WO2011078575A2 - 하이브리드용 전력 변환 장치 - Google Patents

하이브리드용 전력 변환 장치 Download PDF

Info

Publication number
WO2011078575A2
WO2011078575A2 PCT/KR2010/009203 KR2010009203W WO2011078575A2 WO 2011078575 A2 WO2011078575 A2 WO 2011078575A2 KR 2010009203 W KR2010009203 W KR 2010009203W WO 2011078575 A2 WO2011078575 A2 WO 2011078575A2
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power storage
storage means
initial
power
Prior art date
Application number
PCT/KR2010/009203
Other languages
English (en)
French (fr)
Other versions
WO2011078575A3 (ko
Inventor
김춘택
박철규
Original Assignee
두산인프라코어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산인프라코어 주식회사 filed Critical 두산인프라코어 주식회사
Priority to EP10839772.0A priority Critical patent/EP2518858B1/en
Priority to CN201080058962.2A priority patent/CN102668313B/zh
Priority to US13/519,075 priority patent/US8742606B2/en
Publication of WO2011078575A2 publication Critical patent/WO2011078575A2/ko
Publication of WO2011078575A3 publication Critical patent/WO2011078575A3/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/20Inrush current reduction, i.e. avoiding high currents when connecting the battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a power conversion device for a hybrid. Specifically, since a DC link capacitor or an ultracapacitor is directly connected to each other, an inrush current generated when one side is completely discharged or the charging voltages are different, It relates to a power conversion device for a hybrid, which can be safely initialized at start-up regardless of the charge-discharge state of the electrical storage device.
  • hybrid systems include hybrid systems for heavy equipment such as hybrid cars and excavators.
  • a general excavator system uses an engine as a power source to perform an operation of turning or driving a boom, an arm, and a bucket, which are final loads, through a medium called hydraulic pressure.
  • the hybrid excavator system can improve the overall efficiency of the excavator system by installing two motors and an electric storage device in the general excavator.
  • Major components added to the hybrid excavator system include motors, electrical storage devices, inverters and converters.
  • the electrical storage device includes a battery and an ultra-capacitor.
  • FIG. 1 is a configuration diagram of a power conversion device having a conventional DC-DC converter.
  • a power converter 100 having a conventional DC-DC converter includes a switching mode power supply 110, a logic control board 120, an engine auxiliary motor inverter 130, and a load motor inverter. 140, a DC link capacitor 150, and an ultra capacitor converter 160 that is a DC-DC converter.
  • the switching mode power supply unit 110, the logic control board 120, the engine auxiliary motor inverter 130, the load motor inverter 140 and the ultracapacitor converter 160 respectively, the control board battery 101, excavator electric It is connected to the device 102, the engine auxiliary motor 103, the load motor 104 and the ultra capacitor 105.
  • the switched-mode power supply (SMPS) 110 is connected to the control board battery 101 to supply power to the logic control board 120.
  • the logic control board 120 senses the voltage of the ultra capacitor 105 and the voltage of the DC link capacitor 150 and controls the initial driving logic.
  • the engine auxiliary motor inverter 130 performs a function of charging the DC link capacitor 150 by the engine auxiliary motor 103.
  • the engine auxiliary motor 103 is directly connected to the engine, and rotates at the same rotation speed (rpm) as the engine when the engine is driven.
  • the load motor inverter 140 performs a function of driving the load motor 104 according to the charged voltage when the power contactor of the ultra capacitor 105 is turned on.
  • the load motor 104 provides the power required for the drive capable of using electrical power of the drive for the operation of the excavator.
  • the DC link capacitor 150 charges the DC voltage converted by the engine auxiliary motor inverter 130.
  • the DC link capacitor 150 is connected to the ultra capacitor converter 160.
  • the ultra capacitor converter 160 functions to charge the ultra capacitor 105 by using the electric energy stored in the DC link capacitor 150.
  • the ultra capacitor converter 160 is connected between the DC link capacitor 150 and the ultra capacitor 105.
  • the ultra capacitor 105 is charged with the voltage converted by the ultra capacitor 105.
  • the power converter 100 having a DC-DC converter having such a configuration includes an inverter for driving a motor (for example, an engine auxiliary motor inverter 130 and a load motor inverter 140) and a converter for driving an ultracapacitor ( For example, ultracapacitor converter 160).
  • the ultracapacitor converter 160 involves an operation loss in the process of converting the voltage of the DC link to be charged in the ultracapacitor 105. Without such a converter, the power converter 100 may have several advantages.
  • a converter less power converter can improve system efficiency compared to a power converter having a conventional DC-DC converter. This is because the loss occurring in the ultra capacitor 160 is eliminated.
  • the size of the power converter 100 may be reduced.
  • the power converter does not require an inductor for a DC-DC converter, an insulated gate bipolar transistor (IGBT) capable of fast switching, and a current transformer (CT) for current measurement. Therefore, since the area occupied by the converter inductor, IGBT, and CT is eliminated, the size of the power converter 100 can be reduced.
  • IGBT insulated gate bipolar transistor
  • CT current transformer
  • the power converter 100 may be manufactured in a structure without a converter inductor, an IGBT, and a CT.
  • the conventional power converter 100 when using an electric energy storage device such as the ultracapacitor 105 without using a converter, the conventional power converter 100 has an advantage of reducing the loss.
  • This inrush current is the voltage of the ultracapacitor 105 when the ultracapacitor 105 is charged by energy regeneration when either the power converter 100 is initially started up, or when either of them is completely discharged or the charging voltage is different. This can happen if low. That is, when the DC-DC converter is simply deleted from the conventional power converter 100, the component may be damaged by the inrush current during the initial startup or the charging 105 of the ultra capacitor. Therefore, there is an urgent need for technology development to solve the problem caused by the inrush current.
  • the present invention was devised to solve the above problems, and provides a power conversion device for a hybrid that can reduce the size and manufacturing cost of the power converter and prevent damage caused by the inverted current when charging the ultracapacitor.
  • the hybrid power converter according to the present invention in the hybrid power converter, is located between the first inverter connected to the engine auxiliary motor and the second inverter connected to the load motor, generated in the engine auxiliary motor First power storage means for accumulating electrical energy; Second power storage means for storing electric energy stored in the first power storage means, electric energy generated from the engine auxiliary motor, and electric energy generated by power generation driving of the load motor; Initial charging means, located between the first power storage means and the second power storage means, for charging the second power storage means with electrical energy accumulated in the first power storage means; Switching means for switching a connection between said initial charging means and said second power storage means and a connection between said second power storage means and a load motor, respectively; And an initial stage for matching the first and second power storage voltages sensed by the first and second power storage means to each other at initial start-up, and controlling the switching means to connect the load motor and the second power storage means. And charging control means.
  • the present invention provides a By driving the load motor after matching the voltages to each other, there is an effect that it can safely initialize the initial storage regardless of the charge-discharge state of the electrical storage device.
  • the present invention can prevent the inrush current generated when one side is completely discharged or the charging voltage is different because the DC link capacitor or the ultra capacitor is directly connected to each other because no converter is used. There is an effect that can be safely initialized irrespective of the charge-discharge state of the electrical storage device.
  • the present invention does not need to include an inductor, an IGBT, and a CT for a DC-DC converter, thereby reducing the size of the entire power converter.
  • the present invention has the effect of reducing the cost of having a converter.
  • FIG. 1 is a block diagram of a power conversion device having a conventional DC-DC converter
  • FIG. 2 is a configuration diagram of an embodiment of a power conversion device for a hybrid according to the present invention
  • 3A and 3B illustrate an embodiment of an initial charging operation in a DC link charging mode and a UC charging mode according to the present invention
  • FIG. 4 is a flow diagram of an embodiment of an initial charging method of a DC link and an ultra capacitor according to the present invention.
  • FIG. 2 is a configuration diagram of an embodiment of a power conversion device for a hybrid according to the present invention.
  • the DC-DC converterless power converter 200 includes an initial charge control unit 220 and an engine auxiliary motor inverter 230 that are powered by the switching mode power supply unit 210. ), Load motor inverter 240, direct current link (DC link) capacitor 250, initial charging unit 260, small capacity relay (SR1, SR2) 270 for initial charging, and large capacity contactor for large current conduction (MC1, MC2) 280.
  • the ultracapacitor 290 is connected to the power converter 200 through initial charge small capacity relays SR1 and SR2 270 and large current conduction large capacity contactors MC1 and MC2 280.
  • Initial charge small capacity relays SR1 and SR2 270 may be included in the ultracapacitor 290.
  • FIG. 2 shows, by way of example, a load motor that provides swing drive power of the equipment as a load motor 104 driven using electricity stored in the ultracapacitor 290.
  • the present invention is not necessarily limited thereto, and may use electricity stored in an ultracapacitor among motors connected to a device for supplying power to a plurality of working devices mounted on the equipment (pump for providing hydraulic pressure in an excavator). Any motor can be used. In this case, if the motor is driven back by the inertia of the working device to function as a generator, the generated electricity can be charged to the ultracapacitor via the DC link.
