WO2011090028A1 - 通信装置及び基地局装置 - Google Patents

通信装置及び基地局装置 Download PDF

Info

Publication number
WO2011090028A1
WO2011090028A1 PCT/JP2011/050760 JP2011050760W WO2011090028A1 WO 2011090028 A1 WO2011090028 A1 WO 2011090028A1 JP 2011050760 W JP2011050760 W JP 2011050760W WO 2011090028 A1 WO2011090028 A1 WO 2011090028A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
unit
received
weight
signals
Prior art date
Application number
PCT/JP2011/050760
Other languages
English (en)
French (fr)
Inventor
英史 持田
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010012517A external-priority patent/JP2011151684A/ja
Priority claimed from JP2010064039A external-priority patent/JP5499806B2/ja
Priority claimed from JP2010064509A external-priority patent/JP2011199620A/ja
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN2011800067063A priority Critical patent/CN102725969A/zh
Priority to US13/514,701 priority patent/US9014149B2/en
Publication of WO2011090028A1 publication Critical patent/WO2011090028A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B

Definitions

  • the present invention relates to a communication device and a base station device.
  • some wireless communication systems include a base station device and a movable terminal device that is wirelessly connected to the base station device.
  • the base station device forms a communication area (cell) that can communicate with the terminal device.
  • a terminal device located in a cell can perform wireless communication with a base station device that forms the cell (see, for example, Patent Document 1).
  • a signal transmitted from a base station device is in a cell of another nearby base station device It may reach the terminal device and become an interference signal for the terminal device.
  • a base station device for example, a macro base station device that forms a cell (macro cell) having a size of several kilometers, and a relatively small cell (about several tens of meters) installed in the macro cell ( Some have a femto base station apparatus that forms a femto cell) in the macro cell.
  • the femto cell formed by the femto base station apparatus overlaps with the macro cell in almost the entire area, and can be said to be an environment in which interference is likely to occur.
  • a countermeasure such as suppressing the transmission power on the side that gives interference or removing the interference wave by a multi-antenna system can be considered.
  • JP 2009-177532 A Japanese Patent Application No. 2009-245337
  • an object of the present invention from the above viewpoint is to provide a communication apparatus that can effectively remove interference waves from a received signal while reducing a calculation load.
  • spatial division multiplexing scheduling is performed in uplink scheduling from a user terminal to a base station apparatus.
  • Spatial multiplexing scheduling is performed by multi-user MIMO (Multiple Input Multiple Output) in which the same frequency region is simultaneously allocated to a plurality of user terminals.
  • MIMO Multiple Input Multiple Output
  • the same resource block RB; minimum unit for resource allocation to users
  • reference signals of a plurality of user terminals are transmitted by code multiplexing using cyclic shift. Signals transmitted simultaneously from a plurality of user terminals are received by the base station apparatus as multiplexed signals. The base station apparatus separates the received multiplexed signal into signals for each user terminal and uses them for channel estimation for each user terminal (see Non-Patent Document 1, for example).
  • the base station apparatus In order to separate the reference signal code-multiplexed by the cyclic shift, the base station apparatus normally uses the frequency response of the multiplexed reference signal as a time by IDFT (Inverse Discrete Fourier Transform: Inverse Discrete Fourier Transform). Convert to area. Thereafter, the base station apparatus separates the transmission path time response for each user using a window function, performs DFT (Discrete Fourier Transform) on each separated transmission path time response, and again performs frequency. By converting the signal into a region signal, the channel characteristics for each user are estimated.
  • IDFT Inverse Discrete Fourier Transform: Inverse Discrete Fourier Transform
  • DFT Discrete Fourier Transform
  • the channel characteristics estimated by separating the multiplexed signals by the above method have a problem that distortion tends to occur at both ends of the band.
  • the reason is as follows. That is, when the transmission coefficient of the multiplexed reference signal is converted to the time domain by IDFT, a finite number of data is cut out and the period is extended, so the data becomes discontinuous at the boundary of the extended part, and higher order coefficients are generated As a result, it is conceivable that the delay spread in the data after conversion to the time domain becomes large. When the delay spread of data becomes large in this way, when data is divided into data for each user using a window function after that, the spread of data becomes larger than the window width, so that data outside the window width is lost. Therefore, it is considered that the estimated channel characteristics are distorted.
  • an object of the present invention is to provide a communication apparatus that can appropriately separate multiplexed reference signals and further improve channel estimation accuracy.
  • reference signals of a plurality of user terminals are multiplexed using code multiplexing.
  • signals x 1 and x 2 transmitted simultaneously from a plurality of user terminals become spatially multiplexed signals, and these spatially multiplexed signals are received by a plurality of receiving antennas in the base station apparatus, and each user terminal Is separated into signals from
  • ZF Zero-Forcing
  • MMSE Minimum Mean Square Error
  • maximum likelihood estimation In LTE, by using a cyclic shift different for each user terminal for a reference signal (pilot), orthogonality between user terminals is ensured and spatial multiplexing is realized. Therefore, in the base station apparatus, by estimating the channel matrix H, it is possible to separate the received spatially multiplexed signals and obtain the estimated values of the transmission signals x 1 and x 2 from the user terminal.
  • Separation of spatially multiplexed signals by the above-described separation method requires estimation of the channel matrix H. To this end, orthogonality (Orthogonal) between reference signals (pilots) of spatially multiplexed user terminals is required. Become. Therefore, as described in Non-Patent Document 1, in spatial multiplexing scheduling, a plurality of user terminals to be spatially multiplexed must be assigned the same RB.
  • the same RB needs to be assigned to a plurality of user terminals that are spatially multiplexed, there arises a problem that the degree of freedom of resource allocation in spatial multiplexing is low. That is, as shown in FIG. 27, the user 2 spatially multiplexed with the user 1 needs to be assigned the same frequency (RB) as the user 1, and the user 6 spatially multiplexed with the user 5 is also the user 5. The exact same frequency (RB) needs to be allocated. Such a restriction reduces the flexibility of resource allocation when performing spatial multiplexing scheduling.
  • an object of the present invention from the above viewpoint is to increase the degree of freedom of resource allocation when performing spatial multiplexing scheduling.
  • the present inventor has intensively studied in order to obtain a communication device that can effectively remove interference waves from a received signal while reducing a calculation load.
  • the inventor paid attention to the following points.
  • SC-FDMA employed in the uplink in LTE
  • a communication method that allocates a plurality of the minimum units arranged continuously to one user may be used.
  • the present invention viewed from the first viewpoint includes a weight calculation unit that calculates the weight of each of the plurality of known signals included in the received signal by a calculation method that sequentially updates each of the plurality of known signals.
  • the weight calculation unit calculates a weight of the first known signal updated immediately before updating the target known signal to be updated using the target known signal. Obtained by updating the weight of the first other known signal different from the first other known signal by using the target known signal.
  • a calculation unit for calculating a plurality of weights including at least a second weight, and a weight having a small estimation error among the plurality of weights for the target known signal It is characterized by comprising a selection unit for selecting as weights No.. According to the present invention, it is possible to effectively remove interference waves from a received signal while reducing the calculation load.
  • the calculation unit sets a plurality of predetermined areas including one or a plurality of radio allocation minimum units at least in a first order and a second order different from the first order.
  • the first weight is calculated using a known signal included in the selected predetermined area every time the first order is selected, and the second weight is selected. It is preferable to calculate the second weight by using a known signal included in the selected predetermined area every time selection is made in order.
  • the calculation unit of the weight calculation unit calculates a plurality of weights for each of the plurality of known signals by a calculation method of sequentially updating each of the plurality of known signals. Therefore, it is not necessary to estimate a correlation matrix for obtaining a weight for each minimum unit and perform the calculation thereof, and the calculation amount can be reduced and the calculation load can be reduced. Further, in the present invention, as described above, when receiving a signal transmitted by a method of assigning a plurality of minimum units arranged continuously to one user, the signals are correlated with each other including the influence of interference waves. There may be several minimum units in succession.
  • the calculation unit suitably sets at least the first and second orders different from each other among the plurality of orders that are the selection order of the predetermined area including the known signal for calculating the weight, and thereby the correlation. It is possible to calculate by sequentially updating both weights in an area where a plurality of minimum units exist continuously. As a result, it is possible to secure more known signals used for successive updates in a region where a plurality of minimum units having correlation exist continuously, and to obtain a highly accurate value with little estimation error. Further, since the selection unit selects, for each of the plurality of known signals, a weight having a small estimation error among the plurality of weights of the target known signal as the weight of the known signal, the weight calculation unit has a plurality of correlations.
  • the calculation unit calculates the first weight using a known signal included in the selected predetermined area, and selects in the second order. Since the second weight is calculated using the known signal included in the selected predetermined area, it is preferable that the second order is the reverse order of the first order. The first weight and the second weight updated in the reverse order of the selection order can be obtained, and the weight of the known signal with higher accuracy can be obtained in the selection unit.
  • the predetermined area is preferably an area that can be identified as being allocated to the same user without referring to user allocation information. In this case, there is a correlation depending on the selection of the predetermined area. An area where a plurality of minimum units exist continuously can be captured over a wide range without referring to the user allocation information.
  • the minimum unit for radio assignment is preferably a resource block.
  • said 1st and 2nd order is an order where said predetermined area
  • said target known signal, The first other known signal and the second other known signal are preferably arranged along at least one of the frequency direction and the time direction.
  • the calculation unit preferably uses the first and second sequences and the arrangement of the first other known signal and the second other known signal so that a highly accurate weight is obtained according to the received signal. Can be set to
  • the reception signal received by the communication device is preferably a signal transmitted by a method of assigning a plurality of the minimum units arranged continuously to one user, more specifically.
  • the SC-FDMA method is used as a method for allocating the plurality of continuously arranged minimum units to one user.
  • a plurality of minimum units continuously arranged in the frequency direction are assigned to one user in the system, so that there is a high possibility that there is a correlation in the minimum units continuous in the frequency direction, and weight calculation is performed.
  • the unit can suitably calculate the weight of the known signal along the frequency direction.
  • the present invention provides channel estimation for estimating channel characteristics of a plurality of received signals each including the plurality of reference signals from a received multiplexed signal obtained by multiplexing a plurality of reference signals by cyclic shift.
  • a channel estimation unit based on a transmission channel time response of the received multiplexed signal obtained by performing discrete cosine transform on a transmission channel frequency response of the received multiplexed signal, It is characterized by estimating channel characteristics of each received signal.
  • multiplexed reference signals can be suitably separated, and channel estimation accuracy can be further improved.
  • the channel estimation unit performs a discrete cosine transform on a transmission channel frequency response of the received multiplexed signal to obtain a transmission channel time response of the received multiplexed signal, and the reception multiplexing
  • a window processing unit that separates a transmission path time response of each of the plurality of reference signals from a transmission path time response of the signal, and an inverse discrete cosine transform of each of the separated transmission path time responses of the plurality of reference signals.
  • a second converter that obtains a transmission path frequency response of each of the reference signals, and estimates channel characteristics of each of the plurality of received signals based on the transmission path frequency responses of the plurality of reference signals. Is preferred.
  • the first conversion unit of the channel estimation unit converts the transmission channel frequency response of the received multiplexed signal into a transmission channel time response by discrete cosine transform, so that the period seen in the IDFT of the conventional example is used. It is possible to prevent a discontinuous portion of data at the time of expansion from occurring, and it is possible to prevent an increase in delay spread occurring in the transmission path time response of each of the plurality of reference signals in the transmission path time response of the received multiplexed signal. For this reason, it is possible to suppress data loss at the time of separation into transmission path time responses of a plurality of reference signals by the window processing unit, and as a result, it is possible to suppress distortion from occurring in channel characteristics to be estimated, Channel estimation accuracy can be increased.
  • a communication apparatus including a channel estimation unit for estimation, wherein the channel estimation unit is configured to perform processing based on a function to be processed obtained by performing even-symmetric extension processing on a transmission channel frequency response of the received multiplexed signal. It is characterized by estimating channel characteristics of each received signal.
  • the channel estimator multiplies the transmission channel frequency response of the received multiplexed signal by a complex constant based on a cyclic shift of each of the plurality of reference signals.
  • a transmission frequency response of the received multiplexed signal obtained by shifting the transmission channel frequency response to the original frequency for each of the plurality of reference signals, and a transmission channel frequency response of the plurality of reference signals.
  • An expansion processing unit that obtains the function to be processed for each of the plurality of reference signals by performing even-symmetric extension processing on the transmission line frequency response of the received multiplexed signal shifted to the frequency of
  • a filter unit that obtains only transmission path frequency responses of the plurality of reference signals shifted to original frequencies from each of the functions to be processed, and the plurality of reference signals Based on the transmission channel frequency response, it is preferable that estimates the plurality of received signals each channel characteristics.
  • the extension processing unit of the channel estimation unit performs even-symmetrical extension processing on the transmission channel frequency response of the received multiplexed signal, so that the filter unit separates the transmission channel frequency responses of the plurality of reference signals. Data loss during acquisition can be suppressed. As a result, the channel characteristics to be estimated can be prevented from being distorted, and the channel estimation accuracy can be improved. Further, in the communication apparatus of the present invention, since the transmission path frequency response of each of the plurality of reference signals is acquired in the frequency domain, it is not necessary to perform processing with a large amount of calculation such as IDFT, and the configuration can reduce the load on the apparatus can do.
  • the plurality of extension processing units may include a group of the filter units before and after the frequency axis of the transmission channel frequency response of the multiplexed signal obtained by shifting the transmission channel frequency response of the plurality of reference signals to the original frequency. It is preferable to extend the data by the length of the delay, and in this case, data loss due to the filter unit can be more effectively suppressed while expanding with the minimum necessary data.
  • the channel estimation unit is acquired by the plurality of filter units. It is preferable to further include a plurality of removal units for removing delay components generated in the transmission channel frequency response portion of the plurality of reference signals, thereby acquiring the transmission channel time responses of the plurality of reference signals with higher accuracy. can do.
  • a communication apparatus including a channel estimation unit for estimation, wherein the channel estimation unit performs processing based on even symmetry on a transmission channel frequency response of the received multiplexed signal, thereby determining channel characteristics of each of the plurality of received signals. It is characterized by estimating.
  • the channel estimation unit performs processing based on even symmetry with respect to the transmission channel frequency response of the received multiplexed signal, so that transmission of a plurality of reference signals from the transmission channel frequency response after the processing is performed. Data loss in separating and acquiring the road frequency response can be suppressed. As a result, the channel characteristics to be estimated can be prevented from being distorted, and the channel estimation accuracy can be improved.
  • the present invention estimates channel characteristics of a plurality of received signals including each of the plurality of reference signals from a received multiplexed signal in which a plurality of reference signals are multiplexed by cyclic shift.
  • a communication apparatus including a channel estimation unit, wherein the channel estimation unit multiplies the transmission frequency response of the received multiplexed signal by a complex constant based on a cyclic shift of each of the plurality of reference signals.
  • a multiplier that obtains the transmission channel frequency response of the received multiplexed signal shifted to the original frequency for each of the plurality of reference signals, and the transmission channel frequency response of the plurality of reference signals Transmission of the plurality of reference signals shifted to the original frequency from the transmission channel frequency response of the received multiplexed signal shifted to the original frequency.
  • the communication apparatus since the transmission path frequency response of each of the plurality of reference signals is acquired in the frequency domain, it is not necessary to perform processing with a large amount of calculation such as IDFT, and a simple configuration can be achieved.
  • the present invention as viewed from a third viewpoint is a base station apparatus including a scheduling unit capable of performing spatial multiplexing scheduling processing for a plurality of user terminals, and converts a spatial multiplexing signal into a signal from each user terminal.
  • a signal separation unit for separating the signal wherein the signal separation unit regards a signal from one user terminal to be separated and taken out as a desired signal, and signals from other user terminals spatially multiplexed on the desired signal.
  • the base station apparatus is configured to be regarded as an interference signal, perform adaptive array processing on a spatially multiplexed signal, and obtain a signal from each user terminal.
  • a signal from one user terminal to be separated and taken out is regarded as a desired signal, and a signal from another user terminal that is spatially multiplexed on the desired signal is regarded as an interference signal, and spatial multiplexing is performed.
  • An adaptive array process is performed on the signal, and a signal from each user terminal can be obtained.
  • pilot signals from the other user terminals are not required. Therefore, there is no restriction that the same resource (frequency) needs to be allocated to a plurality of user terminals that are spatially multiplexed, and the degree of freedom of resource allocation is increased.
  • the base station device is preferably a femto base station device. Since the femtocell is relatively small, there are few multipaths and delays, and it is easy to obtain a situation suitable for performing adaptive array processing on spatially multiplexed signals.
  • the signal demultiplexing unit may determine the pilot signal in which a cyclic shift amount is set for each of the plurality of user terminals so that a cross-correlation of pilot signals among the plurality of user terminals is smaller than a predetermined threshold. By using it, weight calculation for the adaptive array processing can be performed. In this case, orthogonality between pilot signals can be ensured, and pilot signals of a plurality of user terminals spatially multiplexed can be distinguished.
  • the adaptive array process is preferably performed using a weight calculated for each minimum unit of resource allocation to a user.
  • the other user terminals that transmit signals that are regarded as interference signals are constant, so that appropriate adaptive array processing can be performed.
  • the determination unit determines whether or not signal separation by the adaptive array processing is possible by determining presence or absence of an interference terminal.
  • an interference terminal When there is an interfering terminal, it becomes difficult to separate signals by the adaptive array processing, and thus such a case can be dealt with by making such a determination.
  • the determination unit determines whether or not signal separation is possible based on a result of an attempt to separate signals by the adaptive array processing. By making such a determination, it is possible to cope with a case where separation is impossible.
  • the scheduling unit can perform a scheduling process without using spatial multiplexing or perform a second spatial multiplexing scheduling process. . Thereby, it is possible to appropriately cope with the case where separation is impossible.
  • FIG. 2 is a diagram illustrating a configuration of an LTE uplink radio frame. It is the figure which showed the structure of the slot in detail. It is a block diagram which shows the receiving circuit structure in the base station apparatus which concerns on this embodiment. It is a figure for demonstrating the update direction with respect to a received reference signal at the time of a calculation part calculating the weight of a received reference signal. It is a flowchart which shows the procedure at the time of a calculation part and a selection part calculating the weight of a received reference signal.
  • FIG. 8 is a diagram illustrating an example when the calculation unit and the selection unit calculate the weight of the received reference signal under the situation illustrated in FIG. 7, and (a) illustrates an estimation error e up (corresponding to the first weight u i ).
  • FIG. 8B is a graph showing the calculation result of the estimation error e down (i) corresponding to the second weight v i
  • FIG. 8C is an estimation corresponding to both weights. It is the graph which showed the estimation error e when the smaller one is selected among errors.
  • FIG. It is a figure which shows the aspect at the time of updating sequentially in a frequency direction and a time direction about the update direction with respect to a received reference signal when a calculation part calculates the weight of a received reference signal.
  • FIG. 5 is a graph showing channel estimation results of each example and comparative example, (a-1) and (a-2) are Example 1, and (b-1) and (b-2) are Example 2.
  • FIG. , (C-1), (c-2) are graphs showing the channel estimation results of the comparative example. It is an example which showed in the constellation map the data at the time of demodulating by the channel estimation result by Example 1 and the comparative example which were verified by the said simulation, (a) is based on Example 1, (b) is a comparative example. Shows that. It is a block diagram of a radio
  • FIG. 1 is a schematic diagram showing a configuration of a radio communication system (for example, a mobile phone communication system) employing the LTE system.
  • This radio communication system includes a plurality of base station apparatuses BS1 and BS2 and a plurality of mobile terminals (user terminals) MS1 to MS6 that can perform radio communication with the base station apparatus BS1.
  • the base station apparatus BS1 is configured as a plurality of macro base station apparatuses that form a communication area (macrocell) MC having a size of several kilometers, for example, and the base station apparatus BS2 is installed in the macrocell MC and is about several tens of meters.
  • the femto base station apparatus forms a relatively small femtocell FC.
  • the base station apparatus BS1 can perform wireless communication with mobile terminals in the macro cell MC.
  • the base station device BS2 is disposed, for example, in a place where it is difficult to receive radio waves from the macro base station device, such as indoors, and forms the femtocell FC.
  • the base station device BS2 can wirelessly communicate with a mobile terminal in the femtocell FC formed by the base station device BS2.
  • the base station device BS2 By installing the base station apparatus BS2 that is a femto base station apparatus that forms a relatively small femtocell FC in a place, it is possible to provide services with sufficient throughput to mobile terminals.
  • orthogonal frequency division division multiple access (OFDMA) is adopted for the downlink
  • SC-FDMA single carrier frequency division multiple access
  • the base station apparatuses BS1 and BS2 have a transmission circuit compatible with the OFDMA system and a reception circuit compatible with the SC-FDMA system.
  • the mobile terminals MS1 to MS6 have a transmission circuit compatible with the SC-FDMA system and a reception circuit compatible with the OFDMA system.
  • FIG. 2 is a diagram illustrating a configuration of an LTE uplink radio frame. This frame is shared by a plurality of mobile terminals by frequency division division, and multiple access by the base station apparatus is possible. In addition to frequency multiplexing, spatial multiplexing may also be performed. Each mobile terminal synchronizes frames when establishing a communication connection with the base station apparatus.
  • one radio frame (frame) of the LTE uplink is configured by arranging 10 subframes in the time axis direction, and the time length is 10 milliseconds.
  • one subframe is configured by arranging two slots in the time axis direction, and the time length is 1 millisecond.
  • One slot is configured by arranging seven (or six) symbols in the time axis direction, and the time length is 0.5 milliseconds.
  • Each symbol is composed of N (N is an integer of 2 or more) sub-symbols, each of which is a modulation data symbol (QPSK modulation data symbol, QAM modulation data symbol, etc.).
  • FIG. 3 shows the slot structure in more detail. 2 and 3, a slot is a reference signal (Reference Signal, hatched circle) in which the fourth symbol (symbol number 3) is a known signal among symbols constituting the slot. The other symbols are data signals (Data Signal, white circles). In the fourth symbol (symbol number 3) in one slot, all subcarriers are reference signals.
  • Reference Signal Reference Signal, hatched circle
  • resource block a minimum unit of radio resource allocation called resource block is set, and one resource block is 7 or 6 symbols ⁇ 12 subcarriers.
  • transmission of one user is performed for a plurality of resource blocks continuously arranged in the frequency direction. Data is allocated.
  • the allocation (frequency allocation) to users is determined by the base station apparatuses BS1 and BS2.
  • the base station apparatuses BS1 and BS2 notify the determined user allocation information to the mobile terminal connected to or about to connect to the base station apparatus using a downlink frame.
  • the mobile terminal Upon receiving this notification, the mobile terminal performs uplink communication using the frequency (subcarrier) assigned by the base station apparatus.
  • FIG. 4 is a block diagram showing a receiving circuit configuration in the base station apparatus BS2 according to one embodiment of the present invention.
  • the receiving circuit of the base station apparatus BS2 constituting the femto base station apparatus will be described, but the receiving circuit of the base station apparatus BS1 that is a macro base station apparatus is also basically the base station apparatus BS2 described below. This is the same as the receiving circuit.
  • the base station apparatus BS2 has a plurality of antennas (two in the example) 1a, 1b constituting the adaptive array and a number of reception processing sequences A, B corresponding to the number of antennas 1a, 1b.
  • the received signals received by the antennas 1a and 1b are converted into frequency domain signals for each of the processing sequences A and B corresponding to each antenna.
  • Each of the reception processing sequences A and B includes RF units 2a and 2b, CP removal units 3a and 3b, serial / parallel conversion units 4a and 4b, and FFT units 5a and 5b, respectively.
