系造核剤および無機化合物造核剤からなる群から選ばれる1種以上の化合物であることを特徴とする請求項1~8のいずれか一項に記載の多層ブロー容器。 The nucleating agent (D) is one or more compounds selected from the group consisting of aromatic phosphate ester compounds, carboxylic acid metal salt nucleating agents, polymer nucleating agents, sorbitol nucleating agents and inorganic compound nucleating agents. The multilayer blow container according to any one of claims 1 to 8, wherein
  10.  前記プロピレン系樹脂(A)が95.5~98重量部であり、前記エチレン・α‐オレフィン共重合体(B)が2~4.5重量部(ただし、(A)と(B)との合計は100重量部である)であることを特徴とする請求項1~9のいずれか一項に記載の多層ブロー容器。 The propylene-based resin (A) is 95.5 to 98 parts by weight, and the ethylene / α-olefin copolymer (B) is 2 to 4.5 parts by weight (provided that (A) and (B) The multilayer blow container according to any one of claims 1 to 9, wherein the total is 100 parts by weight.
  11.  前記多層ブロー容器が、少なくとも一つの内層として、プロピレン系重合体(G)またはエチレン系重合体(H)から形成される層を有することを特徴とする請求項1~10のいずれか一項に記載の多層ブロー容器。 The multilayer blow container has a layer formed from a propylene polymer (G) or an ethylene polymer (H) as at least one inner layer. The multilayer blow container described.
  12.  前記多層ブロー容器が、ダイレクトブロー成形法または射出延伸ブロー成形法により成形して得られたものであることを特徴とする請求項1~11のいずれか一項に記載の多層ブロー容器。 The multilayer blow container according to any one of claims 1 to 11, wherein the multilayer blow container is obtained by molding by a direct blow molding method or an injection stretch blow molding method.
  13.  請求項1~9のいずれか一項に記載のオレフィン重合体組成物(E)およびオレフィン重合体組成物(E)以外の熱可塑性樹脂組成物を用い、
     前記オレフィン重合体組成物(E)が最外層を形成し、前記オレフィン重合体組成物(E)以外の熱可塑性樹脂組成物が少なくとも一つの内層を形成するように、ダイレクトブロー成形法または射出延伸ブロー成形法により成形することを特徴とする多層ブロー容器の製造方法。
    A thermoplastic resin composition other than the olefin polymer composition (E) and the olefin polymer composition (E) according to any one of claims 1 to 9,
    The direct blow molding method or injection stretching so that the olefin polymer composition (E) forms the outermost layer and the thermoplastic resin composition other than the olefin polymer composition (E) forms at least one inner layer. A method for producing a multilayer blow container, characterized by molding by a blow molding method.
PCT/JP2011/050939 2010-01-22 2011-01-20 Multilayer blow-molded container, and process for production thereof WO2011090101A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180006278.4A CN102712186B (en) 2010-01-22 2011-01-20 Multilayer blow-molded container, and process for production thereof
JP2011550944A JP5379247B2 (en) 2010-01-22 2011-01-20 Multilayer blow container and method for producing the same
KR1020127021432A KR101333450B1 (en) 2010-01-22 2011-01-20 Multilayer blow-molded container, and process for production thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-012354 2010-01-22
JP2010012354 2010-01-22
JP2010-031430 2010-02-16
JP2010031430 2010-02-16

Publications (1)

Publication Number Publication Date
WO2011090101A1 true WO2011090101A1 (en) 2011-07-28

Family

ID=44306901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050939 WO2011090101A1 (en) 2010-01-22 2011-01-20 Multilayer blow-molded container, and process for production thereof

Country Status (4)

Country Link
JP (1) JP5379247B2 (en)
KR (1) KR101333450B1 (en)
CN (1) CN102712186B (en)
WO (1) WO2011090101A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015137268A1 (en) * 2014-03-10 2015-09-17 株式会社プライムポリマー Propylene resin composition and stretched container made from same
WO2016114393A1 (en) * 2015-01-16 2016-07-21 株式会社プライムポリマー Laminate, container, method for producing container, and sheet for laminate raw material
JP2018203297A (en) * 2017-05-31 2018-12-27 株式会社プライムポリマー Sterilization container
JP2019031314A (en) * 2017-08-09 2019-02-28 住友化学株式会社 Hollow container and its manufacturing method, and polypropylene resin composition for blow fill seal
JP2019119814A (en) * 2018-01-09 2019-07-22 日本ポリプロ株式会社 Propylene-based resin composition and molded body thereof
US20210039364A1 (en) * 2018-03-20 2021-02-11 Prime Polymer Co., Ltd. Laminates and liquid packaging bags
WO2022006196A1 (en) * 2020-06-30 2022-01-06 Fina Technology, Inc. Clear polypropylene composition for thermoforming

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104077956B (en) * 2013-03-28 2017-05-17 优泊公司 Label for intramode molding and labeled plastic container utilizing label for intramode molding
US10173813B2 (en) * 2016-09-29 2019-01-08 Dow Global Technologies Llc Flexible container with pop-up spout
US20220135779A1 (en) * 2018-09-26 2022-05-05 Borealis Ag Propylene copolymer composition with excellent optical and mechanical properties
KR102157673B1 (en) * 2020-04-28 2020-09-21 라니홀딩스(주) Container for food packaging