  • the switched-mode power supply (SMPS) 210 is connected to the control board battery 101 to supply power to the initial charging control unit 220.
  • the initial charging control unit 220 senses the voltage of the ultra capacitor 290 and the voltage of the DC link capacitor 250 and controls the initial driving logic. That is, the initial charge control unit 220 according to [Table 1] and FIG. 4 to be described later to match the voltage of the ultra-capacitor 290 with the voltage of the DC link capacitor 250 at the initial start-up, SR1, SR2) 270 and the large-capacity large-capacity contactors MC1, MC2 280 are controlled to prevent inrush current from occurring between the DC link capacitor 250 and the ultracapacitor 290.
  • the engine auxiliary motor inverter 230 performs a function of charging the DC link capacitor 250 by the engine auxiliary motor 103.
  • the engine auxiliary motor 103 is directly connected to the engine, and rotates at the same rotation speed (rpm) as the engine at initial start-up.
  • the load motor inverter 240 drives the load motor 104 according to the charged voltage when the large-capacity contacts MC1 and MC2 280 of the ultracapacitor 290 are turned on.
  • the DC link capacitor 250 charges the DC voltage converted by the engine auxiliary motor inverter 230.
  • the DC link capacitor 250 is connected to the initial charging unit 260.
  • the initial charging unit 260 charges the ultra capacitor 290.
  • the initial charging unit 260 is connected between the DC link capacitor 250 and the ultra capacitor 290.
  • the ultra capacitor 290 is charged to the voltage converted by the initial charging unit 260.
  • the initial charging unit 260 may be formed of a small capacity DC-DC converter for initial charging.
  • the ultracapacitor 290 is connected to the DC link capacitor 250, and the initial charging unit 260 is located therebetween.
  • Ultracapacitor 290 is ultra-ultra small according to the operation of the small-capacity relay (SR1, SR2) 270 and the large-capacity electrical contactor (MC1, MC2) 280 for the initial charge controlled by the initial charging control unit 220, Match the voltage of capacitor 290 with the voltage of DC link capacitor 250.
  • the initial charge small capacity relays SR1 and SR2 270 transfer the voltage of the DC link capacitor 250 converted through the initial charging unit 260 to the ultracapacitor 290 under the control of the initial charging control unit 220. Or block the function.
  • the high-capacity large-capacity contactors MC1 and MC2 280 maintain an OFF state at initial startup, and under the control of the initial charging control unit 220, the voltage of the DC link capacitor 250 and the ultracapacitor ( When the voltage of 290 is matched, the state is changed to ON so that the voltage charged in the ultra capacitor 290 is transferred to the load motor 104 through the load motor inverter 240.
  • the initial charging control process in the initial charging control unit 220, the converterless power converter 200 according to the present invention is a DC link which is two electrical energy storage devices Capacitor 250 and Ultra Capacitor 290 are included.
  • the DC link capacitor 250 and the ultra capacitor 290 are initialized sequentially according to the charge and discharge states.
  • the initial charging control unit 220 senses the voltage of the DC link capacitor 250 and the voltage of the ultra capacitor 290.
  • the initial charging control unit 220 divides the state of charge of the DC link capacitor 250 and the ultra capacitor 290 according to the sensed voltage according to Table 1 below. That is, the initial charging control unit 220 determines the voltage state of the DC link capacitor 250 and the ultra capacitor 290.
  • the reference voltage represents the output voltage of the engine auxiliary power generation motor 103 at initial engine start-up.
  • Table 1 the state of charge of the DC link capacitor 250 and the ultra capacitor 290 can be divided into four types.
  • the initial charging control unit 220 refers to the DC link capacitor 250. Charge naturally to voltage.
  • the initial charge control unit 220 maintains the small capacity relays SR1 and SR2 270 ON to charge the ultracapacitor 290 to a reference voltage, that is, the voltage of the DC link capacitor 250.
  • the initial charging control unit 220 may turn off the DC link capacitor 250. Voltage control by reference voltage. That is, when the voltage of the DC link capacitor 250 is higher than the reference voltage, the initial charge control unit 220 controls the small capacity relays SR1 and SR2 270 to lower the voltage of the DC link capacitor 250. The initial charge control unit 220 maintains the small capacity relays SR1 and SR2 270 in the on state to charge the ultracapacitor 290 to the reference voltage.
  • the initial charging control unit 220 of the DC link capacitor 250 When the voltage of the DC link capacitor 250 is included within the maximum voltage from the reference voltage and the voltage of the ultracapacitor 290 is a reference voltage from 0V, the initial charging control unit 220 of the DC link capacitor 250 The voltage is controlled to match the voltage of the ultra capacitor 290. In this case, the initial charging control unit 220 does not control the voltage of the ultra capacitor 290.
  • the initial charging control unit 220 is the voltage of the DC link capacitor 250 Is controlled to match the voltage of the ultracapacitor 290. In this case, the initial charging control unit 220 does not control the voltage of the ultra capacitor 290.
  • the initial charging control unit 220 controls the voltage to match the voltage of the DC link capacitor 250 and the voltage of the ultra capacitor 290. That is, the initial charge control unit 220 distinguishes between the voltage of the DC link capacitor 250 and the voltage of the ultra capacitor 290 based on the reference voltage to determine the DC link capacitor 250 or the ultra capacitor 290. Voltage control.
  • This voltage control process consists of the charging mode of the DC link capacitor 250 and the charging mode of the ultra capacitor 290.
  • the small capacity relay 270 and the large capacity contactor 280 remain OFF.
  • the voltage of the DC link capacitor 250 is charged through the engine auxiliary motor inverter 230.
  • the small capacity relay 270 remains ON and the large capacity contactor 280 remains OFF.
  • the voltage of the ultra capacitor 290 is charged through the initial charging unit 260.
  • 3A and 3B illustrate exemplary embodiments of an initial charging operation in a DC link charging mode and a UC charging mode according to the present invention.
  • the engine auxiliary motor 103 automatically performs the power generation operation as the engine rotates at the initial rotational speed (rpm) at initial startup, corresponding to the initial rotational speed (rpm). Generate a voltage.
  • the voltage difference is naturally embedded in the power device of the engine auxiliary motor inverter (hereinafter referred to as the first inverter) 230 by the voltage difference.
  • the diode is in a conductive state.
  • the capacitor of the DC link capacitor 250 is charged by the generated voltage.
  • the small capacity relays SR1 and SR2 270 and the large current contactor MC1 and MC2 280 are maintained in an OFF state.
  • the small-capacity relays SR1 and SR2 270 that were kept off in the DC link capacitor 250 charging mode are changed to an ON state, and a large current conduction is performed.
  • the large capacity contactors MC1 and MC2 280 are maintained in an OFF state.
  • the ultra-capacitor 290 is provided through the small-capacity relays SR1 and SR2 270 in which the DC link capacitor 250 charged in the DC link capacitor 250 charging mode is turned on with the initial charging unit 260. Charge it.
  • the large current conducting large capacity contactors MC1 and MC2 280 are maintained in the OFF state.
  • the DC link capacitor 250 is charged through the first inverter 230, and the ultra capacitor 290 is connected to the DC link capacitor 250, the initial charging unit 260, and the small capacity relays SR1 and SR2 270. Is charged through.
  • the initial charging control unit 220 changes the large current conduction large-capacity contactors MC1 and MC2 280 to the ON state. Complete the initial charging process.
  • FIG. 4 is a flow diagram of an embodiment of an initial charging method of a DC link and an ultra capacitor according to the present invention.
  • the driver performs Key On of the excavator electrical device 102 so that the engine rotates at an initial rpm during initial start-up. Subsequently, as the engine rotates at an initial rotational speed (rpm) at initial startup, the engine auxiliary motor 103 automatically performs a power generation operation to generate a voltage corresponding to the initial rotational speed (rpm). At this time, when the voltage of the DC link capacitor 250 is lower than the power generation voltage, the diode built in the power device of the first inverter 230 becomes a conductive state by this voltage difference. Then, the voltage generated by the capacitor of the DC link capacitor 250 is charged (402).
  • the reference voltage represents the charging voltage according to the engine idle speed at the initial start-up.
  • the initial charging control unit 220 checks whether the voltage of the ultracapacitor 290 sensed from the ultracapacitor 290 is less than the reference voltage (404).
  • the initial charging control unit 220 charges the voltage of the ultracapacitor 290 according to the reference voltage (406).
  • the initial charge controller 220 determines whether the voltage of the ultracapacitor 290 is greater than or equal to the reference voltage.
  • the initial charging control unit 220 connects the large capacity contactor 280 to an ON state (410). On the other hand, if the voltage of the ultra capacitor 290 is less than the reference voltage, the initial charging control unit 220 performs again from the "406" process in which the ultra capacitor 290 is charged to the reference voltage.
  • the initial charge control unit 220 charges the DC link capacitor 250 to match the voltage of the ultra capacitor 290 (412) ).
  • the initial charging control unit 220 checks whether the voltage of the DC link capacitor 250 is greater than or equal to the voltage of the ultracapacitor 290 (414).
  • the initial charging control unit 220 connects the large capacity contactor 280 to an ON state. "Perform the process. On the other hand, if the voltage of the DC link capacitor 250 is less than the voltage of the ultracapacitor 290, the initial charging control unit 220 is charged to match the voltage of the ultracapacitor 290 with the voltage of the DC link capacitor 250. Repeat the process from 412 ".
  • the present invention prevents inrush current generated when a DC link capacitor or an ultracapacitor is fully discharged or has a different charging voltage, thereby safely initializing the current storage regardless of the charge-discharge state of the electrical storage device at initial startup. Can revitalize converter business.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