  • the RF units 2a and 2b perform amplification processing, A / D conversion processing, and the like on the reception signals (SC-FDMA signals) received by the antennas 1a and 1b, respectively.
  • Each CP removing unit 3a, 3b performs a process of removing the CP added to the symbols constituting the received signal.
  • Each of the series-parallel converters 4a and 4b converts each received signal from which the CP has been removed by the CP removing units 3a and 3b into a parallel signal, and outputs the parallel signal to the corresponding FFT units 5a and 5b.
  • the FFT units 5a and 5b perform FFT (Fast Fourier Transform) on each of the converted reception signals given from the serial / parallel conversion units 4a and 4b to convert them into frequency domain signals.
  • the FFT units 5 a and 5 b output the received signal converted into the frequency domain to the multi-antenna signal processing unit 6.
  • the multi-antenna signal processing unit 6 performs multi-antenna signal processing based on a plurality of received signals given from the FFT units 5a and 5b, and among the received signals, a user signal from a user terminal connected to the own base station apparatus A signal from which interference signals other than the above are removed is output.
  • the multi-antenna signal processing unit 6 is configured to perform multi-antenna signal processing by an adaptive array method, and removes interference waves from mobile terminals in other cells serving as interfering stations to improve reception quality. Can do.
  • adaptive array methods include a ZF (Zero Forcing) method and an MMSE (Minimum Mean Square Error) method. In these methods, weights are calculated using a reference signal that is a known signal.
  • the multi-antenna signal processing unit 6 includes a combining unit 7 and a weight calculating unit 8.
  • the synthesizer 7 synthesizes each of the plurality of received signals received by the plurality of antennas 1a and 1b based on the weight calculated by the weight calculator 8, and obtains a single processed signal from which the interference wave is removed as a processing result. Output.
  • the weight calculation unit 8 acquires only the plurality of reception reference signals included in each of the plurality of reception signals from the FFT units 5a and 5b, and calculates the weight of each of the plurality of reception reference signals. Further, the weights of the plurality of received data signals included in the plurality of received signals are estimated using the calculated weights of the received reference signals.
  • the weight calculation unit 8 extrapolates the received data signal for which the weight is to be obtained by using the weights of a plurality of received reference signals that are located in the frequency direction or the time axis direction. Find weights.
  • the weight calculation unit 8 includes a calculation unit 8a and a selection unit 8b as functional units for calculating the weight of the received reference signal. A method of calculating the weight of the received reference signal by the calculation unit 8a and the selection unit 8b will be described later.
  • the multi-antenna signal processing unit 6 outputs a processing signal obtained by performing multi-antenna signal processing on a plurality of received signals to the user separation unit 9.
  • the user separation unit 9 separates the signal for each user terminal from the processing signal (frequency domain signal) from the multi-antenna signal processing unit 6 based on the assignment information indicating the frequency assignment to each user terminal.
  • a signal (frequency domain signal) for each user terminal separated by the user separation unit 9 is output to the IDFT units 10a, 10b, and 10c corresponding to each user.
  • the IDFT units 10a, 10b, and 10c perform inverse discrete Fourier transform on the processed signal from the multi-antenna signal processing unit 6, convert the signal from the user terminal into a time domain signal, and generate a demodulated signal for each mobile terminal. obtain.
  • the weight calculation unit 8 has a function of calculating the weight of the received reference signal by the calculation unit 8a and the selection unit 8b.
  • the calculation unit 8a uses a calculation method for sequentially updating a plurality of reception reference signals included in the reception signals from the respective reception sequences A and B, and a known estimation error between the transmission reference signals at the time of transmission, The weight of the received reference signal corresponding to it is calculated.
  • a calculation method based on an LMS (Least Mean Square) algorithm is adopted as a sequential update type weight calculation method.
  • FIG. 5 is a diagram for explaining the update direction for the received reference signal when the calculation unit 8a calculates the weight of the received reference signal.
  • a part of the received signal is represented by a received data signal and a received reference signal that constitute the received signal, the horizontal axis indicates the frequency, and the vertical axis indicates the symbol.
  • the reception data signal is indicated by a white circle, and the reception reference signal is indicated by a hatched circle.
  • the calculation unit 8a When the calculation unit 8a acquires a plurality of reception reference signals included in each of the plurality of reception signals from each of the reception sequences A and B, the calculation unit 8a selects a resource block as a predetermined region in a predetermined order, and selects the selected resource block. The weight is calculated using the received reference signal included.
  • the SC-FDMA scheme is used for the uplink, and as described above, one user is assigned to a plurality of resource blocks arranged continuously in the frequency direction. Accordingly, the calculation unit 8a is configured to select the resource blocks in the order in which the resource blocks are continuously arranged in the frequency direction, and calculate the weight of each received reference signal.
  • the calculation unit 8a calculates a first weight and a second weight for the same target reception reference signal to be updated.
  • the first weight is a weight obtained by updating the weight of the first other reception reference signal updated immediately before updating using the target reception reference signal, using the target reception reference signal.
  • the second weight is a weight obtained by updating the weight of the second other received reference signal, which is different from the first other received reference signal, using the target received reference signal.
  • the calculation unit 8a acquires reception reference signals arranged for each subcarrier on the same symbol, and these reception reference signals are arranged in the order in the frequency direction. Each time a resource block is selected, a sequential update operation is performed using the received reference signal included in the selected resource block, and an estimation error and corresponding first and second weights are calculated. The calculation unit 8a selects resource blocks in the order (first order) along the direction of the arrow P in the figure along the frequency direction in FIG.
  • the resource blocks are selected in order), and second weights obtained by sequentially performing update operations over the entire bandwidth in order from the largest to the smallest subcarrier number are calculated for each received reference signal.
  • the calculation unit 8a sets the reception reference signal adjacent to the target reception reference signal K with the smaller subcarrier number as the first other reception reference signal L,
  • the first and second weights are obtained with the received reference signal adjacent to the target received reference signal K having the larger subcarrier number as the second other received reference signal M. Therefore, when calculating the first and second weights of the reception reference signal included in the selected resource block, the calculation unit 8a first first reception reference signal L, second other reception reference signal M, and Using the fact that the target reception reference signal K is arranged along the frequency direction, a sequential update calculation is performed.
  • the selecting unit 8b selects, for each received reference signal, a weight with a small estimation error among the two weights obtained by the calculating unit 8a, and uses it for estimating the received data signal weight.
  • FIG. 6 is a flowchart illustrating a procedure when the calculation unit 8a and the selection unit 8b calculate the weight of the received reference signal.
  • the calculation unit 8a acquires the reception reference signal arranged for each subcarrier on the same symbol, the calculation unit 8a first sets the count value i of the counter included in the weight calculation unit 8 to “1” (Step 1). S101). The count value i corresponds to the subcarrier number in the calculation below.
  • the calculation unit 8a calculates the estimation error e up (i) and the first weight u i (step S102), and the count value i is equal to or greater than the total number of subcarriers (subcarrier number matching with) of the received signal. It is determined whether or not there is (step S103).
  • step S104 increments the count value i, and performs the calculation again (step S102) until the count value i reaches the total number of subcarriers.
  • step S102 the calculation unit 8a performs the estimation error e up (i) for the received reference signal of each subcarrier over the entire number of subcarriers, that is, the entire bandwidth of the received signal, in the order of the subcarrier numbers, and the corresponding number Find one weight u i .
  • step S102 the calculation unit 8a calculates an estimation error e up (i) and a first weight u i corresponding to the estimation error e up (i) based on the following formulas (1) and (2).
  • x (i) is the power of the received reference signal, and is a vector whose element is the power of the received reference signal corresponding to each antenna.
  • the first weight u i is a vector whose elements are weights corresponding to the received reference signals for the respective antennas.
  • s (i) is the power of the transmission reference signal at the time of transmission and is known.
  • u i-1 H is the complex conjugate transpose of the first weight whose count value (subcarrier number) i is the previous one, and e up (i) * is the complex conjugate of the estimation error e up (i). .
  • the calculation unit 8a stores an initial value in advance and performs an operation using it.
  • the calculation unit 8a repeats steps S102 to S104, so that the first weight u i ⁇ 1 obtained by the previous calculation of the count value i is obtained. Then, the current first weight u i is obtained using the current estimation error e up (i). In other words, calculation unit 8a, by calculating the first weight u i while sequentially updating calculation subcarrier number order, obtaining a first weight u i for the received reference signals of all subcarriers. The calculation unit 8a obtains the first weight u i by the above procedure, and as a result, selects the resource blocks in the first order along the direction of the arrow P in FIG. 5, and is included in the selected resource block. A first weight u i of each received reference signal is obtained.
  • step S105 If it is determined in step S103 that the count value i is greater than or equal to the total number of subcarriers, the calculation unit 8a sets the count value i to “the total number of subcarriers” (step S105). Next, the calculation unit 8a calculates the estimation error e down (i) and the second weight v i (step S106), and determines whether or not the count value i is “1” or less (step S107). When the count value i is not “1” or less, the calculation unit 8a proceeds to step S108, decrements the count value i, performs the calculation again (step S106), and proceeds to step S106 until the count value i becomes “1” or less. The process of S108 is repeated.
  • the calculation unit 8a estimates the estimation error e down (i) for the received reference signal of each subcarrier over the total number of subcarriers, that is, the entire bandwidth of the received signal in order from the largest subcarrier number to the smallest. And a second weight v i corresponding thereto.
  • step S106 the calculation unit 8a calculates the estimation error e down (i) and the second weight v i based on the following equations (3) and (4).
  • x (i) is the power of the received reference signal, and is a vector whose element is the power of the received reference signal corresponding to each antenna.
  • the second weight v i is a vector whose elements are weights corresponding to the reception reference signals for the respective antennas.
  • v i + 1 H is the complex conjugate transpose of the second weight whose count value (subcarrier number) i is the previous one, and e down (i) * is the complex conjugate of the estimation error e down (i). .
  • the calculation unit 8a stores an initial value in advance and performs an operation using it.
  • the calculation unit 8a repeats steps S106 to S108 so that the count value i is the second weight v i + 1 obtained by the previous calculation. And the current second weight v i is obtained using the current estimation error e down (i). In other words, calculation unit 8a, by calculating the second weights v i while sequentially updated sequentially calculating although less of that of the subcarrier numbers larger, the second weight v i for the received reference signals of all the subcarriers obtain.
  • the calculation unit 8a and the first weight u i obtained by performing the sequential update operation over the entire bandwidth in the order of the subcarrier numbers along the direction of the arrow P (forward direction) in FIG. Second weights v i obtained by sequentially performing update operations over the entire bandwidth in the order from the largest to the smallest subcarrier number along the direction of arrow Q in FIG. Is calculated for each received reference signal.
  • the calculation unit 8a obtains the second weight v i by the above procedure, and as a result, selects the resource blocks in the second order along the direction of the arrow Q in FIG. 5, and is included in the selected resource block
  • the second weight v i of each received reference signal is obtained.
  • step S107 If it is determined in step S107 that the count value i is “1” or less, the calculation unit 8a sets the count value i to “1” (step S109). Then, the estimated error e up (i) corresponding to the first weight u i and the estimated error e down (i) corresponding to the second weight v i are compared, and the estimated error e up (i) is estimated. It is determined whether or not the error e down (i) is smaller (step S110).
  • the selection unit 8b receives the first weight u i corresponding to the estimation error e up (i) as a reception reference signal as a calculation result.
  • the weight w i of (subcarrier number i) is adopted (step S111), and the process proceeds to step S113.
  • the selection unit 8b uses the second weight v i corresponding to the estimation error e down (i) as the received reference signal.
  • the weight w i is adopted (step S112), and the process proceeds to step S113.
  • the selection unit 8b employs the weight with the smaller estimation error among the first and second weights u i and v i corresponding to the same received reference signal as the weight w i of the received reference signal.
  • the selection unit 8b determines whether or not the count value i is equal to or greater than the “total number of subcarriers” (step S113). If the count value i is not equal to or greater than the total number of subcarriers, the selection unit 8b proceeds to step S114, increments the count value i, proceeds to step S110, and performs again (step S110). The processes in steps S110 to S114 are repeated until the above is reached.
  • the selection unit 8b ends the process. Accordingly, the selection unit 8b can obtain the weight w i of the reception reference signal for each subcarrier over the entire bandwidth of the reception signal (the total number of subcarriers).
  • the calculation unit 8a and the selection unit 8b calculate the weight w i of the reception reference signal by the calculation method of sequentially updating the plurality of reception reference signals included in the reception signals from the respective reception sequences A and B. To do.
  • FIG. 7 is a schematic diagram showing an example of radio resource allocation status to each mobile terminal MS1-6 in the uplink in the above case.
  • the bandwidth in the frequency direction is shown in the range of 10 resource blocks (RB1 to RB10), and the allocation status of radio resources to each mobile terminal MS1 to 6 in this range is schematically shown.
  • the resource blocks RB1 to RB10 are arranged in the order of subcarrier numbers.
  • resource blocks continuous in the frequency direction in the range of RB1 to RB6 are allocated to the mobile terminal MS5 connected to the base station apparatus BS2. Further, resource blocks continuous in the frequency direction in the range of RB7 to RB10 are allocated to the mobile terminal MS6 connected to the base station apparatus BS2. On the other hand, resource blocks continuous in the frequency direction in the range of RB1 to RB3 are allocated to the mobile terminal MS1 connected to the base station apparatus BS1, the range of RB4, 5 is allocated to the mobile terminal MS2, and the mobile terminal MS3 is allocated to the mobile terminal MS3. In the range of RB6 to RB8, the mobile terminal MS4 is assigned resource blocks in the range of RB9 and RB10.
  • the resource blocks allocated to the mobile terminals MS5 and 6 connected to the base station apparatus BS2 are all resource blocks allocated to the mobile terminals MS1 to MS4 connected to the base station apparatus BS1. Duplicate.
  • base station apparatus BS2 it is thought that the directivity of a received signal differs for every area
  • the band represented by the resource blocks RB1 to 10 is a first correlation region where the mobile terminal MS5 and the mobile terminal MS1 overlap as resource block regions having different directivities for each frequency, A second correlation region in which the mobile terminal MS5 and the mobile terminal MS2 overlap, a third correlation region in which the mobile terminal MS5 and the mobile terminal MS3 overlap, a fourth correlation region in which the mobile terminal MS6 and the mobile terminal MS3 overlap, and The mobile terminal MS6 and the mobile terminal MS4 can be divided into five areas of the fifth correlation area. Between the resource blocks belonging to each of these correlation regions, the received data signal and the received reference signal belonging to these have a high correlation in the frequency direction including the influence of the interference wave, and the weight w of each received reference signal is It is thought that it becomes almost the same value.
  • the calculation unit 8a and the selection unit 8b select and select resource blocks in the order along the frequency direction regardless of the assignment of the mobile terminals MS5 and 6 even under the situation as shown in FIG.
  • the weight of the received reference signal included in the resource block is calculated.
  • FIG. 8 is a diagram illustrating an example when the calculation unit 8a and the selection unit 8b calculate the weight of the received reference signal under the situation illustrated in FIG.
  • the calculation unit 8a obtains reception reference signals included in the resource blocks RB1 to RB10, selects them in the order of the resource blocks RB1 to RB10 along the arrow P in the figure, and assigns each of these resource blocks.
  • a first weight u i is calculated by sequentially updating a plurality of received reference signals included, and is selected in the order of resource blocks RB10 to RB1 along the arrow Q in the figure, and included in each of these resource blocks
  • the second weight v i is calculated by sequentially updating the received reference signals.
  • FIG. 8A is a graph showing a calculation result of the estimation error e up (i) corresponding to the first weight u i
  • FIG. 8B is an estimation error e down corresponding to the second weight v i. It is a graph which shows the calculation result of (i).
  • the vertical axis is a value obtained by multiplying the estimation error e by “ ⁇ 1”
  • the horizontal axis is a frequency corresponding to the resource blocks RB1 to RB10.
  • the diagram R showing the estimation error e up (i) corresponding to the first weight u i converges to “0” in the direction of the arrow P for each correlation region. In the boundary portion between adjacent correlation regions, the estimation error temporarily increases and then decreases again so as to converge to “0”. This is repeated for each correlation region. It is expressed as follows.
  • each correlation region there is a high correlation in the frequency direction between the received data signal and the received reference signal belonging to each resource block belonging to each correlation region, and the weight of each received reference signal. Since w has almost the same value, by sequentially updating the received reference signals belonging to the same correlation region and calculating the weight, the weight is converged to the optimum weight in the correlation region, and the estimation accuracy is This is because it rises gradually. On the other hand, when the boundary between adjacent correlation regions is exceeded, the directivity changes, and the optimum weight in the adjacent correlation region is also different, so that an estimation error temporarily increases in the boundary portion.
  • FIG. 8C is a graph showing the estimation error e when the smaller one of the estimation errors corresponding to both weights is selected. Since the selection unit 8b selects the weight corresponding to the smaller estimation error among the estimation errors corresponding to both weights, the estimation error e i of the weight w i of the received reference signal as the calculation result is The values are as shown in the diagram T. Thus, in the present embodiment, the selection unit 8b selects the weight corresponding to the smaller estimation error among the estimation errors corresponding to both weights, so the first weight u i and the second weight v Of i, the portion with high estimation accuracy can be obtained as the weight w i of the received reference signal.
  • the calculation unit 8a of the weight calculation unit 8 calculates the weight of each of the plurality of reception reference signals included in each reception signal from each reception sequence by a calculation method that sequentially updates.
  • the calculation amount can be reduced and the calculation load can be reduced.
  • the SC-FDMA scheme which is a scheme for allocating a plurality of resource blocks that are continuously arranged for one user, each other including the influence of the interference wave.
  • the SC-FDMA scheme which is a scheme for allocating a plurality of resource blocks that are continuously arranged for one user, each other including the influence of the interference wave.
  • the calculation unit 8a of the weight calculation unit 8 sequentially updates using the received reference signal over the entire bandwidth in the order of subcarrier numbers by proceeding through the resource blocks in the first order along the frequency direction. Then, the first weight u i is calculated and then the resource block is advanced in the second order to sequentially update the received reference signal over the entire bandwidth to obtain the second weight v i .
  • the allocation status of each mobile terminal is the allocation status shown in FIG. 7, for example, as shown in FIG. 9 (a)
  • first the order from RB10 to RB1 is set as the first order and the first weight is set.
  • u i may be calculated, and then the second weight v i may be calculated with the order from RB1 to RB10 as the second order.
  • the entire bandwidth is reciprocated randomly, with the order from RB1 to RB10 as the first order and the order from RB10 to RB1 as the second order, and finally the entire bandwidth.
  • Both weights u i and v i may be calculated for the band.
  • the weight corresponding to the smallest estimation error is adopted as the weight w i of the received reference signal. In this case, in any region, it is necessary to perform the update operation sequentially in at least the forward direction and the reverse direction to obtain the first and second weights u i and v i .
  • a pair of resource blocks arranged in the same frequency band in two slots constituting a subframe refer to user allocation information and the like.
  • the calculation unit 8a sequentially selects the pair of resource blocks as a predetermined region in a predetermined order along the frequency direction.
  • the first and second weights u i and v i can also be obtained by sequentially updating each received reference signal included in the predetermined area.
  • the present invention is not limited to the above embodiments.
  • the case where a calculation method based on the LMS algorithm is employed as the sequential update type weight calculation method is exemplified.
  • a calculation method using an NLMS (Normalized LMS) algorithm RLS A calculation method using a (Recursive Least Square) algorithm or a calculation method using a Kalman filter can also be used.
  • the SC-FDMA scheme which is a scheme for allocating a plurality of resource blocks continuously arranged in the frequency direction to one user
  • the present invention can also be applied to a method of assigning a plurality of arranged resource blocks to one user. That is, in this case, the resource blocks are selected in the first order along the time direction to obtain the first weight, and the resource blocks are selected in the second order different from the first order to obtain the second weight. And the weight of the received reference signal is obtained from these. Also, the first and second weights can be obtained in both the frequency direction and the time direction, respectively, and the weight with the smallest estimation error can be obtained as the weight of the received reference signal.
  • FIG. 11 is a schematic diagram illustrating a configuration of a radio communication system in the LTE scheme.
  • This wireless communication system includes a base station device 201 and user terminals 202a and 202b.
  • the base station apparatus 201 includes a plurality of antennas, and the base station apparatus 201 and the user terminals 202a and 202b have a function of performing multiuser MIMO transmission.
  • the downlink employs orthogonal frequency division division multiple access (OFDMA), and the uplink employs single carrier frequency division multiple access (SC-FDMA).
  • OFDMA orthogonal frequency division division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • the LTE uplink frame is shared by a plurality of user terminals by frequency division division, and multiple access to the base station apparatus is possible.
  • frequency multiplexing spatial multiplexing is also performed.
  • a minimum resource allocation unit called a resource block (RB) is set in a frame.
  • one resource block is 7 or 6 symbols ⁇ 12 subcarriers.
  • all subcarriers are used as reference signals (Reference Signals), which are known signals, in the fourth symbol of one slot, and are indicated by black circles in FIG. ing.
  • the reference signal is also referred to as a “pilot signal”.
  • Other symbols in one resource block are data signals (Data Signal), and are indicated by white circles in FIG.
  • a plurality of user terminals 202a and 202b transmit simultaneously using signals x 1 and x 2 of the one resource block. For this reason, the base station apparatus 201 receives signals (reception signals y1, y2) obtained by multiplexing the transmission signals x 1 and x 2 by the plurality of antennas 203 (203a, 203b).
  • the received signal y 1 by the antenna 203a is received, and the received signal y 1x1 corresponding to the transmission signal x 1, the received signal y 1x2 corresponding to the transmission signal x 2 are multiplexed
  • the received signal by the antenna 203b receives y 2 is the received signal y 2x1 corresponding to the transmission signal x 1
  • the received signal y 2x2 corresponding to the transmission signal x 2 are multiplexed.
  • the base station apparatus 201 acquires received pilot signals included in the received signals y 1 and y 2 from the received signals y 1 and y 2 received by the plurality of antennas 203a and 203b, respectively. In this reception pilot signal, pilot signals corresponding to the transmission signals x 1 and x 2 are multiplexed.
  • the cyclic shift process is a process of cyclically shifting the pilot signal by a different shift amount in the frequency axis direction for each user terminal, whereby the received pilot signal multiplexed and received by the base station apparatus 201 can be separated. It is.
  • the base station apparatus 201 separates and acquires the frequency response of each received pilot signal corresponding to each of the transmitted signals x 1 and x 2 based on the multiplexed received pilot signal acquired from the received signals y 1 and y 2. Then, the channel estimation of the received signal corresponding to each of the transmission signals x 1 and x 2 is performed.
  • the base station apparatus 201 separates the data signal for each user from the multiplexed other data signal using the estimated channel, and receives the received data signal x ⁇ 1 , x corresponding to each user terminal 202a, 202b. ⁇ Configured to get 2 .
  • FIG. 12 is a block diagram showing a main configuration of the reception system of base station apparatus 201.
  • a base station apparatus 201 as a communication apparatus according to the first embodiment of the present invention includes an FFT unit 205, a separation / equalization unit 206, an IDFT unit 207, a demodulation unit 208, a reception unit 204 to which an antenna 203 is connected. And a channel estimation unit 210.
  • the base station apparatus 201 includes these units for each of the plurality of antennas 203 (203a, 203b) included in the base station apparatus 201.
  • the FFT unit 205 performs fast Fourier transform on the signal y (k), converts it from time domain to frequency domain data, demultiplexes subcarriers, etc., and separates and equalizes the data signal excluding the subcarriers. Output to. Further, FFT section 205 outputs received pilot signal r (k) to channel estimation section 210 in the data signal converted to the frequency domain.
  • Channel estimation section 210 estimates channel characteristics of received signals corresponding to a plurality of user terminals 202 a and 202 b based on received pilot signal r (k), and outputs the estimation result to separation / equalization section 206.
  • Separation and equalization unit 206 a plurality of user terminals 202a estimated by the channel estimation unit 210, 202b respective received signals (e.g., if the received signal y 1, the received signal y 1x1, y 1x2) on the channel estimation result of Based on this, the frequency domain data signal provided from the FFT unit 205 is separated into data signals for each user terminal, and equalization processing is performed.
  • the data signal separated and equalized for each user terminal by the separation / equalization unit 206 is given to the IDFT unit 207, converted into time domain data, and demodulated by the demodulation unit 208.
  • FIG. 13 is a block diagram illustrating a configuration of the channel estimation unit 210.
  • the channel estimation unit 210 includes a division unit 211, a DCT unit 212, a window processing unit 213, and a plurality of IDCT units 214.