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0631796A (en) * 1992-07-14 1994-02-08 Chisso Corp Polyolefin resin-made hollow container
JPH09165476A (en) * 1995-12-15 1997-06-24 Chisso Corp Multilayer hollow vessel
JP2009013333A (en) * 2007-07-06 2009-01-22 Sumitomo Chemical Co Ltd Polypropylene-based resin composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09166476A (en) * 1995-12-13 1997-06-24 Kyoto Puratetsuku:Kk Liquid-level sensor
KR100565151B1 (en) * 1999-02-04 2006-03-30 미쓰이 가가쿠 가부시키가이샤 Polypropylene block-copolymer resin and process for producing it
KR20080094722A (en) * 2006-02-15 2008-10-23 미쓰이 가가쿠 가부시키가이샤 Ethylene resin and blow-molded article comprising the same
WO2008032735A1 (en) * 2006-09-12 2008-03-20 Mitsui Chemicals, Inc. Polypropylene resin and blown container

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0631796A (en) * 1992-07-14 1994-02-08 Chisso Corp Polyolefin resin-made hollow container
JPH09165476A (en) * 1995-12-15 1997-06-24 Chisso Corp Multilayer hollow vessel
JP2009013333A (en) * 2007-07-06 2009-01-22 Sumitomo Chemical Co Ltd Polypropylene-based resin composition

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015137268A1 (en) * 2014-03-10 2015-09-17 株式会社プライムポリマー Propylene resin composition and stretched container made from same
US10053554B2 (en) 2014-03-10 2018-08-21 Prime Polymer Co., Ltd. Propylene resin composition and stretched container formed of the same
JPWO2015137268A1 (en) * 2014-03-10 2017-04-06 株式会社プライムポリマー Propylene-based resin composition and stretching container comprising the same
KR20170104998A (en) * 2015-01-16 2017-09-18 가부시키가이샤 프라임 폴리머 Laminate, container and manufacturing method thereof, and sheet for use as raw material of laminate
JPWO2016114393A1 (en) * 2015-01-16 2017-10-26 株式会社プライムポリマー LAMINATE, CONTAINER, MANUFACTURING METHOD THEREOF, AND LAMINATE MATERIAL SHEET
EP3246158A4 (en) * 2015-01-16 2018-07-18 Prime Polymer Co., Ltd. Laminate, container, method for producing container, and sheet for laminate raw material
WO2016114393A1 (en) * 2015-01-16 2016-07-21 株式会社プライムポリマー Laminate, container, method for producing container, and sheet for laminate raw material
KR102460745B1 (en) 2015-01-16 2022-10-28 가부시키가이샤 프라임 폴리머 Laminate, container and manufacturing method thereof, and sheet for use as raw material of laminate
JP2018203297A (en) * 2017-05-31 2018-12-27 株式会社プライムポリマー Sterilization container
JP7055598B2 (en) 2017-05-31 2022-04-18 株式会社プライムポリマー Sterilization container
JP2019031314A (en) * 2017-08-09 2019-02-28 住友化学株式会社 Hollow container and its manufacturing method, and polypropylene resin composition for blow fill seal
JP2019119814A (en) * 2018-01-09 2019-07-22 日本ポリプロ株式会社 Propylene-based resin composition and molded body thereof
US20210039364A1 (en) * 2018-03-20 2021-02-11 Prime Polymer Co., Ltd. Laminates and liquid packaging bags
WO2022006196A1 (en) * 2020-06-30 2022-01-06 Fina Technology, Inc. Clear polypropylene composition for thermoforming
US11859072B2 (en) 2020-06-30 2024-01-02 Fina Technology, Inc. Clear polypropylene composition for thermoforming

Also Published As

Publication number Publication date
JPWO2011090101A1 (en) 2013-05-23
KR101333450B1 (en) 2013-11-26
JP5379247B2 (en) 2013-12-25
CN102712186B (en) 2014-07-16
KR20120104436A (en) 2012-09-20
CN102712186A (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP5379247B2 (en) Multilayer blow container and method for producing the same
JP3270056B2 (en) Resin molding
JP2009154332A (en) Laminate
JP2011098762A (en) Engagement vessel member for storage
JP2009155422A (en) Polypropylene resin composition and molded article
JP4928742B2 (en) Polypropylene biaxial stretch blow molding
JP5781622B2 (en) Manufacturing method of extrusion blow molded product
JP2011079152A (en) Thermoformed multilayer container
JP6098221B2 (en) Multi-layer hollow container
JP2012148806A (en) Pull-open cap member
US20240124691A1 (en) Process for improving the viscosity of recycled polyethylene
JP6488916B2 (en) Propylene-based resin composition for biaxial stretch blow molding and molded body thereof
JP5221093B2 (en) Shrink film
KR102411761B1 (en) Propylene-based resin composition, molded article and container
JP5224763B2 (en) Shrink label
JP6634008B2 (en) Propylene-based resin composition and stretching container comprising the same
JP2009084376A (en) Blow molding product
JP2000212348A (en) Polypropylene composition and molded form thereof
JP7474624B2 (en) Propylene-based resin composition and injection molded product using same
JP6155624B2 (en) Multi-layer hollow container
JP6564224B2 (en) Propylene resin composition, molded body and container
JP2001226496A (en) Polyethylene resin sheet and method for producing the same
JP2023150350A (en) Polypropylene-based resin composition and molded body thereof
JP2016195063A (en) Illumination cover made of polypropylene resin
JPH09155960A (en) Multilayer hollow molded article

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180006278.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734707

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011550944

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1201003628

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127021432

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 7306/DELNP/2012

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 11734707

Country of ref document: EP

Kind code of ref document: A1