본 발명은 DC 링크 커패시터 또는 울트라 커패시터가 서로 직접 연결되어 있기 때문에 한쪽이 완전 방전되어 있거나 충전 전압이 서로 다를 경우에 발생된 돌입 전류를 방지하기 위하여, 초기 시동시에 DC 링크 커패시터 및 울트라 커패시터 간의 스위칭을 통해 각 전압을 서로 일치시켜 초기 충전을 완료한 후에 부하 모터를 구동시킴으로써, 초기 시동 시 전기 저장 장치의 충-방전 상태에 무관하게 안전하게 초기화시킬 수 있다.

Description

하이브리드용 전력 변환 장치
본 발명은 하이브리드용 전력 변환 장치에 관한 것으로서, 상세하게는 DC 링크 커패시터 또는 울트라 커패시터가 서로 직접 연결되어 있기 때문에 한쪽이 완전 방전되어 있거나 충전 전압이 서로 다를 경우에 발생된 돌입 전류를 방지함으로써, 초기 시동 시 전기 저장 장치의 충-방전 상태에 무관하게 안전하게 초기화시킬 수 있는, 하이브리드용 전력 변환 장치에 관한 것이다.
최근에는 유가의 급격한 상승과 함께 엔진의 잉여 동력을 배터리에 저장하고 엔진의 부족한 동력을 배터리로부터 공급하여 연비를 개선한 하이브리드 형태의 건설기계에 대한 연구가 활발히 진행되고 있다.
이와 같이, 엔진과 전기 모터를 공통 동력원으로 사용하고 전기에너지 저장 장치가 있는 시스템을 하이브리드 시스템이라 한다. 예를 들어, 하이브리드 시스템에는 하이브리드 자동차 및 굴삭기와 같은 중장비용 하이브리드 시스템이 있다.
한편, 일반적인 굴삭기 시스템은 엔진을 동력원으로 하여 유압이라는 매개체를 통해서 최종 부하인 붐, 암 및 버켓을 선회시키거나 주행시키는 동작을 수행한다. 이와 달리, 하이브리드 굴삭기 시스템은 일반적인 굴삭기에 2개의 모터와 전기저장 장치를 추가로 설치함으로써, 굴삭기 시스템의 전체효율을 향상시킬 수 있다. 하이브리드 굴삭기 시스템에 추가되는 주요부품은 모터, 전기 저장 장치, 인버터 및 컨버터를 포함한다. 여기서, 전기 저장 장치는 배터리(Battery) 및 울트라 커패시터(Ultra-capacitor)를 포함한다.
도 1 은 종래의 DC-DC 컨버터를 구비한 전력 변환 장치의 구성도이다.
도 1에 도시된 바와 같이, 종래의 DC-DC 컨버터를 구비한 전력 변환 장치(100)는 스위칭 모드 전원 공급부(110), 로직 제어 보드(120), 엔진 보조 모터 인버터(130), 부하 모터 인버터(140), DC 링크 커패시터(150) 및 DC-DC 컨버터인 울트라 커패시터 컨버터(160)를 포함한다. 여기서, 스위칭 모드 전원공급부(110), 로직 제어 보드(120), 엔진 보조 모터 인버터(130), 부하 모터 인버터(140) 및 울트라 커패시터 컨버터(160)는 각각 제어 보드용 배터리(101), 굴삭기 전기 장치(102), 엔진 보조 모터(103), 부하 모터(104) 및 울트라 커패시터(105)와 연결되어 있다.
스위칭 모드 전원공급부(SMPS: Switched-Mode Power Supply)(110)는 제어 보드용 배터리(101)와 연결되어 로직 제어 보드(120)에 전원을 공급한다.
로직 제어 보드(120)는 울트라 커패시터(105)의 전압 및 DC 링크 커패시터(150)의 전압을 센싱하고 초기 구동 로직을 제어하는 기능을 수행한다.
엔진 보조 모터 인버터(130)는 엔진 보조 모터(103)에 의해 DC 링크 커패시터(150)를 충전시키는 기능을 수행한다. 여기서, 엔진 보조 모터(103)는 엔진과 직접적으로 연결되어 있으며, 엔진 구동시 엔진과 같은 회전수(rpm)로 회전한다.
부하 모터 인버터(140)는 울트라 커패시터(105)의 전력 컨텍터가 온(ON) 상태가 되면, 충전된 전압에 따라 부하 모터(104)를 구동시키는 기능을 수행한다. 여기서, 부하 모터(104)는 굴삭기의 작업을 위한 구동품들 중 전기적인 동력의 사용이 가능한 구동품들에 필요한 동력을 제공한다.
DC 링크 커패시터(150)는 엔진 보조 모터 인버터(130)에 의해 변환된 DC 전압을 충전한다. DC 링크 커패시터(150)는 울트라 커패시터 컨버터(160)와 연결되어 있다.
울트라 커패시터 컨버터(160)는 DC 링크 커패시터(150)에 저장된 전기 에너지를 이용하여 울트라 커패시터(105)를 충전시키는 기능을 수행한다. 울트라 커패시터 컨버터(160)는 DC 링크 커패시터(150)와 울트라 커패시터(105) 사이에 연결되어 있다. 여기서, 울트라 커패시터(105)는 울트라 커패시터(105)에 의해 변환된 전압으로 충전된다.
이와 같은 구성을 가진 DC-DC 컨버터를 구비한 전력 변환 장치(100)는 모터를 구동하는 인버터(예컨대, 엔진 보조 모터 인버터(130) 및 부하 모터 인버터(140))와 울트라 커패시터를 구동하는 컨버터(예컨대, 울트라 커패시터 컨버터(160))를 포함한다. 여기서, 울트라 커패시터 컨버터(160)는 울트라 커패시터(105)에 충전할 DC 링크의 전압을 변환하는 과정에서 동작 손실을 수반한다. 이러한 컨버터가 없다면, 전력 변환 장치(100)는 여러 가지 장점을 가질 수 있다.
첫 번째로, 종래의 DC-DC 컨버터를 구비한 전력 변환 장치에 비해 컨버터리스(Converter Less) 전력 변환 장치는 시스템 효율을 향상시킬 수 있다. 이는 울트라 커패시터(160)에서 발생하는 손실 분이 없어지기 때문이다.
두 번째로, 전력 변환 장치(100)의 크기를 축소시킬 수 있다. 전력 변환 장치는 DC-DC 컨버터용 인덕터, 고속 스위칭이 가능한 절연 게이트 양극성 트랜지스터(IGBT: Insulated gate bipolar transistor), 및 전류 계측용 전류 트랜스(CT: Current Transformer)가 필요하지 않다. 그러므로, 이러한 컨버터용 인덕터, IGBT 및 CT가 차지하는 면적이 없어지므로, 전력 변환 장치(100)의 크기는 줄어들 수 있다.
세 번째로, 전력 변환 장치(100)를 제작하기 위한 비용이 절감될 수 있다. 전력 변환 장치(100)는 컨버터용 인덕터, IGBT 및 CT가 없는 구조로 제작될 수 있다.
이와 같이, 컨버터를 사용하지 않으면서 울트라 커패시터(105)와 같은 전기에너지 저장 장치를 사용할 경우, 종래의 전력 변환 장치(100)는 손실을 절감할 수 있는 장점이 있다.