  • the division unit 211 normalizes the received pilot signal r (k) given from the FFT unit 205 by dividing the basic pilot signal s (k), which is a known signal, and transmits the transmission channel frequency of the received pilot signal r (k).
  • a response h (k) is obtained.
  • the received pilot signal r (k) is a multiplexed signal obtained by multiplexing the pilot signals transmitted from each user terminal, and is represented by the following equation (11).
  • N is the number of user terminals
  • ⁇ n is expressed by Expression (12) below. The shift amount in the frequency domain for each user terminal.
  • the division unit 211 divides the known basic pilot signal s (k) to obtain a transmission channel frequency response h (k) of the received pilot signal r (k) represented by the following equation (13).
  • the DCT unit 212 as the first conversion unit performs a discrete cosine transform (DCT: Discrete Cosine Transform) on the transmission channel frequency response h (k) of the received pilot signal r (k) obtained by the division unit 211.
  • DCT discrete cosine Transform
  • the DCT unit 212 converts the frequency domain data into the time domain by expressing the frequency with a cosine function.
  • the window processing unit 213 performs window processing for separating the transmission channel time response H (t) of the received pilot signal r (k) obtained by the DCT unit 212 into the transmission channel time response of the received pilot signal for each user terminal. Do.
  • a transmission path time response H (t) of the received pilot signal r (k) is expressed by the following equation (15).
  • T is the symbol length.
  • the window processing unit 213 determines the transmission channel time response H n of the received pilot signal for each user terminal arranged in the time axis direction as described above from the transmission channel time response H (t) of the received pilot signal r (k). By cutting out (t) (hereinafter also simply referred to as a transmission path time response H n (t)), it is separated into transmission path time responses H n (t) for each user terminal.
  • the window processing unit 213 calculates an offset amount in the time axis direction (“nT / N” in the above equation (15)) for each transmission path time response H n (t) for each separated user terminal. By removing, the process of returning to the original position from the position (in the time axis direction) shifted by the cyclic shift process is also performed.
  • the window processing unit 213 outputs the transmission path time response H n (t) for each separated user terminal to the IDCT unit 214.
  • the IDCT unit 214 as the second transform unit performs inverse discrete cosine transform (IDCT) on the transmission channel time response H n (t) of the user terminal, thereby transforming into the frequency domain.
  • IDCT inverse discrete cosine transform
  • Each IDCT unit 214 separates the transmission channel frequency response h n (k) of the received pilot signal for each user terminal obtained as described above as the estimation result of the channel characteristics of the received signal corresponding to each user terminal. Output to the equalization unit 206.
  • DCT section 212 of channel estimation section 210 performs transmission path time response h (k) of multiplexed received pilot signal r (k) by means of discrete cosine transform. Since the response is converted into the response H (t), it is possible to prevent the occurrence of a discontinuous portion of the data at the time of the period extension seen in the IDFT of the conventional example. As a result, in the transmission channel time response H (t) of the received pilot signal r (k), the delay spread generated in the transmission channel time response H n (t) of each received pilot signal for each user terminal is prevented from becoming large. it can.
  • FIG. 14A and 14B are diagrams for explaining a mode of period extension by discrete cosine transform.
  • FIG. 14A shows the case of discrete cosine transform
  • FIG. 14B shows the case of IDFT.
  • IDFT is an operation for performing conversion to the time domain by applying discrete-time Fourier transform to a countless infinite number of signal sequences obtained by periodically extending an original frequency domain signal whose data length is L. For this reason, as shown in FIG. 14B, data tends to be discontinuous at the boundary of the extended portion. This discontinuity causes an increase in higher-order coefficients and causes a delay spread after time domain conversion to be increased.
  • the discrete cosine transform is equivalent to applying the discrete Fourier transform to the signal generated by extending the original function signal whose data length is L to be even symmetric at the boundary point. is there. Therefore, in the discrete cosine transform, data continuity is maintained at the boundary of the extended portion as shown in FIG. Due to the continuity at the boundary of the extended portion, the discrete cosine transform has a characteristic of concentrating signal components on the low frequency side. Accordingly, it is possible to suppress the delay spread in the data after being converted into the time domain.
  • FIG. 15 is a diagram for explaining an aspect when the transmission line frequency response is transformed into the time domain.
  • (A) is an example in the case of discrete cosine transformation
  • (b) is an example in the case of IDFT. Show.
  • the horizontal axis represents time and the vertical axis represents power.
  • FIG. 15 shows data of two adjacent user terminals, which are drawn separately by a black square mark and a white square mark.
  • the spread in the time axis direction is smaller than in the case of IDFT, and the data of one user terminal falls within the window width range.
  • IDFT the spread in the time direction is large, and there is a signal having a relatively large value at a position exceeding the window width, and data located outside the window width is not acquired and lost. It becomes.
  • the data portion can be prevented from spreading beyond the window width in the window processing, and data loss can be suppressed.
  • distortion in the estimated channel characteristics can be suppressed, and the channel estimation accuracy can be increased.
  • FIG. 1 when the transmission line frequency response h (k) of the multiplexed received pilot signal r (k) is converted into the transmission line time response H (t) by discrete cosine transform, FIG. As shown, a signal having a power lower than a predetermined threshold may be regarded as noise and removed. In this case, the influence of noise included in the data signal can be suppressed. Note that the configuration in which a signal having power less than or equal to the predetermined threshold is regarded as noise and removed can also be used in channel estimation by IDFT.
  • FIG. 16 is a block diagram showing a configuration of channel estimation section 210 provided in base station apparatus 201 according to the second embodiment of the present invention.
  • the channel estimation unit 210 of this embodiment includes a division unit 211, a multiplication unit 221, an extension processing unit 222, an LPF (low-pass filter) 223, and a delay component removal unit 224. Similar to the first embodiment, the division unit 211 multiplexes the received pilot signal r (k) given from the FFT unit 205 by dividing the basic pilot signal s (k), which is a known signal. A transmission channel frequency response h (k) of the received pilot signal r (k) is obtained.
  • the multiplication unit 221 uses a shift amount (representing a complex constant e ⁇ j ⁇ Nk ) based on the cyclic shift of each pilot signal set for each user terminal, as a transmission channel frequency response h (k) of the received pilot signal r (k). ) To obtain a transmission line frequency response h n ′ (k) obtained by shifting the transmission line frequency response h n (k) of each user terminal to the original frequency. Multiplier 221 obtains transmission channel frequency response h n ′ (k) shifted to the original frequency corresponding to each received pilot signal of each user terminal.
  • the extension processing unit 222 causes the multiplication unit 221 to shift the transmission channel frequency response h n (k) (hereinafter also simply referred to as transmission channel frequency response h n (k)) of the received pilot signal of the user terminal to the original frequency.
  • the even-numbered symmetric expansion processing is performed on the transmission channel frequency response h n ′ (k), and the processed function on which the even-symmetrical expansion processing has been performed is obtained for each user terminal.
  • FIG. 17A is a diagram schematically illustrating an example of the function to be processed h n ′′ (k) after performing the even symmetric extension processing.
  • the function to be processed h n ′′ (k) has data D1 constituting the transmission path frequency response h (k) and extended data D2 and D3 arranged before and after the frequency axis. ing.
  • the extension data D2 and D3 are provided so as to be line-symmetric with the data D1 with respect to the boundary with the data D1, and are even-symmetric with respect to the data D1.
  • the extension data D2 and D3 are provided so as to have the length of the group delay of the LPF 223.
  • M is the tap length of the LPF 223.
  • the part of “x (M / 2), x ((M / 2) ⁇ 1),..., X (1)” is the part of the extension data D2
  • the part of “x (L ⁇ 1),..., x (L ⁇ (M / 2) ⁇ 1)” is the part of the extension data D3.
  • the LPF 223 is composed of, for example, an FIR filter, and the transmission channel frequency response h n () of the user terminal shifted to the original frequency from the processed function h n ′′ (k) obtained by the extension processing unit 222. k) has a function to acquire only. In other words, the transmission target function h n ′′ (k) has a transmission frequency response h n (k) of one user terminal shifted to the original frequency. By setting the cut-off value of the LPF 223 so as not to pass the portion, the LPF 223 can acquire only the transmission channel frequency response h n (k) of the user terminal shifted to the original frequency.
  • the delay component removing unit 224 has a function of removing a delay component that is unavoidable in the transmission path frequency response h n (k) of each user terminal obtained by the LPF 223.
  • transmission channel frequency response h n of the one user terminal obtained by removing the delay components from the equation transmission channel frequency response h n of the one user terminal shown in (19) (k) (k) is the following formula (20) expressed.
  • Channel frequency response h n (k) of one user terminal [H n (M + 1), h n (M + 2),..., H n (M + L)] ... (20)
  • the present embodiment includes the delay component removing unit 224 that removes the delay component included in the transmission channel frequency response h n (k) of one user terminal after passing through the LPF 223.
  • the transmission path time response h n (k) for each terminal can be acquired with higher accuracy.
  • the channel estimation unit 210 of the present embodiment obtains the transmission channel frequency response h n (k) of the received pilot signal for each user terminal obtained by removing the delay component by the delay component removal unit 224.
  • the result of estimation of the channel characteristics of the received signal corresponding to each user terminal is output to separation / equalization section 206.
  • the extension processing unit 222 of the channel estimation unit 210 performs the even symmetric extension processing on the transmission channel frequency response h (k) of the received pilot signal r (k), so that the multiplication unit 221 And the LPF 223 can suppress data loss when the transmission path frequency response h n (k) for each user terminal is separated and acquired.
  • the base station apparatus 201 of the present embodiment acquires the transmission path frequency response h n (k) for each user terminal in the frequency domain, it is not necessary to perform processing with a large amount of computation such as IDFT. It can be set as the structure which can reduce the load with respect to.
  • the expansion processing unit 222 extends the even symmetric expansion processing by the length of the group delay of the LPF 223 (extension data D2, D3). Data loss due to the LPF 223 can be more effectively suppressed.
  • the present invention is not limited to the above embodiments. In each of the above embodiments, the case where the communication apparatus of the present invention is applied to the base station apparatus is illustrated, but it can also be applied to the user terminal side.
  • the channel estimation unit 210 includes a division unit 211, a multiplication unit 221, an extension processing unit 222, an LPF 223, and a delay component removal unit 224.
  • the channel estimator 210 may be configured with the extension processor 222 omitted, that is, the divider 211, the multiplier 221, the LPF 223, and the delay component remover 224.
  • the transmission channel frequency response h n ′ (k) obtained by the multiplication unit 221 and shifted to the original frequency for each received pilot signal of each user terminal is output to the LPF 223 as it is.
  • the LPF 223 acquires only the channel frequency response h n (k) of the user terminal shifted to the original frequency from the channel frequency response h n ′ (k) shifted to the original frequency.
  • the delay component removal unit 224 removes the delay component included in the transmission channel frequency response h n (k) of each user terminal obtained by the LPF 223.
  • the channel estimation unit 210 configured as described above uses the channel frequency response h n (k) of the received pilot signal for each user terminal as the estimation result of the channel characteristics of the received signal corresponding to each user terminal. Obtainable.
  • the transmission path frequency response of each of the plurality of received pilot signals can be acquired in the frequency domain, so that processing with a large amount of computation such as IDFT is performed. There is no need and a simple configuration can be obtained.
  • the inventor performs a simulation for channel estimation by separating multiplexed received pilot signals by the base station apparatus according to each of the above embodiments, and verifies the effect as compared with the case where channel estimation is performed by a conventional method. Went.
  • the transmission channel frequency response of the multiplexed received pilot signal is converted into a transmission channel time response by IDFT, separated, and then converted to the frequency domain by DFT.
  • a base station apparatus that performs channel estimation was used.
  • the base station apparatus 201 including the DCT unit 212 and the IDCT unit 214 shown in the first embodiment is used as the first example, and the LPF unit shown in the second embodiment is used.
  • the provided base station apparatus 201 is referred to as Example 2.
  • a received pilot signal in which pilot signals for 202 user terminals are multiplexed is set under the same conditions in each of the first and second embodiments and the comparative example, and then a simulation for channel estimation is performed. The comparison was made by representing the estimation results obtained by the simulation in a graph.
  • FIG. 18 is a graph showing the channel estimation results of each example and comparative example.
  • (A-1) and (a-2) are examples 1 and (b-1) and (b-2) are Example 2
  • (c-1) and (c-2) are graphs showing the channel estimation results of the comparative example.
  • the horizontal axis indicates the frequency
  • the vertical axis indicates the amplitude.
  • the channel estimation result of one user terminal is shown on the left side of the drawing, and the channel estimation result of the other user terminal is shown on the right side.
  • distortion occurs at both ends of the band when the channel estimation result according to the comparative example is seen.
  • the channel estimation results according to the first and second embodiments it can be seen that the channel estimation is performed with high accuracy without the distortion seen in the comparative example.
  • FIG. 19 is an example in which data when demodulated based on channel estimation results according to the first embodiment and the comparative example verified by the simulation are shown in a constellation map, (a) is according to the first embodiment, (b). Indicates a comparative example. In the comparative example, each data is scattered around each bit position, whereas in the first example, each data is accurately demodulated at each bit position. Thus, under the conditions in this verification, it has become clear that the base station apparatus 201 according to the present embodiment can improve the channel estimation accuracy and the demodulation accuracy as compared with the conventional method.
  • FIG. 20 shows a radio communication system (for example, a mobile phone communication system) in the LTE system.
  • This wireless communication system includes a base station device 301 and user terminals 302a and 302b.
  • the base station apparatus 301 includes a plurality of antennas and can perform multiuser MIMO transmission.
  • the base station apparatus 301 of this embodiment is suitably used as a femto base station apparatus that forms a femto cell with a relatively small communication area.
  • the femto base station apparatus 301 is installed in a place where radio waves do not reach in a macro base station apparatus that forms a macro cell with a relatively large communication area.
  • LTE is as described in Chapter 2.
  • the base station apparatus 301 includes a scheduling unit 311 that performs resource allocation (resource block allocation) to users in the uplink and downlink.
  • the scheduling unit 311 can perform scheduling using not only frequency multiplexing in which resource blocks in a frame are allocated to each user terminal but also spatial multiplexing in which one resource block is allocated to a plurality of user terminals.
  • uplink user allocation information MAP information
  • Each user terminal 302a, 302b performs uplink communication using one or a plurality of resource blocks allocated by the base station apparatus 301.
  • a plurality of user terminals 302a and 302b simultaneously transmit signals x 1 and x 2 of the one resource block.
  • ZC Zadoff-Chu / CGS
  • partially different resource blocks are allocated to a plurality of user terminals that are spatially multiplexed without allocating completely the same resource blocks. In this way, when the completely same resource is not used, the sequence length of ZC is different in each of the plurality of user terminals. In this case, orthogonality is not guaranteed by simply using different cyclic shifts for a plurality of user terminals.
  • the cross-correlation between pilot signals becomes small (below a predetermined threshold value that serves as a reference for ensuring orthogonality).
  • a cyclic shift amount is set.
  • the base station apparatus 301 receives spatially multiplexed signals from a plurality of user terminals 302a and 302b with a plurality of reception antennas.
  • the base station apparatus includes a signal separation unit 312 that separates the received spatially multiplexed signal into signals from the user terminals 302a and 302b.
  • the signal separation unit 312 performs signal separation using adaptive array processing instead of the conventional general signal separation method. As shown in FIG. 21, the signal separation unit 312 includes weight calculation units 121a and 121b that perform weight calculation for adaptive array processing, pilot generation units 122a and 122b that generate pilot signals, and array synthesis units 123a and 123b. And.
  • the first weight calculator 121a in order to obtain signals from the first user terminal 302a, the first weight calculator 121a, the first pilot generator 122a, the first array combiner 123a, and the second user terminal 302b.
  • the signal separation unit 312 separates the spatially multiplexed signals y 1 and y 2 received by a plurality of (here, two) antennas into signals x 1 and x 2 from the user terminals 302a and 302b.
  • the signal x ⁇ 1 is the estimate of the transmitted signal x 1 of the first user terminal 302a (a value obtained by the signal separation unit 312), the signal x ⁇ 2, the transmission signal x 2 of the second user terminal 302b (The value obtained by the signal separation unit 312).
  • signal separator 312 has a plurality Among these signals x 1 and x 2 , only the signal x 1 from the first user terminal 302a is regarded as a desired signal, and adaptive array processing is performed.
  • the signal x 2 from the second user terminal 302b is regarded as an interference signal.
  • the antenna directivity is directed in the direction of the desired signal and null in the direction of the interference signal, so that only the signal x 1 regarded as the desired signal can be extracted.
  • the signal separation unit 312 Among the plurality of signals x 1 and x 2 , only the signal x 2 from the second user terminal 302b is regarded as a desired signal, and adaptive array processing is performed.
  • the signal x 1 from the first user terminal 302a is regarded as interference signals, it is possible to extract only signal x 2 that is regarded as a desired signal.
  • the weight calculators 121a and 121b calculate weights for each resource block, which is the minimum unit for resource allocation to users. That is, when calculating the weight in a specific resource block, only the reference signal included in the specific resource block is used without using the reference signal (pilot signal) of another resource block.
  • LTE is described as an example of a communication method, but the present invention is not limited to this. Since a resource block is a minimum unit for resource allocation to a user, there is no fluctuation of a signal regarded as an interference signal among a plurality of spatially multiplexed signals within one resource block.
  • the weight is calculated in an area wider than one resource block.
  • the transmission source of a signal regarded as an interference signal varies.
  • a signal from user 2 and a signal from user 3 are signals that are regarded as interference signals in that area. Will exist. In this case, there are too many interference sources, and there is a possibility that appropriate adaptive array processing cannot be performed.
  • the unit for calculating the weight is a resource block
  • other user terminals user terminals regarded as interfering terminals
  • Processing can be performed.
  • the first weight calculation unit 121a transmits the reference signal (transmission pilot) transmitted from the pilot generation unit 122a by the first user terminal 302a.
  • MMSE weight w 1 of the resource block corresponding to the first user terminal 302a is obtained based on the reference signal (reception pilot) z included in each of the reception signals y 1 and y 2 .
  • an equation for obtaining the MMSE weight w k of the kth user terminal is as follows.
  • the above MMSE weight calculation is performed for each resource block assigned to the first user terminal 302a.
  • the value x ⁇ 1 is obtained.
  • the signal x 1 (estimated value x ⁇ 1 ) transmitted from the first user terminal 302a can be separated from the spatially multiplexed signal.
  • the array synthesis of the kth user terminal is performed based on the following equation.
  • MMSE weight calculation section 121b also estimate x ⁇ 2 signal x 2 that the second user terminal 302b transmits a pilot generation unit 122b, with reference to the array combining unit 123b, it is calculated in the same manner as described above. That is, as shown in FIG. 22B, when a signal x 2 from the second user terminal 302b is to be obtained from among a plurality of spatially multiplexed signals x 1 and x 2 , the signal separation unit 312 Among the plurality of signals x 1 and x 2 , only the signal x 2 from the second user terminal 302b is regarded as a desired signal, and adaptive array processing is performed. Thus, the signal x 1 from the first user terminal 302a is regarded as interference signal. Only the signal x 2 regarded as the desired signal can be extracted.
  • the above-described adaptive array processing is performed for each of the spatially multiplexed user terminals 302a and 302b.
  • each user terminal 302a is obtained from the spatially multiplexed signal.
  • 302b can separate the signals x 1 and x 2 .
  • the base station apparatus of the present embodiment is a femto base station apparatus that forms a relatively small femto cell, there are few multipaths and delays that are likely to occur in a macro cell, and it is suitable for performing the above adaptive array processing. ing.
  • the separation of spatially multiplexed signals by MMSE weights is expressed as a matrix as follows.
  • the signal demultiplexing unit 312 can demultiplex signals even when partially different resource blocks are allocated to a plurality of user terminals that are spatially multiplexed. Therefore, as shown in FIG. 27, the scheduling unit 311 performs free spatial multiplexing scheduling as shown in FIG. 23 without being restricted by assigning completely the same resource block to a plurality of user terminals that are spatially multiplexed. It can be done and efficient scheduling is possible. As a result, the system throughput can be increased.
  • FIG. 24 shows an example of resource block allocation (scheduling processing) and signal separation processing using the above-described adaptive array processing (hereinafter referred to as “adaptive array MIMO”).
  • the base station apparatus measures CINR (Carrier to Interference and Noise Ratio) for each user terminal 302 (no spatial multiplexing) that is wirelessly connected to obtain a first CINR value (step S1).
  • the base station apparatus performs normal adaptive array processing on each user terminal 302 (without spatial multiplexing) that is wirelessly connected (step S2), measures CINR again, and obtains the second CINR value. Is obtained (step S3).
  • the base station apparatus compares the first CINR value and the second CINR value to determine the presence of an interference terminal in the original sense.
  • a user who wirelessly connects to a macro base station (macro BS) 3101 that forms a macro cell in the vicinity of the femto cell.
  • the terminal (macro MS) 3102 exists, the user terminal 3102 is an interference terminal that gives interference to the femtocell.
  • steps S1 to S4 are processes for determining whether or not there is an interfering terminal 3102 (user terminal in another cell) in the original sense.
  • step S2 normal adaptive array processing for removing interference from the interference terminal 3102 is not performed. Therefore, if the interference terminal 3102 exists, the first CINR value is Lower.
  • the second CINR value measured in a state where adaptive array processing for removing interference from the interference terminal 3102 (step S2) is performed is a relatively large value even when the interference terminal 3102 exists.
  • the first CINR value and the second CINR value should be substantially equal.
  • the presence / absence of the interference terminal 3102 can be determined by comparing the first CINR value and the second CINR value (step S4). More specifically, the determination unit 313 of the base station apparatus determines that the interference terminal 3102 exists if the second CINR value is (sufficiently) larger than the first CINR value, and otherwise determines that the interference terminal 3102 By determining that it does not exist, the presence / absence of an interfering terminal is determined, and it is determined whether or not signal separation by AA-MIMO is possible.
  • step S4 If it is determined in step S4 that the interfering terminal 3102 exists, signal separation using adaptive array MIMO (AA-MIMO) becomes difficult. Therefore, the scheduling unit 311 of the base station apparatus performs spatial multiplexing on the uplink. A resource block allocation process that does not use is performed (step S5). In this case, since spatial multiplexing is not performed, separation of spatially multiplexed signals is not necessary. In the case where the interference terminal 3102 exists, spatial multiplexing may be performed under the restriction that the same resource block is allocated to a plurality of user terminals that are spatially multiplexed. In this case, the signal separation unit 312 separates the spatially multiplexed signal by a conventional separation method that estimates the channel matrix H.
  • the scheduling section 311 assumes that AA-MIMO is performed, and the scheduling unit 311 performs resource block allocation processing using spatial multiplexing (spatial multiplexing scheduling) on the uplink. (Step S6).
  • AA-MIMO signal separation is possible without using the same frequency resource between spatially multiplexed user terminals, so that resource allocation flexibility is increased.
  • the determined uplink user allocation information (MAP information) is notified to each user terminal 302a, 302b in a downlink frame.
  • Each user terminal 302a, 302b performs uplink communication using one or a plurality of resource blocks allocated by the base station apparatus.
  • the signal separation unit 312 separates the spatially multiplexed signals from the user terminals 302a and 302b by AA-MIMO (Step S7).
  • signals from the user terminals 302a and 302b arrive from substantially the same direction, and thus are regarded as interference terminals. It is difficult to direct a null to a user terminal, and the signal may not be separated even if AA-MIMO is performed. That is, even if AA-MIMO is performed, a signal (interference signal) from a user terminal regarded as an interference terminal cannot be removed, and a signal (desired signal) from a user terminal regarded as a desired terminal is obtained because of a low CINR value. There is a risk that it will not be possible. As a result, signal separation cannot be performed.
  • step S8 it is determined whether or not the spatially multiplexed signal has been separated by the signal separation process in step S7. That is, the determination unit 313 determines whether or not signal separation is possible (whether or not the signal of each user terminal has been acquired) based on the result of signal separation attempted by AA-MIMO by the signal separation unit 312. To do.
  • step S8 If it is determined in step S8 that separation has failed, the process returns to step S6 and scheduling is performed again. In the re-scheduling, resource block allocation is performed so that different resource blocks are allocated to a plurality of user terminals that could not be signal-separated. Thereby, in the separation process (step S7) by AA-MIMO again, the possibility of signal separation increases.
  • Base station apparatus MS1-6 Mobile terminal (user) 201 Base station device (communication device) 210 Channel estimation unit 212 DCT unit (first conversion unit) 213 Window processing unit 214 IDCT unit (second conversion unit) 221 Multiplying unit 222 Extended processing unit 223 LPF (filter unit) 224 Delay component removal unit (removal unit) 301 Base station apparatus 302a, 302b User terminal 311 Scheduling unit 312 Signal separation unit 313 Determination unit 121a, 121b Weight calculation unit 122a, 122b Pilot generation unit 123a, 123b Array combining unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 演算負荷を軽減しつつ、受信信号から効果的に干渉波を除去することができる通信装置を提供する。本発明の基地局装置BS2は、受信信号のウェイトを算出するウェイト算出部8を備えている。ウェイト算出部8は、算出部8aと選択部8bとを備えている。算出部8aは、第一のウェイト及び第二のウェイトを算出する。第一のウェイトは、更新対象となる対象既知信号について、前記対象既知信号を用いて更新する直前に更新された第一の他の既知信号のウェイトを、当該対象既知信号を用いて更新することで得られる。第二のウェイトは、更新対象となる対象既知信号について、前記第一の他の既知信号とは異なる第二の他の既知信号のウェイトを、当該対象既知信号を用いて更新することで得られる。選択部8bは、前記第一のウェイト及び前記第二のウェイトの内、その推定誤差の少ないウェイトを受信参照信号のウェイトとして、複数の受信参照信号ごとに選択する。