하지만, DC 링크 커패시터(150) 및 울트라 커패시터(105)를 서로 직접 연결시키는 경우, 울트라 커패시터 컨버터(160)가 방전되어 있거나 DC링크와 전압차이가 커서 울트라 커패시터(105)가 충전되어야 할 때 위험한 돌입 전류가 발생될 수 있다. 이러한 돌입 전류는 전력 변환 장치(100)가 초기 시동하는 경우, 어느 한쪽이 완전 방전되어 있거나 충전 전압이 서로 다를 경우, 에너지 회생에 의해 울트라 커패시터(105)가 충전될 때 울트라 커패시터(105)의 전압이 낮은 경우 발생할 수 있다. 즉, 종래의 전력 변환 장치(100)로부터 단순히 DC-DC 컨버터를 삭제할 경우 초기 시동시 또는 울트라 커패시터의 충전(105)시 돌입 전류에 의해 부품이 파손될 수 있다는 문제점이 있다. 따라서 이러한 돌입 전류에 의한 문제를 해결하기 위한 기술개발이 절실히 필요한 상황이다.
본 발명은 상기의 문제점을 해결하기 위해 창안된 것으로서, 전력변환장치의 소형화 및 제조비용 절감을 도모함과 아울러 울트라 커패시터의 충전시 도립전류에 의한 손상을 방지할 수 있는 하이브리드용 전력 변환 장치를 제공하는 것을 목적으로 한다.
이를 위하여, 본 발명에 따른 하이브리드용 전력 변환 장치는, 하이브리드용 전력 변환 장치에 있어서, 엔진 보조 모터와 연결된 제1 인버터와 부하 모터와 연결된 제2 인버터 사이에 위치하며, 상기 엔진 보조 모터에서 발생된 전기 에너지를 축적하기 위한 제1 축전 수단; 상기 제 1 축전 수단에 축전된 전기 에너지와 상기 엔진 보조 모터로부터 발전된 전기 에너지 및 상기 부하 모터의 발전구동에 의해 발전된 전기 에너지를 축전하기 위한 제 2 축전 수단; 상기 제1 축전 수단과 제2 축전 수단 사이에 위치하고, 상기 제1 축전 수단에 축적된 전기 에너지를 상기 제2 축전 수단에 충전시키기 위한 초기 충전 수단; 상기 초기 충전 수단 및 상기 제2 축전 수단 간의 연결과, 상기 제2 축전 수단 및 부하 모터 간의 연결을 각각 스위칭하기 위한 스위칭 수단; 및 상기 제1 및 제2 축전 수단에서 각각 센싱된 제1 및 제2 축전 전압을 초기 시동시에 서로 일치시키고, 상기 부하 모터와 상기 제2 축전 수단을 연결을 위해 상기 스위칭 수단을 제어하는 위한 초기 충전 제어 수단을 포함하는 것을 특징으로 한다.
본 발명은, DC 링크 커패시터 또는 울트라 커패시터가 서로 직접 연결되어 있기 때문에 한쪽이 완전 방전되어 있거나 충전 전압이 서로 다를 경우에 발생된 돌입 전류를 방지하기 위하여, 초기 시동시에 DC 링크 커패시터 및 울트라 커패시터의 전압을 서로 일치시킨 후에 부하 모터를 구동시킴으로써, 초기 시동 시 전기 저장 장치의 충-방전 상태에 무관하게 안전하게 초기화시킬 수 있는, 효과가 있다.
즉, 본 발명은, 컨버터가 사용되지 않고 DC 링크 커패시터 또는 울트라 커패시터가 서로 직접 연결되어 있기 때문에 한쪽이 완전 방전되어 있거나 충전 전압이 서로 다를 경우에 발생된 돌입 전류를 방지할 수 있으며, 초기 시동 시 전기 저장 장치의 충-방전 상태에 무관하게 안전하게 초기화시킬 수 있는 효과가 있다.
또한, 본 발명은, DC-DC 컨버터용 인덕터, IGBT 및 CT를 구비하지 않아도 되므로 전체 전력 변환 장치의 크기를 축소시킬 수 있는 효과가 있다.
또한, 본 발명은, 컨버터를 구비함으로 소요되는 비용을 줄일 수 있는 효과가 있다.
도 1 은 종래의 DC-DC 컨버터를 구비한 전력 변환 장치의 구성도,
도 2 는 본 발명에 따른 하이브리드용 전력 변환 장치의 일실시예 구성도,
도 3a 및 도 3b 는 본 발명에 따른 DC 링크 충전 모드와 UC 충전 모드에서의 초기 충전 동작에 대한 일실시예 설명도,
도 4 는 본 발명에 따른 DC 링크 및 울트라 커패시터의 초기 충전 방법에 대한 일실시예 흐름도이다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 실시 예를 상세하게 설명한다. 본 발명의 구성 및 그에 따른 작용 효과는 이하의 상세한 설명을 통해 명확하게 이해될 것이다. 본 발명의 상세한 설명에 앞서, 동일한 구성요소에 대해서는 다른 도면상에 표시되더라도 가능한 동일한 부호로 표시하며, 공지된 구성에 대해서는 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 구체적인 설명은 생략하기로 함에 유의한다.
도 2 는 본 발명에 따른 하이브리드용 전력 변환 장치의 일실시예 구성도이다.
도 2에 도시된 바와 같이, 본 발명에 따른 DC-DC 컨버터리스 전력 변환 장치(200)는 스위칭 모드 전원공급부(210)에 의해 전원을 공급받는 초기 충전 제어부(220), 엔진 보조 모터 인버터(230), 부하 모터 인버터(240), 직류 링크(DC link: Direct Current link) 커패시터(250), 초기 충전부(260), 초기 충전용 소용량 릴레이(SR1, SR2)(270) 및 대전류 도통용 대용량 컨텍터(MC1, MC2)(280)를 포함한다. 울트라 커패시터(290)는, 초기 충전용 소용량 릴레이(SR1, SR2)(270) 및 대전류 도통용 대용량 컨텍터(MC1, MC2)(280)를 통해 전력 변환 장치(200)와 연결된다. 여기서, 스위칭 모드 전원공급부(210), 초기 충전 제어부(220), 엔진 보조 모터 인버터(230), 부하 모터 인버터(240)는 각각 배터리(101), 굴삭기 전기 장치(102), 엔진 보조 모터(103) 및 부하 모터(104)와 연결되어 있다. 초기 충전용 소용량 릴레이(SR1, SR2)(270)는 울트라 커패시터(290)에 포함될 수 있다. 도 2는 상기 울트라 커패시터(290)에 축전된 전기를 사용하여 구동되는 부하 모터(104)로서 장비의 선회구동 동력을 제공하는 부하 모터를 일례로 도시하고 있다. 하지만, 본 발명은 꼭 이에 한정되는 것은 아니며 장비에 장착된 여러 작업장치들에 동력을 제공하는(굴삭기의 경우 유압을 제공하기 위한 펌프) 장치에 연결된 모터 중 울트라 커패시터에 축전된 전기를 사용할 수 있는 모터라면 어떤 것이든 적용이 가능하다. 이 경우 작업장치의 관성에 의해 모터가 역구동되어 발전기의 기능을 하는 경우라면, 발전된 전기는 직류 링크를 경유하여 울트라 커패시터에 충전될 수 있다.
이하, DC-DC 컨버터리스 전력 변환 장치(200) 및 울트라 커패시터(290)의 구성 요소 각각에 대해서 설명하기로 한다.
스위칭 모드 전원공급부(SMPS: Switched-Mode Power Supply)(210)는 제어 보드용 배터리(101)와 연결되어 초기 충전 제어부(220)에 전원을 공급한다.
초기 충전 제어부(220)는 울트라 커패시터(290)의 전압 및 DC 링크 커패시터(250)의 전압을 센싱하고, 초기 구동 로직을 제어하는 기능을 수행한다. 즉, 초기 충전 제어부(220)는 후술될 [표 1] 및 도 4에 따라 초기 시동시 DC 링크 커패시터(250)의 전압과 울트라 커패시터(290)의 전압을 일치시키도록, 초기 충전용 소용량 릴레이(SR1, SR2)(270) 및 대전류 도통용 대용량 컨텍터(MC1, MC2)(280)를 제어하여 DC 링크 커패시터(250)와 울트라 커패시터(290) 간에 돌입 전류가 발생하지 않게 한다.
엔진 보조 모터 인버터(230)는 엔진 보조 모터(103)에 의해 DC 링크 커패시터(250)를 충전시키는 기능을 수행한다. 여기서, 엔진 보조 모터(103)는 엔진과 직접적으로 연결되어 있으며, 초기 시동시 엔진과 같은 회전수(rpm)로 회전한다.
부하 모터 인버터(240)는 울트라 커패시터(290)의 대용량 컨텍터(MC1, MC2)(280)가 온(ON) 상태가 되면, 충전된 전압에 따라 부하 모터(104)를 구동시킨다.
DC 링크 커패시터(250)는 엔진 보조 모터 인버터(230)에 의해 변환된 DC 전압을 충전한다. DC 링크 커패시터(250)는 초기 충전부(260)와 연결되어 있다.
초기 충전부(260)는 울트라 커패시터(290)를 충전시킨다. 초기 충전부(260)는 DC 링크 커패시터(250)와 울트라 커패시터(290) 사이에 연결되어 있다. 여기서, 울트라 커패시터(290)는 초기 충전부(260)에 의해 변환된 전압으로 충전된다. 바람직하게는 초기 충전부(260)는 초기 충전용 소용량 DC-DC 컨버터로 이루어질 수 있다.
한편, 울트라 커패시터(290)는 DC 링크 커패시터(250)와 연결되고, 그 사이에 초기 충전부(260)가 위치해 있다. 울트라 커패시터(290)는 초기 충전 제어부(220)에 의해 제어되는 초기 충전용 소용량 릴레이(SR1, SR2)(270) 및 대전류 도통용 대용량 컨텍터(MC1, MC2)(280)의 동작에 따라, 울트라 커패시터(290)의 전압을 DC 링크 커패시터(250)의 전압과 일치시킨다.
초기 충전용 소용량 릴레이(SR1, SR2)(270)는 초기 충전 제어부(220)의 제어에 따라 초기 충전부(260)를 통해 변환된 DC 링크 커패시터(250)의 전압을 울트라 커패시터(290)로 전달시키거나 차단하는 기능을 수행한다.
대전류 도통용 대용량 컨텍터(MC1, MC2)(280)는 초기 시동시에 오프(OFF) 상태를 유지하다가, 초기 충전 제어부(220)의 제어에 따라 DC 링크 커패시터(250)의 전압과 울트라 커패시터(290)의 전압이 일치되면, 온(ON) 상태로 변경하여 울트라 커패시터(290)에 충전된 전압이 부하 모터 인버터(240)를 통해 부하 모터(104)로 전달되도록 한다.
이하, 초기 충전 제어부(220)에서 초기 시동시 제어 과정을 하기의 [표 1]을 참조하여 구체적으로 살펴보면, 본 발명에 따른 컨버터리스 전력 변환 장치(200)는 2개의 전기에너지 저장 장치인 DC 링크 커패시터(250) 및 울트라 커패시터(290)를 포함하고 있다. 2개의 전기에너지 저장 장치 간의 돌입 전류의 발생을 억제하기 위하여, DC 링크 커패시터(250) 및 울트라 커패시터(290)는 충전 및 방전 상태에 따라 순차적으로 초기화된다.
우선, 초기 충전 제어부(220)는 DC 링크 커패시터(250)의 전압 및 울트라 커패시터(290)의 전압을 센싱한다. 초기 충전 제어부(220)는 센싱된 전압에 따라 DC 링크 커패시터(250) 및 울트라 커패시터(290)의 충전 상태를 하기의 [표 1]에 따라 구분한다. 즉, 초기 충전 제어부(220)는 DC 링크 커패시터(250) 및 울트라 커패시터(290)의 전압 상태를 판별한다.
표 1
DC 링크UC 전압 0V ~ 기준전압 기준전압 ~ 최대전압
0V ~기준전압 DC 링크: 기준전압까지 자연충전UC: 기준전압까지 충전 DC 링크: 기준전압까지 전압제어UC: 기준전압까지 충전
기준전압~최대전압 DC 링크: UC전압까지 전압 제어UC: 제어 없음 DC 링크: UC 전압까지 전압 제어UC: 제어 없음
여기서, 기준전압은 초기 엔진 시동시 엔진 보조 발전 모터(103)의 출력전압을 나타낸다. 상기 [표 1]에서 DC 링크 커패시터(250) 및 울트라 커패시터(290)의 충전 상태는 4가지로 구분이 가능하다.
첫째로, DC 링크 커패시터(250)의 전압이 0V부터 기준전압 내에 포함되면서 울트라 커패시터(290)의 전압이 0V부터 기준전압인 경우에, 초기 충전 제어부(220)는 DC 링크 커패시터(250)를 기준전압까지 자연적으로 충전시킨다. 그리고 초기 충전 제어부(220)는 소용량 릴레이(SR1 및 SR2)(270)를 온(ON)으로 유지시켜 울트라 커패시터(290)를 기준전압 즉, DC 링크 커패시터(250)의 전압까지 충전시킨다.
둘째로, DC 링크 커패시터(250)의 전압이 기준전압부터 최대전압 내에 포함되면서 울트라 커패시터(290)의 전압이 0V부터 기준전압인 경우에, 초기 충전 제어부(220)는 DC 링크 커패시터(250)를 기준전압으로 전압 제어한다. 즉, DC 링크 커패시터(250)의 전압이 기준전압보다 높으면, 초기 충전 제어부(220)는 DC 링크 커패시터(250)의 전압을 낮추도록 소용량 릴레이(SR1 및 SR2)(270)를 제어한다. 그리고 초기 충전 제어부(220)는 울트라 커패시터(290)를 기준전압까지 충전시키도록 소용량 릴레이(SR1 및 SR2)(270)를 온 상태로 유지시킨다.
셋째로, DC 링크 커패시터(250)의 전압이 기준전압부터 최대전압 내에 포함되면서 울트라 커패시터(290)의 전압이 0V부터 기준전압인 경우에, 초기 충전 제어부(220)는 DC 링크 커패시터(250)의 전압을 울트라 커패시터(290)의 전압에 맞추도록 전압 제어한다. 이때, 초기 충전 제어부(220)는 울트라 커패시터(290)의 전압을 제어하지 않는다.
넷째로, DC 링크 커패시터(250)의 전압이 기준전압부터 최대전압이면서 울트라 커패시터(290)의 전압이 기준전압부터 최대전압인 경우에, 초기 충전 제어부(220)는 DC 링크 커패시터(250)의 전압을 울트라 커패시터(290)의 전압에 맞추도록 전압 제어한다. 이때, 초기 충전 제어부(220)는 울트라 커패시터(290)의 전압을 제어하지 않는다.
상기 [표 1]에 따라, 초기 충전 제어부(220)는 DC 링크 커패시터(250)의 전압과 울트라 커패시터(290)의 전압을 일치시키도록 전압 제어한다. 즉, 초기 충전 제어부(220)는 DC 링크 커패시터(250)의 전압과 울트라 커패시터(290)의 전압이 기준전압을 기준으로 어느 쪽에 있는지를 구분하여 DC 링크 커패시터(250) 또는 울트라 커패시터(290)를 전압 제어한다.