Description

通信装置及び基地局装置
 本発明は、通信装置及び基地局装置に関するものである。
 従来から、無線通信システムにおいては、基地局装置とこれに無線接続する移動可能な端末装置とを備えたものがある。基地局装置は、端末装置との間で通信可能な通信エリア(セル)を形成する。セル内に位置する端末装置は、当該セルを形成する基地局装置との間で無線通信を行うことができる(例えば、特許文献1参照)。
 上記無線通信システムにおいて、複数の基地局装置それぞれが設定する通信エリア(セル)が重複している場合、ある基地局装置から送信された信号が、近傍の他の基地局装置のセル内にある端末装置に届いてしまい、その端末装置にとって干渉信号となることがある。
 さらに、上記無線通信システムでは、基地局装置として、例えば、数キロメートルの大きさのセル(マクロセル)を形成するマクロ基地局装置と、前記マクロセル内に設置され数十メートル程度の比較的小さなセル(フェムトセル)を当該マクロセル内に形成するフェムト基地局装置とを備えたものもある。この無線通信システムでは、フェムト基地局装置が形成するフェムトセルは、そのほぼ全域がマクロセルと重複するため、相互に干渉を生じさせ易い環境といえる。
 このような環境下で干渉波を抑制する方法としては、干渉を与える側の送信電力を低く抑えたり、マルチアンテナシステムにより干渉波を除去したりといった対策が考えられる。
 この内、マルチアンテナシステムにより干渉波を除去する方法としては、本発明者が出願した下記特許文献2に示すように、無線リソース割り当ての最小単位ごとにウェイトを算出することで、同一ユーザから受信した信号のみに基づいてウェイトを算出する方法がある。この方法によれば、前記最小単位における干渉源の個数が制限されるため、適切なウェイトが得られることから、効果的に干渉波の除去を行うことができる。
特開2009-177532号公報 特願2009-245337号公報
服部武 編著、「OFDM/OFDMA教科書」、初版、株式会社インプレスR&D、2008,pp310-pp312,pp329
 上記特許文献2に記載の方法では、効果的に干渉波の除去を行うことができる一方、前記最小単位ごとにウェイトを求めるための相関行列の推定と、その逆行列の演算を行わなければならず、その演算負荷が比較的大きくなるという問題を有している。
 そこで、上記観点(第1の観点)からみた本発明の目的は、演算負荷を軽減しつつ、受信信号から効果的に干渉波を除去することができる通信装置を提供することである。
 さて、LTE(Long-Term Evolution)などの通信規格では、ユーザ端末から基地局装置への上りリンクのスケジューリングにおいて、時間及び周波数領域のスケジューリングのほか、空間多重(Spatial Division Multiplexing)スケジューリングが行われる。
 空間多重スケジューリングは、同一周波数領域が同時に複数のユーザ端末に割り当てられるマルチユーザMIMO(Multiple Input Multiple Output)によって行われる。例えば、LTEの空間多重スケジューリングでは、同一のリソースブロック(RB;ユーザへのリソース割り当ての最小単位)が同時に複数のユーザ端末に割り当てられることになる。
 LTEの上りリンクでマルチユーザMIMOを行う場合、複数のユーザ端末の参照信号は、サイクリックシフトを用いた符号多重により伝送される。複数のユーザ端末から同時に送信された信号は多重信号として基地局装置により受信される。基地局装置は、受信した多重信号を各ユーザ端末ごとの信号に分離し、ユーザ端末ごとのチャネル推定に用いる(例えば、非特許文献1参照)。
 上記基地局装置は、サイクリックシフトによって符号多重された参照信号を分離するために、通常、多重化された参照信号の伝送路周波数応答をIDFT(Inverse Discrete Fourier Transform:逆離散フーリエ変換)によって時間領域に変換する。その後、基地局装置は、窓関数を用いて各ユーザごとの伝送路時間応答に分離し、分離した各ユーザごとそれぞれの伝送路時間応答についてDFT(Discrete Fourier Transform:離散フーリエ変換)を行い再び周波数領域の信号に変換することで、各ユーザごとのチャネル特性を推定する。
 しかし、上記方法で多重化された信号を分離し推定されるチャネル特性は、帯域の両端に歪みが生じやすいという問題を有していた。その理由は、以下の通りである。すなわち、多重化された参照信号の伝達係数をIDFTによって時間領域に変換する際、有限個のデータを切り出して周期拡張するため、拡張部分の境界でデータが不連続となり、高次の係数が発生し易く、この結果、時間領域に変換した後のデータにおける遅延広がりが大きくなることが考えられる。このようにデータの遅延広がりが大きくなると、その後に窓関数を用いて各ユーザごとのデータに分離する際に、その窓幅以上にデータの広がりが大きくなることで、窓幅外のデータについて損失が生じるために、推定チャネル特性に歪みが生じると考えられる。
 上記のように、推定したチャネル特性の帯域の両端に歪みが生じると、当該チャネル特性を用いた復調処理に悪影響を及ぼすおそれがあるため、このような歪みを抑制しチャネル推定精度をより高めることができる技術が嘱望されていた。
 上記観点(第2の観点)からみた本発明の目的は、多重化された参照信号を好適に分離し、チャネル推定精度をより高めることができる通信装置を提供することである。
 また、前述のように、LTEの上りリンクでマルチユーザMIMOを行う場合、複数のユーザ端末の参照信号は、符号多重を用いて多重される。図26に示すように、複数のユーザ端末から同時に送信された信号x1,x2は空間多重信号となり、この空間多重信号は、基地局装置において、複数の受信アンテナで受信され、各ユーザ端末からの信号に分離される。
 空間多重信号の一般的な分離方法としては、Zero-Forcing(ZF)・Minimumu Mean Square Error(MMSE)などの線形分離や最尤推定がある。
 LTEでは、参照信号(パイロット)について、ユーザ端末毎で異なるサイクリックシフトを用いることにより、各ユーザ端末間の直交性を確保し、空間多重を実現している。したがって、基地局装置では、チャネル行列Hを推定することで、受信した空間多重信号を分離し、ユーザ端末からの送信信号x1,x2の推定値を得ることができる。
 上記の分離方法による空間多重信号の分離には、チャネル行列Hの推定が必要となるが、このためには空間多重されたユーザ端末の参照信号(パイロット)間における直交性(Orthogonal)が必要となる。
 したがって、非特許文献1にも記載されているように、空間多重スケジューリングでは、空間多重する複数ユーザ端末は完全に同一のRBが割り当てられる必要がある。
 空間多重する複数ユーザ端末は完全に同一のRBが割り当てられる必要があるという制約のため、空間多重の際のリソース割り当ての自由度が低いという問題が生じる。
 すなわち、図27に示すように、ユーザ1と空間多重されたユーザ2は、ユーザ1と完全に同じ周波数(RB)が割り当てられる必要があり、ユーザ5と空間多重されたユーザ6もユーザ5と完全に同じ周波数(RB)が割り当てられる必要がある。このような制約は、空間多重スケジューリングを行う際に、リソース割り当ての柔軟性を低下させる。
 そこで、上記観点(第3の観点)からみた本発明の目的は、空間多重スケジューリングを行う際のリソース割り当ての自由度を高めることである。
 本発明者は、演算負荷を軽減しつつ、受信信号から効果的に干渉波を除去可能な通信装置を得るために鋭意研究を重ねていた。その過程で、本発明者は、次の点に着目した。例えば、LTEにおける上りリンクに採用されているSC-FDMAのように、無線リソース割り当ての最小単位を割り当てる際に、連続的に並ぶ複数の前記最小単位を一のユーザに対して割り当てる通信方式であれば、その一のユーザに対して割り当てられる複数の最小単位が連続する方向においては、互いに隣接する最小単位の間で相関がある可能性が高い。また、干渉源となる通信装置からの干渉波についても、同様に互いに隣接する最小単位の間で相関がある可能性が高い。このため、干渉波による影響を含めて互いに相関がある複数の最小単位が連続して存在する可能性がある。つまり、上記のような通信方式であれば、最小単位ごとにウェイトの算出を行わずとも、一のユーザに対して割り当てられる複数の最小単位が連続する方向に沿って、ユーザ割り当て状況に関わらずウェイトの算出を逐次更新方式の算出方法によって行えば、相関がある領域ごとに、効果的に干渉波を除去しうる精度の高いウェイトが得られることを、本発明者は見出し、本発明に至った。
(1)すなわち、第1の観点からみた本発明は、受信信号に含まれる複数の既知信号それぞれのウェイトを、当該複数の既知信号ごとに逐次更新する算出方法によって算出するウェイト算出部を備えた通信装置であって、前記ウェイト算出部は、更新対象となる対象既知信号について、前記対象既知信号を用いて更新する直前に更新された第一の他の既知信号のウェイトを、当該対象既知信号を用いて更新することで得られる第一のウェイトと、前記第一の他の既知信号とは異なる第二の他の既知信号のウェイトを、当該対象既知信号を用いて更新することで得られる第二のウェイトと、を少なくとも含む複数のウェイトを算出する算出部と、前記対象既知信号についての複数のウェイトの内、その推定誤差の少ないウェイトを前記対象既知信号のウェイトとして選択する選択部と、を備えていることを特徴としている。上記本発明によれば、演算負荷を軽減しつつ、受信信号から効果的に干渉波を除去することができる。
(2)より具体的には、前記算出部は、一又は複数の無線割り当ての最小単位からなる複数の所定領域を、少なくとも、第一の順序、及び、前記第一の順序とは異なる第二の順序を含む複数の順序で選択し、少なくとも、前記第一の順序で選択するごとにその選択した所定領域に含まれる既知信号を用いて前記第一のウェイトを算出するとともに、前記第二の順序で選択するごとにその選択した所定領域に含まれる既知信号を用いて第二のウェイトを算出することが好ましい。
 上記構成の通信装置よれば、ウェイト算出部の算出部が、前記複数の既知信号それぞれについてのウェイトを当該複数の既知信号ごとに逐次更新する算出方法によって複数算出するので、上記従来例のように、最小単位ごとにウェイトを求めるための相関行列の推定やその演算を行う必要がなく、その演算量を減らすことができ演算負荷を軽減することができる。
 また、本発明においては、上述したように、一のユーザに対して連続的に並ぶ複数の最小単位を割り当てる方式によって送信される信号を受信する場合には、干渉波による影響を含めて互いに相関がある複数の最小単位が連続して存在する可能性がある。
 このため、算出部が、ウェイトを算出するための既知信号を含む所定領域の選択順序である複数の順序の内、少なくとも、互いに異なる第一及び第二の順序を好適に設定することで、相関がある複数の最小単位が連続的に存在する領域の中で、両ウェイトを逐次更新して算出できる。この結果、相関がある複数の最小単位が連続的に存在する領域の中で、逐次更新に用いる既知信号をより多く確保でき、推定誤差の少ない精度の高い値を得ることができる。
 さらに、選択部が、対象既知信号についての複数のウェイトの内、その推定誤差の少ないウェイトを既知信号のウェイトとして、複数の既知信号ごとに選択するので、ウェイト算出部は、その相関がある複数の最小単位が連続的に存在する領域ごとに、精度の高い既知信号のウェイトを得ることができる。
 以上により、本発明によれば、演算負荷を軽減しつつも、精度の高い既知信号のウェイトを得ることができ、受信信号から効果的に干渉波を除去することができる。
(3)また、算出部は、前記第一の順序で選択するごとにその選択した所定領域に含まれる既知信号を用いて前記第一のウェイトを算出し、前記第二の順序で選択するごとにその選択した所定領域に含まれる既知信号を用いて第二のウェイトを算出するので、前記第二の順序は、前記第一の順序の逆の順序であることが好ましく、この場合、所定領域の選択順序が逆の順序で更新された第一のウェイト及び第二のウェイトを得ることができ、選択部において、より精度の高い既知信号のウェイトを得ることができる。
(4)(5)前記所定領域は、ユーザ割り当て情報を参照することなく同一ユーザに割り当てられていることが識別可能な領域であることが好ましく、この場合、所定領域の選択によって、相関がある複数の最小単位が連続的に存在する領域を、ユーザ割り当て情報を参照することなく広範囲に捕捉することができる。なお、前記無線割り当ての最小単位は、リソースブロックであることが好ましい。
(6)(7)また、前記第一及び第二の順序は、前記所定領域が周波数方向又は時間方向の少なくともいずれか一方に沿って並ぶ順序であることが好ましく、さらに、前記対象既知信号、前記第一の他の既知信号、及び、前記第二の他の既知信号は、周波数方向又は時間方向の少なくともいずれか一方に沿って配置されていることが好ましい。
 この場合、算出部は、受信信号に応じて精度の高いウェイトが得られるように、第一及び第二の順序や、第一の他の既知信号及び第二の他の既知信号の配列を好適に設定することができる。
(8)(9)上記通信装置が受信する前記受信信号は、連続的に並ぶ複数の前記最小単位を一のユーザに対して割り当てる方式によって送信される信号であることが好ましく、より具体的には、前記連続的に並ぶ複数の前記最小単位を一のユーザに対して割り当てる方式が、SC-FDMA方式であることが好ましい。
 SC-FDMA方式の場合、その方式上、周波数方向に連続的に並ぶ複数の最小単位を一のユーザに割り当てるので、周波数方向に沿って連続する最小単位に相関がある可能性が高く、ウェイト算出部は、既知信号のウェイトについて周波数方向に沿って好適に算出することができる。
(10)第2の観点からみた本発明は、サイクリックシフトにより複数の参照信号が多重化された受信多重信号から前記複数の参照信号それぞれを含む複数の受信信号のチャネル特性を推定するチャネル推定部を備えた通信装置であって、前記チャネル推定部が、前記受信多重信号の伝送路周波数応答を離散コサイン変換することで得られる前記受信多重信号の伝送路時間応答に基づいて、前記複数の受信信号それぞれのチャネル特性を推定することを特徴としている。上記本発明によれば、多重化された参照信号を好適に分離し、チャネル推定精度をより高めることができる。
(11)より具体的には、前記チャネル推定部は、前記受信多重信号の伝送路周波数応答を離散コサイン変換し、前記受信多重信号の伝送路時間応答を得る第一変換部と、前記受信多重信号の伝送路時間応答から前記複数の参照信号それぞれの伝送路時間応答に分離する窓処理部と、分離した前記複数の参照信号それぞれの伝送路時間応答を、逆離散コサイン変換し、前記複数の参照信号それぞれの伝送路周波数応答を得る第二変換部と、を備え、前記複数の参照信号それぞれの伝送路周波数応答に基づいて、前記複数の受信信号それぞれのチャネル特性を推定するものであることが好ましい。
 上記構成の通信装置によれば、チャネル推定部の第一変換部が、受信多重信号の伝送路周波数応答を離散コサイン変換によって伝送路時間応答に変換するので、上記従来例のIDFTでみられる周期拡張時のデータの不連続な部分が生じるのを防止することができ、受信多重信号の伝送路時間応答における複数の参照信号それぞれの伝送路時間応答に生じる遅延広がりが大きくなるのを防止できる。このため、窓処理部によって複数の参照信号それぞれの伝送路時間応答に分離する際におけるデータ損失を抑制することができ、この結果、推定するチャネル特性に歪みが生じるのを抑制することができ、チャネル推定精度を高めることができる。
(12)また、第2の観点からみた他の本発明は、サイクリックシフトにより複数の参照信号が多重化された受信多重信号から前記複数の参照信号それぞれを含む複数の受信信号のチャネル特性を推定するチャネル推定部を備えた通信装置であって、前記チャネル推定部が、前記受信多重信号の伝送路周波数応答を偶対称拡張処理を行うことで得られる被処理関数に基づいて、前記複数の受信信号それぞれのチャネル特性を推定することを特徴としている。
(13)より具体的には、前記チャネル推定部は、前記受信多重信号の伝送路周波数応答に、前記複数の参照信号それぞれのサイクリックシフトに基づく複素定数を乗算することによって前記複数の参照信号の伝送路周波数応答をもとの周波数にシフトさせた前記受信多重信号の伝送路周波数応答を、前記複数の参照信号ごとに得る乗算部と、前記複数の参照信号の伝送路周波数応答をもとの周波数にシフトさせた前記受信多重信号の伝送路周波数応答について偶対称拡張処理することで、前記複数の参照信号ごとの前記被処理関数を得る拡張処理部と、前記複数の参照信号ごとの前記被処理関数それぞれから、もとの周波数にシフトさせた前記複数の参照信号の伝送路周波数応答のみを取得するフィルタ部と、を備え、前記複数の参照信号の伝送路周波数応答に基づいて、前記複数の受信信号それぞれのチャネル特性を推定するものであることが好ましい。
 上記構成の通信装置によれば、チャネル推定部の拡張処理部が、受信多重信号の伝送路周波数応答について偶対称拡張処理を行うので、フィルタ部によって複数の参照信号の伝送路周波数応答を分離し取得する際におけるデータ損失を抑制することができる。この結果、推定するチャネル特性に歪みが生じるのを抑制することができ、チャネル推定精度を高めることができる。
 また、本発明の通信装置では、周波数領域内で複数の参照信号それぞれの伝送路周波数応答を取得するので、IDFT等の演算量が多い処理を行う必要がなく、装置に対する負荷を軽減できる構成とすることができる。
(14)前記複数の拡張処理部は、前記複数の参照信号の伝送路周波数応答をもとの周波数にシフトさせた前記多重信号の伝送路周波数応答の周波数軸の前後に、前記フィルタ部の群遅延の長さ分だけ拡張するものであることが好ましく、この場合、必要最小限のデータ分をもって拡張しつつ、フィルタ部によるデータ損失をより効果的に抑制することができる。
(15)さらに、フィルタ部により取得される伝送路時間応答には、当該フィルタ部を通過することにより生じる遅延成分が含まれるので、前記チャネル推定部は、前記複数のフィルタ部により取得される前記複数の参照信号の伝送路周波数応答の部分において生じる遅延成分を除去する複数の除去部をさらに備えていることが好ましく、これにより、複数の参照信号それぞれの伝送路時間応答を、より精度よく取得することができる。
(16)また、第2の観点からみた他の本発明は、サイクリックシフトにより複数の参照信号が多重化された受信多重信号から前記複数の参照信号それぞれを含む複数の受信信号のチャネル特性を推定するチャネル推定部を備えた通信装置であって、前記チャネル推定部が、前記受信多重信号の伝送路周波数応答を偶対称性に基づく処理を行うことにより、前記複数の受信信号それぞれのチャネル特性を推定することを特徴としている。
 上記構成の通信装置によれば、チャネル推定部が、受信多重信号の伝送路周波数応答に対して偶対称性に基づく処理を行うので、当該処理後の伝送路周波数応答から複数の参照信号の伝送路周波数応答を分離し取得する際におけるデータ損失を抑制することができる。この結果、推定するチャネル特性に歪みが生じるのを抑制することができ、チャネル推定精度を高めることができる。
(17)また、第2の観点からみた本発明は、サイクリックシフトにより複数の参照信号が多重化された受信多重信号から前記複数の参照信号それぞれを含む複数の受信信号のチャネル特性を推定するチャネル推定部を備えた通信装置であって、前記チャネル推定部は、前記受信多重信号の伝送路周波数応答に、前記複数の参照信号それぞれのサイクリックシフトに基づく複素定数を乗算することによって前記複数の参照信号の伝送路周波数応答をもとの周波数にシフトさせた前記受信多重信号の伝送路周波数応答を、前記複数の参照信号ごとに得る乗算部と、前記複数の参照信号の伝送路周波数応答をもとの周波数にシフトさせた前記受信多重信号の伝送路周波数応答それぞれから、もとの周波数にシフトさせた前記複数の参照信号の伝送路周波数応答のみを取得するフィルタ部と、を備え、前記複数の参照信号の伝送路周波数応答に基づいて、前記複数の受信信号それぞれのチャネル特性を推定することを特徴としている。
 上記構成の通信装置によれば、周波数領域内で複数の参照信号それぞれの伝送路周波数応答を取得するので、IDFT等の演算量が多い処理を行う必要がなく簡易な構成とすることができる。
(18)第3の観点からみた本発明は、複数のユーザ端末に対する空間多重スケジューリング処理が可能なスケジューリング部を備えた基地局装置であって、空間多重信号を、各ユーザ端末それぞれからの信号に分離する信号分離部を備え、前記信号分離部は、分離して取り出したい一のユーザ端末からの信号を希望信号とみなすとともに、当該希望信号に空間多重されている他のユーザ端末からの信号を干渉信号とみなして、空間多重信号に対してアダプティブアレー処理を行い、各ユーザ端末それぞれからの信号を得るよう構成されていることを特徴とする基地局装置である。
 上記本発明によれば、離して取り出したい一のユーザ端末からの信号を希望信号とみなすとともに、当該希望信号に空間多重されている他のユーザ端末からの信号を干渉信号とみなして、空間多重信号に対してアダプティブアレー処理を行い、各ユーザ端末それぞれからの信号を得ることができる。この場合、前記他のユーザ端末からのパイロット信号は必要とされない。したがって、空間多重する複数ユーザ端末は完全に同一のリソース(周波数)が割り当てられる必要があるという制約がなくなり、リソース割り当ての自由度が高まる。
(19)前記基地局装置は、フェムト基地局装置であるのが好ましい。フェムトセルは比較的小さいため、マルチパスや遅延が少なく、空間多重信号に対してアダプティブアレー処理を行うのに適した状況が得られ易い。
(20)前記信号分離部は、前記複数のユーザ端末間でパイロット信号の相互相関が所定の閾値よりも小さくなるようにサイクリックシフト量が前記複数のユーザ端末毎に設定された前記パイロット信号を用いて、前記アダプティブアレー処理のためのウェイト計算を行うことができる。この場合、パイロット信号間の直交性を確保することができ、空間多重された複数ユーザ端末のパイロット信号を区別することができる。
(21)前記アダプティブアレー処理は、ユーザへのリソース割り当ての最小単位毎に計算されたウェイトを用いて行われるのが好ましい。ユーザへのリソース割り当ての最小単位では、干渉信号とみなされる信号を送信する前記他のユーザ端末が一定となるため、適切なアダプティブアレー処理が行える。
(22)前記アダプティブアレー処理による信号の分離が可能であるか否かを判定する判定部を備えるのが好ましい。前記アダプティブアレー処理による信号の分離が可能であるか否かを判定することで、分離不能である場合の対処が可能となる。
(23)前記判定部は、干渉端末の有無を判定することで、前記アダプティブアレー処理による信号の分離が可能であるか否かを判定するのが好ましい。干渉端末が存在する場合には、前記アダプティブアレー処理による信号の分離が困難になるため、かかる判定を行うことで、そのようなケースへの対処が可能となる。
(24)前記判定部は、前記アダプティブアレー処理による信号の分離を試みた結果に基づいて、信号の分離が可能であるか否かを判定するのが好ましい。かかる判定を行うことで、分離不能であった場合への対処が可能となる。
(25)前記スケジューリング部は、前記判定部によって信号の分離が不可能であると判定されると、空間多重を用いないスケジューリング処理を行うか、又は、再度の空間多重スケジューリング処理を行うことができる。これにより、分離不能であった場合に適切に対処できる。
LTE方式を採用した無線通信システム(例えば、携帯電話用通信システム)の構成を示す概略図である。 LTEの上り回線の無線フレームの構成を示す図である。 スロットの構造をより詳細に示した図である。 本実施形態に係る基地局装置における受信回路構成を示すブロック図である。 算出部が受信参照信号のウェイトの算出を行う際の受信参照信号に対する更新方向を説明するための図である。 算出部及び選択部が受信参照信号のウェイトを算出する際の手順を示すフローチャートである。 上り回線における、各移動端末に対する無線リソースの割り当て状況の一例を示す模式図である。 図7に示す状況下で、算出部及び選択部が受信参照信号のウェイトを算出した場合の一例を示す図であり、(a)は、第一のウェイトuiに対応する推定誤差eup(i)の算出結果を示すグラフ、図8(b)は、第二のウェイトviに対応する推定誤差edown(i)の算出結果を示すグラフ、(c)は、両ウェイトに対応する推定誤差の内、小さい方を選択したときの推定誤差eを示したグラフである。 (a)は、算出部が受信参照信号のウェイトの算出を行う際の受信参照信号に対する更新方向についての他の態様を示す図であり、(b)は、(a)と異なる他の態様を示す図である。 算出部が受信参照信号のウェイトの算出を行う際の受信参照信号に対する更新方向について、周波数方向及び時間方向に逐次更新する際の態様を示す図である。 LTE方式における無線通信システムの構成を示す概略図である。 基地局装置の受信系の要部構成を示すブロック図である。 チャネル推定部の構成を示すブロック図である。 離散コサイン変換による周期拡張の態様を説明するための図であり、(a)は、離散コサイン変換の場合、(b)は、IDFTの場合を示している。 伝送路周波数応答を時間領域に変換したときの態様を説明するための図であり、(a)は、離散コサイン変換の場合の一例、(b)は、IDFTの場合の一例を示している。 本発明の第二の実施形態に係る基地局装置が備えるチャネル推定部の構成を示すブロック図である。 (a)は、偶対称拡張処理を行った後の被処理関数の一例を模式的に示した図であり、(b)は、LPF部により得られる一のユーザ端末の伝送路周波数応答を示した模式図である。 各実施例及び比較例のチャネル推定結果を表したグラフであり、(a-1),(a-2)は、実施例1、(b-1),(b-2)は、実施例2、(c-1),(c-2)は、比較例のチャネル推定結果を示したグラフである。 上記シミュレーションにより検証した実施例1及び比較例によるチャネル推定結果によって復調した際のデータをコンスタレーションマップに示した一例であり、(a)は、実施例1によるもの、(b)は、比較例によるものを示している。 無線通信システムの構成図である。 信号分離部のブロック図である。 アダプティブアレー処理による信号分離の仕方を説明する図である。 空間多重スケジューリングの例を示す図である。 基地局装置の処理フローチャートである。 本来的な意味での干渉端末の存在を示す図である。 従来の信号分離方法の説明図である。 従来の空間多重スケジューリングの例を示す図である。
 以下、本発明の好ましい実施形態について添付図面を参照しながら説明する。
[第1章 ウェイト算出]
 第1章では、通信方式としてLTE(Long-Term Evolution)を例として説明するが、これに限られるものではない。
〔1.1 通信システムの構成〕
 図1は、LTE方式を採用した無線通信システム(例えば、携帯電話用通信システム)の構成を示す概略図である。
 この無線通信システムは、複数の基地局装置BS1,BS2と、この基地局装置BS1との間で無線通信を行うことができる複数の移動端末(ユーザ端末)MS1~6とを備えている。
 基地局装置BS1は、例えば数キロメートルの大きさの通信エリア(マクロセル)MCを形成する複数のマクロ基地局装置として構成されており、基地局装置BS2は、マクロセルMC内に設置され数十メートル程度の比較的小さなフェムトセルFCを形成するフェムト基地局装置として構成されている。
 基地局装置BS1は、マクロセルMC内にある移動端末との間で無線通信を行うことができる。
 また、基地局装置BS2は、例えば、屋内等、マクロ基地局装置の無線波を受信し難い場所等に配置され、上記フェムトセルFCを形成する。基地局装置BS2は、自己が形成するフェムトセルFC内にある移動端末との間で無線通信が可能であり、本システムでは、マクロ基地局装置の無線波が受信し難い場所等においても、その場所に比較的小さいフェムトセルFCを形成するフェムト基地局装置である基地局装置BS2を設置することで、移動端末に対して十分なスループットでのサービスの提供を可能にする。
 本実施形態の無線通信システムでは、下り回線は直交周波数多重分割多元接続(OFDMA)が採用され、上り回線は単一キャリア周波数分割多元接続(SC-FDMA)が採用されている。このため、基地局装置BS1,BS2は、OFDMA方式に対応した送信回路と、SC-FDMA方式に対応した受信回路とを有している。また、移動端末MS1~6は、SC-FDMA方式に対応した送信回路と、OFDMA方式に対応した受信回路とを有している。
 図2は、LTEの上り回線の無線フレームの構成を示す図である。このフレームは、周波数多重分割により複数の移動端末によって共用され、基地局装置による多元接続が可能となっている。また、周波数多重に加えて、空間多重も行っても良い。各移動端末は、基地局装置との間で通信接続を確立する際に、フレームの同期をとる。
 図2に示すようにLTE上り回線の1無線フレーム(frame)は、10個のサブフレーム(sub frame)を時間軸方向に並べて構成されており、その時間長は10ミリ秒である。
 また、1サブフレームは、2個のスロット(slot)を時間軸方向に並べて構成されており、その時間長は1ミリ秒である。1スロットは、7個(又は6個)のシンボルを時間軸方向に並べて構成されており、その時間長は0.5ミリ秒である。
 スロットを構成する各シンボルの先頭には、各シンボルの最後の部分のコピーがCP(Cyclic Prefix)として付加されている。なお、シンボルは、それぞれが変調データシンボル(QPSK変調データシンボルやQAM変調データシンボルなど)であるN個(Nは、2以上の整数)のサブシンボルから構成されている。
 図3は、スロットの構造をより詳細に示した図である。図2及び図3を参照して、スロットは、当該スロットを構成しているシンボルの内、4シンボル目(シンボル番号3)が、既知信号である参照信号(Reference Signal,ハッチングされた丸印)とされ、他のシンボルはデータ信号(Data Signal、白抜きの丸印)とされている。1スロットのうちの4シンボル目(シンボル番号3)には、全サブキャリアが参照信号となっている。
 また、LTEでは、リソースブロック(Resource Block)と呼ばれる無線リソース割り当ての最小単位が設定されており、1リソースブロックは、7又は6シンボル×12サブキャリアである。
 SC-FDMA方式を採用しているLTEの上り回線では、SC-FDMAの特徴である低PAPRを維持するために、周波数方向に連続的に並ぶ複数のリソースブロックに対して、一のユーザの送信データが割り当てられる。
 なお、ユーザへの割り当て(周波数割り当て)は、基地局装置BS1,BS2が決定する。基地局装置BS1,BS2は、決定したユーザ割り当て情報を、下り回線のフレームによって、自基地局装置と接続している又は接続しようとしている移動端末へ通知する。この通知を受けた移動端末は、基地局装置によって割り当てられた周波数(サブキャリア)を用いて、上り回線の通信を行う。
〔1.2 基地局装置の構成〕
 図4は、本発明の一実施形態に係る基地局装置BS2における受信回路構成を示すブロック図である。なお、ここでは、フェムト基地局装置を構成する基地局装置BS2の受信回路について説明するが、マクロ基地局装置である基地局装置BS1の受信回路も、基本的に以下で説明する基地局装置BS2の受信回路と同様である。
 基地局装置BS2は、アダプティブアレーを構成する複数のアンテナ(図例では2本)1a,1bと、アンテナ1a,1bの数に対応した数の受信処理系列A,Bを有しており、各アンテナ1a,1bによって受信した受信信号を、各アンテナに対応した処理系列A,Bごとで、周波数領域信号に変換する。
 各受信処理系列A,Bは、それぞれ、RF部2a,2b、CP除去部3a,3b、直並列変換部4a,4b、FFT部5a,5bを備えている。
 各RF部2a,2bは、それぞれ、各アンテナ1a,1bで受信した受信信号(SC-FDMA信号)に対して増幅処理や、A/D変換処理等を行う。
 各CP除去部3a,3bは、受信信号を構成するシンボルに付加されているCPを除去する処理を行う。
 各直並列変換部4a,4bは、CP除去部3a,3bによってCPが除去された各受信信号を並列信号に変換し、対応するFFT部5a,5bに出力する。
 FFT部5a,5bは、直並列変換部4a,4bから与えられる変換後の各受信信号について、FFT(高速フーリエ変換)を行い、周波数領域信号に変換する。
 FFT部5a,5bは、周波数領域に変換した受信信号をマルチアンテナ信号処理部6に出力する。
 マルチアンテナ信号処理部6は、各FFT部5a,5bから与えられる複数の受信信号に基づいてマルチアンテナ信号処理を行い、当該受信信号の内、自基地局装置に接続するユーザ端末からのユーザ信号以外の干渉信号等を除去した信号を出力する。
 マルチアンテナ信号処理部6は、アダプティブアレー方式によるマルチアンテナ信号処理を行うように構成されており、干渉局となる他のセルにおける移動端末からの干渉波を除去して、受信品質を向上させることができる。なお、アダプティブアレー方式としては、ZF(Zero Forcing)方式、MMSE(Minimum Mean Square Error)方式があり、これらの方式では、既知信号である参照信号を利用してウェイトを算出する。
 マルチアンテナ信号処理部6は、合成部7と、ウェイト算出部8とを備えている。
 合成部7は、ウェイト算出部8が算出するウェイトに基づいて、複数のアンテナ1a,1bで受信した複数の受信信号それぞれを合成し、処理結果として干渉波が除去された単一の処理信号を出力する。
 ウェイト算出部8は、FFT部5a,5bからの複数の受信信号それぞれに含まれる複数の受信参照信号のみを取得し、複数の受信参照信号それぞれのウェイトを算出する。
 また、複数の受信信号それぞれに含まれる複数の受信データ信号のウェイトについては、算出した受信参照信号のウェイトを用いて推定する。ウェイト算出部8は、そのウェイトを求めようとしている受信データ信号を周波数方向又は時間軸方向に挟んで位置する複数の受信参照信号のウェイトを用いて外挿推定することで、受信データ信号についてのウェイトを求める。
 ウェイト算出部8は、受信参照信号のウェイトを算出するための機能部として、算出部8aと、選択部8bとを備えている。これら、算出部8a及び選択部8bによる受信参照信号のウェイトの算出方法については、後に説明する。
 マルチアンテナ信号処理部6は、複数の受信信号をマルチアンテナ信号処理することにより得た処理信号をユーザ分離部9に出力する。ユーザ分離部9は、各ユーザ端末への周波数割り当てを示す割り当て情報に基づいて、マルチアンテナ信号処理部6からの処理信号(周波数領域信号)から、各ユーザ端末ごとの信号を分離する。
 ユーザ分離部9により分離された各ユーザ端末ごとの信号(周波数領域信号)は、各ユーザに対応するIDFT部10a,10b,10cに出力される。
 IDFT部10a,10b,10cは、マルチアンテナ信号処理部6からの処理信号について、逆離散フーリエ変換を行い、ユーザ端末からの信号を時間領域の信号に変換し、各移動端末ごとの復調信号を得る。
〔1.3 受信参照信号のウェイト算出方法について〕
 ウェイト算出部8は、上述したように、算出部8aと、選択部8bとによって、受信参照信号のウェイトを算出する機能を有している。
 算出部8aは、各受信系列A,Bそれぞれからの受信信号に含まれる複数の受信参照信号について、逐次更新する算出方法によって、既知である送信時の送信参照信号との間の推定誤差と、それに対応する受信参照信号のウェイトとを算出する。
 なお、本実施形態では、逐次更新型のウェイト算出方法として、LMS(Least Mean Square)アルゴリズムに基づいた算出方法を採用している。
 図5は、算出部8aが受信参照信号のウェイトの算出を行う際の受信参照信号に対する更新方向を説明するための図である。
 図5においては、受信信号の一部を、当該受信信号を構成する受信データ信号及び受信参照信号によって表しており、横軸は周波数、縦軸はシンボルを示している。なお、受信データ信号は白抜きの丸印、受信参照信号はハッチングされた丸印で示している。
 算出部8aは、各受信系列A,Bそれぞれからの複数の受信信号それぞれに含まれる複数の受信参照信号を取得すると、所定領域としてのリソースブロックを所定の順序で選択し、選択したリソースブロックに含まれる受信参照信号を用いてウェイトを算出する。
 本実施形態では、上り回線はSC-FDMA方式を採用しており、上述のように、周波数方向に連続的に並ぶ複数のリソースブロックに対して、一のユーザが割り当てられる。
 従って、算出部8aは、リソースブロックが周波数方向に連続して並んでいる順序で当該リソースブロックを選択し、各受信参照信号のウェイトを算出するように構成される。
 また、算出部8aは、更新対象となる同一の対象受信参照信号について、第一のウェイトと、第二のウェイトと、を算出する。第一のウェイトは、前記対象受信参照信号を用いて更新する直前に更新された第一の他の受信参照信号のウェイトを、当該対象受信参照信号を用いて更新することで得られるウェイトである。第二のウェイトは、第一の他の受信参照信号とは異なる第二の他の受信参照信号のウェイトを、当該対象受信参照信号を用いて更新することで得られるウェイトである。
 本実施形態では、算出部8aは、図5に示すように、同一シンボル上の各サブキャリアごとに配置されている受信参照信号を取得し、これら受信参照信号それぞれについて、周波数方向に並ぶ順序でリソースブロックを選択し、選択するごとにその選択したリソースブロックに含まれる受信参照信号を用いて逐次更新演算を行い、推定誤差及び対応する第一及び第二のウェイトを算出する。
 算出部8aは、図5中、周波数方向に沿う図中矢印Pの方向に沿った順序(第一の順序)でリソースブロックを選択し、選択したリソースブロック内の受信参照信号について、サブキャリア番号順に帯域幅全体に亘って逐次更新演算することで得られる第一のウェイトと、矢印Pとは逆方向である図中矢印Qの方向に沿った順序(第一の順序とは異なる第二の順序)でリソースブロックを選択し、サブキャリア番号の大きいものから小さいものの順に帯域幅全体に亘って逐次更新演算することで得られる第二のウェイトとを、受信参照信号ごとに算出する。
 算出部8aは、図5に示すように、第一の順序では、対象受信参照信号Kに対してサブキャリア番号の少ない方に隣接する受信参照信号を第一の他の受信参照信号Lとし、第二の順序では、対象受信参照信号Kに対してサブキャリア番号の多い方に隣接する受信参照信号を第二の他の受信参照信号Mとして、第一及び第二のウェイトを求める。
 従って、算出部8aは、選択したリソースブロックに含まれる受信参照信号の第一及び第二のウェイトを求めるにあたって、第一の他の受信参照信号L、第二の他の受信参照信号M、及び対象受信参照信号Kが、周波数方向に沿って配置されていることを利用して、逐次更新演算を行う。
 選択部8bは、算出部8aが求めた両ウェイトの内、その推定誤差の少ないウェイトをその受信参照信号のウェイトとして、受信参照信号ごとに選択し、受信データ信号のウェイトの推定に用いる。
 図6は、算出部8a及び選択部8bが受信参照信号のウェイトを算出する際の手順を示すフローチャートである。
 算出部8aは、同一シンボル上の各サブキャリアごとに配置されている受信参照信号を取得すると、まず、ウェイト算出部8が内部的に有するカウンタのカウント値iを「1」に設定する(ステップS101)。なお、このカウント値iは、以下で演算におけるサブキャリア番号に対応している。
 次いで、算出部8aは、推定誤差eup(i)及び第一のウェイトuiを演算し(ステップS102)、カウント値iが受信信号の全サブキャリア数(に一致するサブキャリア番号)以上であるか否かを判定する(ステップS103)。カウント値iが全サブキャリア数以上でない場合、算出部8aは、ステップS104に進み、カウント値iをインクリメントして再度演算を行い(ステップS102)、カウント値iが全サブキャリア数以上になるまでステップS102~S104の処理を反復する。これにより算出部8aは、サブキャリア番号順に全サブキャリア数、すなわち、受信信号の帯域幅全体に亘って、各サブキャリアの受信参照信号についての推定誤差eup(i)及びこれに対応する第一のウェイトuiを求める。
 ステップS102において、算出部8aは、下記式(1)及び式(2)に基づいて、推定誤差eup(i)及びこれに対応する第一のウェイトuiを演算する。
Figure JPOXMLDOC01-appb-M000001
 上記式中、x(i)は、受信参照信号の電力であり、各アンテナごとに対応する受信参照信号の電力を要素とするベクトルである。また、第一のウェイトuiは、各アンテナごとの受信参照信号に対応するウェイトを要素とするベクトルである。s(i)は、送信時の送信参照信号の電力であり、既知である。ui-1 Hは、カウント値(サブキャリア番号)iが一つ前である第一のウェイトの複素共役転置、eup(i)*は、推定誤差eup(i)の複素共役である。
 なお、カウント値iが、「1」の場合における複素共役転置ui-1 Hについては、算出部8aは、予め初期値を記憶しておき、それを用いて演算を行う。
 上記式(1)及び式(2)に示すように、算出部8aは、ステップS102~S104を反復することで、カウント値iが一つ前の演算で求めた第一のウェイトui-1及び現状の推定誤差eup(i)を用いて、現状の第一のウェイトuiを求める。つまり、算出部8aは、サブキャリア番号順に逐次更新演算しつつ第一のウェイトuiを算出することで、全サブキャリアの受信参照信号についての第一のウェイトuiを得る。
 算出部8aは、上記の手順で第一のウェイトuiを求めることで、結果的に図5中矢印Pの方向に沿った第一の順序でリソースブロックを選択し、選択したリソースブロックに含まれる受信参照信号それぞれの第一のウェイトuiを求める。
 ステップS103において、カウント値iが全サブキャリア数以上であると判定されると、算出部8aは、カウント値iを「全サブキャリア数」に設定する(ステップS105)。
 次いで、算出部8aは、推定誤差edown(i)及び第二のウェイトviを演算し(ステップS106)、カウント値iが「1」以下であるか否かを判定する(ステップS107)。カウント値iが「1」以下でない場合、算出部8aは、ステップS108に進み、カウント値iをデクリメントして再度演算を行い(ステップS106)、カウント値iが「1」以下となるまでステップS106~S108の処理を反復する。これにより算出部8aは、サブキャリア番号の大きいものから小さいものの順に全サブキャリア数、すなわち、受信信号の帯域幅全体に亘って、各サブキャリアの受信参照信号についての推定誤差edown(i)及びこれに対応する第二のウェイトviを求める。
 ステップS106において、算出部8aは、下記式(3)及び式(4)に基づいて、推定誤差edown(i)及び第二のウェイトviを演算する。
Figure JPOXMLDOC01-appb-M000002
 上記式中、x(i)は、受信参照信号の電力であり、各アンテナごとに対応する受信参照信号の電力を要素とするベクトルである。また、第二のウェイトviは、各アンテナごとの受信参照信号に対応するウェイトを要素とするベクトルである。vi+1 Hは、カウント値(サブキャリア番号)iが一つ前である第二のウェイトの複素共役転置、edown(i)*は、推定誤差edown(i)の複素共役である。
 なお、カウント値iが、「全サブキャリア数」の場合における複素共役転置vi+1 Hについては、算出部8aは、予め初期値を記憶しておき、それを用いて演算を行う。
 上記式(3)及び式(4)に示すように、算出部8aは、ステップS106~S108を反復することで、カウント値iが一つ前の演算で求めた第二のウェイトvi+1及び現状の推定誤差edown(i)を用いて、現状の第二のウェイトviを求める。つまり、算出部8aは、サブキャリア番号の大きいものから小さいものの順に逐次更新演算しつつ第二のウェイトviを算出することで、全サブキャリアの受信参照信号についての第二のウェイトviを得る。
 以上のようにして、算出部8aは、図5中矢印Pの方向(順方向)に沿ってサブキャリア番号順に帯域幅全体に亘って逐次更新演算することで得られる第一のウェイトuiと、矢印Pとは逆方向である図5中矢印Qの方向に沿ってサブキャリア番号の大きいものから小さいものの順に帯域幅全体に亘って逐次更新演算することで得られる第二のウェイトviとを、受信参照信号ごとに算出する。
 算出部8aは、上記の手順で第二のウェイトviを求めることで、結果的に図5中矢印Qの方向に沿った第二の順序でリソースブロックを選択し、選択したリソースブロックに含まれる受信参照信号それぞれの第二のウェイトviを求める。
 ステップS107において、カウント値iが「1」以下であると判定されると、算出部8aは、カウント値iを「1」に設定する(ステップS109)。
 そして、第一のウェイトuiに対応する推定誤差eup(i)と、第二のウェイトviに対応する推定誤差edown(i)とを比較し、推定誤差eup(i)が推定誤差edown(i)よりも小さいか否かを判定する(ステップS110)。
 推定誤差eup(i)が推定誤差edown(i)よりも小さい場合、選択部8bは、推定誤差eup(i)に対応する第一のウェイトuiを、算出結果としての受信参照信号(サブキャリア番号i)のウェイトwiとして採用し(ステップS111)、ステップS113に進む。
 一方、推定誤差eup(i)が推定誤差edown(i)よりも小さくない場合、選択部8bは、推定誤差edown(i)に対応する第二のウェイトviを、受信参照信号のウェイトwiとして採用し(ステップS112)、ステップS113に進む。つまり、選択部8bは、同一の受信参照信号に対応する第一及び第二のウェイトui,viの内、推定誤差の小さい方のウェイトを受信参照信号のウェイトwiとして採用する。
 そして、選択部8bは、ステップS113において、カウント値iが「全サブキャリア数」以上であるか否かを判定する(ステップS113)。カウント値iが全サブキャリア数以上でない場合、選択部8bは、ステップS114に進み、カウント値iをインクリメントしてステップS110に進み、再度を行い(ステップS110)、カウント値iが全サブキャリア数以上になるまでステップS110~S114の処理を反復する。ステップS113において、カウント値iが全サブキャリア数以上であると判定された場合、選択部8bは、処理を終える。
 これにより選択部8bは、受信信号の帯域幅全体(全サブキャリア数)に亘って、各サブキャリアごとの受信参照信号のウェイトwiを求めることができる。
 以上のように、算出部8a及び選択部8bは、各受信系列A,Bそれぞれからの受信信号に含まれる複数の受信参照信号について、逐次更新する算出方法によって受信参照信号のウェイトwiを算出する。
〔1.4 ウェイト算出の具体的態様について〕
 次に、算出部8a及び選択部8bによる受信参照信号のウェイト算出の具体的態様について説明する。
 ここで、図1中、移動端末MS1~4が、マクロ基地局装置である基地局装置BS1に接続し、移動端末MS5,6が、フェムト基地局装置である基地局装置BS2に接続している状況において、基地局装置BS2が、移動端末MS5,6からの受信信号のウェイトを算出する場合を考える。
 この場合、移動端末MS1~4は、基地局装置BS1に接続しているので、基地局装置BS2が移動端末MS5,6に割り当てるリソースと重なるおそれがあり、基地局装置BS2にとっては干渉源となる。
 図7は、上記の場合の、上り回線における、各移動端末MS1~6に対する無線リソースの割り当て状況の一例を示す模式図である。なお、図7では、周波数方向の帯域幅について、リソースブロック10個分(RB1~RB10)の範囲で示し、この範囲における各移動端末MS1~6に対する無線リソースの割り当て状況を模式的に示している。また、各リソースブロックRB1~RB10は、サブキャリア番号順に並んでいるものとする。
 図7において、基地局装置BS2に接続する移動端末MS5には、RB1~RB6の範囲で周波数方向に連続するリソースブロックが割り当てられている。また、基地局装置BS2に接続する移動端末MS6には、RB7~RB10の範囲で周波数方向に連続するリソースブロックが割り当てられている。
 一方、基地局装置BS1に接続する移動端末MS1には、RB1~RB3の範囲で、周波数方向に連続するリソースブロックが割り当てられ、移動端末MS2には、RB4,5の範囲、移動端末MS3には、RB6~RB8の範囲、移動端末MS4には、RB9,RB10の範囲でリソースブロックが割り当てられている。
 この図7の場合では、基地局装置BS2に接続する移動端末MS5,6に割り当てられているリソースブロックは、全て、基地局装置BS1に接続する移動端末MS1~4に割り当てられているリソースブロックと重複している。
 ここで、基地局装置BS2では、互いに割り当てられたリソースブロックが重複する移動端末の組み合わせが異なる組み合わせとなるリソースブロックの領域ごとに、受信信号の指向性が異なると考えられる。つまり、図7に示すように、リソースブロックRB1~10で表される帯域は、周波数ごとに指向性が異なるリソースブロックの領域として、移動端末MS5と移動端末MS1とが重複する第一相関領域、移動端末MS5と移動端末MS2とが重複する第二相関領域、移動端末MS5と移動端末MS3とが重複する第三相関領域、移動端末MS6と移動端末MS3とが重複する第四相関領域、及び、移動端末MS6と移動端末MS4とが重複する第五相関領域の五つの領域に分けることができる。
 これら各相関領域内に属するリソースブロック同士の間では、これらに属する受信データ信号や受信参照信号は、干渉波による影響を含めて互いに周波数方向の相関が高く、各受信参照信号のウェイトwは、ほぼ同じような値になると考えられる。
 本実施形態の算出部8a及び選択部8bは、図7に示すような状況下においても、移動端末MS5,6の割り当て等に関わらず、周波数方向に沿った順序でリソースブロックを選択し、選択したリソースブロックに含まれる受信参照信号のウェイトの算出を行う。
 図8は、図7に示す状況下で、算出部8a及び選択部8bが受信参照信号のウェイトを算出した場合の一例を示す図である。
 図8では、算出部8aが、各リソースブロックRB1~10に含まれる受信参照信号を取得し、図中矢印Pに沿って、各リソースブロックRB1からRB10の順序で選択し、これらリソースブロックそれぞれに含まれる複数の受信参照信号を逐次更新演算することで第一のウェイトuiを算出するとともに、図中矢印Qに沿って、リソースブロックRB10からRB1の順序で選択し、これらリソースブロックそれぞれに含まれる複数の受信参照信号を逐次更新演算することで第二のウェイトviを算出した場合を示している。
 図8(a)は、第一のウェイトuiに対応する推定誤差eup(i)の算出結果を示すグラフ、図8(b)は、第二のウェイトviに対応する推定誤差edown(i)の算出結果を示すグラフである。図において、縦軸は、推定誤差eに「-1」を乗算した値であり、横軸は、リソースブロックRB1からRB10に対応する周波数である。
 図に示すように、第一のウェイトuiに対応する推定誤差eup(i)を示す線図Rは、各相関領域ごとに、矢印Pの方向に向かって推定誤差が「0」に収束するように小さくなり、隣接する相関領域との間の境界部分では、一時的に推定誤差が大きくなった後、再度、「0」に収束するように小さくなり、これを各相関領域ごとに繰り返すように表される。
 これは、上述したように、各相関領域では、各相関領域内に属するリソースブロック同士の間では、これらに属する受信データ信号や受信参照信号における周波数方向の相関が高く、各受信参照信号のウェイトwは、ほぼ同じような値になるため、同一の相関領域内に属する受信参照信号を逐次更新してウェイトを算出することで、当該相関領域内における最適なウェイトに収束し、その推定精度が序々に上昇するためである。
 一方、隣接する相関領域との間の境界を超えると、指向性が変わり、その隣接する相関領域内における最適なウェイトも異なるので、前記境界の部分では、一時的に推定誤差が大きくなる。
 また、図8(b)中の第二のウェイトviに対応する推定誤差edown(i)を示す線図Sについても、上記と同様の理由により、各領域ごとに、矢印Qの方向に向かって推定誤差が「0」に収束するように小さくなり、隣接する相関領域との間の境界部分では、一時的に推定誤差が大きくなった後、再度、「0」に収束するように小さくなり、これを各相関領域ごとに繰り返すように表される。
 図8(c)は、両ウェイトに対応する推定誤差の内、小さい方を選択したときの推定誤差eを示したグラフである。選択部8bは、両ウェイトに対応する推定誤差の内、小さい方の推定誤差に対応するウェイトを選択するので、算出結果としての受信参照信号のウェイトwiの推定誤差eiは、図中の線図Tに示すような値となる。
 このように、本実施形態では、選択部8bが、両ウェイトに対応する推定誤差の内、小さい方の推定誤差に対応するウェイトを選択するので、第一のウェイトui及び第二のウェイトviの内、推定精度の高い部分を受信参照信号のウェイトwiとして得ることができる。
 上記構成の基地局装置BS2によれば、ウェイト算出部8の算出部8aが、各受信系列からの受信信号それぞれに含まれる複数の受信参照信号それぞれのウェイトを逐次更新する算出方法によって算出するので、上記従来例のように、最小単位(リソースブロック)ごとにウェイトを求めるための相関行列の推定やその演算を行う必要がなく、その演算量を減らすことができ演算負荷を軽減することができる。
 また、本実施形態においては、一のユーザに対して連続的に並ぶ複数のリソースブロックを割り当てる方式であるSC-FDMA方式によって送信される信号を受信することにより、干渉波による影響を含めて互いに相関がある複数のリソースブロックが連続して存在する可能性がある。このため、周波数方向に沿う選択順序である第一及び第二の順序でリソースブロックを選択することで、その相関がある複数のリソースブロックが連続的に存在する相関領域の中で、逐次更新に用いる受信参照信号をより多く確保でき、推定誤差の少ない精度の高い値を得ることができる。
 以上により、本実施形態によれば、演算負荷を軽減しつつも、精度の高い受信参照信号のウェイトを得ることができ、受信信号から効果的に干渉波を除去することができる。
 また、本実施形態では、ウェイト算出部8の算出部8aは、周波数方向に沿う第一の順序でリソースブロックを進むことでサブキャリア番号順に帯域幅全体に亘って受信参照信号を用いて逐次更新して第一のウェイトuiを算出し、その後、第二の順序でリソースブロックを進むことで帯域幅全体に亘って受信参照信号を逐次更新して第二のウェイトviを求めたが、各移動端末の割り当て状況が、図7で示した割り当て状況である場合において、例えば、図9(a)に示すように、まず、RB10からRB1に向かう順序を第一の順序として第一のウェイトuiを算出し、その後、RB1からRB10に向かう順序を第二の順序として第二のウェイトviを算出してもよい。
 さらに、図9(b)に示すように、RB1からRB10に向かう順序を第一の順序、RB10からRB1に向かう順序を第二の順序として、帯域幅全体をランダムに往復し、最終的に全帯域について両ウェイトui,viを算出するようにしてもよい。同一の領域について第一又は第二ウェイトを3回以上算出した場合には、最終的に最も小さい推定誤差に対応するウェイトを受信参照信号のウェイトwiとして採用する。なおこの場合、いずれの領域も、少なくとも、順方向及び逆方向で逐次更新演算を行い、第一及び第二のウェイトui,viを得ることが必要である。
 また、LTEにおいて、無線リソースの割り当てに際して周波数ホッピング方式を適用しない場合には、サブフレームを構成する二つのスロットにおける同一周波数帯域に配置される一対のリソースブロックは、ユーザ割り当て情報等を参照することなく同一のユーザに対して割り当てられることが識別可能なので、算出部8aは、この一対のリソースブロックを所定領域として周波数方向に沿う所定の順序で逐次選択し、図10(a)及び図10(b)に示すように、その所定領域内に含まれる受信参照信号それぞれを用いて、逐次更新し、第一及び第二のウェイトui,viを求めることもできる。
 なお、本発明は、上記各実施形態に限定されることはない。
 上記実施形態では、逐次更新型のウェイト算出方法として、LMSアルゴリズムに基づいた算出方法を採用した場合を例示したが、例えば、これに代えて、NLMS(Normalized LMS)アルゴリズムを用いた算出方法、RLS(Recursive Least Square)アルゴリズムを用いた算出方法、カルマンフィルタを用いた算出方法を用いることもできる。
 また、上記実施形態では、周波数方向に連続的に並ぶ複数のリソースブロックを一のユーザに対して割り当てる方式であるSC-FDMA方式を採用した場合を例示したが、例えば、時間方向に連続的に並ぶ複数のリソースブロックを一のユーザに対して割り当てる方式の場合も、本発明は適用できる。つまり、この場合、時間方向に沿う第一の順序でリソースブロックを選択して第一のウェイトを求めると共に、第一の順序とは異なる第二の順序でリソースブロックを選択して第二のウェイトを求め、これらから受信参照信号のウェイトを求めるように構成される。
 また、周波数方向、及び、時間方向の両方向それぞれで第一及び第二のウェイトを求め、これらの内で推定誤差の最も小さいウェイトを、受信参照信号のウェイトとして求めることもできる。
[第2章 チャネル推定]
〔2.1 第一の実施形態〕
〔2.1.1 通信システムの構成〕
 第2章では、通信方式としてLTEを例として説明するが、これに限られるものではない。
 図11は、LTE方式における無線通信システムの構成を示す概略図である。この無線通信システムは、基地局装置201と、ユーザ端末202a,202bと、を備えている。