이러한 전압제어 과정은 DC 링크 커패시터(250)의 충전 모드와 울트라 커패시터(290)의 충전 모드로 이루어진다. DC 링크 커패시터(250)의 충전 모드에서 소용량 릴레이(270) 및 대용량 컨텍터(280)는 오프(OFF) 상태로 유지된다. DC 링크 커패시터(250)의 전압은 엔진 보조 모터 인버터(230)를 통해 충전된다. 반면, 반면, 울트라 커패시터(290)의 충전 모드에서 소용량 릴레이(270)는 온(ON) 상태로 유지되고, 대용량 컨텍터(280)는 오프(OFF) 상태로 유지된다. 울트라 커패시터(290)의 전압은 초기 충전부(260)를 통해 충전된다.
도 3a 및 도 3b 는 본 발명에 따른 DC 링크 충전 모드와 UC 충전 모드에서의 초기 충전 동작에 대한 일실시예 설명도이다.
본 발명에 따른 DC 링크 충전 모드와 UC 충전 모드로 구분하여 설명하기로 한다.
첫째로, DC 링크 커패시터(250) 충전 모드에서 엔진 보조 모터(103)는 초기 시동시 엔진이 초기 회전수(rpm)로 회전함에 따라 자동으로 발전동작으로 수행하여 초기 회전수(rpm)에 해당하는 전압을 생성한다. 이때, DC 링크 커패시터(250)의 전압이 이 발전 전압보다 낮을 경우 자연적으로 이 전압 차에 의해 엔진 보조 모터 인버터(이하, 제1 인버터라 한다)(230)의 파워 디바이스(Power Device)에 내장된 다이오드가 도통 상태가 된다. 그러면, DC 링크 커패시터(250)의 커패시터에 발전된 전압만큼 충전된다. 여기서, 엔진이 초기 시동시 초기 회전수(rpm)로 회전하는 것이 중요한 요소로 작용한다. DC 링크 충전 모드에서 소용량 릴레이(SR1, SR2)(270) 및 대전류 도통용 대용량 컨텍터(MC1, MC2)(280)는 오프(OFF) 상태로 유지되어 있다.
둘째로, 울트라 커패시터(290) 충전 모드를 살펴보면, DC 링크 커패시터(250) 충전 모드에서 오프 상태로 유지되어 있던 소용량 릴레이(SR1, SR2)(270)는 온(ON) 상태로 변경되고, 대전류 도통용 대용량 컨텍터(MC1, MC2)(280)는 오프(OFF) 상태로 유지된다. 그러면, DC 링크 커패시터(250) 충전 모드에서 충전된 DC 링크 커패시터(250)가 초기 충전부(260)와 온(ON) 상태로 변경된 소용량 릴레이(SR1, SR2)(270)를 통해 울트라 커패시터(290)를 충전시킨다. 여기서, 대전류 도통용 대용량 컨텍터(MC1, MC2)(280)는 오프(OFF) 상태로 유지되어 있다.
즉, DC 링크 커패시터(250)는 제1 인버터(230)를 통해 충전되고, 울트라 커패시터(290)는 DC 링크 커패시터(250), 초기 충전부(260) 및 소용량 릴레이(SR1, SR2)(270)를 통해 충전된다.
이후, DC 링크 커패시터(250) 및 울트라 커패시터(290)의 충전이 완료되면, 초기 충전 제어부(220)는 대전류 도통용 대용량 컨텍터(MC1, MC2)(280)를 온(ON) 상태로 변경하여 초기 충전 과정을 완료한다.
도 4 는 본 발명에 따른 DC 링크 및 울트라 커패시터의 초기 충전 방법에 대한 일실시예 흐름도이다.
운전자가 굴삭기 전기 장치(102)의 키 온(Key On)을 수행하여 초기 시동시 엔진이 초기 회전수(rpm)로 회전한다. 이어서, 엔진이 초기 시동시 초기 회전수(rpm)로 회전함에 따라, 엔진 보조 모터(103)는 자동으로 발전 동작으로 수행하여 초기 회전수(rpm)에 해당하는 전압을 생성한다. 이때, DC 링크 커패시터(250)의 전압이 발전 전압보다 낮을 경우 자연적으로 이 전압 차에 의해 제1 인버터(230)의 파워 디바이스(Power Device)에 내장된 다이오드가 도통 상태가 된다. 그러면, DC 링크 커패시터(250)의 커패시터에서 발전된 전압만큼 충전된다(402). 여기서, 기준전압은 초기 시동시 엔진 아이들(idle) 속도에 따른 충전 전압을 나타낸다.
초기 충전 제어부(220)는 울트라 커패시터(290)로부터 센싱된 울트라 커패시터(290)의 전압이 기준전압 미만인지 여부를 확인한다(404).
상기 확인 결과(404), 울트라 커패시터(290)의 전압이 기준전압 미만이면, 초기 충전 제어부(220)는 울트라 커패시터(290)의 전압을 기준전압에 맞춰 충전시킨다(406).
그리고 초기 충전 제어부(220)는 울트라 커패시터(290)의 전압이 기준전압 이상인지 여부를 확인한다(408).
상기 확인 결과(408), 울트라 커패시터(290)의 전압이 기준전압 이상이면, 초기 충전 제어부(220)는 대용량 컨텍터(280)를 온(ON) 상태로 연결한다(410). 반면, 울트라 커패시터(290)의 전압이 기준전압 미만이면, 초기 충전 제어부(220)는 울트라 커패시터(290)가 기준전압으로 충전되는 "406" 과정부터 다시 수행한다.
한편, 상기 확인 결과(404), 울트라 커패시터(290)의 전압이 기준전압 이상이면, 초기 충전 제어부(220)는 DC 링크 커패시터(250)를 울트라 커패시터(290)의 전압에 맞추도록 충전시킨다(412).
그리고 초기 충전 제어부(220)는 DC 링크 커패시터(250)의 전압이 울트라 커패시터(290)의 전압 이상인지 여부를 확인한다(414).
상기 확인 결과(414), DC 링크 커패시터(250)의 전압이 울트라 커패시터(290)의 전압 이상이면, 초기 충전 제어부(220)는 대용량 컨텍터(280)를 온(ON) 상태로 연결하는 "410" 과정을 수행한다. 반면, DC 링크 커패시터(250)의 전압이 울트라 커패시터(290)의 전압 미만이면, 초기 충전 제어부(220)는 DC 링크 커패시터(250)의 전압이 울트라 커패시터(290)의 전압에 맞추도록 충전되는 "412" 과정부터 다시 수행한다.
이상의 설명은 본 발명을 예시적으로 설명한 것에 불과하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술적 사상에서 벗어나지 않는 범위에서 다양한 변형이 가능할 것이다. 따라서 본 발명의 명세서에 개시된 실시 예들은 본 발명을 한정하는 것이 아니다. 본 발명의 범위는 아래의 특허청구범위에 의해 해석되어야 하며, 그와 균등한 범위 내에 있는 모든 기술도 본 발명의 범위에 포함되는 것으로 해석해야 할 것이다.
본 발명은 DC 링크 커패시터 또는 울트라 커패시터가 한쪽이 완전 방전되어 있거나 충전 전압이 서로 다를 경우에 발생된 돌입 전류를 방지하여 초기 시동 시 전기 저장 장치의 충-방전 상태에 무관하게 안전하게 초기화시켜 현재의 전력 변환 장치 사업을 보다 활성화시킬 수 있다.

Claims (6)

  1. 하이브리드용 전력 변환 장치에 있어서,
    엔진 보조 모터와 연결된 제1 인버터와 부하 모터와 연결된 제2 인버터 사이에 위치하며, 상기 엔진 보조 모터에서 발생된 전기 에너지를 축적하기 위한 제1 축전 수단;
    상기 제 1 축전 수단에 축전된 전기 에너지와 상기 엔진 보조 모터로부터 발전된 전기 에너지 및 상기 부하 모터의 발전구동에 의해 발전된 전기 에너지를 축전하기 위한 제 2 축전 수단;
    상기 제1 축전 수단과 제2 축전 수단 사이에 위치하고, 상기 제1 축전 수단에 축적된 전기 에너지를 상기 제2 축전 수단에 충전시키기 위한 초기 충전 수단;
    상기 초기 충전 수단 및 상기 제2 축전 수단 간의 연결과, 상기 제2 축전 수단 및 부하 모터 간의 연결을 각각 스위칭하기 위한 스위칭 수단; 및
    상기 제1 및 제2 축전 수단에서 각각 센싱된 제1 및 제2 축전 전압을 초기 시동시에 서로 일치시키고, 상기 부하 모터와 상기 제2 축전 수단을 연결을 위해 상기 스위칭 수단을 제어하는 위한 초기 충전 제어 수단
    을 포함하는 하이브리드용 전력 변환 장치.
  2. 제 1 항에 있어서,
    상기 스위칭 수단은,
    상기 제2 축전 수단을 충전시키도록, 상기 초기 충전 수단 및 상기 제2 축전 수단 간의 연결을 스위칭하기 위한 제1 스위칭 수단; 및
    상기 부하 모터를 구동시키도록, 상기 제2 축전 수단 및 상기 부하 모터 간의 연결을 스위칭하기 위한 제2 스위칭 수단
    을 포함하는 하이브리드용 전력 변환 장치.
  3. 제 1 항에 있어서,
    상기 초기 충전 제어 수단은,
    상기 센싱된 제1 및 제2 축전 전압을 초기 시동시 엔진 아이들 속도에 의한 소정의 충전 전압과 비교하고, 상기 센싱된 제1 및 제2 전압의 비교 결과에 따라 상기 센싱된 제1 및 제2 축전 전압을 서로 일치시키는 하이브리드용 전력 변환 장치.
  4. 제 3 항에 있어서,
    상기 초기 충전 제어 수단은,
    상기 센싱된 제1 및 제2 전압의 비교 결과에 따라, 상기 센싱된 제2 전압이 상기 소정의 충전 전압 미만이면 상기 제2 스위칭 수단을 이용하여 상기 제2 축전 수단을 상기 소정의 충전 전압까지 충전시키고, 상기 센싱된 제2 전압이 상기 소정의 충전 전압 이상이면 상기 제1 축전 수단을 상기 센싱된 제2 전압까지 충전시키는 하이브리드용 전력 변환 장치.
  5. 제 3 항에 있어서,
    상기 초기 충전 제어 수단은,
    상기 센싱된 제1 및 제2 전압의 비교 결과에 따라, 상기 제1 및 제2 축전 수단의 전압을 상기 소정 충전 전압 또는 상기 센싱된 제2 전압까지 전압 제어하는 하이브리드용 전력 변환 장치.
  6. 제 3 항에 있어서,
    상기 초기 충전 제어 수단은,
    상기 센싱된 제1 및 제2 전압의 비교 결과에 따라, 상기 제2 스위칭 수단을 이용하여 상기 제2 축전 수단을 상기 센싱된 제1 전압 또는 소정 전압까지 충전시키는 하이브리드용 전력 변환 장치.
PCT/KR2010/009203 2009-12-24 2010-12-22 하이브리드용 전력 변환 장치 WO2011078575A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10839772.0A EP2518858B1 (en) 2009-12-24 2010-12-22 Power-converting apparatus for hybrid vehicles
CN201080058962.2A CN102668313B (zh) 2009-12-24 2010-12-22 混合动力用电力转换装置
US13/519,075 US8742606B2 (en) 2009-12-24 2010-12-22 Power converting device for hybrid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090130341A KR101599555B1 (ko) 2009-12-24 2009-12-24 하이브리드용 전력 변환 장치
KR10-2009-0130341 2009-12-24

Publications (2)

Publication Number Publication Date
WO2011078575A2 true WO2011078575A2 (ko) 2011-06-30
WO2011078575A3 WO2011078575A3 (ko) 2011-10-27

Family

ID=44196311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/009203 WO2011078575A2 (ko) 2009-12-24 2010-12-22 하이브리드용 전력 변환 장치

Country Status (5)