 基地局装置201は、複数のアンテナを備えており、基地局装置201及びユーザ端末202a,202bは、マルチユーザMIMO伝送を行う機能を有している。
 この通信システムでは、下り回線は直交周波数多重分割多元接続(OFDMA)が採用され、上り回線は単一キャリア周波数分割多元接続(SC-FDMA)が採用されている。
 LTEの上り回線のフレームは、周波数多重分割により複数のユーザ端末によって共用され、基地局装置への多元接続が可能となっている。また、周波数多重に加えて、空間多重も行われる。
 LTEでは、フレーム中にリソースブロック(RB)と呼ばれるリソース割り当ての最小単位が設定されており、図11に示すように、1リソースブロックは、7又は6シンボル×12サブキャリアである。LTEの上りのデータチャネルにおいては、1スロットのうちの4シンボル目においては、全サブキャリアが、既知信号である参照信号(Reference Signal)とされており、図11では黒塗りの丸印で示している。以下では、参照信号を「パイロット信号」ともいう。
 1リソースブロック内における他のシンボルはデータ信号(Data Signal)とされており、図11では白抜きの丸印で示している。
 空間多重が行われているある1つのリソースブロックに着目すると、複数のユーザ端末202a,202bは、その1つのリソースブロックの信号x1,x2を用いて同時に送信することになる。
 このため、基地局装置201は、送信信号x1,x2が多重化された信号(受信信号y1,y2)を複数のアンテナ203(203a,203b)それぞれで受信する。つまり、アンテナ203aが受信する受信信号y1は、送信信号x1に対応する受信信号y1x1と、送信信号x2に対応する受信信号y1x2とが多重化され、アンテナ203bが受信する受信信号y2は、送信信号x1に対応する受信信号y2x1と、送信信号x2に対応する受信信号y2x2とが多重化されている。
 基地局装置201は、複数のアンテナ203a,203bそれぞれで受信した受信信号y1,y2から、当該受信信号y1,y2それぞれに含まれる受信パイロット信号を取得する。この受信パイロット信号は、送信信号x1,x2それぞれに対応するパイロット信号が多重化されている。
 ユーザ端末202a,202bは、送信信号x1,x2に含まれるパイロット信号について、サイクリックシフト処理を行った上で当該送信信号x1,x2を送信する。サイクリックシフト処理は、各ユーザ端末ごとで、パイロット信号を周波数軸方向に異なるシフト量で巡回シフトさせる処理であり、これにより基地局装置201で多重化されて受信される受信パイロット信号は分離可能である。
 基地局装置201は、受信信号y1,y2から取得する多重化された受信パイロット信号に基づいて、送信信号x1,x2それぞれに対応する受信パイロット信号それぞれの周波数応答を分離して取得し、送信信号x1,x2それぞれに対応する受信信号のチャネル推定を行う。基地局装置201は、推定したチャネルを用いて、多重化された他のデータ信号から各ユーザごとのデータ信号を分離し、各ユーザ端末202a,202bそれぞれに対応する受信データ信号x^1,x^2を取得するように構成されている。
〔2.1.2 基地局装置の構成〕
 図12は、基地局装置201の受信系の要部構成を示すブロック図である。
 本発明の第一の実施形態の通信装置としての基地局装置201は、アンテナ203が接続された受信部204の他、FFT部205、分離・等化部206、IDFT部207、復調部208、及びチャネル推定部210を備えている。基地局装置201は、これら各部を、基地局装置201が備える複数のアンテナ203(203a,203b)ごとそれぞれに備えている。
 受信部204は、増幅器、A/D変換器等を備えており、複数のアンテナ203が受信する受信信号yを増幅するとともにデジタル信号に変換した信号y(k)(k=1,2,・・・L、Lはサンプリング時間中に含まれるサンプル数)をFFT部205に出力する。
 FFT部205は、信号y(k)について、高速フーリエ変換し、時間領域から周波数領域のデータに変換してサブキャリア等を分波し、サブキャリアを除いたデータ信号を分離・等化部206に出力する。また、FFT部205は、周波数領域に変換したデータ信号の内、受信パイロット信号r(k)をチャネル推定部210に出力する。
 チャネル推定部210は、受信パイロット信号r(k)に基づいて、複数のユーザ端末202a,202bに対応する受信信号のチャネル特性を推定し、その推定結果を分離・等化部206に出力する。
 分離・等化部206は、チャネル推定部210により推定された複数のユーザ端末202a,202bそれぞれの受信信号(例えば、受信信号y1の場合、受信信号y1x1,y1x2)のチャネル推定結果に基づいて、FFT部205から与えられる周波数領域のデータ信号を各ユーザ端末ごとのデータ信号に分離し、等化処理を行う。
 分離・等化部206により各ユーザ端末ごとに分離、等化されたデータ信号は、IDFT部207に与えられ、時間領域のデータに変換された後、復調部208によって復調される。
〔2.1.3.チャネル推定部の構成〕
 図13は、チャネル推定部210の構成を示すブロック図である。
 チャネル推定部210は、図に示すように、除算部211、DCT部212、窓処理部213、及び、複数のIDCT部214を備えている。
 除算部211は、FFT部205から与えられる受信パイロット信号r(k)から、既知信号である基本パイロット信号s(k)を除算することで正規化し、受信パイロット信号r(k)の伝送路周波数応答h(k)を得る。
 受信パイロット信号r(k)は、各ユーザ端末が送信したパイロット信号が多重化された多重信号であり、下記式(11)のように表される。
Figure JPOXMLDOC01-appb-M000003
 式(11)中、hn(k)(n=1~N)は、各ユーザ端末ごとの伝送路周波数応答、Nは、ユーザ端末の数、αnは、下記式(12)で示される、各ユーザ端末ごとの周波数領域におけるシフト量である。
 αn = 2πncs / N (ncs = 0,1,・・・,N-1)
                               ・・・(12)
 除算部211は、既知の基本パイロット信号s(k)を除算することで、下記式(13)に示される、受信パイロット信号r(k)の伝送路周波数応答h(k)を得る。
Figure JPOXMLDOC01-appb-M000004
 第一変換部としてのDCT部212は、除算部211が得た受信パイロット信号r(k)の伝送路周波数応答h(k)について、離散コサイン変換(DCT:Discrete Cosine Transform)を行うことで、時間領域に変換し、下記式(14)に示される、伝送路時間応答H(t)(k=1,2,・・・L、Lはサンプリング時間中に含まれるサンプル数)を得る。
Figure JPOXMLDOC01-appb-M000005
 上記のようにDCT部212は、周波数を余弦関数によって表すことで、周波数領域のデータを時間領域に変換する。
 窓処理部213は、DCT部212が得た、受信パイロット信号r(k)の伝送路時間応答H(t)について、各ユーザ端末ごとの受信パイロット信号の伝送路時間応答に分離する窓処理を行う。
 受信パイロット信号r(k)の伝送路時間応答H(t)は、下記式(15)のように示される。
Figure JPOXMLDOC01-appb-M000006
 なお、上記式(15)中、Tは、シンボル長である。
 複数の参照信号それぞれの伝送路時間応答である、各ユーザ端末ごとの受信パイロット信号の伝送路時間応答Hn(t)(n=1,・・・N)は、上記式(15)に示すように、時間軸方向に「T/N」の間隔ごとに配列される。
 窓処理部213は、受信パイロット信号r(k)の伝送路時間応答H(t)から、上記のように時間軸方向に配列された各ユーザ端末ごとの受信パイロット信号の伝送路時間応答Hn(t)(以下、単に伝送路時間応答Hn(t)ともいう)を切り出すことで、各ユーザ端末ごとの伝送路時間応答Hn(t)に分離する。
 また、窓処理部213は、分離した各ユーザ端末ごとの伝送路時間応答Hn(t)それぞれに対して、時間軸方向のオフセット量(上記式(15)中、「nT/N」)を除くことで、サイクリックシフト処理によってシフトされた(時間軸方向の)位置から元の位置に戻す処理も行う。
 窓処理部213は、分離した各ユーザ端末ごとの伝送路時間応答Hn(t)を、IDCT部214に出力する。
 第二変換部としてのIDCT部214は、ユーザ端末の伝送路時間応答Hn(t)について、逆離散コサイン変換(IDCT:Inverse Discrete Cosine Transform)を行うことで、周波数領域に変換し、下記式(16)に示される、ユーザ端末ごとの受信パイロット信号の伝送路周波数応答hn(k)を得る。
Figure JPOXMLDOC01-appb-M000007
 各IDCT部214は、上記のようにして得た、ユーザ端末ごとの受信パイロット信号の伝送路周波数応答hn(k)を、各ユーザ端末に対応する受信信号のチャネル特性の推定結果として、分離・等化部206に出力する。
 上記構成の基地局装置201によれば、チャネル推定部210のDCT部212が、多重化された受信パイロット信号r(k)の伝送路周波数応答h(k)を離散コサイン変換によって、伝送路時間応答H(t)に変換するので、上記従来例のIDFTでみられる周期拡張時のデータの不連続な部分が生じるのを防止することができる。その結果、受信パイロット信号r(k)の伝送路時間応答H(t)における、各ユーザ端末ごとの受信パイロット信号それぞれの伝送路時間応答Hn(t)に生じる遅延広がりが大きくなるのを防止できる。
 図14は、離散コサイン変換による周期拡張の態様を説明するための図であり、(a)は、離散コサイン変換の場合、(b)は、IDFTの場合を示している。
 IDFTは、データ長がLである元の周波数領域信号を周期拡張した可算無限個の信号系列に対し、離散時間フーリエ変換を適用することで、時間領域への変換を行う演算である。このため、図14(b)に示すように、拡張部分の境界においてデータが不連続となりやすい。この不連続性は、高次の係数の増大を招き、時間領域変換後の遅延広がりを大きくする原因となってしまう。
 一方、離散コサイン変換は、データ長がLである元の関数信号を、境界点で偶対称となるような拡張を施すことにより生成される信号に対し、離散フーリエ変換を適用することと等価である。そのため、離散コサイン変換では、図14(a)に示すように、拡張部分の境界においてデータの連続性が保たれる。
 この拡張部分の境界における連続性から、離散コサイン変換は、信号成分を低周波数側に集中させるという特性をもつ。したがって、時間領域に変換した後のデータにおける遅延広がりを小さく抑えることができる。
 図15は、伝送路周波数応答を時間領域に変換したときの態様を説明するための図であり、(a)は、離散コサイン変換の場合の一例、(b)は、IDFTの場合の一例を示している。図中、横軸は時間、縦軸は電力を示している。また、図15では、2つの隣接するユーザ端末のデータを表しており、黒塗りの四角印、及び白抜きの四角印でそれぞれを描き分けている。
 図において、離散コサイン変換の場合、IDFTの場合と比較して時間軸方向の広がりが小さく、一のユーザ端末のデータが窓幅の範囲内に収まる。一方、IDFTの場合、時間方向の広がりが大きく、また、窓幅を超える位置に比較的大きい値をもつ信号が存在しており、これら窓幅外に位置するデータは、取得されず損失することとなる。
 このように、本実施形態によれば、時間領域に変換した後のデータにおける遅延広がりを小さく抑えることができるので、窓処理部213によって、ユーザ端末ごとそれぞれの伝送路時間応答Hn(t)に分離する際に、データ部分が窓処理における窓幅以上に広がるのを抑制でき、データ損失を抑制することができる。この結果、推定チャネル特性に歪みが生じるのを抑制することができ、チャネル推定精度を高めることができる。
 また、本実施形態において、多重化された受信パイロット信号r(k)の伝送路周波数応答h(k)を離散コサイン変換によって、伝送路時間応答H(t)に変換したときに、図15に示すように、所定の閾値以下の電力の信号を雑音とみなして除くように構成することもできる。この場合、データ信号に含まれる雑音の影響を抑えることができる。
 なお、上記所定の閾値以下の電力の信号を雑音とみなして除く構成は、IDFTによるチャネル推定においても用いることができる。
〔2.2 第二の実施形態〕
 図16は、本発明の第二の実施形態に係る基地局装置201が備えるチャネル推定部210の構成を示すブロック図である。
 本実施形態のチャネル推定部210は、除算部211と、乗算部221と、拡張処理部222と、LPF(ローパスフィルタ)223と、遅延成分除去部224とを備えている。
 除算部211は、上記第一の実施形態と同様、FFT部205から与えられる受信パイロット信号r(k)から、既知信号である基本パイロット信号s(k)を除算することで、多重化された受信パイロット信号r(k)の伝送路周波数応答h(k)を得る。
 乗算部221は、各ユーザ端末ごとに設定されたパイロット信号それぞれのサイクリックシフトに基づくシフト量(を表す複素定数e-jαNk)を、受信パイロット信号r(k)の伝送路周波数応答h(k)に乗算することで、各ユーザ端末ごとの伝送路周波数応答hn(k)をもとの周波数にシフトさせた伝送路周波数応答hn’(k)を得る。
 乗算部221は、もとの周波数にシフトさせた伝送路周波数応答hn’(k)を、各ユーザ端末の受信パイロット信号ごとに対応して得る。
 拡張処理部222は、乗算部221がユーザ端末の受信パイロット信号の伝送路周波数応答hn(k)(以下、単に伝送路周波数応答hn(k)ともいう)をもとの周波数にシフトさせた伝送路周波数応答hn’(k)について偶対称拡張処理を行い、偶対称拡張処理を行った被処理関数を、各ユーザ端末ごとに対応して得る。
 図17(a)は、偶対称拡張処理を行った後の被処理関数hn’’(k)の一例を模式的に示した図である。
 図に示すように、被処理関数hn’’(k)は、伝送路周波数応答h(k)を構成するデータD1と、その周波数軸前後に配置された拡張データD2,D3とを有している。これら拡張データD2,D3は、データD1との境界に対してデータD1と線対称となるように設けられ、データD1に対して偶対称とされている。
 また、拡張データD2,D3は、LPF223の群遅延の長さとなるように設けられている。本実施形態では、後述するようにLPF223は、群遅延の長さがタップ長の1/2となるFIR(Finite Impulse Response)フィルタにより構成されており、拡張データD2,D3は、LPF223のタップ長の1/2となるように設けられている。従って、データD1(伝送路周波数応答h(k))を構成する各要素を、下記式(17)で表した場合、
   伝送路周波数応答h(k)=[x(1),x(2),・・・,x(L)]
                                 ・・・(17)
伝送路周波数応答h(k)に偶対称拡張処理を行った被処理関数被処理関数hn’’(k)を構成する要素は、下記式(18)のように表すことができる。
 被処理関数hn’’(k)=[x(M/2),x((M/2)-1),・・・
     ・・・,x(1),x(1),・・・,x(L),x(L-1),・・・
                   ・・・,x(L-(M/2)-1)]
                                 ・・・(18)
 なお、上記式(8)中、MはLPF223のタップ長である。
 また、上記式(8)中、「x(M/2),x((M/2)-1),・・・,x(1)」の部分が、拡張データD2の部分であり、「x(L-1),・・・,x(L-(M/2)-1)」の部分が、拡張データD3の部分である。
 LPF223は、例えば、FIRフィルタにより構成されており、拡張処理部222が得る上記被処理関数hn’’(k)から、もとの周波数にシフトさせたユーザ端末の伝送路周波数応答hn(k)のみを取得する機能を有している。
 すなわち、上記被処理関数hn’’(k)は、一のユーザ端末の伝送路周波数応答hn(k)がもとの周波数にシフトされているので、この部分のみを通過させ、他の部分を通過させないように、LPF223のカットオフ値を設定することで、当該LPF223は、もとの周波数にシフトさせたユーザ端末の伝送路周波数応答hn(k)のみを取得することができる。
 遅延成分除去部224は、LPF223により得られる各ユーザ端末の伝送路周波数応答hn(k)において発生が不可避な遅延成分を除去する機能を有している。
 図17(b)は、LPF223により得られる一のユーザ端末の伝送路周波数応答hn(k)を示した模式図である。図に示すように、一のユーザ端末の伝送路周波数応答hn(k)を構成するデータd1の低周波数側には、LPF223を通過することで生じる遅延成分が存在している。この遅延成分は、一般に、LPF223のタップ長分の長さで生じるものであり、LPF223を通過した後における、遅延成分を含む一のユーザ端末の伝送路周波数応答hn(k)を構成する要素は、下記式(19)により表される。
 一のユーザ端末の伝送路周波数応答hn(k)(遅延成分を含む)=
             [hn(1),hn(2),・・・,hn(L+M)]
                                 ・・・(19)
 また、式(19)に示す一のユーザ端末の伝送路周波数応答hn(k)から遅延成分を除去した一のユーザ端末の伝送路周波数応答hn(k)は、下記式(20)により表される。
  一のユーザ端末の伝送路周波数応答hn(k)=
      [hn(M+1),hn(M+2),・・・,hn(M+L)]
                                 ・・・(20)
 このように、本実施形態では、LPF223を通過した後の一のユーザ端末の伝送路周波数応答hn(k)に含まれる遅延成分を除去する遅延成分除去部224を備えているので、各ユーザ端末ごとの伝送路時間応答hn(k)を、より精度よく取得することができる。
 以上のようにして、本実施形態のチャネル推定部210は、遅延成分除去部224により遅延成分を除くことで得られる各ユーザ端末ごとの受信パイロット信号の伝送路周波数応答hn(k)を、各ユーザ端末に対応する受信信号のチャネル特性の推定結果として、分離・等化部206に出力する。
 上記構成の基地局装置201によれば、チャネル推定部210の拡張処理部222が、受信パイロット信号r(k)の伝送路周波数応答h(k)について偶対称拡張処理を行うので、乗算部221及びLPF223によって各ユーザ端末ごとの伝送路周波数応答hn(k)を分離し取得する際におけるデータ損失を抑制することができる。この結果、推定チャネル特性に歪みが生じるのを抑制することができ、チャネル推定精度を高めることができる。
 また、本実施形態の基地局装置201では、周波数領域内で各ユーザ端末ごとの伝送路周波数応答hn(k)を取得するので、IDFT等の演算量が多い処理を行う必要がなく、装置に対する負荷を軽減できる構成とすることができる。
 また、本実施形態において、拡張処理部222は、偶対称拡張処理は、LPF223の群遅延の長さ分(拡張データD2,D3)だけ拡張するので、必要最小限のデータ分をもって拡張しつつ、LPF223によるデータ損失をより効果的に抑制することができる。
 なお、本発明は、上記各実施形態に限定されることはない。上記各実施形態では、本発明の通信装置を基地局装置に適用した場合を例示したが、ユーザ端末側に適用することもできる。
 また、上記第二の実施形態において、チャネル推定部210は、除算部211と、乗算部221と、拡張処理部222と、LPF223と、遅延成分除去部224とを備えている場合を例示したが、これらの内、拡張処理部222を省略した形、すなわち、除算部211と、乗算部221と、LPF223と、遅延成分除去部224とによってチャネル推定部210を構成することもできる。
 この場合、乗算部221が得た、各ユーザ端末の受信パイロット信号ごとのもとの周波数にシフトさせた伝送路周波数応答hn’(k)は、そのままLPF223に出力される。
 LPF223は、もとの周波数にシフトさせた伝送路周波数応答hn’(k)から、もとの周波数にシフトさせたユーザ端末の伝送路周波数応答hn(k)のみを取得する。遅延成分除去部224は、LPF223により得られる各ユーザ端末の伝送路周波数応答hn(k)に含まれる遅延成分を除去する。
 以上のようにして、上記構成のチャネル推定部210は、各ユーザ端末ごとの受信パイロット信号の伝送路周波数応答hn(k)を、各ユーザ端末に対応する受信信号のチャネル特性の推定結果として得ることができる。
 上記構成のチャネル推定部210を備えた基地局装置によれば、周波数領域内で複数の受信パイロット信号それぞれの伝送路周波数応答を取得することができるので、IDFT等の演算量が多い処理を行う必要がなく簡易な構成とすることができる。
〔2.3 効果の確認について〕
 本発明者は、上記各実施形態による基地局装置によって、多重化された受信パイロット信号を分離してチャネル推定するシミュレーションを行い、従来方法でチャネル推定を行った場合と比較してその効果の検証を行った。
 比較例としては、上記従来例で述べたように、多重化された受信パイロット信号の伝送路周波数応答をIDFTによって伝送路時間応答に変換し、分離した後、DFTによって周波数領域に変換する方法によりチャネル推定を行う基地局装置を用いた。
 本発明の実施例としては、上記第一の実施形態で示した、DCT部212及びIDCT部214を備えた基地局装置201を実施例1とし、第二の実施形態で示した、LPF部を備えた基地局装置201を実施例2とした。
 検証方法としては、ユーザ端末202つ分のパイロット信号が多重化された受信パイロット信号を用い、実施例1,2、及び比較例それぞれで同一条件下に設定した上で、チャネル推定についてのシミュレーションを行い、そのシミュレーションによって得られた推定結果をグラフに表すことで比較した。
 図18は、各実施例及び比較例のチャネル推定結果を表したグラフであり、(a-1),(a-2)は、実施例1、(b-1),(b-2)は、実施例2、(c-1),(c-2)は、比較例のチャネル推定結果を示したグラフである。図17において、横軸は、周波数、縦軸は、振幅を示しており、図面左側に一方のユーザ端末のチャネル推定結果、右側に他方のユーザ端末のチャネル推定結果を示している。
 図中、比較例によるチャネル推定結果を見ると、帯域の両端に歪みが生じていることが判る。
 一方、実施例1,2によるチャネル推定結果では、比較例に見られるような歪みは見られず、精度よくチャネル推定されていることが判る。
 図19は、上記シミュレーションにより検証した実施例1及び比較例によるチャネル推定結果によって復調した際のデータをコンスタレーションマップに示した一例であり、(a)は、実施例1によるもの、(b)は、比較例によるものを示している。
 比較例によるものは、各データが各ビット位置周辺に散在しているのに対して、実施例1によるものは、各データそれぞれが各ビット位置に精度よく復調されていることが判る。
 このように、本検証における条件下では、本実施形態による基地局装置201は、従来方法によるものと比較して、チャネル推定精度を向上でき、復調精度を高めることが明らかとなった。
[第3章 リソース割り当て]
 以下、本発明の好ましい実施形態について添付図面を参照しながら説明する。なお、本実施形態では、通信方式としてLTEを例として説明するが、これに限られるものではない。
 図20は、LTE方式における無線通信システム(例えば、携帯電話用通信システム)を示している。この無線通信システムには、基地局装置301とユーザ端末302a,302bとが含まれる。基地局装置301は、複数のアンテナを備えており、マルチユーザMIMO伝送が可能となっている。
 また、本実施形態の基地局装置301は、通信エリアが比較的小さいフェムトセルを形成するフェムト基地局装置として好適に用いられる。フェムト基地局装置301は、通信エリアが比較的大きいマクロセルを形成するマクロ基地局装置では電波が届かない場所等に設置される。
 なお、LTEについては、第2章で説明したとおりである。
 基地局装置301は、上りリンク及び下りリンクにおける、ユーザへのリソース割り当て(リソースブロック割り当て)を行うスケジューリング部311を備えている。スケジューリング部311は、フレーム中のリソースブロックを各ユーザ端末に割り当てる周波数多重のほか、1つのリソースブロックが複数のユーザ端末に割り当てられる空間多重も用いてスケジューリングを行うことができる。
 なお、上りリンクのユーザ割り当て情報(MAP情報)は、下りリンクのフレームにて各ユーザ端末302a,302bへ通知される。各ユーザ端末302a,302bは、基地局装置301によって割り当てられた1又は複数のリソースブロックを用いて、上りリンクの通信を行う。
 空間多重が行われているある1つのリソースブロックに着目すると、複数のユーザ端末302a,302bが、その1つのリソースブロックの信号x1,x2を同時に送信することになる。
 LTEでは、上り信号の参照信号(パイロット信号)として、Zadoff-Chu/CGS(ZC)が用いられる。本実施形態の空間多重では、空間多重する複数ユーザ端末に対し、完全に同一のリソースブロックを割り当てずに、一部異なるリソースブロックが割り当てられる。このように、完全に同一のリソースを用いない場合、ZCの系列長が複数ユーザ端末においてそれぞれ異なることになる。この場合、複数ユーザ端末に対して、単に異なるサイクリックシフトを用いるだけでは、直交性が保証されない。そこで、本実施形態では、効果的に干渉除去が行えるように、パイロット信号間の互いの相互相関が小さくなる(直交性を確保するための基準となる所定の閾値を下回る)ようにパイロット信号のサイクリックシフト量が設定されている。これにより、パイロット信号間の直交性が保証され、確実に空間多重信号を分離することができる。
 基地局装置301は、複数のユーザ端末302a,302bからの空間多重信号を複数の受信アンテナで受信する。基地局装置は、受信した空間多重信号を、各ユーザ端末302a,302bそれぞれからの信号に分離する信号分離部312を備えている。
 信号分離部312は、従来の一般的な信号分離方法ではなく、アダプティブアレー処理を使った信号分離を行う。図21に示すように、信号分離部312は、アダプティブアレー処理のためのウェイト計算を行うウェイト計算部121a,121bと、パイロット信号を生成するパイロット生成部122a,122bと、アレー合成部123a,123bと、を備えている。
 図21では、第1ユーザ端末302aからの信号を得るための第1ウェイト計算部121a、第1パイロット生成部122a、及び第1アレー合成部123aと、第2ユーザ端末302bからの信号を得るための第2ウェイト計算部121b、第2パイロット生成部122b、及び第2アレー合成部123bと、を備えている。なお、ユーザ端末数は2個に限定されるものではない。
 信号分離部312は、複数(ここでは2個)のアンテナによって受信した空間多重信号y1,y2を、各ユーザ端末302a,302bからの信号x^1,x^2に分離する。なお、信号x^1は、第1ユーザ端末302aの送信信号x1の推定値(信号分離部312によって得た値)であり、信号x^2は、第2ユーザ端末302bの送信信号x2の推定値(信号分離部312によって得た値)である。
 図22(a)に示すように、空間多重されている複数の信号x1,x2のうち、第1ユーザ端末302aからの信号x1を得たい場合には、信号分離部312は、複数の信号x1,x2のうち第1ユーザ端末302aからの信号x1だけを希望信号とみなして、アダプティブアレー処理を行う。これにより、第2ユーザ端末302bからの信号x2は干渉信号とみなされる。アダプティブアレー処理では希望信号の方向にアンテナ指向性が向けられ、干渉信号の方向にはヌルとなるため、希望信号とみなされた信号x1だけを取り出すことができる。
 一方、図22(b)に示すように、空間多重されている複数の信号x1,x2のうち、第2ユーザ端末302bからの信号x2を得たい場合には、信号分離部312は、複数の信号x1,x2のうち第2ユーザ端末302bからの信号x2だけを希望信号とみなして、アダプティブアレー処理を行う。これにより、第1ユーザ端末302aからの信号x1は干渉信号とみなされ、希望信号とみなされた信号x2だけを取り出すことができる。
 前記ウェイト計算部121a,121bでは、ユーザへのリソース割り当ての最小単位であるリソースブロック毎にウェイトを計算する。すなわち、ある特定のリソースブロック内のウェイトを計算する際には、他のリソースブロックの参照信号(パイロット信号)を用いずに、当該特定のリソースブロック内に含まれる参照信号だけを用いる。
なお、本実施形態では、通信方式としてLTEを例として説明するが、これに限られるものではない。