Country Link
US (1) US8742606B2 (ko)
EP (1) EP2518858B1 (ko)
KR (1) KR101599555B1 (ko)
CN (1) CN102668313B (ko)
WO (1) WO2011078575A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140284999A1 (en) * 2011-08-26 2014-09-25 Doosan Infracore Co., Ltd Hybrid power supply apparatus and method for controlling same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101877057B1 (ko) * 2011-12-28 2018-07-11 두산인프라코어 주식회사 하이브리드 건설기계의 비상 정지 방법
KR101988052B1 (ko) * 2012-12-24 2019-06-11 두산인프라코어 주식회사 하이브리드 건설기계용 전원 공급 장치 및 그 방법
KR102011513B1 (ko) * 2012-12-26 2019-08-16 두산인프라코어 주식회사 하이브리드 건설기계용 전력 변환 장치의 안전 구동 방법
US9174525B2 (en) 2013-02-25 2015-11-03 Fairfield Manufacturing Company, Inc. Hybrid electric vehicle
GB2516705B (en) * 2013-12-19 2016-05-25 Textron Ground Support Equipment Uk Ltd Hybrid aircraft mover
KR101947609B1 (ko) * 2014-02-07 2019-02-14 주식회사 만도 하이브리드 차량의 배터리 방전 방지시스템 및 이를 이용한 하이브리드 차량의 배터리 방전 방지방법
US10050572B2 (en) 2014-12-19 2018-08-14 Black & Decker Inc. Power tool with electric motor and auxiliary switch path
WO2016181128A1 (en) 2015-05-11 2016-11-17 Genefirst Ltd Methods, compositions, and kits for preparing sequencing library
US10778123B2 (en) 2015-10-16 2020-09-15 Kohler Co. Synchronous inverter
US10148202B2 (en) 2015-10-16 2018-12-04 Kohler Co. Hybrid device with segmented waveform converter
US10148207B2 (en) 2015-10-16 2018-12-04 Kohler Co. Segmented waveform converter on controlled field variable speed generator
US10063097B2 (en) 2015-10-16 2018-08-28 Kohler Co. Segmented waveform converter on controlled field variable speed generator
KR101792824B1 (ko) * 2015-10-29 2017-11-01 삼성중공업 주식회사 양방향 전력변환장치
CA3060018A1 (en) 2017-04-17 2018-10-25 Thomas DUNWELL Methods, compositions, and kits for preparing nucleic acid libraries
JP6879170B2 (ja) * 2017-11-08 2021-06-02 トヨタ自動車株式会社 車両用電源システム
GB202108427D0 (en) 2021-06-14 2021-07-28 Fu Guoliang Methods, compositions, and kits for preparing sequencing library

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002247711A (ja) * 2001-02-20 2002-08-30 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP2004129463A (ja) * 2002-10-07 2004-04-22 Nissan Motor Co Ltd アイドルストップ車両用電源制御装置
JP2006158173A (ja) * 2004-10-29 2006-06-15 Toyota Motor Corp モータ駆動装置
JP2006314172A (ja) * 2005-05-09 2006-11-16 Komatsu Ltd モータ駆動装置
JP2007336715A (ja) * 2006-06-15 2007-12-27 Toyota Motor Corp 車両用の電力供給装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6072302A (en) * 1998-08-26 2000-06-06 Northrop Grumman Corporation Integrated control system and method for controlling mode, synchronization, power factor, and utility outage ride-through for micropower generation systems
JP4347982B2 (ja) * 2000-02-28 2009-10-21 三菱電機株式会社 エレベーターの制御装置
JP3722811B2 (ja) * 2003-06-06 2005-11-30 ファナック株式会社 モータ駆動装置
US7122914B2 (en) * 2003-12-22 2006-10-17 Caterpillar Inc. System for starting an electric drive machine engine
US7176648B2 (en) * 2004-05-18 2007-02-13 Husky Injection Molding Systems Ltd. Energy management apparatus and method for injection molding systems
JP4506571B2 (ja) * 2005-06-07 2010-07-21 トヨタ自動車株式会社 車両用電源システムおよび車両
US7586214B2 (en) * 2006-10-11 2009-09-08 Gm Global Technology Operations, Inc. High voltage energy storage connection monitoring system and method
JP5209922B2 (ja) * 2007-09-14 2013-06-12 川崎重工業株式会社 電気鉄道システム
JP2009142010A (ja) * 2007-12-04 2009-06-25 Toyota Motor Corp 駆動装置およびこれを備える動力出力装置
JP4339916B2 (ja) * 2008-02-28 2009-10-07 ファナック株式会社 モータ駆動装置
JP4631924B2 (ja) * 2008-04-16 2011-02-16 トヨタ自動車株式会社 駆動装置およびこれを搭載するハイブリッド車並びに駆動装置の制御方法
US20100039054A1 (en) * 2008-08-14 2010-02-18 General Electric Company Vehicle, system and method
EP2464860B1 (en) * 2009-08-14 2015-04-22 Vestas Wind Systems A/S A variable speed wind turbine, and a method for operating the variable speed wind turbine during a power imbalance event
KR101124973B1 (ko) * 2009-12-03 2012-03-27 현대자동차주식회사 하이브리드 차량의 모터 구동 시스템 및 이의 고장 제어 방법
US8358031B2 (en) * 2010-02-26 2013-01-22 General Electric Company System and method for a single stage power conversion system
US8803468B2 (en) * 2010-10-04 2014-08-12 Siemens Industry, Inc. System and method for fast discharge of a ring motor field

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002247711A (ja) * 2001-02-20 2002-08-30 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP2004129463A (ja) * 2002-10-07 2004-04-22 Nissan Motor Co Ltd アイドルストップ車両用電源制御装置
JP2006158173A (ja) * 2004-10-29 2006-06-15 Toyota Motor Corp モータ駆動装置
JP2006314172A (ja) * 2005-05-09 2006-11-16 Komatsu Ltd モータ駆動装置
JP2007336715A (ja) * 2006-06-15 2007-12-27 Toyota Motor Corp 車両用の電力供給装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140284999A1 (en) * 2011-08-26 2014-09-25 Doosan Infracore Co., Ltd Hybrid power supply apparatus and method for controlling same

Also Published As

Publication number Publication date
US20120267902A1 (en) 2012-10-25
KR20110073646A (ko) 2011-06-30
EP2518858A4 (en) 2017-03-01
EP2518858B1 (en) 2022-02-09
CN102668313A (zh) 2012-09-12
US8742606B2 (en) 2014-06-03
KR101599555B1 (ko) 2016-03-03
EP2518858A2 (en) 2012-10-31
WO2011078575A3 (ko) 2011-10-27
CN102668313B (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
WO2011078575A2 (ko) 하이브리드용 전력 변환 장치
CN106476635B (zh) 具有多个能量存储装置的混合***
WO2014104676A1 (ko) 하이브리드 건설기계용 전원 공급 장치 및 그 방법
CN101370685B (zh) 车辆推进***
WO2012018204A2 (ko) 전기자동차 및 그 배터리의 충전제어방법
US9013168B2 (en) System for transferring energy from an energy source and method of making same
WO2012018205A2 (ko) 전기자동차 및 그 보조배터리의 충전제어방법
CN105365595A (zh) 电动汽车动力电池与超级电容动力***及控制方法
CN106427616B (zh) 一种基于电荷泵的复合电源及其在不同工况时的切换方法
CN102843078A (zh) 一种集成开关磁阻电机驱动与低压电池充电的变换装置
CN112072781A (zh) 全水冷永磁同步柴油发电机组应急无缝切换***及方法
CN205097969U (zh) 一种电电混合电动汽车动力电池与超级电容动力***
WO2022206192A1 (zh) 供电电路、供电***及车辆
CN212676951U (zh) 全水冷永磁同步柴油发电机组应急无缝切换***
CN105449245A (zh) 在燃料电池混合动力车辆中使用再生制动功率用于***再次启动
CN204681109U (zh) 降低超级电容放电电压下限值的装置
WO2013032159A2 (ko) 하이브리드 전원 장치 및 그 제어 방법
CN201390606Y (zh) 轮胎式集装箱龙门起重机车载转场装置
CN109703383B (zh) 一种电动牵引车的供电***
CN114228754A (zh) 一种混合动力调车机车电传动***
CN210101354U (zh) 一种新能源汽车及其电机驱动与电池充电装置
CN109586387B (zh) 一种斩波电路及供电***
WO2023019856A1 (zh) 在线供电充电***及控制方法
CN217522758U (zh) 发电控制***、发电***及作业机械
CN217175016U (zh) 一种电动挖掘机

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080058962.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13519075

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010839772

Country of ref document: EP