 リソースブロックは、ユーザへのリソース割り当ての最小単位であるため、1つのリソースブロック内では、空間多重されている複数の信号のうち干渉信号とみなされる信号の変動がない。
 空間多重する複数ユーザ端末に対し、完全に同一のリソースブロックを割り当てずに、図23に示すように、一部異なるリソースブロックを割り当てた場合、1つのリソースブロックよりも広い領域でウェイトを計算すると、干渉信号とみなされる信号の送信元が変動するおそれがある。例えば、図23のユーザ1に割り当てられた領域全体(複数のリソースブロックからなる)でウェイトを計算する場合、その領域では、干渉信号としてみなされる信号としてユーザ2からの信号とユーザ3からの信号が存在することになる。この場合、干渉源が多くなりすぎ、適切なアダプティブアレー処理が行えなくなるおそれがある。これに対し、ウェイトを計算する単位が、リソースブロックであると、そのリソースブロック内では、空間多重された他のユーザ端末(干渉端末とみなされるユーザ端末)が一定となるため、適切なアダプティブアレー処理を行うことができる。
 図21に戻り、信号分離部312が、第1ユーザ端末302aからの信号を得る場合、第1ウェイト計算部121aは、パイロット生成部122aから第1ユーザ端末302aが送信した参照信号(送信パイロット)を得て、受信信号y1,y2それぞれに含まれる参照信号(受信パイロット)zに基づき、第1ユーザ端末302aに対応するリソースブロックのMMSEウェイトw1を得る。
 ここで、k番目のユーザ端末のMMSEウェイトwkを得るための式は下記の通りである。
Figure JPOXMLDOC01-appb-M000008
 上記のMMSEウェイト計算は、第1ユーザ端末302aに割り当てられたリソースブロック毎に行われる。
 ウェイト計算をSMIアルゴリズムで計算する場合、k番目(k=1~K;Kはユーザ端末の数)のユーザ端末のウェイトwkは、次のように算出される。
Figure JPOXMLDOC01-appb-M000009
 MMSEウェイト計算部121aで計算されたウェイトw1={w11,w12}は、アレー合成部123aに与えられ、アレー合成処理が行われ、第1ユーザ端末302aが送信した信号x1の推定値x^1が得られる。これにより、空間多重信号から、第1ユーザ端末302aが送信した信号x1(の推定値x^1)が分離できたことになる。
 なお、k番目のユーザ端末のアレー合成は、次の式に基づいて行われる。
Figure JPOXMLDOC01-appb-M000010
 第2ユーザ端末302bが送信した信号x2の推定値x^2についてもMMSEウェイト計算部121b、パイロット生成部122b、アレー合成部123bを用いて、上記と同様に算出される。
 つまり、図22(b)に示すように、空間多重されている複数の信号x1,x2のうち、第2ユーザ端末302bからの信号x2を得たい場合には、信号分離部312は、複数の信号x1,x2のうち第2ユーザ端末302bからの信号x2だけを希望信号とみなして、アダプティブアレー処理を行う。これにより、第1ユーザ端末302aからの信号x1は干渉信号とみなされる。希望信号とみなされた信号x2だけを取り出すことができる。
 このように本実施形態に係る信号分離部312では、空間多重されているユーザ端末302a,302bそれぞれについて、上記のようなアダプティブアレー処理が行われ、この結果、空間多重信号から、各ユーザ端末302a,302bが送信した各信号x1,x2の分離が行える。
 また、本実施形態の基地局装置は、大きさが比較的小さいフェムトセルを形成するフェムト基地局装置であるため、マクロセルにおいて生じ易いマルチパスや遅延が少なく、上記アダプティブアレー処理を行うのに適している。
 なお、MMSEウェイトによる空間多重信号の分離を行列表現すると次の通りである。
Figure JPOXMLDOC01-appb-M000011
 図23に示すように、空間多重される複数ユーザ端末に対し、一部異なるリソースブロックが割り当てられていても、本実施形態の信号分離部312は、信号を分離することができる。したがって、スケジューリング部311は、図27に示すように、空間多重される複数ユーザ端末に対し、完全に同一のリソースブロックを割り当てるという制約を受けることなく、図23のような自由な空間多重スケジューリングを行うことができ、効率的なスケジューリングか可能である。この結果、システムスループット上昇が可能である。
 図24は、上記のアダプティブアレー処理(以下、「アダプティブアレーMIMO」という)を用いたリソースブロック割り当て(スケジューリング処理)と信号の分離処理の一例を示している。
 まず、基地局装置は、無線接続している各ユーザ端末302(空間多重なし)について、CINR(Carrier to Interference and Noise Ratio)を測定して、第1のCINR値を得る(ステップS1)。そして、基地局装置は、無線接続している各ユーザ端末302(空間多重なし)について通常のアダプティブアレー処理を行った上で(ステップS2)、再度、CINRを測定して、第2のCINR値を得る(ステップS3)。
 そして、基地局装置は、第1のCINR値と第2のCINR値との比較を行って、本来的な意味での干渉端末の存在を判定する。
 基地局装置の近傍に、近隣のセルのユーザ端末が存在する場合、例えば、図25に示すように、フェムトセルの近傍に、マクロセルを形成するマクロ基地局(マクロBS)3101に無線接続するユーザ端末(マクロMS)3102が存在する場合、このユーザ端末3102は、フェムトセルに対して、干渉を与える干渉端末となる。
 このような本来的な意味での干渉端末3102が存在する場合、その干渉端末3102による干渉除去を優先する必要があるため、フェムトセル内の空間多重されたユーザ端末を干渉端末であるとみなしてアダプティブアレーMIMOを行っても、信号の分離が困難となる。したがって、本来的な意味での干渉端末3102が存在する場合には、アダプティブアレーMIMOを行わないのが好ましい。
 ステップS1~S4までの処理は、本来的な意味での干渉端末3102(他セルのユーザ端末)の有無を判定するための処理である。
 ステップS1の第1CINR値の測定時には、干渉端末3102からの干渉除去のための通常のアダプティブアレー処理(ステップS2)が行われていないため、干渉端末3102が存在する場合には、第1CINR値は低くなる。一方、干渉端末3102からの干渉除去のためのアダプティブアレー処理(ステップS2)が行われた状態で測定された第2CINR値は、干渉端末3102が存在していても、比較的大きな値となる。
 一方、干渉端末3102が存在しない場合には、第1CINR値と第2CINR値とは、ほぼ等しくなるはずである。
 したがって、第1CINR値と第2CINR値とを比較することで、干渉端末3102の有無を判定できる(ステップS4)。より具体的には、基地局装置の判定部313は、第1CINR値よりも第2CINR値のほうが(十分に)大きければ、干渉端末3102が存在すると判定し、そうでなければ、干渉端末3102が存在しないと判定することで、干渉端末の有無を判定し、AA-MIMOによる信号の分離が可能であるか否かを判定する。
 ステップS4にて、干渉端末3102が存在すると判定された場合、アダプティブアレーMIMO(AA-MIMO)を用いた信号分離が困難となるため、基地局装置のスケジューリング部311は、上りリンクについて、空間多重を用いないリソースブロック割当処理を行う(ステップS5)。この場合、空間多重が行われないため、空間多重信号の分離は必要ない。なお、干渉端末3102が存在する場合には、空間多重される複数ユーザ端末に対し、完全に同一のリソースブロックを割り当てるという制約の下で空間多重を行っても良い。この場合、信号分離部312は、空間多重信号の分離を、チャネル行列Hを推定する従来の分離方法によって行う。
 ステップS4にて、干渉端末3102が存在しないと判定された場合、AA-MIMOが行われることを前提に、スケジューリング部311は、上りリンクについて、空間多重を用いたリソースブロック割当処理(空間多重スケジューリング)を行う(ステップS6)。AA-MIMOでは、空間多重するユーザ端末同士で同じ周波数リソースを使用しなくても、信号分離が可能であるため、リソース割り当ての柔軟性が高くなる。
 決定された上りリンクのユーザ割り当て情報(MAP情報)は、下りリンクのフレームにて各ユーザ端末302a,302bへ通知される。各ユーザ端末302a,302bは、基地局装置によって割り当てられた1又は複数のリソースブロックを用いて、上りリンクの通信を行う。
 そして、信号分離部312は、ユーザ端末302a,302bからの空間多重信号を、AA-MIMOによって分離する(ステップS7)。
 ただし、空間多重する複数ユーザ端末302a,302bが、基地局装置からみてほぼ同じ方向に位置している場合、各ユーザ端末302a,302bからの信号がほぼ同じ方向から到来するため、干渉端末としてみなされるユーザ端末にヌルを向けることが困難であり、AA-MIMOを行っても信号を分離できないことがある。つまり、AA-MIMOを行っても、干渉端末としてみなされるユーザ端末からの信号(干渉信号)を除去できず、低CINR値となり、希望端末としてみなされるユーザ端末からの信号(希望信号)を取得できなくなるおそれがある。その結果、信号分離が行えない。
 そこで、ステップS8では、ステップS7の信号分離処理にて、空間多重信号の分離ができたか否かを判定する。つまり、信号分離部312によるAA-MIMOによって信号の分離を試みた結果に基づいて、信号の分離が可能であったか否か(各ユーザ端末の信号を取得できたか否か)を判定部313が判定する。
 ステップS8において、分離できなかったと判定された場合、ステップS6に戻り、再度のスケジューリングを行う。再度のスケジューリングでは、信号分離できなかった複数のユーザ端末については、互いに異なるリソースブロックが割り当てられるように、リソースブロック割り当てが行われる。これにより、再度のAA-MIMOによる分離処理(ステップS7)では、信号分離できる可能性が高まる。
 なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味、及び範囲内でのすべての変更が含まれることが意図される。
 1a,1b アンテナ
 7   合成部
 8   ウェイト算出部
 8a  算出部
 8b  選択部
 BS1,BS2 基地局装置(通信装置)
 MS1~6 移動端末(ユーザ)
201   基地局装置(通信装置)
210  チャネル推定部
212  DCT部(第一変換部)
213  窓処理部
214  IDCT部(第二変換部)
221  乗算部
222  拡張処理部
223  LPF(フィルタ部)
224  遅延成分除去部(除去部)
301 基地局装置
302a,302b ユーザ端末
311 スケジューリング部
312 信号分離部
313 判定部
121a,121b ウェイト計算部
122a,122b パイロット生成部
123a,123b アレー合成部

Claims (25)

  1.  受信信号に含まれる複数の既知信号それぞれのウェイトを、当該複数の既知信号ごとに逐次更新する算出方法によって算出するウェイト算出部を備えた通信装置であって、
     前記ウェイト算出部は、
     更新対象となる対象既知信号について、前記対象既知信号を用いて更新する直前に更新された第一の他の既知信号のウェイトを、当該対象既知信号を用いて更新することで得られる第一のウェイトと、前記第一の他の既知信号とは異なる第二の他の既知信号のウェイトを、当該対象既知信号を用いて更新することで得られる第二のウェイトと、を少なくとも含む複数のウェイトを算出する算出部と、
     前記対象既知信号についての複数のウェイトの内、その推定誤差の少ないウェイトを前記対象既知信号のウェイトとして選択する選択部と、を備えていることを特徴とする通信装置。
  2.  前記算出部は、一又は複数の無線割り当ての最小単位からなる複数の所定領域を、少なくとも、第一の順序、及び、前記第一の順序とは異なる第二の順序を含む複数の順序で選択し、
     少なくとも、前記第一の順序で選択するごとにその選択した所定領域に含まれる既知信号を用いて前記第一のウェイトを算出するとともに、前記第二の順序で選択するごとにその選択した所定領域に含まれる既知信号を用いて第二のウェイトを算出する請求項1に記載の通信装置。
  3.  前記第二の順序は、前記第一の順序の逆の順序である請求項2に記載の通信装置。
  4.  前記所定領域は、ユーザ割り当て情報を参照することなく同一ユーザに割り当てられていることが識別可能な領域である請求項2又は3に記載の通信装置。
  5.  前記無線割り当ての最小単位は、リソースブロックである請求項2~4のいずれか一項に記載の通信装置。
  6.  前記第一及び第二の順序は、前記所定領域が周波数方向又は時間方向の少なくともいずれか一方に沿って並ぶ順序である請求項2~5のいずれか一項に記載の通信装置。
  7.  前記対象既知信号、前記第一の他の既知信号、及び、前記第二の他の既知信号は、周波数方向又は時間方向の少なくともいずれか一方に沿って配置されている請求項1~6のいずれか一項に記載の通信装置。
  8.  前記受信信号は、連続的に並ぶ複数の前記最小単位を一のユーザに対して割り当てる方式によって送信される信号である請求項1~7のいずれか一項に記載の通信装置。
  9.  前記連続的に並ぶ複数の前記最小単位を一のユーザに対して割り当てる方式が、SC-FDMA方式である請求項8に記載の通信装置。
  10.  サイクリックシフトにより複数の参照信号が多重化された受信多重信号から前記複数の参照信号それぞれを含む複数の受信信号のチャネル特性を推定するチャネル推定部を備えた通信装置であって、
     前記チャネル推定部が、前記受信多重信号の伝送路周波数応答を離散コサイン変換することで得られる前記受信多重信号の伝送路時間応答に基づいて、前記複数の受信信号それぞれのチャネル特性を推定することを特徴とする通信装置。
  11.  前記チャネル推定部は、
     前記受信多重信号の伝送路周波数応答を離散コサイン変換し、前記受信多重信号の伝送路時間応答を得る第一変換部と、
     前記受信多重信号の伝送路時間応答から前記複数の参照信号それぞれの伝送路時間応答に分離する窓処理部と、
     分離した前記複数の参照信号それぞれの伝送路時間応答を、逆離散コサイン変換し、前記複数の参照信号それぞれの伝送路周波数応答を得る第二変換部と、を備え、
     前記複数の参照信号それぞれの伝送路周波数応答に基づいて、前記複数の受信信号それぞれのチャネル特性を推定する請求項10に記載の通信装置。
  12.  サイクリックシフトにより複数の参照信号が多重化された受信多重信号から前記複数の参照信号それぞれを含む複数の受信信号のチャネル特性を推定するチャネル推定部を備えた通信装置であって、
     前記チャネル推定部が、前記受信多重信号の伝送路周波数応答を偶対称拡張処理を行うことで得られる被処理関数に基づいて、前記複数の受信信号それぞれのチャネル特性を推定することを特徴とする通信装置。
  13.  前記チャネル推定部は、
     前記受信多重信号の伝送路周波数応答に、前記複数の参照信号それぞれのサイクリックシフトに基づく複素定数を乗算することによって前記複数の参照信号の伝送路周波数応答をもとの周波数にシフトさせた前記受信多重信号の伝送路周波数応答を、前記複数の参照信号ごとに得る乗算部と、
     前記複数の参照信号の伝送路周波数応答をもとの周波数にシフトさせた前記受信多重信号の伝送路周波数応答について偶対称拡張処理することで、前記複数の参照信号ごとの前記被処理関数を得る拡張処理部と、
     前記複数の参照信号ごとの前記被処理関数それぞれから、もとの周波数にシフトさせた前記複数の参照信号の伝送路周波数応答のみを取得するフィルタ部と、を備え、
     前記複数の参照信号の伝送路周波数応答に基づいて、前記複数の受信信号それぞれのチャネル特性を推定する請求項12に記載の通信装置。
  14.  前記複数の拡張処理部は、前記複数の参照信号の伝送路周波数応答をもとの周波数にシフトさせた前記多重信号の伝送路周波数応答の周波数軸の前後に、前記フィルタ部の群遅延の長さ分だけ拡張する請求項13に記載の通信装置。
  15.  前記チャネル推定部は、前記複数のフィルタ部により取得される前記複数の参照信号の伝送路周波数応答において生じる遅延成分を除去する除去部をさらに備えている請求項13又は14に記載の通信装置。
  16.  サイクリックシフトにより複数の参照信号が多重化された受信多重信号から前記複数の参照信号それぞれを含む複数の受信信号のチャネル特性を推定するチャネル推定部を備えた通信装置であって、
     前記チャネル推定部が、前記受信多重信号の伝送路周波数応答を偶対称性に基づく処理を行うことにより、前記複数の受信信号それぞれのチャネル特性を推定することを特徴とする通信装置。
  17.  サイクリックシフトにより複数の参照信号が多重化された受信多重信号から前記複数の参照信号それぞれを含む複数の受信信号のチャネル特性を推定するチャネル推定部を備えた通信装置であって、
     前記チャネル推定部は、
     前記受信多重信号の伝送路周波数応答に、前記複数の参照信号それぞれのサイクリックシフトに基づく複素定数を乗算することによって前記複数の参照信号の伝送路周波数応答をもとの周波数にシフトさせた前記受信多重信号の伝送路周波数応答を、前記複数の参照信号ごとに得る乗算部と、
     前記複数の参照信号の伝送路周波数応答をもとの周波数にシフトさせた前記受信多重信号の伝送路周波数応答それぞれから、もとの周波数にシフトさせた前記複数の参照信号の伝送路周波数応答のみを取得するフィルタ部と、を備え、
     前記複数の参照信号の伝送路周波数応答に基づいて、前記複数の受信信号それぞれのチャネル特性を推定することを特徴とする通信装置。
  18.  複数のユーザ端末に対する空間多重スケジューリング処理が可能なスケジューリング部を備えた基地局装置であって、
     空間多重信号を、各ユーザ端末それぞれからの信号に分離する信号分離部を備え、
     前記信号分離部は、分離して取り出したい一のユーザ端末からの信号を希望信号とみなすとともに、当該希望信号に空間多重されている他のユーザ端末からの信号を干渉信号とみなして、空間多重信号に対してアダプティブアレー処理を行い、各ユーザ端末それぞれからの信号を得るよう構成されている
     ことを特徴とする基地局装置。
  19.  フェムト基地局装置である請求項18記載の基地局装置。
  20.  前記信号分離部は、前記複数のユーザ端末間でパイロット信号の相互相関が所定の閾値よりも小さくなるようにサイクリックシフト量が前記複数のユーザ端末毎に設定された前記パイロット信号を用いて、前記アダプティブアレー処理のためのウェイト計算を行う請求項18又は19記載の基地局装置。
  21.  前記アダプティブアレー処理は、ユーザへのリソース割り当ての最小単位毎に計算されたウェイトを用いて行われる請求項18~20のいずれか1項に記載の基地局装置。
  22.  前記アダプティブアレー処理による信号の分離が可能であるか否かを判定する判定部を備える請求項18~21のいずれか1項に記載の基地局装置。
  23.  前記判定部は、干渉端末の有無を判定することで、前記アダプティブアレー処理による信号の分離が可能であるか否かを判定する請求項22記載の基地局装置。
  24.  前記判定部は、前記アダプティブアレー処理による信号の分離を試みた結果に基づいて、信号の分離が可能であるか否かを判定する請求項22又は23記載の基地局装置。
  25.  前記スケジューリング部は、前記判定部によって信号の分離が不可能であると判定されると、空間多重を用いないスケジューリング処理を行うか、又は、再度の空間多重スケジューリング処理を行う請求項22~24のいずれか1項に記載の基地局装置。
PCT/JP2011/050760 2010-01-22 2011-01-18 通信装置及び基地局装置 WO2011090028A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011800067063A CN102725969A (zh) 2010-01-22 2011-01-18 通信装置和基站装置
US13/514,701 US9014149B2 (en) 2010-01-22 2011-01-18 Communication apparatus and base station apparatus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010-012517 2010-01-22
JP2010012517A JP2011151684A (ja) 2010-01-22 2010-01-22 基地局装置
JP2010-064509 2010-03-19
JP2010064039A JP5499806B2 (ja) 2010-03-19 2010-03-19 通信装置
JP2010-064039 2010-03-19
JP2010064509A JP2011199620A (ja) 2010-03-19 2010-03-19 通信装置

Publications (1)

Publication Number Publication Date
WO2011090028A1 true WO2011090028A1 (ja) 2011-07-28

Family

ID=44306830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050760 WO2011090028A1 (ja) 2010-01-22 2011-01-18 通信装置及び基地局装置

Country Status (3)

Country Link
US (1) US9014149B2 (ja)
CN (1) CN102725969A (ja)
WO (1) WO2011090028A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013048355A (ja) * 2011-08-29 2013-03-07 Kyocera Corp 無線通信装置及び受信ウェイトの更新方法
WO2013070477A1 (en) * 2011-11-07 2013-05-16 Qualcomm Incorporated Method and apparatus for proximity detection
JP2014127876A (ja) * 2012-12-26 2014-07-07 Nippon Telegr & Teleph Corp <Ntt> 基地局装置、無線通信方法、及び無線通信システム
US8830849B2 (en) 2010-01-11 2014-09-09 Qualcomm Incorporated Method and apparatus for detecting transmission signals
WO2014141908A1 (ja) * 2013-03-12 2014-09-18 シャープ株式会社 無線端末局および基地局
US10897299B2 (en) 2017-11-09 2021-01-19 Nec Corporation Wireless apparatus, wireless communication method, and program

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5923786B2 (ja) * 2012-03-16 2016-05-25 シャープ株式会社 基地局装置及び通信方法
US8953660B2 (en) * 2012-10-02 2015-02-10 Telefonaktiebolaget L M Ericsson (Publ) Pilot structure to support a virtual diversity receiver scheme
US8848773B2 (en) 2012-10-02 2014-09-30 Telefonaktiebolaget L M Ericsson (Publ) Rate control for a virtual diversity receiver
KR101857670B1 (ko) 2014-05-08 2018-06-19 엘지전자 주식회사 Mimo 수신기에서 re 그룹을 형성하여 수신 신호를 처리하는 방법
KR20160075995A (ko) * 2014-12-19 2016-06-30 한국전자통신연구원 물리 채널 전송 방법 및 장치
WO2016141570A1 (zh) * 2015-03-11 2016-09-15 华为技术有限公司 Ofdma传输方法、接入点ap及站点
US9838290B2 (en) * 2015-06-30 2017-12-05 Ciena Corporation Flexible ethernet operations, administration, and maintenance systems and methods
US9961655B1 (en) * 2015-10-29 2018-05-01 Mbit Wireless, Inc. Method and apparatus for low complexity frequency synchronization in LTE wireless communication systems
KR102547119B1 (ko) * 2016-01-05 2023-06-23 삼성전자주식회사 무선 통신 시스템에서 간섭 제어를 위한 방법 및 장치
WO2020026211A1 (en) * 2018-08-03 2020-02-06 Telefonaktiebolaget Lm Ericsson (Publ) Method for dynamic configuration of reference signal
US10701694B2 (en) * 2018-08-21 2020-06-30 Phazr, Inc. Selective crest factor reduction and digital pre-distortion of physical channels and physical signals
US11338717B2 (en) 2019-05-15 2022-05-24 7-Eleven, Inc. Integrated vehicle vending machine
US11580516B2 (en) 2019-05-15 2023-02-14 7-Eleven, Inc. Remote vending using an integrated vehicle vending machine
CN117561735A (zh) * 2021-06-28 2024-02-13 高通股份有限公司 用智能反射表面进行交叉链路干扰测量资源配置和报告以用于干扰缓解

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004229088A (ja) * 2003-01-24 2004-08-12 Kyocera Corp 無線装置および通信制御方法
JP2005229466A (ja) * 2004-02-16 2005-08-25 Pioneer Electronic Corp 受信装置及び受信方法
WO2006098147A1 (ja) * 2005-03-16 2006-09-21 Fujitsu Limited 多入力システムにおける無線通信装置及びチャンネル推定及び分離方法
JP2006319959A (ja) * 2005-04-11 2006-11-24 Matsushita Electric Ind Co Ltd 無線基地局装置、端末装置及び無線通信方法
JP2008028729A (ja) * 2006-07-21 2008-02-07 Toshiba Corp 無線受信装置および方法
JP2008211304A (ja) * 2007-02-23 2008-09-11 Sumitomo Electric Ind Ltd 通信装置及びウェイト更新方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4007829B2 (ja) * 2002-03-08 2007-11-14 三洋電機株式会社 無線受信装置、アレイパラメータ最適値推定方法、およびアレイパラメータ最適値推定プログラム
JP2005151377A (ja) 2003-11-19 2005-06-09 Japan Science & Technology Agency Ofdm通信方式における伝送路特性推定方法及び装置
JP4701964B2 (ja) * 2005-09-27 2011-06-15 日本電気株式会社 マルチユーザ受信装置
EP2028777A1 (en) 2006-06-07 2009-02-25 Sharp Corporation Receiver and frequency information estimation method
JP2008028515A (ja) 2006-07-19 2008-02-07 Nec Corp 受信装置、受信方法、及びプログラム
JPWO2008032358A1 (ja) * 2006-09-11 2010-01-21 富士通株式会社 無線通信装置および無線通信方法
WO2008034458A1 (en) * 2006-09-22 2008-03-27 Telecom Italia S.P.A. Method and system for syntesizing array antennas
US8179948B2 (en) * 2007-08-30 2012-05-15 Mitsubishi Electric Corporation Radio signal demodulating device
JP2009177532A (ja) 2008-01-24 2009-08-06 Sumitomo Electric Ind Ltd 基地局装置
JP2009245337A (ja) 2008-03-31 2009-10-22 Jfe Steel Corp 鋼管外表面の印字判定方法
US8737546B2 (en) * 2009-04-23 2014-05-27 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Channel estimation techniques for OFDM

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004229088A (ja) * 2003-01-24 2004-08-12 Kyocera Corp 無線装置および通信制御方法
JP2005229466A (ja) * 2004-02-16 2005-08-25 Pioneer Electronic Corp 受信装置及び受信方法
WO2006098147A1 (ja) * 2005-03-16 2006-09-21 Fujitsu Limited 多入力システムにおける無線通信装置及びチャンネル推定及び分離方法
JP2006319959A (ja) * 2005-04-11 2006-11-24 Matsushita Electric Ind Co Ltd 無線基地局装置、端末装置及び無線通信方法
JP2008028729A (ja) * 2006-07-21 2008-02-07 Toshiba Corp 無線受信装置および方法
JP2008211304A (ja) * 2007-02-23 2008-09-11 Sumitomo Electric Ind Ltd 通信装置及びウェイト更新方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8830849B2 (en) 2010-01-11 2014-09-09 Qualcomm Incorporated Method and apparatus for detecting transmission signals
JP2013048355A (ja) * 2011-08-29 2013-03-07 Kyocera Corp 無線通信装置及び受信ウェイトの更新方法
WO2013070477A1 (en) * 2011-11-07 2013-05-16 Qualcomm Incorporated Method and apparatus for proximity detection
US9398585B2 (en) 2011-11-07 2016-07-19 Qualcomm Incorporated Methods and apparatus for proximity detection
JP2014127876A (ja) * 2012-12-26 2014-07-07 Nippon Telegr & Teleph Corp <Ntt> 基地局装置、無線通信方法、及び無線通信システム
WO2014141908A1 (ja) * 2013-03-12 2014-09-18 シャープ株式会社 無線端末局および基地局
US10897299B2 (en) 2017-11-09 2021-01-19 Nec Corporation Wireless apparatus, wireless communication method, and program

Also Published As

Publication number Publication date
US9014149B2 (en) 2015-04-21
US20120243503A1 (en) 2012-09-27
CN102725969A (zh) 2012-10-10

Similar Documents

Publication Publication Date Title
WO2011090028A1 (ja) 通信装置及び基地局装置
JP6779218B2 (ja) 全二重通信システム向けのトレーニング信号のためのシステムおよび方法
JP4445474B2 (ja) Ofdm信号の送信方法、ofdm送信機及びofdm受信機
JP5375520B2 (ja) 通信装置
US20170324532A1 (en) Terminal apparatus and method for transmitting a reference signal
JP5640990B2 (ja) 無線送信装置、無線送信方法、記憶媒体、およびベースバンド回路
JP4751733B2 (ja) Ofdm無線通信システム
JP2011151852A (ja) 無線通信装置
JP2007251855A (ja) Ofdm信号の送信方法、ofdm送信機及びofdm受信機
JP2010136347A5 (ja)
WO2011052222A1 (ja) 無線通信装置及び参照信号生成方法
JP2015012610A (ja) 衝突干渉除去を有するチャネル推定のための方法及びデバイス
US20110129027A1 (en) Wireless communication base station device, wireless communication terminal device, and method for setting cyclic delay
JP2020188462A (ja) Ofdmベースの通信システムのための適応型ビームフォーミングアンテナを提供する方法及び装置
WO2013080451A1 (ja) 無線通信システムにおける無線受信装置および無線受信方法
JP5499806B2 (ja) 通信装置
WO2011143000A1 (en) Multiple antenna method for reducing inter-cell interference in multi-user wireless systems
US9100228B2 (en) Long term evolution (LTE) uplink canonical channel estimation
JP5251833B2 (ja) 無線通信装置
JP6279207B2 (ja) 受信装置及び干渉雑音電力推定方法
US11949473B2 (en) Wireless receiving apparatus, wireless communication system, and wireless receiving method
JP2010193350A (ja) 通信装置及び通信システム
JP2011151684A (ja) 基地局装置
KR20070025523A (ko) 간섭 제거를 위한 ofdm 심볼의 송수신 방법
JP2011119849A (ja) 無線通信装置、無線通信システムおよび受信方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180006706.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734634

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13514701

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11734634

Country of ref document: EP

Kind code of ref document: A1